WO2019174650A1 - 一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用 - Google Patents

一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用 Download PDF

Info

Publication number
WO2019174650A1
WO2019174650A1 PCT/CN2019/080631 CN2019080631W WO2019174650A1 WO 2019174650 A1 WO2019174650 A1 WO 2019174650A1 CN 2019080631 W CN2019080631 W CN 2019080631W WO 2019174650 A1 WO2019174650 A1 WO 2019174650A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
formula
linear
molar ratio
Prior art date
Application number
PCT/CN2019/080631
Other languages
English (en)
French (fr)
Inventor
庞羽佳
张兆超
李崇
张小庆
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019174650A1 publication Critical patent/WO2019174650A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/153Ortho-condensed systems the condensed system containing two rings with oxygen as ring hetero atom and one ring with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the invention belongs to the technical field of semiconductors, and in particular relates to a compound with isophthalic acid as a core, a preparation method thereof and application thereof to an organic electroluminescence device.
  • OLED Organic Light Emission Diodes
  • the OLED light-emitting device is like a sandwich structure, including an electrode material film layer and an organic functional material sandwiched between different electrode film layers, and various functional materials are superposed on each other according to the purpose to form an OLED light-emitting device.
  • the OLED light-emitting device functions as a current device.
  • the positive and negative charges in the organic layer functional material film layer are applied by the electric field, the positive and negative charges are further recombined in the light-emitting layer, that is, the OLED electroluminescence is generated.
  • OLED display technology has been applied in the fields of smart phones, tablet computers, etc., and will further expand to large-size applications such as television, but the luminous efficiency and service life of OLED devices are compared with actual product application requirements. Further improvement is needed.
  • research on improving the performance of OLED light-emitting devices includes: reducing the driving voltage of the device, improving the luminous efficiency of the device, and improving the service life of the device.
  • the OLED optoelectronic functional materials applied to OLED devices can be divided into two categories from the use of charge injection transport materials and luminescent materials. Further, the charge injection transport material may be further classified into an electron injection transport material, an electron blocking material, a hole injection transport material, and a hole blocking material, and the luminescent material may be further divided into a host luminescent material and a dopant material.
  • organic functional materials are required to have good photoelectric properties.
  • a charge transport material it is required to have good carrier mobility, high glass transition temperature, etc., as a main body of the light-emitting layer.
  • the material has good bipolarity, appropriate HOMO/LUMO energy levels, and the like.
  • the OLED photoelectric functional material film layer constituting the OLED device includes at least two layers or more, and the industrially applied OLED device structure includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, and an electron transport.
  • Layers, electron injection layers and other film layers, that is to say, the photoelectric functional materials applied to the OLED device include at least hole injection materials, hole transport materials, luminescent materials, electron transport materials, etc., and the material types and combinations are rich. And the characteristics of diversity.
  • the optoelectronic functional materials used have strong selectivity, and the performance of the same materials in different structural devices may be completely different.
  • the photoelectric characteristics of devices must be selected to be more suitable and higher performance OLED functional materials or material combinations in order to achieve high efficiency and long life of the device. And the comprehensive characteristics of low voltage.
  • the development of OLED materials is still far from enough. It is lagging behind the requirements of panel manufacturers, and it is especially important to develop higher performance organic functional materials as material enterprises.
  • the present invention provides a compound having a homo benzene as a core, a preparation method thereof, and an application thereof to an organic electroluminescence device.
  • the compound of the invention has the homogenization of benzene as the core, has high glass transition temperature and molecular thermal stability, suitable HOMO and LUMO energy levels, high Eg, and can optimize the photoelectric performance of OLED device and OLED device through device structure optimization. Life expectancy.
  • One aspect of the present invention provides a compound having a homophenyl group as a core, and the structure of the compound is as shown in the formula (1):
  • n is represented by the number 1 or 2
  • Ar 1 and Ar 2 are each independently represented by a C 1 -C 10 linear or branched alkyl substituted or unsubstituted phenyl group, a C 1 -C 10 linear or branched alkyl substituted or unsubstituted biphenyl group.
  • C 1 -C 10 linear or branched alkyl substituted or unsubstituted naphthyl C 1 -C 10 linear or branched alkyl substituted or unsubstituted dibenzofuranyl, C 1 -C 10 a linear or branched alkyl substituted or unsubstituted 9,9-dimethylindenyl, C 1 -C 10 linear or branched alkyl substituted or unsubstituted N-phenylcarbazolyl;
  • Ar 3 and Ar 4 are represented by the structure represented by the general formula (2):
  • R 1 to R 8 are each independently represented by a hydrogen atom, a C 1 -C 10 linear or branched alkyl group, a C 2 -C 10 linear or branched olefin group, a C 6 -C 30 aryl group, C 5 ⁇ C 30 heteroaryl group, a C 5 ⁇ C 30 heteroaryl group hetero atom is O, S, N; wherein, R 1 and R 2, R 2 and R 3, R 3 and R 4, R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to the ring or may be synthesized without a bond;
  • the groups represented by R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 pass The C, N, O, S element bond synthesis ring.
  • Ar 3 and Ar 4 are represented by any one of the formulas (3) to (9):
  • R 9 and R 10 are each independently represented by a C 1 -C 10 linear or branched alkyl group, a C 2 -C 10 linear or branched olefin group, a C 6 -C 30 aryl group, or a C 5 -C 30 heteroaryl;
  • X 1 represents an oxygen atom, a sulfur atom, an imido group, a C 1 -C 10 linear or branched alkyl substituted alkylene group, an aryl substituted alkylene group, an alkyl substituted imido group or an aryl group.
  • One of the substituted imido groups is one of the substituted imido groups.
  • X 1 represents one of a C 1 -C 10 linear or branched alkyl-substituted alkylene group, an aryl-substituted alkylene group, an alkyl-substituted imido group or an aryl-substituted imido group.
  • Another aspect of the present invention provides a method for preparing a compound having a homophenyl group as a core as described above,
  • the intermediate M and the intermediate N are dissolved in toluene, and Pd 2 (dba) 3 , triphenylphosphine and potassium t-butoxide are added, and the mixed solution of the above reactants is reacted at 90-110 ° C under an inert atmosphere. -24h, cooling, filtering the reaction solution, the filtrate is steamed, and the residue is passed through a silica gel column to obtain the target compound;
  • the intermediate P and the intermediate N are dissolved in toluene, Pd 2 (dba) 3 , triphenylphosphine and potassium t-butoxide are added, and the mixed solution of the above reactants is reacted at 90-110 ° C under an inert atmosphere. -24h, cooling, filtering the reaction solution, the filtrate is steamed, and the residue is passed through a silica gel column to obtain the target compound;
  • the toluene is used in an amount of 30-50 mL of toluene per gram of the intermediate M; the molar ratio of the intermediate M to the intermediate N is 1: (1.0) The molar ratio of the Pd 2 (dba) 3 to the intermediate M is (0.006-0.02): 1, the molar ratio of the sodium t-butoxide to the intermediate M is (2.0-3.0): 1; The molar ratio of the triphenylphosphine to the intermediate M is (2.0-3.0): 1;
  • the toluene is used in an amount of 30-50 mL of toluene per gram of the intermediate M1; the molar ratio of the intermediate P to the intermediate N is 1: (2.0-2.5) The molar ratio of the Pd 2 (dba) 3 to the intermediate P is (0.006-0.02): 1, the molar ratio of the sodium t-butoxide to the intermediate P is (2.0-3.0): 1; The molar ratio of phenylphosphine to intermediate P was (2.0-3.0):1.
