WO2022188457A1 - 发光器件、发光基板和发光装置 - Google Patents

发光器件、发光基板和发光装置 Download PDF

Info

Publication number
WO2022188457A1
WO2022188457A1 PCT/CN2021/131362 CN2021131362W WO2022188457A1 WO 2022188457 A1 WO2022188457 A1 WO 2022188457A1 CN 2021131362 W CN2021131362 W CN 2021131362W WO 2022188457 A1 WO2022188457 A1 WO 2022188457A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
substituted
unsubstituted
emitting
Prior art date
Application number
PCT/CN2021/131362
Other languages
English (en)
French (fr)
Inventor
张东旭
孙玉倩
高荣荣
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/014,378 priority Critical patent/US20230255107A1/en
Publication of WO2022188457A1 publication Critical patent/WO2022188457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present disclosure relates to the technical field of lighting and display, and in particular, to a light-emitting device, a light-emitting substrate and a light-emitting device.
  • OLED Organic Light-Emitting Diode, Organic Light Emitting Diode
  • OLED Organic Light-Emitting Diode
  • a light-emitting device comprising: a first electrode and a second electrode arranged in layers; and a multi-layer functional layer arranged between the first electrode and the second electrode; the multi-layer functional layer It includes a light-emitting layer, and at least two material layers with hole transport function between the light-emitting layer and the first electrode, and at least one layer between the light-emitting layer and the second electrode having a hole transport function.
  • the difference between the LUMO level and the LUMO level of the host material is greater than or equal to 0.3 eV; under the same test conditions, the magnitude of the hole mobility of the material of the electron blocking layer is the same as that of the at least one layer with electrons
  • the ratio of the order of magnitude of the electron mobility of the material of the material layer of the transport function is greater than or equal to 1; the guest material is selected from any one of compounds with a molecular ellipticity greater than 1.8.
  • the electron mobility of the material of the at least one material layer having an electron transport function is 10 ⁇ 8 cm 2 V ⁇ 1 s -1 to 10 -7 cm 2 V -1 s -1
  • the hole mobility of the material of the electron blocking layer is 10 -8 cm 2 V -1 s -1 to 10 -6 cm 2 V -1 s -1 .
  • the material of the electron blocking layer is selected from any one of the structures represented by the following general formula (I):
  • Ar 1 and Ar 2 are the same or different, and are independently selected from any of substituted or unsubstituted C 6 -C 30 aryl groups and substituted or unsubstituted C 2 -C 30 heteroaryl groups;
  • L is independently selected from any one of a single bond, a substituted or unsubstituted C 6 -C 30 arylene group, and a substituted or unsubstituted C 2 -C 30 heteroarylene group.
  • the material of the electron blocking layer is selected from any one of the following structural formulas:
  • the guest material is selected from any one of the structures represented by the following general formula (II):
  • A, B and C are independently selected from any one of substituted or unsubstituted C 6 -C 30 aryl groups, substituted or unsubstituted C 2 -C 30 heteroaryl groups;
  • X 1 and X 2 are the same or different, each independently selected from N(R), R is selected from hydrogen, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 2 -C 30 heteroaryl and substituted or any one of unsubstituted C 1 -C 30 alkyl groups.
  • A, B, and C are each independently selected from phenyl, biphenyl, and any one of the following structural formulas:
  • X is selected from O, S, Se or NR
  • R is selected from H, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 2 -C 30 heteroaryl and substituted or unsubstituted C 2 -C 30 heteroaryl Any of substituted C 1 -C 30 alkyl groups.
  • the guest material is selected from any one of the following structural formulas:
  • a light-emitting substrate comprising: a substrate; and a plurality of light-emitting devices disposed on the substrate; wherein, at least one light-emitting device is the above-mentioned light-emitting device.
  • the first electrode is close to the substrate relative to the second electrode, and the second electrode is transparent to light;
  • the light-emitting substrate further includes: being disposed on the second electrode away from the substrate The light extraction layer on one side; the refractive index of the light extraction layer is greater than the refractive index of the material layer adjacent to the light extraction layer and located on the side of the light extraction layer close to the second electrode.
  • the light extraction layer has an index of refraction greater than or equal to 1.8 for light having a wavelength of 620 nm.
  • the material of the light extraction layer is selected from any one of the following general formula (III):
  • Ar 3 and Ar 4 are the same or different, and are independently selected from any of substituted or unsubstituted C 6 -C 30 aryl groups and substituted or unsubstituted C 2 -C 30 heteroaryl groups;
  • X is selected from O, S, Se or NR, R is selected from H, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 2 -C 30 heteroaryl and substituted or unsubstituted C 2 -C 30 heteroaryl Any one of C 1 -C 30 alkyl groups;
  • L 1 is selected from single bond, substituted or unsubstituted C 6 -C 30 arylene, substituted or unsubstituted C 2 -C 30 heteroarylene Any one of the groups, L 2 is selected from any one of a single bond, a substituted or unsubstituted C 6 -C 30 aryl group, and a substituted or unsubstituted C 2 -
  • the material of the light extraction layer is selected from any one of the following structural formulas:
  • a light-emitting device comprising: the above-mentioned light-emitting substrate.
  • FIG. 1 is a cross-sectional structural view of a light-emitting substrate according to some embodiments
  • FIG. 2 is a top structural view of a light emitting substrate according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • a light-emitting device which includes a light-emitting substrate, and may of course include other components, such as a circuit for providing electrical signals to the light-emitting substrate to drive the light-emitting substrate to emit light, the circuit It may be called a control circuit, and may include a circuit board and/or an IC (Integrate Circuit) that is electrically connected to the light-emitting substrate.
  • a control circuit may include a circuit board and/or an IC (Integrate Circuit) that is electrically connected to the light-emitting substrate.
  • the light-emitting device may be a lighting device, and in this case, the light-emitting device is used as a light source to realize a lighting function.
  • the light-emitting device may be a backlight module in a liquid crystal display device, a lamp for internal or external lighting, or various signal lights, and the like.
  • the light-emitting device may be a display device, and in this case, the light-emitting substrate is a display substrate for realizing the function of displaying an image (ie, a picture).
  • the light emitting device may comprise a display or a product incorporating a display.
  • the display may be a flat panel display (Flat Panel Display, FPD), a microdisplay, and the like.
  • the display can be a transparent display or an opaque display according to whether the user can see the scene behind the display.
  • the display may be a flexible display or a normal display (which may be called a rigid display).
  • products incorporating displays may include: computer monitors, televisions, billboards, laser printers with display capabilities, telephones, cell phones, Personal Digital Assistants (PDAs), laptop computers, digital cameras, camcorders Recorders, viewfinders, vehicles, large walls, theater screens or stadium signage, etc.
  • PDAs Personal Digital Assistants
  • laptop computers digital cameras
  • camcorders Recorders viewfinders
  • vehicles large walls, theater screens or stadium signage, etc.
  • the light-emitting substrate 1 includes a substrate 11 , a pixel defining layer 12 disposed on the substrate 11 , and a plurality of light-emitting devices 13 .
  • the pixel defining layer 12 has a plurality of openings Q, and the plurality of light emitting devices 13 can be arranged in a one-to-one correspondence with the plurality of openings Q.
  • the plurality of light emitting devices 13 here may be all or part of the light emitting devices 13 included in the light emitting substrate 1 ; the plurality of openings Q may be all or part of the openings on the pixel defining layer 12 .
  • At least one light emitting device 13 includes a first electrode 131 and a second electrode 132 arranged in layers, and a multi-layered functional layer arranged between the first electrode 131 and the second electrode 132.
  • the first electrode 131 may be an anode, and in this case, the second electrode 132 is a cathode. In other embodiments, the first electrode 131 may be a cathode, and in this case, the second electrode 132 may be an anode.
  • the material of the anode can be selected from high work function materials, such as ITO (Indium Tin Oxides, indium tin oxide), IZO (Indium Zinc Oxide, indium zinc oxide) or composite materials (such as Ag/ITO, Al/ ITO, Ag/IZO or Al/IZO, where "Ag/ITO" designates a stacked structure composed of metallic silver electrodes and ITO electrodes), etc.
  • the material of the cathode can be selected from low work function materials, such as metallic Al, Ag or Mg, or metal alloy materials with low work function (such as magnesium-aluminum alloy, magnesium-silver alloy), etc.
  • the multi-layer functional layer includes a light-emitting layer 133, and at least two material layers 134 with hole transport function between the light-emitting layer 133 and the first electrode 131, and between the light-emitting layer 133 and the second electrode At least one material layer 135 with electron transport function between 132 is provided.
  • the at least two material layers 134 with hole transport function include an electron blocking layer 134a, and the material of the light-emitting layer 133 includes a host material and a guest material.
  • the difference between the LUMO (Lowest Unoccupied Molecular Orbital, lowest unoccupied molecular orbital) energy level of the material of the electron blocking layer 134a and the LUMO energy level of the host material is greater than or equal to the threshold.
  • the magnitude of the hole mobility of the material of the electron blocking layer 134a is equal to the magnitude of the magnitude of the electron mobility of the material of the at least one material layer 135 having an electron transport function ratio greater than or equal to 1.
  • the electron blocking layer 134a plays a role in blocking the diffusion of electrons transmitted from the light-emitting layer 133, and confines the electrons and holes in the light-emitting region to improve the efficiency.
  • the overall electron transport speed of the light-emitting device 13 is greater than the hole transport speed, it can be known that the exciton recombination region is located at the interface between the electron blocking layer 134a and the light-emitting layer 133.
  • the electron blocking layer 134a By disposing the electron blocking layer 134a, electrons can be prevented from entering the holes. transport layer, which can improve device life.
  • the material of the electron blocking layer 134a has a relatively high LUMO energy level, that is, there is a relatively large LUMO energy level difference between the material of the electron blocking layer 134a and the host material BH.
  • the above threshold may be 0.3eV.
  • the LUMO energy level of the host material may be -2.6eV--3.0eV
  • the LUMO energy level of the material of the electron blocking layer 134a may be -2.3eV--2.6eV.
