WO2022141047A1 - 电解液、电化学装置及电子装置 - Google Patents

电解液、电化学装置及电子装置 Download PDF

Info

Publication number
WO2022141047A1
WO2022141047A1 PCT/CN2020/140805 CN2020140805W WO2022141047A1 WO 2022141047 A1 WO2022141047 A1 WO 2022141047A1 CN 2020140805 W CN2020140805 W CN 2020140805W WO 2022141047 A1 WO2022141047 A1 WO 2022141047A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
formula
fluorocarboxylate
substituted
mass percentage
Prior art date
Application number
PCT/CN2020/140805
Other languages
English (en)
French (fr)
Inventor
王翔
刘建禹
唐超
Original Assignee
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能源科技有限公司 filed Critical 东莞新能源科技有限公司
Priority to PCT/CN2020/140805 priority Critical patent/WO2022141047A1/zh
Priority to CN202080038334.1A priority patent/CN113892207B/zh
Publication of WO2022141047A1 publication Critical patent/WO2022141047A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of electrolytes, and in particular, to electrolytes, electrochemical devices, and electronic devices.
  • lithium-ion batteries have become an indispensable product for modern electronic products.
  • the development of lithium-ion secondary batteries with high energy density is gradually advancing, and the upper limit voltage of the design is also increased.
  • the current rated voltage of lithium cobalt oxide systems on the market can reach 4.45-4.5V.
  • the high-voltage storage and charge-discharge of lithium-ion batteries have more and more serious damage to the structure of positive and negative electrodes, and put forward higher requirements for the oxidation resistance and film-forming stability of the electrolyte itself. Therefore, it is necessary to develop a stable
  • the electrolyte of positive and negative protective films to improve the electrochemical performance of electrochemical devices under high voltage.
  • the present application proposes an electrolyte, an electrochemical device and an electronic device.
  • the electrolyte can form a stable positive and negative protective film, which can effectively reduce the DC impedance of the electrochemical device after high-voltage cycling, and improve the electrochemical device. Cyclic stability.
  • the application provides an electrolyte solution, comprising at least one of the compounds represented by formula (I-A):
  • a 1 , A 2 , A 3 , and A 4 are each independently selected from any one of the structures represented by formula (IB), formula (IC), formula (ID) or formula (IE) :
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are each independently selected from C 1-6 alkyl, C 2-6 alkenyl or C 2-6 alkynyl;
  • formula (I-A) includes at least one of the compounds shown in formula I-1 to formula I-4:
  • the mass percentage content of the compound represented by the formula I in the electrolyte is 0.05% to 8%.
  • the mass percentage content of the compound represented by the formula I in the electrolyte is 0.5% to 4%.
  • the electrolyte further includes fluorocarboxylate and/or non-fluorocarboxylate.
  • the electrolyte satisfies at least one of the following features a to c:
  • the mass percentage content of the fluorocarboxylate in the electrolyte is 5% to 50%;
  • the mass percentage content of the non-fluorinated carboxylate in the electrolyte is 5% to 50%;
  • the total mass percentage content of the fluorocarboxylate and the non-fluorocarboxylate in the electrolyte is 5% to 50%, and the non-fluorocarboxylate and the fluorocarboxylate are
  • the mass ratio n of the carboxylate is 0.5 ⁇ n ⁇ 10, preferably 0.5 ⁇ n ⁇ 4.
  • the non-fluorinated carboxylic acid ester includes ethyl acetate, propyl acetate, butyl acetate, ethyl propionate, propyl propionate or butyl propionate at least one of.
  • the fluorocarboxylate includes fluoroethyl acetate, fluoroacetate, fluorobutyl acetate, fluoroethyl propionate, fluoropropionate At least one of propyl ester or butyl fluoropropionate, wherein at least one hydrogen atom in the molecule of the fluorocarboxylate is replaced by a fluorine atom.
  • the electrolyte further includes at least one of fluoroethylene carbonate, 1,3-propane sultone, vinylene carbonate or nitrile compounds.
  • the electrolyte satisfies at least one of the following characteristics d to g:
  • the mass percentage content of the fluoroethylene carbonate in the electrolyte is 0.1% to 10%;
  • the mass percentage content of the vinylene carbonate in the electrolyte is 0.001% to 2%;
  • the mass percentage content of the 1,3-propane sultone in the electrolyte is 0.1% to 5%;
  • the mass percentage content of the nitrile compound in the electrolyte is 0.1% to 12%.
  • the nitrile compound includes at least one of the following compounds:
  • R 11 is selected from C 1-12 alkylene, substituted C 1-12 alkylene, C 1-12 alkyleneoxy or substituted C 1-12 alkyleneoxy;
  • R 21 and R 22 are each independently selected from single bond, C 1-12 alkylene or substituted C 1-12 alkylene;
  • R 31 , R 32 , R 33 are each independently selected from single bond, C 1-12 alkylene, substituted C 1-12 alkylene, C 1-12 alkyleneoxy or substituted C 1-12 alkylene alkoxy;
  • R 41 is selected from C 1-12 alkylene, substituted C 1-12 alkylene, C 2-12 alkenylene, substituted C 2-12 alkenylene, C 6-26 arylene, substituted C 6-26 arylene, C 2-12 heterocyclic group or substituted C 2-12 heterocyclic group;
  • the substituent when substituted, is a halogen atom.
  • the nitrile compound includes
  • the electrolyte further includes fluoroethyl acetate, ethyl propionate, fluoroethylene carbonate, 1,3-propane sultone, vinylene carbonate , 1,3,6-hexanetrinitrile, glutaronitrile.
  • the present application provides an electrochemical device, comprising a positive electrode, a negative electrode, a separator, and an electrolyte, and the electrolyte is the above-mentioned electrolyte.
  • the present application provides an electronic device, including the above electrochemical device.
  • the present application at least has the following beneficial effects:
  • the electrolyte provided by the present application includes the compound of formula I, and the compound of formula I is conducive to the formation of positive and negative protective films on the positive and negative electrodes at the initial stage of charging and discharging of the electrochemical device, thereby ensuring that the electrochemical device operates at a high voltage (for example, a voltage of 4.5V ) can be stably cycled, that is, the cycle performance of the electrochemical device under high voltage is improved.
  • the compound represented by formula I can promote the formation of a more stable positive and negative protective film, effectively suppress side reactions and impedance growth, and effectively reduce the DC resistance (DCR) after cycling.
  • the fluorinated carboxylate can improve the cycle capacity retention rate of the electrochemical device using the electrolyte at high voltage, and the non-fluorinated carboxylate can further reduce the DC resistance (DCR) after cycling.
  • DCR DC resistance
  • the mass content of the carboxylate in the electrolyte is too high, the cycle performance may be deteriorated, so it is necessary to control the mass content of the fluorocarboxylate and the non-fluorocarboxylate in the electrolyte.
  • the ratio of fluorocarboxylate and non-fluorocarboxylate is too low, the battery impedance is too large; if the ratio of the two is too high, the electrolyte is easily decomposed under high voltage, which is not conducive to cycle performance.
  • Fluorinated ethylene carbonate or 1,3-propane sultone can improve the film-forming stability of the electrochemical device on the negative electrode, and synergize with the compound shown in formula I to effectively suppress impedance growth and improve cycling.
  • Nitrile compounds can form an organic protective layer on the surface of the positive electrode, and the organic molecules on the surface of the positive electrode can well separate the easily oxidizable components in the electrolyte from the surface of the positive electrode, which greatly reduces the oxidation of the electrolyte on the surface of the positive electrode under high voltage. to improve the cycle performance of electrochemical devices.
  • the electrolyte can form a stable positive and negative protective film, which can effectively reduce the DC impedance of the electrochemical device after high-voltage cycling, and improve the cycle stability of the electrochemical device. sex.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with any other lower limit to form an unspecified range, and likewise any upper limit can be combined with any other upper limit to form an unspecified range.
  • every point or single value between the endpoints of a range is included within the range, even if not expressly recited.
  • each point or single value may serve as its own lower or upper limit in combination with any other point or single value or with other lower or upper limits to form a range not expressly recited.
  • the present application relates to an electrolyte, comprising at least one of the compounds represented by formula (I-A):
  • a 1 , A 2 , A 3 , and A 4 are each independently selected from any one of the structures represented by formula (IB), formula (IC), formula (ID) or formula (IE) :
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are each independently selected from C 1-6 alkyl, C 2-6 alkenyl or C 2-6 alkynyl; wherein, Indicates the binding site to an adjacent atom.
  • the oxygen resistance of the electrolyte can be improved, which is conducive to the formation of an effective and stable solid electrolyte phase interface film on the positive and negative electrodes of the electrochemical device, and effectively suppresses side reactions and impedance.
  • the growth of can significantly improve the cycling stability and direct current resistance (DCR) performance of electrochemical devices at high voltages.