  • the present invention also provides an application of a perylene-based compound as described above in an organic electroluminescent device.
  • the present invention also provides an organic electroluminescent device having at least one organic thin film layer between its anode and cathode, the organic thin film layer containing a compound having a homophenyl group as described above.
  • the organic thin film layer includes a light-emitting layer, and the material used for the light-emitting layer contains a compound having a homophenyl group as a core as described above.
  • the organic thin film layer comprises a light-emitting layer and at least two hole transport layers, wherein a material of the hole transport layer comprises a compound having a homophenyl group as described above.
  • the present invention also provides a display element comprising the above-described organic electroluminescent device.
  • the compound of the present invention is a homo-benzene compound, and the branched chain contains a triarylamine structure, so that it has strong hole transporting ability, high hole mobility, can be used as a hole transporting material, and a high hole transport rate can be Improve the efficiency of the organic electroluminescent device; at the appropriate LUMO level, it acts as an electron blocking, enhances the recombination efficiency of the excitons in the luminescent layer, reduces the efficiency roll-off at high current density, and reduces the device voltage. Improve the current efficiency and lifetime of the device.
  • the compound of the present invention is centered on the same benzene, and the three branches connected are radial. After the material is formed into a film, the branches can cross each other to form a dense layer, thereby reducing the leakage current of the material after application of the OLED device. , thus increasing the life of the device.
  • the compound of the present invention can optimize the optical layer performance of the OLED device and the lifetime of the OLED device by optimizing the structure of the device in the application of the OLED device, and the compound of the invention is in the OLED light-emitting device. Has a good application effect and industrialization prospects.
  • the compound provided by the invention has high glass transition temperature and molecular thermal stability, suitable HOMO and LUMO energy levels, high Eg, and optimized by device structure, can effectively improve the photoelectric performance of the OLED device and the lifetime of the OLED device. .
  • 1 is a schematic view showing the structure of a compound of the present invention applied to an OLED device
  • FIG. 2 is a graph showing current efficiency versus temperature for an OLED device prepared from a compound of the present invention
  • FIG. 3 is a graph showing a leakage current test of a reverse voltage of a device fabricated in Device Example 1 and Device Comparative Example 1 of the present invention.
  • the reagents, materials, and instruments used are all conventional reagents, conventional materials, and conventional instruments, unless otherwise specified, and are commercially available, and the reagents involved may also be conventionally used. Synthetic methods are obtained synthetically.
  • intermediate N Specific preparation examples of intermediate N, intermediate M, intermediate P and intermediate Q are described below by Example 1.
  • the naming of each intermediate can be distinguished by Arabic numerals, such as intermediate N-1, intermediate N-2, Intermediate M-1, intermediate M-2, and the like.
  • the raw material I and the raw material II are dissolved in toluene, and Pd 2 (dba) 3 , triphenylphosphine and potassium t-butoxide are added; and the mixed solution of the above reactants is reacted at a degree of 90-110 ° C under an inert atmosphere. After 24 hours, the reaction solution was cooled and filtered, and the filtrate was evaporated to dryness.
  • the residue was passed through silica gel column to afford intermediate N; the molar ratio of the starting material I to the starting material II was 1: (1.0-1.5); Pd 2 (dba) 3 and The molar ratio of the starting material I is (0.006-0.02): 1, the molar ratio of sodium t-butoxide to the starting material I is (2.0-3.0): 1; the molar ratio of triphenylphosphine to the starting material I is (2.0-3.0): 1; 1 g of starting material I was added to 50-100 mL of toluene.
  • Nitrogen gas was introduced into a 250 mL three-necked flask, and 0.01 mol of 4-aminobiphenyl, 0.012 mol of 4-bromobiphenyl, 0.03 mol of potassium t-butoxide, and 1 ⁇ 10 -4 mol of Pd 2 (dba) 3 , 1 ⁇ were added.
  • the other intermediate N is prepared.
  • the structural formula of the intermediate N and the corresponding raw materials used in the present invention are shown in Table 1:
  • Step 1 Dissolve the raw material III and the raw material IV with toluene, add Pd 2 (dba) 3 , triphenylphosphine and potassium t-butoxide; react the mixed solution of the above reactants at 90-110 ° C under an inert atmosphere. After 10-24 hours, the reaction solution was cooled, filtered, and the filtrate was evaporated to dryness.
  • the residue was passed through a silica gel column to afford intermediate O; the molar ratio of the starting material III to the starting material IV was 1: (1.0-1.5); Pd 2 (dba) 3 molar ratio of raw material III is (0.006-0.02): 1, the molar ratio of sodium t-butoxide to raw material III is (2.0-3.0): 1; the molar ratio of triphenylphosphine to raw material III is (2.0-3.0) ): 1; 1 g of the starting material III was added to 50-100 mL of toluene.
  • Step 2 Dissolve the intermediate O and the starting material V in toluene, add Pd 2 (dba) 3 , triphenylphosphine and potassium t-butoxide; and mix the above reactants at a reaction temperature of 90-110 under an inert atmosphere.
  • the reaction is carried out at ° C for 10-24 hours, the reaction solution is cooled and filtered, and the filtrate is evaporated to dryness.
  • intermediate M The residue is passed through a silica gel column to obtain intermediate M; the molar ratio of the intermediate O to the starting material V is 1: (1.0-1.5); Pd The molar ratio of 2 (dba) 3 to intermediate O is (0.006-0.02): 1, the molar ratio of sodium t-butoxide to intermediate O is (2.0-3.0): 1; triphenylphosphine and intermediate O The molar ratio was (2.0-3.0): 1; 1 g of the intermediate O was added to 50-100 mL of toluene.
  • Step 1 Introduce nitrogen into a 250 ml three-necked flask, add 0.01 mol of starting material III, 0.012 mol of intermediate IV-1, 0.03 mol of potassium t-butoxide, 1 ⁇ 10 -4 mol of Pd 2 (dba) 3 , 1 ⁇ 10 -4 mol of tri-tert-butylphosphine, 150 mL of toluene, heating under reflux for 12 hours, sampling the plate, the reaction is complete; natural cooling, filtration, and the filtrate is steamed, and the residue is passed through a silica gel column to obtain an intermediate O-1; Molecular formula C 24 H 23 Br 2 N): calcd for C,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
  • Step 2 Nitrogen gas was introduced into a 250 mL three-necked flask, 0.01 mol of intermediate O-1, 0.012 mol of intermediate IV-1, 0.03 mol of potassium t-butoxide, and 1 ⁇ 10 -4 mol of Pd 2 (dba) 3 were added.
  • the other intermediate M was prepared according to the preparation method of the intermediate M-1, and the structural formula of the intermediate M and the corresponding raw materials used in the present invention is shown in Table 2:
  • the raw material III and the raw material VI are dissolved in toluene, and Pd 2 (dba) 3 , triphenylphosphine and potassium t-butoxide are added; and the mixed solution of the above reactants is reacted at 90-110 ° C under an inert atmosphere 10-24 After cooling, the reaction solution was cooled, filtered, and the filtrate was evaporated to dryness. The residue was passed through a silica gel column to afford Intermediate P.
  • the molar ratio of the starting material III to the starting material VI was 1: (1.0-1.5); Pd 2 (dba) 3 and starting materials
  • the molar ratio of III is (0.006-0.02): 1, the molar ratio of sodium t-butoxide to the starting material III is (2.0-3.0): 1; the molar ratio of triphenylphosphine to the starting material III is (2.0-3.0): 1 ; 1 g of starting material III was added to 50-100 mL of toluene.
  • the other intermediate P was prepared according to the preparation method of the intermediate P-1.
  • the structural formula of the intermediate P and the corresponding raw materials used in the present invention are shown in Table 3:
  • the raw material III and the raw material VII are dissolved in toluene, Pd 2 (dba) 3 , triphenylphosphine and potassium t-butoxide are added; and the mixed solution of the above reactants is reacted at 90-110 ° C under an inert atmosphere 10-24 After cooling, the reaction solution was cooled and filtered, and the filtrate was rotary-screwed and passed through a silica gel column to obtain Intermediate Q; the molar ratio of the starting material III to the starting material VII was 1: (2.0-2.5); Pd 2 (dba) 3 and the starting material III The molar ratio is (0.006-0.02): 1, the molar ratio of sodium t-butoxide to the starting material III is (2.0-3.0): 1; the molar ratio of triphenylphosphine to the starting material III is (2.0-3.0): 1; 1 g Starting material III was added to 50-100 mL of toluene.
