WO2022199010A1 - 发光器件、发光基板及发光装置 - Google Patents

发光器件、发光基板及发光装置 Download PDF

Info

Publication number
WO2022199010A1
WO2022199010A1 PCT/CN2021/126196 CN2021126196W WO2022199010A1 WO 2022199010 A1 WO2022199010 A1 WO 2022199010A1 CN 2021126196 W CN2021126196 W CN 2021126196W WO 2022199010 A1 WO2022199010 A1 WO 2022199010A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
type material
equal
emitting device
group
Prior art date
Application number
PCT/CN2021/126196
Other languages
English (en)
French (fr)
Inventor
刘杨
陈雪芹
邱丽霞
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/927,954 priority Critical patent/US20230209855A1/en
Publication of WO2022199010A1 publication Critical patent/WO2022199010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • H10K2101/25Delayed fluorescence emission using exciplex
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • Embodiments of the present disclosure relate to the fields of lighting and display, and in particular, to a light-emitting device, a light-emitting substrate, and a light-emitting device.
  • OLED light-emitting panels have the characteristics of self-illumination, high contrast ratio, thin and light, fast response speed, wide viewing angle, low power consumption, wide applicable temperature range, low cost, and simple manufacturing process. to an increasingly wide range of applications.
  • the light-emitting layer includes a host material.
  • the host material includes p-type material and n-type material.
  • the p-type material and the n-type material can form an exciplex, and the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the exciplex and the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the n-type material The absolute value of the difference is less than or equal to 5 nm.
  • the difference between the energy of the singlet excitons of the exciplex and the energy of the triplet excitons of the exciplex is less than or equal to 0.3 eV.
  • the ratio of the hole mobility of the p-type material to the electron mobility of the n-type material is greater than or equal to 1:100 and less than or equal to 100:1.
  • the hole mobility of the p-type material is greater than or equal to 1 ⁇ 10 ⁇ 8 cm 2 /(V ⁇ s) and less than or equal to 1 ⁇ 10 ⁇ 4 cm 2 /(V ⁇ s); the electrons of the n-type material The mobility is greater than or equal to 1 ⁇ 10 ⁇ 8 cm 2 /(V ⁇ s) and less than or equal to 1 ⁇ 10 ⁇ 4 cm 2 /(V ⁇ s).
  • the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the n-type material is greater than or equal to 430 nm and less than or equal to 470 nm.
  • the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the p-type material is greater than or equal to 380 nm and less than or equal to 430 nm.
  • the absolute value of the energy of the lowest electron-unoccupied orbital of the n-type material is greater than or equal to 2.6 eV and less than or equal to 3.0 eV; the absolute value of the energy of the highest electron-occupied orbital of the n-type material is greater than or equal to 5.5 eV, and less than or equal to 6.1eV.
  • the absolute value of the energy of the highest electron occupied orbital of the p-type material is greater than or equal to 5.4 eV and less than or equal to 5.9 eV; the absolute value of the energy of the lowest electron unoccupied orbital of the p-type material is greater than or equal to 2.3 eV, and less than or equal to 2.8eV.
  • the molar ratio of p-type material to n-type material is greater than or equal to 2:8 and less than or equal to 8:2.
  • the n-type material is selected from anthracene compounds.
  • the general formula of the anthracene compound is:
  • Ar1 represents any one of phenyl, naphthyl and biphenyl
  • Ar2 represents phenyl, 1-naphthyl, 2-naphthyl, 2-biphenyl, 3-biphenyl or 4-biphenyl
  • X1 and X2 each independently represent an aryl group having 6-50 ring carbon atoms, an aromatic heterocyclic group having 5-50 ring atoms, and an alkyl group having 1-50 carbon atoms , an alkoxy group having 1-50 carbon atoms, an aralkyl group having 6-50 carbon atoms, an aryloxy group having 5-50 ring atoms, an arylthio group having 5-50 ring atoms, Any of alkoxycarbonyl, carboxyl, halogen, cyano, nitro, and hydroxyl groups of 1-50 carbon atoms, n is any one of 1, 2, and 3, and a and b are The values are independently any of 0, 1, 2,
  • the p-type material is selected from aromatic amine compounds.
  • the general formula of the aromatic amine compound is:
  • L1 to L3 each independently represent any one of directly bonded, or substituted or unsubstituted arylene groups with 6 to 60 carbon atoms
  • Ar3 and Ar4 each independently represent hydrogen, deuterium, halogen group, cyano, nitro, substituted or unsubstituted silyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl having 6 to 60 carbon atoms, substituted or unsubstituted Any of substituted heterocyclic groups having 2 to 60 carbon atoms, R1 to R4 each independently represent hydrogen, deuterium, halogen group, cyano group, nitro group, substituted or unsubstituted carbon atoms 1 to 60 alkyl, substituted or unsubstituted haloalkyl with 1 to 60 carbon atoms, substituted or unsubstituted haloalkoxy with 1 to 60 carbon atoms, substituted or
  • the light-emitting substrate includes a substrate, and a plurality of light-emitting devices disposed on the substrate. Wherein, at least one of the plurality of light-emitting devices is selected from the above-mentioned light-emitting devices.
  • Yet another aspect provides a light-emitting device comprising the above-mentioned light-emitting substrate.
  • 1 is a plan view of a light-emitting substrate according to some embodiments.
  • FIG. 2 is a cross-sectional view of the light-emitting substrate shown in FIG. 1 along the O-O' direction;
  • FIG. 3 is a cross-sectional view of a light emitting device according to some embodiments.
  • FIG. 4 is a cross-sectional view of another light emitting device according to some embodiments.
  • Figure 5 is a normalized fluorescence spectrogram of a light emitting device according to some embodiments.
  • 6 is a normalized fluorescence spectrogram of another light emitting device according to some embodiments.
  • FIG 9 is a graph of the distribution of fluorescence spectral intensity versus distance for another light emitting device according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of this application, unless stated otherwise, "plurality" means two or more.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal connection between two components.
  • connection should be understood in specific situations.
  • Embodiments of the present disclosure provide a light-emitting device.
  • the light-emitting device is, for example, an organic light-emitting diode (Organic Light-Emitting Diode, OLED for short) light-emitting device, which can be configured to illuminate or display.
  • OLED Organic Light-Emitting Diode
  • the above-mentioned light-emitting device is configured to perform lighting, it is, for example, a lamp for lighting, various signal lights, or the like.
  • the product form of the light-emitting device includes a variety of products.
  • the light-emitting device may specifically be any product or component with display function, such as electronic paper, television, monitor, notebook computer, tablet computer, digital photo frame, mobile phone, and navigator.
  • the light-emitting device provided by the embodiments of the present disclosure includes a light-emitting substrate. It can be understood that, when the light-emitting device is an OLED light-emitting device, the light-emitting substrate is an OLED light-emitting substrate.
  • the light-emitting substrate 01 provided in the present application includes a base substrate 1 and a plurality of light-emitting devices 2 disposed on the base substrate 1 .
  • the base substrate 1 refers to a component for carrying the above-mentioned plurality of light-emitting devices 2 , and its specific structure can be various.
  • the substrate substrate 1 is a substrate without any other elements attached.
  • the substrate The substrate 1 may be a rigid substrate such as a glass substrate or a sapphire substrate.
  • the base substrate 1 may be a PET (Polyethylene terephthalate, polyethylene terephthalate) substrate, a PEN (Polyethylene naphthalate two formic acid glycol ester, polyethylene naphthalate) substrate or a PI (Polyimide, polyimide) substrates and other flexible substrates.
  • the substrate substrate 1 may also be a substrate on which a pixel driving circuit and/or a driving integrated circuit (Integrated Circuit, IC for short) is formed.
  • a driving integrated circuit Integrated Circuit, IC for short
  • the substrate 1 includes a substrate 11 , a pixel driving circuit formed on one side of the substrate 11 , and a flat layer 13 .
  • the flat layer 13 is located on the side of the pixel driving circuit away from the substrate 11 .
  • the above-mentioned pixel driving circuit may include at least two transistors 12 (only one of the transistors 12 is shown as an example in FIG. 2 ).
  • Each transistor 12 may include a gate electrode 121 , a gate insulating layer 122 , an active layer 123 , a source electrode 124 and a drain electrode 125 .
  • the transistor 12 may be a top-gate, bottom-gate or dual-gate thin film transistor, which is not specifically limited herein.
  • the transistor 12 is a bottom-gate transistor.
  • the gate 121 is located on the side of the active layer 123 close to the blank substrate 11 , and a gate insulating layer 122 is provided between the gate 121 and the active layer 123 .
  • the source electrode 124 and the drain electrode 125 are located on the side of the active layer 123 away from the substrate 11 , and are respectively connected to the active layer 123 .
  • the drain 125 is also electrically connected to the light emitting device 2 .
  • the light emitting device 2 may be formed on the side of the flat layer 13 away from the pixel driving circuit, and be electrically connected to the pixel driving circuit through the via hole H provided in the flat layer 13 .
  • the light-emitting substrate 01 further includes a pixel defining layer 3 disposed on the side of the flat layer 13 away from the substrate 11.
  • the pixel defining layer 3 has an opening region OP.
  • Each light emitting device 2 is formed in a corresponding one of the opening regions OP.