  • the compound represented by the formula (I-A) includes at least one of the compounds represented by the formula I-1 to the formula I-4:
  • the mass percentage content of the compound represented by the formula I in the electrolyte is 0.05% to 8%; when the content of the compound represented by the formula I is less than 0.05%, its The improvement of the high temperature cycle performance of lithium batteries under high voltage is not obvious; when the content of the compound shown in formula I is higher than 8%, there are too many compounds in the electrolyte, resulting in a large interface film impedance, resulting in irreversible lithium precipitation, Block the ion transport channel of the electrolyte and accelerate the capacity decay of the battery.
  • the mass percentage content of the compound represented by the formula I in the electrolyte may specifically be 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6% %, 7% or 8%, etc., of course, other values within the above range can also be used, which are not limited here. It can be understood that adding the compound shown in formula I to the electrolyte, the compound shown in formula I participating in the film formation of positive and negative electrodes improves the stability of the SEI film, which can effectively improve the resistance growth and cycling of lithium ion batteries at high voltages. performance.
  • the mass percentage content of the compound represented by the formula I in the electrolyte is 0.5% to 4%.
  • the electrolyte includes fluorocarboxylate and/or non-fluorocarboxylate. It can be understood that the fluorinated carboxylate and the non-fluorinated carboxylate are oxygen-inert solvents, which can improve the oxidation resistance of the electrolyte and can effectively improve the cycle stability of the electrochemical device.
  • the mass percentage content of the fluorocarboxylate in the electrolyte is 5% to 50%, specifically 5%, 8%, 10%, 15%, 20% , 25%, 30%, 35%, 40%, 45%, or 50%, etc., of course, other values within the above range can also be used, which are not limited here.
  • the mass percentage content of the non-fluorinated carboxylic acid ester in the electrolyte is 5% to 50%. Specifically, it can be 5%, 8%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% or 50%, etc. Of course, it can also be other values within the above range. This is not limited. After many tests, it was found that the addition of non-fluorinated carboxylate to the electrolyte significantly reduced the DC impedance of lithium batteries at high voltage, but the capacity retention rate also decreased significantly; that is, the added non-fluorinated carboxylate would significantly improve The DC impedance performance of the battery, but it will deteriorate the high temperature cycling performance of the lithium-ion battery at high voltage.
  • the electrolyte includes a fluorocarboxylate and a non-fluorocarboxylate
  • the mass ratio n of the non-fluorocarboxylate to the fluorocarboxylate is 0.5 ⁇ n ⁇ 10.
  • the mass ratio may specifically be 0.5, 1.0, 2, 2.5, 4, 7, 8, 9, or 10, etc., and of course other values within the above range, which are not limited herein.
  • the mass ratio n of the non-fluorinated carboxylate and the fluorocarboxylate is 0.5 ⁇ n ⁇ 4.
  • the non-fluorinated carboxylic acid ester includes at least one of ethyl acetate, propyl acetate, butyl acetate, ethyl propionate, propyl propionate or butyl propionate.
  • the fluorocarboxylate includes fluoroethyl acetate, fluoroacetate, fluoroacetate, fluoroethyl propionate, fluoropropionate, or fluoroacetate. At least one of butyl propionate, wherein at least one hydrogen atom in the molecule of the fluorocarboxylate is replaced by a fluorine atom.
  • the electrolyte further includes at least one of fluoroethylene carbonate (FEC), 1,3-propane sultone (PS), vinylene carbonate (VC) or nitrile compounds A sort of.
  • FEC fluoroethylene carbonate
  • PS 1,3-propane sultone
  • VC vinylene carbonate
  • nitrile compounds A sort of.
  • the mass percentage content of the fluoroethylene carbonate (FEC) in the electrolyte is 0.1% to 10%.
  • the mass percentage content of the fluoroethylene carbonate (FEC) in the electrolyte may specifically be 0.1%, 0.5%, 1%, 2%, 3%, 5%, 8% or 10%, etc.
  • Other numerical values within the above-mentioned range are also possible, which are not limited here.
  • the mass percentage content of the fluoroethylene carbonate (FEC) in the electrolyte is 0.1% to 5%.
  • the mass percentage content of the 1,3-propane sultone (PS) in the electrolyte is 0.1% to 5%.
  • the mass percentage content of the 1,3-propane sultone (PS) in the electrolyte may specifically be 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% or 5%, etc., of course, other values within the above range can also be used, which are not limited here.
  • the mass percentage content of the 1,3-propane sultone (PS) in the electrolyte is 0.1% to 5%.
  • the mass percentage content of the vinylene carbonate (VC) in the electrolyte is 0.001% to 2%.
  • the mass percentage content of the vinylene carbonate (VC) in the electrolyte can be specifically 0.001%, 0.1%, 0.5%, 1%, 1.5% or 2%, etc., of course, it can also be within the above range Other values are not limited here.
  • the mass percentage content of the vinylene carbonate (VC) in the electrolyte is 0.001% to 1%.
  • the mass percentage content of the nitrile compound in the electrolyte is 0.1% to 12%.
  • the mass percentage content of the nitrile compound in the electrolyte may specifically be 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% , 10%, 11%, or 12%, etc., of course, other values within the above range can also be used, which are not limited here.
  • the nitrile compounds can form an organic protective layer on the surface of the positive electrode, and the organic molecules on the surface of the positive electrode can well connect the easily oxidizable components in the electrolyte with the positive electrode.
  • the surface is separated, which greatly reduces the oxidation effect of the positive electrode surface on the electrolyte at high voltage, thereby improving the cycle performance of lithium-ion batteries at high voltage.
  • the mass percentage content of the nitrile compound in the electrolyte is 0.1% to 5%.
  • the nitrile compound includes at least one of the following compounds:
  • R 11 is selected from C 1-12 alkylene, substituted C 1-12 alkylene, C 1-12 alkyleneoxy or substituted C 1-12 alkyleneoxy;
  • R 21 and R 22 are each independently selected from single bond, C 1-12 alkylene or substituted C 1-12 alkylene;
  • R 31 , R 32 , R 33 are each independently selected from single bond, C 1-12 alkylene, substituted C 1-12 alkylene, C 1-12 alkyleneoxy or substituted C 1-12 alkylene alkoxy;
  • R 41 is selected from C 1-12 alkylene, substituted C 1-12 alkylene, C 2-12 alkenylene, substituted C 2-12 alkenylene, C 6-26 arylene, substituted C 6-26 arylene, C 2-12 heterocyclic group or substituted C 2-12 heterocyclic group;
  • the substituent when substituted, is a halogen atom, and the halogen can be selected from fluorine, chlorine and bromine.
  • the nitrile compound can also be selected from at least one of the nitrile compounds shown in the following structure;
  • the electrolyte of the present application is a non-aqueous electrolyte
  • the organic solvent is selected from ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, fluoroethylene carbonate, carbonic acid Ethyl Methyl, Dimethyl Carbonate, Diethyl Carbonate (DEC), Dipropyl Carbonate, Methyl Propyl Carbonate, Ethyl Propyl Carbonate, 1,4-Butyrolactone (GBL), Methyl Propionate, Valeric Acid At least one of methyl ester, methyl isobutyrate, methyl butyrate, propyl propionate, ethyl acetate, ethyl propionate, and ethyl butyrate.
  • the lithium salt of the present application is selected from at least one of organic lithium salts or inorganic lithium salts.
  • the lithium salt of the present application is selected from lithium hexafluorophosphate LiPF 6 , lithium bistrifluoromethanesulfonimide LiN(CF 3 SO 2 ) 2 (abbreviated as LiTFSI), bis(fluorosulfonyl)imide Lithium Li(N(SO2F) 2 ) (abbreviated as LiFSI), Lithium Bisoxalate Borate LiB(C 2 O 4 ) 2 (abbreviated as LiBOB), Lithium Difluorooxalate Borate LiBF 2 (C 2 O 4 ) (abbreviated as LiDFOB ) at least one of them.
  • LiPF 6 lithium bistrifluoromethanesulfonimide LiN(CF 3 SO 2 ) 2
  • LiFSI bis(fluorosulfonyl)imide Lithium Li(N(SO2F) 2 )
  • LiBOB Lithium Bisoxalate Borate LiB(C 2 O 4 ) 2
  • the present application also provides an electrochemical device, comprising a positive electrode, a negative electrode, a separator, and an electrolyte, and the electrolyte is the above-mentioned electrolyte.
  • the electrochemical device may be a lithium-ion battery.
  • the positive electrode of the present application includes a positive electrode active material, a binder and a conductive agent.
  • the positive electrode active material of the present application is optionally selected from at least one of lithium cobalt oxide LiCoO 2 , lithium nickel manganese cobalt ternary material, lithium iron phosphate, lithium manganese iron phosphate, and lithium manganate .
  • the negative electrode of the present application includes a negative electrode active material, a binder and a conductive agent.
  • the negative electrode active material of the present application is graphite and/or silicon.
  • the positive active material lithium cobalt oxide (LiCoO 2 ), the conductive agent Super P, and the binder polyvinylidene fluoride are mixed according to the weight ratio of 97.9:0.4:1.7, and N-methylpyrrolidone (NMP) is added. Stir evenly to obtain a positive electrode slurry; uniformly coat the positive electrode slurry on the aluminum foil of the positive electrode current collector; dry the aluminum foil, and then after cold pressing, cutting and slitting, drying under vacuum conditions to obtain a positive electrode.