  • the other intermediate Q-2 was prepared according to the preparation method of the intermediate Q-1, and the structural formula of the intermediate Q and the corresponding raw materials used in the present invention is shown in Table 4:
  • Nitrogen gas was introduced into a 250 mL three-necked flask, 0.01 mol of intermediate M-1, 0.012 mol of intermediate N-1, 0.03 mol of potassium t-butoxide, 1 ⁇ 10 -4 mol of Pd 2 (dba) 3 , 1 ⁇ were added.
  • the compound 21 was prepared in the same manner as in Example 2-1 except that the intermediate M-1 was replaced with the intermediate M-3, and the intermediate N-1 was replaced with the intermediate N-4; the elemental analysis structure (Molecular Formula C 71 H) 51 N 3 O): theory C, 88.63; H, 5.34; N, 4.37; O, 1.66; test value: C, 88.64; H, 5.34 ; N, 4.37; O, 1.65.
  • the compound 25 was prepared in the same manner as in Example 2-1 except that the intermediate M-1 was replaced with the intermediate M-4, and the intermediate N-1 was replaced with the intermediate N-5; the elemental analysis structure (Molecular Formula C 60 H 43 N 3 ): Theoretical value C, 89.41; H, 5.38; N, 5.21.; Test value: C, 89.43; H, 5.36; N, 5.21. ESI-MS (m/z) (M + ): calc. 805.35.
  • the compound 29 was prepared in the same manner as in Example 2-1 except that the intermediate M-1 was replaced with the intermediate M-5, and the intermediate N-1 was replaced with the intermediate N-6; the elemental analysis structure (Molecular Formula C 81 H 72 N 4 ): Theory C, 88.32; H, 6.59; N, 5.09; ⁇ / RTI> C, 88.33; H, 6.57; N, 5.10. ESI-MS (m/z) (M + ): ⁇ / RTI> ⁇ / RTI> ⁇ RTIgt;
  • the compound 33 was prepared in the same manner as in Example 2-1 except that the intermediate M-1 was replaced with the intermediate Q-1, and the intermediate N-1 was replaced with the intermediate N-7; the elemental analysis structure (Molecular Formula C 66 H 41 N 3 O 2): theory C, 87.30; H, 4.55; N, 4.63; O, 3.52; test value: C, 87.31; H, 4.54 ; N, 4.63; O, 3.52.
  • the compound 54 was prepared in the same manner as in Example 2-1 except that the intermediate M-1 was replaced with the intermediate M-6, and the intermediate N-1 was replaced with the starting material N-8; Elemental Analysis Structure (Molecular Formula C 66 H 54 N 4 ): Theory C, 87.77; H, 6.03; N, 6.20; Tests: C, 87.75; H, 6.05; N, 6.20. ESI-MS (m/z) (M + ): calc.
  • the compound 67 was prepared in the same manner as in Example 2-1 except that the intermediate M-1 was replaced with the intermediate Q-2, and the intermediate N-1 was replaced with the starting material N-9; the elemental analysis structure (Molecular Formula C 78 H 56 N 4 ): Theory C, 89.28; H, 5.38; N, 5.34; ⁇ / RTI> C, 89.26; H, 5.39; N, 5.35.
  • Compound 80 was prepared in the same manner as in Example 2-1 except that the intermediate M-1 was replaced with the intermediate M-7, and the intermediate N-1 was replaced with the intermediate N-10.
  • Elemental analysis structure (Molecular Formula C 74 H 51 N 3 O 2): theory C, 87.63; H, 5.07; N, 4.14; O, 3.15; test value: C, 87.65; H, 5.05 ; N, 4.14; O, 3.15.
  • Nitrogen gas was introduced into a 250 ml three-necked flask, 0.01 mol of intermediate P-1, 0.025 mol of intermediate N-11, 0.03 mol of potassium t-butoxide, 1 ⁇ 10 -4 mol of Pd 2 (dba) 3 , 1 ⁇ were added.
  • the compound 109 was prepared in the same manner as in Example 2-11 except that the intermediate P-1 was replaced with the intermediate P-2, and the intermediate N-11 was replaced with the intermediate N-12; Elemental Analysis Structure (Molecular Formula C 62 H 49 N 3): theory C, 89.07; H, 5.91; N, 5.03; test value: C, 89.05; H, 5.93 ; N, 5.03; O, 3.24. ESI-MS (m/z) (M + ): 355.
  • the compound 117 was prepared in the same manner as in Example 2-11 except that the intermediate P-1 was replaced with the intermediate P-3, and the intermediate N-11 was replaced with the intermediate N-3; Elemental Analysis Structure (Molecular Formula C 66 H 46 N 4 ): Theory C, 88.56; H, 5.18; N, 6.26; Found: C, 88.56; H, 5.18; N, 6.26. ESI-MS (m/z) (M + ): 384.
  • the compound 138 was prepared in the same manner as in Example 2-11 except that the intermediate P-1 was replaced with the intermediate P-5, and the intermediate N-1 was replaced with the intermediate N-5; the elemental analysis structure (Molecular Formula C56H37N3S): Theoretical value C, 85.79; H, 4.76; N, 5.36; S, 4.09; ⁇ / RTI> C, 85.80; H, 4.76; N, 5.35; S, 4.09. ESI-MS (m/z) (M+): Theory: 783.27.
  • Example 3 The application effect of the compound synthesized by the present invention in an OLED device will be described in detail below by way of Example 3.
  • the fabrication process of the device was identical, and the same substrate material and electrode material were used, and the film thickness of the electrode material was also kept the same, except that the hole transport layer in the device was different. And the electronic barrier material has changed.
  • the device stack structure is shown in Table 5.
  • the performance test results of each device are shown in Table 6 and Table 7.
  • an electroluminescent device is prepared as follows:
  • the compound 7 of the present invention is vapor-deposited as a hole transport / electron blocking layer 5, the vapor deposition thickness is 20 nm;
  • the host material of the light-emitting layer 6 is CBP
  • the doping material is Ir(ppy) 3
  • the mass ratio of CBP to Ir(ppy) 3 is 9: 1, the thickness is 30nm;
  • vapor deposition TPBI as a hole blocking / electron transport layer 7, vapor deposition thickness of 40nm;
  • a cathode Al was vacuum-deposited as a cathode reflective electrode layer 9, and a thickness of 100 nm was evaporated to obtain a device 1.
  • Example 3 The structural formula of the material used in Example 3 was as follows: After the fabrication of the electroluminescent device was completed in accordance with the above procedure, the IVL data and light decay lifetime of the device were measured, and the results are shown in Table 4.
  • the device examples 2-15 and the device comparative example were identical to those of the device of the device example 1, and the same substrate material and electrode material were used, and the film thickness of the electrode material was also kept the same, with the difference being the cavity.
  • the materials used for the transmission/electron barrier layer are different. See Table 5 for specific data.
  • the efficiency attenuation coefficient ⁇ of the device is defined.
  • represents the difference between the maximum efficiency ⁇ 100 of the device and the maximum efficiency ⁇ m of the device when the driving current is 100 mA/cm 2 .
  • the ratio of efficiency ⁇ 100 indicates that the efficiency of the device is more severely rolled off.
  • the present invention measures the efficiency decay coefficient ⁇ of the device 1-15 and the device comparative example, and the results are shown in Table 7:
  • the organic light-emitting device prepared by using the compound of the present invention has a small efficiency attenuation coefficient, indicating that the organic electroluminescent device prepared by using the compound of the present invention can effectively reduce the efficiency roll-off.
  • the OLED device prepared by the compound of the invention has relatively stable efficiency when working at low temperature, and the efficiency is tested in the range of -10 to 80 °C of the devices 1, 4, 11 and the device, and the results are shown in Table 8 and FIG. .
  • the devices 1, 4, and 11 are the device structures of the compound of the present invention and known materials, and the low-temperature efficiency is high compared with the device comparative example, and the efficiency is increased during the temperature increase. Smoothly rise.
  • the device fabricated by the device 1 and the device comparative example of the present invention is subjected to a reverse voltage leakage current test, and the test result is shown in FIG. 3.
  • the present invention is applied.
  • the device 1 of the compound has a small leakage current and a stable current curve as compared with the device fabricated in the device comparative example, and therefore, the compound of the present invention has a long service life after being applied to the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种以均苯为核心的化合物、其制备方法及其在有机电致发光器件上的应用,本发明化合物以均苯为核心,支链包含三芳胺结构,使得其有很强的空穴传输能力,空穴迁移率高;在合适的LUMO能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率,降低高电流密度下的效率滚降,降低器件电压,提高器件的电流效率和寿命。本发明化合物的三个支链呈放射状,材料成膜后,各支链可相互交叉形成致密性高的膜层,从而降低材料在OLED器件应用后的漏电流,因此提高了器件使用寿命。