  • the difference between the LUMO energy level of the material of the electron blocking layer 134a and the LUMO energy level of the host material is greater than or equal to 0.3 eV.
  • the LUMO energy level of the material of the electron blocking layer 134 a may be -2.3 eV
  • the electron blocking layer 134 a may have a LUMO energy level of -2.3 eV
  • the LUMO energy level of the material of the blocking layer 134a may be -2.3eV or -2.4eV, and when the LUMO energy level of the host material is -2.8eV, the LUMO energy level of the material of the electron blocking layer 134a may be -2.3eV, -2.4eV or -2.5eV, in the case where the LUMO energy level of the host material is -2.9eV, the LUMO energy level of the material of the electron blocking layer 134a may be -2.3eV, -2.4eV, -2.5eV or -2.6eV , in the case where the LUMO energy level of the host material is -3.0eV, the LUMO energy level of the material of the electron blocking layer 134a may be -2.3eV, -2.4eV, -2.5eV or -2.6eV.
  • An order of magnitude refers to a scale or level of magnitude of a quantity that maintains a fixed ratio between each level.
  • the number within 10, such as 1 to 9 is an order of magnitude.
  • Tens digits like 12, 18, etc. are also an order of magnitude.
  • the tens digit is an order of magnitude higher than the single digit.
  • the hundreds digit is one order of magnitude higher than the tens digit and two orders of magnitude higher than the single digit.
  • An order of magnitude can be seen as a series of powers of 10, usually written in the form of a ⁇ 10 b , where a is any value greater than 1 and less than 10, which can be an integer from 1 to 9, or a decimal greater than 1 and less than 10, such as 1.5 , 2.5, 4.5, 6.8, 7.9, etc.
  • 10 b means an order of magnitude
  • b means several orders of magnitude
  • the ratio of two adjacent orders of magnitude is 10. For example, if two numbers differ by three orders of magnitude, that is, the difference between the values of b of the two numbers is 3, it means that the magnitude of one number is 1000 times that of the other number.
  • the magnitude of the hole mobility of the material of the electron blocking layer 134a is the same as the electron mobility of the material of at least one material layer 135 having an electron transport function.
  • the ratio of the magnitude of the numerical value is greater than or equal to 1, which means that, under the same test conditions, the numerical value of the hole mobility of the material of the electron blocking layer 134a can be greater than, less than or equal to at least one material layer with an electron transport function 135 Numerical value of the electron mobility of the material.
  • Equivalent test conditions refer to test conditions that are the same except that the test samples are different.
  • the electron mobility of the material of at least one material layer 135 with electron transport function is 10 ⁇ 8 cm 2 V ⁇ 1 under the test condition of electric field strength of 5000 V 1/2 /m 1/2 s -1 to 10 -7 cm 2 V -1 s -1
  • the hole mobility of the material of the electron blocking layer 134a is 10 -8 cm 2 V -1 s -1 to 10 -6 cm 2 V -1 s - 1 .
  • the equivalent test conditions refer to test conditions in which the electric field strength is 5000V 1/2 /m 1/2 .
  • the mobility testing method can be selected from any one of Time of Flight (TOF), time-of-flight and space-charge limited current (SCLC) methods.
  • TOF Time of Flight
  • SCLC space-charge limited current
  • the ratio of the magnitude of the magnitude of the hole mobility of the material of the electron blocking layer 134a to the magnitude of the magnitude of the magnitude of the electron mobility of the material of at least one material layer 135 having an electron transport function is equal to 1
  • the magnitude of the hole mobility of the material of the electron blocking layer 134a is of the same order of magnitude as the magnitude of the electron mobility of the material of at least one material layer 135 having an electron transport function.
  • the hole mobility of the material of the electron blocking layer 134a is 5 ⁇ 10 -8 cm 2 V -1 s -1 as
  • the electron mobility of the material of at least one material layer 135 having an electron transport function may be 1 ⁇ 10 -8 cm 2 V -1 s -1 , 2 ⁇ 10 -8 cm 2 V -1 s -1 , 3 ⁇ 10 -8 cm 2 V -1 s -1 , 4 ⁇ 10 -8 cm 2 V -1 s -1 , 5 ⁇ 10 -8 cm 2 V -1 s -1 , 6 ⁇ 10 -8 cm 2 V - 1 s -1 , 7 ⁇ 10 -8 cm 2 V -1 s -1 , 8 ⁇ 10 -8 cm 2 V -1 s -1 or 9 ⁇ 10 -8 cm 2 V -1 s -1 .
  • the electron mobility of the material of at least one material layer 135 with electron transport function is 1 ⁇ 10 -8 cm 2 V -1 s -1 , 2 ⁇ 10 -8 cm 2 V -1 s -1 , 3
  • the hole mobility of the material of the electron blocking layer 134a is greater than that of at least one layer having an electron transport function The electron mobility of the material of the material layer 135 .
  • the hole mobility of the material of the electron blocking layer 134 a is equal to The electron mobility of the material of at least one material layer 135 having an electron transport function.
  • the electron mobility of the material of at least one material layer 135 having an electron transport function is 6 ⁇ 10 -8 cm 2 V -1 s -1 , 7 ⁇ 10 -8 cm 2 V -1 s -1 , 8 ⁇ 10 In the case of -8 cm 2 V -1 s -1 or 9 ⁇ 10 -8 cm 2 V -1 s -1 , the hole mobility of the material of the electron blocking layer 134a is smaller than that of at least one layer having an electron transport function. Electron mobility of the material of the material layer 135 .
  • the hole mobility of the material of the electron blocking layer 134a is 5 ⁇ 10 -7 cm 2 V -1 s -1 as an example, at least one layer has electron transport
  • the electron mobility of the material of the functional material layer 135 may be 1 ⁇ 10 ⁇ 8 cm 2 V ⁇ 1 s ⁇ 1 , 2 ⁇ 10 ⁇ 8 cm 2 V ⁇ 1 s ⁇ 1 , 3 ⁇ 10 ⁇ 8 cm 2 V ⁇ 1 s -1 , 4 ⁇ 10 -8 cm 2 V -1 s -1 , 5 ⁇ 10 -8 cm 2 V -1 s -1 , 6 ⁇ 10 -8 cm 2 V -1 s -1 , 7 ⁇ 10 -8 cm 2 V -1 s
  • the effect of the exciton recombination region on the electron blocking in the related art can be changed.
  • the current state of the interface between the layer 134a and the light-emitting layer 133 makes the exciton recombination region move to the center of the light-emitting layer 133.
  • it can further prevent electrons from entering the hole transport layer, improve the life of the device, and reduce electron quenching; on the other hand , which can better make electrons and holes emit light in the light-emitting area and improve the efficiency.
  • the exciton recombination region is not only related to the hole mobility of the electron blocking layer 134a and the electron mobility of the material of at least one material layer 135 having an electron transport function, but also to at least two layers having a hole transport function. is related to the hole mobility of the material of the material layer 134 .
  • the hole mobility of the material of the at least two material layers 134 having the hole transport function may be 10 ⁇ 4 cm 2 V -1 s -1 to 10 -5 cm 2 V -1 s -1 .
  • the technical effect of moving the exciton recombination region toward the center of the light-emitting layer 133 can be achieved.
  • the material of the electron blocking layer 134a can be selected from any one of the structures represented by the following general formula (I):
  • Ar 1 and Ar 2 are the same or different, and are independently selected from any of substituted or unsubstituted C 6 -C 30 aryl groups and substituted or unsubstituted C 2 -C 30 heteroaryl groups;
  • L is independently selected from any one of a single bond, a substituted or unsubstituted C 6 -C 30 arylene group, and a substituted or unsubstituted C 2 -C 30 heteroarylene group.
  • the material of the electron blocking layer 134a is the structure of carbazole and aromatic amine, and has high LUMO energy level and hole mobility.
  • Aryl in organic chemistry refers to any functional group or substituent derived from a simple aromatic ring. It is the general term for the remaining monovalent group after removing a hydrogen atom from the aromatic nucleus carbon of the aromatic hydrocarbon molecule.
  • the simplest aryl group is phenyl (Phenyl), which is derived from benzene and is a monocyclic aryl group.
  • Phenyl phenyl
  • aryl groups may also include polycyclic aryl groups, fused-ring aryl groups, and the like.
  • Heteroaryl is a general term for a monovalent group left after removing a hydrogen atom from the heterocyclic carbon of a heterocyclic aromatic hydrocarbon molecule. Such as pyridyl, furyl, etc., all of which are monocyclic heteroaryl groups. Similar to aryl, in addition to monocyclic heteroaryl, heteroaryl may also include polycyclic heteroaryl, fused ring heteroaryl, and the like.
  • arylene is the general term for the remaining divalent group after removing two hydrogen atoms from the aromatic ring carbon of the aromatic hydrocarbon molecule.
  • arylene groups can include monocyclic arylene groups (such as divalent phenyl), polycyclic arylene groups (such as divalent biphenyl), and fused ring arylenes (such as divalent phenylene). Naphthyl, divalent fluorenyl, divalent spirofluorenyl) and so on.
  • Heteroarylene is the general term for the remaining divalent group after removing two hydrogen atoms from the heterocyclic carbon of the heterocyclic aromatic hydrocarbon molecule. Similar to the heteroaryl groups described above, heteroarylene groups can include monocyclic heteroarylenes (eg, divalent pyridyl), polycyclic heteroarylenes (eg, divalent bipyridyl), and fused ring heteroarylenes bases (such as divalent benzofuranyl, divalent carbazolyl) and the like.
  • monocyclic heteroarylenes eg, divalent pyridyl
  • polycyclic heteroarylenes eg, divalent bipyridyl
  • fused ring heteroarylenes bases such as divalent benzofuranyl, divalent carbazolyl
  • the material of the electron blocking layer 134a is selected from any one of the following structural formulas:
  • the at least two material layers 134 with hole transport function may further include a hole injection layer 134b and a hole transport layer 134c in addition to the electron blocking layer 134a.
