WO2023201725A1 - 一种发光层、发光器件和显示装置 - Google Patents

一种发光层、发光器件和显示装置 Download PDF

Info

Publication number
WO2023201725A1
WO2023201725A1 PCT/CN2022/088572 CN2022088572W WO2023201725A1 WO 2023201725 A1 WO2023201725 A1 WO 2023201725A1 CN 2022088572 W CN2022088572 W CN 2022088572W WO 2023201725 A1 WO2023201725 A1 WO 2023201725A1
Authority
WO
WIPO (PCT)
Prior art keywords
membered ring
light
host material
emitting layer
nitrogen
Prior art date
Application number
PCT/CN2022/088572
Other languages
English (en)
French (fr)
Inventor
刘杨
邱丽霞
孙玉倩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/088572 priority Critical patent/WO2023201725A1/zh
Priority to CN202280000845.3A priority patent/CN117296467A/zh
Publication of WO2023201725A1 publication Critical patent/WO2023201725A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light-emitting layer, a light-emitting device and a display device.
  • red light devices are phosphorescent devices.
  • the red light devices include guest materials and premixed (Premix) dual-host materials.
  • red light devices are prone to triplet exciton annihilation (TTA), resulting in serious efficiency roll-off at high current densities of the device; in addition, red light devices are also prone to lower turn-on voltage, leading to problems such as inter-pixel crosstalk. .
  • TTA triplet exciton annihilation
  • embodiments of the present disclosure provide a light emitting layer including:
  • Host material including hole-type host material and electron-type host material; under the action of external energy, the host material is configured to form an exciplex;
  • the absolute value of the difference between the energy value of the highest molecular occupied orbital HOMO of the hole-type host material and the energy value of the lowest molecular unoccupied orbital LUMO of the electron-type host material satisfies: 2.4eV ⁇
  • the energy level difference between the singlet energy level and the triplet energy level of the exciplex satisfies: 0eV ⁇ Est ⁇ 0.3eV.
  • the host material includes at least one deuterium atom.
  • the hole-type host material includes an indolecarbazole derivative
  • the indolecarbazole derivative includes a first six-membered ring, a second six-membered ring, a third six-membered ring and two A nitrogen-containing five-membered ring
  • the first six-membered ring is fused to the second six-membered ring through one of the nitrogen-containing five-membered rings
  • the second six-membered ring is also condensed through another of the nitrogen-containing five-membered rings.
  • the one-membered ring is fused with the third six-membered ring;
  • the electronic host material includes a triazine derivative, and the triazine derivative includes a triazine group and a fourth six-membered ring, a fifth six-membered ring, and a third six-membered ring respectively bonded to the triazine group. Sixty-six-membered ring.
  • the second six-membered ring and the fifth six-membered ring include benzene rings
  • the first six-membered ring, the third six-membered ring, the fourth six-membered ring and the sixth six-membered ring each independently include a benzene ring, a benzene ring with a side chain, and an unsubstituted group. At least one of a nitrogen-containing heterocycle and a nitrogen-containing heterocycle having the side chain;
  • the indole carbazole derivative also includes a first aryl group and a second aryl group, and the first aryl group and the second aryl group are respectively connected with two of the nitrogen-containing five-membered rings. nitrogen atoms bonded;
  • At least four carbon-hydrogen bonds in the first aryl group and the second aryl group are replaced by carbon-deuterium bonds.
  • the second six-membered ring and the fifth six-membered ring include benzene rings
  • the first six-membered ring, the third six-membered ring, the fourth six-membered ring and the sixth six-membered ring each independently include a benzene ring, a benzene ring with a side chain, and an unsubstituted group. At least one of a nitrogen-containing heterocycle and a nitrogen-containing heterocycle having the side chain;
  • At least one carbon-hydrogen bond in the side chain is replaced by a carbon-deuterium bond.
  • the indole carbazole derivative also includes a first aryl group and a second aryl group, and the first aryl group and the second aryl group are respectively connected with two of the nitrogen-containing five-membered rings. nitrogen atoms bonded;
  • At least four carbon-hydrogen bonds in the first aryl group, the second aryl group and the side chain are replaced by carbon-deuterium bonds.
  • R1 and R2 are each independently a single bond, phenyl, biphenyl, naphthyl, carbazole, dibenzofuran, dibenzothiophene, dimethylfluorene, diphenylfluorene, or C1-C10 alkyl group any of;
  • n and n are each independently any one of 0, 1, and 2.
  • the and stated The energy values of the HOMO of the highest molecular occupied orbitals are less than the The energy value of the HOMO of the highest molecular occupied orbital in .
  • the energy value of the highest molecular occupied orbital HOMO of the structure with the side chain is greater than that of the structure without the side chain.
  • fusion between adjacent X groups in X1-X8 is:
  • * is the fusion position
  • X19 is any one of carbon-R4R5, oxygen, sulfur, and nitrogen-R6;
  • X24 and X29 are each independently any one of oxygen, sulfur, and nitrogen-R7;
  • X20-X23 are each independently any one of carbon-R8 and nitrogen;
  • R4, R5, R6 and R8 are each independently a single bond, phenyl, biphenyl, naphthyl, carbazole, dibenzofuran, dibenzothiophene, dimethylfluorene, diphenylfluorene, C1-C10 Any of the alkyl groups;
  • R7 is phenyl
  • X9-X18 are each independently any one of carbon-deuterium, carbon-R7, and nitrogen; wherein R7 is phenyl.
  • the structure with the side chain has a lower unoccupied orbital LUMO energy than the structure without the side chain.
  • the value is small.
  • fusion between adjacent X groups in X9-X18 is:
  • * is the fusion position
  • X24 and X29 are each independently any one of oxygen, sulfur, and nitrogen-R7;
  • X25-X28 are each independently any one of carbon-R8 and nitrogen;
  • R8 is any one of a single bond, phenyl, biphenyl, naphthyl, carbazole, dibenzofuran, dibenzothiophene, dimethylfluorene, diphenylfluorene, or C1-C10 alkyl group;
  • R7 is phenyl
  • the adjacent X groups in X19-X23 and the adjacent X groups in X24-X28 are respectively fused to:
  • the chemical structural formula of the indolecarbazole derivative includes:
  • the chemical structural formula of the triazine derivative includes:
  • embodiments of the present disclosure provide a light-emitting device including the above-mentioned light-emitting layer.
  • the light-emitting device further includes an anode and a cathode, and the light-emitting layer is disposed between the anode and the cathode.
  • an embodiment of the present disclosure provides a display device including the above-mentioned light-emitting device.
  • Figure 1 is a schematic diagram of a light-emitting layer of a related technology provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the variation of exciton intensity with the distance between the interface of the light-emitting layer and the electron blocking layer in a related technology provided by an embodiment of the present disclosure
  • Figure 3 is a luminescence principle diagram of a luminescent layer provided by an embodiment of the present disclosure.
  • Figure 4 is a general structural formula of an indolecarbazole derivative provided by an embodiment of the present disclosure
  • Figure 5 is a general structural formula of a triazine derivative provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of a light-emitting device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • words such as “first”, “second”, “third”, “fourth”, “fifth” and “sixth” are used to refer to the same items or items with substantially the same functions and effects. Distinguishing similar items is only for the purpose of clearly describing the technical solutions of the embodiments of the present disclosure, and cannot be understood as indicating or implying the relative importance or implicitly indicating the quantity of the indicated technical features.
  • Embodiments of the present disclosure provide a light-emitting layer, including: a host material, including a hole-type host material and an electron-type host material; under the action of external energy, the host material is configured to form an exciplex; a guest material , doped in the host material.
  • the absolute value of the difference between the energy value of the highest molecular occupied orbital HOMO of the hole-type host material and the energy value of the lowest molecular unoccupied orbital LUMO of the electron-type host material satisfies: 2.4eV ⁇
  • the above-mentioned hole-type host material is an organic semiconductor material that can achieve directional and orderly controllable migration of carriers under the action of an electric field when holes are injected, thereby achieving charge transfer.
  • the hole-type host material may include indolecarbazole derivatives.
  • the above-mentioned electronic host material is an organic semiconductor material that can achieve directional and orderly controllable migration of carriers under the action of an electric field when electrons are injected, thereby achieving charge transmission.
  • the electronic host material may include triazine derivatives.
  • the molar ratio range of the above-mentioned hole-type host material and electron-type host material is 2:8-5:5, so When the light-emitting layer is applied to a device, the turn-on voltage of the device can be lowered, thereby effectively improving the efficiency of the device and improving power consumption.
  • the molar ratio of the hole-type host material to the electron-type host material can be 2:8, 4:6, or 5:5, etc.
  • the doping ratio range of the above-mentioned guest material in the host material can include 1-10%.
  • the doping ratio can be 2%, 4%, 6%, 8% or 10% etc.
  • the above-mentioned light-emitting layer may be any one of a red light-emitting layer, a green light-emitting layer, or a blue light-emitting layer.
  • the light-emitting layer may be used to emit light of a single color.
  • the light-emitting device may include three kinds of light-emitting layers: a red light-emitting layer, a green light-emitting layer, or a blue light-emitting layer. Of course, it may also include only one kind of light-emitting layer, for example, only include multiple red light-emitting layers, or only include multiple green light-emitting layers. layer, or simply include multiple blue-emitting layers. The details can be determined according to actual requirements.
  • the red light-emitting layer is used as an example for explanation. Other color light-emitting layers may refer to the red light-emitting layer, which will not be described in detail here.
  • the red light-emitting layer includes a hole-type host material, an electron-type host material and a red-light-emitting guest material.
  • the thickness of the red emitting layer is not specifically limited here.
  • the thickness of the red emitting layer may range from 20 to 70 nm.
  • the thickness of the red emitting layer may be 20 nm, 40 nm, 50 nm or 70 nm.
  • HOMO Highest Occupied Molecular Orbital
  • the above-mentioned lowest unoccupied molecular orbital (Lowest Unoccupied Molecular Orbital, LUMO) refers to the molecular orbital with the lowest energy among the molecular orbitals not occupied by electrons.
  • the energy value of the lowest unoccupied molecular orbital is also called the LUMO value.
  • the above-mentioned external energy may include light, electricity, etc.
  • Today's mass-produced OLED (Organic Light Emitting Diode, organic light-emitting diode) red light devices usually include host materials (RH) and guest materials (RD).
  • the red light host material is a premixed material, including hole-type host material (RH-P type) and electron-type host material (RH-N type).
  • Hole-type host materials and electron-type host materials can form exciplexes under the action of external energy such as light and electricity. Energy is transferred to the guest material through the exciplex, so that the guest material radiates and transitions to emit light.
  • Figure 1 is a luminescence principle diagram of a red light device in the related art.
  • RH-P type materials and RH-N type materials form an exciplex. After being excited, holes and electrons will form excitons on the exciplex.
  • the energy levels of the excitons here include the energy level S1 of the singlet exciton and the energy level T1 of the triplet exciton shown in Figure 1.
  • the energy level S1 of the singlet exciton is transferred from the exciplex to the guest material with Foster energy, and the energy level T1 of the triplet exciton is transferred from the exciplex to the guest material with Dexter energy, and then passes through The guest material emits light through radiative transition, thereby realizing the light-emitting device.
  • the exciton formed after the red light device in the related art is excited is transferred from the exciplex to the guest material mainly with Dexter energy; and, as shown in Figure 2, the exciton recombination region is concentrated in the electron blocking layer (R prime layer) side, causing the triplet exciton concentration to decrease faster, easily causing triplet exciton annihilation (TTA), resulting in a serious roll-off of the efficiency of the red light device under high current density, which in turn makes the red light device The luminous efficiency is significantly reduced.
  • Figure 2 shows a schematic diagram of how the exciton intensity in the luminescent layer changes with the distance between the interface between the luminescent layer and the R prime layer, where the abscissa represents the distance between the luminescent layer and the interface between the R prime layer and the luminescent layer,
  • the unit is nm, here the interface between the R prime layer and the luminescent layer is used as the benchmark, that is, the origin of the coordinates is the interface between the R prime layer and the luminescent layer; the ordinate represents the exciton intensity.
  • the red light device has a low turn-on voltage and is prone to problems such as crosstalk between pixels.
  • Embodiments of the present disclosure provide a light-emitting layer, including: a host material, including a hole-type host material and an electron-type host material; under the action of external energy, the host material is configured to form an exciplex; a guest material, Doped in the host material, the absolute value of the difference between the energy value of the highest molecular occupied orbital HOMO of the hole-type host material and the energy value of the lowest molecular unoccupied orbital LUMO of the electron-type host material satisfies: 2.4eV ⁇
  • the excitation formed by the hole-type host material and the electron-type host material under the action of external energy can be made.
  • the band gap of the base complex is large, and it effectively reduces the transition of triplet excitons on the exciplex to the guest material, reduces Dexter energy transfer, strengthens Forster energy transfer, further reduces the density of triplet excitons, and reduces TTA effect.
  • the exciplex formed by the hole-type host material and the electron-type host material in the light-emitting layer under the action of external energy has a larger band gap and can also increase the turn-on voltage, thereby effectively improving the crosstalk between pixels.
  • the energy level difference between the singlet energy level and the triplet energy level of the exciplex satisfies: 0eV ⁇ Est ⁇ 0.3eV. Therefore, by limiting the energy level matching of the hole-type host material and the electron-type host material in the light-emitting layer, the exciplex formed by the hole-type host material and the electron-type host material under the action of external energy can have a smaller ⁇ Est , and has a large band gap, and effectively reduces the transition of triplet excitons on the exciplex to the guest material, reduces Dexter energy transfer, strengthens Forster energy transfer, further reduces the density of triplet excitons, and reduces the TTA effect.
  • ⁇ Est is not limited here.
  • the specific value of ⁇ Est can be 0eV, 0.1eV, 0.2eV or 0.3eV, etc. Further, 0eV ⁇ Est ⁇ 0.2eV.
  • RH-P1 chemical formula:
  • RH-P2 chemical formula is
  • RH-P3 chemical formula is
  • RH-P4 chemical formula is
  • RH-N1 chemical formula is
  • RH-N2 chemical formula is
  • RH-N3 chemical formula is
  • RH-N4 chemical formula is
  • the mixture of RH-P1 and RH-N1 the mixture of RH-P2 and RH-N2
  • RH-N3 chemical formula is
  • RH-N4 chemical formula is
  • RH-P1 to RH-P3 represent three different hole-type host materials provided by the embodiments of the present disclosure