Description

一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用 技术领域
本发明属于半导体技术领域,具体涉及一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用。
背景技术
有机电致发光(Organic Light Emission Diodes,OLED)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。OLED发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷时,正负电荷进一步在发光层中复合,即产生OLED电致发光。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率和使用寿命等性能还需要进一步提升。目前对OLED发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能的OLED功能材料。
应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。
为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料具有良好双极性,适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现也可能完全迥异。
因此,针对当前OLED器件的产业应用要求以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合、性能更高的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前的OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
本发明为了解决上述技术问题提供一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用。本发明化合物以均苯为核心,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。
本发明解决上述技术问题的技术方案如下:
本发明一方面提供了一种以均苯为核心的化合物,该化合物的结构如通式(1)所示:
Figure PCTCN2019080631-appb-000001
其中,n表示为数字1或2,m、o分别独立地表示为数字0、1或2,且m+n+o=3;
Ar 1、Ar 2分别独立地表示为C 1~C 10直链或支链烷基取代或未取代的苯基、C 1~C 10直链或支链烷基取代或未取代的联苯基、C 1~C 10直链或支链烷基取代或未取代的的萘基、C 1~C 10直链或支链烷基取代或未取代的二苯并呋喃基、C 1~C 10直链或支链烷基取代或未取代的9,9-二甲基芴基、C 1~C 10直链或支链烷基取代或未取代的N-苯基咔唑基;
Ar 3、Ar 4表示为通式(2)所示结构:
Figure PCTCN2019080631-appb-000002
其中,R 1至R 8分别独立地表示为氢原子、C 1~C 10直链或支链烷基、C 2~C 10直链或支链烯烃基、C 6~C 30芳基、C 5~C 30杂芳基,所述C 5~C 30杂芳基中的杂原子为O、S、N;其中,R 1和R 2、R 2和R 3、R 3和R 4、R 5和R 6、R 6和R 7、R 7和R 8可以键合成环,也可以不键合成环;
通式(2)中,
Figure PCTCN2019080631-appb-000003
表示为单键、
Figure PCTCN2019080631-appb-000004
进一步的,通式(2)中,R 1和R 2、R 2和R 3、R 3和R 4、R 5和R 6、R 6和R 7、R 7和R 8所表示基团通过C、N、O、S元素键合成环。
进一步的,所述Ar 3、Ar 4表示为通式(3)至通式(9)中任一结构:
Figure PCTCN2019080631-appb-000005
其中,R 9、R 10分别独立地表示为C 1~C 10直链或支链烷基、C 2~C 10直链或支链烯烃基、C 6~C 30芳基、C 5~C 30杂芳基;
X 1表示为氧原子、硫原子、亚胺基、C 1~C 10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
进一步的,当m=n=o=1时,通式(2)中的
Figure PCTCN2019080631-appb-000006
表示为
Figure PCTCN2019080631-appb-000007
或Ar 3与Ar 4不相同;
当n=2且Ar 3、Ar 4分别独立地表示为通式(3)、通式(4)或通式(8)所示结构时,通式(2)中的
Figure PCTCN2019080631-appb-000008
表示为
Figure PCTCN2019080631-appb-000009
当m或o=2且Ar 3、Ar 4分别独立地表示为通式(4)至通式(9)任一结构时,通式中
Figure PCTCN2019080631-appb-000010
表示为
Figure PCTCN2019080631-appb-000011
X 1表示为C 1~C 10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
进一步的,所述通式(2)表示为:
Figure PCTCN2019080631-appb-000012
Figure PCTCN2019080631-appb-000013
Figure PCTCN2019080631-appb-000014
Figure PCTCN2019080631-appb-000016
Figure PCTCN2019080631-appb-000017
Figure PCTCN2019080631-appb-000018
中的任意一种。进一步的,所述通式(1)的具体结构式为:
Figure PCTCN2019080631-appb-000019
Figure PCTCN2019080631-appb-000020
Figure PCTCN2019080631-appb-000021
Figure PCTCN2019080631-appb-000022
Figure PCTCN2019080631-appb-000023
Figure PCTCN2019080631-appb-000024
Figure PCTCN2019080631-appb-000025
Figure PCTCN2019080631-appb-000026
Figure PCTCN2019080631-appb-000027
Figure PCTCN2019080631-appb-000028
中的任意一种。
本发明另一方面还提供了一种如上所述的以均苯为核心的化合物的制备方法,
当通式(1)中n=1时,制备步骤如下:
将中间体M和中间体N用甲苯溶解,加入Pd 2(dba) 3、三苯基膦和叔丁醇钾,在惰性气氛下,将上述反应物的混合溶液于90-110℃下反应10-24h,冷却、过滤反应溶液,滤液旋蒸,残余物过硅胶柱,得到目标化合物;
制备过程发生的反应方程式如下:
Figure PCTCN2019080631-appb-000029
当通式(1)中n=2时,制备步骤如下:
将中间体P和中间体N用甲苯溶解,加入Pd 2(dba) 3、三苯基膦和叔丁醇钾,在惰性气氛下,将上述反应物的混合溶液于90-110℃下反应10-24h,冷却、过滤反应溶液,滤液旋蒸,残余物过硅胶柱,得到目标化合物;
制备过程发生的反应方程式如下:
Figure PCTCN2019080631-appb-000030
进一步的,当通式(1)中n=1时,所述甲苯的用量为每克中间体M用30-50mL甲苯溶解;所述中间体M与中间体N的摩尔比为1:(1.0-1.5);所述Pd 2(dba) 3与中间体M的摩尔比为(0.006-0.02):1,所述叔丁醇钠与中间体M的摩尔比为(2.0-3.0):1;所述三苯基膦与中间体M的摩尔比为(2.0-3.0):1;
当通式(1)中n=2时,所述甲苯的用量为每克中间体M1用30-50mL甲苯溶解;所述中间体P与中间体N的摩尔比为1:(2.0-2.5);所述Pd 2(dba) 3与中间体P的摩尔比为(0.006-0.02):1,所述叔丁醇钠与中间体P的摩尔比为(2.0-3.0):1;所述三苯基膦与中间体P的摩尔比为(2.0-3.0):1。
本发明还提供了一种如上所述的以均苯为核心的化合物在有机电致发光器件中的应用。
本发明还提供了一种有机电致发光器件,在其阳极和阴极间具有至少一层有机薄膜层,所述有机薄膜层含有如上所述的以均苯为核心的化合物。
进一步的,所述有机薄膜层包括发光层,所述发光层所用材料含有如上所述的以均苯为核心的化合物。
进一步的,所述有机薄膜层包括发光层和至少两层空穴传输层,其中一层所述空穴传输层所用材料含有如上所述的以均苯为核心的化合物。
本发明还提供了一种显示元件,所述显示原件含有上述的有机电致发光器件。
本发明的有益效果是:
1.本发明化合物为均苯类化合物,支链包含三芳胺结构,使得其有很强的空穴传输能力,空穴迁移率高,可作为空穴传输材料使用,高的空穴传输速率能够提高有机电致发光器件的效率;在合适的LUMO能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率,降低高电流密度下的效率滚降,降低器件电压,提高器件的电流效率和寿命。
2.本发明化合物以均苯为中心,连接的3个支链呈放射状,材料成膜后,各支链可相互交叉形成致密性高的膜层,从而降低材料在OLED器件应用后的漏电流,因此提高器件使用寿命。
3.本发明的化合物在OLED器件应用时,通过器件结构优化,可保持高的膜层稳定性, 可有效提升OLED器件的光电性能以及OLED器件的寿命,本发明所述化合物在OLED发光器件中具有良好的应用效果和产业化前景。
4.本发明提供的化合物具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。
附图说明
图1为本发明的化合物应用于OLED器件的结构示意图;
图2为本发明的化合物制备的OLED器件的电流效率随温度的变化曲线;
图3为本发明器件实施例1与器件比较例1所制作的器件进行反向电压的漏电流测试曲线图。