  • At least one material layer 135 having an electron transport function may include an electron injection layer 135a and an electron transport layer 135b.
  • the material of the hole injection layer 134b may be selected from CuPc (Copper(II)phthalocyanine, copper phthalocyanine), HATCN (2,3,6,7,10,11-hexacyano-1,4 ,5,8,9,12-hexaazatriphenylene, Hexaazatriphenylenehexacabonitrile), MnO 3 and m-MTDATA(4,4',4"-Tris[(3-methylphenyl)phenylamino]triphenylamine), 4,4' , 4"-tris (N-3-methylphenyl-N-phenylamino) triphenylamine), etc., can also be a material after p-type doping is performed on these materials, and the thickness can be 5-30 nm.
  • CuPc Copper(II)phthalocyanine, copper phthalocyanine
  • HATCN 2,3,6,7,10,11-hexacyano-1,4 ,5,8,9,12-hexaazatripheny
  • the material of the hole transport layer 134c may be selected from 4,4',4"-tris[2-naphthalene(phenyl)amino]triphenylamine (2-TNATA, 4,4',4"-Tris[2-naphthyl( phenyl)amino]triphenylamine), 4,4′-cyclohexylbis[N,N-bis(4-methylphenyl)aniline](4,4′-cyclohexylidenebis[N,N-bis(p-tolyl)aniline ]) and m-MTDATA(4,4',4"-Tris[(3-methylphenyl)phenylamino]triphenylamine), 4,4',4"-tris(N-3-methylphenyl-N-phenyl amino) triphenylamine) any of.
  • the material of the electron injection layer 135a can be selected from low work function metals, such as Li, Ca, Yb, etc., or metal salts LiF, LiQ3 , etc., and the thickness can be 0.5nm ⁇ 2nm.
  • the material of the electron transport layer 135b can be selected from organic materials with good electron transport properties, and the organic materials can also be doped with LiQ 3 , Li and Ca, and the thickness can be 10nm ⁇ 70nm.
  • the light-emitting substrate 1 can also be provided with a driving circuit connected to each light-emitting device 13, and the driving circuit can be connected with the control circuit to drive each light-emitting device 13 to emit light according to the electrical signal input by the control circuit.
  • the driving circuit may be an active driving circuit or a passive driving circuit.
  • the light-emitting substrate 1 can emit white light, monochromatic light (single-color light), or color-adjustable light.
  • the light-emitting substrate 1 can emit white light.
  • the plurality of light-emitting devices 13 may include a red-emitting light-emitting device 13R, a green-emitting light-emitting device 13G, and a blue-emitting light-emitting device 13B.
  • the light-emitting device 13R and the green-emitting light-emitting device 13G emit light at the same time, so that the light-emitting device 13B that emits blue light, the light-emitting device 13R that emits red light, and the light-emitting device 13G that emits green light can mix light, so that the light-emitting substrate 1 Shows white light.
  • the light-emitting substrate 1 can be used for lighting, that is, it can be applied to a lighting device.
  • the light-emitting substrate 1 can emit monochromatic light.
  • the plurality of light-emitting devices include a red-emitting light-emitting device 13R, a green-emitting light-emitting device 13G, and a blue-emitting light-emitting device 13B.
  • the light-emitting device emits light
  • the light-emitting substrate 1 emits monochromatic light.
  • the plurality of light-emitting devices only include light-emitting devices that emit monochromatic light, such as the light-emitting device 13G that emits green light.
  • the light-emitting substrate 1 can emit monochromatic light.
  • the light-emitting substrate 1 can be used for lighting, that is, it can be applied to a lighting device, and it can also be used to display a single-color image or screen, that is, it can be applied to a display device.
  • the light-emitting substrate 1 can emit light with tunable colors (ie, colored light).
  • the light-emitting substrate 1 is similar in structure to the plurality of light-emitting devices 13 described in the first example. By controlling the brightness of the light emitting device 13, the color and brightness of the mixed light emitted by the light emitting substrate 1 can be controlled, so as to realize colored light emission.
  • the light-emitting substrate 1 can be used to display images or pictures, that is, it can be used in a display device.
  • the light-emitting substrate 1 can also be used in a lighting device.
  • the light-emitting substrate 1 includes a display area A and a peripheral area S disposed around the display area A.
  • the display area A includes a plurality of sub-pixel areas P, each sub-pixel area P corresponds to an opening, one opening corresponds to a light-emitting device, and each sub-pixel area P is provided with a pixel driving circuit 200 for driving the corresponding light-emitting device to emit light.
  • the peripheral area S is used for wiring, such as connecting the gate driving circuit 100 of the pixel driving circuit 200 .
  • the guest material is selected from any of the compounds having a molecular ellipticity greater than 1.8.
  • Molecular ellipticity is measured by CD (Circular Dichroism), which indicates that the substance absorbs left and right circularly polarized light to different degrees due to the optical asymmetry of the molecule.
  • the difference between the LUMO energy level of the above electron blocking layer 134a and the LUMO energy level of the host material, and the hole mobility of the electron blocking layer 134a and the material of at least one material layer 135 having an electron transport function When the electron mobility is determined to minimize electron quenching and move the exciton recombination region to the center of the light-emitting layer 133, using a compound with a molecular ellipticity greater than 1.8 can make the guest material in the thin film state have Good orientation, that is, the long axis of the molecule (that is, the molecule can be regarded as an elliptical molecule, and the long axis of the ellipse is the long axis of the molecule) is arranged parallel to the plane of the film, which is conducive to light extraction, thereby The luminous efficiency can be further improved. That is, the material selection of the electron blocking layer 134a and the material selection of the guest material provided by the embodiments of the present disclosure jointly determine that
  • the above-mentioned guest material is selected from any one of the structures represented by the following general formula (II):
  • A, B and C are independently selected from any one of substituted or unsubstituted C 6 -C 30 aryl groups, substituted or unsubstituted C 2 -C 30 heteroaryl groups;
  • X 1 and X 2 are the same or different, each independently selected from N(R), R is selected from hydrogen, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 2 -C 30 heteroaryl and substituted or any one of unsubstituted C 1 -C 30 alkyl groups.
  • Aryl in organic chemistry refers to any functional group or substituent derived from a simple aromatic ring. It is the general term for the remaining monovalent group after removing a hydrogen atom from the aromatic nucleus carbon of the aromatic hydrocarbon molecule.
  • the simplest aryl group is phenyl (Phenyl), which is derived from benzene and is a monocyclic aryl group.
  • Phenyl phenyl
  • aryl groups may also include polycyclic aryl groups, fused-ring aryl groups, and the like.
  • Heteroaryl is a general term for a monovalent group left after removing a hydrogen atom from the heterocyclic carbon of a heterocyclic aromatic hydrocarbon molecule. Such as pyridyl, furyl, etc., all of which are monocyclic heteroaryl groups. Similar to aryl, in addition to monocyclic heteroaryl, heteroaryl may also include polycyclic heteroaryl, fused ring heteroaryl, and the like.
  • Alkyl is the general term for a monovalent group left after removing a hydrogen atom from an alkane carbon.
  • the guest material with trivalent organoboron as the core is an empty p- ⁇ orbital and an extended conjugated system, which has strong electron accepting ability and good charge transportability, and can improve the luminescence performance.
  • A, B, and C are each independently selected from phenyl, biphenyl, and any one of the following structural formulas:
  • A, B, and C can be conjugated systems with electron donating groups, and by introducing electron donating groups, the fluorescence emission intensity and excited state charge transfer (CT) characteristics of the guest material BD can be enhanced, Thereby, the luminous efficiency can be further improved.
  • CT excited state charge transfer
  • the guest material BD is selected from any one of the following structural formulas:
  • the guest material BD with the above structure has ultrapure blue emission, smaller full width at half maximum and higher device efficiency.
  • the molecular ellipticity is relatively high, it is favorable for light extraction, so that the luminous efficiency of the light-emitting device 13 can be better improved.
  • the host material BH may be selected from any of the derivatives of anthracene.
  • the first electrode 131 is close to the substrate 11 relative to the second electrode 132 , and the second electrode 132 can transmit light.
  • the light-emitting substrate 1 may further include: a light extraction layer 14 disposed on the side of the second electrode 132 away from the substrate 11 .
  • the refractive index of the light extraction layer 14 is greater than the refractive index of the material layer adjacent to the light extraction layer 14 and located on the side of the light extraction layer 14 close to the second electrode 132 .
  • the light emitting device 13 may be a top emission type light emitting device.
  • medium 1 when light from one medium (here called medium 1) to another medium (here called medium 2), part of the light should be reflected back to medium 1, which is called reflected light.
  • the refractive index of medium 1 is greater than the refractive index of medium 2, that is, when light travels from an optically denser medium to an optically sparser medium, the refraction angle is greater than the incident angle, so when the incident angle is increased, the refraction angle also increases, but the refraction angle increases. The angle is first increased to 90 degrees.
  • the incident angle is called the critical angle
  • the refracted light disappears, leaving only the reflected light, which is called total reflection.
  • the incident angle is greater than or equal to the critical angle.
  • the refractive index of the light extraction layer 14 is greater than or equal to 1.8 for light having a wavelength of 620 nm. It is found that, for light with a wavelength of 620 nm, when the refractive index of the light extraction layer 14 is greater than or equal to 1.8, the light trapped in the light-emitting device 13 can be effectively coupled out, thereby further improving the light-emitting efficiency of the device. .
  • the light extraction layer 14 may be in direct contact with the second electrode 132.
  • the material layer adjacent to the light extraction layer 14 is the second electrode 132, and the material of the second electrode 132 may be magnesium-silver alloy.
  • the refractive index of the magnesium-silver alloy may be 1.27.
  • the refractive index of the light extraction layer 14 is greater than that of the material layer, so that it can be It is ensured that the light emitted by the light emitting device 13 is coupled out.
