WO2022139060A1 - 표시장치 - Google Patents

표시장치 Download PDF

Info

Publication number
WO2022139060A1
WO2022139060A1 PCT/KR2021/000740 KR2021000740W WO2022139060A1 WO 2022139060 A1 WO2022139060 A1 WO 2022139060A1 KR 2021000740 W KR2021000740 W KR 2021000740W WO 2022139060 A1 WO2022139060 A1 WO 2022139060A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
sub
light emitting
pixels
Prior art date
Application number
PCT/KR2021/000740
Other languages
English (en)
French (fr)
Inventor
김석순
Original Assignee
(주)유니젯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유니젯 filed Critical (주)유니젯
Priority to US17/617,703 priority Critical patent/US20220399409A1/en
Priority to EP21911130.9A priority patent/EP4266373A1/en
Priority to CN202180004016.8A priority patent/CN114981977A/zh
Publication of WO2022139060A1 publication Critical patent/WO2022139060A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components

Definitions

  • the present invention relates to a display device, and more particularly, to a display device with improved resolution.
  • a display device is a device for displaying an image, and an organic light emitting display device has recently been attracting attention.
  • An organic light emitting display device includes a plurality of pixels including an organic light emitting diode (OLED) including a cathode, an anode, and an organic light emitting layer, and each pixel includes a plurality of transistors and capacitors ( capacitor) is formed.
  • the plurality of transistors basically includes a switching transistor and a driving transistor.
  • a thin film encapsulation layer composed of a mixture of inorganic layers and organic layers is formed on the cathode to protect the organic light emitting layer from moisture and oxygen.
  • Such an organic light emitting display device has a self-luminous property, and unlike a liquid crystal display device, it does not require a separate light source, so it has the advantage of reducing thickness and weight, low power consumption, high luminance, and high response. It shows high quality characteristics such as speed.
  • an organic light emitting display device includes a plurality of pixels each emitting light of a different color, and the plurality of pixels emit light to display an image.
  • a pixel means a minimum unit for displaying an image, and power lines such as a gate line, a data line, and a driving power line for driving each pixel and the area or shape of each pixel are interposed between neighboring pixels.
  • An insulating layer such as a pixel defining layer for definition may be positioned.
  • the organic light emitting layer constituting the pixel of the conventional organic light emitting display device was formed by deposition using a mask such as a fine metal mask (FMM).
  • FMM fine metal mask
  • an inkjet printing technique is used to manufacture an organic light emitting display device.
  • CF color filter
  • HIL Hole Injection Layer
  • HTL Hole Transport Layer
  • RGB emission layer Emission Material Layer
  • Inkjet printing technology is used in the manufacturing field of the polymer OLED, the hole injection layer (HIL), the intermediate layer (IL, Interlayer), and the manufacturing field of the polymer RGB light emitting layer.
  • RGB pixel printing using inkjet printing technology is mainly developed and applied to printing color filters or QD color conversion (QDCC) layers for large TVs of 300 PPI (Pixels per Inch) or less, which can be applied to mass production, and polymer OLED printing technology. is also being applied to manufacturing 4K monitors or medium-sized displays of 300 PPI or less.
  • QDCC QD color conversion
  • the biggest reason that the current inkjet printing technology is applied only to display devices of 300 PPI or less is the printing precision of the actual ink drops considering the pixel size, the size of the ink drop, the tolerance of the equipment, and the printing precision of the head. This is because RGB inkjet printing is performed within the range that can stably mass-produce in consideration.
  • the inkjet printing technology cannot reduce the size of the ink droplet that the inkjet head can eject to 0.5 pl (9.85 ⁇ m in diameter) or less, so that it is impossible to apply the ink drop to a pixel smaller than the ink droplet.
  • the resolution of the display device that can be implemented by the inkjet method is theoretically limited to a maximum of 800 PPI and a maximum of 500 PPI in practice.
  • a display device with a higher resolution of 800 PPI (4K) is required for display devices for mobile phones with the highest resolution of 577 PPI (3K), and it is also expected to replace mobile phones in the near future.
  • the resolution of the display device applied to the glasses for augmented reality (AR), virtual reality (VR), mixed reality (MR), and extended reality (XR) that are being developed is a situation in which an ultra-high-resolution display device of 2000 PPI or more is required.
  • An object of the present invention to solve the problems according to the prior art is to implement a pixel in a rectangular structure so that it can print high-resolution pixels 4 times larger within the limits of the existing ink droplet size and precision, thereby displaying improved resolution to provide the device.
  • a display device comprising: a first light emitting group including four first sub-pixels that are included in different pixels and emit light of the same color; a second light emitting group including four second sub-pixels included in different pixels and emitting the same color light; a third light emitting group including four third sub-pixels included in different pixels and emitting the same color light; and a fourth light emitting group including four fourth sub-pixels included in different pixels and emitting the same color light, and four first, second, and third sub-pixels disposed closest to each other. and a display device configured such that the fourth sub-pixel constitutes one pixel.
  • each of the first to fourth light emitting groups is formed in plurality and arranged in a matrix form on a thin film transistor substrate in a first direction and a second direction crossing the first direction,
  • the number of the first to fourth light emitting groups per unit area may be configured to be the same.
  • the first to fourth light-emitting groups are spaced apart from each other at the same distance, and the centers of two neighboring light-emitting groups among the first to fourth light-emitting groups are spaced apart by a first distance.
  • the first to fourth sub-pixels constituting the one pixel may be configured to have a rectangular shape.
  • the central angle of the first to fourth sub-pixels may be formed to be 90°, and the corner portions formed to be less than or equal to 90° may be rounded.
  • the first to fourth light emitting groups are configured to emit light of any one color among red, green, blue and white, and the first to fourth light emitting groups are configured to emit light of different colors.
  • the first to fourth light-emitting groups are configured to emit light of any one color among red, green, blue, and white, and two light-emitting groups among the first to fourth light-emitting groups emit the same color light. may be configured to emit.
  • the two light emitting groups emitting the same color light may be configured to be electrically connected to the same thin film transistor and controlled at the same time.
  • the two light emitting groups emitting the same color light may be configured to be individually controlled by being electrically connected to different thin film transistors, respectively.
  • the two light-emitting groups emitting the same color light are configured to emit blue light, one light-emitting group of the other light-emitting groups is configured to emit red light, and the other light-emitting group is configured to emit green light.
  • the two light-emitting groups emitting the same color light are configured to emit green light, one light-emitting group of the remaining light-emitting group is configured to emit red light, and the other light-emitting group is configured to emit blue light.
  • the two light-emitting groups emitting the same color light are configured to emit red light, one light-emitting group of the remaining light-emitting group is configured to emit green light, and the other light-emitting group is configured to emit blue light.
  • each of the first to fourth light emitting groups may include: four pixel electrodes respectively corresponding to four sub-pixels; four light emitting layers stacked on each of the four pixel electrodes; and four counter electrodes respectively stacked on the four light emitting layers.
  • each of the first to fourth light emitting groups may include: four pixel electrodes respectively corresponding to four sub-pixels; one light emitting layer overlapping all of the four pixel electrodes; and four counter electrodes respectively stacked on the emission layer to correspond to the four pixel electrodes, respectively.
  • the light-emitting layer formed in the first light-emitting group, the light-emitting layer formed in the second light-emitting group, the light-emitting layer formed in the third light-emitting group, and the light-emitting layer formed in the fourth light-emitting group are each used in inkjet printing with different inks. can be formed by
  • the light-emitting layer formed in the first light-emitting group, the light-emitting layer formed in the second light-emitting group, the light-emitting layer formed in the third light-emitting group, and the light-emitting layer formed in the fourth light-emitting group are formed by inkjet printing, At least two light emitting layers among the light emitting layer formed in the first light emitting group, the light emitting layer formed in the second light emitting group, the light emitting layer formed in the third light emitting group, and the light emitting layer formed in the fourth light emitting group may be formed by inkjet printing with the same ink. have.
  • At least one of the first light-emitting group, the second light-emitting group, the third light-emitting group, and the fourth light-emitting group may be formed to have a different size.
  • the two light emitting groups emitting the same color light may be arranged in a single column along a first direction or a second direction crossing the first direction on the thin film transistor substrate.
  • the present invention as described above, it is possible to print high-resolution pixels 4 times larger than the existing ink droplet size and precision, and through this, there is an advantage that at least 2000 PPI and even 2400 PPI can be realized with the existing inkjet technology. That is, there is an advantage in that it enables the manufacture of 4K mobile phones and high-resolution display devices such as AR, VR, MA, and XR using the inkjet method.
  • the central angle of the sub-pixel is 90°
  • all corners in the sub-pixel are formed in a structure without acute angles, and each corner is rounded to improve the print quality of inkjet ink.
  • the loss of the aperture ratio can be minimized, and light of a wider color can be emitted in the same area, so that the brightness of the display device can be improved.
  • low-resolution TV OLEDs can easily be made high-resolution.
  • MMG Multi Model Glass
  • FIG. 1 is a plan view of a display device according to an exemplary embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a part of a pixel arrangement of a display device according to a first exemplary embodiment of the present invention.
  • FIG. 3 is a plan view illustrating a part of a pixel arrangement of a display device according to a second exemplary embodiment of the present invention.
  • FIG. 4 is a plan view illustrating a part of a pixel arrangement of a display device according to a third exemplary embodiment of the present invention.
  • FIG. 5 is a plan view illustrating a part of a pixel arrangement of a display device according to a fourth exemplary embodiment of the present invention.
  • FIG. 6 is a plan view illustrating a part of a pixel arrangement of a display device according to a fifth exemplary embodiment of the present invention.
  • FIG. 7 is a plan view illustrating a part of a pixel arrangement of a display device according to a sixth exemplary embodiment of the present invention.
  • FIG. 8 is a plan view illustrating a part of a pixel arrangement of a display device according to a seventh exemplary embodiment of the present invention.
  • FIG. 9 is a plan view illustrating a first sub-pixel constituting a first light emitting group of the display device according to the first exemplary embodiment of the present invention.
  • FIG. 10 is a cross-sectional view corresponding to a first light emitting group of the display device according to the first embodiment of the present invention.
  • FIG. 11 is a schematic diagram illustrating a polymer OLED structure.
  • FIG. 12 is a schematic diagram illustrating a process of manufacturing an RGB polymer OLED using an inkjet printing method.
  • a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • a component When it is said that a component is 'connected' or 'connected' to another component, it may be directly connected or connected to the other component, but it is understood that other components may exist in between. it should be
  • a plurality of pixels Px are arranged in a matrix form along a first direction on a thin film transistor substrate and a second direction crossing the first direction. are repeatedly arranged, and the first direction may be an X-axis direction, and the second direction may be a Y-axis direction.
  • each of the pixels Px has a first sub-pixel 100sp and a second sub-pixel 200sp emitting any one of red light, green light, blue light, and white light.
  • the third sub-pixel 300sp and the fourth sub-pixel 400sp may be included.
  • the first subpixel 100sp emits green light
  • the second subpixel 200sp emits red light
  • the third subpixel 300sp and the fourth subpixel 400sp emit blue light. It is configured to emit, and the combination of such color light can be variously changed, and various embodiments will be described.
  • the display device includes a first light emitting group 100 including four first sub-pixels 100sp and a second light-emitting group 100 including four second sub-pixels 200sp.
  • the light emitting group 200 includes a third light emitting group 300 including four third sub-pixels 300sp and a fourth light emitting group 400 including four fourth sub-pixels 400sp.
  • the four first sub-pixels 100sp constituting the first light-emitting group 100 are configured to emit light of the same color, and each of the first sub-pixels 100sp is configured to be included in a different pixel Px. do.
  • the four second sub-pixels 200sp constituting the second light emitting group 200 are configured to emit light of the same color, and each of the second sub-pixels 200sp are configured to be included in different pixels Px. do.
  • the four third sub-pixels 300sp constituting the third light emitting group 300 are configured to emit the same color light, and each of the third sub-pixels 300sp are configured to be included in different pixels Px. do.
  • the four fourth sub-pixels 400sp constituting the fourth light emitting group 400 are configured to emit the same color light, and each of the fourth sub-pixels 400sp are configured to be included in different pixels Px. do.
  • the four first sub-pixels 100sp constituting the first light emitting group 100 constituting the display device according to the first embodiment are configured to emit green light
  • the four second sub-pixels 200sp constituting the second light-emitting group 200 are configured to emit red light
  • the four third sub-pixels 300sp constituting the third light-emitting group 300 are configured to emit blue light.
  • the four fourth sub-pixels 400sp constituting the fourth light emitting group 400 are also configured to emit blue light.
  • the first light-emitting group 100 , the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 are formed in plurality, respectively, on the thin film transistor substrate in the X-axis direction and the Y-axis direction. It is repeatedly arranged in a matrix form along the direction.
  • the first light-emitting group 100 , the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 are spaced apart from each other at the same distance in the X-axis direction and the Y-axis direction. can be
  • the number of the first light emitting group 100 , the second light emitting group 200 , the third light emitting group 300 , and the fourth light emitting group 400 per unit area may all be the same.
  • the first light-emitting group 100 , the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 may be formed in a circular shape.
  • first distance dx Between the centers of two neighboring light-emitting groups among the first light-emitting group 100 , the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 based on the X-axis direction are spaced apart by a first distance dx, and the light emitting groups closest to each other are spaced apart by a second distance 2dx that is twice the first distance.
  • first distance dy Between the centers of two neighboring light-emitting groups among the first light-emitting group 100 , the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 in the Y-axis direction are spaced apart by a first distance dy, and the light emitting groups closest to each other are spaced apart by a second distance 2dy that is twice the first distance.
  • the first distance dx in the X-axis direction and the first distance dy in the Y-axis direction may be the same distance.
  • the four first portions are arranged closest to each other.
  • the pixel 100sp, the second subpixel 200sp, the third subpixel 300sp, and the fourth subpixel 400sp form one pixel Px.
  • the first subpixel 100sp, the second subpixel 200sp, the third subpixel 300sp, and the fourth subpixel 400sp disposed closest to each other are disposed in a rectangular shape to form one pixel Px.
  • a first sub-pixel 100sp emitting green light, a second sub-pixel 200sp emitting red light, a third sub-pixel 300sp emitting blue light, and blue light emitting is composed of a fourth sub-pixel 400sp, and as both the third sub-pixel 300sp and the fourth sub-pixel 400sp are configured to emit blue light, in an area equal to twice the emission area of green light or red light Blue light may be emitted.
  • a blue device which is an organic light emitting material emitting blue light with low efficiency, has a shorter lifespan compared to an organic light emitting material emitting light of a different color.
  • the case in which the first light-emitting group 100, the second light-emitting group 200, the third light-emitting group 300, and the fourth light-emitting group 400 are formed in a circular shape has been exemplified, but FIG. As shown in , the first light-emitting group 100, the second light-emitting group 200, the third light-emitting group 300, and the fourth light-emitting group 400 may be formed in a polygonal shape other than a circular shape. .
  • FIG. 9 A case in which the first light-emitting group 100, the second light-emitting group 200, the third light-emitting group 300, and the fourth light-emitting group 400 are formed in a regular octagonal shape is exemplified.
  • the center corners of the four first sub-pixels 100sp are formed in a shape of 90°. It is advantageous for inkjet ink printing. In addition, there is an advantage that a regular octagonal shape can secure a larger light emitting area than a circular shape.
  • each corner portion of the first sub-pixel 100sp constituting the first light emitting group 100 is formed by being rounded.
  • the rhombus shape shown in FIG. 9 (c) has a large area loss at each corner, and the square shape shown in (d) is a section emitting color light with a large light emitting area. It becomes impossible to maintain a sufficient distance from the pixel. Therefore, the circular shape shown in (a) of FIG. 9 and the regular octagonal shape shown in (b), which can maintain a sufficient distance from the sub-pixels emitting light of different colors while increasing the emission area, are the most preferable shapes, and the actual OLEDs It is the most suitable form to apply considering the aperture ratio.
  • the detailed structure of the first sub-pixel 100sp as described above is equally applied to the second sub-pixel 200sp, the third sub-pixel 300sp, and the fourth sub-pixel 400sp.
  • the central angles of the first sub-pixel 100sp, the second sub-pixel 200sp, the third sub-pixel 300sp, and the fourth sub-pixel 400sp form 90° instead of an acute angle. Due to the shape in which the corners are rounded, the inkjet ink is completely discharged to the ends of the corners of the first sub-pixel 100sp, the second sub-pixel 200sp, the third sub-pixel 300sp, and the fourth sub-pixel 400sp. It becomes a structure which is easy to fill favorably.
  • Inkjet ink generally has a surface tension of about 30 dyne/cm (Inkjet ink varies depending on the head, but generally has a range of 25 to 35 dyne/cm), so the surface tension of inkjet ink is rather large. belong
  • the corner angle of the sub-pixel is formed in the form of an acute angle that is too sharp, the ink jet until the end of each corner of the sub-pixel (Px) even if the surface characteristics of the substrate or the surface characteristics of the PDL (Pattern Definition Layer) are treated with high hydrophilicity.
  • the ink cannot be completely and well filled.
  • the shape of the sub-pixels is very important in order to completely fill the sub-pixels with ink.
  • the central angle is formed to be 90° instead of an acute angle as in the example of the first sub-pixel 100sp, the second sub-pixel 200sp, the third sub-pixel 300sp, and the fourth sub-pixel 400sp
  • the ink jet ends at each corner.
  • the ink can be completely and well filled.
  • all fluids are physically shaped in the direction of the lowest energy and try to maintain a stable state with respect to the surface state and the surrounding atmosphere.
  • the most stable state of an ink droplet is to form a sphere, and after being hit on a flat surface, it may have a hemispherical impact shape having various contact angles depending on the surface tension of the ink and surrounding surface energy.