  • NMP N-methylpyrrolidone
  • the negative active material artificial graphite, conductive agent Super P, thickener sodium carboxymethyl cellulose (CMC), and binder styrene-butadiene rubber (SBR) were mixed according to the weight ratio of 97:1.5:0.5:1, and deionized
  • the negative electrode slurry is obtained under the action of a vacuum mixer; the negative electrode slurry is uniformly coated on the copper foil of the negative electrode current collector; the copper foil is dried, and then dried under vacuum conditions after cold pressing, cutting and slitting , get the negative electrode sheet.
  • the solvents were mixed, then the first compound and the second compound were added, dissolved and fully stirred, and then the lithium salt LiPF 6 was added, and the electrolyte was obtained after mixing uniformly.
  • the type or content of the added first compound, second compound or solvent is different.
  • the boehmite and polyacrylate were mixed and dispersed in deionized water to form a coating slurry. Subsequently, the coating slurry is uniformly coated on both surfaces of the porous substrate by a gravure coating method, and is dried to obtain the desired separator.
  • the positive electrode, the separator and the negative electrode in order, so that the separator is placed between the positive and negative electrode sheets to isolate them, and then wind them to obtain a bare cell; after welding the tabs, place the bare cell on the outer packaging foil aluminum
  • the above-prepared electrolyte is injected into the dried bare cell, and the lithium-ion battery is obtained through the processes of vacuum packaging, standing, chemical formation, shaping, and capacity testing.
  • the lithium-ion battery that has reached a constant temperature is charged at a constant current of 1C to a voltage of 4.5V, then charged at a constant voltage of 4.5V to a current of 0.025C, and then discharged at a constant current of 1C to a voltage of 3.0V.
  • This is a charge-discharge cycle. Taking the capacity of the first discharge as 100%, the charge-discharge cycle was repeated for 300 cycles, the test was stopped, and the cycle capacity retention rate was recorded as an index for evaluating the cycle performance of the lithium-ion battery.
  • the cycle capacity retention rate refers to the capacity at a certain cycle divided by the capacity at the first discharge.
  • Examples 1-1 to 1-21 and Comparative Example 1-1 were prepared, wherein the first compound added in Examples 1-1 to 1-21 and Comparative Example 1-1
  • the solvent used is a mixture of ethylene carbonate (EC), propylene carbonate (PC) and diethyl carbonate (DEC), wherein the mass ratio of EC:PC:DEC is 1:1:1 , and the corresponding performance test results are shown in Table 1.
  • Example 1-17 From the performance of Example 1-1 to Example 1-17, it can be seen that when the compound represented by formula I is added to the electrolyte, the capacity retention rate of the lithium-ion battery after 300 cycles at 4.5V and 45°C Both increased and DCR decreased significantly. That is, by adding the compound shown in formula I to the electrolyte, the high temperature cycle performance of lithium ion batteries at high voltage can be improved, which may be due to the siloxy group, phosphite group, titanyl group or The aluminum oxide group participates in the film formation of lithium ion batteries, which can effectively delay the failure of the positive and negative electrode solid electrolyte interface films during high temperature storage, and inhibit the formation of by-products from the decomposition of the electrolyte, thereby improving the high temperature cycle performance of lithium ion batteries.
  • Example 1-1 to Example 1-17 It can be seen from the performance test results of Example 1-1 to Example 1-17 that the mass percentage content of the compound represented by Formula I in the electrolyte of Example 1-1 is only 0.02%, and the mass percentage of the compound represented by Formula I is only 0.02%. If the content is too small, the stability of the positive and negative protective films decreases. The capacity retention rate of the lithium-ion battery after 300 cycles at 4.5V and 45°C is not significantly improved compared with Comparative Example 1-1, and compared with Example 1- 2 to Examples 1-6 also performed poorly.
  • the mass percentage content of the compound shown in formula I in the electrolyte of Example 1-7 is 9%, and the mass content of the compound shown in formula I is too large, resulting in a larger membrane impedance, causing irreversible lithium precipitation, which may hinder the electrolyte instead. ion transport channels, accelerating capacity decay.
  • formula I The percentage content of the compound represented by the formula I in the electrolyte is 0.05% to 8%, and further preferably, the percentage by mass of the compound represented by the formula I in the electrolyte is 0.5% to 4%.
  • Example 2-1 to Example 2-33 and Comparative Example 2-1 were prepared according to the above-mentioned preparation method.
  • the solvents used in Examples 2-1 to 2-33 are the same as those in Example 1-4.
  • the data of Examples 1-4 are added in Table 2 for comparison and description.
  • Example 2-1 By analyzing the data of Example 2-1, Example 2-4 and Example 2-5, it can be seen that when the mass percentage of fluoroethylene carbonate (FEC) added to the electrolyte reaches 10%, or even 12%, lithium The DC resistance of the ion battery increases significantly.
  • FEC fluoroethylene carbonate
  • Example 2-6 to Example 2-8 By analyzing the data of Example 1-4, Example 2-6 to Example 2-8, it can be seen that when only 0.1% to 5% of 1,3-propane sultone (PS) is added to the electrolyte, the lack of fluorine For ethylene carbonate (FEC), vinylene carbonate (VC), 1,3,6-hexanetrinitrile or glutaronitrile, the cycle capacity retention rate of lithium-ion batteries increased after 300 cycles at 4.5V and 45°C , under the synergistic effect of the compound represented by formula I, the impedance growth can be suppressed and the cycle performance of the lithium ion battery at high voltage can be improved.
  • PS 1,3-propane sultone
  • Example 2-11 to Example 2-13 By analyzing the data of Example 1-4, Example 2-11 to Example 2-13, it can be seen that when only 0.001% to 1% of vinylene carbonate (VC) is added to the electrolyte, 1,3-propanesulfonic acid is lacking.
  • VC vinylene carbonate
  • PS lactone
  • FEC fluoroethylene carbonate
  • 1,3,6-hexanetrinitrile or glutaronitrile the cycle capacity retention rate of lithium-ion batteries increased after 300 cycles at 4.5V and 45°C , under the synergistic effect of the compound represented by formula I, the impedance growth can be suppressed and the cycle performance of the lithium ion battery at high voltage can be improved.
  • Example 2-11, Example 2-14 and Example 2-15 By analyzing the data of Example 2-11, Example 2-14 and Example 2-15, it can be seen that when the mass percentage content of vinylene carbonate (VC) added to the electrolyte reaches 2%, the lithium-ion battery is at 4.5V , The cycle capacity retention rate increased after 300 cycles at 45°C, but the DC impedance of the lithium-ion battery increased. When the mass percentage of vinylene carbonate (VC) added to the electrolyte reaches 3%, the cycle capacity retention rate of the lithium-ion battery decreases after 300 cycles at 4.5V and 45°C, and the DC impedance of the lithium-ion battery increases significantly. .
  • VC vinylene carbonate
  • Example 2-16 to Example 2-26 By analyzing the data of Example 1-4, Example 2-16 to Example 2-26, it can be seen that when only 0.1% to 5% of nitrile compounds are added to the electrolyte, 1,3-propane sultone (PS ), fluorinated ethylene carbonate (FEC), and vinylene carbonate (VC), the cycle capacity retention rate of lithium-ion batteries increased after 300 cycles at 4.5V and 45°C. , which can suppress the impedance growth and improve the cycling performance of Li-ion batteries at high voltages.
  • PS 1,3-propane sultone
  • FEC fluorinated ethylene carbonate
  • VC vinylene carbonate
  • Example 2-27 to Example 2-33 By analyzing the data of Comparative Example 2-1, Example 2-27 to Example 2-33, it can be seen that when nitrile compounds, 1,3-propane sultone (PS), fluoroethylene carbonate ( In the case of FEC) and vinylene carbonate (VC), under the synergistic effect of the compound shown in formula I, the cycle capacity retention rate of lithium-ion batteries after 300 cycles at 4.5V and 45°C increases, which can suppress the increase in impedance and improve the lithium ion battery. Cycling performance of ion batteries at high voltages.
  • PS 1,3-propane sultone
  • FEC fluoroethylene carbonate
  • VC vinylene carbonate
  • the polyalkoxy group of the compound represented by formula I improves the interfacial wetting ability of the electrolyte, the separator and the negative electrode, the film formation of other compounds is more uniform and dense, thereby improving the cycle performance of the lithium ion battery under high voltage.
  • the battery performance can be greatly improved.
  • Examples 3-1 to 3-13 and Comparative Examples 3-1 to 3-6 were prepared according to the above-mentioned preparation method.
  • the first compounds and the second compounds used in the Comparative Examples and Examples were Examples 1-10 are the same, except that the solvent used is different.