  • the light-emitting substrate 01 may further include an encapsulation layer 4 disposed on the side of the light-emitting device 2 away from the substrate 11 .
  • the light-emitting substrate 01 has a light-emitting area AA and a peripheral area BB located on at least one side of the light-emitting area AA.
  • the above-mentioned pixel driving circuit and light emitting device 2 may both be located in the light emitting area AA.
  • Each light-emitting device 2 is electrically connected to a corresponding pixel driving circuit, and the two constitute a sub-pixel PX.
  • a plurality of sub-pixels PX may be distributed in the light-emitting area AA in the form of an array.
  • the light-emitting substrate 01 can emit monochromatic light or light with adjustable color.
  • the light-emitting devices 2 have the same light-emitting color, such as red light.
  • the light-emitting substrate 01 may emit red light
  • the light-emitting substrate 01 may be a lighting substrate
  • the light-emitting devices 2 have different light-emitting colors, for example, the plurality of light-emitting devices 2 may include a red-emitting light-emitting device 2 , a blue-emitting light-emitting device 2 and a green-emitting light-emitting device 2 .
  • the light-emitting devices 2 of one color can be selectively controlled to emit light, and the light-emitting devices 2 of the other two colors can be controlled to not emit light at the same time, so that the light-emitting substrate 01 can issue orders. Color light, in this case, the light-emitting substrate 01 can be used for lighting.
  • the light-emitting devices 2 that emit light of different colors can be controlled to emit light according to a preset time sequence, thereby realizing colored light. In this case, the light-emitting substrate 01 can be used for illumination or display.
  • the light-emitting device 2 includes a first electrode 21 , a second electrode 22 disposed oppositely, and a light-emitting device located between the first electrode 21 and the second electrode 22 .
  • Layer EML the first electrode 21 may be an anode
  • the second electrode 22 may be a cathode
  • the first electrode 21 may be a cathode
  • the second electrode 22 may be an anode.
  • the first electrode 21 is taken as an anode and the second electrode 22 is taken as an example for description.
  • the light-emitting device 2 may further include a hole injection layer HIL, a hole transport layer HTL, an electron blocking layer At least one of the layer EBL, the hole blocking layer HBL, the electron transport layer ETL, and the electron injection layer EIL.
  • the light-emitting device 2 includes a hole injection layer HIL, a hole transport layer HTL, an electron blocking layer EBL, a hole blocking layer HBL, an electron transport layer ETL and an electron injection layer EIL
  • the hole injection layer HIL the empty hole
  • the hole transport layer HTL and the electron blocking layer EBL are located between the first electrode 21 and the light emitting layer EML.
  • the hole blocking layer HBL, the electron transport layer ETL and the electron injection layer EIL are located between the light emitting layer EML and the second electrode 22 .
  • the holes from the first electrode 21 and the electrons from the second electrode 22 both migrate to the light-emitting layer EML, and recombine at the light-emitting layer EML to release energy, thereby realizing light emission.
  • the light emitting layer EML includes a host material and a guest material.
  • the host material includes an n-type material and a p-type material, the p-type material and the n-type material forming an exciplex.
  • the absolute value of the difference between the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the exciplex and the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the n-type material is less than or equal to 5 nm.
  • Exciplex is an aggregate of the above-mentioned n-type material and p-type material, and its emission spectrum is different from the emission spectrum of the n-type material or p-type material.
  • Exciplexes can form new band gaps, p-type materials can be regarded as electron donor materials, and n-type materials can be regarded as electron acceptor materials.
  • p-type materials can be regarded as electron donor materials
  • n-type materials can be regarded as electron acceptor materials.
  • an excimer complex is formed.
  • the excited state of the electron acceptor material and the ground state of the electron donor material interact to form a charge transfer state to emit light, which emits an emission spectrum different from that of the p-type material. and new spectra of emission spectra of n-type materials.
  • Fluorescence emission spectrum refers to the intensity or energy distribution of light of different wavelengths emitted by a luminescent material (for example, the above-mentioned host material) when excited by light of a specific wavelength.
  • the fluorescence absorption spectrum refers to the intensity or energy distribution of light of different wavelengths absorbed by a luminescent material (eg, the above-mentioned guest material) when excited by light of a certain wavelength.
  • the fluorescence emission spectrum and fluorescence absorption spectrum here can be obtained by measuring the fluorescence spectrometer in solution.
  • the fluorescence emission spectrum of the host material and the absorption spectrum of the guest material are normalized, that is, the total light intensity is set to one, so that the light intensity on the ordinate becomes a decimal, and the normalized fluorescence emission of the host material can be obtained.
  • Spectra and normalized absorption spectra of the guest material are normalized.
  • the normalized fluorescence emission spectrum of the exciplex and the fluorescence emission spectrum of the n-type material can be obtained. ll.
  • the fluorescence emission spectrum emitted by the host material can be used as the excitation spectrum of the light emission of the guest material, and part or all of the energy is transferred to the guest material, so that the guest material is excited, thereby realizing light emission.
  • the larger the overlapping area of the fluorescence emission spectrum of the host material and the absorption spectrum of the guest material the more sufficient the energy transfer will be.
  • the absolute value of the difference between the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the exciplex and the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the n-type material is less than or equal to 5 nm, it can be known that, In the case where the normalized fluorescence emission spectrum of the n-type material and the normalized absorption spectrum of the guest material have a large overlap, the normalized fluorescence emission spectrum of the exciplex and the normalized absorption spectrum of the guest material also have The larger overlap, therefore, enables the Forster energy transfer between the exciplex and the guest material to be as sufficient as possible.
  • the light-emitting layer EML in the light-emitting device 2 provided by the present disclosure further includes a p-type material, and the p-type material and the n-type material form a double host. In this way, on the one hand, it is possible to adjust the hole mobility of the p-type material and the electron mobility of the n-type material through the appropriate matching between the p-type material and the n-type material.
  • p-type materials and n-type materials form exciplexes, which can make the Forster energy transfer between host materials and guest materials sufficient, and the exciplexes have a smaller single weight.
  • the difference between the energy of the state excitons and the energy of the triplet state excitons can make the triplet state excitons pass through reverse intersystem crossing (RISC for short), that is, the triplet state excitons are transformed into singlet state excitons under the thermal assistance of the environment. process) into singlet excitons, realizing the utilization of triplet excitons and improving the utilization rate of excitons.
  • RISC reverse intersystem crossing
  • the host material of the light-emitting layer EML is a single host material such as an n-type material, and the electron mobility of the light-emitting device 2 is higher than the hole mobility, so that the exciton recombination region in the light-emitting device 2 is biased towards the electron blocking layer.
  • One side of the EBL, which makes the triplet excitons of the host material in this region gather at the interface of the electron blocking layer EBL and the light emitting layer EML, and the triplet excitons are easily annihilated.
  • the position of the exciton recombination region be adjusted, such as adjusting the exciton recombination region in the central region of the light-emitting layer EML, but also the position of the exciton recombination region can be adjusted.
  • the utilization efficiency of triplet excitons can be improved, and therefore, triplet exciton annihilation is avoided.
  • the difference ⁇ Est between the energy of the singlet excitons of the exciplex and the energy of the triplet excitons is less than or equal to 0.3 eV.
  • the triplet excitons in the excimer complex are more easily converted into singlet excitons through RISC, and then the energy is transferred to the guest material to achieve light emission. This is beneficial to further improve the utilization of triplet excitons.
  • the above n-type material is selected from anthracene compounds.
  • anthracene compounds Illustratively, the general formula of the above-mentioned anthracene compounds is:
  • Ar1 represents any one of phenyl, naphthyl and biphenyl
  • Ar2 represents phenyl, 1-naphthyl, 2-naphthyl, 2-biphenyl, 3-biphenyl or 4-biphenyl
  • X1 and X2 each independently represent an aryl group having 6-50 ring carbon atoms, an aromatic heterocyclic group having 5-50 ring atoms, and an alkyl group having 1-50 carbon atoms , an alkoxy group having 1-50 carbon atoms, an aralkyl group having 6-50 carbon atoms, an aryloxy group having 5-50 ring atoms, an arylthio group having 5-50 ring atoms, Any of alkoxycarbonyl, carboxyl, halogen, cyano, nitro, and hydroxyl groups of 1-50 carbon atoms, n is any one of 1, 2, and 3, and a and b are The values are independently any of 0, 1, 2,
  • Ar1, Ar2 or X each independently represent a group, and n, a, b each independently represent the number of a corresponding group.
  • the number is 1.
  • the above-mentioned p-type material is selected from aromatic amine compounds.
  • L1 to L3 each independently represent any one of directly bonded, or substituted or unsubstituted arylene groups with 6 to 60 carbon atoms
  • Ar3 and Ar4 each independently represent hydrogen, deuterium, halogen group, cyano, nitro, substituted or unsubstituted silyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl having 6 to 60 carbon atoms, substituted or unsubstituted Any of substituted heterocyclic groups having 2 to 60 carbon atoms, R1 to R4 each independently represent hydrogen, deuterium, halogen group, cyano group, nitro group, substituted or unsubstituted carbon atoms 1 to 60 alkyl, substituted or unsubstituted haloalkyl with 1 to 60 carbon atoms, substituted or unsubstituted haloalkoxy with 1 to 60 carbon atoms, substituted or
  • L1 to L3, Ar3, Ar4 and R1 to R4 each independently represent a group.