  • an ink droplet that is deposited on a flat surface has no choice but to have a circular shape with respect to the surface.
  • the ink droplets adhering to the print area make various shapes depending on the shape of the print area.
  • the pixel surface has high lyophilicity, so it is easy to create a surface condition that is filled with ink up to the 90° corner.
  • the reason why the corners of the OLED pixels should be rounded is also related to the characteristics of the OLED that should emit light on its own.
  • the stacked structure of the first light emitting group 100 , the second light emitting group 200 , the third light emitting group 300 , and the fourth light emitting group 400 will be described, and the first light emitting group 100 .
  • the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 all have the same stacked structure, so the first light-emitting group 100 will be described as an example.
  • the four first sub-pixels 100sp constituting the first light-emitting group 100 include a switching element and a pixel electrode 110 , a light-emitting layer 120 , and a counter electrode which are light-emitting structures electrically connected to the switching element, respectively.
  • the layer 130 has a stacked structure, and a thin film encapsulation layer in which the inorganic layers 140 and 160 and the organic layer 150 are mixed is formed on the counter electrode 130 .
  • the first light emitting group 100 corresponds to the thin film transistor substrate S and the four first sub-pixels 100sp, respectively, so as to correspond to the thin film transistor substrate S. ), the four pixel electrodes 110 , the emission group defining layer PDL1 , the subpixel defining layer PDL2 , the four emission layers 120 respectively stacked on the four pixel electrodes 110 , and the 4 It may be configured to include four counter electrodes 130 stacked on each of the light emitting layers 120 .
  • 10A is a cross-sectional view showing only two pixel electrodes 110 , two emission layers 120 , and two counter electrodes 130 .
  • the thin film transistor substrate S may include a wiring layer and a plurality of thin film transistors.
  • the wiring layer may include a plurality of gate lines and a plurality of data lines crossing the gate lines, and the thin film transistors may be electrically connected to the gate line and the data line.
  • the gate lines may extend in an X-axis direction
  • the data lines may extend in a Y-axis direction.
  • the first sub-pixel 100sp, the second sub-pixel 200sp, the third sub-pixel 300sp, and the fourth sub-pixel 400sp constituting one pixel Px are the gate lines and the data lines. may be electrically connected to each.
  • the third sub-pixel 300sp and the fourth sub-pixel 400sp constituting the display device of the first embodiment are configured to emit the same blue light
  • the third sub-pixel 300sp and the fourth sub-pixel It may be electrically connected to share a data line with the gate line of (400sp).
  • the third sub-pixel 300sp and the fourth sub-pixel 400sp are configured to emit the same blue light, they do not share the gate line and the data line of the third sub-pixel 300sp and the fourth sub-pixel 400sp. It does not exclude that each can be individually controlled.
  • the light emitting group defining layer PDL1 may be disposed on the thin film transistor substrate, and an opening corresponding to the first light emitting group 100 may be formed.
  • Four pixel electrodes 110 may be disposed at an angle in the emission group defining layer PDL1 .
  • the subpixel defining layer PDL2 may be further disposed in the light emitting group defining layer PDL1 .
  • the sub-pixel defining layer PDL2 may be disposed between the four pixel electrodes 110 .
  • the sub-pixel defining layer PDL2 is formed to expose top surfaces of the four pixel electrodes 110 .
  • the light emitting group defining layer PDL1 is formed simultaneously in the same process as the subpixel defining layer PDL2, or the light emitting group and the subpixel defining layer PDL2 have different heights through different processes by applying materials having different characteristics. It may be formed separately as a structure of A thickness of the light emitting group defining layer PDL1 may be higher than that of the subpixel defining layer PDL2 .
  • the upper surface of the light emitting group defining layer PDL1 is formed to have high liquid repellency, and when it is formed by a different process by applying a material having a characteristic different from that of the subpixel defining layer PDL2, the light emitting group defining layer PDL1
  • the side of the can be formed to have a higher liquid repellency than the applied ink.
  • the upper surface of the subpixel defining layer PDL2 is formed to have liquid repellency, and when it is formed in the same process by applying a material having the same characteristics as the subpixel defining layer PDL2, the The side surface is formed to have a lyophilic property, and the height of the sub-pixel defining layer PDL2 is higher than the stacked height of the pixel electrode 110 , the emission layer 120 , and the counter electrode 130 .
  • the light emitting layer 120 when the light emitting layer 120 is formed by a method such as inkjet printing, ink droplets can be applied only within the light emitting group defining layer PDL1 due to the difference in surface tension of the respective surfaces, and the light emitting layer 120 is It may be uniformly formed on the pixel electrode 110 between the subpixel defining layers PDL2 .
  • the emission layer 120 may be stacked on each of the four pixel electrodes 110 in the opening of the emission group defining layer PDL1 .
  • the material included in the light emitting layer 120 is not particularly limited.
  • the light emitting layer 120 may be formed using organic light emitting materials capable of emitting red, green, or blue wavelengths by a fluorescence or phosphorescence mechanism. Alternatively, it may be a red, green or blue resist material for forming the color filter layer.
  • the ink may include red, green, or blue quantum dots or perovskite materials for forming the color change layer. In addition, it may be a red, green, or blue quantum dot (Quantum Dot) or perovskite (Perovskite) ink for a self-luminous quantum dot (Quantum Dot) or perovskite (Perovskite) display device.
  • the light emitting layer 120 may be formed using inkjet printing, a nozzle printing method, organic vapor jet printing (OVJP), and organic vapor phase deposition (OVPD).
  • inkjet printing a nozzle printing method
  • OJP organic vapor jet printing
  • OVPD organic vapor phase deposition
  • the light emitting layer 120 may be selectively applied by drop deposition or inkjet printing.
  • the light emitting layer 120 formed on the first light emitting group 100 and the second light emitting layer 120 are simultaneously or individually formed by inkjet printing. can be formed.
  • each of the light emitting layers 120 may be formed by inkjet printing with different inks.
  • the light-emitting layer 120 formed in the first light-emitting group 100, the light-emitting layer 120 formed in the second light-emitting group 200, the light-emitting layer 120 formed in the third light-emitting group 300, and the fourth Among the light emitting layers 120 formed in the light emitting group 400 if the light emitting layer 120 formed in the third light emitting group 300 and the light emitting layer 120 formed in the fourth light emitting group 400 have the same color light, the third light emitting group
  • the light emitting layer 120 formed on 300 and the light emitting layer 120 formed on the fourth light emitting group 400 may be formed by inkjet printing with the same ink.
  • the first light-emitting group 100 includes four light-emitting units each included in the four pixels Px, and the resolution in printing the light-emitting layer 120 of the first light-emitting group 100 is Since the light emitting units, ie, the sub-pixels Px, can be configured with a resolution four times higher than that of the light emitting layer 120 , a display device having a higher resolution than the print resolution of the light emitting layer 120 can be realized.
  • the counter electrode 130 may be stacked on each of the four fluorescent layers in the opening of the light emitting group defining layer PDL1 .
  • the thin film encapsulation layer is a layer that prevents penetration of external moisture and oxygen, and may include at least one organic layer 150 and at least one inorganic layer 140 , 160 , and includes the organic layer 150 and The inorganic layers 140 and 160 may be alternately stacked on each other.
  • the thin film encapsulation layer may be configured such that the first inorganic layer 140 , the organic layer 150 , and the second inorganic layer 160 are sequentially stacked, but is not limited thereto.
  • a sealing substrate for blocking penetration of external air and moisture into the display device may be provided instead of the thin film encapsulation layer.
  • the stacked structure of the first light-emitting group 100 as described above may be equally applied to the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 .
  • FIG. 10B As another stacked structure of the first light emitting group 100, as shown in FIG.
  • the structure of FIG. 10B is different in that the light emitting layer 120 is connected to one another so as to overlap all four pixel electrodes 110 , and other parts are the same.
  • the display device includes a first light emitting group 100 including four first subpixels 100sp and a second light emitting group 100 including four second subpixels 200sp.
  • the light emitting group 200 includes a third light emitting group 300 including four third sub-pixels 300sp and a fourth light emitting group 400 including four fourth sub-pixels 400sp.
  • the display device is the first embodiment except for colors emitted by the first light-emitting group 100 , the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 . It is substantially the same as the display device of the example, and repeated descriptions are omitted.
  • the four first sub-pixels 100sp constituting the first light-emitting group 100 constituting the display device according to the second embodiment are configured to emit blue light
  • the second light-emitting group 200 is configured to
  • the four second sub-pixels 200sp are configured to emit red light
  • the four third sub-pixels 300sp constituting the third light-emitting group 300 are configured to emit green light
  • the fourth light-emitting group 300sp is configured to emit green light.
  • the four fourth sub-pixels 400sp constituting the 400 are also configured to emit green light.
  • the four sub-pixels ( Px) that is, a first sub-pixel 100sp emitting blue light, a second sub-pixel 200sp emitting red light, a third sub-pixel 300sp emitting green light, and a fourth sub-pixel emitting green light ( 400sp) constitutes one pixel Px.
  • the first subpixel 100sp emitting blue light, the second subpixel 200sp emitting red light, the third subpixel 300sp emitting green light, and the fourth subpixel emitting green light ( 400sp) are gathered to form one pixel Px, so that green light can be emitted in an area that is twice the emission area of blue light or red light.
  • the display device includes a first light emitting group 100 including four first subpixels 100sp and a second light emitting group 100 including four second subpixels 200sp.
  • the light emitting group 200 includes a third light emitting group 300 including four third sub-pixels 300sp and a fourth light emitting group 400 including four fourth sub-pixels 400sp.
  • the display device is the first embodiment except for colors emitted by the first light-emitting group 100 , the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 . It is substantially the same as the display device of the example, and repeated descriptions are omitted.
  • the four first sub-pixels 100sp constituting the first light-emitting group 100 constituting the display device according to the third embodiment are configured to emit green light, and the second light-emitting group 200 is configured to emit green light.
  • the four second sub-pixels 200sp are configured to emit blue light
  • the four third sub-pixels 300sp constituting the third light-emitting group 300 are configured to emit red light
  • the fourth light-emitting group is configured to emit red light.
  • the four fourth sub-pixels 400sp constituting the 400 are also configured to emit red light.
  • the four sub-pixels ( Px) that is, a first sub-pixel 100sp emitting green light, a second sub-pixel 200sp emitting blue light, a third sub-pixel 300sp emitting red light, and a fourth sub-pixel emitting red light ( 400sp) constitutes one pixel Px.
  • the first sub-pixel 100sp emitting green light, the second sub-pixel 200sp emitting blue light, the third sub-pixel 300sp emitting red light, and the fourth sub-pixel emitting red light ( 400sp) are gathered to form one pixel Px, so that red light can be emitted in an area that is twice the emission area of green light or blue light.
  • the display device includes a first light emitting group 100 including four first subpixels 100sp and a second light emitting group 100 including four second subpixels 200sp.
  • the light emitting group 200 includes a third light emitting group 300 including four third sub-pixels 300sp and a fourth light emitting group 400 including four fourth sub-pixels 400sp.
  • the display device is the first embodiment except for colors emitted by the first light-emitting group 100 , the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 . It is substantially the same as the display device of the example, and repeated descriptions are omitted.
  • the four first sub-pixels 100sp constituting the first light-emitting group 100 constituting the display device according to the fourth embodiment are configured to emit green light
  • the second light-emitting group 200 is configured to
  • the four second sub-pixels 200sp are configured to emit blue light
  • the four third sub-pixels 300sp constituting the third light-emitting group 300 are also configured to emit blue light
  • the fourth light-emitting group is configured to emit blue light.
  • the four fourth sub-pixels 400sp constituting the 400 are configured to emit red light.
  • the four sub-pixels ( Px) that is, a first sub-pixel 100sp emitting green light, a second sub-pixel 200sp emitting blue light, a third sub-pixel 300sp emitting blue light, and a fourth sub-pixel emitting red light ( 400sp) constitutes one pixel Px.
  • the first sub-pixel 100sp emitting green light, the second sub-pixel 200sp emitting blue light, the third sub-pixel 300sp emitting blue light, and the fourth sub-pixel emitting red light ( 400sp) are gathered to form one pixel Px, so that blue light can be emitted in an area twice the emission area of green light or red light.
  • a blue device which is an organic light emitting material emitting blue light with low efficiency, has a shorter lifespan compared to an organic light emitting material emitting light of a different color.
  • the sub-pixel Px emitting blue light as the second sub-pixel 200sp and the third sub-pixel 300sp are configured to emit the same blue light.
  • the sub-pixel Px emitting blue light as the second sub-pixel 200sp and the third sub-pixel 300sp are configured to emit the same blue light.
  • the sub-pixels (Px) emitting blue light are arranged in a row in the X-axis direction, the number of lines of blue ink to be printed is reduced by half during manufacturing through the inkjet method, which makes the inkjet process easier as well as It has the advantage of being able to double the overall inkjet printing speed.
  • the third sub-pixel 300sp and the fourth sub-pixel 400sp constituting the display device of the fourth embodiment are configured to emit the same blue light in a row, the third sub-pixel 300sp and By electrically connecting the gate line and the data line of the fourth subpixel 400sp to share, it becomes an easy structure to simultaneously control.
  • the gate line and the data line of the third sub-pixel 300sp and the fourth sub-pixel 400sp are not shared. It is not excluded that each can be individually controlled.
  • the display device includes a first light emitting group 100 including four first sub-pixels 100sp and a second light-emitting group 100 including four second sub-pixels 200sp.
  • the light emitting group 200 includes a third light emitting group 300 including four third sub-pixels 300sp and a fourth light emitting group 400 including four fourth sub-pixels 400sp.
  • the display device is the display of the first embodiment except for the areas of the first light emitting group 100 , the second light emitting group 200 , the third light emitting group 300 , and the fourth light emitting group 400 . It is substantially the same as that of the device, and repeated descriptions are omitted.
  • the four first sub-pixels 100sp constituting the first light-emitting group 100 constituting the display device according to the fifth embodiment are configured to emit green light
  • the second light-emitting group 200 is configured to
  • the four second sub-pixels 200sp are configured to emit red light
  • the four third sub-pixels 300sp constituting the third light-emitting group 300 are configured to emit blue light
  • the fourth light-emitting group is configured to emit blue light.
  • the four fourth sub-pixels 400sp constituting the 400 are also configured to emit blue light.
  • the area of the third sub-pixel 300sp and the fourth sub-pixel 400sp are the same, and the area of the first sub-pixel 100sp is
  • the third sub-pixel 300sp or the fourth sub-pixel 400sp is formed to have a smaller area, and the second sub-pixel 200sp has an area smaller than that of the third sub-pixel 300sp or the fourth sub-pixel ( 400sp) may be formed larger than the area.
  • the blue light with low efficiency is emitted from the third light emitting group 300 and the fourth light emitting group 400 so that the number per unit area is doubled so that it is larger than the emission area of other color lights, and the efficiency is high.
  • the areas and colors of the first light-emitting group 100, the second light-emitting group 200, the third light-emitting group 300, and the fourth light-emitting group 400 may be appropriately changed according to the efficiency of red, green, and blue light.
  • the display device includes a first light emitting group 100 including four first sub-pixels 100sp and a second light emitting group 100 including four second sub-pixels 200sp.
  • the light emitting group 200 includes a third light emitting group 300 including four third sub-pixels 300sp and a fourth light emitting group 400 including four fourth sub-pixels 400sp.
  • the display device is the first embodiment except for colors emitted by the first light-emitting group 100 , the second light-emitting group 200 , the third light-emitting group 300 , and the fourth light-emitting group 400 . It is substantially the same as the display device of the example, and repeated descriptions are omitted.
  • the four first sub-pixels 100sp constituting the first light-emitting group 100 constituting the display device according to the sixth embodiment are configured to emit green light, and the second light-emitting group 200 is configured to emit green light.
  • the four second sub-pixels 200sp are configured to emit red light
  • the four third sub-pixels 300sp constituting the third light-emitting group 300 are configured to emit blue light
  • the fourth light-emitting group is configured to emit blue light.
  • the four fourth sub-pixels 400sp constituting the 400 are configured to emit white light.
  • the four sub-pixels ( Px) that is, a first sub-pixel 100sp emitting green light, a second sub-pixel 200sp emitting red light, a third sub-pixel 300sp emitting blue light, and a fourth sub-pixel emitting white light ( 400sp) constitutes one pixel Px.
  • the first sub-pixel 100sp emitting green light, the second sub-pixel 200sp emitting red light, the third sub-pixel 300sp emitting blue light, and the fourth sub-pixel emitting white light ( 400sp) are gathered to form one pixel Px, thereby improving the overall brightness of the display device. That is, the overall brightness of the display device is improved by the white light.
  • the display device according to the embodiment of the present invention as described above is made through an inkjet printing method, and the inkjet printing technology described above can be applied to fields requiring a high-resolution RGB pixel printing process in addition to the high-resolution OLED display described in the above embodiment. .
  • QDCC quantum dot color conversion
  • perovskite color conversion layers perovskite color conversion layers
  • QLED self-luminous RGB QD
  • HIL Hole Injection Layer
  • IL Inter Layer
  • Polymer RGB EML materials are used. It can also be applied to used RGB pixel (Px) printing.
  • a stretchable thin film encapsulation (TFE) must also be implemented in units of pixels (Px), so high-resolution pixels (Px) It should be printed as a unit, and for this reason, it can be applied to the organic thin film encapsulation layer printing of high-resolution RGB pixels (Px) using a single organic ink.
  • a QNED (Quantum Dot Nano LED) display device inkjet printing is possible by putting blue Nano LED in ink, and this ink can also be applied to high-resolution pixel (Px) printing of 400ppi or more of mobile phones.
  • Px high-resolution pixel
  • a display device composed only of blue nano LEDs requires printing of a color filter layer and a QDCC (Quantum Dot Color Converter) layer, and can be applied to printing in this case.
  • the RGB pixel electrode 110 can be implemented by printing and aligning the electrodes with an electrophoretic method.
  • a color filter layer a quantum dot color conversion (QDCC) layer, or a perovskite color conversion (PCC) layer for a micro LED display device
  • QDCC quantum dot color conversion
  • PCC perovskite color conversion
  • VR virtual reality
  • AR augmented reality
  • MR mixed reality
  • XR extended reality
  • the same concept can be applied to the printing method of printing four thin film transistors with one printing to form a thin film transistor film that requires accurate location, size, and high resolution printing with inkjet printing.

