WO2022138971A1 - リーク試験条件設計方法、リーク試験条件設計装置、リーク試験方法及びリーク試験装置 - Google Patents

リーク試験条件設計方法、リーク試験条件設計装置、リーク試験方法及びリーク試験装置 Download PDF

Info

Publication number
WO2022138971A1
WO2022138971A1 PCT/JP2021/048421 JP2021048421W WO2022138971A1 WO 2022138971 A1 WO2022138971 A1 WO 2022138971A1 JP 2021048421 W JP2021048421 W JP 2021048421W WO 2022138971 A1 WO2022138971 A1 WO 2022138971A1
Authority
WO
WIPO (PCT)
Prior art keywords
leak
test
work
helium
differential pressure
Prior art date
Application number
PCT/JP2021/048421
Other languages
English (en)
French (fr)
Inventor
真央 平田
明満 田辺
Original Assignee
株式会社フクダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フクダ filed Critical 株式会社フクダ
Priority to US18/269,365 priority Critical patent/US20240060849A1/en
Priority to JP2022521027A priority patent/JP7309058B2/ja
Priority to EP21911108.5A priority patent/EP4269975A1/en
Publication of WO2022138971A1 publication Critical patent/WO2022138971A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3263Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers using a differential pressure detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a leak test technique for inspecting the airtightness of a test piece (work) to be inspected, and particularly to a design method and a design device for evaluating and / or determining the test conditions before the leak test is performed. Further, the present invention relates to a leak test method including implementation of such a design method and a leak test device including the design device.
  • the JIS and MIL standards describe specific test methods for a gross leak test for detecting a large leak (hereinafter referred to as a gross leak) and a fine leak test for detecting a minute leak (hereinafter referred to as a fine leak).
  • a gross leak test for detecting a large leak
  • a fine leak test for detecting a minute leak
  • the leak test of the work is performed in combination with the gross leak test and the fine leak test (see, for example, Patent Documents 1 to 3).
  • a differential pressure type air leak test based on JIS Z2332: 2012 (leakage test method due to pressure change) is widely adopted.
  • a predetermined test air pressure is supplied to the work capsule containing the workpiece to be inspected and the master capsule containing the master which is a leak-free workpiece, and the differential pressure of the internal pressure of these capsules is measured by the differential pressure sensor. Detect with.
  • the quality of the airtightness of the work is determined by the presence / absence of differential pressure detection or the comparison between the detected differential pressure value and the preset discrimination value.
  • the helium leak test method described in JIS Z2331: 2006 is well known, and the immersion method (bombing method) based on Annex 7 thereof is widely adopted.
  • the immersion method a large number (for example, several hundreds) of workpieces are accommodated in the filling chamber, and pressurized helium gas is filled as a test gas for a predetermined bombing time (for example, 1 to 2 hours). Perform bombing to maintain. After that, if there is a minute leak (leakage hole) in the work, the helium gas that has entered the internal space of the work gradually leaks due to bombing, and this is detected by the helium leak detector.
  • the equivalent standard leak rate is JIS C600 schedule-2-17: 2001, and the standard leak rate of the test piece when air is used as the test gas (leakage rate under standard conditions of temperature 25 ° C. and pressure difference 100 kPa (Pa. It is defined as cm 3 / s)). Further, JIS C6000068-2-17: 2001 Annex D, JIS Z2331: 2006 Annex 7, and MIL-STD-883 METHOD 1014.15 2.1.2.3 are equivalent to the helium gas leak rate. An equation expressing the relationship with the standard leak rate is described. From these relational expressions, the amount of helium leak detected in the helium leak test can be converted into the equivalent standard leak rate.
  • Patent Document 4 the relationship between the helium leak amount prepared according to the formula described in Annex D of JIS C6000068-2-17 and the equivalent standard leak rate is shown in a graph in FIG. 14, and helium from now on. It is possible to know the leak area that can be determined by the leak test. Furthermore, the results of helium leak tests conducted under different test conditions can also be compared and evaluated on the same coordinate axis called the equivalent standard leak rate.
  • the amount of gas leaking from the test container is based on the differential pressure generated between the reference container and the test container and the volume of the test container. Is known to be able to be calculated (see, for example, Patent Document 5).
  • the gross leak tests described in the above-mentioned JIS and MIL standards are all qualitative methods, and it is difficult to present the leak rate in the gross leak region with specific numerical values from those test results. rice field. Therefore, it was not possible to judge and evaluate the test result of the gross leak region by the air leak test and the test result of the fine leak by the helium leak test by the same standard. Furthermore, it was also difficult to clearly determine the presence or absence of the above-mentioned dead zone.