  • c represents the number of groups R1 in the above-mentioned aromatic amine compounds
  • d represents the number of groups R2 in the above-mentioned aromatic amine compounds
  • e represents the number of groups R3 in the above-mentioned aromatic amine compounds
  • f represents the number of groups in the above-mentioned aromatic amine compounds the number of groups R4.
  • the position of the exciton recombination region in the EML of the light-emitting layer can be controlled.
  • the ratio of the hole mobility of the p-type material to the electron mobility of the n-type material may be determined according to actual needs, which is not limited in this embodiment of the present disclosure.
  • the ratio of the hole mobility of the p-type material to the electron mobility of the n-type material is greater than or equal to 1:100 and less than or equal to 100:1.
  • hole mobility is a physical quantity used to characterize the mobility of holes, the carriers.
  • Electron mobility is a physical quantity used to characterize the transfer rate of electrons as carriers. The larger the electron mobility, the faster the migration of the electrons, the faster the migration of the electrons; the lower the electron mobility, the slower the migration of the electrons.
  • the holes and electrons in the light-emitting layer EBL are The difference in the migration rates of the two carriers is small, so it is beneficial to make the exciton recombination region located in the approximate center of the light-emitting layer EML along the direction from the anode to the cathode, improve the luminous efficiency of the light-emitting layer EML and improve the light-emitting device 2. performance such as luminous efficiency and service life.
  • the ratio of the hole mobility of the p-type material to the electron mobility of the n-type material can be determined within the above ratio range according to actual needs.
  • the ratio of the hole mobility of the p-type material to the electron mobility of the n-type material is equal to 1:100, 50:50, or 100:1.
  • the hole mobility of the p-type material is greater than or equal to 1 ⁇ 10 ⁇ 8 cm 2 /(V ⁇ s) and less than or equal to 1 ⁇ 10 ⁇ 4 cm 2 /(V ⁇ s).
  • the electron mobility of the above n-type material is greater than or equal to 1 ⁇ 10-8 cm 2 /(V ⁇ s) and less than or equal to 1 ⁇ 10-4 cm 2 /(V ⁇ s).
  • the position of the exciton recombination region in the EML of the light-emitting layer can also be controlled by adjusting the ratio of the p-type material and the n-type material in the host material.
  • the ratio may be a molar ratio, a mass ratio, or the like.
  • the molar ratio of the p-type material to the n-type material is greater than or equal to 2:8 and less than or equal to 8:2.
  • the exciton recombination region can move to the central position of the light-emitting layer EML, which is beneficial to further improve the light-emitting of the light-emitting device 2 performance such as efficiency and service life.
  • the molar ratio of the hole mobility of the p-type material to the n-type material can be determined within the above ratio range according to actual needs.
  • the molar ratio of the hole mobility of the p-type material to the n-type material is 2:8, 5:5, or 8:2.
  • the absolute value of the energy of the lowest electron unoccupied orbital of the n-type material is greater than or equal to 2.6 eV and less than or equal to 3.0 eV, the absolute value of the energy of the highest electron occupied orbital thereof is greater than or equal to 5.5 eV, and less than or equal to 6.1eV.
  • the absolute value of the energy of the highest electron occupied orbital of the p-type material is greater than or equal to 5.4 eV and less than or equal to 5.9 eV, and the absolute value of the energy of the lowest electron unoccupied orbital thereof is greater than or equal to 2.3 eV, and less than or equal to 2.8eV.
  • n-type material may have various structures, which are not limited in this embodiment of the present disclosure.
  • the light-emitting device 2 adopts the structure shown in FIG. 4, that is, the light-emitting device 2 includes an anode, a hole injection layer HIL, a hole transport layer HTL, The electron blocking layer EBL, the light emitting layer EML, the hole blocking layer HBL, the electron transport layer ETL and the electron injection layer EIL and the cathode.
  • the thickness of the light-emitting layer EML is all 35 nm.
  • the only difference between the six groups of light-emitting devices 2 is that the host material of the light-emitting layer EML is different.
  • control group group I, group II, group III, group IV and group V, respectively.
  • the light-emitting layer EML in the blue light emitter corresponding to the control group adopts a single host material, and the structural formula is shown in the following formula (1-1).
  • the light-emitting layer EML in the light-emitting device 2 corresponding to the group I, group II, group III, group IV and group V all use dual host materials.
  • the structural formula of the n-type material in the dual host materials used in Groups I, II and III is shown in the following formula (1-1), and the structural formula of the p-type material is shown in the following formula (2-1).
  • the molar ratio of p-type material and n-type material in the corresponding light-emitting layer EML of group I is 2:8;
  • the molar ratio of p-type material and n-type material in the corresponding light-emitting layer EML of group II is 5:5;
  • the molar ratio of p-type material and n-type material in the EML of the light-emitting layer corresponding to group III is 8:2.
  • the structural formula of the n-type material in the dual-host materials used in Group IV is shown in the following formula (1-2), the structural formula of the p-type material is shown in the following formula (2-2), and the moles of the p-type material and the n-type material are shown in the following formula (2-2).
  • the ratio is 5:5.
  • the structural formula of the n-type material in the dual host materials used in group V is shown in the following formula (1-3)
  • the structural formula of the p-type material is shown in the following formula (2-3)
  • the moles of the p-type material and the n-type material are shown in the following formula (2-3).
  • the ratio is 5:5.
  • the structural formulas of the guest materials in the above-mentioned six groups of light-emitting layers EML are all shown in the following formula (3-1).
  • the applicant doped the guest material with the above-mentioned 6 groups of host materials according to the doping ratio of 0.3%, and finally formed the corresponding 6 groups of light-emitting devices 2 .
  • the doping ratio here can be understood as a volume ratio.
  • the above-mentioned host material and guest material D are simultaneously evaporated onto the substrate on which the light-emitting device 2 is to be formed by an evaporation process.
  • the evaporation rate of the guest material D is controlled to be 0.3% of the evaporation rate of the host material, that is, the light-emitting device 2 with the EML doping ratio of the light-emitting layer is 0.3% is obtained.
  • Table 2 below is a table of related physical properties of the n-type materials and p-type materials involved in this embodiment.
  • ⁇ HOMO ⁇ represents the absolute value of the energy of the highest electron occupied orbital
  • ⁇ LUMO ⁇ represents the absolute value of the energy of the lowest electron unoccupied orbital
  • ⁇ e represents the electron mobility
  • ⁇ h represents the hole mobility.
  • Figure 5 shows the n-type material represented by the formula (1-1), the p-type material represented by the formula (2-1), the guest material represented by the formula (3-1), and groups I to III obtained by the applicant. Normalized fluorescence spectra of the corresponding host materials. From this figure it can be seen that:
  • the normalized fluorescence emission spectra of the host materials corresponding to groups I to III can overlap well with the normalized fluorescence emission spectra of the n-type materials shown in (1-1), and in groups I to III,
  • the difference between the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the host material and the wavelength corresponding to the peak of the normalized fluorescence emission spectrum of the n-type material shown in (1-1) The absolute value is less than 5nm.
  • the normalized fluorescence emission spectra of the host materials corresponding to groups I to III also have a good degree of overlap with the normalized fluorescence absorption spectra of the guest materials.
  • Figure 6 shows the n-type material represented by the formula (1-2), the p-type material represented by the formula (2-2), the guest material represented by the formula (3-1), and the corresponding group IV Normalized fluorescence spectra of the host material.
  • Figure 7 shows the n-type material represented by formula (1-3), the p-type material represented by formula (2-3), the guest material represented by formula (3-1), the Normalized fluorescence spectra of the host material. It is easy to understand that, according to Figures 6 and 7, the exciplexes formed by the dual host materials corresponding to the above groups IV and V under excitation conditions can also fully transfer the energy of the excitons in themselves to the guest materials. , to achieve luminescence. The specific analysis process is similar to that in FIG. 5 and will not be repeated here.
  • FIG. 8 is a graph showing the distribution curve of the fluorescence spectrum intensity of the light-emitting devices 2 corresponding to the control group and groups I to III with distance. It is easy to understand that the higher the intensity of the fluorescence spectrum in the curve, the greater the number of recombined excitons there. Obviously, it can be seen from Figure 8 that:
  • the spectral intensity in the curve corresponding to the control group gradually decreases from left to right along the abscissa, which indicates that most excitons recombine at and near the interface between the emissive layer EML and the electron blocking layer EBL. Therefore, the performances such as the luminous efficiency and the service life of the light-emitting device 2 corresponding to the control group are relatively low.
  • the peaks of the curves of any of the groups I to III are located near the position of 18 nm from the interface between the light-emitting layer EML and the electron blocking layer EBL, that is, near the center of the light-emitting layer EML. , and the trend of the curve is relatively flat. This indicates that most of the excitons in the light-emitting device 2 corresponding to groups I to III recombine at the center of the light-emitting layer EML, and the recombination region distribution of excitons is more uniform than that in the light-emitting device 2 corresponding to the control group. Therefore, the light-emitting devices 2 corresponding to groups I to III have better performances such as luminous efficiency and service life.