Abstract

본 발명은 현존하는 잉크 방울 크기와 정밀도의 한계 내에서 4배 큰 고해상도 화소 인쇄를 할 수 있도록 하기 위하여 사각형 구조로 화소를 구현하여 해상도가 향상된 표시장치에 관한 것이다. 이를 위한 본 발명의 표시장치는, 서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제1 부화소로 구성된 제1 발광그룹; 서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제2 부화소로 구성된 제2 발광그룹; 서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제3 부화소로 구성된 제3 발광그룹; 및 서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제4 부화소로 구성된 제4 발광그룹;을 포함하며, 서로 가장 가깝게 배치되는 4개의 제1 부화소, 제2 부화소, 제3 부화소 및 제4 부화소가 하나의 화소를 이루도록 구성된다.

Description

표시장치
본 발명은 표시장치에 관한 것으로서, 더욱 상세하게는, 해상도가 향상된 표시장치에 관한 것이다.
표시장치는 이미지를 표시하는 장치로서, 최근 유기발광 표시장치가 주목받고 있다.
유기발광 표시장치는 캐소드, 애노드 및 유기발광층으로 이루어진 유기발광다이오드(organic light emitting device, OLED)를 포함하는 복수의 화소를 포함하며, 각 화소에는 유기발광다이오드를 구동하기 위한 복수의 트랜지스터 및 커패시터(Capacitor)가 형성되어 있다. 복수의 트랜지스터는 기본적으로 스위칭 트랜지스터 및 구동 트랜지스터를 포함한다. 또한, 캐소드의 상부에 습기와 산소로부터 유기발광층을 보호하기 위하여 무기막들과 유기막이 혼합 구성된 박막봉지층이 형성된다.
이러한 유기발광표시장치는 자체 발광 특성을 가지며, 액정 표시장치(liquid crystal display device)와 달리 별도의 광원이 필요하지 않으므로 두께와 무게를 줄일 수 있는 장점이 있으며, 낮은 소비 전력, 높은 휘도 및 높은 반응 속도 등의 고품위 특성을 나타낸다.
일반적으로 유기발광 표시장치는 각각이 서로 다른 색의 빛을 발광하는 복수의 화소들을 포함하며, 이 복수의 화소들이 발광하여 이미지를 표시한다.
여기서, 화소(Pixel)란 이미지를 표시하는 최소 단위를 의미하며, 이웃하는 화소 사이에는 각 화소를 구동하기 위한 게이트 라인, 데이터 라인, 구동 전원 라인 등의 전원 라인 및 각 화소의 면적 또는 형태 등을 정의하기 위한 화소 정의막 등의 절연층 등이 위치할 수 있다.
종래의 유기발광 표시장치의 화소를 구성하는 유기 발광층은 파인메탈마스크(fine metal mask, FMM) 등의 마스크를 이용하여 증착 형성하였는데, 화소의 개구율 확보를 위해 이웃하는 화소 간의 간격을 짧게 형성할 경우 증착 신뢰도가 저하되는 문제점이 있었으며, 증착 신뢰도 향상을 위해 화소 간의 간격을 멀게 형성할 경우 화소의 개구율이 저하되는 문제점이 있었다.
상술한 바와 같은 문제점을 극복하기 위하여, 유기발광 표시장치의 제조에 잉크젯 인쇄 기술이 사용되고 있다.
예를 들어, LCD용 컬러 필터(Color Filter: CF)의 제조 분야, OLED용 정공주입층(HIL, Hole Injection Layer), 정공수송층(HTL, Hole Transporting Layer), RGB 발광층(EML, Emission Material Layer)의 제조 분야, 폴리머 OLED에서 정공주입층(HIL), 중간층(IL, Interlayer), 폴리머 RGB 발광층의 제조 분야 등에 잉크젯 인쇄 기술이 사용되고 있다.
현재, 잉크젯 인쇄 기술을 이용한 RGB 픽셀 인쇄는 양산 적용이 가능한 300PPI(Pixels per Inch) 이하의 대형 TV용 컬러필터나 QD색변환(QDCC)층을 인쇄하는데 주로 개발 및 적용이 되고, 폴리머 OLED 인쇄 기술은 마찬가지로 300PPI 이하의 4K 모니터나 중형 표시장치를 제조하는데 적용되고 있다.
현재, 자발광형으로 또는 색변환용으로 개발되고 있는 페로브스카이트(Perovskite) 잉크, 인광(Phosphor) 잉크 그리고 청색, 적색, 녹색 나노 LED를 포함한 잉크들을 이용하여 RGB 픽셀 인쇄에 적용하는데도 적용될 수 있다.
상술한 바와 같이, 현재 잉크젯 인쇄 기술이 300PPI 이하의 표시장치에만 적용되고 있는 가장 큰 원인은, 픽셀 크기, 잉크 방울의 크기, 장비의 공차 및 헤드의 인쇄 정밀도 등을 고려한 실제 잉크 방울들의 인쇄 정밀도를 고려하여 안정적으로 양산을 수행할 수 있는 범위 내에서 RGB 잉크젯 인쇄를 수행하기 때문이다.
구체적으로, 잉크젯 인쇄 기술은 잉크젯 헤드가 토출할 수 있는 잉크 방울의 크기를 0.5pl(직경9.85㎛) 이하로 작게 할 수 없어서 잉크 방울보다 작은 픽셀에 잉크 방울을 도포하는 것이 불가능하다.
또한, 잉크 방울 토출 시 발생하는 사행, 속도 오차, 장비의 정밀도 오차, 기판의 정렬 오차 등 다양한 정밀도 오차 때문에 실제로 잉크 방울의 정밀도 오차를 고려하여 잉크 방울 크기보다 더 큰 픽셀에 인쇄할 수밖에 없다.
이러한 문제로 실제로 잉크젯 방식으로 구현할 수 있는 표시장치의 해상도는 이론적으로는 최고 800PPI, 실제적으로 최고 500PPI로 제한되고 있다.
그러나, 5G 고속 통신이 가능해지면서 현재 최고 577PPI(3K) 해상도 휴대폰용 표시장치도 800PPI(4K) 수준으로 더 높은 해상도를 갖는 표시장치가 요구되고 있고, 또한, 가까운 미래에 휴대폰을 대신할 것으로 전망되어 개발되고 있는 증강현실(AR), 가상현실(VR), 혼합현실(MR), 확장현실(XR)용 글라스에 적용되는 표시장치의 해상도는 2000PPI 이상의 초고해상도 표시장치가 요구되고 있는 실정이다.
선행기술문헌 : 한국공개특허공보 제10-2020-0133095호(2020. 11. 26.)
상기 종래 기술에 따른 문제점을 해결하기 위한 본 발명의 목적은, 현존하는 잉크 방울 크기와 정밀도의 한계 내에서 4배 큰 고해상도 화소 인쇄를 할 수 있도록 하기 위하여 사각형 구조로 화소를 구현하여 해상도가 향상된 표시장치를 제공함에 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 일실시예에 따른 표시장치는, 서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제1 부화소로 구성된 제1 발광그룹; 서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제2 부화소로 구성된 제2 발광그룹; 서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제3 부화소로 구성된 제3 발광그룹; 및 서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제4 부화소로 구성된 제4 발광그룹;을 포함하며, 서로 가장 가깝게 배치되는 4개의 제1 부화소, 제2 부화소, 제3 부화소 및 제4 부화소가 하나의 화소를 이루도록 구성된 표시장치.
일실시예에 있어서, 상기 제1 내지 제4 발광그룹은 각각 복수개로 형성되어, 박막 트랜지스터 기판 상에 제1 방향 및 상기 제1 방향과 교차하는 제2 방향을 따라 매트릭스 형태로 배열되며, 상기 제1 내지 제4 발광그룹의 단위 면적당 개수는 모두 동일하도록 구성될 수 있다.
일실시예에 있어서, 상기 제1 내지 제4 발광그룹은 서로 동일한 간격으로 이격되어 배치되고, 상기 제1 내지 제4 발광그룹 중 서로 이웃하는 2개의 발광그룹의 중심 사이는 제1 거리만큼 이격되고, 서로 가장 가까운 동일 발광그룹 사이는 상기 제1 거리의 2배인 제2 거리만큼 이격되도록 구성될 수 있다.
일실시예에 있어서, 상기 하나의 화소를 이루는 상기 제1 내지 제4 부화소는 사각형 형태로 배치되도록 구성될 수 있다.
일실시예에 있어서, 상기 제1 내지 제4 부화소의 중심각이 90°로 형성되고, 90°이하로 형성된 코너부는 둥글게 라운드 처리되어 구성될 수 있다.
일실시예에 있어서, 상기 제1 내지 제4 발광그룹은 적색, 녹색, 청색 및 백색 중의 어느 하나의 색광을 방출하도록 구성되고, 상기 제1 내지 제4 발광그룹은 서로 다른 색광을 방출하도록 구성될 수 있다.
일실시예에 있어서, 상기 제1 내지 제4 발광그룹은 적색, 녹색, 청색 및 백색 중의 어느 하나의 색광을 방출하도록 구성되고, 상기 제1 내지 제4 발광그룹 중 2개의 발광그룹이 동일 색광을 방출하도록 구성될 수 있다.
일실시예에 있어서, 상기 동일 색광을 방출하는 2개의 발광그룹은 동일 박막 트랜지스터와 전기적으로 연결되어 동시에 제어되도록 구성될 수 있다.
일실시예에 있어서, 상기 동일 색광을 방출하는 2개의 발광그룹은 서로 다른 박막 트랜지스터와 각각 전기적으로 연결되어 개별 제어되도록 구성될 수 있다.
일실시예에 있어서, 상기 동일 색광을 방출하는 2개의 발광그룹은 청색광을 방출하도록 구성되고, 나머지 중 하나의 발광그룹은 적색광을 방출하며, 나머지 중 다른 하나의 발광그룹은 녹색광을 방출하도록 구성될 수 있다.
일실시예에 있어서, 상기 동일 색광을 방출하는 2개의 발광그룹은 녹색광을 방출하도록 구성되고, 나머지 중 하나의 발광그룹은 적색광을 방출하며, 나머지 중 다른 하나의 발광그룹은 청색광을 방출하도록 구성될 수 있다.
일실시예에 있어서, 상기 동일 색광을 방출하는 2개의 발광그룹은 적색광을 방출하도록 구성되고, 나머지 중 하나의 발광그룹은 녹색광을 방출하며, 나머지 중 다른 하나의 발광그룹은 청색광을 방출하도록 구성될 수 있다.
일실시예에 있어서, 상기 제1 내지 제4 발광그룹 각각은, 4개의 부화소에 각각 대응하는 4개의 화소 전극; 상기 4개의 화소 전극 각각 적층되는 4개의 발광층; 및 상기 4개의 발광층에 각각 적층되는 4개의 대향 전극;을 포함하여 구성될 수 있다.
일실시예에 있어서, 상기 제1 내지 제4 발광그룹 각각은, 4개의 부화소에 각각 대응하는 4개의 화소 전극; 상기 4개의 화소 전극과 모두 중첩하는 하나의 발광층; 및 상기 4개의 화소 전극에 각각 대응하여 상기 발광층에 각각 적층되는 4개의 대향 전극;을 포함하여 구성될 수 있다.
일실시예에 있어서, 상기 제1 발광그룹에 형성된 발광층, 상기 제2 발광그룹에 형성된 발광층, 상기 제3 발광그룹에 형성된 발광층 및 상기 제4 발광그룹에 형성된 발광층은 각각 서로 다른 잉크로 잉크젯 프린팅에 의해 형성될 수 있다.
일실시예에 있어서, 상기 제1 발광그룹에 형성된 발광층, 상기 제2 발광그룹에 형성된 발광층, 상기 제3 발광그룹에 형성된 발광층 및 상기 제4 발광그룹에 형성된 발광층은 잉크젯 프린팅에 의해 형성되고, 상기 제1 발광그룹에 형성된 발광층, 상기 제2 발광그룹에 형성된 발광층, 상기 제3 발광그룹에 형성된 발광층 및 상기 제4 발광그룹에 형성된 발광층 중 적어도 2개의 발광층은 동일 잉크로 잉크젯 프린팅에 의해 형성될 수 있다.
일실시예에 있어서, 상기 제1 발광그룹, 상기 제2 발광그룹, 상기 제3 발광 그룹 및 제4 발광그룹 중 적어도 어느 하나의 발광그룹은 크기가 다르게 형성될 수 있다.
일실시예에 있어서, 상기 동일 색광을 방출하는 2개의 발광그룹은 박막 트랜지스터 기판 상에 제1 방향 또는 상기 제1 방향과 교차하는 제2 방향을 따라 하나의 열로 배열될 수 있다.
상술한 바와 같은 본 발명은, 현존하는 잉크 방울 크기와 정밀도로 4배 큰 고해상도 화소 인쇄를 할 수 있고, 이를 통해 현존하는 잉크젯 기술로 최소 2000PPI 더 나아가 2400PPI까지 구현할 수 있는 이점이 있다. 즉, 4K 휴대폰 그리고 AR, VR, MA, XR 등 고해상도 표시장치를 잉크젯 방식으로 제조할 수 있게 하는 이점이 있다.
또한, 사각형 구조로 화소를 구현함으로써, 부화소의 중심각이 90°를 이루게 되어 부화소 내의 모든 모서리가 예각이 없는 구조로 형성됨과 함께 각 모서리 부분을 둥글게 라운드 처리함에 따라 잉크젯 잉크의 인쇄 품질을 높일 수 있음과 더불어 개구율의 손실을 최소화할 수 있으며, 같은 면적에서 더 넓은 색의 광을 방출할 수 있어서 표시장치의 밝기를 향상시킬 수 있는 이점이 있다.
또한, 경쟁 기술 대비 적은 수의 화소로 4배 큰 고해상도를 달성하여 관련 박막 트랜지스터 구조를 단순하게 할 수 있는 이점이 있다.
또한, 4배 큰 고해상도의 RGB 픽셀 인쇄를 수행하여 컬러필터가 없는 마이크로 OLED을 구현할 수 있어서 기존 컬러필터 방식 대비 더 높은 광효율을 얻을 수 있다.
또한, 낮은 해상도의 TV용 OLED도 쉽게 고해상도를 만들 수 있으며, 특히, 고해상도 TV 제조 시 MMG(Multi Model Glass) 방식으로 하나의 Mother Glass에서 다양한 크기의 표시장치를 만들 때 Glass를 회전하지 않고도 다른 방향의 화소 배치를 가진 표시장치 제조가 가능한 이점이 있다.