  • the material of the light extraction layer 14 is selected from any one of the following general formula (III):
  • Ar 3 and Ar 4 are the same or different, and are independently selected from any of substituted or unsubstituted C 6 -C 30 aryl groups and substituted or unsubstituted C 2 -C 30 heteroaryl groups;
  • X is selected from O, S, Se or NR, R is selected from H, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 2 -C 30 heteroaryl and substituted or unsubstituted C 2 -C 30 heteroaryl Any one of C 1 -C 30 alkyl groups;
  • L 1 is selected from single bond, substituted or unsubstituted C 6 -C 30 arylene, substituted or unsubstituted C 2 -C 30 heteroarylene Any one of the groups, L 2 is selected from any one of a single bond, a substituted or unsubstituted C 6 -C 30 aryl group, and a substituted or unsubstituted C 2 -
  • the material of the light extraction layer 14 since the material of the light extraction layer 14 has a unique benzoheterocyclic structure, it helps to increase the refractive index of the material.
  • Aryl in organic chemistry refers to any functional group or substituent derived from a simple aromatic ring. It is the general term for the remaining monovalent group after removing a hydrogen atom from the aromatic nucleus carbon of the aromatic hydrocarbon molecule.
  • the simplest aryl group is phenyl (Phenyl), which is derived from benzene and is a monocyclic aryl group.
  • Phenyl phenyl
  • aryl groups may also include polycyclic aryl groups, fused-ring aryl groups, and the like.
  • Heteroaryl is a general term for a monovalent group left after removing a hydrogen atom from the heterocyclic carbon of a heterocyclic aromatic hydrocarbon molecule. Such as pyridyl, furyl, etc., all of which are monocyclic heteroaryl groups. Similar to aryl, in addition to monocyclic heteroaryl, heteroaryl may also include polycyclic heteroaryl, fused ring heteroaryl, and the like.
  • arylene is the general term for the remaining divalent group after removing two hydrogen atoms from the aromatic ring carbon of the aromatic hydrocarbon molecule.
  • arylene groups can include monocyclic arylene groups (such as divalent phenyl), polycyclic arylene groups (such as divalent biphenyl), and fused ring arylenes (such as divalent phenylene). Naphthyl, divalent fluorenyl, divalent spirofluorenyl) and so on.
  • Heteroarylene is the general term for the remaining divalent group after removing two hydrogen atoms from the heterocyclic carbon of the heterocyclic aromatic hydrocarbon molecule. Similar to the heteroaryl groups described above, heteroarylene groups can include monocyclic heteroarylenes (eg, divalent pyridyl), polycyclic heteroarylenes (eg, divalent bipyridyl), and fused ring heteroarylenes bases (such as divalent benzofuranyl, divalent carbazolyl) and the like.
  • monocyclic heteroarylenes eg, divalent pyridyl
  • polycyclic heteroarylenes eg, divalent bipyridyl
  • fused ring heteroarylenes bases such as divalent benzofuranyl, divalent carbazolyl
  • the material of the light extraction layer 14 is selected from any one of the following structural formulas:
  • the light-emitting device 13 has the same structure: anode/hole injection layer (HIL) 134b/hole transport layer (HTL) 134c/electron blocking layer ( EBL) 134a/light emitting layer 133/electron transport layer (ETL) 135b/electron injection layer (EIL) 135a/cathode.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electrostatic blocking layer
  • ETL electrostatic electron transport layer
  • Step 1) the degree of vacuum is 1 ⁇ 10 -5 Pa, and on the glass substrate formed with the anode (ITO), the p-dopant and HTM (Hole Transport Material, hole transport material) are co-evaporated by the vacuum evaporation method Plating was performed to form a hole injection layer 134b with a thickness of 10 nm.
  • ITO anode
  • HTM Hole Transport Material, hole transport material
  • step 2) HTM is then evaporated on the hole injection layer 134b with a thickness of 50 nm to form a hole transport layer 134c.
  • step 3 compound 1 is evaporated on the hole transport layer 134c to form an electron blocking layer 134a with a thickness of 5 nm.
  • Step 4 co-evaporating the host material BH and the guest material BD on the electron blocking layer 134a to form a light-emitting layer 133 with a thickness of 35 nm.
  • the molar ratio of the host material BH and the guest material BD in the light-emitting layer 133 was 97:3.
  • Step 5 co-evaporating ETM (Electron transport material, electron transport material) and LiQ 3 material on the light-emitting layer 133 to form an electron transport layer 135b with a thickness of 30 nm.
  • ETM Electrode transport material, electron transport material
  • step 6 LiF is evaporated on the electron transport layer 135b to form an electron injection layer 135a with a thickness of 1 nm.
  • Step 7 co-evaporating Mg metal and Ag metal (the mass ratio of Mg and Ag is 8:2) on the electron injection layer 135a to form a cathode layer with a thickness of 15 nm.
  • the difference between the LUMO energy level and the LUMO energy level of the host material BH is less than 0.3 eV, which makes it difficult for the driving voltage, current efficiency and device life of the device to meet the application requirements at the same time.
  • the current efficiency of the device is not only related to the LUMO energy level and light-emitting region, but also the HOMO energy level of each material, the current efficiency of Comparative Example 1 and Comparative Example 2 are not much different.
  • the driving voltage can be reduced, the current efficiency can be improved, and the device lifetime can be improved at the same time.