  • the two host materials in the first dual host namely the p-type material represented by formula (2-1) and the n-type material represented by formula (1-1)
  • the change in the molar ratio causes the position of the exciton recombination region to change, and when the molar ratio of the p-type material represented by the formula (2-1) and the n-type material represented by the formula (1-1) is 5:5 , the exciton recombination region can be closer to the center of the light-emitting layer EML and the distribution is more uniform, and the scheme corresponding to group III is more conducive to the improvement of the luminous efficiency and prolonging the service life of the light-emitting device 2.
  • Fig. 9 is a graph showing the distribution curve of the electroluminescence spectral intensity of the light-emitting device 2 corresponding to the control group, the II group, the IV group and the V group as a function of the distance. It can be seen from Figure 9 that:
  • the peaks of the curves corresponding to groups II and IV are located on the side close to the center of the EML of the light-emitting layer of the peaks of the curves of the control group. This indicates that most of the excitons in the light-emitting device 2 corresponding to group II and group IV recombine near the center of the light-emitting layer EML.
  • the peak of the curve corresponding to group V is located at the interface between the electron blocking layer EBL and the light-emitting layer EML, the peak of the curve corresponding to group V is lower than that of the control group, and the peak value of the curve corresponding to group V is lower than that of the control group.
  • the corresponding curve is generally more flat.
  • the exciton recombination region corresponding to the V group is closer to the center of the EML of the light-emitting layer. It can be seen that the first dual-host material corresponding to group II, the second dual-host material corresponding to group IV, and the third dual-host material corresponding to group V can make the exciton recombination region close to the center of the EML of the light-emitting layer, which is conducive to improving the Performances such as luminous efficiency and service life of the light-emitting device 2 .
  • Group II the ratio of hole mobility of p-type material to electron mobility of n-type material is 10:1
  • the peak of the corresponding curve is closest to the center of the EML of the light-emitting layer, and the peak of the corresponding curve of group IV (the ratio of the hole mobility of p-type material to the electron mobility of n-type material is 100:1) is compared with that of group II.
  • the peak of the curve is closer to the hole blocking layer HBL, and the peak of the corresponding curve of group V (the ratio of the hole mobility of p-type material to the electron mobility of n-type material is 1:100) is compared with the peak of the corresponding curve of group II closer to the electron blocking layer EBL.
  • the center position of the light-emitting layer EML, at this time, the light-emitting device 2 has better light-emitting efficiency, and its service life is likely to be longer.
  • the exciton recombination region in the EML of the light-emitting layer can be adjusted according to actual needs. Location.
  • CIEx represents the abscissa value of the color coordinate of the light emitted by the light-emitting device 2
  • CIEy represents the ordinate value of the color coordinate of the light emitted by the light-emitting device 2
  • U represents the current density flowing through the light-emitting device 2 15mA/cm 2
  • Cd represents the brightness
  • A represents the flowing current
  • Cd/A/CIEy represents the chromaticity efficiency as a whole
  • LT95 represents that the brightness of the light-emitting device 2 decays to the initial brightness when it is continuously lit 95% of the time it takes.
  • the U values of the groups I to V are all smaller, which indicates that the light-emitting device 2 using the dual-host material in the embodiment of the present disclosure is more likely to have the same color as the red-emitting light-emitting device 2 .
  • the same driving voltage of the green light-emitting device 2 therefore, when the light-emitting device 2 provided by the embodiment of the present disclosure is used as the blue light-emitting device 2, it can be advantageous to use the same voltage terminal for the red light-emitting device in the pixel.
  • the light emitting device 2, the green light emitting device 2, and the blue light emitting device 2 provide voltages, thereby reducing the number of voltage terminals required by the light emitting device and reducing power consumption.