  • the mass ratios of fluorocarboxylate and non-fluorocarboxylate in the solvents used in Comparative Example 3-1 to Comparative Example 3-6, and Example 3-1 to Example 3-13 are shown in Table 3, and the rest The solvent composition was still supplemented in a mass ratio of 1:1:1 according to EC:PC:DEC.
  • Example 1-4 Comparative Example 3-1, Example 3-1 to Example 3-6
  • the lithium ion batteries of Example 3-1 to Example 3-6 are at 4.5V and 45°C.
  • the DC impedance after 300 cycles is higher than that of the lithium-ion battery of Example 1-4, and the capacity retention rate of the lithium-ion battery of Example 3-1 to Example 3-6 after 300 cycles at 4.5V and 45°C is obvious.
  • the lithium-ion battery smaller than Comparative Example 3-1 that is, with the increase of the mass content of the non-substituted carboxylate and the increase of the mass ratio of the non-fluorinated carboxylate to the fluorocarboxylate, can still improve the DCR of the electrolyte , The degradation of non-fluorinated carboxylate to high voltage and high temperature cycle can be suppressed by adding fluorocarboxylate.
  • the mass ratio of non-fluorinated carboxylate to fluorocarboxylate was set to n, 0.5 ⁇ n ⁇ 10.
  • the mass ratio of non-fluorinated carboxylate and fluorocarboxylate is too low, the DC impedance of the battery is high, which is not conducive to the rapid charging and discharging of the battery; when the mass ratio of non-fluorocarboxylate and fluorocarboxylate is too high, When it is high, the electrolyte will decompose a lot of solvent at high voltage, which is not conducive to the cycle performance at high voltage. Therefore, 0.5 ⁇ n ⁇ 4 is preferable.
  • Example 3-10 By analyzing Examples 3-14 to Comparative Examples 3-17 and Example 3-10, it can be known that the first compound and the second compound are added to the electrolyte, and the quality of the non-fluorocarboxylate and the fluorocarboxylate is adjusted.
  • the ratio can effectively improve the high temperature cycle performance of the electrochemical device on the premise of greatly reducing the DC impedance.
  • the electrolyte includes the compound represented by formula I, so as to form a highly stable positive and negative protective film in the early stage of charging and discharging of the electrochemical device, and under a high voltage of not less than 4.4V A stable cycle can be achieved, and the cycle performance of the electrochemical device under high voltage is improved; the failure of the positive and negative SEI films is effectively delayed during the cycle, the impedance growth is suppressed, and the charge-discharge performance of the electrochemical device is improved.
  • the electrolyte further includes a fluorinated carboxylate and a non-fluorinated carboxylate, and the mass ratio of the two can be used to reduce the DCR of the electrolyte and improve the fast charge and discharge of the electrochemical device under high voltage. ability.
  • the compound shown in formula I and fluorocarboxylate participate in negative electrode film formation, and the compound shown in formula I and non-fluorinated carboxylate participate in positive electrode film formation. By reasonably combining and adjusting the amount used, the electrochemical device can be improved under high voltage. Stability of SEI film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了电解液、电化学装置及电子装置,所述电解液包括式(I-A)表示的化合物中的至少一种;在式(I-A)中,A1、A2、A3、A4各自独立地选自式(I-B)、式(I-C)、式(I-D)或式(I-E)表示的结构中的任意一种。本申请通过在电解液中加入具有特殊功能的式(I-A)化合物,能够促进更为稳定的正负极保护膜生成,有效抑制副反应和阻抗增长,有效降低电化学装置高电压循环后的直流阻抗,改善电化学装置的循环性能。

Description

电解液、电化学装置及电子装置 技术领域
本申请涉及电解液技术领域,具体地讲,涉及电解液、电化学装置及电子装置。
背景技术
伴随近年来电气制品的轻量化、小型化,锂离子电池已成为现代电子产品不可或缺的产品。具有高能量密度的锂离子二次电池的开发逐步推进,设计的使用上限电压也随之提高,例如,市场上钴酸锂体系目前额定电压可达4.45~4.5V。锂离子电池的高电压存储及充放电,对正负极结构的破坏愈加严重,对电解液本身的耐氧化能力及成膜稳定性都提出了更高的需求,因此需要研发一种可以形成稳定的正负极保护膜的电解液,以提高电化学装置在高电压下的电化学性能。
申请内容
鉴于此,本申请提出了电解液、电化学装置及电子装置,该电解液可以形成稳定的正负极保护膜,可以有效降低电化学装置在高电压循环后的直流阻抗,提高电化学装置的循环稳定性。
第一方面,本申请提供一种电解液,包括式(I-A)表示的化合物中的至少一种:
Figure PCTCN2020140805-appb-000001
在式(I-A)中,A 1、A 2、A 3、A 4各自独立地选自式(I-B)、式(I-C)、式(I-D)或式(I-E)表示的结构中的任意一种:
Figure PCTCN2020140805-appb-000002
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10各自独立地选自C 1-6烷基、C 2-6烯基或C 2-6炔基;
其中,
Figure PCTCN2020140805-appb-000003
表示与相邻原子的结合位点。
结合第一方面,在一种可行的实施方式中,式(I-A)包括式I-1至式I-4所示的化合物中的至少一种:
Figure PCTCN2020140805-appb-000004
结合第一方面,在一种可行的实施方式中,所述式I所示的化合物在所述电解液中的质量百分比含量为0.05%~8%。
结合第一方面,在一种可行的实施方式中,所述式I所示的化合物在所述电解液中的质量百分比含量为0.5%~4%。
结合第一方面,在一种可行的实施方式中,所述电解液还包括氟代羧酸酯和/或非氟代羧酸酯。