  • RH-P4 represents the hole-type host material provided by the comparative example
  • RH-N1 to RH-N3 represents three different electronic host materials provided by the embodiments of the present disclosure
  • RH-N4 represents the electronic host material provided by the comparative example
  • T1 represents the triplet excited state among RH-P1 to RH-P4 and RH-N1 to RH-N4.
  • the energy level of the electron ⁇ EST represents the energy level difference between the singlet and triplet states in RH-P1 to RH-P4 and RH-N1 to RH-N4.
  • the HOMO values of RH-N1 to RH-N3 are all smaller than the HOMO value of RH-N4, and the LUMO values of RH-N1 to RH-N3 are all smaller than the LUMO value of RH-N4.
  • the ⁇ EST index of RH-N1 to RH-N4 are all greater than 0.3eV.
  • the T1 of the mixed host material of the hole-type host material and the electron-type host material provided by the embodiment of the present disclosure is greater than that of the mixture of the hole-type host material and the electron-type host material provided by the comparative example.
  • the ⁇ EST of the mixed host material of the hole-type host material and the electron-type host material provided by the embodiments of the present disclosure, and the mixed host material of the hole-type host material and the electron-type host material provided by the comparative example are both higher than Small, but the ⁇ EST of the mixed host material of the hole-type host material and the electron-type host material provided by the embodiment of the present disclosure is smaller than the ⁇ EST of the mixed host material of the hole-type host material and the electron-type host material provided by the comparative example. , and the ⁇ EST of the mixed host material of the hole-type host material and the electron-type host material provided by the embodiment of the present disclosure is less than 0.3 eV.
  • the host material includes at least one deuterium atom.
  • the above-mentioned host material including at least one deuterium atom means that the above-mentioned host material only includes one deuterium atom; or the above-mentioned host material includes two or more deuterium atoms.
  • the position of the deuterium atom is not specifically limited here.
  • the hole-type host material may include one deuterium atom; or the electron-type host material may include one deuterium atom.
  • both the hole-type host material and the electron-type host material may include deuterium atoms; or, only the hole-type host material may include deuterium atoms; or, only the electron-type host material may include Type host material includes deuterium atoms.
  • RH-P4 nor RH-N4 provided in the above Table 1 includes deuterium atoms, but RH-P1 to RH-P4 and RH-N1 to RH-N4 provided in the embodiments of the present disclosure all include deuterium atoms, so this
  • the host material provided by the disclosed embodiments includes at least one deuterium atom. Deuteration can delay molecular degradation and enable the exciplex formed by the hole-type host material and the electron-type host material under the action of external energy to have a larger band gap.
  • the hole-type host material includes indolecarbazole derivatives.
  • the indolecarbazole derivatives include a first six-membered ring 51, a second six-membered ring 52, a third six-membered ring 52, and a third six-membered ring 52. Ring 53 and two nitrogen-containing five-membered rings 54.
  • the first six-membered ring 51 is fused with the second six-membered ring 52 through a nitrogen-containing five-membered ring 54
  • the second six-membered ring 52 is also fused through another nitrogen-containing five-membered ring 54.
  • Ring 54 is fused with the third six-membered ring 53.
  • the electronic host material includes triazine derivatives.
  • the triazine derivatives include a triazine group and a fourth six-membered ring 61 and a fifth six-membered ring 62 respectively bonded to the triazine group. and the sixth six-membered ring 63.
  • first six-membered ring the second six-membered ring and the third six-membered ring are not limited here.
  • first six-membered ring, second six-membered ring and third six-membered ring can be Including six-membered aromatic rings, the six-membered aromatic rings at this time may include benzene rings with substituted groups and benzene rings without substituted groups; or, the above-mentioned first six-membered ring, second six-membered ring and third
  • the six-membered ring may include a six-membered heterocyclic ring, and the heteroatoms of the six-membered heterocyclic ring may include nitrogen atoms and the like.
  • first six-membered ring, the second six-membered ring and the third six-membered ring here can all be the same; or they can all be different; or they can be partially the same, whichever is more specific depends on the actual application.
  • the specific number of nitrogen atoms in the above-mentioned nitrogen-containing five-membered ring is not limited here.
  • the above-mentioned nitrogen-containing five-membered ring may include one nitrogen atom as shown in Figure 4; or, the nitrogen-containing five-membered ring may include two above nitrogen atoms.
  • the fourth six-membered ring, the fifth six-membered ring and the sixth six-membered ring are not limited here.
  • the fourth six-membered ring, the fifth six-membered ring and the sixth six-membered ring can be Including a six-membered aromatic ring, the six-membered aromatic ring in this case may include a benzene ring with a substituted group and a benzene ring without a substituted group; or the above-mentioned fourth six-membered ring, fifth six-membered ring and sixth
  • the six-membered ring may include a six-membered heterocyclic ring, in which the heteroatoms of the six-membered heterocyclic ring include nitrogen atoms and the like.
  • the specific types of the fourth six-membered ring, the fifth six-membered ring and the sixth six-membered ring here can all be the same; or they can all be different; or they can be partially the same, whichever is more specific depends on the actual application.
  • the second six-membered ring 52 and the fifth six-membered ring 62 include benzene rings.
  • the first six-membered ring 51, the third six-membered ring 53, the fourth six-membered ring 61 and the sixth six-membered ring 63 each independently include a benzene ring, a benzene ring with a side chain, and no substituent. At least one of a group of nitrogen-containing heterocycles and a nitrogen-containing heterocycle with side chains.
  • At least three carbon-hydrogen bonds other than side chains in the first six-membered ring, the second six-membered ring, the third six-membered ring, the fourth six-membered ring, the fifth six-membered ring and the sixth six-membered ring Replaced by carbon-deuterium bonds.
  • the above-mentioned side chain may include single bond, phenyl, biphenyl, naphthyl, carbazole, dibenzofuran, dibenzothiophene, dimethylfluorene , diphenylfluorene, any one of C1-C10 alkyl groups.
  • the specific number of nitrogen atoms in the above-mentioned nitrogen-containing heterocycle with side chains is not limited here.
  • the above-mentioned nitrogen-containing heterocycle with side chains includes one nitrogen atom, two nitrogen atoms, three nitrogen atoms, Four nitrogen atoms or five nitrogen atoms.
  • the specific types of the first six-membered ring, the third six-membered ring, the fourth six-membered ring and the sixth six-membered ring here can be exactly the same; or they can be partially the same; or they can all be different, whichever is the actual application. .
  • the first six-membered ring, the second six-membered ring, the third six-membered ring, the fourth six-membered ring, the fifth six-membered ring and the sixth six-membered ring in the indolecarbazole derivatives provided by the embodiments of the present disclosure At least three carbon-hydrogen bonds except side chains are replaced by carbon-deuterium bonds.
  • the HOMO electron cloud is mainly distributed on the groups composed of the first six-membered ring 1, the second six-membered ring 2, the third six-membered ring 3 and the two nitrogen-containing five-membered rings 4, which belongs to the HOMO distribution.
  • the hydrogen atoms on the unit can be preferentially replaced by deuterium atoms, then when the hydrogen atoms on the skeleton except the side chain on the first six-membered ring 1, the second six-membered ring 2 and the third six-membered ring 3 are replaced by deuterium atoms , can change the HOMO value more effectively.
  • the LUMO electron cloud is mainly distributed on the groups composed of the fourth six-membered ring 6, the fifth six-membered ring 7 and the sixth six-membered ring 8.
  • the hydrogen atoms belonging to the LUMO distribution unit can are preferentially replaced by deuterium atoms, then when the hydrogen atoms on the skeleton of the fourth six-membered ring 6, the fifth six-membered ring 7 and the sixth six-membered ring 8 are replaced by deuterium atoms, except for the side chain, the change can be more effective.
  • LUMO value when the hydrogen atoms on the skeleton of the fourth six-membered ring 6, the fifth six-membered ring 7 and the sixth six-membered ring 8 are replaced by deuterium atoms, except for the side chain, the change can be more effective. LUMO value.
  • Replacement by carbon-deuterium bonds can delay molecular degradation and make the band gap of the exciplex formed by hole-type host materials and electron-type host materials under the action of external energy larger.
  • the transition of triplet excitons on the composite to the guest material reduces Dexter energy transfer, further enhances Forster energy transfer, further reduces the density of triplet excitons, and significantly reduces the TTA effect; on the other hand, it can significantly improve Turn-on voltage, thereby more effectively improving crosstalk between pixels.
  • the indole carbazole derivatives also include a first aryl group 55 and a second aryl group 56.
  • the first aryl group 55 and the second aryl group 56 are respectively connected with two nitrogen-containing five-membered groups.
  • the nitrogen atom on ring 54 is bonded.
  • At least four carbon-hydrogen bonds in the first aryl group and the second aryl group are replaced by carbon-deuterium bonds.
  • first aryl group and the second aryl group are not limited here.
  • the specific structures of the above-mentioned first aryl group and the second aryl group may include a phenyl group without a substituent; or may include a phenyl group having a substituent.
  • the phenyl group of the substituent may include any one of (R1)m and (R2)n as shown in Figure 4, where R1 and R2 are each independently a single bond, phenyl, or biphenyl Any one of base, naphthyl, carbazole, dibenzofuran, dibenzothiophene, dimethylfluorene, diphenylfluorene, C1-C10 alkyl group; m and n are each independently 0, 1 , any one of 2.
  • the HOMO electron cloud is mainly distributed in the first six-membered ring, the second six-membered ring, the third six-membered ring and the two nitrogen-containing five-membered rings.
  • the hydrogen atoms belonging to the HOMO distribution unit can be preferentially replaced by deuterium atoms, and the hydrogen atoms on the first aryl group and the second aryl group can also be replaced by deuterium atoms, but the priority is lower than the hydrogen atoms on the HOMO distribution unit. Priority of substitution by deuterium atoms.
  • the hole-type host material and the electron-type host material can still be formed under the action of external energy.
  • the band gap of the exciplex is large. On the one hand, it effectively reduces the transition of triplet excitons on the exciplex to the guest material, reduces Dexter energy transfer, further enhances Forster energy transfer, and further reduces the energy transfer of triplet excitons. density, reducing the TTA effect; on the other hand, it can increase the turn-on voltage, thereby effectively improving the crosstalk between pixels.
  • the second six-membered ring 52 and the fifth six-membered ring 62 include benzene rings.
  • the first six-membered ring 51, the third six-membered ring 53, the fourth six-membered ring 61 and the sixth six-membered ring 63 each independently include a benzene ring, a benzene ring with a side chain, and no substituent. At least one of a group of nitrogen-containing heterocycles and a nitrogen-containing heterocycle with side chains.
  • the above-mentioned side chain may include single bond, phenyl, biphenyl, naphthyl, carbazole, dibenzofuran, dibenzothiophene, dimethylfluorene , diphenylfluorene, any one of C1-C10 alkyl groups.
  • the specific number of nitrogen atoms in the above-mentioned nitrogen-containing heterocycle with side chains is not limited here.
  • the above-mentioned nitrogen-containing heterocycle with side chains includes one nitrogen atom, two nitrogen atoms, three nitrogen atoms, Four nitrogen atoms or five nitrogen atoms.
  • the specific types of the first six-membered ring, the third six-membered ring, the fourth six-membered ring and the sixth six-membered ring here can be exactly the same; or they can be partially the same; or they can all be different, whichever is the actual application. .
  • the HOMO electron cloud is mainly distributed in the first six-membered ring, the second six-membered ring, the third six-membered ring and the two nitrogen-containing five-membered rings.
  • the hydrogen atoms belonging to the HOMO distribution unit can be preferentially replaced by deuterium atoms, and the hydrogen atoms on the side chains can also be replaced by deuterium atoms, but the priority is lower than the priority of the hydrogen atoms on the LUMO distribution unit being replaced by deuterium atoms.
  • the LUMO electron cloud is mainly distributed on the groups composed of the fourth six-membered ring, the fifth six-membered ring and the sixth six-membered ring.
  • the hydrogen atoms belonging to the LUMO distribution unit can be preferentially replaced by deuterium atoms, while the side Hydrogen atoms on the chain can also be replaced by deuterium atoms, but with a lower priority than hydrogen atoms on the LUMO distribution unit.
  • the degradation of the molecule can be delayed, and the exciplex formed by the hole-type host material and the electron-type host material under the action of external energy can still be achieved.
  • the larger band gap on the one hand, effectively reduces the transition of triplet excitons on the exciplex to the guest material, reduces Dexter energy transfer, further enhances Forster energy transfer, further reduces the density of triplet excitons, and reduces the TTA effect ; On the other hand, it can increase the turn-on voltage, thereby effectively improving the crosstalk between pixels.
  • the indole carbazole derivatives also include a first aryl group 55 and a second aryl group 56.
  • the first aryl group 55 and the second aryl group 56 are respectively connected with two nitrogen-containing five-membered groups.
  • the nitrogen atom on ring 54 is bonded.
  • At least four carbon-hydrogen bonds in the first aryl group, the second aryl group and the side chain are replaced by carbon-deuterium bonds.
  • first aryl group and the second aryl group are not limited here.
  • the specific structures of the above-mentioned first aryl group and the second aryl group may include a phenyl group without a substituent; or may include a phenyl group having a substituent.
  • the phenyl group of the substituent may include any one of (R1)m and (R2)n as shown in Figure 4, where R1 and R2 are each independently a single bond, phenyl, or biphenyl Any one of base, naphthyl, carbazole, dibenzofuran, dibenzothiophene, dimethylfluorene, diphenylfluorene, C1-C10 alkyl group; m and n are each independently 0, 1 , any one of 2.
  • the HOMO electron cloud is mainly distributed in the first six-membered ring, the second six-membered ring, the third six-membered ring and the two nitrogen-containing five-membered rings.
  • the hydrogen atoms belonging to the HOMO distribution unit can be preferentially replaced by deuterium atoms, and the hydrogen atoms on the first aryl group, the second aryl group and the side chain can also be replaced by deuterium atoms, but the priority is lower than that on the LUMO distribution unit.
  • the priority of hydrogen atoms being replaced by deuterium atoms is mainly distributed on the groups composed of the fourth six-membered ring, the fifth six-membered ring and the sixth six-membered ring, belonging to the hydrogen on the LUMO distribution unit Atoms can be preferentially replaced by deuterium atoms, and hydrogen atoms on the first aryl group, second aryl group, and side chains can also be replaced by deuterium atoms, but the priority is lower than the priority of hydrogen atoms on the LUMO distribution unit being replaced by deuterium atoms. class.