  • Experimental Example 1 it can be known that with the increase of LUMO energy level and hole mobility, the driving voltage tends to decrease, and the current efficiency and device lifetime tend to increase.
  • Experimental Example 1 with Experimental Example 3, Experimental Example 4 and Experimental Example 5, it can be known that as the molecular ellipticity of BD increases, the driving voltage decreases, and the current efficiency and device life increase. As the refractive index of the light extraction layer increases, the driving voltage decreases, and the current efficiency and device lifetime increase.
  • the experimental example 5 can greatly improve the device efficiency and stability, and has a good application prospect.
  • the electron blocking layer 134a has a higher LUMO energy level, which can effectively block the diffusion of electrons to the hole transport layer 134c and prevent C-N in the hole transport layer 134c. The bonds are broken and the electron quenching can be reduced, confining the excitons in the light-emitting region.
  • the exciton recombination region is moved to the center of the light emitting layer 133, which can greatly improve the efficiency and life of the device.
  • the guest material BD by selecting the guest material BD, the structure with higher quantum efficiency is selected, and the molecular ellipticity is improved, which is beneficial to the extraction of light, thereby further improving the luminous efficiency of the device. Further, by selecting a light extraction material with a high refractive index, the light trapped in the device can also be coupled out, so as to maximize the light extraction efficiency, thereby further improving the luminous efficiency of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光器件,包括:层叠的第一电极和第二电极,设置于第一电极和第二电极之间的多层功能层;多层功能层包括发光层,以及位于发光层和第一电极之间的至少两层具有空穴传输功能的材料层,和位于发光层和第二电极之间的至少一层具有电子传输功能的材料层;至少两层具有空穴传输功能的材料层包括电子阻挡层,发光层的材料包括客体材料;电子阻挡层的材料的LUMO能级与主体材料的LUMO能级之差大于或等于阈值;在同等的测试条件下,电子阻挡层的材料的空穴迁移率的数值的数量级,与至少一层具有电子传输功能的材料层的材料的电子迁移率的数值的数量级之比大于或等于1。

Description

发光器件、发光基板和发光装置
本申请要求于2021年03月08日提交的、申请号为202110252323.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及照明和显示技术领域,尤其涉及一种发光器件、发光基板和发光装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)具有自发光、广视角、反应时间快、发光效率高、工作电压低、基板厚度薄、可制作大尺寸与可弯曲式基板及制程简单等特性,被誉为下一代的“明星”显示技术。
发明内容
一方面,提供一种发光器件,包括:层叠设置的第一电极和第二电极;以及设置于所述第一电极和所述第二电极之间的多层功能层;所述多层功能层包括发光层,以及位于所述发光层和所述第一电极之间的至少两层具有空穴传输功能的材料层,和位于所述发光层和所述第二电极之间的至少一层具有电子传输功能的材料层;所述至少两层具有空穴传输功能的材料层包括电子阻挡层,所述发光层的材料包括主体材料和客体材料;其中,所述电子阻挡层的材料的LUMO能级与所述主体材料的LUMO能级之差大于或等于0.3eV;在同等的测试条件下,所述电子阻挡层的材料的空穴迁移率的数值的数量级,与所述至少一层具有电子传输功能的材料层的材料的电子迁移率的数值的数量级之比大于或等于1;所述客体材料选自分子椭圆度大于1.8的化合物中的任一种。
在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,所述至少一层具有电子传输功能的材料层的材料的电子迁移率为10 -8cm 2V -1s -1~10 -7cm 2V -1s -1,所述电子阻挡层的材料的空穴迁移率为10 -8cm 2V -1s -1~10 -6cm 2V -1s -1
在一些实施例中,所述电子阻挡层的材料选自如下通式(I)所示结构中的任一种:
Figure PCTCN2021131362-appb-000001
其中,Ar 1、Ar 2相同或不同,分别独立地选自取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基中的任一种;L独立的选自单键、取代或未取代的C 6~C 30的亚芳基、取代或未取代的C 2~C 30的亚杂芳基中的任一种。
在一些实施例中,所述电子阻挡层的材料选自如下结构式中的任一种:
Figure PCTCN2021131362-appb-000002
在一些实施例中,所述客体材料选自如下通式(II)所示结构中的任一种:
Figure PCTCN2021131362-appb-000003
其中,A、B和C分别独立地选自取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基中的任一种;X 1和X 2相同或不同,分别独立地选自N(R),R选自氢、取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基和取代或未取代的C 1~C 30的烷基中的任一种。
在一些实施例中,A、B和C分别独立地选自苯基、二联苯基和如下结构式中的任一种:
Figure PCTCN2021131362-appb-000004
其中,X选自O、S、Se或者N-R,R选自H、取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基和取代或未取代的C 1~C 30的烷基中的任一种。
在一些实施例中,所述客体材料选自如下结构式中的任一种:
Figure PCTCN2021131362-appb-000005
Figure PCTCN2021131362-appb-000006
另一方面,提供一种发光基板,包括:衬底;以及设置于所述衬底上的多个发光器件;其中,至少一个发光器件为如上所述的发光器件。
在一些实施例中,所述第一电极相对于所述第二电极靠近所述衬底,所述第二电极可透光;所述发光基板还包括:设置于所述第二电极远离衬底一侧的光取出层;所述光取出层的折射率大于与所述光取出层相邻且位于所述光取出层靠近所述第二电极一侧的材料层的折射率。
在一些实施例中,对于波长为620nm的光而言,所述光取出层的折射率大于或等于1.8。
在一些实施例中,所述光取出层的材料选自如下通式(III)中的任一种:
Figure PCTCN2021131362-appb-000007
其中,Ar 3、Ar 4相同或不同,分别独立地选自取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基中的任一种;X选自O、S、Se或者N-R,R选自H、取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基和取代或未取代的C 1~C 30的烷基中的任一种;L 1选自单键、取代或未取代的C 6~C 30的亚芳基、取代或未取代的C 2~C 30的亚杂芳基中的任一种,L 2选自单键、取代或未取代的C 6~C 30的芳基,和取代或未取代的C 2~C 30的杂芳基中的任一种。
在一些实施例中,所述光取出层的材料选自如下结构式中的任一种:
Figure PCTCN2021131362-appb-000008
又一方面,提供一种发光装置,包括:如上所述的发光基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本 公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的发光基板的剖视结构图;
图2为根据一些实施例的发光基板的俯视结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定 值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供了一种发光装置,该发光装置包括发光基板,当然还可以包括其他部件,例如可以包括用于向发光基板提供电信号,以驱动该发光基板发光的电路,该电路可以称为控制电路,可以包括与发光基板电连接的电路板和/或IC(Integrate Circuit,集成电路)。
在一些实施例中,该发光装置可以为照明装置,此时,发光装置用作光源,实现照明功能。例如,发光装置可以是液晶显示装置中的背光模组,用于内部或外部照明的灯,或各种信号灯等。
在另一些实施例中,该发光装置可以为显示装置,此时,该发光基板为显示基板,用于实现显示图像(即画面)功能。发光装置可以包括显示器或包含显示器的产品。其中,显示器可以是平板显示器(Flat Panel Display,FPD),微型显示器等。若按照用户能否看到显示器背面的场景划分,显示器可以是透明显示器或不透明显示器。若按照显示器能否弯折或卷曲,显示器可以是柔性显示器或普通显示器(可以称为刚性显示器)。示例的,包含显示器的产品可以包括:计算机显示器,电视,广告牌,具有显示功能的激光打印机,电话,手机,个人数字助理(Personal Digital Assistant,PDA),膝上型计算机,数码相机,便携式摄录机,取景器,车辆,大面积墙壁,剧院的屏幕或体育场标牌等。
本公开的一些实施例提供了一种发光基板1,如图1所示,该发光基板1包括衬底11、设置在衬底11上的像素界定层12和多个发光器件13。其中,该像素界定层12具有多个开口Q,多个发光器件13可以与多个开口Q一一对应设置。这里的多个发光器件13可以是发光基板1包含的全部或部分发光器件13;多个开口Q可以是像素界定层12上的全部或部分开口。
在多个发光器件13中,至少一个发光器件13包括:层叠设置的第一电 极131和第二电极132,以及设置于第一电极131和第二电极132之间的多层功能层。
在一些实施例中,如图1所示,该第一电极131可以为阳极,此时,该第二电极132为阴极。在另一些实施例中,该第一电极131可以为阴极,此时,该第二电极132为阳极。
在一些实施例中,阳极的材料可以选自高功函材料,如ITO(Indium Tin Oxides,氧化铟锡)、IZO(Indium Zinc Oxide,氧化铟锌)或复合材料(如Ag/ITO,Al/ITO,Ag/IZO或Al/IZO,其中,“Ag/ITO”命名由金属银电极和ITO电极堆叠的叠层结构)等,阴极的材料可以选自低功函材料,如金属Al、Ag或Mg,或者低功函的金属合金材料(如镁铝合金、镁银合金)等。