结合第一方面,在一种可行的实施方式中,所述电解液满足以下特征a至c中的至少一种:
a.所述氟代羧酸酯在所述电解液中的质量百分比含量为5%~50%;
b.所述非氟代羧酸酯在所述电解液中的质量百分比含量为5%~50%;
c.所述氟代羧酸酯和所述非氟代羧酸酯在所述电解液中的总质量百分比含量为5%~50%,且所述非氟代羧酸酯和所述氟代羧酸酯的质量比n为0.5≤n≤10,优选为0.5≤n≤4。
结合第一方面,在一种可行的实施方式中,所述非氟代羧酸酯包括乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸乙酯、丙酸丙酯或丙酸丁酯中的至少一种。
结合第一方面,在一种可行的实施方式中,所述氟代羧酸酯包括氟代乙酸乙酯、氟代乙酸丙酯、氟代乙酸丁酯、氟代丙酸乙酯、氟代丙酸丙酯或氟代丙酸丁酯中的至少一种,其中,所述氟代羧酸酯分子中至少有一个氢原子被氟原子取代。
结合第一方面,在一种可行的实施方式中,所述电解液还包括氟代碳酸乙烯酯、1,3-丙烷磺内酯、碳酸亚乙烯酯或腈类化合物中的至少一种。
结合第一方面,在一种可行的实施方式中,所述电解液满足以下特征d至g中的至少一者:
d.所述氟代碳酸乙烯酯在所述电解液中的质量百分比含量为0.1%~10%;
e.所述碳酸亚乙烯酯在所述电解液中的质量百分比含量为0.001%~2%;
f.所述1,3-丙烷磺内酯在所述电解液中的质量百分比含量为0.1%~5%;
g.所述腈类化合物在所述电解液中的质量百分比含量为0.1%~12%。
结合第一方面,在一种可行的实施方式中,所述腈类化合物包括如下所示化合物 中的至少一种:
Figure PCTCN2020140805-appb-000005
其中,R 11选自C 1-12亚烷基、取代的C 1-12亚烷基、C 1-12亚烷氧基或取代的C 1-12亚烷氧基;R 21、R 22各自独立地选自单键、C 1-12亚烷基或取代的C 1-12亚烷基;
R 31、R 32、R 33各自独立地选自单键、C 1-12亚烷基、取代的C 1-12亚烷基、C 1-12亚烷氧基或取代的C 1-12亚烷氧基;
R 41选自C 1-12亚烷基、取代的C 1-12亚烷基、C 2-12亚烯基、取代的C 2-12亚烯基、C 6-26亚芳基、取代的C 6-26亚芳基、C 2-12亚杂环基团或取代的C 2-12亚杂环基团;
其中,经取代时,取代基为卤素原子。
结合第一方面,在一种可行的实施方式中,所述腈类化合物包括
Figure PCTCN2020140805-appb-000006
Figure PCTCN2020140805-appb-000007
中的至少一种。
结合第一方面,在一种可行的实施方式中,所述电解液还包括氟代乙酸乙酯、丙 酸乙酯、氟代碳酸乙烯酯、1,3-丙烷磺内酯、碳酸亚乙烯酯、1,3,6-己烷三腈、戊二腈。
第二方面,本申请提供一种电化学装置,包括正极、负极、隔离膜和电解液,所述电解液为上述的电解液。
第三方面,本申请提供一种电子装置,包括上述的电化学装置。
相对于现有技术,本申请至少具有以下有益效果:
本申请提供的电解液中包括式I化合物,该式I化合物在电化学装置充放电初期有利于在正负极形成正负极保护膜,从而保证电化学装置在高电压(例如电压为4.5V)下能够稳定循环,即提高了电化学装置在高电压下的循环性能。其中,式I所示化合物能够促进更为稳定的正负极保护膜生成,有效抑制副反应和阻抗增长,有效降低循环后的直流阻抗(DCR)。
氟代羧酸酯能够提高采用该电解液的电化学装置在高电压下的循环容量保持率,非氟代羧酸酯能够进一步降低循环后的直流阻抗(DCR)。当电解液中羧酸酯类的质量含量过高时,可能会造成循环性能劣化,因此需要控制氟代羧酸酯和非氟代羧酸酯在电解液中的质量含量。当氟代羧酸酯和非氟代羧酸酯比例过低,则电池阻抗过大;如果两者的比例过高,则在高电压下电解液容易分解,不能利于循环性能。
氟代碳酸乙烯酯或1,3-丙烷磺内酯能够改善电化学装置在负极的成膜稳定性,和式I所示化合物协同作用,有效抑制阻抗增长和改善循环。腈类化合物可以在正极表面形成有机的保护层,在正极表面的有机分子可以很好地将电解液中易氧化组分与正极表面隔开,大大降低了高电压下正极表面对电解液的氧化作用,从而改善电化学装置的循环性能。
因此,本申请提供的电解液、电化学装置及电子装置,电解液可以形成稳定的正负极保护膜,可以有效降低电化学装置在高电压循环后的直流阻抗,提高电化学装置的循环稳定性。
具体实施方式
以下所述是本申请实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请实施例的保护范围。
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一种或多种”中“多种”的含义是两个以上。
本申请的上述申请内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
本申请涉及一种电解液,包括式(I-A)表示的化合物中的至少一种:
Figure PCTCN2020140805-appb-000008
在式(I-A)中,A 1、A 2、A 3、A 4各自独立地选自式(I-B)、式(I-C)、式(I-D)或式(I-E)表示的结构中的任意一种:
Figure PCTCN2020140805-appb-000009
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10各自独立地选自C 1-6烷基、C 2-6烯基或C 2-6炔基;其中,
Figure PCTCN2020140805-appb-000010
表示与相邻原子的结合位点。
本申请通过将式I所示的化合物加入电解液中,可以提高电解液耐氧能力,有利于在电化学装置的正负极生成有效及稳定的固体电解质相界面膜,有效抑制副反应和阻抗的增长,可以显著改善电化学装置在高压下的循环稳定性和直流阻抗(DCR)性能。
作为本申请可选的技术方案,所述式(I-A)表示的化合物包括式I-1至式I-4所示的化合物中的至少一种:
Figure PCTCN2020140805-appb-000011
作为本申请可选的技术方案,所述式I所示的化合物在所述电解液中的质量百分比含量为0.05%~8%;当式I所示的化合物的含量低于0.05%时,其对锂电池在高电压下的高温循环性能改善不明显;当式I所示的化合物的含量高于8%时,电解液中的化合物过多,造成界面膜阻抗较大,造成不可逆锂析出,阻碍电解液的离子传输通道,加速电池的容量衰减。
可选地,所述式I所示的化合物在所述电解液中的质量百分比含量具体可以是0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、6%、7%或8%等等,当然也可以是上述范围内的其他数值,在此不做限定。可以理解地,在电解液中加入式I所示的化合物,式I所示化合物参与正负极成膜提高了SEI膜的稳定性,可以有效改善锂离子 电池在高电压下的阻抗增长和循环性能。优选地,所述式I所示的化合物在所述电解液中的质量百分比含量为0.5%~4%。
作为本申请可选的技术方案,所述电解液包括氟代羧酸酯和/或非氟代羧酸酯。可以理解地,氟代羧酸酯、非氟代羧酸酯为氧惰性溶剂,可以提高电解液耐氧化性,可以有效提高电化学装置的循环稳定性。
作为本申请可选的技术方案,所述氟代羧酸酯在所述电解液中的质量百分比含量为5%~50%,具体可以是5%、8%、10%、15%、20%、25%、30%、35%、40%、45%或50%等等,当然也可以是上述范围内的其他数值,在此不做限定。经过多次试验发现,在电解液中加入氟代羧酸酯,能够有效改善锂离子电池在高电压下的高温循环稳定性,但是氟代羧酸酯对锂电池的直流阻抗的影响较小。
作为本申请可选的技术方案,所述非氟代羧酸酯在所述电解液中的质量百分比含量为5%~50%。具体可以是5%、8%、10%、15%、20%、25%、30%、35%、40%、45%或50%等等,当然也可以是上述范围内的其他数值,在此不做限定。经过多次试验发现,在电解液中加入非氟代羧酸酯,锂电池在高电压下的直流阻抗明显降低,但容量保持率也明显下降;即加入的非氟代羧酸酯会显著改善电池的直流阻抗性能,但会恶化锂离子电池在高电压下的高温循环性能。
作为本申请可选的技术方案,所述电解液包括氟代羧酸酯和非氟代羧酸酯,且所述非氟代羧酸酯和所述氟代羧酸酯的质量比n为0.5≤n≤10。具体地,质量比具体可以是0.5、1.0、2、2.5、4、7、8、9或10等等,当然也可以是上述范围内的其他数值,在此不做限定。经过多次试验发现,非氟代羧酸酯和氟代羧酸酯的质量比例过低时,电池直流阻抗较高,不利于实现电池快速充放电;当非氟代羧酸酯和氟代羧酸酯的质量比例过高时,则电解液在高电压下溶剂大量分解,不利于高电压下的循环性能。优选地,所述非氟代羧酸酯和所述氟代羧酸酯的质量比n为0.5≤n≤4。
作为本申请可选的技术方案,所述非氟代羧酸酯包括乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸乙酯、丙酸丙酯或丙酸丁酯中的至少一种。
作为本申请可选的技术方案,所述氟代羧酸酯包括氟代乙酸乙酯、氟代乙酸丙酯、氟代乙酸丁酯、氟代丙酸乙酯、氟代丙酸丙酯或氟代丙酸丁酯中的至少一种,其中,所述氟代羧酸酯分子中至少有一个氢原子被氟原子取代。
作为本申请可选的技术方案,所述电解液还包括氟代碳酸乙烯酯(FEC)、1,3-丙烷磺内酯(PS)、碳酸亚乙烯酯(VC)或腈类化合物中的至少一种。
作为本申请可选的技术方案,所述氟代碳酸乙烯酯(FEC)在所述电解液中的质量百分比含量为0.1%~10%。所述氟代碳酸乙烯酯(FEC)在所述电解液中的质量百分比含量具体可以是0.1%、0.5%、1%、2%、3%、5%、8%或10%等等,当然也可以是上述范围内的其他数值,在此不做限定。经过多次试验发现,当电解液中加入适量的氟代碳酸乙烯酯(FEC),能够改善电化学装置在高电压下在负极的成膜稳定性,在和式I所示化合物协同作用下,可以抑制阻抗增长,改善锂离子电池在高电压下的循环性能。
优选地,所述氟代碳酸乙烯酯(FEC)在所述电解液中的质量百分比含量为0.1%~5%。
作为本申请可选的技术方案,所述1,3-丙烷磺内酯(PS)在所述电解液中的质量百分比含量为0.1%~5%。所述1,3-丙烷磺内酯(PS)在所述电解液中的质量百分比含量具体可以是0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%或5%等等,当然也可以是上述范围内的其他数值,在此不做限定。经过多次试验发现,当电解液中加入适量的1,3-丙烷磺内酯(PS),能够改善电化学装置在高电压下在负极的成膜稳定性,在和式I所示化合物协同作用下,可以抑制阻抗增长,改善锂离子电池在高电压下的循环性能。