  • the Cd/A/CIEy values of the I-V groups are larger, which indicates that the light-emitting device 2 using the dual-host material in the embodiment of the present disclosure has better performance than the related art. higher luminous efficiency of the light-emitting device 2.
  • the LT95 values of the I-V groups are larger, which indicates that the light-emitting device 2 using the dual-host material in the embodiment of the present disclosure has a longer service life than the light-emitting device 2 in the related art life.
  • the performance of the light-emitting device 2 corresponding to group II is relatively better, for example, its light-emitting driving voltage is relatively closer to red light.
  • the driving voltage of the light-emitting device 2 and the green-emitting light-emitting device 2 are higher, its luminous efficiency is higher, and its service life is longer.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光器件,该发光器件包括发光层。该发光层包括主体材料。该主体材料包括p型材料和n型材料。p型材料和n型材料可形成激基复合物,且该激基复合物的归一化荧光发射光谱的峰值所对应的波长和n型材料的归一化荧光发射光谱的峰值所对应的波长之差的绝对值小于或等于5nm。

Description

发光器件、发光基板及发光装置
本申请要求于2021年03月25日提交的、申请号为202110322403.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及照明和显示领域,尤其涉及一种发光器件、发光基板及发光装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)发光面板具有自发光、对比度高、轻薄、响应速度快、视角宽、功耗低、适用温度范围大、成本低、制造工艺简单等特点,近年来得到了越来越广泛的应用。
发明内容
一方面提供一种发光器件,该发光器件包括发光层。该发光层包括主体材料。该主体材料包括p型材料和n型材料。p型材料和n型材料可形成激基复合物,且该激基复合物的归一化荧光发射光谱的峰值所对应的波长和n型材料的归一化荧光发射光谱的峰值所对应的波长之差的绝对值小于或者等于5nm。
在一些实施例中,激基复合物的单重态激子的能量与其三重态激子的能量之差小于或者等于0.3eV。
在一些实施例中,p型材料的空穴迁移率与n型材料的电子迁移率之比大于或者等于1:100,且小于或者等于100:1。
在一些实施例中,p型材料的空穴迁移率大于或者等于1x10 -8cm 2/(V·s),且小于或者等于1x10 -4cm 2/(V·s);n型材料的电子迁移率大于或者等于1x10 -8cm 2/(V·s),且小于或者等于1x10 -4cm 2/(V·s)。
在一些实施例中,n型材料的归一化荧光发射光谱的峰值对应的波长大于或者等于430nm,且小于或者等于470nm。
在一些实施例中,p型材料的归一化荧光发射光谱的峰值对应的波长大于或者等于380nm,且小于或者等于430nm。
在一些实施例中,n型材料的最低电子未占有轨道的能量的绝对值大于或者等于2.6eV,且小于或者等于3.0eV;n型材料的最高电子占有轨道的能量的绝对值大于或者等于5.5eV,且小于或者等于6.1eV。
在一些实施例中,p型材料的最高电子占有轨道的能量的绝对值大于或者等于5.4eV,且小于或者等于5.9eV;p型材料的最低电子未占有轨道的能量 的绝对值大于或者等于2.3eV,且小于或者等于2.8eV。
在一些实施例中,p型材料与n型材料的摩尔比大于或者等于2:8,且小于或者等于8:2。
在一些实施例中,n型材料选自蒽类化合物。
在一些实施例中,蒽类化合物的通式为:
Figure PCTCN2021126196-appb-000001
其中,Ar1代表苯基、萘基、联苯基中的任一种,Ar2代表苯基、1-萘基、2-萘基、2-联苯基、3-联苯基或4-联苯基中的任一种;X1和X2各自独立地代表具有6-50个环碳原子的芳基、具有5-50个环原子的芳族杂环基,具有1-50个碳原子的烷基、具有1-50个碳原子的烷氧基、具有6-50个碳原子的芳烷基、具有5-50个环原子的芳氧基、具有5-50个环原子的芳硫基、具有1-50个碳原子的烷氧基羰基、羧基、卤原子、氰基、硝基、羟基中的任一种,n的取值为1、2、3中的任一个,a、b的取值各自独立的为0、1、2、3中的任一个。
在一些实施例中,p型材料选自芳胺类化合物。
在一些实施例中,芳胺类化合物的通式为:
Figure PCTCN2021126196-appb-000002
其中,L1至L3各自独立地代表直接键合、或者取代或者未取代的碳原子数6至60的亚芳基中的任一种,Ar3和Ar4各自独立地代表氢、氘、卤素基团、氰基、硝基、取代或未取代的甲硅烷基、取代或未取代的烷基、取代 或未取代的环烷基、取代或未取代的碳原子数6至60的芳基、取代或未取代的碳原子数2至60的杂环基中的任一种,R1至R4各自独立地代表氢、氘、卤素基团、氰基、硝基、取代或未取代的碳原子数1至60的烷基、取代或未取代的碳原子数1至60的卤代烷基、取代或未取代的碳原子数1至60的卤代烷氧基、取代或未取代的碳原子数3至60的环烷基、取代或未取代的碳原子数2至60的烯基、取代或未取代的碳原子数6至60的芳基、取代或未取代的碳原子数2至60的杂环基中的任一种,c、d、e、f的取值各自独立的为0、1、2、3中的任一个。
另一方面提供一种发光基板,该发光基板包括衬底、以及设置于该衬底上的多个发光器件。其中,该多个发光器件中的至少一个选自上述的发光器件。
再一方面提供一种发光装置,该发光装置包括如上所述的发光基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍。然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1是根据一些实施例的一种发光基板的平面图;
图2是图1所示的发光基板沿O-O’方向的剖面图;
图3是根据一些实施例的一种发光器件的剖面图;
图4是根据一些实施例的另一种发光器件的剖面图;
图5是根据一些实施例的一种发光器件的归一化荧光光谱图;
图6是根据一些实施例的另一种发光器件的归一化荧光光谱图;
图7是根据一些实施例的再一种发光器件的归一化荧光光谱图;
图8是根据一些实施例的一种发光器件的荧光光谱强度随距离的分布曲线图;以及
图9是根据一些实施例的另一种发光器件的荧光光谱强度随距离的分布曲线图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实 施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本公开实施例提供一种发光装置。该发光装置例如为有机发光二极管(Organic Light-Emitting Diode,简称OLED)发光装置,其可以被配 置为进行照明或者显示。在上述发光装置配置为进行照明的情况下,其例如为用于照明的灯,或各种信号灯等。在上述发光装置配置为进行显示的情况下,该发光装置的产品形式包括多种。例如,该发光装置具体可以为电子纸、电视机、显示器、笔记本电脑、平板电脑、数码相框、手机、导航仪等任何具有显示功能的产品或者部件。
本公开实施例提供的发光装置包括发光基板。可以理解的是,在发光装置为OLED发光装置的情况下,该发光基板为OLED发光基板。
请参阅图1-2,本申请提供的发光基板01包括衬底基板1、以及设置于所述衬底基板1上的多个发光器件2。
此处,衬底基板1是指用于承载上述多个发光器件2的部件,其具体结构可以有多种。
在一些示例中,衬底基板1为不附带任何其他元件的衬底。例如衬底基板1可以为玻璃衬底、蓝宝石衬底等刚性衬底。再例如,衬底基板1可以为PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)衬底、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸乙二醇酯)衬底或PI(Polyimide,聚酰亚胺)衬底等柔性衬底。
在另一些示例中,衬底基板1也可以为形成有像素驱动电路和/或驱动集成电路(Integrated Circuit,简称IC)的衬底。
例如,请继续参阅图2,衬底基板1包括衬底11、形成在衬底11一侧的像素驱动电路、以及平坦层13。其中平坦层13位于像素驱动电路的背离衬底11的一侧。
上述像素驱动电路可以包括至少两个晶体管12(图2中仅以其中一个晶体管12为例进行了示意)。每个晶体管12可以包括栅极121、栅绝缘层122、有源层123、源极124和漏极125。根据栅极121和有源层123的相对位置关系,晶体管12可以为顶栅型、底栅型或双栅型薄膜晶体管,在此不做具体限定。示例的,晶体管12为底栅型晶体管。栅极121位于有源层123的靠近空白衬底11的一侧,栅极121与有源层123之间设有栅绝缘层122。源极124和漏极125位于有源层123的远离衬底11的一侧,并分别与有源层123连接。漏极125还与发光器件2电连接。
发光器件2可以形成在平坦层13的背离像素驱动电路的一侧,并通过设置在平坦层13中的过孔H与像素驱动电路电连接。
示例地,发光基板01还包括设置于平坦层13的背离衬底11一侧的 像素界定层3。像素界定层3具有开口区域OP。每个发光器件2形成在对应的一个开口区域OP内。
发光基板01还可以包括设置于发光器件2的背离衬底11一侧的封装层4。
请参阅图1,上述发光基板01具有发光区域AA和位于发光区域AA的至少一侧的周边区域BB。上述的像素驱动电路和发光器件2可以均位于发光区域AA。每个发光器件2与对应的一个像素驱动电路电连接,二者构成一个子像素PX。多个子像素PX可以呈阵列形式分布在发光区域AA。
根据上述发光器件2的发光颜色是否相同,上述发光基板01可以发单色光或颜色可调的光。
在一些实施例中,发光器件2的发光颜色相同,如均发红光,此时,发光基板01可以发红色光,该发光基板01可以为照明基板