  • the exciplex formed under the action of external energy has a large band gap.
  • it effectively reduces the transition of triplet excitons on the exciplex to the guest material, reduces Dexter energy transfer, and further enhances Forster energy transfer. It can further reduce the density of triplet excitons and reduce the TTA effect; on the other hand, it can increase the turn-on voltage, thereby effectively improving the crosstalk between pixels.
  • indolecarbazole derivatives is: Wherein, Any of dimethylfluorene, diphenylfluorene, and C1-C10 alkyl groups; R1 and R2 are each independently a single bond, phenyl, biphenyl, naphthyl, carbazole, dibenzofuran, Any one of dibenzothiophene, dimethylfluorene, diphenylfluorene, and C1-C10 alkyl group; m and n are each independently any one of 0, 1, and 2.
  • the energy values of the highest molecular occupied orbital HOMO in are all less than The energy value of the HOMO of the highest molecular occupied orbital in .
  • indole can be changed by adjusting the relative positions of the two nitrogen-containing five-membered rings on the phenyl group, that is, when the relative positions of the nitrogen atoms in the two nitrogen-containing five-membered rings on the phenyl group are separated by three carbon atoms.
  • the conjugation effect of adjacent carbazole fragments makes the highest molecule occupy the largest orbital HOMO energy value, the smallest triplet energy level, and the highest mobility.
  • any general structural formula when other groups are the same, the structure with side chains has a higher energy value of the highest molecular occupied orbital HOMO than the structure without side chains. Therefore, by adding substituents in the same structural formula, that is, increasing the molecular weight of the structure in the same structural formula, the conjugation effect of adjacent segments of indolocarbazole can be changed, so that the highest molecular occupied orbital HOMO energy value is maximized.
  • the triplet state has the smallest energy level and the highest mobility.
  • the general formula of the indolocarbazole group with groups R1 and R2 is The general formula of the indolocarbazole group with groups R1 and R2 after being fused with a phenyl group is: can change the conjugation effect of adjacent segments of indolocarbazole, such that The highest molecular occupied orbital HOMO has the largest energy value, the smallest triplet energy level, and the highest mobility.
  • the fusion between adjacent X groups in X1-X8 is: Any of them; where * is the fused position; X19 is any of carbon-R4R5, oxygen, sulfur, and nitrogen-R6; X24 and One kind; Any one of furan, dibenzothiophene, dimethylfluorene, diphenylfluorene, and C1-C10 alkyl group; R7 is a phenyl group.
  • X9-X18 are each independently any one of carbon-deuterium, carbon-R7, and nitrogen; wherein R7 is phenyl.
  • the energy value of the lowest molecular unoccupied orbital LUMO of the structure with side chains is smaller than that of the structure without side chains. Therefore, by adding substituents in the same structural formula, that is, increasing the molecular weight of the structure in the same structural formula, the conjugation effect of the group directly connected to the triazine group can be changed, so that the energy of the lowest molecule unoccupied orbital LUMO can be changed.
  • the value is the smallest, the triplet energy level is the smallest, and the mobility is the highest.
  • the fusion between adjacent X groups in X9-X18 is: Any of them; where * is the fused position; X24 and X29 are each independently any one of oxygen, sulfur, and nitrogen-R7; X25-X28 are each independently any one of carbon-R8 and nitrogen species; R8 is any one of a single bond, phenyl, biphenyl, naphthyl, carbazole, dibenzofuran, dibenzothiophene, dimethylfluorene, diphenylfluorene, or C1-C10 alkyl group species; R7 is phenyl.
  • the adjacent X groups in X19-X23 and the adjacent X groups in X24-X28 are respectively fused to: any of them.
  • indolecarbazole derivatives includes: any of them.
  • the chemical structural formula of the triazine derivative includes: any of them.
  • embodiments of the present disclosure provide a light-emitting device including the above-mentioned light-emitting layer.
  • the light-emitting device can use vacuum evaporation to prepare each film layer in the light-emitting device.
  • the light-emitting device may include a top-emitting light-emitting device or a bottom-emitting light-emitting device.
  • the hole-type host material and the electron-type host material can be made to react under the action of external energy.
  • the formed exciplex has a larger band gap, and effectively reduces the transition of triplet excitons on the exciplex to the guest material, enhances Forster energy transfer, further reduces the density of triplet excitons, and reduces the TTA effect.
  • the exciplex formed by the hole-type host material and the electron-type host material in the light-emitting layer under the action of external energy has a large band gap and can also increase the turn-on voltage, thereby effectively improving the crosstalk between pixels.
  • the turn-on voltage range of the above-mentioned light-emitting device includes 1.8V-2.2V.
  • the turn-on voltage at this time is the voltage corresponding to 1nit brightness.
  • the turn-on voltage can be 1.8V, 1.9V, 2.0V, 2.1V or 2.2V, etc.
  • the light-emitting device further includes an anode 1 and a cathode 3 , and the light-emitting layer 2 is disposed between the anode 1 and the cathode 3 .
  • the material of the above-mentioned anode is not specifically limited here.
  • the material of the above-mentioned anode may include ITO (Indium Tin Oxides, indium tin oxide).
  • a glass plate with ITO can be ultrasonically treated in deionized water and then dried at 100°C to obtain an anode.
  • the light-emitting device further includes a hole injection layer 4 , a hole transport layer 5 and an electron blocking layer 6 provided between the anode 1 and the light-emitting layer 2 , and a hole injection layer 4 , a hole transport layer 5 and an electron blocking layer 6 provided between the cathode 3 and the light-emitting layer. 2 between the electron injection layer 7, the electron transport layer 8 and the hole blocking layer 9.
  • the hole injection layer 4 is provided between the anode 1 and the hole transport layer 5, the hole transport layer 5 is provided between the hole injection layer 4 and the electron blocking layer 6; the electron injection layer 7
  • the electron transport layer 8 is arranged between the cathode 3 and the electron transport layer 8 , and the electron transport layer 8 is arranged between the electron injection layer 7 and the hole blocking layer 9 .
  • the material of the electron blocking layer may be a substance with hole transport properties, such as any one of aromatic amine compounds, dimethyl fluorene or carbazole materials and their derivatives.
  • the material of the electron blocking layer can be CBP, whose chemical structural formula is
  • the thickness of the electron blocking layer is not specifically limited here.
  • the thickness of the electron blocking layer may be 80 nm.
  • the material of the hole blocking layer may be an aromatic heterocyclic compound, such as benzimidazole, triazine, pyrimidine, pyridine, pyrazine, quinoxaline, quinoline, oxadiazole, diazaphosphocyclopentadiene, Any one or a combination of two or more phosphine oxides, aromatic ketones, lactams, borane compounds and their derivatives.
  • the material of the hole blocking layer can be TPBI.
  • the Chinese name of TPBI is 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene, and its chemical structural formula is:
  • the above-mentioned electron blocking layer can prevent electrons in the light-emitting layer from passing out of the light-emitting layer, ensuring that more electrons recombine with holes in the light-emitting layer, thereby increasing the number of excitons and thereby improving the luminous efficiency.
  • the above-mentioned hole blocking layer can prevent holes in the light-emitting layer from passing out of the light-emitting layer, ensuring that more holes recombine with electrons in the light-emitting layer, thereby increasing the number of excitons and thereby improving the luminous efficiency.
  • the material of the above-mentioned hole injection layer can be an inorganic oxide, a p-type dopant of a strong electron-withdrawing system, and a dopant of a hole transport material, such as hexacyanohexaazatriphenylene; 2, 3, 5 ,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone (F4TCNQ), its chemical structural formula is 1,2,3-tris[(cyano)(4-cyano-2,3,5,6-tetrafluorophenyl)methylene]cyclopropane; 4,4′,4′′-tris[phenyl (m-Tolyl)amino]triphenylamine (m-MTDATA), its chemical structural formula is wait.
  • a hole transport material such as hexacyanohexaazatriphenylene; 2, 3, 5 ,6-tetrafluoro-7,7',8,8'-tetracyan
  • the material of the hole transport layer may be a substance with hole transport properties, such as any one of aromatic amine compounds, dimethyl fluorene or carbazole materials and their derivatives.
  • the material of the hole transport layer may be m-MTDATA.
  • the material of the electron injection layer may be an alkali metal or metal, such as LiF, Yb, Mg, Ca or their compounds.
  • the Chinese name of LiF here is lithium fluoride; the Chinese name of Yb is ytterbium.
  • the material of the above-mentioned electron transport layer can be an aromatic heterocyclic compound, such as benzimidazole, triazine, pyrimidine, pyridine, pyrazine, quinoxaline, quinoline, oxadiazole, diazaphosphocyclopentadiene, oxidation Any one or a combination of two or more phosphines, aromatic ketones, lactams, borane compounds and their derivatives.
  • the material of the electron transport layer may be BCP, and the Chinese name of BCP is 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline.
  • Example 1 (RH-P1: RH-N1), Example 2 (RH-P2: RH-N2), Example 3 (RH-P3: RH-N3) and Comparative Example 1 (RH-P4: The light-emitting layer formed of RH-N4) material is applied to the light-emitting device, and the structure of each light-emitting device is obtained as shown in Table 2 below.
  • represents the film layer in the light-emitting device
  • RH-P1: RH-N1 (4:6) represents the ratio of hole-type host material to electron-type host material
  • RD (2%) represents the guest material in The doping ratio in the host material
  • 40nm represents the thickness of the light-emitting layer.
  • V represents the voltage loaded on the light-emitting device
  • CIE x represents the x value in the color coordinates
  • CIE y represents the y value in the color coordinates
  • LT95 represents the brightness when the initial brightness of the light-emitting device is reduced to 95% of the initial brightness.
  • the light-emitting devices formed of the materials of the present disclosure have higher luminous efficiency, longer lifespan, higher turn-on voltage, and lower efficiency roll-off than the light-emitting devices formed of the materials of the comparative example.
  • the efficiency roll off of 1nit brightness and 600nit brightness is between 3% and 10%.
  • the voltage, efficiency, lifetime, turn-on voltage and efficiency roll-off values in Table 3 are not actual values.
  • voltage is used as an example to illustrate, assuming that the luminescent layer formed in Comparative Example 4 is actually measured.
  • the voltage of the obtained light-emitting device is 1V, then the actually measured voltage of the light-emitting device prepared by using the light-emitting layer formed in Example 2 is 1.01V.
  • Other parameters are taken as an example and will not be described again here.
  • the above-mentioned light-emitting device can be applied in a display device, and the specific structure of the display device is not limited here.
  • the display device may include a display substrate and a light emitting device.
  • the display substrate includes a plurality of pixel units arranged in an array, and the light-emitting device includes a red light-emitting device, a green light-emitting device and a blue light-emitting device arranged in an array.
  • Each pixel unit includes a red sub-pixel, a green sub-pixel and a blue sub-pixel.
  • the red sub-pixel is electrically connected to the red light-emitting device
  • the green sub-pixel is electrically connected to the green light-emitting device
  • the blue sub-pixel is electrically connected to the blue light-emitting device.
  • the red sub-pixel is electrically connected to the red light-emitting device 100
  • the green sub-pixel is electrically connected to the green light-emitting device 200
  • the blue sub-pixel is electrically connected to the blue light-emitting device 300 .
  • the red sub-pixel located at the leftmost end is taken as an example to illustrate the specific structure.
  • the red sub-pixel includes: a buffer layer 11 , an active layer 210 , a gate insulating layer 12 , and a gate layer 11 , which are stacked sequentially on the substrate 10 .
  • the electrode metal layer (including the gate electrode 110 and the first electrode 212), the insulating layer 13, the electrode layer (including the second electrode 213), the interlayer dielectric layer 14, the source and drain metal layers (including the source electrode 111 and the drain electrode 112), Flat layer 15, pixel definition layer 302.
  • the first electrode 212 and the second electrode 213 are used to form a storage capacitor.
  • the pixel defining layer 302 includes an opening, and a red light-emitting device 100 is disposed in the opening.
  • the anode 1 of the red light-emitting device 100 is electrically connected to the drain electrode 112 of the thin film transistor.
  • the display substrate also includes spacers 34 located above the pixel defining layer 302 . It should be noted that in the display substrate, spacers may be provided on part of the pixel defining layer, or spacers may be provided on all the pixel defining layers, which is not limited here.
  • the red light-emitting device 100 includes an anode 1, and a hole injection layer 4, a hole transport layer 5, an electron blocking layer 6, a red light emitting layer 113, a hole blocking layer 9, and an electron transport layer 8 that are stacked on the anode 1 in sequence. , electron injection layer 7, cathode 3.
  • the light-emitting layer of the green light-emitting device 200 and the blue light-emitting device 300 shown in FIG. 7 is made of different materials from the light-emitting layer of the red light-emitting device 100.
  • the light-emitting layer of the green light-emitting device is used to emit green light
  • the blue light-emitting device is used to emit green light
  • the light-emitting layer of the device is used to emit blue light
  • the light-emitting layer of the red light-emitting device is used to emit red light.
  • the materials of the electron blocking layers of the green light-emitting device and the blue light-emitting device are also different from those of the electron blocking layers of the red light-emitting device. Except for the light-emitting layer and the electron blocking layer, other film layers included in the green light-emitting device and the blue light-emitting device are the same as those of the red light-emitting device, and will not be described again here.
  • the display device may further include a first inorganic layer 421 , an organic layer 43 , and a second inorganic layer 422 covering the light-emitting device.
  • the first inorganic layer 421 , the organic layer 43 , and the second inorganic layer 422 may play the role of Encapsulation function protects light-emitting devices and extends service life.
  • an embodiment of the present disclosure provides a display device including the above-mentioned light-emitting device.
  • the above-mentioned display device may be a flexible display device (also called a flexible screen) or a rigid display device (that is, a display screen that cannot be bent), which is not limited here.
  • the above display device may be an OLED display device or an LCD (Liquid Crystal Display) display device.
  • the above-mentioned display device can be any product or component with a display function such as a television, a digital camera, a mobile phone, a tablet computer, etc.; the above-mentioned display device can also be used in fields such as identity recognition, medical equipment, etc. Products that have been promoted or have good promotion prospects include Security identity authentication, smart door locks, medical image collection, etc.
  • the display device has the advantages of significantly reducing the TTA effect, increasing the turn-on voltage, small crosstalk between pixels, good display effect, long life, high stability, high contrast, good imaging quality, and high product quality.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