  • the present invention has been made in view of the above-mentioned conventional problems, and the first object thereof is the test result of the differential pressure type air leak test and the test of the helium leak test performed on the workpiece to be inspected.
  • the first object thereof is the test result of the differential pressure type air leak test and the test of the helium leak test performed on the workpiece to be inspected.
  • a leak test condition design method that can appropriately judge and evaluate the results with the same criteria and scales, thereby appropriately determining the test conditions for both leak tests in advance, and the method thereof.
  • an object of the present invention is a leak test condition design method capable of appropriately determining the test conditions of both leak tests so that a dead zone does not occur between the leak regions that can be detected in the differential pressure type air leak test and the helium leak test, respectively. To provide the device.
  • an object of the present invention is to provide a leak test apparatus provided with the leak test condition design apparatus of the present invention.
  • the leak test condition design method of the present invention is The process of determining the volume of the sealed internal space of the work to be inspected, In the differential pressure type air leak test, the process of determining the remaining volume of the work closed container for storing the work when the work is stored, and In the differential pressure type air leak test, the process of determining the test air pressure to be applied to the work closed container containing the work and the master closed container containing the master, and In the helium leak test, the process of determining the bombing conditions for filling the filling chamber containing the work with helium gas, and Based on the volume of the closed internal space of the work, the remaining volume of the work closed container, and the test air pressure, a simulation of a differential pressure type air leak test for obtaining a differential pressure value between the work and the master was performed, and the differential pressure obtained was obtained.
  • the process of converting the value to the equivalent standard leak rate to obtain the differential pressure conversion value Based on the bombing conditions, a simulation of a helium leak test for determining the helium leak rate of the work is performed, and the obtained helium leak rate is converted into an equivalent standard leak rate to obtain a helium leak rate converted value. , The differential pressure conversion value and the helium leak rate conversion value are generated so as to be displayed on the same graph having the equivalent standard leakage rate on the horizontal axis or the vertical axis.
  • the process of displaying the differential pressure conversion value and the helium leak rate conversion value on the same graph with the equivalent standard leakage rate as the horizontal axis or the vertical axis is further included.
  • the differential pressure conversion value and the helium leak rate conversion value displayed on the same graph having the equivalent standard leakage rate on the horizontal axis or the vertical axis partially overlap with respect to the equivalent standard leakage rate. It further includes the process of determining whether or not it has a region.
  • the differential pressure conversion value and the helium leak rate conversion value generated so as to be displayed on the same graph having the equivalent standard leak rate on the horizontal axis or the vertical axis are the equivalent standard leak rate.
  • the suitability of the determined test air pressure and / or the determined bombing condition is determined by the presence or absence of overlapping regions with respect to.
  • the differential pressure value between the work and the master obtained in the differential pressure type air leak test is converted into an air leak amount with respect to the test air pressure, and the obtained air leak is obtained.
  • the amount is converted into the size of the leak hole of the work, and the differential pressure value is converted into the equivalent standard leak rate based on the obtained size of the leak hole.
  • the dimensions of the leak are the diameter of the leak and the length in the gas flow direction.
  • the helium leak rate of the work obtained in the helium leak test is determined by the helium leak according to Annex D of JIS C 60068-2-17: 2001. Convert to the equivalent standard leak rate according to the relational expression between the rate and the equivalent standard leak rate.
  • the leak test condition design device of the present invention is A calculation unit that obtains the volume of the closed internal space of the work to be inspected and obtains the remaining volume of the work closed container that stores the work in the differential pressure type air leak test when the work is stored.
  • the first test condition setting unit for determining the test air pressure applied to the work closed container in which the work is stored and the master closed container in which the master is stored, and the first test condition setting unit.
  • a second test condition setting unit for determining the bombing conditions for filling the filling chamber for storing the work with helium gas, and Based on the volume of the closed internal space of the work, the remaining volume of the work closed container, and the test air pressure, a simulation of a differential pressure type air leak test for obtaining a differential pressure value between the work and the master was performed, and the difference obtained.
  • the first simulation processing unit that converts the pressure value into the equivalent standard leak rate and obtains the differential pressure conversion value
  • a second simulation in which a helium leak test for determining the helium leak rate of the work is simulated based on the bombing conditions, and the obtained helium leak rate is converted into an equivalent standard leak rate to obtain a helium leak rate converted value.