在一些实施例中,发光器件2的发光颜色不同,如多个发光器件2可以包括发红光的发光器件2,发蓝光的发光器件2和发绿光的发光器件2。此时,有两种可能地情况,第一种情况,可以选择性地控制其中一种颜色的发光器件2发光,同时控制另外两种颜色的发光器件2不发光,以使发光基板01发单色光,在此情况下,发光基板01可以用于照明。第二种情况,可以控制发不同颜色的光的发光器件2按照预设的时序发光,从而实现彩色发光。在此情况下,发光基板01可以用于照明或显示。
本公开的实施例提供一种发光器件2,请参阅图3,该发光器件2包括相对设置的第一电极21、第二电极22、以及位于第一电极21与第二电极22之间的发光层EML。示例地,第一电极21可以为阳极,第二电极22为阴极,又示例地,第一电极21可以为阴极,第二电极22为阳极。
在以下的实施例中,以第一电极21为阳极,第二电极22为阴极为例进行说明。
在一些实施例中,请参阅图4,发光器件2除上述的第一电极21、第二电极22、和发光层EML外,还可以包括空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、空穴阻挡层HBL、电子传输层ETL和电子注入层EIL中的至少一个。
其中,在发光器件2包括空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、空穴阻挡层HBL、电子传输层ETL和电子注入层EIL的 情况下,空穴注入层HIL、空穴传输层HTL和电子阻挡层EBL位于第一电极21和发光层EML之间。空穴阻挡层HBL、电子传输层ETL和电子注入层EIL位于发光层EML和第二电极22之间。
这样,在外加电场的作用下,来自第一电极21处的空穴和来自第二电极22处的电子均向发光层EML处迁移,并在发光层EML处复合释放出能量,从而实现发光。
在一些实施例中,发光层EML包括主体材料和客体材料。该主体材料包括n型材料和p型材料,该p型材料和n型材料形成激基复合物。该激基复合物的归一化荧光发射光谱的峰值所对应的波长和n型材料的归一化荧光发射光谱的峰值所对应的波长之差的绝对值小于或者等于5nm。
激基复合物(Exciplex)是上述n型材料和p型材料的聚集体,其发射光谱不同于该n型材料或p型材料的发射光谱。激基复合物可以形成新的带隙,p型材料可以看作是电子给体材料,n型材料可以看作是电子受体材料,例如p型材料和n型材料的共混膜可以在光致激发或电致激发条件下,形成激基复合物,此时,电子受体材料的激发态和电子给体材料的基态相互作用形成一个电荷转移态发光,发出区别于p型材料的发射光谱和n型材料的发射光谱的新的光谱。
荧光发射光谱是指发光材料(例如上述主体材料)在某一特定波长光的激发下,所发射的不同波长光的强度或能量分布。另外,荧光吸收光谱是指发光材料(例如上述客体材料)在某一特定波长光的激发下,所吸收的不同波长光的强度或能量分布。这里的荧光发射光谱和荧光吸收光谱可以采用溶液方式由荧光光谱仪测试获得。
对主体材料的荧光发射光谱和客体材料的吸收光谱进行归一化处理,即将总光强设为一,使纵坐标上的光强均变为小数,即可得到主体材料的归一化荧光发射光谱和客体材料的归一化吸收光谱。同样地,对上述激基复合物的荧光发射光谱和n型材料的荧光发射光谱进行归一化处理,即可得到激基复合物的归一化荧光发射光谱和n型材料的归一化荧光发射光谱。
根据Forster能量转移,在两个不同的荧光基团中,如果一个荧光基团(供体,Donor)的荧光发射光谱与另一个基团(受体,Acceptor)的吸收光谱有一定的重叠,当这两个荧光基团间的距离合适时(一般小于
Figure PCTCN2021126196-appb-000003
), 就可观察到荧光能量由供体向受体转移的现象,即以供体的激发光激发,供体产生的荧光强度比它单独存在时要低得多,而受体发射的荧光却大大增强,同时伴随它们的荧光寿命的相应缩短和拉长。也就是说,主体材料发射的荧光发射光谱可以作为客体材料发光的激发光谱,将一部分或者全部能量转移给客体材料,使客体材料被激发,从而实现发光。在此过程中,主体材料的荧光发射光谱与客体材料的吸收光谱的交叠面积越大,能量转移越充分。
根据上述激基复合物的归一化荧光发射光谱的峰值所对应的波长和n型材料的归一化荧光发射光谱的峰值所对应的波长之差的绝对值小于或等于5nm,可以得知,在n型材料的归一化荧光发射光谱和客体材料的归一化吸收光谱具有较大重叠的情况下,激基复合物的归一化荧光发射光谱与客体材料的归一化吸收光谱也具有较大重叠,因此,能够尽可能使激基复合物和客体材料之间的Forster能量转移充分。
与相关技术中发光层EML的主体材料为单主体材料如n型材料相比,本公开提供的发光器件2中的发光层EML还包括p型材料,该p型材料与n型材料组成双主体材料,这样,一方面可以通过p型材料和n型材料之间的适当搭配,例如调节p型材料的空穴迁移率和n型材料的电子迁移率、对发光器件2中的空穴和电子的复合区域进行调节,另一方面,p型材料和n型材料形成激基复合物,这可以使主体材料和客体材料之间Forster能量转移充分,并且在激基复合物具有较小的单重态激子能量和三重态机子能量之差时,可以使三线态激子通过反系间穿越(reverse intersystem crossing,简称RISC,即三重态激子在环境热辅助下转变为单重态激子的过程)转变为单线态激子,实现三线态激子的利用,提高激子利用率。
此外,相关技术中发光层EML的主体材料为单主体材料如n型材料,发光器件2的电子迁移率高于空穴迁移率,从而使得发光器件2中的激子复合区域偏向于电子阻挡层EBL的一侧,这就使得该区域的主体材料三重态激子在电子阻挡层EBL和发光层EML的界面处发生聚集,容易产生三重态激子湮灭。与此相比,本公开实施例中的发光层EML的主体材料通过增加p型材料,不但可以对激子复合区域的位置进行调节,如调节激子复合区域在发光层EML的中心区域,还可以提高三线态激子的利用效率,因此,也就避免了发生三线态激子湮灭。
在一些实施例中,上述激基复合物的单重态激子的能量与其三重态激子的能量之差ΔEst小于或等于0.3eV。在满足这一条件的情况下,激 基复合物中的三重态激子更容易通过RISC转变成单重态激子,进而将能量传递给客体材料实现发光。这有利于进一步提高三重态激子的利用率。
在一些实施例中,上述n型材料选自蒽类化合物。示例地,上述蒽类化合物的通式为:
Figure PCTCN2021126196-appb-000004
其中,Ar1代表苯基、萘基、联苯基中的任一种,Ar2代表苯基、1-萘基、2-萘基、2-联苯基、3-联苯基或4-联苯基中的任一种;X1和X2各自独立地代表具有6-50个环碳原子的芳基、具有5-50个环原子的芳族杂环基,具有1-50个碳原子的烷基、具有1-50个碳原子的烷氧基、具有6-50个碳原子的芳烷基、具有5-50个环原子的芳氧基、具有5-50个环原子的芳硫基、具有1-50个碳原子的烷氧基羰基、羧基、卤原子、氰基、硝基、羟基中的任一种,n的取值为1、2、3中的任一个,a、b的取值各自独立的为0、1、2、3中的任一个。
本领域技术人员应当理解,Ar1、Ar2或者X分别独立地表示一种基团,n、a、b分别独立地表示对应的一种基团的数目。例如,当n=1时,表示上述蒽类化合物中的下述基团:
Figure PCTCN2021126196-appb-000005
的数目为1个。再例如,当a=0时,表示上述蒽类化合物中的基团X1的数目为0,即该蒽类化合物中不包括基团X1。又例如,当b=3时,表示上述蒽类化合物中的基团X2的数目为3个。
在一些实施例中,上述p型材料选自芳胺类化合物。
示例地,上述芳胺类化合物的通式为:
Figure PCTCN2021126196-appb-000006
其中,L1至L3各自独立地代表直接键合、或者取代或者未取代的碳原子数6至60的亚芳基中的任一种,Ar3和Ar4各自独立地代表氢、氘、卤素基团、氰基、硝基、取代或未取代的甲硅烷基、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的碳原子数6至60的芳基、取代或未取代的碳原子数2至60的杂环基中的任一种,R1至R4各自独立地代表氢、氘、卤素基团、氰基、硝基、取代或未取代的碳原子数1至60的烷基、取代或未取代的碳原子数1至60的卤代烷基、取代或未取代的碳原子数1至60的卤代烷氧基、取代或未取代的碳原子数3至60的环烷基、取代或未取代的碳原子数2至60的烯基、取代或未取代的碳原子数6至60的芳基、取代或未取代的碳原子数2至60的杂环基中的任一种,c、d、e、f的取值各自独立的为0、1、2、3中的任一个。
本领域技术人员应当理解,L1至L3、Ar3、Ar4以及R1至R4分别独立地表示一种基团。c表示上述芳胺类化合物中基团R1的数目,d表示上述芳胺类化合物中基团R2的数目,e表示上述芳胺类化合物中基团R3的数目,f表示上述芳胺类化合物中基团R4的数目。
如上所述,通过调控p型材料的空穴迁移率和n型材料的电子迁移率,例如使二者之间符合一定的比例关系,可以控制发光层EML中激子复合区的位置。p型材料的空穴迁移率和n型材料的电子迁移率的比值可以根据实际需要确定,本公开实施例对此不做限定。
在一些实施例中,上述p型材料的空穴迁移率与n型材料的电子迁移率之比大于或者等于1:100,且小于或者等于100:1。
容易理解的是,空穴迁移率是用于表征空穴这种载流子迁移速率的物理量。空穴迁移率越大,代表空穴这种载流子迁移的越快;空穴迁移率越小,代表空穴这种载流子迁移的越慢。电子迁移率是用于表征电子这种载流子迁移速率的物理量。电子迁移率越大,代表电子这种载流子迁移的越快;电子迁移率越小,代表电子这种载流子迁移的越慢。在其他条件相同的情况下,当p型材料的空穴迁移率和n型材料的电子迁移率之比大于或等于1:100且小于或等于100:1时,发光层EBL中空穴和电子这两种载流子的迁移速率差别较小,因此利于使得激子复合区沿由阳极至阴极方向上位于发光层EML中的大致中心位置处,提高发光层EML的发光效率以及改善发光器件2的发光效率和使用寿命等性能。
p型材料的空穴迁移率与n型材料的电子迁移率之比可以根据实际需要在上述比例范围内确定。例如,p型材料的空穴迁移率与n型材料的电子迁移率之比等于1:100、50:50、或者100:1。
在一些实施例中,上述p型材料的空穴迁移率大于或者等于1x10-8cm 2/(V·s),且小于或者等于1x10-4cm 2/(V·s)。上述n型材料的电子迁移率大于或者等于1x10-8cm 2/(V·s),且小于或者等于1x10-4cm 2/(V·s)。
如上所述,还可以通过调节主体材料中p型材料和n型材料的比例,控制发光层EML中激子复合区的位置。所述比例可以为摩尔比、质量比等。
在一些实施例中,上述p型材料与所述n型材料的摩尔比大于或者等于2:8,且小于或者等于8:2。
在其他条件相同的情况下,上述p型材料和n型材料的摩尔比满足上述的比例关系时,激子复合区可以向发光层EML的中心位置移动,这有利于进一步提高发光器件2的发光效率和使用寿命等性能。
p型材料的空穴迁移率与n型材料的摩尔比可以根据实际需要在上述比例范围内确定。例如,p型材料的空穴迁移率与n型材料的摩尔比为2:8、5:5或者8:2。
在一些实施例中,上述n型材料的最低电子未占有轨道的能量的绝对值大于或者等于2.6eV,且小于或者等于3.0eV,其最高电子占有轨道的能量的绝对值大于或者等于5.5eV,且小于或者等于6.1eV。