提供一种发光层、发光器件和显示装置,涉及显示技术领域。发光层包括:主体材料,包括空穴型主体材料和电子型主体材料;在外界能量的作用下,主体材料被配置为能够形成激基复合物;客体材料,掺杂于主体材料中;其中,空穴型主体材料的最高分子占据轨道HOMO的能量值与电子型主体材料的最低分子未占据轨道LUMO的能量值的差值的绝对值满足:2.4eV≤|HOMO-LUMO|≤3.2eV。发光层通过空穴型主体材料和电子型主体材料的能级搭配,可以降低三重态激子的密度,降低TTA效应,并提高启亮电压,从而有效改善像素间串扰的情况。

Description

一种发光层、发光器件和显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种发光层、发光器件和显示装置。
背景技术
当今量产的OLED器件中,红光器件属于磷光器件,红光器件包括客体材料和预混(Premix)的双主体材料。
目前的红光器件容易导致三线态激子湮灭(TTA),从而导致器件的大电流密度下效率滚降严重;并且,红光器件还容易造成启亮电压较低,导致产生像素间串扰等问题。
发明内容
本公开的实施例采用如下技术方案:
一方面,本公开的实施例提供了一种发光层,包括:
主体材料,包括空穴型主体材料和电子型主体材料;在外界能量的作用下,所述主体材料被配置为能够形成激基复合物;
客体材料,掺杂于所述主体材料中;
其中,所述空穴型主体材料的最高分子占据轨道HOMO的能量值与所述电子型主体材料的最低分子未占据轨道LUMO的能量值的差值的绝对值满足:2.4eV≤|HOMO-LUMO|≤3.2eV。
可选地,所述激基复合物的单重态能级与三重态能级之间的能级差满足:0eV≤△Est≤0.3eV。
可选地,所述主体材料包括至少一个氘原子。
可选地,所述空穴型主体材料包括吲哚咔唑类衍生物,所述吲哚咔唑类衍生物包括第一六元环、第二六元环、第三六元环和两个含氮五元环,所述第一六元环通过一个所述含氮五元环与所述第二六元环稠合、且所述第二六元环还通过另一个所述含氮五元环与所述第三六元环稠合;
所述电子型主体材料包括三嗪类衍生物,所述三嗪类衍生物包括三嗪基团和与所述三嗪基团分别键合的第四六元环、第五六元环和第六六元环。
可选地,所述第二六元环和所述第五六元环包括苯环;
所述第一六元环、所述第三六元环、所述第四六元环和所述第六六元环各自独立地包括苯环、具有侧链的苯环、无取代基团的含氮杂环、具有所述侧链的含氮杂环中的至少一种;
其中,所述第一六元环、所述第二六元环、所述第三六元环、所述第四六元环、所述第五六元环和所述第六六元环中除所述侧链以外的至少三个碳-氢键被碳-氘键取代。
可选地,所述吲哚咔唑类衍生物还包括第一芳基和第二芳基,所述第一芳基和所述第二芳基分别与两个所述含氮五元环上的氮原子键合;
所述第一芳基和所述第二芳基中的至少四个碳-氢键被碳-氘键取代。
可选地,所述第二六元环和所述第五六元环包括苯环;
所述第一六元环、所述第三六元环、所述第四六元环和所述第六六元环各自独立地包括苯环、具有侧链的苯环、无取代基团的含氮杂环、具有所述侧链的含氮杂环中的至少一种;
其中,所述侧链中的至少一个碳-氢键被碳-氘键取代。
可选地,所述吲哚咔唑类衍生物还包括第一芳基和第二芳基,所述第一芳基和所述第二芳基分别与两个所述含氮五元环上的氮原子键合;
所述第一芳基、所述第二芳基和所述侧链中的至少四个碳-氢键被碳-氘键取代。
可选地,所述吲哚咔唑类衍生物的结构通式为:
Figure PCTCN2022088572-appb-000001
其中,X1-X8各自独立地为碳-氘、碳-R3、氮中的任一种;其中R3为苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;
R1、R2各自独立地为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;
m、n各自独立地为0、1、2中的任一种。
可选地,
Figure PCTCN2022088572-appb-000002
包括
Figure PCTCN2022088572-appb-000003
Figure PCTCN2022088572-appb-000004
中的任一种。
可选地,所述
Figure PCTCN2022088572-appb-000005
和所述
Figure PCTCN2022088572-appb-000006
中的最高分子占据轨道HOMO的能量值均小于所述
Figure PCTCN2022088572-appb-000007
中的最高分子占据轨道HOMO的能量值。
可选地,所述
Figure PCTCN2022088572-appb-000008
所述
Figure PCTCN2022088572-appb-000009
和所述
Figure PCTCN2022088572-appb-000010
中,任一结构通式在其它基团均相同的情况下,具有所述侧链的结构比未具有所述侧链的结构的最高分子占据轨道HOMO的能量值大。
可选地,其中,X1-X8中的相邻X基团之间稠合为:
Figure PCTCN2022088572-appb-000011
中的任一种;
其中,*为稠合位置;
X19为碳-R4R5、氧、硫、氮-R6中的任一种;
X24和X29各自独立地为氧、硫、氮-R7中的任一种;
X20-X23各自独立地为碳-R8、氮中的任一种;
R4、R5、R6和R8各自独立地为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;
R7为苯基。
可选地,所述三嗪类衍生物的结构通式为:
Figure PCTCN2022088572-appb-000012
其中,X9-X18各自独立地为碳-氘、碳-R7、氮中的任一种;其中R7为苯基。
可选地,所述三嗪类衍生物的结构通式在其它基团均相同的情况下,具有所述侧链的结构比未具有所述侧链的结构的最低分子未占据轨道LUMO的能量值小。
可选地,X9-X18中的相邻X基团之间稠合为:
Figure PCTCN2022088572-appb-000013
中的任一种;
其中,*为稠合位置;
X24和X29各自独立地为氧、硫、氮-R7中的任一种;
X25-X28各自独立地为碳-R8、氮中的任一种;
R8为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;
R7为苯基。
可选地,X19-X23中的相邻X基团之间、以及X24-X28中的相邻X基团之间分别稠合为:
Figure PCTCN2022088572-appb-000014
中的任一种。
可选地,所述吲哚咔唑类衍生物的化学结构式包括:
Figure PCTCN2022088572-appb-000015
中的任一种。
可选地,所述三嗪类衍生物的化学结构式包括:
Figure PCTCN2022088572-appb-000016
中的任一种。
另一方面,本公开的实施例提供了一种发光器件,包括上述的发光层。
可选地,所述发光器件还包括阳极和阴极,所述发光层设置在所述阳极和所述阴极之间。
又一方面,本公开的实施例提供了一种显示装置,包括上述的发光器件。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本公开实施例提供的一种相关技术的发光层的发光原理图;
图2为本公开实施例提供的一种相关技术的激子强度随发光层与电子阻挡层的界面之间的距离的变化示意图;
图3为本公开实施例提供的一种发光层的发光原理图;
图4为本公开实施例提供的一种吲哚咔唑类衍生物的结构通式;
图5为本公开实施例提供的一种三嗪类衍生物的结构通式;
图6为本公开实施例提供的一种发光器件的结构示意图;
图7为本公开实施例提供的一种显示装置的结构示意图。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
在本公开的实施例中,除非另有说明,“至少一个”的含义是一个或一个以上。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
在本公开的实施例中,采用“第一”、“第二”、“第三”、“第四”、“第五”、“第六”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本公开实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
本公开的实施例提供了一种发光层,包括:主体材料,包括空穴型主体材料和电子型主体材料;在外界能量的作用下,主体材料被配置为能够形成激基复合物;客体材料,掺杂于主体材料中。
其中,空穴型主体材料的最高分子占据轨道HOMO的能量值与电子型主体材料的最低分子未占据轨道LUMO的能量值的差值的绝对值满足:2.4eV≤|HOMO-LUMO|≤3.2eV。
上述空穴型主体材料为当有空穴注入时,在电场作用下可以实现载流子的定向有序的可控迁移,从而达到传输电荷的有机半导体材料。这里对于空穴型主体材料不做具体限定,示例的,空穴型主体材料可以包括吲哚咔唑类衍生物。
上述电子型主体材料为当有电子注入时,在电场作用下可以实现载流子的定向有序的可控迁移,从而达到传输电荷的有机半导体材料。这里对于电子型主体材料不做具体限定,示例的,电子型主体材料可以包括三嗪类衍生物。
这里对于上述空穴型主体材料与电子型主体材料的摩尔比范围不做具体限定,示例的,上述空穴型主体材料与电子型主体材料的摩尔比范围为2:8-5:5,从而当发光层应用于器件中时,能够使得器件的启亮电压较低,从而有效提升器件的效率,改善功耗。具体的,该空穴型主体材料与电子型主体材料的摩尔比可以为2:8、4:6或者5:5等。
这里对于上述客体材料在主体材料中的掺杂比例范围不做具体限定,示例的,上述客体材料在主体材料中的掺杂比例范围可以包括1-10%,具体的,该掺杂比例可以为2%、4%、6%、8%或者10%等。
上述发光层可以是红色发光层、绿色发光层或者蓝色发光层中的任一种,此时,该发光层可用于单一颜色的发光。发光器件可以同时包括红色发光层、绿色发光层或者蓝色发光层三种发光层;当然,也可以仅包括一种发光层,例如:仅包括多个红色发光层,或者仅包括多个绿色发光层,或者仅包括多个蓝色发光层。具体可以根据实际要求确定。这里以红色发光层为例进行说明,其他颜色发光层可以参照红色发光层,这里不再具体赘述。红色发光层包括空穴型主体材料、电子型主体材料和发红光的客体材料。这里对于红色发光层的厚度不做具体限定,示例的,红色发光层的厚度范围可以包括20-70nm,具体的,红色发光层的厚度可以为20nm、40nm、50nm或者70nm。
上述最高分子占据轨道(Highest OccupiedMolecular Orbital,HOMO)是指在电子占有的分子轨道中,能量最高的分子轨道。最高分子占据轨道的能量值又称HOMO值。
上述最低分子未占据轨道(Lowest Unoccupied Molecular Orbital,LUMO)是指在电子未占有的分子轨道中,能量最低的分子轨道。最低分子未占据轨道的能量值又称LUMO值。
这里对于上述外界能量的类型不做具体限定,示例的,上述外界能量可以包括光、电等等。
上述2.4eV≤|HOMO-LUMO|≤3.2eV。这里对于|HOMO-LUMO|不做具体限定,示例的,该|HOMO-LUMO|可以为2.4eV、2.5eV、2.7eV、2.9eV、3.0eV或者3.2eV等。进一步地,2.5eV≤|HOMO-LUMO|≤3.0eV。
当今量产的OLED(Organic Light Emitting Diode,有机发光二极管)红光器件通常包括主体材料(RH)和客体材料(RD)。其中,红光主体材料为预混材料,包括空穴型主体材料(RH-P type)和电子型主体材料(RH-N type)。空穴型主体材料和电子型主体材料在光、电等外界能量的作用下可以形成激基复合物,通过激基复合物向客体材料进行能量传递,以使得客体材料辐射跃迁发光。
图1为相关技术中的红光器件的发光原理图。参考图1所示,红光器件在电致激发下,RH-P type材料和RH-N type材料形成激基复合物。 受激发后空穴和电子会在激基复合物上形成激子,这里的激子的能级包括图1所示的单重态激子的能级S1和三重态激子的能级T1。单重态激子的能级S1从激基复合物上以Foster能量传递到客体材料上,三重态激子的能级T1从激基复合物上以Dexter能量传递到客体材料上,然后再通过客体材料辐射跃迁发光,从而实现了发光器件的发光。
但是,由于相关技术中的红光器件被激发后形成的激子从激基复合物上主要以Dexter能量传递到客体材料上;并且,参考图2所示,激子复合区域集中在电子阻挡层(R prime层)侧,导致三重态激子浓度降低得更快,容易造成三线态激子湮灭(TTA),从而使得红光器件的大电流密度下效率滚降严重,进而使得红光器件的发光效率降低明显。图2示出了发光层中的激子强度随发光层与R prime层的界面之间的距离的变化示意图,其中,横坐标代表发光层与R prime层和发光层之间的界面的距离,单位为nm,这里以R prime层和发光层的界面处为基准,即坐标原点处为R prime层和发光层的界面处;纵坐标代表激子强度。
另外,红光器件由于RH-P type材料和RH-N type材料的能级搭配不合理,导致红光器件启亮电压较低,容易产生像素间的串扰等问题。
本公开实施例提供了一种发光层,包括:主体材料,包括空穴型主体材料和电子型主体材料;在外界能量的作用下,主体材料被配置为能够形成激基复合物;客体材料,掺杂于主体材料中,其中,空穴型主体材料的最高分子占据轨道HOMO的能量值与电子型主体材料的最低分子未占据轨道LUMO的能量值的差值的绝对值满足:2.4eV≤|HOMO-LUMO|≤3.2eV。从而一方面,通过限定发光层中空穴型主体材料和电子型主体材料的能级搭配,参考图3所示,能够使得空穴型主体材料和电子型主体材料在外界能量的作用下形成的激基复合物的带隙较大,并有效减小激基复合物上三重态激子向客体材料的跃迁,减小Dexter能量传递,加强Forster能量传递,进一步降低三重态激子的密度,降低TTA效应。另一方面,发光层中空穴型主体材料和电子型主体材料在外界能量的作用下形成的激基复合物的带隙较大,还能够提高启亮电压,从而有效改善像素间串扰的情况。
可选地,激基复合物的单重态能级与三重态能级之间的能级差满足:0eV≤△Est≤0.3eV。从而通过限定发光层中空穴型主体材料和电子型 主体材料的能级搭配,能够使得空穴型主体材料和电子型主体材料在外界能量的作用下形成的激基复合物具有较小的△Est、且带隙较大,并有效减小激基复合物上三重态激子向客体材料的跃迁,减小Dexter能量传递,加强Forster能量传递,进一步降低三重态激子的密度,降低TTA效应。
这里对于上述△Est的具体数值不做限定,示例的,上述△Est的具体数值可以为0eV、0.1eV、0.2eV或者0.3eV等。进一步地,0eV≤△Est≤0.2eV。