  • a display unit that displays the differential pressure conversion value and the helium leak rate conversion value obtained from the first and second simulation processing units on the same graph with the equivalent standard leak rate as the horizontal axis or the vertical axis, respectively. , Is characterized by the provision of.
  • the determination unit does not have a region where the differential pressure conversion value and the helium leak rate conversion value partially overlap with respect to the equivalent standard leakage rate when displayed on the same graph.
  • the calculation unit determines the remaining volume of the work closed container
  • the first test condition setting unit determines the test air pressure
  • the second test condition setting unit determines the bombing condition.
  • the first simulation processing unit obtains the differential pressure conversion value
  • the second simulation processing unit obtains the helium leak rate conversion value
  • the display unit obtains the differential pressure conversion value and the helium leak rate conversion value.
  • the calculation unit, the first test condition setting unit, the second test condition setting unit, the first simulation processing unit, and the second simulation processing unit so that a series of operations displayed on the same graph are repeatedly executed.
  • a control unit that controls the display unit.
  • the first simulation processing unit converts the differential pressure value between the work and the master obtained in the differential pressure type air leak test into an air leak amount with respect to the test air pressure, and the obtained air leak amount. Is converted into the size of the leak hole of the work, and the differential pressure value is converted into the equivalent standard leak rate based on the obtained size of the leak hole to obtain the differential pressure conversion value.
  • the dimensions of the leak hole of the work are the diameter of the leak hole and the length in the gas flow direction.
  • the second simulation processing unit makes the helium leak rate of the work obtained in the helium leak test equivalent to the helium leak rate according to Annex D of JIS C6000068-2-17: 2001.
  • the helium leak rate conversion value is obtained by converting to the equivalent standard leak rate according to the relational expression with the standard leak rate.
  • the leak test method of the present invention is The process of carrying out the leak test condition design method of the present invention described above for the work to be inspected, the process of carrying out the differential pressure air leak test for the work, and helium by the helium bombing method for the work.
  • the differential pressure conversion value and the helium leak rate conversion value are on the same graph with the equivalent standard leak rate as the horizontal axis or the vertical axis. When displayed in, it is characterized by the test air pressure determined to have overlapping regions with respect to the equivalent standard leak rate and / or the bombing conditions determined.
  • the leak test apparatus of the present invention is The above-mentioned leak test condition design device of the present invention and An air leak test unit that executes a differential pressure air leak test based on the test air pressure determined by the first test condition setting unit of the leak test condition design device for the workpiece to be inspected.
  • the workpiece to be inspected is provided with a helium leak test unit that executes a helium leak test by a helium bombing method based on the bombing conditions determined by the second test condition setting unit of the leak test condition design device. It is a feature.
  • the leak test condition design method and apparatus of the present invention it can be obtained when a predetermined test air pressure is applied in the differential pressure air leak test before actually using the differential pressure air leak test and the helium leak test together.
  • the differential pressure value between the work and the master and the helium leak rate of the work that would be obtained when the helium leak test is performed under the predetermined bombing conditions are converted by the equivalent standard leak rate. It can be displayed on the same graph with the equivalent standard leak rate on the horizontal axis or the vertical axis.
  • the threshold value for judging the quality of the work is determined by comparing the differential pressure type air leak test and the helium leak test based on the equivalent standard leak rate, and in the actual test, the threshold value is returned to the differential pressure and the helium leak rate, respectively. can do.
  • FIG. 1 is a block diagram schematically showing a configuration of a leak test apparatus according to an embodiment of the leak test condition design method according to the present invention.
  • FIG. 2 is a circuit configuration diagram of the air leak test unit of FIG.
  • FIG. 3 is a circuit configuration diagram of the helium leak test unit of FIG.
  • FIG. 4 is a flow chart of the leak test condition design method of the present embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a work capsule containing a work W.
  • FIG. 6 is a graph showing the time change of the amount of helium leak in a work having an internal volume of 1 mm 3 .
  • FIG. 7 is a graph showing the time change of the amount of helium leak in a work having an internal volume of 0.1 mm 3 .
  • FIG. 1 is a block diagram schematically showing a configuration of a leak test apparatus according to an embodiment of the leak test condition design method according to the present invention.
  • FIG. 2 is a circuit configuration diagram of the air
  • FIG. 8 is a graph showing the relationship between the differential pressure value obtained by the simulation of the air leak test and the equivalent standard leak rate.