본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않는 또 다른 효과는 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 표시장치의 평면도이다.
도 2는 본 발명의 제1 실시예에 따른 표시장치의 화소 배열의 일부를 도시한 평면도이다.
도 3은 본 발명의 제2 실시예에 따른 표시장치의 화소 배열의 일부를 도시한 평면도이다.
도 4는 본 발명의 제3 실시예에 따른 표시장치의 화소 배열의 일부를 도시한 평면도이다.
도 5는 본 발명의 제4 실시예에 따른 표시장치의 화소 배열의 일부를 도시한 평면도이다.
도 6은 본 발명의 제5 실시예에 따른 표시장치의 화소 배열의 일부를 도시한 평면도이다.
도 7은 본 발명의 제6 실시예에 따른 표시장치의 화소 배열의 일부를 도시한 평면도이다.
도 8은 본 발명의 제7 실시예에 따른 표시장치의 화소 배열의 일부를 도시한 평면도이다.
도 9는 본 발명의 제1 실시예에 따른 표시장치의 제1 발광그룹을 구성하는 제1 부화소를 도시한 평면도이다.
도 10은 본 발명의 제1 실시예에 따른 표시장치의 제1 발광그룹에 대응하는 단면도이다.
도 11은 폴리머 OLED 구조를 도시한 개략도이다.
도 12는 잉크젯 인쇄 방법을 이용하여 RGB 폴리머 OLED를 제조하는 과정을 도시한 개략도이다.
본 발명은 그 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러가지 형태로 실시될 수 있다. 따라서, 본 발명의 실시예는 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 안된다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
및/또는 이라는 용어는 복수 항목들의 조합 또는 복수 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 ‘연결되어’있다거나 ‘접속되어’있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
반면에, 어떤 구성요소가 다른 구성요소에 ‘직접 연결되어’있다거나 ‘직접 접속되어’있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, ‘포함하다’또는 ‘구비하다’, ‘가지다’등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 표시장치(10)는 박막 트랜지스터 기판 상의 제1 방향 및 상기 제1 방향과 교차하는 제2 방향을 따라 복수의 화소(Px)가 매트릭스 형태로 반복하여 배열되며, 상기 제1 방향은 X축 방향이 될 수 있고, 상기 제2 방향은 Y축 방향이 될 수 있다.
각각의 상기 화소(Px)는, 도 2 내지 도 8에 도시된 바와 같이, 적색광, 녹색광, 청색광 및 백색광 중 어느 하나의 색광을 방출하는 제1 부화소(100sp), 제2 부화소(200sp), 제3 부화소(300sp) 및 제4 부화소(400sp)를 포함하여 구성될 수 있다.
도 2의 예시에서, 제1 부화소(100sp)는 녹색광을 방출하고, 제2 부화소(200sp)는 적색광을 방출하며, 제3 부화소(300sp)와 제4 부화소(400sp)는 청색광을 방출하도록 구성되며, 이러한 색광의 조합은 다양하게 변경이 가능하며, 다양한 실시예에 대해 설명하도록 한다.
이하, 도 2를 참조하여 본 발명의 제1 실시예에 따른 표시장치에 대하여 설명하도록 한다.
제1 실시예에 따른 표시장치는, 도 2에 도시된 바와 같이, 4개의 제1 부화소(100sp)로 구성된 제1 발광그룹(100), 4개의 제2 부화소(200sp)로 구성된 제2 발광그룹(200), 4개의 제3 부화소(300sp)로 구성된 제3 발광그룹(300) 및 4개의 제4 부화소(400sp)로 구성된 제4 발광그룹(400)을 포함하여 구성된다.
상기 제1 발광그룹(100)을 구성하는 4개의 제1 부화소(100sp)는 동일 색광을 방출하도록 구성되고, 각각의 상기 제1 부화소(100sp)는 서로 다른 화소(Px)에 포함되도록 구성된다.
상기 제2 발광그룹(200)을 구성하는 4개의 제2 부화소(200sp)는 동일 색광을 방출하도록 구성되고, 각각의 상기 제2 부화소(200sp)는 서로 다른 화소(Px)에 포함되도록 구성된다.
상기 제3 발광그룹(300)을 구성하는 4개의 제3 부화소(300sp)는 동일 색광을 방출하도록 구성되고, 각각의 상기 제3 부화소(300sp)는 서로 다른 화소(Px)에 포함되도록 구성된다.
상기 제4 발광그룹(400)을 구성하는 4개의 제4 부화소(400sp)는 동일 색광을 방출하도록 구성되고, 각각의 상기 제4 부화소(400sp)는 서로 다른 화소(Px)에 포함되도록 구성된다.
구체적으로, 도 2에 도시된 바와 같이, 제1 실시예에 따른 표시장치를 구성하는 상기 제1 발광그룹(100)을 구성하는 4개의 제1 부화소(100sp)는 녹색광을 방출하도록 구성되고, 상기 제2 발광그룹(200)을 구성하는 4개의 제2 부화소(200sp)는 적색광을 방출하도록 구성되며, 상기 제3 발광그룹(300)을 구성하는 4개의 제3 부화소(300sp)는 청색광을 방출하도록 구성되고, 상기 제4 발광그룹(400)을 구성하는 4개의 제4 부화소(400sp)도 청색광을 방출하도록 구성된다.
상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)은 각각 복수개로 형성되어, 박막 트랜지스터 기판 상에 X축 방향 및 Y축 방향을 따라 매트릭스 형태로 반복하여 배열된다.
상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)은 X축 방향과 Y축 방향을 기준으로 서로 동일한 간격으로 이격되어 배치될 수 있다.
상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)의 단위 면적당 개수는 모두 동일하도록 구성될 수 있다.
상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)은 원형의 형태로 형성될 수 있다.
X축 방향을 기준으로, 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400) 중 서로 이웃하는 2개의 발광그룹의 중심 사이는 제1 거리(dx)만큼 이격되고, 서로 가장 가까운 동일 발광그룹 사이는 상기 제1 거리의 2배인 제2 거리(2dx)만큼 이격되도록 구성된다.
Y축 방향을 기준으로, 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400) 중 서로 이웃하는 2개의 발광그룹의 중심 사이는 제1 거리(dy)만큼 이격되고, 서로 가장 가까운 동일 발광그룹 사이는 상기 제1 거리의 2배인 제2 거리(2dy)만큼 이격되도록 구성된다.
한편, 상기 X축 방향의 제1 거리(dx)와 상기 Y축 방향의 제1 거리(dy)는 동일한 거리일 수 있다.
상술한 바와 같이 구성된 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)에 의하여, 서로 가장 가깝게 배치되는 4개의 제1 부화소(100sp), 제2 부화소(200sp), 제3 부화소(300sp) 및 제4 부화소(400sp)가 하나의 화소(Px)를 이루게 된다.
즉, 서로 가장 가깝게 배치되는 제1 부화소(100sp), 제2 부화소(200sp), 제3 부화소(300sp) 및 제4 부화소(400sp)가 사각형 형태로 배치되어 하나의 화소(Px)를 이루는 것이다.
*구체적으로, 하나의 화소(Px)에는 녹색광을 방출하는 제1 부화소(100sp), 적색광을 방출하는 제2 부화소(200sp), 청색광을 방출하는 제3 부화소(300sp) 및 청색광을 방출하는 제4 부화소(400sp)로 구성되며, 제3 부화소(300sp)와 제4 부화소(400sp)가 모두 청색광을 방출하도록 구성됨에 따라 녹색광이나 적색광의 방출 면적의 2배에 해당하는 면적에서 청색광이 방출될 수 있다. 이러한 구성을 통해, 일반적으로 효율이 낮은 청색광을 방출하는 유기 발광 물질인 청색소자의 수명이 다른 색광을 방출하는 유기발광 물질 대비 짧은 수명을 가지는 단점을 보완할 수 있다.
한편, 상기에서는 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)이 원형의 형태로 형성된 경우에 대해 예시하였지만, 도 9에 도시된 바와 같이, 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)은 원형의 형태 이외에 다각형 형상으로 형성될 수 있다.
예를 들어, 도 9의 (a)에 도시된 원형, (b)에 도시된 정팔각형, (c)에 도시된 마름모, (d)에 도시된 정사각형 등 다양한 형태로 형성될 수도 있으며, 도 8에는 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)이 정팔각형 형상으로 형성된 경우에 대해 예시하였다.
상기 제1 발광그룹(100)을 기준으로 설명하면, 상기 제1 발광그룹(100)이 정팔각형 형상으로 형성됨에 따라 4개의 제1 부화소(100sp)의 중심 코너 부분이 90°인 형태로 형성되어 잉크젯 잉크 인쇄에 유리하다. 또한, 원형의 형상보다 정팔각형의 형상이 더 큰 발광 면적을 확보할 수 있는 장점이 있다.
특히, 상기 제1 발광그룹(100)을 구성하는 제1 부화소(100sp)의 각 코너 부분은 둥글게 라운드 처리되어 구성된다.
상술한 바와 같이, 제1 부화소(100sp)의 각 코너 부분을 둥글게 라운드 처리하는 것은 잉크 자체의 표면 장력으로 잉크가 좁은 모서리 틈새를 채우기 어렵고 또한 실제 이렇게 좁은 틈새가 발광 특성에 문제를 야기하기 때문이다.
이러한 점을 고려할 때, 도 9의 (c)에 도시된 마름모 형태는 각 코너부에서의 면적 손실이 커지게 되고, (d)에 도시된 정사각형 형태는 발광 면적이 크기만 다른 색광을 방출하는 부화소와 충분한 간격을 유지할 수 없게 된다. 따라서, 발광 면적을 크게 하면서도 다른 색광을 방출하는 부화소와 충분한 간격을 유지할 수 있는 도 9의 (a)에 도시된 원형 형태와 (b)에 도시된 정팔각형 형태가 가장 바람직한 형태이며, 실제 OLED 개구율 등을 고려하여 적용이 가장 적합한 형태이다.
상술한 바와 같은 제1 부화소(100sp)의 상세 구조는 제2 부화소(200sp), 제3 부화소(300sp) 및 제4 부화소(400sp)에도 동일하게 적용된다.
상술한 바와 같이, 상기 제1 부화소(100sp), 제2 부화소(200sp), 제3 부화소(300sp) 및 제4 부화소(400sp)의 중심각이 예각이 아닌 90°를 이룸과 함께 각 코너부가 라운드 처리된 형상에 의해, 상기 제1 부화소(100sp), 제2 부화소(200sp), 제3 부화소(300sp) 및 제4 부화소(400sp)의 각 코너 부분 끝까지 잉크젯 잉크가 완전히 양호하게 채워지기 용이한 구조가 된다.
잉크젯 잉크는 일반적으로 30 dyne/cm 정도의 표면 장력(잉크젯 잉크는 헤드에 따라서 다르지만 일반적으로 25 ~35 dyne/cm의 범위를 가짐)을 가질 수밖에 없기 때문에, 잉크젯 잉크의 표면 장력이 다소 큰 편에 속한다.
이러한 이유로, 부화소의 모서리 각도가 너무 뾰족한 예각의 형태로 형성되는 경우에는 기판의 표면 특성이나 PDL(Pattern Definition Layer)의 표면 특성을 고친수성 처리를 하더라도 부화소(Px)의 각 코너 부분 끝까지 잉크젯 잉크가 완전히 양호하게 채워질 수 없는 것이다.
따라서, 잉크젯 방식으로 각각의 잉크를 부화소에 채워 인쇄를 하는 경우에, 부화소에 잉크를 완전히 양호하게 채우기 위해서는 부화소의 형상이 매우 중요하며, 잉크젯 잉크의 표면 장력 특성을 고려한다면 제1 실시예의 제1 부화소(100sp), 제2 부화소(200sp), 제3 부화소(300sp) 및 제4 부화소(400sp)와 같이 중심각이 예각이 아닌 90°로 형성된 경우에 각 코너 부분 끝까지 잉크젯 잉크가 완전히 양호하게 채워질 수 있는 것이다.
좀 더 구체적 설명하면, 모든 유체는 물리적으로 가장 에너지가 작아지는 방향으로 모양이 만들어지고 또한 표면 상태와 주변 대기의 대하여 안정되는 상태를 유지하려고 한다.
즉, 잉크 방울이 가장 안정적인 상태는 구의 형태를 형성하는 것이고, 평평한 표면에 탄착된 후에는 잉크의 표면 장력과 주변의 표면 에너지에 따라서 다양한 접촉각을 갖는 반구의 탄착 형태를 가질 수 있다.
따라서, 평평한 표면에 탄착된 잉크 방울은 표면에 대하여 원모양을 가질 수밖에 없다.
RGB 픽셀 인쇄에 있어서, 인쇄 영역에 탄착된 잉크 방울들은 인쇄 영역의 형상에 의해 다양한 모양을 만들게 된다.
예를 들어, 컬러 필터를 인쇄할 때는 픽셀 면이 높은 친액성을 가지고 있어서 90°모서리까지 잉크로 채워지는 표면 상태를 만들기 용이하다.
그러나, OLED 표시 장치의 화소에서는 HIL, HTL 등 추가 기능층들이 형성되어야 하기 때문에, 이를 친액성에 맞게 처리하는 것이 쉽지 않아서 90° 모서리를 채우는 것은 어려운 표면 상태가 된다.
따라서, 직각의 모서리를 만들지 못하고 모서리를 일정한 반경을 갖는 둥근 모양의 모서리를 만들어주면 잉크가 둥근 모서리까지 더 쉽게 채워지게 된다.