附图标记说明:1—透明基板层;2—ITO阳极层;3—空穴注入层;4—空穴传输层;5—空穴传输/电子阻挡层;6—发光层;7—空穴阻挡/电子传输层;8—电子注入层;9—阴极反射电极层。
具体实施方式
以下将结合附图来详细说明本发明的实施方式,所举实施例只用于解释本发明,并非用于限定本发明的范围。
在下述实施例、对比例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均为常规试剂、常规材料以及常规仪器,均可商购获得,其中所涉及的试剂也可通过常规合成方法合成获得。
下面通过实施例1描述中间体N、中间体M、中间体P和中间体Q的具体制备实例,各中间体的命名可用阿拉伯数字加以区分,比如中间体N-1、中间体N-2、中间体M-1、中间体M-2等。
实施例1中间体的制备
实施例1-1中间体N的制备
Figure PCTCN2019080631-appb-000031
将原料I和原料II用甲苯溶解,加入Pd 2(dba) 3、三苯基膦和叔丁醇钾;在惰性气氛下,将上述反应物的混合溶液于度90-110℃下反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,残留物过硅胶柱,得到中间体N;所述原料I与原料II的摩尔比为1:(1.0-1.5);Pd 2(dba) 3与原料I的摩尔比为(0.006-0.02):1,叔丁醇钠与原料I的摩尔比为(2.0-3.0):1;三苯基膦与原料I的摩尔比为(2.0-3.0):1;1g原料I加入50-100mL甲苯。
以中间体N-1合成为例:
Figure PCTCN2019080631-appb-000032
在250mL的三口瓶中通入氮气,加入0.01mol 4-氨基联苯,0.012mol的4-溴联苯,0.03mol叔丁醇钾,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三叔丁基膦,150mL甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,残留物过硅胶柱,得中间体N-1;元素分析结构(分子式C 24H 19N):理论值C,89.68;H,5.69;N,4.36;测试值:C,89.68;H,5.68;N,4.37。ESI-MS(m/z)(M +):理论值为321.15,实测值为321.28。
根据中间体N-1的制备方法来制备其他中间体N,本发明用到的中间体N及对应的原料的结构式如表1所示:
表1
Figure PCTCN2019080631-appb-000033
Figure PCTCN2019080631-appb-000034
实施例1-2中间体M的制备
Figure PCTCN2019080631-appb-000035
步骤1:将原料III和原料IV用甲苯溶解,加入Pd 2(dba) 3、三苯基膦和叔丁醇钾;在惰性气氛下,将上述反应物的混合溶液于90-110℃下反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,残留物过硅胶柱,得到中间体O;所述原料III与原料IV的摩尔比为1:(1.0-1.5);Pd 2(dba) 3与原料III的摩尔比为(0.006-0.02):1,叔丁醇钠与原料III的摩尔比为(2.0-3.0):1;三苯基膦与原料III的摩尔比为(2.0-3.0):1;1g原料III加入50-100mL甲苯。
步骤2:将中间体O和原料V用甲苯溶解,加入Pd 2(dba) 3、三苯基膦和叔丁醇钾;在惰性气氛下,将上述反应物的混合溶液于反应温度90-110℃下反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,残留物过硅胶柱,得到中间体M;所述中间体O与原料V的摩尔比为1:(1.0-1.5);Pd 2(dba) 3与中间体O的摩尔比为(0.006-0.02):1,叔丁醇钠与中间体O的摩尔比为(2.0-3.0):1;三苯基膦与中间体O的摩尔比为(2.0-3.0):1;1g中间体O加入50-100mL甲苯。
以中间体M-1的制备为例:
Figure PCTCN2019080631-appb-000036
步骤1:在250ml的三口瓶中通入氮气,加入0.01mol原料III,0.012mol的中间体IV-1,0.03mol叔丁醇钾,1×10 -4molPd 2(dba) 3,1×10 -4mol三叔丁基膦,150mL甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,残留物过硅胶柱,得中间体O-1;元素分析结构(分子式C 24H 23Br 2N):理论值C,59.40;H,4.78;Br,32.93;N,2.89;测试值:C,59.41;H,4.77;Br,32.92;N,2.90。ESI-MS(m/z)(M +):理论 值为483.02,实测值为483.21。
步骤2:在250mL的三口瓶中通入氮气,加入0.01mol中间体O-1,0.012mol的中间体IV-1,0.03mol叔丁醇钾,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三叔丁基膦,150mL甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,残留物滤液旋蒸,过硅胶柱,得中间体M-1;元素分析结构(分子式C 36H 31BrN 2):理论值C,75.65;H,5.47;Br,13.98;N,4.90;测试值:C,75.66;H,5.45;Br,13.99;N,4.90。ESI-MS(m/z)(M +):理论值为570.17,实测值为570.30。
根据中间体M-1的制备方法来制备其他中间体M,本发明用到的中间体M及对应的原料的结构式如表2所示:
表2
Figure PCTCN2019080631-appb-000037
Figure PCTCN2019080631-appb-000038
实施例1-3中间体P的制备
Figure PCTCN2019080631-appb-000039
将原料III和原料VI用甲苯溶解,加入Pd 2(dba) 3、三苯基膦和叔丁醇钾;在惰性气氛下,将上述反应物的混合溶液于90-110℃下反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,残留物过硅胶柱,得到中间体P;所述原料III与原料VI的摩尔比为1:(1.0-1.5);Pd 2(dba) 3与原料III的摩尔比为(0.006-0.02):1,叔丁醇钠与原料III的摩尔比为(2.0-3.0):1;三苯基膦与原料III的摩尔比为(2.0-3.0):1;1g原料III加入50-100mL甲苯。
以中间体P-1合成为例:
Figure PCTCN2019080631-appb-000040
250mL的三口瓶,在通入氮气的气氛下,加入0.01mol原料III,0.012mol的原料VI-1,0.03mol叔丁醇钾,1×10 -4molPd 2(dba) 3,1×10 -4mol三叔丁基膦,150mL甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得中间体P-1;元素分析结构(分子式C 36H 23Br 2N):理论值C,68.70;H,3.68;Br,25.39;N,2.23;测试值:C,68.71;H,3.67;Br,25.37;N,2.25。ESI-MS(m/z)(M +):理论值为627.02,实测值为626.86。
根据中间体P-1的制备方法来制备其他中间体P,本发明用到的中间体P及对应的原料的结构式如表3所示:
表3
Figure PCTCN2019080631-appb-000041
Figure PCTCN2019080631-appb-000042
实施例1-4中间体Q的制备
将原料III和原料VII用甲苯溶解,加入Pd 2(dba) 3、三苯基膦和叔丁醇钾;在惰性气氛下,将上述反应物的混合溶液于90-110℃下反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,过硅胶柱,得到中间体Q;所述原料III与原料VII的摩尔比为1:(2.0-2.5);Pd 2(dba) 3与原料III的摩尔比为(0.006-0.02):1,叔丁醇钠与原料III的摩尔比为(2.0-3.0):1;三苯基膦与原料III的摩尔比为(2.0-3.0):1;1g原料III加入50-100mL甲苯。
以中间体Q-1合成为例:
Figure PCTCN2019080631-appb-000043
250mL的三口瓶,在通入氮气的气氛下,加入0.01mol原料III,0.024mol的原料VII-1,0.03mol叔丁醇钾,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三叔丁基膦,150mL甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得中间体Q-1;元素分析结构(分子式C 46H 27BrN 2O 2):理论值C,76.78;H,3.78;Br,11.10; N,3.89;O,4.45;测试值:C,76.76;H,3.78;Br,11.11;N,3.89;O,4.46。ESI-MS(m/z)(M +):理论值为718.13,实测值为718.24。
根据中间体Q-1的制备方法来制备其他中间体Q-2,本发明用到的中间体Q及对应的原料的结构式如表4所示:
表4
Figure PCTCN2019080631-appb-000044
实施例2以均苯为核心的化合物的制备
实施例2-1化合物7的制备
Figure PCTCN2019080631-appb-000045
在250mL的三口瓶中通入氮气,加入0.01mol中间体M-1,0.012mol的中间体N-1,0.03mol叔丁醇钾,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三叔丁基膦,150mL甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,残留物过硅胶柱,得到化合物7;元素分析结构(分子式C 60H 49N 3):理论值C,88.74;H,6.08;N,5.17;测试值:C,88.75;H,6.09;N,5.15。ESI-MS(m/z)(M +):理论值为811.39,实测值为811.51。