下面分别对RH-P1(化学式为
Figure PCTCN2022088572-appb-000017
)、RH-P2(化学式为
Figure PCTCN2022088572-appb-000018
)、RH-P3(化学式为
Figure PCTCN2022088572-appb-000019
)、RH-P4(化学式为
Figure PCTCN2022088572-appb-000020
)、RH-N1(化学式为
Figure PCTCN2022088572-appb-000021
)、RH-N2(化学式为
Figure PCTCN2022088572-appb-000022
)、RH-N3(化学式为
Figure PCTCN2022088572-appb-000023
)、RH-N4(化学式为
Figure PCTCN2022088572-appb-000024
)、以及RH-P1与RH-N1的混合物、RH-P2与RH-N2的混合物、RH-P3与RH-N3的混合物和RH-P4与RH-N4的混合物进行测试,得到HOMO、LUMO、T1和△EST的数值如下表一所示。
表一
  HOMO(eV) LUMO(eV) T1(eV) △EST(eV)
RH-P1 5.28 2.23 2.23 0.71
RH-P2 5.33 2.28 2.26 0.68
RH-P3 5.26 2.30 2.25 0.66
RH-P4 5.21 2.46 2.28 0.69
RH-N1 5.80 2.71 2.30 0.62
RH-N2 5.76 2.72 2.26 0.64
RH-N3 5.84 2.74 2.31 0.65
RH-N4 5.92 2.86 2.28 0.71
RH-P1:RH-N1 - - 2.19 0.06
RH-P2:RH-N2 - - 2.16 0.15
RH-P3:RH-N3 - - 2.20 0.24
RH-P4:RH-N4 - - 2.11 0.36
上述表一中,RH-P1至RH-P3表示本公开实施例提供的三种不同的空穴型主体材料,RH-P4表示对比例提供的空穴型主体材料;RH-N1至RH-N3表示本公开实施例提供的三种不同的电子型主体材料,RH-N4表示对比例提供的电子型主体材料;T1表示RH-P1至RH-P4、RH-N1至RH-N4中三重态激子的能级;△EST表示RH-P1至RH-P4、RH-N1至RH-N4中单重态和三重态之间的能级差。
从表一可以得出:第一,对于单组分主体材料而言,在RH-P1至RH-P4中,RH-P1至RH-P3的HOMO值均大于RH-P4的HOMO值、RH-P1至RH-P3的LUMO值均小于RH-P4的LUMO值、RH-P1至RH-P3的T1值均小于RH-P4的T1值、RH-P1至RH-P4的△EST指均大于0.3eV;在RH-N1至RH-N4中,RH-N1至RH-N3的HOMO值均小于RH-N4的HOMO值、RH-N1至RH-N3的LUMO值均小于RH-N4的LUMO值、以及RH-N1至RH-N4的△EST指均大于0.3eV。
第二,对于混合主体材料而言,本公开实施例提供的空穴型主体材料和电子型主体材料的混合主体材料的T1均大于对比例提供的空穴型主体材料和电子型主体材料的混合主体材料的T1;本公开实施例提供的空穴型主体材料和电子型主体材料的混合主体材料、以及对比例提供 的空穴型主体材料和电子型主体材料的混合主体材料的△EST均较小,但本公开实施例提供的空穴型主体材料和电子型主体材料的混合主体材料的△EST比对比例提供的空穴型主体材料和电子型主体材料的混合主体材料的△EST更小,且本公开实施例提供的空穴型主体材料和电子型主体材料的混合主体材料的△EST均小于0.3eV。
可选地,主体材料包括至少一个氘原子。
上述主体材料包括至少一个氘原子是指:上述主体材料仅包括一个氘原子;或者,上述主体材料包括两个以上氘原子。
这里对于氘原子的位置不做具体限定。在主体材料仅包括一个氘原子的情况下,可以是空穴型主体材料包括一个氘原子;或者,可以是电子型主体材料包括一个氘原子。在主体材料包括两个以上氘原子的情况下,可以是空穴型主体材料和电子型主体材料均包括氘原子;或者,可以是仅空穴型主体材料包括氘原子;或者,可以是仅电子型主体材料包括氘原子。
上述表一中提供的RH-P4和RH-N4中均未包括氘原子,但本公开实施例提供的RH-P1至RH-P4、RH-N1至RH-N4中均包括氘原子,因此本公开实施例提供的主体材料包括至少一个氘原子,氘代可以延缓分子劣化,能够使得空穴型主体材料和电子型主体材料在外界能量的作用下形成的激基复合物带隙较大,一方面,有效减小激基复合物上三重态激子向客体材料的跃迁,减小Dexter能量传递,加强Forster能量传递,进一步降低三重态激子的密度,降低TTA效应;另一方面,能够提高启亮电压,从而有效改善像素间串扰的情况。
可选地,空穴型主体材料包括吲哚咔唑类衍生物,参考图4所示,吲哚咔唑类衍生物包括第一六元环51、第二六元环52、第三六元环53和两个含氮五元环54,第一六元环51通过一个含氮五元环54与第二六元环52稠合、且第二六元环52还通过另一个含氮五元环54与第三六元环53稠合。
电子型主体材料包括三嗪类衍生物,参考图5所示,三嗪类衍生物包括三嗪基团和与三嗪基团分别键合的第四六元环61、第五六元环62和第六六元环63。
这里对于上述第一六元环、第二六元环和第三六元环的具体类型均不做限定,示例的,上述第一六元环、第二六元环和第三六元环可以包 括六元芳环,此时的六元芳环可以包括具有取代基团的苯环、以及未有取代基团的苯环;或者,上述第一六元环、第二六元环和第三六元环可以包括六元杂环,此时的六元杂环的杂原子可以包括氮原子等。这里的第一六元环、第二六元环和第三六元环的具体类型可以全部相同;或者,可以全部不同;或者,可以部分相同,具体以实际应用为准。
这里对于上述含氮五元环中氮原子的具体数量不做限定,示例的,上述含氮五元环可以包括如图4所示的一个氮原子;或者,含氮五元环可以包括两个以上氮原子。
这里对于上述第四六元环、第五六元环和第六六元环的具体类型均不做限定,示例的,上述第四六元环、第五六元环和第六六元环可以包括六元芳环,此时的六元芳环可以包括具有取代基团的苯环、以及未有取代基团的苯环;或者,上述第四六元环、第五六元环和第六六元环可以包括六元杂环,此时的六元杂环的杂原子包括氮原子等。这里的第四六元环、第五六元环和第六六元环的具体类型可以全部相同;或者,可以全部不同;或者,可以部分相同,具体以实际应用为准。
可选地,参考图4和图5所示,第二六元环52和第五六元环62包括苯环。
参考图4所示,第一六元环51、第三六元环53、第四六元环61和第六六元环63各自独立地包括苯环、具有侧链的苯环、无取代基团的含氮杂环、具有侧链的含氮杂环中的至少一种。
其中,第一六元环、第二六元环、第三六元环、第四六元环、第五六元环和第六六元环中除侧链以外的至少三个碳-氢键被碳-氘键取代。
这里对于上述侧链的具体类型不做限定,示例的,上述侧链可以包括单键、苯基、联苯基、萘基、咔唑,二苯并呋喃,二苯并噻吩,二甲基芴、二苯基芴,C1-C10的烷基中的任一种。
这里对于上述具有侧链的含氮杂环中的氮原子的具体数量不做限定,示例的,上述具有侧链的含氮杂环中包括一个氮原子、两个氮原子、三个氮原子、四个氮原子或者五个氮原子。
这里的第一六元环、第三六元环、第四六元环和第六六元环的具体类型可以完全相同;或者,可以部分相同;或者可以均不相同,具体以实际应用为准。
本公开实施例提供的吲哚咔唑类衍生物中的第一六元环、第二六元 环、第三六元环、第四六元环、第五六元环和第六六元环中除侧链以外的至少三个碳-氢键被碳-氘键取代。参考图4所示,HOMO电子云主要分布在第一六元环1、第二六元环2和第三六元环3和两个含氮五元环4构成的基团上,属于HOMO分布单元上的氢原子可以被氘原子优先取代,那么当第一六元环1、第二六元环2和第三六元环3上除侧链以外的骨架上的氢原子被氘原子取代时,能够更有效的改变HOMO值。同理,参考图5所示,LUMO电子云主要分布在第四六元环6、第五六元环7和第六六元环8构成的基团上,属于LUMO分布单元上的氢原子可以被氘原子优先取代,那么当第四六元环6、第五六元环7和第六六元环8上除侧链以外的骨架上的氢原子被氘原子取代时,能够更有效的改变LUMO值。因此,第一六元环、第二六元环、第三六元环、第四六元环、第五六元环和第六六元环中除侧链以外的至少三个碳-氢键被碳-氘键取代可以延缓分子劣化,能够使得空穴型主体材料和电子型主体材料在外界能量的作用下形成的激基复合物带隙更大,一方面,更加有效的减小激基复合物上三重态激子向客体材料的跃迁,减小Dexter能量传递,更进一步加强Forster能量传递,更进一步降低三重态激子的密度,显著降低TTA效应;另一方面,能够更加显著的提高启亮电压,从而更加有效的改善像素间串扰的情况。
可选地,参考图4所示,吲哚咔唑类衍生物还包括第一芳基55和第二芳基56,第一芳基55和第二芳基56分别与两个含氮五元环54上的氮原子键合。
第一芳基和第二芳基中的至少四个碳-氢键被碳-氘键取代。
这里对于上述第一芳基和第二芳基的具体结构不做限定,示例的,上述第一芳基和第二芳基的具体结构可以包括未具有取代基的苯基;或者,可以包括具有取代基的苯基,此时该取代基可以包括如图4所示的(R1)m、(R2)n中的任一种,其中R1、R2各自独立地为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;m、n各自独立地为0、1、2中的任一种。
本公开实施例提供的吲哚咔唑类衍生物中,HOMO电子云主要分布在第一六元环、第二六元环和第三六元环和两个含氮五元环构成的基团上,属于HOMO分布单元上的氢原子可以被氘原子优先取代,而第 一芳基和第二芳基上的氢原子也可以被氘原子取代,但优先级低于HOMO分布单元上的氢原子被氘原子取代的优先级。此时,由于第一芳基和第二芳基中的至少四个碳-氢键被碳-氘键取代,仍能够使得空穴型主体材料和电子型主体材料在外界能量的作用下形成的激基复合物带隙较大,一方面,有效的减小激基复合物上三重态激子向客体材料的跃迁,减小Dexter能量传递,进一步加强Forster能量传递,进一步降低三重态激子的密度,降低TTA效应;另一方面,能够提高启亮电压,从而有效改善像素间串扰的情况。
可选地,参考图4所示,第二六元环52和第五六元环62包括苯环。
参考图4所示,第一六元环51、第三六元环53、第四六元环61和第六六元环63各自独立地包括苯环、具有侧链的苯环、无取代基团的含氮杂环、具有侧链的含氮杂环中的至少一种。
其中,侧链中的至少一个碳-氢键被碳-氘键取代。
这里对于上述侧链的具体类型不做限定,示例的,上述侧链可以包括单键、苯基、联苯基、萘基、咔唑,二苯并呋喃,二苯并噻吩,二甲基芴、二苯基芴,C1-C10的烷基中的任一种。
这里对于上述具有侧链的含氮杂环中的氮原子的具体数量不做限定,示例的,上述具有侧链的含氮杂环中包括一个氮原子、两个氮原子、三个氮原子、四个氮原子或者五个氮原子。
这里的第一六元环、第三六元环、第四六元环和第六六元环的具体类型可以完全相同;或者,可以部分相同;或者可以均不相同,具体以实际应用为准。
本公开实施例提供的吲哚咔唑类衍生物中,HOMO电子云主要分布在第一六元环、第二六元环和第三六元环和两个含氮五元环构成的基团上,属于HOMO分布单元上的氢原子可以被氘原子优先取代,而侧链上的氢原子也可以被氘原子取代,但优先级低于LUMO分布单元上的氢原子被氘原子取代的优先级;同理,LUMO电子云主要分布在第四六元环、第五六元环和第六六元环构成的基团上,属于LUMO分布单元上的氢原子可以被氘原子优先取代,而侧链上的氢原子也可以被氘原子取代,但优先级低于LUMO分布单元上的氢原子被氘原子取代的优先级。此时,由于侧链中的至少一个碳-氢键被碳-氘键取代可以延缓分子劣化,仍能够使得空穴型主体材料和电子型主体材料在外界能量的 作用下形成的激基复合物带隙较大,一方面,有效减小激基复合物上三重态激子向客体材料的跃迁,减小Dexter能量传递,进一步加强Forster能量传递,进一步降低三重态激子的密度,降低TTA效应;另一方面,能够提高启亮电压,从而有效改善像素间串扰的情况。
可选地,参考图4所示,吲哚咔唑类衍生物还包括第一芳基55和第二芳基56,第一芳基55和第二芳基56分别与两个含氮五元环54上的氮原子键合。
第一芳基、第二芳基和侧链中的至少四个碳-氢键被碳-氘键取代。
这里对于上述第一芳基和第二芳基的具体结构不做限定,示例的,上述第一芳基和第二芳基的具体结构可以包括未具有取代基的苯基;或者,可以包括具有取代基的苯基,此时该取代基可以包括如图4所示的(R1)m、(R2)n中的任一种,其中R1、R2各自独立地为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;m、n各自独立地为0、1、2中的任一种。
本公开实施例提供的吲哚咔唑类衍生物中,HOMO电子云主要分布在第一六元环、第二六元环和第三六元环和两个含氮五元环构成的基团上,属于HOMO分布单元上的氢原子可以被氘原子优先取代,而第一芳基、第二芳基和侧链上的氢原子也可以被氘原子取代,但优先级低于LUMO分布单元上的氢原子被氘原子取代的优先级;同理,LUMO电子云主要分布在第四六元环、第五六元环和第六六元环构成的基团上,属于LUMO分布单元上的氢原子可以被氘原子优先取代,而第一芳基、第二芳基和侧链上的氢原子也可以被氘原子取代,但优先级低于LUMO分布单元上的氢原子被氘原子取代的优先级。此时,由于第一芳基、第二芳基和侧链中的至少四个碳-氢键被碳-氘键取代可以延缓分子劣化,仍能够使得空穴型主体材料和电子型主体材料在外界能量的作用下形成的激基复合物带隙较大,一方面,有效的减小激基复合物上三重态激子向客体材料的跃迁,减小Dexter能量传递,进一步加强Forster能量传递,进一步降低三重态激子的密度,降低TTA效应;另一方面,能够提高启亮电压,从而有效改善像素间串扰的情况。
可选地,吲哚咔唑类衍生物的结构通式为:
Figure PCTCN2022088572-appb-000025
其中,X1-X8各自独立地为碳-氘、碳-R3、氮中的任一种;其中R3为苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;R1、R2各自独立地为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;m、n各自独立地为0、1、2中的任一种。
可选地,
Figure PCTCN2022088572-appb-000026
包括
Figure PCTCN2022088572-appb-000027
Figure PCTCN2022088572-appb-000028
中的任一种。
上述
Figure PCTCN2022088572-appb-000029
分别为
Figure PCTCN2022088572-appb-000030