OLED 화소는 표면을 컬러 필터의 화소 같이 아주 낮은 친액성으로 만들어주기 쉽지 않아서 현실적으로 90° 모서리를 채우기도 어려운 상황이다.
따라서, 90° 이하의 예각을 갖는 화소 모양을 만들어 인쇄하는 것은 실제 화소를 채우기 더 어렵고 예각을 둥근 모서리 모양으로 만들어 주기 위해서는 더 큰 면적을 손해를 봐야 해서 OLED 특성을 높이는데 중요한 개구율을 높이는데 문제가 발생한다.
그리고, OLED 화소의 모서리를 둥근 모양으로 만들어주어야 하는 이유는 자체적으로 발광을 해야 하는OLED 특성과도 관련이 있어서 모서리는 반드시 둥근 모양으로 만들어 주어야 하는 필수적이다.
이하, 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)의 적층구조에 대해 설명하도록 하며, 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)이 모두 동일한 적층구조로 이루어져 있으므로, 제1 발광그룹(100)에 대해 예시적으로 설명하도록 한다.
상기 제1 발광그룹(100)을 구성하는 4개의 제1 부화소(100sp)는 각각 개별적으로 스위칭 소자 및 스위칭 소자에 전기적으로 연결되는 발광 구조물인 화소 전극(110), 발광층(120), 대향 전극(130)이 적층된 구조를 가지며, 상기 대향 전극(130)의 상부에 무기막(140, 160)과 유기막(150)이 혼합 구성된 박막봉지층이 형성된다.
구체적으로, 도 10의 (a)에 도시된 바와 같이, 상기 제1 발광그룹(100)은 박막 트랜지스터 기판(S), 4개의 제1 부화소(100sp)에 각각 대응하도록 상기 박막 트랜지스터 기판(S) 상에 배치되는 4개의 화소 전극(110), 발광그룹 정의막(PDL1), 부화소 정의막(PDL2), 상기 4개의 화소 전극(110)에 각각 적층되는 4개의 발광층(120) 및 상기 4개의 발광층(120)에 각각 적층되는 4개의 대향 전극(130)을 포함하여 구성될 수 있다. 도 10의 (a)는 단면도로서 2개의 화소 전극(110), 2개의 발광층(120), 2개의 대향 전극(130)만 도시하였다.
상기 박막 트랜지스터 기판(S)은 배선층 및 복수의 박막 트랜지스터들을 포함할 수 있다. 예를 들면, 상기 배선층은 복수의 게이트 라인들, 상기 게이트 라인들과 교차하는 복수의 데이터라인들을 포함할 수 있고, 상기 박막 트랜지스터들은 상기 게이트 라인 및 상기 데이터 라인에 전기적으로 연결될 수 있다.
예를 들어, 상기 게이트 라인들은 X축 방향으로 연장되고, 상기 데이터 라인들은 Y축 방향으로 연장될 수 있다.
하나의 화소(Px)를 구성하는 제1 부화소(100sp), 제2 부화소(200sp), 제3 부화소(300sp) 및 제4 부화소(400sp)는 상기 게이트 라인들과 상기 데이터 라인들 각각에 전기적으로 연결될 수 있다.
상술한 바와 같이, 제1 실시예의 표시장치를 구성하는 제3 부화소(300sp)와 제4 부화소(400sp)가 동일한 청색광을 방출하도록 구성됨에 따라 제3 부화소(300sp)와 제4 부화소(400sp)의 게이트 라인과 데이터 라인을 공유하도록 전기적으로 연결될 수 있다.
즉, 상기 제3 부화소(300sp)와 제4 부화소(400sp)의 제어를 동시에 함께할 수 있는 것이다.
한편, 제3 부화소(300sp)와 제4 부화소(400sp)가 동일한 청색광을 방출하도록 구성되었다 하더라도 제3 부화소(300sp)와 제4 부화소(400sp)의 게이트 라인과 데이터 라인을 공유하지 않고 각각 개별적으로 제어할 수 있음을 배제하지 않는다.
상기 발광그룹 정의막(PDL1)은 상기 박막 트랜지스터 기판 상에 배치되고, 제1 발광그룹(100)에 대응하는 개구가 형성될 수 있다. 상기 발광그룹 정의막(PDL1) 내에 4개의 화소 전극(110)이 등각도로 배치될 수 있다.
상기 발광그룹 정의막(PDL1) 내에는 상기 부화소 정의막(PDL2)이 더 배치될 수 있다. 상기 부화소 정의막(PDL2)은 상기 4개의 화소 전극(110) 사이에 배치될 수 있다. 상기 부화소 정의막(PDL2)은 상기 4개의 화소 전극(110)의 상면들을 노출시키도록 형성된다.
상기 발광그룹 정의막(PDL1)은 상기 부화소 정의막(PDL2)과 같은 공정으로 동시에 형성되거나, 상기 발광그룹과 상기 부화소 정의막(PDL2)이 다른 특성의 재료를 적용하여 다른 공정으로 다른 높이의 구조물로 별도 형성이 될 수도 있다. 상기 발광그룹 정의막(PDL1)의 두께는 상기 부화소 정의막(PDL2)의 보다 높게 형성될 수 있다.
상기 발광그룹 정의막(PDL1)의 상면은 높은 발액성 특성이 있도록 형성되고, 상기 부화소 정의막(PDL2)와 다른 특성의 재료를 적용하여 다른 공정으로 형성될 때 상기 발광그룹 정의막(PDL1)의 측면은 도포되는 잉크보다 높은 발액성 특성이 있도록 형성될 수 있다.
상기 부화소 정의막(PDL2)의 상면은 발액성 특성이 있도록 형성되고, 상기 부화소 정의막(PDL2)와 같은 특성의 재료를 적용하여 같은 공정으로 형성될 때 상기 부화소 정의막(PDL2)의 측면은 친액성 특성이 있도록 형성되며, 상기 부화소 정의막(PDL2) 높이는 상기 화소 전극(110), 발광층(120) 및 대향 전극(130)의 적층 높이보다 높게 형성된다.
따라서, 잉크젯 프린팅 등의 방법에 의해 발광층(120)을 형성할 때, 각 표면들의 표면 장력의 차이에 의하여 발광그룹 정의막(PDL1) 내에서만 잉크 방울이 도포될 수 있으며, 또한, 발광층(120)이 부화소 정의막(PDL2)의 사이에 화소 전극(110) 상에 균일하게 형성될 수 있다.
상기 발광층(120)은 상기 발광그룹 정의막(PDL1)의 상기 개구 내에 상기 4개의 화소 전극(110)에 각각 적층되어 배치될 수 있다.
한편, 상기 발광층(120)에 포함되는 물질은 특별히 제한되지 않으며. 형광 혹은 인광 메커니즘 등에 의해 적색, 녹색 또는 청색 파장을 방사할 수 있는 유기 발광 물질들을 사용하여 상기 발광층(120)을 형성할 수 있다. 또는, 컬러 필터층을 형성하기 위한 적색, 녹색 또는 청색 레지스트 재료일 수도 있다. 또는, 컬러 변화층을 형성하기 위한 적색, 녹색 또는 청색 양자점(Quantum Dot) 또는 페로브스카이트(Perovskite) 재료가 포함된 잉크일 수 있다. 또한, 자발광 양자점(Quantum Dot) 또는 페로브스카이트(Perovskite) 표시 장치를 위한 적색, 녹색 또는 청색 양자점 (Quantum Dot) 또는 페로브스카이트(Perovskite) 잉크일 수 있다.
구체적으로, 상기 발광층(120)은 잉크젯 프린팅, 노즐 프린팅 방식, OVJP(Organic Vapor Jet Printing) 그리고 OVPD(Organic Vapor Phase Deposition: 유기기상증착법)을 이용하여 형성될 수 있다.
예를 들어, 상기 발광층(120)은 방울 증착 또는 잉크젯 프린팅 기법에 의해 선택적으로 도포될 수 있으며, 하나의 구체적인 예로서, 상기 제1 발광그룹(100)에 형성된 발광층(120), 상기 제2 발광그룹(200)에 형성된 발광층(120), 상기 제3 발광그룹(300)에 형성된 발광층(120) 및 상기 제4 발광그룹(400)에 형성된 발광층(120)이 잉크젯 프린팅에 의해 동시에 또는 각각 개별적으로 형성될 수 있다.
이때, 상기 제1 발광그룹(100)에 형성된 발광층(120), 상기 제2 발광그룹(200)에 형성된 발광층(120), 상기 제3 발광그룹(300)에 형성된 발광층(120) 및 상기 제4 발광그룹(400)에 형성된 발광층(120)이 방출하는 색광이 모두 다르다면 각각의 발광층(120)이 각각 서로 다른 잉크로 잉크젯 프린팅에 의해 형성될 수 있다.
한편, 상기 제1 발광그룹(100)에 형성된 발광층(120), 상기 제2 발광그룹(200)에 형성된 발광층(120), 상기 제3 발광그룹(300)에 형성된 발광층(120) 및 상기 제4 발광그룹(400)에 형성된 발광층(120) 중 제3 발광그룹(300)에 형성된 발광층(120) 및 상기 제4 발광그룹(400)에 형성된 발광층(120)의 색광이 동일한 경우라면 제3 발광그룹(300)에 형성된 발광층(120) 및 상기 제4 발광그룹(400)에 형성된 발광층(120)은 동일 잉크로 잉크젯 프린팅에 의해 형성될 수 있다.
본 실시예에 따르면, 제1 발광그룹(100)은 4개의 화소(Px)에 각각 포함되는 4개의 발광부를 포함하며, 제1 발광그룹(100)의 발광층(120)을 인쇄하는 데 있어서의 해상도보다 4배 높은 해상도로 발광부들, 즉, 부화소(Px)들을 구성할 수 있으므로, 발광층(120)의 인쇄 해상력보다 고해상도의 표시장치를 구현할 수 있다.
상기 대향 전극(130)은 상기 발광그룹 정의막(PDL1)의 상기 개구 내에 상기 4개의 형광층에 각각 적층되어 배치될 수 있다.
상기 박막봉지층은 외부의 습기 및 산소의 침투를 방지하는 층으로서, 적어도 하나의 유기막(150)과 적어도 하나의 무기막(140, 160)을 구비할 수 있고, 상기 유기막(150)과 무기막(140, 160)은 서로 교번적으로 적층될 수 있다.
예를 들어, 상기 박막 봉지층은 제1 무기막(140), 유기막(150), 제2 무기막(160)이 순차적으로 적층되도록 구성될 수 있으나, 이에 제한되지 않는다. 다른 실시예에 있어서, 상기 박막 봉지층 대신 외기 및 수분이 상기 표시 장치 내부로 침투하는 것을 차단하기 위한 밀봉기판이 제공될 수 있다.
상술한 바와 같은 제1 발광그룹(100)의 적층구조는 상기 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)에 동일하게 적용될 수 있다.
한편, 상기 제1 발광그룹(100)의 다른 적층구조로서, 도 10의 (b)에 도시된 바와 같이, 상기 제1 발광그룹(100)은 4개의 부화소(Px)에 각각 대응하는 4개의 화소 전극(110), 상기 4개의 화소 전극(110)과 모두 중첩하는 하나의 발광층(120) 및 상기 4개의 화소 전극(110)에 각각 대응하여 상기 발광층(120)에 각각 적층되는 4개의 대향 전극(130)을 포함하여 구성될 수 있다. 도 10의 (b)의 구조에서는 4개의 화소 전극(110)과 모두 중첩하도록 상기 발광층(120)이 하나로 연결되어 형성되는 점에서 차이가 있으며, 다른 부분은 동일하다.
이하, 도 3을 참조하여 본 발명의 제2 실시예에 따른 표시장치에 대하여 설명하도록 한다.
제2 실시예에 따른 표시장치는, 도 3에 도시된 바와 같이, 4개의 제1 부화소(100sp)로 구성된 제1 발광그룹(100), 4개의 제2 부화소(200sp)로 구성된 제2 발광그룹(200), 4개의 제3 부화소(300sp)로 구성된 제3 발광그룹(300) 및 4개의 제4 부화소(400sp)로 구성된 제4 발광그룹(400)을 포함하여 구성된다.
제2 실시예에 따른 표시장치는 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)이 방출하는 색상을 제외하고 제1 실시예의 표시장치와 실질적으로 동일하며, 반복되는 설명은 생략한다.
제2 실시예에 따른 표시장치를 구성하는 상기 제1 발광그룹(100)을 구성하는 4개의 제1 부화소(100sp)는 청색광을 방출하도록 구성되고, 상기 제2 발광그룹(200)을 구성하는 4개의 제2 부화소(200sp)는 적색광을 방출하도록 구성되며, 상기 제3 발광그룹(300)을 구성하는 4개의 제3 부화소(300sp)는 녹색광을 방출하도록 구성되고, 상기 제4 발광그룹(400)을 구성하는 4개의 제4 부화소(400sp)도 녹색광을 방출하도록 구성된다.
상술한 바와 같이 구성된 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)에 의하여, 서로 가장 가깝게 배치되는 4개의 부화소(Px), 즉, 청색광을 방출하는 제1 부화소(100sp), 적색광을 방출하는 제2 부화소(200sp), 녹색광을 방출하는 제3 부화소(300sp) 및 녹색광을 방출하는 제4 부화소(400sp)가 하나의 화소(Px)를 이루게 된다.
상술한 바와 같이, 청색광을 방출하는 제1 부화소(100sp), 적색광을 방출하는 제2 부화소(200sp), 녹색광을 방출하는 제3 부화소(300sp) 및 녹색광을 방출하는 제4 부화소(400sp)가 모여서 하나의 화소(Px)를 구성함에 따라 청색광이나 적색광의 방출 면적의 2배에 해당하는 면적에서 녹색광이 방출될 수 있는 구조가 된다.
이하, 도 4를 참조하여 본 발명의 제3 실시예에 따른 표시장치에 대하여 설명하도록 한다.
제3 실시예에 따른 표시장치는, 도 4에 도시된 바와 같이, 4개의 제1 부화소(100sp)로 구성된 제1 발광그룹(100), 4개의 제2 부화소(200sp)로 구성된 제2 발광그룹(200), 4개의 제3 부화소(300sp)로 구성된 제3 발광그룹(300) 및 4개의 제4 부화소(400sp)로 구성된 제4 발광그룹(400)을 포함하여 구성된다.