实施例2-2化合物10的制备
Figure PCTCN2019080631-appb-000046
化合物10的制备方法同实施例2-1,不同之处在于用中间体M-2替换中间体M-1,用中间体N-2替换中间体N-1;元素分析结构(分子式C 56H 49N 3):理论值C,88.04;H,6.46;N,5.50;测试值:C,88.02;H,6.47;N,5.51。ESI-MS(m/z)(M +):理论值为763.39,实测值为763.43。
实施例2-3化合物14的制备
Figure PCTCN2019080631-appb-000047
化合物14的制备方法同实施例2-1,不同之处在于用中间体N-3替换中间体N-1;元素分析结构(分子式C 54H 45N 3):理论值C,88.13;H,6.16;N,5.71;测试值:C,88.15;H,6.14;N,5.71。ESI-MS(m/z)(M +):理论值为735.36,实测值为735.19。
实施例2-4化合物21的制备
Figure PCTCN2019080631-appb-000048
化合物21的制备方法同实施例2-1,不同之处在于用中间体M-3替换中间体M-1,用中间体N-4替换中间体N-1;元素分析结构(分子式C 71H 51N 3O):理论值C,88.63;H,5.34;N,4.37;O,1.66;测试值:C,88.64;H,5.34;N,4.37;O,1.65。ESI-MS(m/z)(M +):理论值为961.40,实测值为961.58。
实施例2-5化合物25的制备
Figure PCTCN2019080631-appb-000049
化合物25的制备方法同实施例2-1,不同之处在于用中间体M-4替换中间体M-1,用中间体N-5替换中间体N-1;元素分析结构(分子式C 60H 43N 3):理论值C,89.41;H,5.38;N,5.21;测试值:C,89.43;H,5.36;N,5.21。ESI-MS(m/z)(M +):理论值为805.35,实测值为805.14。
实施例2-6化合物29的制备
Figure PCTCN2019080631-appb-000050
化合物29的制备方法同实施例2-1,不同之处在于用中间体M-5替换中间体M-1,用中间体N-6替换中间体N-1;元素分析结构(分子式C 81H 72N 4):理论值C,88.32;H,6.59;N,5.09;测试值:C,88.33;H,6.57;N,5.10。ESI-MS(m/z)(M +):理论值为1100.58, 实测值为1100.46。
实施例2-7化合物33的制备
Figure PCTCN2019080631-appb-000051
化合物33的制备方法同实施例2-1,不同之处在于用中间体Q-1替换中间体M-1,用中间体N-7替换中间体N-1;元素分析结构(分子式C 66H 41N 3O 2):理论值C,87.30;H,4.55;N,4.63;O,3.52;测试值:C,87.31;H,4.54;N,4.63;O,3.52。ESI-MS(m/z)(M +):理论值为907.32,实测值为907.41。
实施例2-8化合物54的制备
Figure PCTCN2019080631-appb-000052
化合物54的制备方法同实施例2-1,不同之处在于用中间体M-6替换中间体M-1,用原料N-8替换中间体N-1;元素分析结构(分子式C 66H 54N 4):理论值C,87.77;H,6.03;N,6.20;测试值:C,87.75;H,6.05;N,6.20。ESI-MS(m/z)(M +):理论值为902.43,实测值为902.57。
实施例2-9化合物67的制备
Figure PCTCN2019080631-appb-000053
化合物67的制备方法同实施例2-1,不同之处在于用中间体Q-2替换中间体M-1,用原料N-9替换中间体N-1;元素分析结构(分子式C 78H 56N 4):理论值C,89.28;H,5.38;N,5.34;测试值:C,89.26;H,5.39;N,5.35。ESI-MS(m/z)(M +):理论值为1048.45,实测值为1048.61。
实施例2-10化合物80的制备
Figure PCTCN2019080631-appb-000054
化合物80的制备方法同实施例2-1,不同之处在于用中间体M-7替换中间体M-1,用中间体N-10替换中间体N-1;元素分析结构(分子式C 74H 51N 3O 2):理论值C,87.63;H,5.07;N,4.14;O,3.15;测试值:C,87.65;H,5.05;N,4.14;O,3.15。ESI-MS(m/z)(M +):理论值为1013.40,实测值为1013.58。
实施例2-11化合物97的制备
Figure PCTCN2019080631-appb-000055
在250ml的三口瓶中通入氮气,加入0.01mol中间体P-1,0.025mol的中间体N-11,0.03mol叔丁醇钾,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三叔丁基膦,150mL甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到化合物97;元素分析结构(分子式C 72H 47N 3O 2):理论值C,87.69;H,4.80;N,4.26;O,3.24;测试值:C,87.69;H,4.80;N,4.26;O,3.24。ESI-MS(m/z)(M +):理论值为985.37,实测值为985.22。
实施例2-12化合物109的制备
Figure PCTCN2019080631-appb-000056
化合物109的制备方法同实施例2-11,不同之处在于用中间体P-2替换中间体P-1,用中间体N-12替换中间体N-11;元素分析结构(分子式C 62H 49N 3):理论值C,89.07;H,5.91;N,5.03;测试值:C,89.05;H,5.93;N,5.03;O,3.24。ESI-MS(m/z)(M +):理论值为835.39,实测值为835.42。
实施例2-13化合物117的制备
Figure PCTCN2019080631-appb-000057
化合物117的制备方法同实施例2-11,不同之处在于用中间体P-3替换中间体P-1,用中间体N-3替换中间体N-11;元素分析结构(分子式C 66H 46N 4):理论值C,88.56;H,5.18;N,6.26;测试值:C,88.56;H,5.18;N,6.26。ESI-MS(m/z)(M +):理论值为894.37,实测值为894.43。
实施例2-14化合物128的制备
Figure PCTCN2019080631-appb-000058
化合物128的制备方法同实施例2-11,不同之处在于用中间体P-4替换中间体P-1,用中间体N-13替换中间体N-1;元素分析结构(分子式C 71H 51N 3):理论值C,90.13;H,5.43;N,4.44;测试值:C,90.15;H,5.42;N,4.43。ESI-MS(m/z)(M +):理论值为945.41,实测值为945.26。
实施例2-15化合物138的制备
Figure PCTCN2019080631-appb-000059
化合物138的制备方法同实施例2-11,不同之处在于用中间体P-5替换中间体P-1,用中间体N-5替换中间体N-1;元素分析结构(分子式C56H37N3S):理论值C,85.79;H,4.76;N,5.36;S,4.09;测试值:C,85.80;H,4.76;N,5.35;S,4.09。ESI-MS(m/z)(M+):理论值为783.27,实测值为783.29。
以下通过实施例3详细说明本发明合成的化合物在OLED器件中的应用效果。实施例3所包含的各实施例和对比例中,器件的制作工艺完全相同,并且采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件中空穴传输层和电子阻挡层材料发生了改变。器件叠层结构如表5所示,各器件的性能测试结果见表6和表7。
实施例3OLED器件的制备
实施例3-1器件1的制备
如图1所示,一种电致发光器件,其制备步骤如下:
a)清洗透明基板层1上的ITO阳极层2,分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;
b)在ITO阳极层2上,通过真空蒸镀方式蒸镀HAT-CN作为空穴注入层3,蒸镀厚度为10nm;
c)在空穴注入层3上,通过真空蒸镀方式蒸镀NPB作为空穴传输层4,蒸镀厚度为60nm;
d)在空穴传输层4上,通过真空蒸镀方式蒸镀本发明的化合物7作为空穴传输/电子阻挡层5,蒸镀厚度为20nm;
e)在空穴传输/电子阻挡层5上蒸镀发光层6,发光层6的主体材料为CBP,掺杂材料为Ir(ppy) 3,CBP和Ir(ppy) 3的质量比为9:1,厚度为30nm;
f)在发光层6之上,通过真空蒸镀方式蒸镀TPBI作为空穴阻挡/电子传输层7,蒸 镀厚度为40nm;
g)在空穴阻挡/电子传输层7之上,真空蒸镀LiF作为电子注入层8,蒸镀厚度为1nm;
h)在电子注入层8之上,真空蒸镀阴极Al作为阴极反射电极层9,蒸镀厚度为100nm,得到器件1。
实施例3中用到的材料结构式如下:按照上述步骤完成电致发光器件的制作后,测量器件的IVL数据和光衰寿命,其结果见表4所示。
Figure PCTCN2019080631-appb-000060
实施例3-2器件2-15和器件对比例的制备
器件实施例2-15和器件对比例与器件实施例1的器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,不同之处在于空穴传输/电子阻挡层所用的材料不相同,具体数据见表5。
表5
Figure PCTCN2019080631-appb-000061
Figure PCTCN2019080631-appb-000062
各实施例和对比例的效率和寿命数据见表6所示。
表6
Figure PCTCN2019080631-appb-000063
Figure PCTCN2019080631-appb-000064