  • FIG. 9 is a graph showing the relationship between the amount of helium leak obtained by the simulation of the helium leak test and the equivalent standard leak rate.
  • FIG. 10 is an integrated graph in which the graph of FIG. 8 and the graph of FIG. 9 are integrated.
  • FIG. 11 is a flow chart of the leak test method of the present embodiment.
  • FIG. 1 schematically shows the configuration of a leak test apparatus according to an embodiment of the leak test condition design method according to the present invention.
  • the leak test device 100 includes an inspection device main body 1, a control device 2, a display unit 3, and a work loader 4 for supplying the work to be inspected to the inspection device main body 1. Further, an external device such as a personal computer or a printer as an external output means can be connected to the inspection device main body 1.
  • the inspection device main body 1 includes an air leak test unit 11 and a helium leak test unit 12. Further, the inspection device main body 1 includes an output unit 13 for outputting the test results of the air leak test unit 11 and the helium leak test unit 12. The output unit 13 outputs the test result to the display unit 3 and an external device or system (not shown).
  • the external devices and systems include all devices and systems such as external personal computers, printers, storage devices, servers, etc. connected to the output unit 13 via various wired and / or wireless communication means. Is done.
  • the control device 2 includes a leak test control unit 21 that controls the execution of the air leak test and the helium leak test by the air leak test unit 11 and the helium leak test unit 12 of the inspection device main body 1. Further, the control device 2 includes a simulation processing unit 22 and a test condition determination unit 23 in order to execute the leak test condition design method of the present embodiment.
  • the control device 2 is provided with an output unit 24, and can output the result of simulation processing by the simulation processing unit 22 described later and the result of test condition determination by the test condition determination unit 23 to the display unit 3. Further, the result of the simulation process and the result of the test condition determination can be output to an external personal computer, printer, other external device and / or system via the output unit 24.
  • the control device 2 has a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage device, and the like.
  • the CPU controls the leak test control unit 21, the simulation processing unit 22, and the test condition determination unit 23 while reading the program corresponding to the control procedure stored in the ROM.
  • the storage device stores data necessary for the simulation process by the simulation processing unit 22 and the test condition determination process by the test condition determination unit 23, and the CPU is stored in the storage device based on the program or the like. The simulation process and the test condition determination process are controlled with reference to the existing data.
  • the display unit 3 includes a test result display unit 31 and an equivalent standard leak rate (L) conversion result display unit 32.
  • the test results of the air leak test unit 11 and the helium leak test unit 12 are output and displayed on the test result display unit 31 directly or via the control device 2 from the inspection device main body 1.
  • the result of the simulation process and the result of the test condition determination are output and displayed from the control device 2 on the L conversion result display unit 32.
  • the display unit 3 includes a single display screen including, for example, an LCD (liquid crystal display).
  • one display screen can be provided for each of the test result display unit 31 and the L conversion result display unit 32, or one display screen common to the test result display unit 31 and the L conversion result display unit 32 can be provided.
  • the air leak test unit 11 is composed of a known differential pressure type air leak test device, and FIG. 2 illustrates a suitable circuit configuration thereof.
  • the differential pressure type air leak test device of FIG. 2 has a test pressure supply source 41 for supplying a positive pressure or negative pressure test air pressure, and an air passage 42.
  • the air passage 42 is provided with regulators 46 and 47, a pressure gauge 48, and an electromagnetic three-way valve 49 from the upstream side.
  • the air passage 42 is branched into a work side branch passage 45a and a master side branch passage 45b on the downstream side of the electromagnetic three-way valve 49.
  • a normally open first on-off valve 51a is provided in the work-side branch passage 45a, and a work capsule 52 for accommodating the work in a closed state is connected to the downstream end thereof.
  • a normally open first on-off valve 51b is provided in the master-side branch passage 45b, and a master capsule 53 for accommodating a master, which is a good work without leakage, in a sealed state is connected to the downstream end thereof.
  • a differential pressure sensor 58 is provided.
  • the differential pressure sensor 58 is connected to the leak test control unit 21 of the control device 2 so as to be able to output the differential pressure detected by the differential pressure sensor, and is connected to the pressure display unit 59 so that the differential pressure can be displayed.
  • an auxiliary passage 54a is connected between the first on-off valve 51a and the work capsule 52, and a normally open second on-off valve 55a is provided in the middle of the auxiliary passage 54a.
  • the pressure tank 56a is connected.
  • an auxiliary passage 54b is connected between the first on-off valve 51b and the master capsule 53, and a normally open second on-off valve 55b is provided in the middle of the auxiliary passage 54b.