在一些实施例中,上述p型材料的最高电子占有轨道的能量的绝对值大于或者等于5.4eV,且小于或者等于5.9eV,其最低电子未占有轨道 的能量的绝对值大于或者等于2.3eV,且小于或者等于2.8eV。
上述n型材料的结构可以有多种,本公开实施例对此不做限定。
为了更清楚地说明本公开实施例提供的发光器件2中的发光层EML,以下根据申请人实施的仿真模拟实验进行详述。
申请人共计进行了6组仿真模拟实验,该6组仿真模拟实验中发光器件2均采用如图4所示的结构,即发光器件2包括阳极、空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、发光层EML、空穴阻挡层HBL、电子传输层ETL和电子注入层EIL和阴极。其中,发光层EML的厚度均为35nm。该6组发光器件2的不同之处仅在于发光层EML的主体材料构成不同。
请参阅下面的表1,为了便于描述,上述6组仿真模拟实验分别称为对照组、Ⅰ组、Ⅱ组、Ⅲ组、Ⅳ组和Ⅴ组。
对照组对应的蓝光发光器中的发光层EML采用单主体材料,结构式如下式(1-1)所示。
Ⅰ组、Ⅱ组、Ⅲ组、Ⅳ组和Ⅴ组对应的发光器件2中的发光层EML均采用双主体材料。
表1
Figure PCTCN2021126196-appb-000007
Ⅰ组、Ⅱ组和Ⅲ组所使用的双主体材料中n型材料的结构式如下式(1-1)所示,p型材料的结构式如下式(2-1)所示。其中,请参阅下表1,Ⅰ组对应的发光层EML中p型材料和n型材料的摩尔比为2:8;Ⅱ组对应的发光层EML中p型材料和n型材料的摩尔比为5:5;Ⅲ组对应的发光层EML中p型材料和n型材料的摩尔比为8:2。
Ⅳ组所使用的双主体材料中n型材料的结构式如下式(1-2)所示,p型材料的结构式如下式(2-2)所示,并且该p型材料和n型材料的摩 尔比为5:5。
Ⅴ组所使用的双主体材料中n型材料的结构式如下式(1-3)所示,p型材料的结构式如下式(2-3)所示,并且该p型材料和n型材料的摩尔比为5:5。
上述6组发光层EML中的客体材料的结构式均如下式(3-1)所示。申请人将该客体材料按照0.3%的掺杂比例分别与上述6组主体材料进行掺杂,最终形成对应的6组发光器件2。此处的掺杂比例可以理解为体积比。例如,采用蒸镀工艺将上述主体材料和客体材料D同时蒸镀到待形成发光器件2的基板上。此时,控制客体材料D的蒸镀速率为主体材料的蒸镀速率0.3%,即得到发光层EML掺杂比例为0.3%的发光器件2。
Figure PCTCN2021126196-appb-000008
Figure PCTCN2021126196-appb-000009
下表2为本实施例说涉及的n型材料和p型材料的相关物性表。其中,∣HOMO∣表示最高电子占有轨道的能量的绝对值,∣LUMO∣表示最低电子未占有轨道的能量的绝对值,μe表示电子迁移率,μh表示空穴迁移率。
表2
Figure PCTCN2021126196-appb-000010
在采用上述主体材料以及客体材料BD制得对应的发光器件2的基础上,申请人继续进行了后续的效果测试。
图5为申请人测试得到的式(1-1)所示的n型材料、式(2-1)所示的p型材料、式(3-1)所示的客体材料、Ⅰ~Ⅲ组对应的主体材料的归一化荧光光谱图。由该图可以看出:
第一,Ⅰ~Ⅲ组对应的主体材料的归一化荧光发射光谱、与(1-1)所示的n型材料的归一化荧光发射光谱能够很好地重叠,并且Ⅰ~Ⅲ组中的任一组对应的主体材料的归一化荧光发射光谱的峰值所对应的波长、与(1-1)所示的n型材料的归一化荧光发射光谱的峰值所对应的波长之差的绝对值小于5nm。
第二,Ⅰ~Ⅲ组对应的主体材料的归一化荧光发射光谱与客体材料对应的归一化荧光吸收光谱也具有较好的重叠程度。
上述两点说明Ⅰ~Ⅲ组对应的双主体材料在激发条件下形成的激基复 合物能够如该双主体材料中的n型材料一样,将自身中的激子的能量充分地传递给客体材料,以实现发光。
图6为申请人测试得到的式(1-2)所示的n型材料、式(2-2)所示的p型材料、式(3-1)所示的客体材料、Ⅳ组对应的主体材料的归一化荧光光谱图。图7为申请人测试得到的式(1-3)所示的n型材料、式(2-3)所示的p型材料、式(3-1)所示的客体材料、Ⅴ组对应的主体材料的归一化荧光光谱图。容易理解的是,根据图6和图7可知,上述Ⅳ组和Ⅴ组对应的双主体材料在激发条件下形成的激基复合物也能够将自身中的激子的能量充分地传递给客体材料,以实现发光。具体分析过程与图5相似,此处不再赘述。
图8为对照组、Ⅰ~Ⅲ组对应的发光器件2的荧光光谱强度随距离的分布曲线图。容易理解的是,曲线中荧光光谱强度越大的位置,表示该处复合的激子的数目越多。显然,由图8可以看出:
第一,对照组对应的曲线中光谱强度沿横坐标由左向右的方向逐渐减低,这表明激子大多在发光层EML与电子阻挡层EBL的界面处及靠近该界面的位置复合。因此,对照组对应的发光器件2的发光效率和使用寿命等性能比较低。
第二,相较于对照组的曲线,Ⅰ~Ⅲ组中任一组的曲线的峰值均位于距离发光层EML和电子阻挡层EBL的界面18nm的位置附近,也即发光层EML的中心位置附近,并且曲线的走势也较为平缓。这表明Ⅰ~Ⅲ组对应的发光器件2中的激子大多在发光层EML的中心位置复合,并且激子的复合区域分布较对照组对应的发光器件2中激子的复合区域分布更加均匀。因此,Ⅰ~Ⅲ组对应的发光器件2的发光效率和使用寿命等性能较优良。
第三,在Ⅰ~Ⅲ组中,Ⅱ组对应的发光器件2的激子大多在发光层EML的中心位置复合,并且激子的复合区域分布最为均匀。这表明,请同时参阅表1和图8,第一双主体中的两种主体材料,即式(2-1)所示的p型材料和式(1-1)所示的n型材料的摩尔比的变化会引起激子复合区域的位置变化,并且,在式(2-1)所示的p型材料和式(1-1)所示的n型材料的摩尔比为5:5时,可以使激子复合区域更接近发光层EML的中心位置且分布更加均匀,Ⅲ组对应的方案更利于发光器件2的发光效率和延长使用寿命等性能的提高。
图9为对照组、Ⅱ组、Ⅳ组和Ⅴ组对应的发光器件2电致发光光谱强 度随距离的分布曲线图。由图9可以看出:
第一,Ⅱ组和Ⅳ组对应的曲线的峰值均位于对照组的曲线的峰值的靠近发光层EML的中心位置的一侧。这表明Ⅱ组和Ⅳ组对应的发光器件2中的激子大多在发光层EML的中心位置附近复合。Ⅴ组对应的曲线的峰值虽然与对照组对应的曲线的峰值一样位于电子阻挡层EBL与发光层EML的界面处,但是Ⅴ组对应的曲线的峰值低于对照组的曲线的峰值,并且Ⅴ组对应的曲线总体上的走势更加平缓。这表明,相对于对照组的激子复合区域,Ⅴ组对应的激子复合区域更加靠近发光层EML的中心位置。可见,Ⅱ组对应的第一双主体材料、Ⅳ组对应的第二双主体材料以及Ⅴ组对应的第三双主体材料均可以使激子复合区靠近发光层EML的中心位置,从而有利于提高发光器件2的发光效率和使用寿命等性能。
第二,在Ⅱ组、Ⅳ组和Ⅴ组中,请同时参阅表1-2和图9,Ⅱ组(p型材料的空穴迁移率与n型材料的电子迁移率之比为10:1)对应曲线的峰值最接近发光层EML的中心位置,Ⅳ组(p型材料的空穴迁移率与n型材料的电子迁移率之比为100:1)对应曲线的峰值相较于Ⅱ组对应曲线的峰值更靠近空穴阻挡层HBL,Ⅴ组(p型材料的空穴迁移率与n型材料的电子迁移率之比为1:100)对应曲线的峰值相较于Ⅱ组对应曲线的峰值更靠近电子阻挡层EBL。
可见,在其他条件相同的情况下,随着双主体材料中p型材料的空穴迁移率与n型材料的电子迁移率之比越大,激子的复合区域越容易朝向发光层EML的靠近空穴阻挡层HBL一侧移动;反之,在其他条件相同的情况下,随着双主体材料中p型材料的空穴迁移率与n型材料的电子迁移率之比越小,激子的复合区域越容易朝向发光层EML的靠近电子阻挡层EBL一侧移动。容易理解的是,在其他条件相同的情况下,通常双主体材料中p型材料的空穴迁移率与n型材料的电子迁移率的越接近相等,越利于发光层EML中激子复合区域靠近发光层EML的中心位置,此时,发光器件2的发光效率较佳,且其使用寿命容易更长。
因此,在其他条件相同的情况下,可以通过调节双主体材料中p型材料的空穴迁移率与n型材料的电子迁移率的相对比例,根据实际需要调节发光层EML中激子复合区域的位置。
下表3为申请人在驱动发光器件2发出CIEx=0.142、CIEy=0.045对应的颜色的光线时,测得的对照组、以及Ⅰ~Ⅴ组对应的发光器件2的电压-电流-亮度(IVL)数据。其中,CIEx表示发光器件2所发出的光线的 色坐标的横坐标值,CIEy表示发光器件2所发出的光线的色坐标的纵坐标值,U表示流过发光器件2的电流密度15mA/cm 2时其阳极和阴极之间的电压值,Cd表示亮度,A表示流过电流,Cd/A/CIEy整体表示色度效率,LT95表示发光器件2在连续被点亮的情况下亮度衰减到初始亮度的95%时所需要耗费的时长。
表3
Figure PCTCN2021126196-appb-000011
本领域技术人员应当理解,(1)在发光器件2的CIEx、CIEy固定的情况下,发光器件2的发光颜色即确定;(2)通常,在包括发红光的发光器件2、发绿光的发光器件2、发光器件2的同一个像素中,发红光的发光器件2和发绿光的发光器件2的U值比较接近,因此可以由相同的电压端向二者提供驱动电压,而发光器件2的U值通常比发红光的发光器件2的U值、发绿光的发光器件2的U值要大一些,因此需要由另外的电压端向其提供驱动电压;(3)Cd/A/CIEy的值越大,则代表对应的发光器件2的发光效率越高;(4)LT95的值越大,则代表发光器件2的使用寿命越长。
根据表3中的数据可知:
第一,相较于对照组的U值,Ⅰ~Ⅴ组的U值均更小一些,这表明本公开实施例中采用双主体材料的发光器件2更容易具备与发红光的发光器件2、发绿光的发光器件2相同的驱动电压,因此,当采用本公开实施例提供的发光器件2作为发蓝光的发光器件2时,可以利于使用同一个电压端为像素中的发红光的发光器件2、发绿光的发光器件2、发蓝光的发光器件2提供电压,从而减少发光装置所需的电压端的数量,降低功耗。
第二,相较于对照组的Cd/A/CIEy值,Ⅰ~Ⅴ组的Cd/A/CIEy值更大 一些,这表明本公开实施例中采用双主体材料的发光器件2具有比相关技术中的发光器件2更高的发光效率。
第三,相较于对照组的LT95值,Ⅰ~Ⅴ组的LT95值更大,这表明本公开实施例中采用双主体材料的发光器件2具有比相关技术中的发光器件2更长的使用寿命。
第四,在Ⅰ~Ⅴ组中,综合U值、Cd/A/CIEy值以及LT95值来看,Ⅱ组对应的发光器件2的性能相对更加优良,例如其发光驱动电压相对更接近发红光的发光器件2、发绿光的发光器件2的驱动电压、其发光效率更高、以及其使用寿命也较长。
以上实施例仅用以说明本公开的技术方案,而非对其限制。尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (15)

  1. 一种发光器件,包括发光层,所述发光层包括主体材料,所述主体材料包括:
    p型材料和n型材料,所述p型材料和所述n型材料形成激基复合物,且所述激基复合物的归一化荧光发射光谱的峰值所对应的波长和所述n型材料的归一化荧光发射光谱的峰值所对应的波长之差的绝对值小于或者等于5nm。
  2. 根据权利要求1所述的发光器件,其中,
    所述激基复合物的单重态激子的能量与其三重态激子的能量之差小于或者等于0.3eV。