由表6的数据结果可以看出,本发明制备的以均苯为核心的化合物可应用于OLED发光器件制作,并且与器件对比例相比,无论是效率还是寿命均比已知OLED材料获得较大提升。
为了比较不同器件在高电流密度下效率衰减的情况,定义了器件的效率衰减系数φ,φ表示驱动电流为100mA/cm 2时器件的最大效率μ 100与器件的最大效率μ m之差与最大效率μ 100的比值,φ值越大,说明器件的效率滚降越严重,反之,说明器件在高电流密度下快速衰降的问题得到了控制。本发明测定了器件1-15和器件对比例的效率衰减系数φ,结果如表7所示:
表7
器件编号 效率衰减系数φ
器件1 0.22
器件2 0.25
器件3 0.23
器件4 0.28
器件5 0.26
器件6 0.25
器件7 0.21
器件8 0.24
器件9 0.22
器件10 0.27
器件11 0.28
器件12 0.29
器件13 0.25
器件14 0.24
器件15 0.26
器件对比例 0.40
从表7的数据来看,采用本发明的化合物制备的有机发光器件具有较小的效率衰减系数,说明采用本发明的化合物制备的有机电致发光器件能够有效地降低效率滚降。
本发明的化合物制备的OLED器件在低温下工作时效率也比较稳定,将器件1、4、11和器件对比例在-10~80℃区间进行效率测试,所得结果如表8和图2所示。
表8
Figure PCTCN2019080631-appb-000065
从表8和图2的数据可知,器件1、4、11为本发明化合物和已知材料搭配的器件结构,和器件对比例相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。
为进一步测试本发明化合物所产生的有益效果,将本发明器件1和器件对比例所制作器件进行反向电压的漏电流测试,测试结果如图3所示,从图3中可知,应用本发明化合物的器件1和器件对比例所制作器件相比,漏电流很小,且电流曲线稳定,因此,本发明的化合物应用于器件制作后,具有较长使用寿命。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种以均苯为核心的化合物,其特征在于,该化合物的结构如通式(1)所示:
    Figure PCTCN2019080631-appb-100001
    其中,n表示为数字1或2,m、o分别独立地表示为数字0、1或2,且m+n+o=3;
    Ar 1、Ar 2分别独立地表示为C 1~C 10直链或支链烷基取代或未取代的苯基、C 1~C 10直链或支链烷基取代或未取代的联苯基、C 1~C 10直链或支链烷基取代或未取代的的萘基、C 1~C 10直链或支链烷基取代或未取代的二苯并呋喃基、C 1~C 10直链或支链烷基取代或未取代的9,9-二甲基芴基、C 1~C 10直链或支链烷基取代或未取代的N-苯基咔唑基;
    Ar 3、Ar 4表示为通式(2)所示结构:
    Figure PCTCN2019080631-appb-100002
    其中,R 1至R 8分别独立地表示为氢原子、C 1~C 10直链或支链烷基、C 2~C 10直链或支链烯烃基、C 6~C 30芳基、C 5~C 30杂芳基,所述C 5~C 30杂芳基中的杂原子为O、S、N;
    通式(2)中,
    Figure PCTCN2019080631-appb-100003
    表示为单键、
    Figure PCTCN2019080631-appb-100004
  2. 根据权利要求1所述的以均苯为核心的化合物,其特征在于,通式(2)中,R 1和R 2、R 2和R 3、R 3和R 4、R 5和R 6、R 6和R 7、R 7和R 8所表示基团通过C、N、O、S元素键合成环。
  3. 根据权利要求1所述的以均苯为核心的化合物,其特征在于,所述Ar 3、Ar 4分别独立地表示为通式(3)至通式(9)中任一结构:
    Figure PCTCN2019080631-appb-100005
    Figure PCTCN2019080631-appb-100006
    其中,R 9、R 10分别独立地表示为C 1~C 10直链或支链烷基、C 2~C 10直链或支链烯烃基、C 6~C 30芳基、C 5~C 30杂芳基;
    X 1表示为氧原子、硫原子、亚胺基、C 1~C 10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
  4. 根据权利要求3所述的以均苯为核心的化合物,其特征在于,当m=n=o=1时,通式(2)中的
    Figure PCTCN2019080631-appb-100007
    表示为
    Figure PCTCN2019080631-appb-100008
    或者,Ar 3与Ar 4不相同;
    当n=2且Ar 3、Ar 4分别独立地表示为通式(3)、通式(4)或通式(8)所示结构时,通式(2)中的
    Figure PCTCN2019080631-appb-100009
    表示为
    Figure PCTCN2019080631-appb-100010
    当m或o=2且Ar 3、Ar 4分别独立地表示通式(4)至通式(9)任一结构时,通式(2)中
    Figure PCTCN2019080631-appb-100011
    表示为单键,X 1表示为C 1~C 10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
  5. 根据权利要求1所述的以均苯为核心的化合物,其特征在于,所述通式(2)表示为:
    Figure PCTCN2019080631-appb-100012
    Figure PCTCN2019080631-appb-100013
    Figure PCTCN2019080631-appb-100014
    Figure PCTCN2019080631-appb-100015
    Figure PCTCN2019080631-appb-100016
    Figure PCTCN2019080631-appb-100017
    Figure PCTCN2019080631-appb-100018
    中的任意一种。
  6. 根据权利要求1所述的以均苯为核心的化合物,其特征在于,所述通式(1)的具体结构式为:
    Figure PCTCN2019080631-appb-100019
    Figure PCTCN2019080631-appb-100020
    Figure PCTCN2019080631-appb-100021
    Figure PCTCN2019080631-appb-100022
    Figure PCTCN2019080631-appb-100023
    Figure PCTCN2019080631-appb-100024
    Figure PCTCN2019080631-appb-100025
    Figure PCTCN2019080631-appb-100026
    Figure PCTCN2019080631-appb-100027
    中的任意一种。
  7. 一种如权利要求1-6任一项所述的以均苯为核心的化合物的制备方法,其特征在于,
    当所述通式(1)中n=1时,制备步骤如下:
    将中间体M和中间体N用甲苯溶解,加入Pd 2(dba) 3、三苯基膦和叔丁醇钾,在惰性气氛下,将上述反应物的混合溶液于90-110℃下反应10-24小时,冷却、过滤反应溶液, 滤液旋蒸,残余物过硅胶柱,得到目标化合物;
    制备过程发生的反应方程式如下:
    Figure PCTCN2019080631-appb-100028
    当所述通式(1)中n=2时,制备步骤如下:
    将中间体P和中间体N用甲苯溶解,加入Pd 2(dba) 3、三苯基膦和叔丁醇钾,在惰性气氛下,将上述反应物的混合溶液于90-110℃下反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,残余物过硅胶柱,得到目标化合物;
    制备过程发生的反应方程式如下:
    Figure PCTCN2019080631-appb-100029
  8. 根据权利要求7所述的以均苯为核心的化合物的制备方法,其特征在于,当所述通式(1)中n=1时,所述甲苯的用量为每克中间体M用30-50mL甲苯溶解;所述中间体M与中间体N的摩尔比为1:(1.0-1.5);所述Pd 2(dba) 3与中间体M的摩尔比为(0.006-0.02):1,所述叔丁醇钠与中间体M的摩尔比为(2.0-3.0):1;所述三苯基膦与中间体M的摩尔比为(2.0-3.0):1;
    当所述通式(1)中n=2时,所述甲苯的用量为每克中间体M1用30-50mL甲苯溶解;所述中间体P与中间体N的摩尔比为1:(2.0-2.5);所述Pd 2(dba) 3与中间体P的摩尔比为(0.006-0.02):1,所述叔丁醇钠与中间体P的摩尔比为(2.0-3.0):1;所述三苯基膦与中间体P的摩尔比为(2.0-3.0):1。
  9. 一种如权利要求1-6任一项所述的以均苯为核心的化合物在有机电致发光器件中的应用。
  10. 一种有机电致发光器件,在其阳极和阴极间具有至少一层有机薄膜层,其特征在于,所述有机薄膜层含有权利要求1-6任一项所述的以均苯为核心的化合物。
  11. 根据权利要求11所述的有机电致发光器件,其特征在于,所述有机薄膜层包括至少两层空穴传输层,其中一层所述空穴传输层所用材料含有权利要求1-6任一项所述的以均苯为核心的化合物。
  12. 一种显示元件,其特征在于,含有权利要求10或11所述的有机电致发光器件。
PCT/CN2019/080631 2018-03-14 2019-03-29 一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用 WO2019174650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810210419.8 2018-03-14
CN201810210419.8A CN110283114A (zh) 2018-03-14 2018-03-14 一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用