优选地,所述1,3-丙烷磺内酯(PS)在所述电解液中的质量百分比含量为0.1%~5%。
作为本申请可选的技术方案,所述碳酸亚乙烯酯(VC)在所述电解液中的质量百分比含量为0.001%~2%。所述碳酸亚乙烯酯(VC)在所述电解液中的质量百分比含量具体可以是0.001%、0.1%、0.5%、1%、1.5%或2%等等,当然也可以是上述范围内的其他数值,在此不做限定。经过多次试验发现,当电解液中加入适量的碳酸亚乙烯酯(VC),能够改善电化学装置在高电压下在负极的成膜稳定性,在和式I所示化合物协同作用下,可以抑制阻抗增长,改善锂离子电池在高电压下的循环性能。
优选地,所述碳酸亚乙烯酯(VC)在所述电解液中的质量百分比含量为0.001%~1%。
作为本申请可选的技术方案,所述腈类化合物在所述电解液中的质量百分比含量为0.1%~12%。所述腈类化合物在所述电解液中的质量百分比含量具体可以是0.1%、0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%或12%等等,当然也可以是上述范围内的其他数值,在此不做限定。经过多次试验发现,当电解液中加入适量的腈类化合物,腈类化合物可以在正极表面形成有机的保护层,在正极表面的有机分子可以很好地将电解液中易氧化组分与正极表面隔开,大大降低了高电压下正极表面对电解液的氧化作用,从而改善锂离子电池在高电压下的循环性能。
优选地,所述腈类化合物在所述电解液中的质量百分比含量为0.1%~5%。
作为本申请可选的技术方案,所述腈类化合物包括如下所示化合物中的至少一种:
Figure PCTCN2020140805-appb-000012
其中,R 11选自C 1-12亚烷基、取代的C 1-12亚烷基、C 1-12亚烷氧基或取代的C 1-12亚烷氧基;R 21、R 22各自独立地选自单键、C 1-12亚烷基或取代的C 1-12亚烷基;
R 31、R 32、R 33各自独立地选自单键、C 1-12亚烷基、取代的C 1-12亚烷基、C 1-12亚烷氧基或取代的C 1-12亚烷氧基;
R 41选自C 1-12亚烷基、取代的C 1-12亚烷基、C 2-12亚烯基、取代的C 2-12亚烯基、C 6-26亚芳基、取代的C 6-26亚芳基、C 2-12亚杂环基团或取代的C 2-12亚杂环基团;
其中,经取代时,取代基为卤素原子,卤素可以选自氟、氯、溴。
作为本申请可选的技术方案,所述腈类化合物还可以选自以下结构所示腈类化合物中的至少一种;
Figure PCTCN2020140805-appb-000013
Figure PCTCN2020140805-appb-000014
作为本申请可选的技术方案,本申请的电解液为非水电解液,有机溶剂选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯、氟代碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯(DEC)、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、1,4-丁内酯(GBL)、丙酸甲酯、戊酸甲酯、异丁酸甲酯、丁酸甲酯、丙酸丙酯、乙酸乙酯、丙酸乙酯、丁酸乙酯中的至少一种。
作为本申请可选的技术方案,本申请锂盐选自有机锂盐或无机锂盐中的至少一种。
作为本申请可选的技术方案,本申请锂盐选自六氟磷酸锂LiPF 6、双三氟甲烷磺酰亚胺锂LiN(CF 3SO 2) 2(简写为LiTFSI)、双(氟磺酰)亚胺锂Li(N(SO2F) 2)(简写为LiFSI)、双草酸硼酸锂LiB(C 2O 4) 2(简写为LiBOB)、二氟草酸硼酸锂LiBF 2(C 2O 4)(简写为LiDFOB)中的至少一种。
本申请还提供了一种电化学装置,包括正极、负极、隔离膜和电解液,所述电解液为上述的电解液。电化学装置可以是锂离子电池。
作为本申请可选的技术方案,本申请正极包括正极活性材料、粘结剂和导电剂。
作为本申请电化学装置的一种改进,本申请正极活性材料任选自钴酸锂LiCoO 2、锂镍锰钴三元材料、磷酸铁锂、磷酸锰铁锂、锰酸锂中的至少一种。
作为本申请电化学装置的一种改进,本申请负极包括负极活性材料、粘结剂和导电剂。
作为本申请电化学装置的一种改进,本申请负极活性材料为石墨和/或硅。
以下通过具体实施例对本申请的技术方案做示例性描述:
(1)正极制备
将正极活性材料钴酸锂(LiCoO 2)、导电剂Super P、粘结剂聚偏二氟乙烯按照重量比97.9:0.4:1.7进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌均匀,获得正极浆料;将正极浆料均匀涂覆于正极集流体铝箔上;将铝箔烘干,然后经过冷压、裁片、分切后,在真空条件下干燥,得到正极。
(2)负极制备
将负极活性材料人造石墨、导电剂Super P、增稠剂羧甲基纤维素钠(CMC)、粘结剂丁苯橡胶(SBR)按照重量比97:1.5:0.5:1进行混合,加入去离子水,在真空搅拌机作用下获得负极浆料;将负极浆料均匀涂覆在负极集流体铜箔上;将铜箔烘干,然后经过冷压、裁片、分切后,在真空条件下干燥,得到负极片。
(3)电解液制备
在干燥的氩气气氛手套箱中,将溶剂混合,接着加入第一化合物和第二化合物,溶解并充分搅拌后加入锂盐LiPF 6,混合均匀后获得电解液,其中各个实施例和对比例中加入的第一化合物、第二化合物或溶剂的种类或含量不同。
(4)隔离膜的制备
将勃姆石与聚丙烯酸酯混合并将其分散到去离子水中以形成涂层浆料。随后采用微凹涂布法将所述涂层浆料均匀涂布到多孔基材的两个表面上,经过干燥处理以获得 所需隔离膜。
(5)锂离子电池的制备
将正极、隔离膜、负极按顺序叠好,使隔离膜处于正、负极片之间起到隔离的作用,然后卷绕得到裸电芯;焊接极耳后将裸电芯置于外包装箔铝塑膜中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、容量测试等工序,获得锂离子电池。
根据上述方法制备实施例以及对比例,具体参数见下表1、表2及表3。
性能测试:
(1)锂离子电池循环性能测试
将锂离子电池置于45℃(25℃)恒温箱中,静置30分钟,使锂离子电池达到恒温。将达到恒温的锂离子电池以1C恒流充电至电压为4.5V,然后以4.5V恒压充电至电流为0.025C,接着以1C恒流放电至电压为3.0V,此为一个充放电循环。以首次放电的容量为100%,反复进行充放电循环300圈,停止测试,记录循环容量保持率,作为评价锂离子电池循环性能的指标。
循环容量保持率是指,循环至某一圈时的容量除以第一次放电时的容量。
(2)锂离子电池直流阻抗(DCR)测试
将锂离子电池置于25℃环境,静置30分钟,使锂离子电池达到恒温。以0.5C恒流充电至4.5V,恒压充电至电流为0.025C,静置30分钟,以0.1C DC 10s(100ms取点),1C DC 360s(100ms取点),最后提取70%SOC时的直流阻抗(DCR)。
根据上述制备方法制备得到实施例1-1到实施例1-21以及对比例1-1,其中,实施例1-1到实施例1-21以及对比例1-1中所加入的第一化合物如下表1所示,所采用溶剂均为碳酸乙烯酯(EC)、碳酸丙烯酯(PC)和碳酸二乙酯(DEC)的混合物,其中EC:PC:DEC的质量比为1:1:1,对应的性能测试结果见表1所示。
表1
Figure PCTCN2020140805-appb-000015
Figure PCTCN2020140805-appb-000016
本申请的表中“/”表示未添加该物质,wt%均为基于电解液的总质量计算得到的质量百分比含量。
从对比例1-1的性能测试结果可以看出,当电解液中没有加入式I所示化合物时,锂离子电池的4.5V、45℃循环300圈后的容量保持率较差,直流阻抗(DCR)较大,锂离子电池在高电压下的高温循环性能较差。
从实施例1-1到实施例1-17的性能此时结果可以看出,当电解液中加入了式I所示化合物后,锂离子电池4.5V、45℃循环300圈后的容量保持率均有所增加、DCR下降明显。即通过在电解液中加入式I所示化合物可以提高锂离子电池在高电压下的高温循环性能,这可能是由于式I所示的硅氧基团、磷氧基团、钛氧基团或铝氧基团参与锂离子电池的成膜,在高温存储中能够有效延后正负极固体电解质界面膜失效,抑制电解液分解副产物生成,从而提高了锂离子电池的高温循环性能。
从实施例1-1到实施例1-17的性能测试结果可以看出,实施例1-1的电解液中的式I所示化合物的质量百分比含量仅为0.02%,式I所示化合物质量含量过少,正负极保护膜稳定性降低,锂离子电池在4.5V、45℃循环300圈后的容量保持率相比于对比例1-1无明显提高,且相比于实施例1-2到实施例1-6也表现较差。实施例1-7的电解液中的式I所示化合物的质量百分比含量为9%,式I所示化合物质量含量过多,造成膜阻抗较大,造成不可逆锂析出,反而有可能阻碍电解液的离子传输通道,加速容量衰减。
根据实施例1-1到实施例1-17的性能测试结果可以看出,当电解液中式I所示化合物的质量含量在0.05%~8%时,均能够改善锂离子电池在高电压下的阻抗增长。当电解液中式I所示化合物的质量含量在0.5%~4%时,锂离子电池在4.5V、45℃循环300圈后的容量保持率相比于对比例1-1明显提高,即锂离子电池在高电压下的循环性能和阻抗增长均得到明显改善。这是因为式I所示化合物参与正负极成膜提高了SEI膜的稳定性,有利于提高锂离子电池在高电压下的循环性能,因此,在本申请的一些实施例中,式I所示化合物在电解液中的量百分比含量为0.05%~8%,进一步优选地,式I所示化合物在电解液中的质量百分比含量为0.5%~4%。
从实施例1-1到实施例1-17的性能测试结果可以看出,当式I所示化合物具体为式I-1所示的化合物时,对锂离子电池的性能改善效果最佳。
进一步地,根据上述制备方法制备得到实施例2-1到实施例2-33以及对比例2-1,实施例2-1到实施例2-33中所采用的第一化合物和第二化合物见表2,实施例2-1到实施例2-33所采用的溶剂与实施例1-4相同,为了方便比对,在表2中加入实施例1-4的数据,进行对比说明。
表2
Figure PCTCN2020140805-appb-000017
Figure PCTCN2020140805-appb-000018