在一些实施例中,多层功能层包括发光层133,以及位于发光层133和第一电极131之间的至少两层具有空穴传输功能的材料层134,和位于发光层133和第二电极132之间的至少一层具有电子传输功能的材料层135。至少两层具有空穴传输功能的材料层134包括电子阻挡层134a,发光层133的材料包括主体材料和客体材料。其中,电子阻挡层134a的材料的LUMO(Lowest Unoccupied Molecular Orbital,最低未占分子轨道)能级与主体材料的LUMO能级之差大于或等于阈值。并且,在同等的测试条件下,电子阻挡层134a的材料的空穴迁移率的数值的数量级,与所述至少一层具有电子传输功能的材料层135的材料的电子迁移率的数值的数量级之比大于或等于1。
其中,电子阻挡层134a是对发光层133传输来的电子起到阻挡其扩散的作用,将电子和空穴限制在发光区域内提高效率。根据发光器件13的整体的电子传输速度大于空穴传输速度,可以得知,激子复合区域在电子阻挡层134a和发光层133的界面处,通过设置电子阻挡层134a,可以防止电子进入空穴传输层,从而能够提高器件寿命。这就要求电子阻挡层134a的材料具有较高的LUMO能级,也即电子阻挡层134a的材料与主体材料BH之间具有较大的LUMO能级差。示例的,以上阈值可以为0.3eV。
根据主体材料的LUMO能级可以为-2.6eV~-3.0eV,可以得知,电子阻挡层134a的材料的LUMO能级可以为-2.3eV~-2.6eV。只要电子阻挡层134a的材料的LUMO能级与主体材料的LUMO能级之差大于或等于0.3eV即可。
示例的,在主体材料的LUMO能级为-2.6eV的情况下,电子阻挡层134a的材料的LUMO能级可以为-2.3eV,在主体材料的LUMO能级为-2.7eV的情况下,电子阻挡层134a的材料的LUMO能级可以为-2.3eV或-2.4eV,在主体材料的LUMO能级为-2.8eV的情况下,电子阻挡层134a的材料的LUMO能 级可以为-2.3eV、-2.4eV或-2.5eV,在主体材料的LUMO能级为-2.9eV的情况下,电子阻挡层134a的材料的LUMO能级可以为-2.3eV、-2.4eV、-2.5eV或-2.6eV,在主体材料的LUMO能级为-3.0eV的情况下,电子阻挡层134a的材料的LUMO能级可以为-2.3eV、-2.4eV、-2.5eV或-2.6eV。
数量级是指数量的尺度或大小的级别,每个级别之间保持固定的比例。在个位数中,10以内的,如1到9,就是一个数量级。十位数,如12、18等也是一个数量级。而十位数比个位数高一个数量级。以此类推,百位数比十位数高一个数量级,比个位数高两个数量级。
数量级可以看作是一系列10的幂,通常写成a×10 b的形式,a是大于1小于10的任意值,可以是1到9的整数,也可以是大于1小于10的小数,如1.5、2.5、4.5、6.8、7.9等。10 b即表示数量级,b表示几个数量级,相邻两个数量级之比为10。例如,若两个数相差三个数量级,也即,两个数的b的取值之差为3,其实就是说一个数的数量级是另一个数的数量级的1000倍。
在本公开的实施例中,在同等的测试条件下,电子阻挡层134a的材料的空穴迁移率的数值的数量级,与至少一层具有电子传输功能的材料层135的材料的电子迁移率的数值的数量级之比大于或等于1,是指,在同等的测试条件下,电子阻挡层134a的材料的空穴迁移率的数值,可以大于、小于或等于至少一层具有电子传输功能的材料层135的材料的电子迁移率的数值。
同等的测试条件是指除测试样品不同以外,其余条件均相同的测试条件。
在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,至少一层具有电子传输功能的材料层135的材料的电子迁移率为10 -8cm 2V -1s -1~10 -7cm 2V -1s -1,电子阻挡层134a的材料的空穴迁移率为10 -8cm 2V -1s -1~10 -6cm 2V -1s -1
在此,同等的测试条件是指电场强度为5000V 1/2/m 1/2的测试条件。其中,迁移率的测试方法可以选自电荷渡越时间法(Time of Flight,TOF)、飞行时间法和空间电荷限制电流(Space-charge limited current,SCLC)法中的任一种。
此时,在电子阻挡层134a的材料的空穴迁移率的数值的数量级,与至少一层具有电子传输功能的材料层135的材料的电子迁移率的数值的数量级之比等于1的情况下,电子阻挡层134a的材料的空穴迁移率的数值的数量级,与至少一层具有电子传输功能的材料层135的材料的电子迁移率的数值的数量级为同一数量级。在此情况下,以在电场强度为5000V 1/2/m 1/2的测试条件下,电子阻挡层134a的材料的空穴迁移率为5×10 -8cm 2V -1s -1为例,至少一层具有 电子传输功能的材料层135的材料的电子迁移率可以为1×10 -8cm 2V -1s -1,2×10 -8cm 2V -1s -1,3×10 -8cm 2V -1s -1,4×10 -8cm 2V -1s -1,5×10 -8cm 2V -1s -1,6×10 -8cm 2V -1s -1,7×10 -8cm 2V -1s -1,8×10 -8cm 2V -1s -1或9×10 -8cm 2V -1s -1。其中,在至少一层具有电子传输功能的材料层135的材料的电子迁移率为1×10 -8cm 2V -1s -1,2×10 -8cm 2V -1s -1,3×10 -8cm 2V -1s -1或4×10 -8cm 2V -1s -1的情况下,电子阻挡层134a的材料的空穴迁移率,大于至少一层具有电子传输功能的材料层135的材料的电子迁移率。而在至少一层具有电子传输功能的材料层135的材料的电子迁移率为5×10 -8cm 2V -1s -1的情况下,电子阻挡层134a的材料的空穴迁移率,等于至少一层具有电子传输功能的材料层135的材料的电子迁移率。在至少一层具有电子传输功能的材料层135的材料的电子迁移率为6×10 -8cm 2V -1s -1,7×10 -8cm 2V -1s -1,8×10 -8cm 2V -1s -1或9×10 -8cm 2V -1s -1的情况下,电子阻挡层134a的材料的空穴迁移率,则小于至少一层具有电子传输功能的材料层135的材料的电子迁移率。
在电子阻挡层134a的材料的空穴迁移率的数值的数量级,与至少一层具有电子传输功能的材料层135的材料的电子迁移率的数值的数量级之比大于1的情况下,以在电场强度为5000V 1/2/m 1/2的测试条件下,电子阻挡层134a的材料的空穴迁移率为5×10 -7cm 2V -1s -1为例,至少一层具有电子传输功能的材料层135的材料的电子迁移率可以为1×10 -8cm 2V -1s -1,2×10 -8cm 2V -1s -1,3×10 -8cm 2V -1s -1,4×10 -8cm 2V -1s -1,5×10 -8cm 2V -1s -1,6×10 -8cm 2V -1s -1,7×10 -8cm 2V -1s -1,8×10 -8cm 2V -1s -1或9×10 -8cm 2V -1s -1
在本公开的实施例中,在上述电子阻挡层134a的材料的LUMO能级确定的情况下,通过选择具有较高空穴迁移率的电子阻挡材料,可以改变相关技术中激子复合区域在电子阻挡层134a和发光层133的界面处的现状,使激子复合区域向发光层133的中心移动,一方面,可以进一步防止电子进入空穴传输层,提高器件寿命,减少电子淬灭;另一方面,可以更好地使电子和空穴在发光区域发光,提高效率。
其中,激子复合区域除与电子阻挡层134a的空穴迁移率和至少一层具有电子传输功能的材料层135的材料的电子迁移率的高低有关以外,还与至少两层具有空穴传输功能的材料层134的材料的空穴迁移率有关。
在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,至少两层具有空穴传输功能的材料层134的材料的空穴迁移率可以为10 -4cm 2V -1s -1~10 -5cm 2V -1s -1
在这些实施例中,即可达到使激子复合区域向发光层133的中心移动的 技术效果。
在一些实施例中,电子阻挡层134a的材料可以选自如下通式(I)所示结构中的任一种:
Figure PCTCN2021131362-appb-000009
其中,Ar 1、Ar 2相同或不同,分别独立地选自取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基中的任一种;L独立的选自单键、取代或未取代的C 6~C 30的亚芳基、取代或未取代的C 2~C 30的亚杂芳基中的任一种。
其中,该电子阻挡层134a的材料为咔唑和芳胺的结构,具有较高的LUMO能级和空穴迁移率。
芳基在有机化学中是指任何从简单芳香环衍生出的官能团或取代基。是芳烃分子的芳核碳上去掉一个氢原子后,剩下一价基团的总称。最简单的芳基是苯基(Phenyl),由苯衍生而来,为单环芳基。当然,除单环芳基以外,芳基还可以包括多环芳基和稠环芳基等。
杂芳基是杂环芳烃分子的杂环碳上去掉一个氢原子后,剩下一价基团的总称。如吡啶基、呋喃基等,均为单环杂芳基。与芳基类似地,除单环杂芳基以外,杂芳基还可以包括多环杂芳基和稠环杂芳基等。
相应地,亚芳基是芳烃分子的芳环碳上去掉两个氢原子后,剩下二价基团的总称。与上述芳基相类似地,亚芳基可以包括单环亚芳基(如二价苯基)、多环亚芳基(如二价的二联苯基)和稠环亚芳基(如二价萘基、二价芴基、二价螺芴基)等。
亚杂芳基是杂环芳烃分子的杂环碳上去掉两个氢原子后,剩下二价基团的总称。与上述杂芳基类似地,亚杂芳基可以包括单环亚杂芳基(如二价吡啶基)、多环亚杂芳基(如二价的二联吡啶基)和稠环亚杂芳基(如二价的苯并呋喃基、二价咔唑基)等。
在L选自单键的情况下,通式(I)的结构式可以如下式(I_1)所示:
Figure PCTCN2021131362-appb-000010
在一些实施例中,电子阻挡层134a的材料选自如下结构式中的任一种:
Figure PCTCN2021131362-appb-000011
在一些实施例中,至少两层具有空穴传输功能的材料层134除包括电子阻挡层134a之外,还可以包括空穴注入层134b和空穴传输层134c。至少一层具有电子传输功能的材料层135可以包括电子注入层135a和电子传输层 135b。
在一些实施例中,空穴注入层134b的材料可以选自CuPc(Copper(II)phthalocyanine,酞菁铜)、HATCN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲,Hexaazatriphenylenehexacabonitrile)、MnO 3和m-MTDATA(4,4',4”-Tris[(3-methylphenyl)phenylamino]triphenylamine),4,4',4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺)等,也可以为在这些材料进行p型掺杂后的材料,厚度可以为5~30nm。
空穴传输层134c的材料可以选自4,4',4”-三[2-萘(苯基)氨基]三苯胺(2-TNATA,4,4',4”-Tris[2-naphthyl(phenyl)amino]triphenylamine)、4,4′-环己基二[N,N-二(4-甲基苯基)苯胺](4,4′-cyclohexylidenebis[N,N-bis(p-tolyl)aniline])和m-MTDATA(4,4',4”-Tris[(3-methylphenyl)phenylamino]triphenylamine),4,4',4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺)中的任一种。
电子注入层135a的材料可以选自低功函金属,如Li、Ca和Yb等,或者金属盐LiF、LiQ 3等,厚度可以为0.5nm~2nm。
电子传输层135b的材料可以选自具有良好电子传输特性的有机材料,也可以在有机材料中掺杂有LiQ 3、Li和Ca等,厚度可以为10nm~70nm。
发光基板1上还可以设置连接各个发光器件13的驱动电路,驱动电路可以与控制电路连接,以根据控制电路输入的电信号,驱动各个发光器件13发光。该驱动电路可以为有源驱动电路或者无源驱动电路。
该发光基板1可以发白光、单色光(单一颜色的光)或颜色可调的光等。
在第一种示例中,该发光基板1可以发白光。此时,如图1所示,多个发光器件13可以包括发红光的发光器件13R、发绿光的发光器件13G和发蓝光的发光器件13B,通过控制发蓝光的发光器件13B、发红光的发光器件13R和发绿光的发光器件13G同时发光,即可实现发蓝光的发光器件13B、发红光的发光器件13R和发绿光的发光器件13G的混光,以使发光基板1呈现白光。
在该示例中,该发光基板1可用于照明,即可以应用于照明装置中。
在第二种示例中,该发光基板1可以发单色光。这时,有两种可能的情况,第一种情况,多个发光器件包括发红光的发光器件13R、发绿光的发光器件13G和发蓝光的发光器件13B,通过控制发单色光的发光器件发光即可使发光基板1发单色光。第二种情况,多个发光器件仅包括发单色光的发光器件,如发绿光的发光器件13G,通过控制多个发光器件发光,即可实现发 光基板1发单色光。在该示例中,该发光基板1可用于照明,即可以应用于照明装置中,也可以用于显示单一色彩的图像或画面,即可应用于显示装置中。