的三种同分异构体,从而可以得到基于这三种同分异构体通式的多种不同的吲哚咔唑类衍生物。
可选地,
Figure PCTCN2022088572-appb-000031
中的最高分子占据轨道 HOMO的能量值均小于
Figure PCTCN2022088572-appb-000032
中的最高分子占据轨道HOMO的能量值。从而可以通过调整两个含氮五元环在苯基上的相对位置,即当两个含氮五元环中的氮原子在苯基上的相对位置间隔三个碳原子时,可以改变吲哚并咔唑相邻片段的共轭效应,使得最高分子占据轨道HOMO的能量值最大,三重态能级最小,迁移率最高。
现以上述结构通式中的X1-X8均为碳-氢键、m和n均为1为例,说明三种带有基团R1、R2的吲哚并咔唑基团的最高分子占据轨道HOMO的能量值等。该三种带有基团R1、R2的吲哚并咔唑基团的通式分别为
Figure PCTCN2022088572-appb-000033
由于最高分子占据轨道HOMO分布在吲哚并咔唑单元,因此可以通过对通式结构进行调整,即调整吲哚并咔唑的连接位置,可以改变吲哚并咔唑相邻片段的共轭效应,使得
Figure PCTCN2022088572-appb-000034
的最高分子占据轨道HOMO的能量值最大,三重态能级最小,迁移率最高。
可选地,
Figure PCTCN2022088572-appb-000035
中,任一结构通式在其它基团均相同的情况下,具有侧链的结构比未具有侧链的结构的最高分子占据轨道HOMO的能量值大。从而可以通过在同一结构通式中增加取代基,即增加同一结构通式中结构的分子量,可以改变吲哚并咔唑相邻片段的共轭效应,使得最高分子占据轨道 HOMO的能量值最大,三重态能级最小,迁移率最高。
现以上述结构通式
Figure PCTCN2022088572-appb-000036
中的X1-X8均为碳-氢键、m和n均为1为例,说明稠和一个苯基后的基团的最高分子占据轨道HOMO的能量值等。该带有基团R1、R2的吲哚并咔唑基团的通式为
Figure PCTCN2022088572-appb-000037
稠和一个苯基后的带有基团R1、R2的吲哚并咔唑基团的通式为
Figure PCTCN2022088572-appb-000038
可以改变吲哚并咔唑相邻片段的共轭效应,使得
Figure PCTCN2022088572-appb-000039
的最高分子占据轨道HOMO的能量值最大,三重态能级最小,迁移率最高。
可选地,X1-X8中的相邻X基团之间稠合为:
Figure PCTCN2022088572-appb-000040
Figure PCTCN2022088572-appb-000041
中的任一种;其中,*为稠合位置;X19为碳-R4R5、氧、硫、氮-R6中的任一种;X24和X29各自独立地为氧、硫、氮-R7中的任一种;X20-X23各自独立地为碳-R8、氮中的任一种;R4、R5、R6和R8各自独立地为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;R7为苯基。
可选地,三嗪类衍生物的结构通式为:
Figure PCTCN2022088572-appb-000042
其中,X9-X18各自独立地为碳-氘、碳-R7、氮中的任一种;其中R7为苯基。
可选地,三嗪类衍生物的结构通式在其它基团均相同的情况下,具有侧链的结构比未具有侧链的结构的最低分子未占据轨道LUMO的能量值小。从而可以通过在同一结构通式中增加取代基,即增加同一结构通式中结构的分子量,可以改变直接与三嗪基团相连的基团的共轭效应,使得最低分子未占据轨道LUMO的能量值最小,三重态能级最小,迁移率最高。
例如:在
Figure PCTCN2022088572-appb-000043
上稠和一个苯基后得到
Figure PCTCN2022088572-appb-000044
可以改变直接与三嗪基团相连的基团的共轭效应,使得
Figure PCTCN2022088572-appb-000045
的最低分子未占据轨道LUMO的能量值最小,三重态能级最小,迁移率最高。
可选地,X9-X18中的相邻X基团之间稠合为:
Figure PCTCN2022088572-appb-000046
Figure PCTCN2022088572-appb-000047
中的任一种;其中,*为稠合位置;X24和X29各自独立地为氧、硫、氮-R7中的任一种;X25-X28各自独立地为碳-R8、氮中的任一种;R8为单键、苯基、联苯基、萘基、咔唑、 二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;R7为苯基。
可选地,X19-X23中的相邻X基团之间、以及X24-X28中的相邻X基团之间分别稠合为:
Figure PCTCN2022088572-appb-000048
中的任一种。
可选地,吲哚咔唑类衍生物的化学结构式包括:
Figure PCTCN2022088572-appb-000049
中的任一种。
可选地,三嗪类衍生物的化学结构式包括:
Figure PCTCN2022088572-appb-000050
Figure PCTCN2022088572-appb-000051
中的任一种。
另一方面,本公开的实施例提供了一种发光器件,包括上述的发光层。
这里对于上述发光器件的制备工艺不做具体限定,示例的,该发光器件可以采用真空蒸镀制备发光器件中的各膜层。
这里对于上述发光器件的类型不做具体限定,示例的,该发光器件可以包括顶发射型发光器件或者底发射型发光器件。
本公开实施例提供的发光器件中,一方面,通过限定发光层中空穴型主体材料和电子型主体材料的能级搭配,能够使得空穴型主体材料和电子型主体材料在外界能量的作用下形成的激基复合物带隙较 大,并有效减小激基复合物上三重态激子向客体材料的跃迁,加强Forster能量传递,进一步降低三重态激子的密度,降低TTA效应。另一方面,发光层中空穴型主体材料和电子型主体材料在外界能量的作用下形成的激基复合物带隙较大,还能够提高启亮电压,从而有效改善像素间串扰的情况。
这里对于上述发光器件的启亮电压范围不做具体限定,示例的,上述发光器件的启亮电压的范围包括1.8V-2.2V,此时的启亮电压为1nit亮度对应的电压。具体的,该启亮电压可以为1.8V、1.9V、2.0V、2.1V或者2.2V等。
可选地,参考图6所示,发光器件还包括阳极1和阴极3,发光层2设置在阳极1和阴极3之间。
这里对于上述阳极的材料不做具体限定,示例的,上述阳极的材料可以包括ITO(Indium Tin Oxides,铟锡氧化物)。
这里对于上述阳极的制作工艺不做具体限定,示例的,可以将带有ITO的玻璃板在去离子水中超声处理,然后在100℃下烘干,得到阳极。
可选地,参考图6所示,发光器件还包括设置在阳极1和发光层2之间的空穴注入层4、空穴传输层5和电子阻挡层6、以及设置在阴极3和发光层2之间的电子注入层7、电子传输层8和空穴阻挡层9。
其中,参考图6所示,空穴注入层4设置在阳极1和空穴传输层5之间,空穴传输层5设置在空穴注入层4和电子阻挡层6之间;电子注入层7设置在阴极3和电子传输层8之间,电子传输层8设置在电子注入层7和空穴阻挡层9之间。
上述电子阻挡层的材料可以是具有空穴传输特性的物质,例如芳胺类化合物、二甲基芴或者咔唑材料及其衍生物中的任一种。示例的,电子阻挡层的材料可以是CBP,其化学结构式为
Figure PCTCN2022088572-appb-000052
这里对于上述电子阻挡层的厚度不做具体限定,示例的,上述电子阻挡层的厚度可以为80nm。
上述空穴阻挡层的材料可以是芳族杂环化合物,例如苯并咪唑、三嗪、嘧啶、吡啶、吡嗪、喹喔啉、喹啉、二唑、二氮杂磷杂环戊二 烯、氧化膦、芳族酮、内酰胺、硼烷的化合物及其衍生物的任一种或两种以上的组合。示例的,该空穴阻挡层的材料可以是TPBI,TPBI的中文名称为1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯,其化学结构式为
Figure PCTCN2022088572-appb-000053
上述电子阻挡层能够阻挡发光层中的电子穿出发光层,保证更多地电子在发光层中与空穴发生复合,从而提高激子数量,进而提高发光效率。上述空穴阻挡层能够阻挡发光层中的空穴穿出发光层,保证更多地空穴在发光层中与电子发生复合,从而提高激子数量,进而提高发光效率。
上述空穴注入层的材料可以是无机的氧化物、强吸电子体系的p型掺杂剂和空穴传输材料的掺杂物,例如六氰基六氮杂三亚苯基;2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌(F4TCNQ),其化学结构式为
Figure PCTCN2022088572-appb-000054
1,2,3-三[(氰基)(4-氰基-2,3,5,6-四氟苯基)亚甲基]环丙烷;4,4′,4″-三[苯基(间甲苯基)氨基]三苯胺(m-MTDATA),其化学结构式为
Figure PCTCN2022088572-appb-000055
等。
上述空穴传输层的材料可以是具有空穴传输特性的物质,例如芳胺类化合物、二甲基芴或者咔唑材料及其衍生物中的任一种。示例的,该空穴传输层的材料可以是m-MTDATA。
上述电子注入层的材料可以是碱金属或者金属,例如LiF、Yb、Mg、Ca或者它们的化合物等。这里LiF的中文名称为氟化锂;Yb的中文名称为镱。
上述电子传输层的材料可以是芳族杂环化合物,例如苯并咪唑、三嗪、嘧啶、吡啶、吡嗪、喹喔啉、喹啉、二唑、二氮杂磷杂环戊二烯、 氧化膦、芳族酮、内酰胺、硼烷的化合物及其衍生物的任一种或两种以上的组合。示例的,该电子传输层的材料可以是BCP,BCP的中文名称为2,9-二甲基-4,7-联苯-1,10-菲罗啉。
下面分别将实施例1(RH-P1:RH-N1)、实施例2(RH-P2:RH-N2)、实施例3(RH-P3:RH-N3)和对比例1(RH-P4:RH-N4)的材料形成的发光层应用于发光器件,得到如下表二所示的各个发光器件的结构。
表二
Figure PCTCN2022088572-appb-000056
上述表二中,√代表发光器件中具有该膜层;RH-P1:RH-N1(4:6)代表空穴型主体材料与电子型主体材料的比值;RD(2%)代表客体材料在主体材料中的掺杂比例;40nm代表发光层的厚度。
对表二所示的各个发光器件进行性能测试,得到如下表三所示的性能参数值。
表三
编号 V(V) 效率(Cd/A) CIEx CIEy LT95(h) Von(V) 效率rolloff
实施例1 100% 106% 0.68 0.31 128% 104% 5.8%
实施例2 101% 104% 0.68 0.31 119% 106% 6.2%
实施例3 98% 105% 0.68 0.31 116% 105% 5.4%
实施例4 100% 100% 0.68 0.31 100% 100% 10.1%
上述表三中,V代表加载在发光器件上的电压;CIE x代表色坐标中的x值,CIE y代表色坐标中的y值;LT95代表发光器件的初始亮度降低到95%初始亮度的亮度所需的时间;Von代表发光器件的启亮电压; 效率roll off代表随加载在发光器件上的电压增加的效率下降值,占初始效率值的比例。
从表三可以得到:本公开的材料形成的发光器件比对比例的材料形成的发光器件的发光效率均较高、寿命均较长、启亮电压均较高,效率滚降均较低。其中,1nit亮度和600nit亮度的效率roll off在3%-10%。
需要说明的是,表三中的电压、效率、寿命、启亮电压和效率滚降的数值均不是实际数值,这里以电压为例进行说明,假设实际测量得到的对比例4形成的发光层制备得到的发光器件的电压为1V,那么实际测量得到的本实施例2形成的发光层制备得到的发光器件的电压为1.01V,其他参数均以此为例,这里不再赘述。
上述发光器件可以应用于显示装置中,这里对于显示装置的具体结构不做限定。
示例的,显示装置可以包括显示基板和发光器件。显示基板包括阵列排布的多个像素单元,发光器件包括阵列排布的红色发光器件、绿色发光器件和蓝色发光器件。每个像素单元包括红色子像素、绿色子像素和蓝色子像素,红色子像素与红色发光器件电连接,绿色子像素与绿色发光器件电连接,蓝色子像素与蓝色发光器件电连接。
参考图7所示,红色子像素与红色发光器件100电连接,绿色子像素与绿色发光器件200电连接,蓝色子像素与蓝色发光器件300电连接。参考图7所示,以位于最左端的红色子像素为例说明具体结构,红色子像素包括:位于衬底10上的依次层叠设置的缓冲层11、有源层210、栅绝缘层12、栅极金属层(包括栅极110和第一电极212)、绝缘层13、电极层(包括第二电极213)、层间介质层14、源漏金属层(包括源极111和漏极112)、平坦层15、像素界定层302。其中,第一电极212和第二电极213用于形成存储电容。像素界定层302包括开口,开口内设置有红色发光器件100,红色发光器件100的阳极1与薄膜晶体管的漏极112电连接。显示基板还包括位于像素界定层302之上的隔垫物34。需要说明的是,该显示基板中,可以是部分像素界定层上设置有隔垫物,也可以是全部像素界定层上设置有隔垫物,这里不做限定。
红色发光器件100包括阳极1、以及位于阳极1上的依次层叠设置的空穴注入层4、空穴传输层5、电子阻挡层6、红色发光层113、空穴阻挡层9、电子传输层8、电子注入层7、阴极3。
需要说明的是,图7所示的绿色发光器件200和蓝色发光器件300的发光层与红色发光器件100的发光层的材料不同,绿色发光器件的发光层用于发出绿光,蓝色发光器件的发光层用于发出蓝光,红色发光器件的发光层用于发出红光。另外,绿色发光器件和蓝色发光器件的电子阻挡层与红色发光器件的电子阻挡层的材料也不同。除发光层和电子阻挡层以外,绿色发光器件、蓝色发光器件包括的其它膜层均与红色发光器件相同,这里不再赘述。
参考图7所示,该显示装置还可以包括覆盖发光器件的第一无机层421、有机层43、第二无机层422,第一无机层421、有机层43和第二无机层422可以起到封装作用,保护发光器件,延长使用寿命。
又一方面,本公开的实施例提供了一种显示装置,包括上述的发光器件。
上述显示装置可以是柔性显示装置(又称柔性屏),也可以是刚性显示装置(即不能折弯的显示屏),这里不做限定。上述显示装置可以是OLED显示装置,还可以是LCD(Liquid Crystal Display,液晶显示装置)显示装置。上述显示装置可以是电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件;上述显示装置还可以应用于身份识别、医疗器械等领域,已推广或具有很好推广前景的产品包括安防身份认证、智能门锁、医疗影像采集等。该显示装置具有TTA效应显著减小且启亮电压提高、像素间串扰较小、显示效果好、寿命长、稳定性高、对比度高、成像质量好、产品品质高等优点。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (22)