Publications (1)

Publication Number Publication Date
WO2019174650A1 true WO2019174650A1 (zh) 2019-09-19

Family

ID=67908570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080631 WO2019174650A1 (zh) 2018-03-14 2019-03-29 一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用

Country Status (2)

Country Link
CN (1) CN110283114A (zh)
WO (1) WO2019174650A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724105A (zh) * 2019-09-27 2020-01-24 宁波卢米蓝新材料有限公司 一种三亚菲含氮七元环化合物及其制备方法和应用
WO2022141621A1 (zh) * 2021-01-04 2022-07-07 京东方科技集团股份有限公司 有机发光器件、发光基板和发光装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135927B (zh) * 2020-01-19 2022-12-09 南京高光半导体材料有限公司 一种有机电致发光化合物及含有该化合物的有机电致发光器件
CN114335364B (zh) * 2020-09-30 2024-03-22 江苏三月科技股份有限公司 一种有机电致发光器件用组合物及有机电致发光器件
CN114213314B (zh) * 2021-12-31 2024-08-02 维思普新材料(苏州)有限公司 一种基于咔唑-9-基-二苯胺类衍生物的有机电致发光材料及其电子器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323281A (ja) * 1999-05-17 2000-11-24 Fuji Photo Film Co Ltd 有機エレクトロルミネッセンス素子
US20140353624A1 (en) * 2013-05-29 2014-12-04 Seul-Ong Kim Organic light-emitting diode
WO2016003225A2 (ko) * 2014-07-03 2016-01-07 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016105138A2 (ko) * 2014-12-26 2016-06-30 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN107353298A (zh) * 2017-07-31 2017-11-17 长春海谱润斯科技有限公司 一种含咔唑类结构的芳香胺衍生物及其有机发光器件
CN107382824A (zh) * 2017-07-31 2017-11-24 长春海谱润斯科技有限公司 一种基于咔唑类稠环结构的芳香胺衍生物及其有机发光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323281A (ja) * 1999-05-17 2000-11-24 Fuji Photo Film Co Ltd 有機エレクトロルミネッセンス素子
US20140353624A1 (en) * 2013-05-29 2014-12-04 Seul-Ong Kim Organic light-emitting diode
WO2016003225A2 (ko) * 2014-07-03 2016-01-07 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016105138A2 (ko) * 2014-12-26 2016-06-30 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN107353298A (zh) * 2017-07-31 2017-11-17 长春海谱润斯科技有限公司 一种含咔唑类结构的芳香胺衍生物及其有机发光器件
CN107382824A (zh) * 2017-07-31 2017-11-24 长春海谱润斯科技有限公司 一种基于咔唑类稠环结构的芳香胺衍生物及其有机发光器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724105A (zh) * 2019-09-27 2020-01-24 宁波卢米蓝新材料有限公司 一种三亚菲含氮七元环化合物及其制备方法和应用
CN110724105B (zh) * 2019-09-27 2021-05-04 宁波卢米蓝新材料有限公司 一种三亚菲含氮七元环化合物及其制备方法和应用
WO2022141621A1 (zh) * 2021-01-04 2022-07-07 京东方科技集团股份有限公司 有机发光器件、发光基板和发光装置

Also Published As

Publication number Publication date
CN110283114A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2019174650A1 (zh) 一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用
CN106467549B (zh) 一种含有苯并咪唑的化合物及其在有机电致发光器件上的应用
CN110317206B (zh) 一种以三芳胺为核心的化合物及其应用
CN109912431B (zh) 一种含萘的三芳胺类有机化合物及其应用
CN110317184A (zh) 一种基于双二甲基芴的化合物、制备方法及其应用
CN107880027B (zh) 一种以三嗪为核心的化合物及其在有机电致发光器件上的应用
CN109694328B (zh) 一种三芳香胺类化合物、其制备方法及其在有机电致发光器件中的应用
CN110317140B (zh) 一种以芳胺接双二甲基芴为核心的化合物及其应用
CN109574858B (zh) 一种螺二甲基蒽芴类有机化合物及其在有机电致发光器件上的应用
KR101165698B1 (ko) 신규 화합물을 포함하는 유기전기소자, 및 유기전기소자용 신규 화합물 및 조성물
CN114605395B (zh) 一种含有三嗪和二苯并呋喃结构的化合物及其应用
CN110642732B (zh) 一种含螺芴蒽酮结构的有机化合物及其应用
CN107056737B (zh) 一种含有二甲基蒽结构的光电材料及其应用
CN107056809B (zh) 一种含有二甲基蒽的有机化合物及其在有机电致发光器件上应用
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN110526825B (zh) 一种以异屈与三芳胺结构为核心的化合物及其应用
CN110323360B (zh) 一种有机电致发光器件及其应用
CN107602397B (zh) 一种以二苯并环庚烯为核心的化合物及其应用
CN110577488A (zh) 一种以咔唑为核心的化合物及其在有机电致发光器件上的应用
WO2019185060A1 (zh) 一种以芳胺接双二甲基芴为核心的化合物及其应用
CN110577523B (zh) 一种含三芳胺结构的化合物及其制备的有机电致发光器件
CN110577508B (zh) 一种以三芳胺为核心的化合物及其应用
CN110963904A (zh) 一种以酮和芴为核心的化合物、制备方法及其应用
CN107226811B (zh) 一种以二联二苯并五元杂环为骨架的有机化合物及其在oled上的应用
CN111362947A (zh) 一种含苯并咪唑的有机化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766635

Country of ref document: EP

Kind code of ref document: A1