在第三种示例中,该发光基板1可以发颜色可调的光(即彩色光),该发光基板1与第一种示例所描述的多个发光器件13的结构相类似的,通过对各个发光器件13的亮度进行控制,即可对该发光基板1发出的混合光的颜色和亮度进行控制,从而实现彩色发光。
在该示例中,该发光基板1可用于显示图像或画面,即可应用于显示装置中,当然,该发光基板1也可以用于照明装置中。
在第三种示例中,以该发光基板1为显示基板为例,如全彩显示面板,如图2所示,该发光基板1包括显示区A和设置于显示区A周边的周边区S。显示区A包括多个亚像素区P,每个亚像素区P对应一个开口,一个开口对应一个发光器件,每个亚像素区P中设置有用于驱动对应的发光器件发光的像素驱动电路200。周边区S用于布线,如连接像素驱动电路200的栅极驱动电路100。
在一些实施例中,客体材料选自分子椭圆度大于1.8的化合物中的任一种。分子椭圆度通过CD(Circular Dichroism,圆二色谱)测量获得,它表示该物质由于分子的光学不对称性而对左、右圆偏振光有不同程度吸收。
在这些实施例中,在以上电子阻挡层134a的LUMO能级与主体材料的LUMO能级之差,以及电子阻挡层134a的空穴迁移率与至少一层具有电子传输功能的材料层135的材料的电子迁移率确定,使得最大程度上减少电子淬灭,并使激子复合区域向发光层133的中心移动的情况下,采用分子椭圆度大于1.8的化合物,可以使客体材料在薄膜状态下具有良好的取向,也即,分子的长轴(也即分子可以看作是椭圆形的分子,椭圆形的长轴即为分子的长轴)平行于薄膜所在平面进行排列,有利于光取出,从而能够进一步提高发光效率。也即,本公开的实施例提供的电子阻挡层134a的材料选择与客体材料的材料选择共同决定了该发光器件具有较高的效率。
在一些实施例中,上述客体材料选自如下通式(II)所示结构中的任一种:
Figure PCTCN2021131362-appb-000012
其中,A、B和C分别独立地选自取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基中的任一种;X 1和X 2相同或不同,分别独立地选自N(R),R选自氢、取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基和取代或未取代的C 1~C 30的烷基中的任一种。
芳基在有机化学中是指任何从简单芳香环衍生出的官能团或取代基。是芳烃分子的芳核碳上去掉一个氢原子后,剩下一价基团的总称。最简单的芳基是苯基(Phenyl),由苯衍生而来,为单环芳基。当然,除单环芳基以外,芳基还可以包括多环芳基和稠环芳基等。
杂芳基是杂环芳烃分子的杂环碳上去掉一个氢原子后,剩下一价基团的总称。如吡啶基、呋喃基等,均为单环杂芳基。与芳基类似地,除单环杂芳基以外,杂芳基还可以包括多环杂芳基和稠环杂芳基等。
烷基是烷烃碳上去掉一个氢原子后,剩下一价基团的总称。
在这些实施例中,采用三价有机硼为核心的客体材料,为空p-π轨道和扩展的共轭体系,具有强受电子能力和良好的电荷传输性,可以提高发光性能。
在一些实施例中,A、B和C分别独立地选自苯基、二联苯基和如下结构式中的任一种:
Figure PCTCN2021131362-appb-000013
Figure PCTCN2021131362-appb-000014
也即,A、B和C可以为具有给电子基团的共轭体系,通过引入给电子基团,可以增强客体材料BD的荧光发射强度和激发态电荷转移态(charge transfer,CT)特征,从而能够进一步提高发光效率。
在这些实施例中,在A和B均选自如下结构式(即三苯胺基),C选自苯基的情况下,通式(II)的结构式可以如下式(II_1)所示:
Figure PCTCN2021131362-appb-000015
在一些实施例中,客体材料BD选自如下结构式中的任一种:
Figure PCTCN2021131362-appb-000016
具有以上结构的客体材料BD具有超纯的蓝光发射,较小的半高全宽和较高的器件效率。而在分子椭圆度比较高的情况下,有利于光取出,从而能够更好地提高发光器件13的发光效率。
在一些实施例中,主体材料BH可以选自蒽的衍生物中的任一种。
在一些实施例中,第一电极131相对于第二电极132靠近衬底11,第二电极132可透光。发光基板1还可以包括:设置于第二电极132远离衬底11一侧的光取出层14。光取出层14的折射率大于与光取出层14相邻且位于光取出层14靠近第二电极132一侧的材料层的折射率。
在这些实施例中,该发光器件13可以为顶发射型发光器件。根据全反射定律,当光线从一种介质(这里称为介质1)射向另一种介质(这里称为介质2)时,本来应该有部分光反射回介质1,称为反射光。但当介质1的折射率大于介质2的折射率,即光从光密介质射向光疏介质时,折射角是大于入射角的,所以当增大入射角,折射角也增大,但折射角先增大到90度,此时入射角叫临界角,折射光消失,只剩下反射光,称为全反射。根据以上全反射定律可知,发生全反射具有两个条件,第一是光从光密介质射向光疏介质,第二是入射角大于或等于临界角。基于此,通过使光取出层14的折射率大于与光取出层14相邻且位于光取出层14靠近第二电极132一侧的材料层的折射率,即可使光从光疏介质射向光密介质,从而能够避免光在传播过程中发生全反射,进而提高光取出率。
在一些实施例中,对于波长为620nm的光而言,光取出层14的折射率大于或等于1.8。研究发现,在对于波长为620nm的光而言,光取出层14的折射率大于或等于1.8的情况下,能够有效地将陷于发光器件13中的光耦合出来,从而能够进一步提高器件的发光效率。
其中,示例的,光取出层14可以直接与第二电极132接触,这时,与光取出层14相邻的材料层即为第二电极132,第二电极132的材料可以为镁银合金,对于波长为620nm的光而言,镁银合金的折射率可以是1.27。
当然,光取出层14和第二电极132之间还可以设置有其他材料层,但是,无论该材料层的作用是什么,光取出层14的折射率均大于该材料层的折射率,从而能够保证将发光器件13发出的光耦合出来。
在一些实施例中,光取出层14的材料选自如下通式(III)中的任一种:
Figure PCTCN2021131362-appb-000017
其中,Ar 3、Ar 4相同或不同,分别独立地选自取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基中的任一种;X选自O、S、Se或者N-R,R选自H、取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基和取代或未取代的C 1~C 30的烷基中的任一种;L 1选自单键、取代或未取代的C 6~C 30的亚芳基、取代或未取代的C 2~C 30的亚杂芳基中的任一种,L 2选自单键、取代或未取代的C 6~C 30的芳基,和取代或未取代的C 2~C 30的杂芳基中的任一种。
在这些实施例中,由于该光取出层14的材料具有独特的苯并杂环结构,有助于提升材料的折射率。
芳基在有机化学中是指任何从简单芳香环衍生出的官能团或取代基。是芳烃分子的芳核碳上去掉一个氢原子后,剩下一价基团的总称。最简单的芳基是苯基(Phenyl),由苯衍生而来,为单环芳基。当然,除单环芳基以外,芳基还可以包括多环芳基和稠环芳基等。
杂芳基是杂环芳烃分子的杂环碳上去掉一个氢原子后,剩下一价基团的总称。如吡啶基、呋喃基等,均为单环杂芳基。与芳基类似地,除单环杂芳基以外,杂芳基还可以包括多环杂芳基和稠环杂芳基等。
相应地,亚芳基是芳烃分子的芳环碳上去掉两个氢原子后,剩下二价基团的总称。与上述芳基相类似地,亚芳基可以包括单环亚芳基(如二价苯基)、多环亚芳基(如二价的二联苯基)和稠环亚芳基(如二价萘基、二价芴基、二价螺芴基)等。
亚杂芳基是杂环芳烃分子的杂环碳上去掉两个氢原子后,剩下二价基团的总称。与上述杂芳基类似地,亚杂芳基可以包括单环亚杂芳基(如二价吡啶基)、多环亚杂芳基(如二价的二联吡啶基)和稠环亚杂芳基(如二价的苯并呋喃基、二价咔唑基)等。
在L 1选自单键的情况下,通式(III)的结构式可以如下式(III_1)所示:
Figure PCTCN2021131362-appb-000018
在L 2选自单键的情况下,通式(III)的结构式可以如下式(III_2)所示:
Figure PCTCN2021131362-appb-000019
在一些实施例中,光取出层14的材料选自如下结构式中的任一种:
Figure PCTCN2021131362-appb-000020
Figure PCTCN2021131362-appb-000021
为了对本公开提供的实施例的技术效果进行客观说明,以下,将通过如下对比例和实验例对本公开进行详细地示例性地描述。
其中,需要说明的是,在以下的对比例和实验例中,发光器件13均具有相同的结构:阳极/空穴注入层(HIL)134b/空穴传输层(HTL)134c/电子阻挡层(EBL)134a/发光层133/电子传输层(ETL)135b/电子注入层(EIL)135a/阴极。
以下,将通过如下实施例对对比例和实验例的制备方法进行描述。
实施例
步骤1)、真空度为1×10 -5Pa,在形成有阳极(ITO)的玻璃基板上,通过真空蒸镀法对p-dopant和HTM(Hole Transport Material,空穴传输材料)进行共蒸镀,形成厚度为10nm的空穴注入层134b。
步骤2)、在空穴注入层134b上接着蒸镀HTM,厚度为50nm,形成空穴传输层134c。
步骤3)、在空穴传输层134c上蒸镀化合物1,形成厚度为5nm的电子阻挡层134a。
步骤4)、在电子阻挡层134a上共蒸镀主体材料BH和客体材料BD,形成厚度为35nm的发光层133。发光层133中的主体材料BH和客体材料BD的摩尔比为97:3。
步骤5)、在发光层133上共蒸镀ETM(Electron transport material,电子传输材料)和LiQ 3材料,形成厚度为30nm的电子传输层135b。
步骤6)、在电子传输层135b上蒸镀LiF,形成厚度为1nm的电子注入层135a。
步骤7)、在该电子注入层135a上共同蒸镀Mg金属和Ag金属(Mg和 Ag的质量比为8:2),形成厚度为15nm的阴极层。
步骤8)、在阴极层上蒸镀化合物2,形成厚度为50nm的光取出层14。
在对比例和实验例中,上述p-dopant、HTM、BH和ETM均相同,各材料的结构式如下所示。
Figure PCTCN2021131362-appb-000022
不同的是,在对比例1和对比例2中,上述化合物1的结构式如下化合物1_1和化合物1_2所示,BD的结构式如下化合物BD_1所示,化合物2的结构式如下化合物2_1所示。
在实验例1~实验例5中,上述化合物1的结构式如下化合物1_3和化合物1_4所示,BD的结构式选自如下化合物BD_1和化合物BD_2,化合物2的结构式选自如下化合物2_1和化合物2_2。
Figure PCTCN2021131362-appb-000023
Figure PCTCN2021131362-appb-000024
Figure PCTCN2021131362-appb-000025
如下表1所示,示出了上述化合物1_1、化合物1_2、化合物1_3和化合物1_4的LUMO能级,以及各自的LUMO能级与BH的LUMO能级之差,并示出了化合物1_1、化合物1_2和化合物1_3的空穴迁移率数据。如下表2所示,示出了上述化合物BD_1和BD_2的分子椭圆度数据。如下表3所示,示出了上述化合物2_1和化合物2_2的折射率数据。
表1
化合物1 LUMO能级 LUMO EB-LUMO BH 空穴迁移率
化合物1_1 -2.60 0.20 2.2×10 -4cm 2V -1s -1
化合物1_2 -2.28 0.52 3.9×10 -10cm 2V -1s -1
化合物1_3 -2.43 0.37 4.2×10 -8cm 2V -1s -1
化合物1_4 -2.36 0.44 1.8×10 -7cm 2V -1s -1
表2
BD 分子椭圆度
BD_1 1.53
BD_2 1.85
表3
化合物2 折射率n
化合物2_1 1.83
化合物2_2 1.93
如下表4所示,示出了对比例1和对比例2,以及实验例1~实验例5中化合物1、BD和化合物2的材料组合,以及在各自的材料组合下所对于的驱动电压、电流效率和器件寿命的数据。
表4
Figure PCTCN2021131362-appb-000026
结合表1和表2,由对比例1和对比例2可知,根据相关技术中在电子阻挡层134a的材料的LUMO能级较高的情况下,空穴迁移率普遍较低,而在电子阻挡层134a的材料的空穴迁移率较高的情况下,LUMO能级难以满足阻挡电子的要求。如化合物1_2的LUMO能级与主体材料BH的LUMO能级之差虽然可以大于0.3eV,但是,空穴迁移率只有3.9×10 -10cm 2V -1s -1,而化合物1_1虽然具有较高的空穴迁移率,但是,其LUMO能级与主体材料BH的LUMO能级之差小于0.3eV,由此使得器件的驱动电压、电流效率和器件寿命难以同时满足应用要求。并且,由于器件的电流效率除与LUMO能级和发光区域等有关以外,还与各材料的HOMO能级有关,因此,对比例1和对比例2的电流效率相差并不大。