제3 실시예에 따른 표시장치는 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)이 방출하는 색상을 제외하고 제1 실시예의 표시장치와 실질적으로 동일하며, 반복되는 설명은 생략한다.
제3 실시예에 따른 표시장치를 구성하는 상기 제1 발광그룹(100)을 구성하는 4개의 제1 부화소(100sp)는 녹색광을 방출하도록 구성되고, 상기 제2 발광그룹(200)을 구성하는 4개의 제2 부화소(200sp)는 청색광을 방출하도록 구성되며, 상기 제3 발광그룹(300)을 구성하는 4개의 제3 부화소(300sp)는 적색광을 방출하도록 구성되고, 상기 제4 발광그룹(400)을 구성하는 4개의 제4 부화소(400sp)도 적색광을 방출하도록 구성된다.
상술한 바와 같이 구성된 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)에 의하여, 서로 가장 가깝게 배치되는 4개의 부화소(Px), 즉, 녹색광을 방출하는 제1 부화소(100sp), 청색광을 방출하는 제2 부화소(200sp), 적색광을 방출하는 제3 부화소(300sp) 및 적색광을 방출하는 제4 부화소(400sp)가 하나의 화소(Px)를 이루게 된다.
상술한 바와 같이, 녹색광을 방출하는 제1 부화소(100sp), 청색광을 방출하는 제2 부화소(200sp), 적색광을 방출하는 제3 부화소(300sp) 및 적색광을 방출하는 제4 부화소(400sp)가 모여서 하나의 화소(Px)를 구성함에 따라 녹색광이나 청색광의 방출 면적의 2배에 해당하는 면적에서 적색광이 방출될 수 있는 구조가 된다.
이하, 도 5를 참조하여 본 발명의 제4 실시예에 따른 표시장치에 대하여 설명하도록 한다.
제4 실시예에 따른 표시장치는, 도 5에 도시된 바와 같이, 4개의 제1 부화소(100sp)로 구성된 제1 발광그룹(100), 4개의 제2 부화소(200sp)로 구성된 제2 발광그룹(200), 4개의 제3 부화소(300sp)로 구성된 제3 발광그룹(300) 및 4개의 제4 부화소(400sp)로 구성된 제4 발광그룹(400)을 포함하여 구성된다.
제4 실시예에 따른 표시장치는 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)이 방출하는 색상을 제외하고 제1 실시예의 표시장치와 실질적으로 동일하며, 반복되는 설명은 생략한다.
제4 실시예에 따른 표시장치를 구성하는 상기 제1 발광그룹(100)을 구성하는 4개의 제1 부화소(100sp)는 녹색광을 방출하도록 구성되고, 상기 제2 발광그룹(200)을 구성하는 4개의 제2 부화소(200sp)는 청색광을 방출하도록 구성되며, 상기 제3 발광그룹(300)을 구성하는 4개의 제3 부화소(300sp)도 청색광을 방출하도록 구성되고, 상기 제4 발광그룹(400)을 구성하는 4개의 제4 부화소(400sp)는 적색광을 방출하도록 구성된다.
상술한 바와 같이 구성된 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)에 의하여, 서로 가장 가깝게 배치되는 4개의 부화소(Px), 즉, 녹색광을 방출하는 제1 부화소(100sp), 청색광을 방출하는 제2 부화소(200sp), 청색광을 방출하는 제3 부화소(300sp) 및 적색광을 방출하는 제4 부화소(400sp)가 하나의 화소(Px)를 이루게 된다.
상술한 바와 같이, 녹색광을 방출하는 제1 부화소(100sp), 청색광을 방출하는 제2 부화소(200sp), 청색광을 방출하는 제3 부화소(300sp) 및 적색광을 방출하는 제4 부화소(400sp)가 모여서 하나의 화소(Px)를 구성함에 따라 녹색광이나 적색광의 방출 면적의 2배에 해당하는 면적에서 청색광이 방출될 수 있는 구조가 된다. 이러한 구성을 통해, 일반적으로 효율이 낮은 청색광을 방출하는 유기 발광 물질인 청색소자의 수명이 다른 색광을 방출하는 유기발광 물질 대비 짧은 수명을 가지는 단점을 보완할 수 있다.
특히, 제4 실시예의 표시장치는, 도 5에 도시된 바와 같이, 제2 부화소(200sp)와 제3 부화소(300sp)가 동일한 청색광을 방출하도록 구성됨에 따라 청색광을 방출하는 부화소(Px)들이 X축 방향으로 일렬로 배치되는 구조가 된다.
상술한 바와 같이, 청색광을 방출하는 부화소(Px)들이 X축 방향으로 일렬로 배치됨에 따라 잉크젯 방식을 통한 제조 시, 인쇄해야 할 청색 잉크의 라인 수가 반으로 줄어들게 되어 잉크젯 공정이 더 쉬울 뿐만 아니라 전체적인 잉크젯 인쇄 속도를 2배 빠르게 할 수 있는 장점이 있다.
상술한 바와 같이, 제4 실시예의 표시장치를 구성하는 제3 부화소(300sp)와 제4 부화소(400sp)가 동일한 청색광을 일렬로 배치하여 방출하도록 구성됨에 따라 제3 부화소(300sp)와 제4 부화소(400sp)의 게이트 라인과 데이터 라인을 공유하도록 전기적으로 연결하여 제어를 동시에 함께할 수 있는 것이 용이한 구조가 된다.
한편, 제3 부화소(300sp)와 제4 부화소(400sp)가 동일한 청색광을 방출하도록 구성되더라도 제3 부화소(300sp)와 제4 부화소(400sp)의 게이트 라인과 데이터 라인을 공유하지 않고 각각 개별적으로 제어할 수 있음을 배제하지 않는다.
이하, 도 6을 참조하여 본 발명의 제5 실시예에 따른 표시장치에 대하여 설명하도록 한다.
제5 실시예에 따른 표시장치는, 도 6에 도시된 바와 같이, 4개의 제1 부화소(100sp)로 구성된 제1 발광그룹(100), 4개의 제2 부화소(200sp)로 구성된 제2 발광그룹(200), 4개의 제3 부화소(300sp)로 구성된 제3 발광그룹(300) 및 4개의 제4 부화소(400sp)로 구성된 제4 발광그룹(400)을 포함하여 구성된다.
제5 실시예에 따른 표시장치는 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)의 면적을 제외하고 제1 실시예의 표시장치와 실질적으로 동일하며, 반복되는 설명은 생략한다.
제5 실시예에 따른 표시장치를 구성하는 상기 제1 발광그룹(100)을 구성하는 4개의 제1 부화소(100sp)는 녹색광을 방출하도록 구성되고, 상기 제2 발광그룹(200)을 구성하는 4개의 제2 부화소(200sp)는 적색광을 방출하도록 구성되며, 상기 제3 발광그룹(300)을 구성하는 4개의 제3 부화소(300sp)는 청색광을 방출하도록 구성되고, 상기 제4 발광그룹(400)을 구성하는 4개의 제4 부화소(400sp)도 청색광을 방출하도록 구성된다.
한편, 표시장치(10)의 색과 밝기를 최적화하기 위하여, 상기 제3 부화소(300sp)와 상기 제4 부화소(400sp)의 면적은 동일하며, 상기 제1 부화소(100sp)의 면적은 상기 제3 부화소(300sp) 또는 상기 제4 부화소(400sp)의 면적보다 작게 형성되고, 상기 제2 부화소(200sp)의 면적은 상기 제3 부화소(300sp) 또는 상기 제4 부화소(400sp)의 면적보다 크게 형성될 수 있다.
다른 관점으로 설명하면, 효율이 낮은 청색광은 제3 발광그룹(300)과 제4 발광그룹(400)에서 방출되도록 하여 단위 면적당 개수가 2배가 되도록 하여 다른 색광의 방출 면적보다 크게 하고, 효율이 높은 녹색광을 방출하는 제1 발광그룹(100)의 크기를 좀 더 작게 함과 아울러 효율이 중간인 적색광을 방출하는 제2 발광그룹(200)의 크기는 좀 더 크게 함으로써 전체적인 색광의 균일성을 향상시킬 수 있다.
상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)의 면적 및 색상은 적, 녹, 청색광의 효율에 따라 적절하게 변경될 수 있다.
이하, 도 7을 참조하여 본 발명의 제6 실시예에 따른 표시장치에 대하여 설명하도록 한다.
제6 실시예에 따른 표시장치는, 도 7에 도시된 바와 같이, 4개의 제1 부화소(100sp)로 구성된 제1 발광그룹(100), 4개의 제2 부화소(200sp)로 구성된 제2 발광그룹(200), 4개의 제3 부화소(300sp)로 구성된 제3 발광그룹(300) 및 4개의 제4 부화소(400sp)로 구성된 제4 발광그룹(400)을 포함하여 구성된다.
제6 실시예에 따른 표시장치는 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)이 방출하는 색상을 제외하고 제1 실시예의 표시장치와 실질적으로 동일하며, 반복되는 설명은 생략한다.
제6 실시예에 따른 표시장치를 구성하는 상기 제1 발광그룹(100)을 구성하는 4개의 제1 부화소(100sp)는 녹색광을 방출하도록 구성되고, 상기 제2 발광그룹(200)을 구성하는 4개의 제2 부화소(200sp)는 적색광을 방출하도록 구성되며, 상기 제3 발광그룹(300)을 구성하는 4개의 제3 부화소(300sp)는 청색광을 방출하도록 구성되고, 상기 제4 발광그룹(400)을 구성하는 4개의 제4 부화소(400sp)는 백색광을 방출하도록 구성된다.
상술한 바와 같이 구성된 상기 제1 발광그룹(100), 제2 발광그룹(200), 제3 발광그룹(300) 및 제4 발광그룹(400)에 의하여, 서로 가장 가깝게 배치되는 4개의 부화소(Px), 즉, 녹색광을 방출하는 제1 부화소(100sp), 적색광을 방출하는 제2 부화소(200sp), 청색광을 방출하는 제3 부화소(300sp) 및 백색광을 방출하는 제4 부화소(400sp)가 하나의 화소(Px)를 이루게 된다.
상술한 바와 같이, 녹색광을 방출하는 제1 부화소(100sp), 적색광을 방출하는 제2 부화소(200sp), 청색광을 방출하는 제3 부화소(300sp) 및 백색광을 방출하는 제4 부화소(400sp)가 모여서 하나의 화소(Px)를 구성함에 따라 표시장치의 전체 밝기를 향상시킬 수 있게 된다. 즉, 상기 백색광에 의해 표시장치의 전체 밝기가 향상되는 것이다.
상술한 바와 같은 본 발명의 실시예에 따른 표시장치는 잉크젯 인쇄 방법을 통해 이루어지며, 상술한 잉크젯 인쇄 기술은 상기 실시예에서 설명한 고해상도 OLED 표시장치 이외에도 고해상도 RGB 픽셀 인쇄 공정이 필요한 분야에 적용될 수 있다.
예를 들어, RGB 픽셀 인쇄 분야인 컬러 필터, 양자점 색변환(Quantum Dot Color Conversion: QDCC)층, 페로브스카이트 색변환(Perovskite Color Conversion)층, 자발광 RGB QD (QLED) 표시장치의 인쇄에 적용될 수 있다.
또는, 도 11 및 도 12에 도시된 바와 같이, 3개의 층이 잉크젯으로 인쇄되어 제조되고 있는 폴리머 OLED 표시장치의 경우에는, HIL(Hole Injection Layer), IL(Inter Layer), Polymer RGB EML 재료를 이용한 RGB 화소(Px) 인쇄에도 적용될 수 있다.
또한, 아주 높은 신축성을 갖는 미래의 스트레처블(stretchable) OLED의 경우에는, 신축성이 있는 박막 봉지막(Thin Film Encapsulation: TFE)도 화소(Px) 단위로 구현이 되어야 하기 때문에 고해상도 화소(Px) 단위로 인쇄가 되어야 하며, 이러한 이유로 하나의 유기물 잉크를 이용한 고해상도 RGB 화소(Px)의 유기 박막봉지층 인쇄에도 적용될 수 있다.
또한, QNED(Quantum Dot Nano LED) 표시장치에서도 청색 Nano LED를 잉크에 넣어서 잉크젯 인쇄가 가능하며, 이런 잉크를 모바일 폰의 400ppi 이상의 고해상도 화소(Px) 인쇄에도 적용될 수 있다. 청색 Nano LED로만 구성된 표시장치는 청색광을 녹색광과 적색광으로 변환하기 위하여 컬러필터 층 및 QDCC(퀀텀닷 색상 변환기, Quantum Dot Color Converter) 층의 인쇄가 필요하며, 이러한 경우의 인쇄에도 적용될 수 있다.
또한, 청색뿐아니라 효율적인 적색, 녹색 Nano LED가 개발되면 자발광 QNED 표시장치를 구현할 수 있으며, 이러한 청색, 적색, 녹색 광의 Nano LED를 각각의 잉크에 넣어서 잉크젯 인쇄가 가능하다. 고해상도 QNED RGB 화소(Px)를 각각의 Nano LED 화소(Px)로 구현하기 위하여 인쇄하고 전기영동 방식으로 전극에 정렬을 하여 RGB 화소 전극(110)을 구현할 수 있다.
또한, 마이크로 LED 표시장치를 위한 컬러 필터층, 양자점 색변환(Quantum Dot Color Conversion: QDCC)층 또는 페로브스카이트 색변환(Perovskite Color Conversion: PCC)층의 인쇄에도 적용할 수 있으며, 특히, 가상현실(VR), 증강현실(AR), 혼합현실(MR), 확장현실(XR)용 마이크로 LED 또는 마이크로 OLED를 제조하는데 필요한 컬러 필터, 양자점 색변환 또는 페로브스카이트 색변환을 제조하는데 적용할 수 있다.
잉크젯 인쇄로 정확한 위치와 크기 그리고 고해상도로 인쇄가 필요한 박막 트랜지스터 막을 형성하는데도 같은 개념의 하나의 인쇄로 4개의 박막 트랜지스터를 인쇄하는 인쇄 방법으로 적용될 수 있다.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 많은 다양하고 자명한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형예들을 포함하도록 기술된 특허청구범위에 의해서 해석돼야 한다.