  • the pressure tank 56b is connected.
  • the control voltage dividing tanks 56a and 56b discriminate between a "large leak” having a large leak amount and a "small leak” having a small leak amount within the range of the gross leak region of the leak measured by the gross leak test. Used to do.
  • the test air pressure is applied from the test pressure supply source 41 with the second on-off valves 55a and 55b closed, and then the first on-off valves 51a and 51b are closed.
  • the downstream side of the work side branch passage 45a and the master side branch passage 45b from the first on-off valves 51a and 51b are closed circuits, respectively.
  • the differential pressure sensor 58 When the differential pressure sensor 58 does not react in this way, the second on-off valves 55a and 55b are opened, and the air in the closed circuit portion of the work side branch passage 45a and the master side branch passage 45b is sent to the voltage dividing tanks 56a and 56b, respectively. The pressure is divided and the pressure inside the closed circuit portion is reduced. In the closed circuit portion of the work side branch passage 45a, the pressure drop due to partial pressure is smaller than that of the closed circuit portion of the master side branch passage 45b, so that the pressure is higher than that of the closed circuit portion of the master side branch passage 45b. When the differential pressure sensor 58 detects the pressure difference, a large leakage of the work is detected.
  • the air leak test unit 11 is provided with a valve drive circuit for driving the first on-off valves 51a and 51b and the second on-off valves 55a and 55b.
  • the valve drive circuit has a valve drive pressure supply source 43 for supplying valve drive pressure to the first and second on-off valves 51a, 51b, 55a, 55b, and a drive pressure passage 44.
  • the drive pressure passage 44 is branched into a first branch passage 61a and a second branch passage 61b, a regulator 62 is provided in the first branch passage 61a, and a regulator 62 is provided on the downstream side thereof. It is branched into a drive branch passage 63b.
  • an electromagnetic three-way valve 64 that opens and closes the first on-off valves 51a and 51b by the valve drive pressure applied from the valve drive pressure supply source 43 is provided.
  • an electromagnetic three-way valve 65 that opens and closes the second on-off valves 55a and 55b by the valve drive pressure applied from the valve drive pressure supply source 43 is provided.
  • a regulator 66 is provided in the second branch passage 61b, and an electromagnetic three-way valve 67 is connected to the downstream end thereof so as to drive the cylinder 68.
  • the helium leak test unit 12 comprises a known helium leak test device, and FIG. 3 illustrates a suitable circuit configuration thereof.
  • the helium leak test device of FIG. 3 includes a helium supply unit 71 and a leak inspection unit 72.
  • the helium supply unit 71 includes a bombing tank 73, a helium supply source 74 (tracer gas supply source) made of, for example, a helium cylinder, and a vacuum pump 75.
  • the bombing tank 73 is composed of a pressure vessel that can be sealed, and the work to be inspected is housed in the pressure vessel.
  • the helium supply source 74 and the vacuum pump 75 are connected to the bombing tank 73 via passages 78 and 79 provided with on-off valves 76 and 77 and regulators (not shown), respectively.
  • a known automatic transfer means (not shown) is used for the entire process from removal from the bombing tank 73, transfer, and storage in the inspection capsule 81. This can be done in a short time.
  • Such an automatic transfer means is described in, for example, Patent Document 3 above.
  • the worker can manually take out the work W from the bombing tank 73, transport it, and store it in the inspection capsule 81.
  • the leak inspection unit 72 has an inspection capsule 81 and a helium leak detector 82 (tracer gas detecting means).
  • the inspection capsule 81 is composed of a sealable vacuum container, in which the work after bombing taken out from the bombing tank 73 is housed.
  • the inspection capsule 81 is connected to the helium leak detector 82 via the conduit 83.
  • the downstream side of the pipeline 83 is branched into a detection passage 84 and a suction passage 85 inside the helium leak detector 82.
  • the detection passage 84 is provided with an on-off valve 86 and a helium detection unit 87 from the upstream side, and a vacuum pump 88a is connected to the downstream end.
  • An on-off valve 89 is provided in the suction passage 85, and a vacuum pump 88b is connected to the downstream end.
  • the on-off valve 86 and the on-off valve 89 are configured so that when one of them is open, the other is closed and the other is selectively opened.
  • the helium detection unit 87 comprises, for example, a mass spectrometer, and detects helium (tracer gas) in the gas sucked from the inspection capsule 81.