  1. 一种发光层,其中,包括:
    主体材料,包括空穴型主体材料和电子型主体材料;在外界能量的作用下,所述主体材料被配置为能够形成激基复合物;
    客体材料,掺杂于所述主体材料中;
    其中,所述空穴型主体材料的最高分子占据轨道HOMO的能量值与所述电子型主体材料的最低分子未占据轨道LUMO的能量值的差值的绝对值满足:2.4eV≤|HOMO-LUMO|≤3.2eV。
  2. 根据权利要求1所述的发光层,其中,所述激基复合物的单重态能级与三重态能级之间的能级差满足:0eV≤△Est≤0.3eV。
  3. 根据权利要求1所述的发光层,其中,所述主体材料包括至少一个氘原子。
  4. 根据权利要求3所述的发光层,其中,所述空穴型主体材料包括吲哚咔唑类衍生物,所述吲哚咔唑类衍生物包括第一六元环、第二六元环、第三六元环和两个含氮五元环,所述第一六元环通过一个所述含氮五元环与所述第二六元环稠合、且所述第二六元环还通过另一个所述含氮五元环与所述第三六元环稠合;
    所述电子型主体材料包括三嗪类衍生物,所述三嗪类衍生物包括三嗪基团和与所述三嗪基团分别键合的第四六元环、第五六元环和第六六元环。
  5. 根据权利要求4所述的发光层,其中,所述第二六元环和所述第五六元环包括苯环;
    所述第一六元环、所述第三六元环、所述第四六元环和所述第六六元环各自独立地包括苯环、具有侧链的苯环、无取代基团的含氮杂环、具有所述侧链的含氮杂环中的至少一种;
    其中,所述第一六元环、所述第二六元环、所述第三六元环、所述第四六元环、所述第五六元环和所述第六六元环中除所述侧链以外的至少三个碳-氢键被碳-氘键取代。
  6. 根据权利要求4所述的发光层,其中,所述吲哚咔唑类衍生物还包括第一芳基和第二芳基,所述第一芳基和所述第二芳基分别与两个所述含氮五元环上的氮原子键合;
    所述第一芳基和所述第二芳基中的至少四个碳-氢键被碳-氘键取代。
  7. 根据权利要求4所述的发光层,其中,所述第二六元环和所述第五六元环包括苯环;
    所述第一六元环、所述第三六元环、所述第四六元环和所述第六六元环各自独立地包括苯环、具有侧链的苯环、无取代基团的含氮杂环、具有所述侧链的含氮杂环中的至少一种;
    其中,所述侧链中的至少一个碳-氢键被碳-氘键取代。
  8. 根据权利要求7所述的发光层,其中,所述吲哚咔唑类衍生物还包括第一芳基和第二芳基,所述第一芳基和所述第二芳基分别与两个所述含氮五元环上的氮原子键合;
    所述第一芳基、所述第二芳基和所述侧链中的至少四个碳-氢键被碳-氘键取代。
  9. 根据权利要求5所述的发光层,其中,所述吲哚咔唑类衍生物的结构通式为:
    Figure PCTCN2022088572-appb-100001
    其中,X1-X8各自独立地为碳-氘、碳-R3、氮中的任一种;其中R3为苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;
    R1、R2各自独立地为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;
    m、n各自独立地为0、1、2中的任一种。
  10. 根据权利要求9所述的发光层,其中,
    Figure PCTCN2022088572-appb-100002
    包括
    Figure PCTCN2022088572-appb-100003
    中的任一种。
  11. 根据权利要求10所述的发光层,其中,所述
    Figure PCTCN2022088572-appb-100004
    所述
    Figure PCTCN2022088572-appb-100005
    中的最高分子占据轨道HOMO的能量值均小于所述
    Figure PCTCN2022088572-appb-100006
    中的最高分子占据轨道HOMO的能量值。
  12. 根据权利要求10所述的发光层,其中,所述
    Figure PCTCN2022088572-appb-100007
    所述
    Figure PCTCN2022088572-appb-100008
    和所述
    Figure PCTCN2022088572-appb-100009
    中,任一结构通式在其 它基团均相同的情况下,具有所述侧链的结构比未具有所述侧链的结构的最高分子占据轨道HOMO的能量值大。
  13. 根据权利要求10所述的发光层,其中,X1-X8中的相邻X基团之间稠合为:
    Figure PCTCN2022088572-appb-100010
    中的任一种;
    其中,*为稠合位置;
    X19为碳-R4R5、氧、硫、氮-R6中的任一种;
    X24和X29各自独立地为氧、硫、氮-R7中的任一种;
    X20-X23各自独立地为碳-R8、氮中的任一种;
    R4、R5、R6和R8各自独立地为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;
    R7为苯基。
  14. 根据权利要求4所述的发光层,其中,所述三嗪类衍生物的结构通式为:
    Figure PCTCN2022088572-appb-100011
    其中,X9-X18各自独立地为碳-氘、碳-R7、氮中的任一种;其中R7为苯基。
  15. 根据权利要求14所述的发光层,其中,所述三嗪类衍生物的结构通式在其它基团均相同的情况下,具有所述侧链的结构比未具有所述侧链的结构的最低分子未占据轨道LUMO的能量值小。
  16. 根据权利要求14所述的发光层,其中,X9-X18中的相邻X基团之间稠合为:
    Figure PCTCN2022088572-appb-100012
    中的任一种;
    其中,*为稠合位置;
    X24和X29各自独立地为氧、硫、氮-R7中的任一种;
    X25-X28各自独立地为碳-R8、氮中的任一种;
    R8为单键、苯基、联苯基、萘基、咔唑、二苯并呋喃、二苯并噻吩、二甲基芴、二苯基芴、C1-C10的烷基中的任一种;
    R7为苯基。
  17. 根据权利要求13或16所述的发光层,其中,X19-X23中的相邻X基团之间、以及X24-X28中的相邻X基团之间分别稠合为:
    Figure PCTCN2022088572-appb-100013
    中的任一种。
  18. 根据权利要求9所述的发光层,其中,所述吲哚咔唑类衍生物的化学结构式包括:
    Figure PCTCN2022088572-appb-100014
    中的任一种。
  19. 根据权利要求14所述的发光层,其中,所述三嗪类衍生物的化学结构式包括:
    Figure PCTCN2022088572-appb-100015
    中的任一种。
  20. 一种发光器件,其中,包括权利要求1-19任一项所述的发光层。
  21. 根据权利要求20所述的发光器件,其中,所述发光器件还包括阳极和阴极,所述发光层设置在所述阳极和所述阴极之间。
  22. 一种显示装置,其中,包括权利要求20或21所述的发光器件。
PCT/CN2022/088572 2022-04-22 2022-04-22 一种发光层、发光器件和显示装置 WO2023201725A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/088572 WO2023201725A1 (zh) 2022-04-22 2022-04-22 一种发光层、发光器件和显示装置
CN202280000845.3A CN117296467A (zh) 2022-04-22 2022-04-22 一种发光层、发光器件和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088572 WO2023201725A1 (zh) 2022-04-22 2022-04-22 一种发光层、发光器件和显示装置