Claims (18)

  1. 서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제1 부화소로 구성된 제1 발광그룹;
    서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제2 부화소로 구성된 제2 발광그룹;
    서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제3 부화소로 구성된 제3 발광그룹; 및
    서로 다른 화소에 포함되어 동일 색광을 방출하는 4개의 제4 부화소로 구성된 제4 발광그룹;을 포함하며,
    서로 가장 가깝게 배치되는 4개의 제1 부화소, 제2 부화소, 제3 부화소 및 제4 부화소가 하나의 화소를 이루도록 구성된 표시장치.
  2. 제1항에 있어서,
    상기 제1 내지 제4 발광그룹은 각각 복수개로 형성되어, 박막 트랜지스터 기판 상에 제1 방향 및 상기 제1 방향과 교차하는 제2 방향을 따라 매트릭스 형태로 배열되며,
    상기 제1 내지 제4 발광그룹의 단위 면적당 개수는 모두 동일하도록 구성된 것을 특징으로 하는 표시장치.
  3. 제2항에 있어서,
    상기 제1 내지 제4 발광그룹은 서로 동일한 간격으로 이격되어 배치되고,
    상기 제1 내지 제4 발광그룹 중 서로 이웃하는 2개의 발광그룹의 중심 사이는 제1 거리만큼 이격되고,
    서로 가장 가까운 동일 발광그룹 사이는 상기 제1 거리의 2배인 제2 거리만큼 이격되도록 구성된 것을 특징으로 하는 표시장치.
  4. 제3항에 있어서,
    상기 하나의 화소를 이루는 상기 제1 내지 제4 부화소는 사각형 형태로 배치되도록 구성된 것을 특징으로 하는 표시장치.
  5. 제4항에 있어서,
    상기 제1 내지 제4 부화소의 중심각이 90°로 형성되고, 90° 이하로 형성된 코너부는 둥글게 라운드 처리되어 구성된 것을 특징으로 하는 표시장치.
  6. 제1항에 있어서,
    상기 제1 내지 제4 발광그룹은 적색, 녹색, 청색 및 백색 중의 어느 하나의 색광을 방출하도록 구성되고,
    상기 제1 내지 제4 발광그룹은 서로 다른 색광을 방출하도록 구성된 것을 특징으로 하는 표시장치.
  7. 제1항에 있어서,
    상기 제1 내지 제4 발광그룹은 적색, 녹색, 청색 및 백색 중의 어느 하나의 색광을 방출하도록 구성되고,
    상기 제1 내지 제4 발광그룹 중 2개의 발광그룹이 동일 색광을 방출하도록 구성된 것을 특징으로 하는 표시장치.
  8. 제7항에 있어서,
    상기 동일 색광을 방출하는 2개의 발광그룹은 동일 박막 트랜지스터와 전기적으로 연결되어 동시에 제어되도록 구성된 것을 특징으로 하는 표시장치.
  9. 제7항에 있어서,
    상기 동일 색광을 방출하는 2개의 발광그룹은 서로 다른 박막 트랜지스터와 각각 전기적으로 연결되어 개별 제어되도록 구성된 것을 특징으로 하는 표시장치.
  10. 제7항에 있어서,
    상기 동일 색광을 방출하는 2개의 발광그룹은 청색광을 방출하도록 구성되고, 나머지 중 하나의 발광그룹은 적색광을 방출하며, 나머지 중 다른 하나의 발광그룹은 녹색광을 방출하도록 구성된 것을 특징으로 하는 표시장치.
  11. 제7항에 있어서,
    상기 동일 색광을 방출하는 2개의 발광그룹은 녹색광을 방출하도록 구성되고, 나머지 중 하나의 발광그룹은 적색광을 방출하며, 나머지 중 다른 하나의 발광그룹은 청색광을 방출하도록 구성된 것을 특징으로 하는 표시장치.
  12. 제7항에 있어서,
    상기 동일 색광을 방출하는 2개의 발광그룹은 적색광을 방출하도록 구성되고, 나머지 중 하나의 발광그룹은 녹색광을 방출하며, 나머지 중 다른 하나의 발광그룹은 청색광을 방출하도록 구성된 것을 특징으로 하는 표시장치.
  13. 제1항에 있어서,
    상기 제1 내지 제4 발광그룹 각각은,
    4개의 부화소에 각각 대응하는 4개의 화소 전극; 상기 4개의 화소 전극 각각 적층되는 4개의 발광층; 및 상기 4개의 발광층에 각각 적층되는 4개의 대향 전극;을 포함하여 구성된 것을 특징으로 하는 표시장치.
  14. 제1항에 있어서,
    상기 제1 내지 제4 발광그룹 각각은,
    4개의 부화소에 각각 대응하는 4개의 화소 전극; 상기 4개의 화소 전극과 모두 중첩하는 하나의 발광층; 및 상기 4개의 화소 전극에 각각 대응하여 상기 발광층에 각각 적층되는 4개의 대향 전극;을 포함하여 구성된 것을 특징으로 하는 표시장치.
  15. 제13항 또는 제14항에 있어서,
    상기 제1 발광그룹에 형성된 발광층, 상기 제2 발광그룹에 형성된 발광층, 상기 제3 발광그룹에 형성된 발광층 및 상기 제4 발광그룹에 형성된 발광층은 각각 서로 다른 잉크로 잉크젯 프린팅에 의해 형성되는 것을 특징으로 하는 표시장치.
  16. 제13항 또는 제14항에 있어서,
    상기 제1 발광그룹에 형성된 발광층, 상기 제2 발광그룹에 형성된 발광층, 상기 제3 발광그룹에 형성된 발광층 및 상기 제4 발광그룹에 형성된 발광층은 잉크젯 프린팅에 의해 형성되고,
    상기 제1 발광그룹에 형성된 발광층, 상기 제2 발광그룹에 형성된 발광층, 상기 제3 발광그룹에 형성된 발광층 및 상기 제4 발광그룹에 형성된 발광층 중 적어도 2개의 발광층은 동일 잉크로 잉크젯 프린팅에 의해 형성되는 것을 특징으로 하는 표시장치.
  17. 제1항에 있어서,
    상기 제1 발광그룹, 상기 제2 발광그룹, 상기 제3 발광 그룹 및 제4 발광그룹 중 적어도 어느 하나의 발광그룹은 크기가 다르게 형성된 것을 특징으로 하는 표시장치.
  18. 제7항에 있어서,
    상기 동일 색광을 방출하는 2개의 발광그룹은 박막 트랜지스터 기판 상에 제1 방향 또는 상기 제1 방향과 교차하는 제2 방향을 따라 하나의 열로 배열된 것을 특징으로 하는 표시장치.
PCT/KR2021/000740 2020-12-21 2021-01-19 표시장치 WO2022139060A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/617,703 US20220399409A1 (en) 2020-12-21 2021-01-19 Display apparatus
EP21911130.9A EP4266373A1 (en) 2020-12-21 2021-01-19 Display device
CN202180004016.8A CN114981977A (zh) 2020-12-21 2021-01-19 显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0179897 2020-12-21
KR1020200179897A KR102297348B1 (ko) 2020-12-21 2020-12-21 표시장치