基于此,在本公开的实施例中,通过选择LUMO能级较高且空穴迁移率较大的电子阻挡材料,可以降低驱动电压,提高电流效率,并同时提高器件寿命。并且,由实验例1和实验例2对比,可以得知,随着LUMO能级和空穴迁移率的提高,驱动电压呈降低趋势,电流效率和器件寿命呈升高趋势。由实验例1与实验例3、实验例4和实验例5对比可以得知,随着BD的分子椭圆度增大,驱动电压降低,电流效率和器件寿命提高。随着光取出层的折射率增大,驱动电压降低,电流效率和器件寿命提高。而实验例5与实验例1~实验例4相比,可以最大幅度提高器件效率和稳定性,具有良好的应用前景。
综上所述,通过对电子阻挡层134a的材料进行选择,使得电子阻挡层134a具有较高的LUMO能级,可以有效阻挡电子向空穴传输层134c扩散,防止空穴传输层134c中的C-N键发生断裂,并可减少电子淬灭,将激子限制在发光 区域内。同时,通过对电子阻挡层134a的材料的空穴迁移率进行合理设置,使激子复合区域向发光层133的中心移动,可以大幅提高器件的效率和寿命。而在此基础上,通过对客体材料BD进行选择,选择具有较高量子效率的结构,并提高分子椭圆度,有利于光的取出,从而可以进一步提高器件发光效率。进一步地,通过选择具有高折射率的光取出材料,还能够将陷于器件中的光耦合出来,最大程度上提升光取出效率,从而进一步提高器件发光效率。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种发光器件,包括:
    层叠设置的第一电极和第二电极;
    设置于所述第一电极和所述第二电极之间的多层功能层;
    所述多层功能层包括发光层,以及位于所述发光层和所述第一电极之间的至少两层具有空穴传输功能的材料层,和位于所述发光层和所述第二电极之间的至少一层具有电子传输功能的材料层;所述至少两层具有空穴传输功能的材料层包括电子阻挡层,所述发光层的材料包括主体材料和客体材料;
    其中,所述电子阻挡层的材料的LUMO能级与所述主体材料的LUMO能级之差大于或等于0.3eV;
    在同等的测试条件下,所述电子阻挡层的材料的空穴迁移率的数值的数量级,与所述至少一层具有电子传输功能的材料层的材料的电子迁移率的数值的数量级之比大于或等于1;
    所述客体材料选自分子椭圆度大于1.8的化合物中的任一种。
  2. 根据权利要求1所述的发光器件,其中,
    在电场强度为5000V 1/2/m 1/2的测试条件下,所述至少一层具有电子传输功能的材料层的材料的电子迁移率为10 -8cm 2V -1s -1~10 -7cm 2V -1s -1,所述电子阻挡层的材料的空穴迁移率为10 -8cm 2V -1s -1~10 -6cm 2V -1s -1
  3. 根据权利要求1或2所述的发光器件,其中,
    所述电子阻挡层的材料选自如下通式(I)所示结构中的任一种;
    Figure PCTCN2021131362-appb-100001
    其中,Ar 1、Ar 2相同或不同,分别独立地选自取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基中的任一种;L独立的选自单键、取代或未取代的C 6~C 30的亚芳基、取代或未取代的C 2~C 30的亚杂芳基中的任一种。
  4. 根据权利要求3所述的发光器件,其中,
    所述电子阻挡层的材料选自如下结构式中的任一种:
    Figure PCTCN2021131362-appb-100002
  5. 根据权利要求1~4任一项所述的发光器件,其中,所述客体材料选自如下通式(II)所示结构中的任一种;
    Figure PCTCN2021131362-appb-100003
    其中,A、B和C分别独立地选自取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基中的任一种;X 1和X 2相同或不同,分别独立地选自N(R),R选自氢、取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基和取代或未取代的C 1~C 30的烷基中的任一种。
  6. 根据权利要求5所述的发光器件,其中,
    A、B和C分别独立地选自苯基、二联苯基和如下结构式中的任一种:
    Figure PCTCN2021131362-appb-100004
    其中,X选自O、S、Se或者N-R,R选自H、取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基和取代或未取代的C 1~C 30的烷基中的任一种。
  7. 根据权利要求1~6任一项所述的发光器件,其中,
    所述客体材料选自如下结构式中的任一种:
    Figure PCTCN2021131362-appb-100005
  8. 一种发光基板,包括:
    衬底;以及
    设置于所述衬底上的多个发光器件;
    其中,至少一个发光器件为如权利要求1~7任一项所述的发光器件。
  9. 根据权利要求8所述的发光基板,其中,
    所述第一电极相对于所述第二电极靠近所述衬底,所述第二电极可透光;
    所述发光基板还包括:设置于所述第二电极远离衬底一侧的光取出层;
    所述光取出层的折射率大于与所述光取出层相邻且位于所述光取出层靠近所述第二电极一侧的材料层的折射率。
  10. 根据权利要求9所述的发光基板,其中,
    对于波长为620nm的光而言,所述光取出层的折射率大于或等于1.8。
  11. 根据权利要求9或10所述的发光基板,其中,
    所述光取出层的材料选自如下通式(III)中的任一种;
    Figure PCTCN2021131362-appb-100006
    其中,Ar 3、Ar 4相同或不同,分别独立地选自取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基中的任一种;X选自O、S、Se或者N-R,R选自H、取代或未取代的C 6~C 30的芳基、取代或未取代的C 2~C 30的杂芳基和取代或未取代的C 1~C 30的烷基中的任一种;L 1选自单键、取代或未取代的C 6~C 30的亚芳基、取代或未取代的C 2~C 30的亚杂芳基中的任一种,L 2选自单键、取代或未取代的C 6~C 30的芳基,和取代或未取代的C 2~C 30的杂芳基中的任一种。
  12. 根据权利要求11所述的发光基板,其中,
    所述光取出层的材料选自如下结构式中的任一种:
    Figure PCTCN2021131362-appb-100007
  13. 一种发光装置,包括:如权利要求8~12任一项所述的发光基板。
PCT/CN2021/131362 2021-03-08 2021-11-18 发光器件、发光基板和发光装置 WO2022188457A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/014,378 US20230255107A1 (en) 2021-03-08 2021-11-18 Light-emitting device, light-emitting substrate, and light-emitting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110252323.X 2021-03-08
CN202110252323.XA CN115050895A (zh) 2021-03-08 2021-03-08 发光器件、发光基板和发光装置

Publications (1)

Publication Number Publication Date
WO2022188457A1 true WO2022188457A1 (zh) 2022-09-15

Family

ID=83156570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131362 WO2022188457A1 (zh) 2021-03-08 2021-11-18 发光器件、发光基板和发光装置

Country Status (3)

Country Link
US (1) US20230255107A1 (zh)
CN (1) CN115050895A (zh)
WO (1) WO2022188457A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069096B1 (en) * 2017-06-21 2018-09-04 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. WOLED device
CN109390487A (zh) * 2018-09-30 2019-02-26 云谷(固安)科技有限公司 一种有机发光二极管、显示面板和显示装置
WO2019206290A1 (zh) * 2018-04-28 2019-10-31 江苏三月光电科技有限公司 有机电致发光器件
CN111740021A (zh) * 2020-06-28 2020-10-02 昆山国显光电有限公司 发光器件和显示面板
CN112151687A (zh) * 2020-09-25 2020-12-29 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069096B1 (en) * 2017-06-21 2018-09-04 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. WOLED device
WO2019206290A1 (zh) * 2018-04-28 2019-10-31 江苏三月光电科技有限公司 有机电致发光器件
CN109390487A (zh) * 2018-09-30 2019-02-26 云谷(固安)科技有限公司 一种有机发光二极管、显示面板和显示装置
CN111740021A (zh) * 2020-06-28 2020-10-02 昆山国显光电有限公司 发光器件和显示面板
CN112151687A (zh) * 2020-09-25 2020-12-29 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Also Published As

Publication number Publication date
US20230255107A1 (en) 2023-08-10
CN115050895A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
KR102108524B1 (ko) 유기전계발광소자
KR101547164B1 (ko) 발광 소자 및 그 발광 소자를 사용한 발광 장치
JP2021120953A (ja) 発光パネル及び表示装置
JP2020174052A (ja) 発光装置
JP2010287484A (ja) 有機発光素子、並びにこれを備えた表示装置および照明装置
TW201301604A (zh) 顯示元件,顯示裝置,以及電子設備
TWI391467B (zh) 有機電致發光裝置及顯示器設備
KR102529109B1 (ko) 발광다이오드 및 전계발광 표시장치
JP3669333B2 (ja) 有機電界発光素子及び表示装置
WO2022156313A1 (zh) 蓝色发光层形成用材料、发光器件、发光基板和发光装置
WO2022078094A1 (zh) 发光器件、显示基板
JP2022109242A (ja) 表示パネル、情報処理装置、表示パネルの製造方法
WO2024046290A9 (zh) 发光器件、显示面板及其制备方法
WO2024046281A1 (zh) 发光器件及其制作方法和显示面板
WO2022188457A1 (zh) 发光器件、发光基板和发光装置
CN113725377B (zh) 发光器件、发光基板及发光装置
KR20170112452A (ko) 유기발광소자
WO2022205947A1 (zh) 发绿光的发光器件、发光基板和发光装置
US20230337451A1 (en) Organic electroluminescent device and full-color display including the same
CN114975802B (zh) 发光器件、发光基板和发光装置
WO2022141621A1 (zh) 有机发光器件、发光基板和发光装置
WO2022077299A1 (zh) 发光器件及其制备方法、发光基板和发光装置
WO2023206382A1 (zh) 显示装置及显示面板
CN118102756A (zh) 包括有机金属化合物和多个基质材料的有机发光装置
CN118102757A (zh) 包括有机金属化合物和多个基质材料的有机发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.01.2024)