请参考表2,通过对比分析实施例1-4、实施例2-1至实施例2-3的数据可知,当电解液中仅加入0.1%~5%的氟代碳酸乙烯酯(FEC),缺少1,3-丙烷磺内酯(PS)、碳酸亚乙烯酯(VC)、1,3,6-己烷三腈或戊二腈时,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率上升,在和式I所示化合物协同作用下,并且可以有效抑制阻抗增长,改善锂离子电池在高电压下的循环性能。
通过分析实施例2-1、实施例2-4及实施例2-5的数据可知,当电解液中加入的氟代碳酸乙烯酯(FEC)质量百分比含量达到10%,甚至12%时,锂离子电池的直流阻抗显著增长。
从实施例2-1到实施例2-5的性能测试结果可以看出,氟代碳酸乙烯酯(FEC)在电解液中的质量百分比含量控制在0.1%~5%时,对锂离子电池的性能改善效果最佳。
通过分析实施例1-4、实施例2-6至实施例2-8的数据可知,当电解液中仅加入0.1%~5%的1,3-丙烷磺内酯(PS),缺少氟代碳酸乙烯酯(FEC)、碳酸亚乙烯酯(VC)、1,3,6-己烷三腈或戊二腈时,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率上升,在和式I所示化合物协同作用下,可以抑制阻抗增长,改善锂离子电池在高电压下的循环性能。
通过分析实施例2-6、实施例2-9及实施例2-10的数据可知,当电解液中加入的1,3-丙烷磺内酯(PS)质量百分比含量达到10%,甚至12%时,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率下降,锂离子电池的直流阻抗显著增长。
从实施例2-6到实施例2-10的性能测试结果可以看出,1,3-丙烷磺内酯(PS)在电解液中的质量百分比含量控制在0.1%~5%时,对锂离子电池的性能改善效果最佳。
通过分析实施例1-4、实施例2-11至实施例2-13的数据可知,当电解液中仅加入0.001%~1%的碳酸亚乙烯酯(VC),缺少1,3-丙烷磺内酯(PS)、氟代碳酸乙烯酯(FEC)、1,3,6-己烷三腈或戊二腈时,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率上升,在和式I所示化合物协同作用下,可以抑制阻抗增长,改善锂离子电池在高电压下的循环性能。
通过分析实施例2-11、实施例2-14及实施例2-15的数据可知,当电解液中加入的碳酸亚乙烯酯(VC)质量百分比含量达到2%时,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率上升,但是锂离子电池的直流阻抗有所增长。当电解液中加入的碳酸亚乙烯酯(VC)质量百分比含量达到3%时,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率下降,并且锂离子电池的直流阻抗显著增长。
从实施例2-11到实施例2-15的性能测试结果可以看出,碳酸亚乙烯酯(VC)在电解液中的质量百分比含量控制在0.001%~1%时,对锂离子电池的性能改善效果最佳。
通过分析实施例1-4、实施例2-16至实施例2-26的数据可知,当电解液中仅加入0.1%~5%的腈类化合物,缺少1,3-丙烷磺内酯(PS)、氟代碳酸乙烯酯(FEC)、碳酸亚乙烯酯(VC)时,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率上升,在和式I所示化合物协同作用下,可以抑制阻抗增长,改善锂离子电池在高电压下的循环性能。
当电解液中加入的腈类化合物质量百分比含量达到7%时,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率上升,但是锂离子电池的直流阻抗有所增长。当电解液中加入的腈类化合物质量百分比含量达到12%时,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率下降,并且锂离子电池的直流阻抗显著增长。
从实施例2-11到实施例2-15的性能测试结果可以看出,腈类化合物在电解液中的质量百分比含量控制在0.1%~5%时,对锂离子电池的性能改善效果最佳。
通过分析对比例2-1、实施例2-27至实施例2-33的数据可知,当电解液中加入腈 类化合物、1,3-丙烷磺内酯(PS)、氟代碳酸乙烯酯(FEC)及碳酸亚乙烯酯(VC)时,在和式I所示化合物协同作用下,锂离子电池在4.5V、45℃循环300圈后的循环容量保持率上升,可以抑制阻抗增长,改善锂离子电池在高电压下的循环性能。
由于式I所示的化合物多烷氧基团改善了电解液和隔膜及负极的界面浸润能力,从而使其他化合物成膜更均匀致密,从而改善了锂离子电池在高电压下的循环性能。当电解液中复合添加FEC、PS、VC、1,3,6-己烷三腈或戊二腈中的至少一种时,能够大幅度改善电池性能。
进一步地,根据上述制备方法制备得到实施例3-1到实施例3-13以及对比例3-1到对比例3-6,对比例以及实施例中所采用的第一化合物以及第二化合物与实施例1-10相同,区别在于所采用的溶剂不同。对比例3-1到对比例3-6,以及实施例3-1到实施例3-13所采用的溶剂中氟代羧酸酯和非氟代羧酸酯质量比例如表3所示,其余溶剂成分仍按照EC:PC:DEC以质量比为1:1:1补充。
表3
Figure PCTCN2020140805-appb-000019
Figure PCTCN2020140805-appb-000020
请参考表3,通过分析实施例1-4、对比例3-1至对比例3-3的数据可知:在电解液中加入非氟代羧酸酯后,锂离子电池在4.5V、45℃循环300圈后的直流阻抗下降,但容量保持率也明显下降,即在电解液中加入非氟代羧酸酯会显著改善电池阻抗,但会恶化锂离子电池在高电压下的高温循环性能。
通过分析实施例1-4、对比例3-4至对比例3-6的数据可知:在电解液中加入氟代羧酸酯后,锂离子电池在4.5V、45℃循环300圈后的直流阻抗略微升高或降低,但是容量保持率大幅上升,即在电解液中加入氟代羧酸酯对阻抗的影响较小,但能够显著改善锂离子电池在高电压下的高温循环性能。
通过分析实施例1-4、对比例3-1、实施例3-1至实施例3-6的数据可知:实施例3-1至实施例3-6的锂离子电池在4.5V、45℃循环300圈后的直流阻抗高于实施例1-4的锂离子电池,同时实施例3-1至实施例3-6的锂离子电池在4.5V、45℃循环300圈后的容量保持率明显小于对比例3-1的锂离子电池,即随着非取代羧酸酯的质量含量的上升、非氟代羧酸酯与氟代羧酸酯的质量比例的上升,仍然能够改善电解液的DCR, 通过加入氟代羧酸酯能够抑制非氟代羧酸酯对高电压高温循环的劣化。
通过分析对比例3-1、实施例3-4、实施例3-7至实施例3-9的数据可知:在非氟代羧酸酯的质量含量不变时,随着氟代羧酸酯的质量含量的上升、非氟代羧酸酯与氟代羧酸酯的质量比的下降,锂离子电池在4.5V、45℃循环300圈后的容量保持率升高,能够改善锂离子电池的高电压下的高温循环性能。
通过分析对比例3-1至对比例3-3、实施例3-7、实施例3-10至实施例3-11的数据可知:乙酸乙酯对锂离子电池的直流阻抗的改善效果最为显著,但对于改善高电压高温循环后的容量保持率不具优势;丙酸丙酯对改善锂离子电池的直流阻抗的效果较弱,但对改善高温循环性能的效果最优。通过分析对比例3-4至对比例3-6、实施例3-7、实施例3-12至实施例3-13可知:二氟乙酸乙酯恶化锂离子电池的直流阻抗的程度较轻,对于高温循环性能的改善效果相对略差。
为了平衡阻抗和高电压下的高温循环性能,将非氟代羧酸酯与氟代羧酸酯的质量比设为n,0.5≤n≤10。非氟代羧酸酯和氟代羧酸酯的质量比例过低时,电池直流阻抗较高,不利于实现电池快速充放电;当非氟代羧酸酯和氟代羧酸酯的质量比例过高时,则电解液在高电压下溶剂大量分解,不利于高电压下的循环性能。因此,优选为0.5≤n≤4。
通过分析实施例3-14至对比例3-17、实施例3-10可知:在电解液中加入第一化合物和第二化合物,并调节非氟代羧酸酯与氟代羧酸酯的质量比例,可使得电化学装置在大幅度降低直流阻抗的前提下,有效改善高温循环性能。
综上所述,在本申请的实施例中,电解液包括式I所示化合物,从而在电化学装置充放电初期形成高稳定的正负极保护膜,在不低于4.4V的高电压下可以实现稳定循环,提高了电化学装置在高电压下的循环性能;在循环中有效延后正负极SEI膜失效,抑制阻抗增长,提高了电化学装置的充放性能。
在一些实施例中,电解液还包括氟代羧酸酯与非氟代羧酸酯,用并限定两者的质量比能够降低电解液的DCR,改善电化学装置在高电压下的快速充放电能力。式I所示化合物与氟代羧酸酯参与负极成膜,式I所示化合物与非氟代羧酸酯参与正极成膜,通过合理组合并调整使用量,可改善电化学装置在高电压下SEI膜的稳定性。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (12)

  1. 一种电解液,其特征在于,包括式(I-A)表示的化合物中的至少一种:
    Figure PCTCN2020140805-appb-100001
    在式(I-A)中,A 1、A 2、A 3、A 4各自独立地选自式(I-B)、式(I-C)、式(I-D)或式(I-E)表示的结构中的任意一种:
    Figure PCTCN2020140805-appb-100002
    其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10各自独立地选自C 1-6烷基、C 2-6烯基或C 2-6炔基;
    其中,
    Figure PCTCN2020140805-appb-100003
    表示与相邻原子的结合位点。
  2. 根据权利要求1所述的电解液,其特征在于,包括式I-1至式I-4所示的化合物中的至少一种:
    Figure PCTCN2020140805-appb-100004
  3. 根据权利要求1所述的电解液,其特征在于,所述式I所示的化合物在所述电解液中的质量百分比含量为0.05%~8%。
  4. 根据权利要求1所述的电解液,其特征在于,还包括氟代羧酸酯和/或非氟代羧酸酯。
  5. 根据权利要求4所述的电解液,其特征在于,满足以下特征a至c中的至少一种:
    a.所述氟代羧酸酯在所述电解液中的质量百分比含量为5%~50%;
    b.所述非氟代羧酸酯在所述电解液中的质量百分比含量为5%~50%;