Publications (1)

Publication Number Publication Date
WO2022139060A1 true WO2022139060A1 (ko) 2022-06-30

Family

ID=77785259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000740 WO2022139060A1 (ko) 2020-12-21 2021-01-19 표시장치

Country Status (6)

Country Link
US (1) US20220399409A1 (ko)
EP (1) EP4266373A1 (ko)
KR (1) KR102297348B1 (ko)
CN (1) CN114981977A (ko)
TW (1) TW202240887A (ko)
WO (1) WO2022139060A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110057234A (ko) * 2008-10-01 2011-05-31 유니버셜 디스플레이 코포레이션 신규한 oled 디스플레이 구축
KR20150109357A (ko) * 2013-01-17 2015-10-01 카티바, 인크. 고해상도 유기 발광 다이오드 소자
CN107068714A (zh) * 2017-01-20 2017-08-18 成都晶砂科技有限公司 一种oled像素排列结构及显示装置
KR20190072108A (ko) * 2017-12-15 2019-06-25 조율호 피라미드 서브 픽셀 배열 구조를 갖는 표시 장치
KR20200133123A (ko) * 2019-05-17 2020-11-26 삼성디스플레이 주식회사 표시 장치
KR20200133095A (ko) 2019-05-16 2020-11-26 삼성디스플레이 주식회사 유기발광표시장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130177B2 (en) * 2008-03-13 2012-03-06 Panasonic Corporation Organic EL display panel and manufacturing method thereof
JP2013077388A (ja) * 2011-09-29 2013-04-25 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
CN104752469B (zh) * 2013-12-31 2018-08-03 昆山国显光电有限公司 一种像素结构及采用该像素结构的有机发光显示器
JPWO2015136579A1 (ja) * 2014-03-13 2017-04-06 株式会社Joled 有機el表示パネルおよびその製造方法
KR102489836B1 (ko) * 2015-06-30 2023-01-18 엘지디스플레이 주식회사 유기전계발광표시장치
CN206564254U (zh) * 2017-03-07 2017-10-17 京东方科技集团股份有限公司 一种oled阵列基板和显示装置
CN108807485B (zh) * 2018-06-25 2020-12-29 武汉天马微电子有限公司 一种显示面板及显示装置
CN109148543B (zh) * 2018-08-30 2022-04-19 京东方科技集团股份有限公司 一种像素结构及显示面板
US11610951B2 (en) * 2020-06-04 2023-03-21 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and method for manufacturing same
CN114068792A (zh) * 2020-08-07 2022-02-18 晶元光电股份有限公司 发光模块及显示装置
CN112103317B (zh) * 2020-09-15 2024-04-09 视涯科技股份有限公司 一种有机发光显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110057234A (ko) * 2008-10-01 2011-05-31 유니버셜 디스플레이 코포레이션 신규한 oled 디스플레이 구축
KR20150109357A (ko) * 2013-01-17 2015-10-01 카티바, 인크. 고해상도 유기 발광 다이오드 소자
CN107068714A (zh) * 2017-01-20 2017-08-18 成都晶砂科技有限公司 一种oled像素排列结构及显示装置
KR20190072108A (ko) * 2017-12-15 2019-06-25 조율호 피라미드 서브 픽셀 배열 구조를 갖는 표시 장치
KR20200133095A (ko) 2019-05-16 2020-11-26 삼성디스플레이 주식회사 유기발광표시장치
KR20200133123A (ko) * 2019-05-17 2020-11-26 삼성디스플레이 주식회사 표시 장치

Also Published As

Publication number Publication date
EP4266373A1 (en) 2023-10-25
KR102297348B1 (ko) 2021-09-03
CN114981977A (zh) 2022-08-30
TW202240887A (zh) 2022-10-16
US20220399409A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
WO2020122337A1 (ko) 표시 장치 및 그의 제조 방법
WO2021117979A1 (ko) 마이크로 led와 관련된 디스플레이 장치 및 이의 제조 방법
WO2018101539A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
CN100463581C (zh) 有机el装置的制造方法、有机el装置、电子仪器
WO2017142315A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2018048019A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2017209437A1 (en) Display device using semiconductor light emitting device and fabrication method thereof
WO2018143514A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2017007118A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2015133709A1 (en) Display device using semiconductor light emitting device
WO2015060506A1 (en) Display device using semiconductor light emitting device
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2020149514A1 (ko) 표시 장치 및 표시 장치의 제조 방법
WO2018105810A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
JP6358946B2 (ja) 有機el表示装置
WO2021060595A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021225284A1 (ko) 표시 장치
WO2020013389A1 (ko) 디스플레이 장치
WO2021033801A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2020179989A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2020013427A1 (ko) 디스플레이 장치
WO2020175756A1 (ko) 반도체 발광 소자를 디스플레이 패널에 조립하는 조립 장치
US11903260B2 (en) OLED display panel with same color sub-pixel groups
US10622412B2 (en) Display panel
WO2022139060A1 (ko) 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021911130

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911130

Country of ref document: EP

Effective date: 20230721