  3. 根据权利要求1或2所述的发光器件,其中,
    所述p型材料的空穴迁移率与所述n型材料的电子迁移率之比大于或者等于1:100,且小于或者等于100:1。
  4. 根据权利要求3所述的发光器件,其中,
    所述p型材料的空穴迁移率大于或者等于1x10 -8cm 2/(V·s),且小于或者等于1x10 -4cm 2/(V·s);
    所述n型材料的电子迁移率大于或者等于1x10 -8cm 2/(V·s),且小于或者等于1x10 -4cm 2/(V·s)。
  5. 根据权利要求1~4任一项所述的发光器件,其中,
    所述n型材料的归一化荧光发射光谱的峰值对应的波长大于或者等于430nm,且小于或者等于470nm。
  6. 根据权利要求1~5任一项所述的发光器件,其中,
    所述p型材料的归一化荧光发射光谱的峰值对应的波长大于或者等于380nm,且小于或者等于430nm。
  7. 根据权利要求1~6任一项所述的发光器件,其中,
    所述n型材料的最低电子未占有轨道的能量的绝对值大于或者等于2.6eV,且小于或者等于3.0eV;
    所述n型材料的最高电子占有轨道的能量的绝对值大于或者等于5.5eV,且小于或者等于6.1eV。
  8. 根据权利要求1~7任一项所述的发光器件,其中,
    所述p型材料的最高电子占有轨道的能量的绝对值大于或者等于5.4eV,且小于或者等于5.9eV;
    所述p型材料的最低电子未占有轨道的能量的绝对值大于或者等于2.3eV,且小于或者等于2.8eV。
  9. 根据权利要求1~8任一项所述的发光器件,其中,
    所述p型材料与所述n型材料的摩尔比大于或者等于2:8,且小于或者等于8:2。
  10. 根据权利要求1~9任一项所述的发光器件,其中,
    所述n型材料选自蒽类化合物。
  11. 根据权利要求10所述的发光器件,其中,
    所述蒽类化合物的通式为:
    Figure PCTCN2021126196-appb-100001
    其中,Ar1代表苯基、萘基、联苯基中的任一种,Ar2代表苯基、1-萘基、2-萘基、2-联苯基、3-联苯基或4-联苯基中的任一种;X1和X2各自独立地代表具有6-50个环碳原子的芳基、具有5-50个环原子的芳族杂环基,具有1-50个碳原子的烷基、具有1-50个碳原子的烷氧基、具有6-50个碳原子的芳烷基、具有5-50个环原子的芳氧基、具有5-50个环原子的芳硫基、具有1-50个碳原子的烷氧基羰基、羧基、卤原子、氰基、硝基、羟基中的任一种,n的取值为1、2、3中的任一个,a、b的取值各自独立的为0、1、2、3中的任一个。
  12. 根据权利要求1~11任一项所述的发光器件,其中,
    所述p型材料选自芳胺类化合物。
  13. 根据权利要求12所述的发光器件,其中,
    所述芳胺类化合物的通式为:
    Figure PCTCN2021126196-appb-100002
    其中,L1至L3各自独立地代表直接键合、或者取代或者未取代的碳原子数6至60的亚芳基中的任一种,Ar3和Ar4各自独立地代表氢、氘、卤素基团、氰基、硝基、取代或未取代的甲硅烷基、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的碳原子数6至60的芳基、取代或未取代的碳原子数2至60的杂环基中的任一种,R1至R4各自独立地代表氢、氘、卤素基团、氰基、硝基、取代或未取代的碳原子数1至60的烷基、取代或未取代的碳原子数1至60的卤代烷基、取代或未取代的碳原子数1至60的卤代烷氧基、取代或未取代的碳原子数3至60的环烷基、取代或未取代的碳原子数2至60的烯基、取代或未取代的碳原子数6至60的芳基、取代或未取代的碳原子数2至60的杂环基中的任一种,c、d、e、f的取值各自独立的为0、1、2、3中的任一个。
  14. 一种发光基板,包括衬底基板、以及设置于所述衬底基板上的多个发光器件,其中,
    所述多个发光器件中的至少一个选自如权利要求1-13任一项所述的发光器件。
  15. 一种发光装置,包括如权利要求14所述的发光基板。
PCT/CN2021/126196 2021-03-25 2021-10-25 发光器件、发光基板及发光装置 WO2022199010A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/927,954 US20230209855A1 (en) 2021-03-25 2021-10-25 Light-emitting device, light-emitting substrate and light-emitting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110322403.8A CN115132951A (zh) 2021-03-25 2021-03-25 发光器件、发光基板及发光装置
CN202110322403.8 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022199010A1 true WO2022199010A1 (zh) 2022-09-29

Family

ID=83374665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126196 WO2022199010A1 (zh) 2021-03-25 2021-10-25 发光器件、发光基板及发光装置

Country Status (3)

Country Link
US (1) US20230209855A1 (zh)
CN (1) CN115132951A (zh)
WO (1) WO2022199010A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160164020A1 (en) * 2014-12-04 2016-06-09 Seoul National University R&Db Foundation Organic light-emitting device
CN107710441A (zh) * 2015-06-17 2018-02-16 株式会社半导体能源研究所 铱配合物、发光元件、显示装置、电子设备以及照明装置
CN108232025A (zh) * 2018-01-31 2018-06-29 昆山国显光电有限公司 一种有机电致发光器件
CN109994626A (zh) * 2017-12-29 2019-07-09 江苏三月光电科技有限公司 有机发光复合材料以及包含其的有机发光器件
CN111916574A (zh) * 2020-08-21 2020-11-10 京东方科技集团股份有限公司 蓝光电致发光器件、显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160164020A1 (en) * 2014-12-04 2016-06-09 Seoul National University R&Db Foundation Organic light-emitting device
CN107710441A (zh) * 2015-06-17 2018-02-16 株式会社半导体能源研究所 铱配合物、发光元件、显示装置、电子设备以及照明装置
CN109994626A (zh) * 2017-12-29 2019-07-09 江苏三月光电科技有限公司 有机发光复合材料以及包含其的有机发光器件
CN108232025A (zh) * 2018-01-31 2018-06-29 昆山国显光电有限公司 一种有机电致发光器件
CN111916574A (zh) * 2020-08-21 2020-11-10 京东方科技集团股份有限公司 蓝光电致发光器件、显示面板及显示装置

Also Published As

Publication number Publication date
US20230209855A1 (en) 2023-06-29
CN115132951A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
JP6963821B2 (ja) 有機発光素子
JP5698135B2 (ja) 白色燐光有機発光装置
US8772767B2 (en) Organic light-emitting diode luminaires
TWI530493B (zh) 苯并咪唑化合物及具有該化合物之有機光電裝置
JP2019503041A (ja) 有機エレクトロルミネセンス装置
JP2006528421A (ja) 有機エレクトロルミネッセンス素子
JP2018507538A (ja) Rgb画素領域を有する有機エレクトロルミネッセンス装置
KR20080086825A (ko) 발광장치 및 전자기기
JP5194699B2 (ja) 有機エレクトロルミネッセンス装置及び電子機器
US10783823B2 (en) OLED device with controllable brightness
WO2022156313A1 (zh) 蓝色发光层形成用材料、发光器件、发光基板和发光装置
US11910630B2 (en) White light organic light-emitting diode (WOLED) devices and preparation methods thereof, WOLED display apparatuses
WO2022078094A1 (zh) 发光器件、显示基板
KR102237159B1 (ko) 유기화합물 및 이를 이용한 유기발광다이오드소자
JP2007036127A (ja) 有機エレクトロルミネッセンス素子
WO2022199010A1 (zh) 发光器件、发光基板及发光装置
CN113725377B (zh) 发光器件、发光基板及发光装置
JP7408125B2 (ja) 電荷輸送材料および有機発光素子
KR102489360B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
TW201117649A (en) Organic light-emitting diode luminaires
WO2022141621A1 (zh) 有机发光器件、发光基板和发光装置
KR101818945B1 (ko) 용액 공정이 가능한 저분자 발광 화합물, 발광 화합물을 포함하는 발광다이오드 및 표시장치
CN114975802B (zh) 发光器件、发光基板和发光装置
Krotkus et al. 20‐1: Invited Paper: Towards Deep‐Blue Materials with Efficient Triplet Harvesting
WO2023206382A1 (zh) 显示装置及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/01/2024)