    c.所述氟代羧酸酯和所述非氟代羧酸酯在所述电解液中的总质量百分比含量为5%~50%,且所述非氟代羧酸酯和所述氟代羧酸酯的质量比n为0.5≤n≤10。
  6. 根据权利要求4或5所述的电解液,其特征在于,
    所述非氟代羧酸酯包括乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸乙酯、丙酸丙酯或丙酸丁酯中的至少一种;
    所述氟代羧酸酯包括氟代乙酸乙酯、氟代乙酸丙酯、氟代乙酸丁酯、氟代丙酸乙酯、氟代丙酸丙酯或氟代丙酸丁酯中的至少一种,其中,所述氟代羧酸酯分子中至少有一个氢原子被氟原子取代。
  7. 根据权利要求1所述的电解液,其特征在于,还包括氟代碳酸乙烯酯、1,3-丙烷磺内酯、碳酸亚乙烯酯或腈类化合物中的至少一种。
  8. 根据权利要求7所述的电解液,其特征在于,满足以下特征d至g中的至少一者:
    d.所述氟代碳酸乙烯酯在所述电解液中的质量百分比含量为0.1%~10%;
    e.所述碳酸亚乙烯酯在所述电解液中的质量百分比含量为0.001%~2%;
    f.所述1,3-丙烷磺内酯在所述电解液中的质量百分比含量为0.1%~5%;
    g.所述腈类化合物在所述电解液中的质量百分比含量为0.1%~12%。
  9. 根据权利要求7所述的电解液,其特征在于,所述腈类化合物包括如下所示化合物中的至少一种:
    Figure PCTCN2020140805-appb-100005
    其中,R 11选自C 1-12亚烷基、取代的C 1-12亚烷基、C 1-12亚烷氧基或取代的C 1-12亚烷氧基;R 21、R 22各自独立地选自单键、C 1-12亚烷基或取代的C 1-12亚烷基;
    R 31、R 32、R 33各自独立地选自单键、C 1-12亚烷基、取代的C 1-12亚烷基、C 1-12亚烷氧基或取代的C 1-12亚烷氧基;
    R 41选自C 1-12亚烷基、取代的C 1-12亚烷基、C 2-12亚烯基、取代的C 2-12亚烯基、C 6-26亚芳基、取代的C 6-26亚芳基、C 2-12亚杂环基团或取代的C 2-12亚杂环基团;
    其中,经取代时,取代基为卤素原子。
  10. 根据权利要求7所述的电解液,其特征在于,所述腈类化合物包括
    Figure PCTCN2020140805-appb-100006
    Figure PCTCN2020140805-appb-100007
    Figure PCTCN2020140805-appb-100008
    中的至少一种。
  11. 一种电化学装置,包括正极、负极、隔离膜和电解液,其特征在于,所述电解液为权利要求1~10中任一所述的电解液。
  12. 一种电子装置,其特征在于,包括权利要求11中所述的电化学装置。
PCT/CN2020/140805 2020-12-29 2020-12-29 电解液、电化学装置及电子装置 WO2022141047A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/140805 WO2022141047A1 (zh) 2020-12-29 2020-12-29 电解液、电化学装置及电子装置
CN202080038334.1A CN113892207B (zh) 2020-12-29 2020-12-29 电解液、电化学装置及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140805 WO2022141047A1 (zh) 2020-12-29 2020-12-29 电解液、电化学装置及电子装置

Publications (1)

Publication Number Publication Date
WO2022141047A1 true WO2022141047A1 (zh) 2022-07-07

Family

ID=79013233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140805 WO2022141047A1 (zh) 2020-12-29 2020-12-29 电解液、电化学装置及电子装置

Country Status (2)

Country Link
CN (1) CN113892207B (zh)
WO (1) WO2022141047A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886811A (zh) * 2004-04-13 2006-12-27 如碧空株式会社 用于驱动电解电容器的电解质和电解电容器
CN104868096A (zh) * 2015-05-04 2015-08-26 宁德时代新能源科技有限公司 一种锂离子电池
DE102016009329A1 (de) * 2016-07-30 2017-02-16 Daimler Ag Elektrolyt für organische Radikalbatterie und organische Radikalbatterie mit dem Elektrolyt
CN109524713A (zh) * 2017-09-20 2019-03-26 株式会社东芝 二次电池、电池组以及车辆
CN111769328A (zh) * 2020-07-10 2020-10-13 宁德新能源科技有限公司 一种电解液、电化学装置以及电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4379743B2 (ja) * 2006-12-08 2009-12-09 ソニー株式会社 電解液および二次電池
KR20170022229A (ko) * 2015-08-19 2017-03-02 삼성전자주식회사 전해질, 이를 포함하는 리튬-공기 전지, 및 전해질 제조방법
CN110073528A (zh) * 2016-12-15 2019-07-30 昭和电工株式会社 粒状复合材料、锂离子二次电池用负极及其制造方法
CN114388890A (zh) * 2020-03-13 2022-04-22 宁德新能源科技有限公司 电化学装置及包含其的电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886811A (zh) * 2004-04-13 2006-12-27 如碧空株式会社 用于驱动电解电容器的电解质和电解电容器
CN104868096A (zh) * 2015-05-04 2015-08-26 宁德时代新能源科技有限公司 一种锂离子电池
DE102016009329A1 (de) * 2016-07-30 2017-02-16 Daimler Ag Elektrolyt für organische Radikalbatterie und organische Radikalbatterie mit dem Elektrolyt
CN109524713A (zh) * 2017-09-20 2019-03-26 株式会社东芝 二次电池、电池组以及车辆
CN111769328A (zh) * 2020-07-10 2020-10-13 宁德新能源科技有限公司 一种电解液、电化学装置以及电子装置

Also Published As

Publication number Publication date
CN113892207B (zh) 2022-08-12
CN113892207A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
CN109728340B (zh) 锂离子电池
US20130017439A1 (en) Nonaqueous secondary battery
CN112635835B (zh) 高低温兼顾的非水电解液及锂离子电池
WO2021073465A1 (zh) 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置
CN111697266B (zh) 电解液和包括其的电化学装置及电子装置
CN112467209A (zh) 一种高低温性能兼顾的高电压锂离子电池
CN110797575A (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2017185703A1 (zh) 一种高温锂离子电池电解液及其制备方法和高温锂离子电池
CN113067033B (zh) 电化学装置及电子装置
KR100984134B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN112956063B (zh) 电解液和包含其的电化学装置和电子装置
CN110783628A (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2021238052A1 (zh) 一种锂离子二次电池的电解液及其应用
CN108206299B (zh) 锂离子电池及其电解液
CN113839095B (zh) 一种电解液及包括该电解液的电池
CN113809401A (zh) 锂离子电池非水电解液及其应用
CN110649318B (zh) 一种电解液及其制备方法和锂离子电池
US20220223915A1 (en) Electrolyte, electrochemical device including same, and electronic device
WO2022099542A1 (zh) 一种电解液、电化学装置以及电子装置
CN113067031B (zh) 电解液、电化学装置及电子装置
US20220158242A1 (en) Electrolyte and preparation method thereof and lithium ion battery
WO2022095772A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN115117443A (zh) 一种适用于锂金属负极二次电池的电解液
WO2022141047A1 (zh) 电解液、电化学装置及电子装置
CN109904520B (zh) 非水电解液及二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/11/2023)