Publications (1)

Publication Number Publication Date
WO2023201725A1 true WO2023201725A1 (zh) 2023-10-26

Family

ID=88418970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088572 WO2023201725A1 (zh) 2022-04-22 2022-04-22 一种发光层、发光器件和显示装置

Country Status (2)

Country Link
CN (1) CN117296467A (zh)
WO (1) WO2023201725A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683615A (zh) * 2011-03-17 2012-09-19 株式会社东芝 有机电致发光元件、显示装置和照明装置
CN105895811A (zh) * 2015-01-26 2016-08-24 北京维信诺科技有限公司 一种热活化敏化荧光有机电致发光器件
US20170125715A1 (en) * 2014-09-26 2017-05-04 Konica MinoIta, Inc. Organic electroluminescent element
CN107200743A (zh) * 2016-03-16 2017-09-26 环球展览公司 组合物、有机发光装置和其制造方法以及消费型产品
CN112909197A (zh) * 2021-02-08 2021-06-04 吉林奥来德光电材料股份有限公司 超荧光叠层器件及其制备方法、显示面板和显示装置
CN113823749A (zh) * 2021-07-21 2021-12-21 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN113969168A (zh) * 2021-10-27 2022-01-25 京东方科技集团股份有限公司 红光有机电致发光组合物、红光有机电致发光器件及包含其的显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683615A (zh) * 2011-03-17 2012-09-19 株式会社东芝 有机电致发光元件、显示装置和照明装置
US20170125715A1 (en) * 2014-09-26 2017-05-04 Konica MinoIta, Inc. Organic electroluminescent element
CN105895811A (zh) * 2015-01-26 2016-08-24 北京维信诺科技有限公司 一种热活化敏化荧光有机电致发光器件
CN107200743A (zh) * 2016-03-16 2017-09-26 环球展览公司 组合物、有机发光装置和其制造方法以及消费型产品
CN112909197A (zh) * 2021-02-08 2021-06-04 吉林奥来德光电材料股份有限公司 超荧光叠层器件及其制备方法、显示面板和显示装置
CN113823749A (zh) * 2021-07-21 2021-12-21 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN113969168A (zh) * 2021-10-27 2022-01-25 京东方科技集团股份有限公司 红光有机电致发光组合物、红光有机电致发光器件及包含其的显示装置

Also Published As

Publication number Publication date
CN117296467A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
KR102013506B1 (ko) 유기전계발광소자
TWI666801B (zh) 透過磷光摻雜物分佈管理之延長的有機發光裝置(oled)操作壽命
US8558224B2 (en) Organic light-emitting diode, display and illuminating device
Chen et al. On the origin of the shift in color in white organic light-emitting diodes
CN106058066B (zh) 有机电致发光器件及其制备方法、显示装置
US8754399B2 (en) Organic electroluminescence element, organic electroluminescence device, organic el display device, and organic el lighting
KR102078365B1 (ko) 유기 발광 장치
WO2023000961A1 (zh) 有机电致发光器件、显示面板及显示装置
CN111969119A (zh) 有机电致发光器件、显示面板及显示装置
KR102122453B1 (ko) 유기 발광 장치
KR102081595B1 (ko) 인광 호스트 물질 및 이를 이용하는 유기전계발광소자
CN108011040A (zh) 一种绿光有机电致发光器件
GB2569854A (en) Organic compound, and light-emitting diode and light-emitting device including the same
Chang et al. Great improvement of operation-lifetime for all-solution OLEDs with mixed hosts by blade coating
Jayabharathi et al. Asymmetrically twisted phenanthrimidazole derivatives as host materials for blue fluorescent, green and red phosphorescent OLEDs
WO2017216557A1 (en) Methods for the production of organic electronic devices
Ying et al. A Promising Multifunctional Deep‐Blue Fluorophor for High‐Performance Monochromatic and Hybrid White OLEDs with Superior Efficiency/Color Stability and Low Efficiency Roll‐Off
CN113135945A (zh) 一种有机硼半导体材料及oled器件应用
US20220158110A1 (en) Organic light emitting diode and organic light emitting device including thereof
CN116113300A (zh) 一种发光层、发光器件和显示装置
WO2023201725A1 (zh) 一种发光层、发光器件和显示装置
Liu et al. Triazolotriazine-based mixed host for pure-red phosphorescent organic light-emitting diodes exhibiting ultra-low efficiency roll-off
TWI744886B (zh) 有機電致發光元件
KR20230092605A (ko) 유기발광다이오드 및 이를 포함하는 유기발광장치
TWI498044B (zh) 有機電激發光元件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000845.3

Country of ref document: CN