  • the helium leak detector 82 is connected to the control device 2 so that the helium detection unit 87 outputs a detection signal when the helium detection unit 87 detects helium.
  • the leak test condition design method of the present embodiment is performed in the control device 2. It is carried out to predict the measurable leak range of the differential pressure air leak test and the helium leak test, and determine the test conditions for both tests.
  • the leak test condition design method of the present embodiment will be described with reference to the flow chart of FIG.
  • the volume of the sealed internal space of the work is acquired (step S01).
  • the volume of this sealed internal space (hereinafter referred to as the internal volume of the work) can be calculated, for example, from the internal dimensions described in the specifications of the work, or the volume itself is described in the specifications, etc., or the volume of the work. Obtained by obtaining directly if available from the manufacturer or provider.
  • the internal dimensions of the work can be input to the control device 2 in advance, for example, by operating an input unit (not shown) of the control device 2 or by receiving a communication from an external device. Can be stored in.
  • the volume inside the work is, for example, the volume of parts such as devices mounted in the package from the volume of the internal space of the package itself when the work is a small electronic component having a sealed package such as MEMS. The remaining volume excluded.
  • the simulation processing unit 22 acquires the remaining volume of the work capsule 52 in a state where the work is housed (step S02).
  • the remaining volume of the work capsule 52 refers to the volume of the internal space 52a in a state where the work W is housed therein.
  • the internal volume of the work capsule 52 (volume of the internal space 52a) in the empty state is stored in the control device 2 in advance, and can be easily obtained by subtracting the volume of the work W (work external volume) from this.
  • the external volume of the work is also obtained by receiving or obtaining the description of specifications, the work manufacturer or the provider, the operation of the operator, or the communication from the outside, or the external volume obtained in this way. It can be calculated from the dimensions.
  • the simulation processing unit 22 determines the test air pressure to be applied to the work capsule 52 containing the work in the differential pressure type air leak test (step S03).
  • the optimum value is determined based on the data stored in the control device 2 in advance, considering the withstand voltage of the work input to the control device 2 by the operator or provided from the external device. select.
  • the bombing conditions determined here include the bombing pressure applied to the bombing tank 73 accommodating the work and the bombing time for maintaining the bombing pressure.
  • the optimum value is selected based on the data stored in the control device 2 in advance in consideration of the withstand voltage of the work, as in the case of the test air pressure.
  • the bombing time is determined so that a sufficient amount of helium that can be detected by the helium leak detector 82 penetrates into the work after bombing, taking into consideration the internal volume of the work, the bombing pressure, and the size of the minute leak expected for the work. Will be done. This determination is made by the simulation processing unit 22 based on the data stored in the control device 2 in advance.
  • the helium leak test it is important to control the leaving time that elapses until the work taken out from the bombing tank 73 is stored in the inspection capsule 81 after bombing.
  • the helium that has entered the inside of the work by bombing is released to the outside of the work from the time when the exhaust of the helium that has been pressurized and filled in the bombing tank 73 is started, and the release thereof.
  • the amount decreases over time.
  • the amount of helium invading the inside of the work depends on the volume of the closed internal space of the work, the bombing pressure, the bombing time, and the size of the leak hole (for example, the diameter and the length in the gas flow direction).
  • the amount of helium released from the work after bombing and detected also decreases with the passage of time.
  • the standing time during which helium can be detected after bombing depends on the volume of the enclosed internal space of the work, the bombing pressure, the bombing time, and the amount of helium leaked from the leak hole.
  • the amount of helium leaked from the leak depends on the size of the leak (eg, diameter and length in the gas flow direction), but according to this embodiment, this is an equivalent standard leak defined in JIS. Expressed by converting to a rate.
  • FIG. 6 shows that for a work having a work internal volume V of 1.0 mm3, when the bombing pressure P is 500 kPaG and the bombing time t1 is 1 hour, the helium leak amount is set to 7 stages of A to G and predicted. The relationship between the helium measured amount R to be measured and the leaving time t2 is shown.
  • the leak amounts A to G are expressed in terms of the equivalent standard leak rate L (Pa ⁇ m 3 / s) as described above.
  • FIG. 7 shows a work having a work internal volume V of 0.1 mm 3 having the same bombing pressure P and bombing time t1 as in FIG. The relationship between the helium measured amount R predicted by the leak amounts A to G and the leaving time t2 is shown.
  • Annex D of JIS C6000068-2-17: 2001 defines a relational expression between the helium leak rate and the equivalent standard leak rate. Similar relational expressions are specified in Annex 7 of JIS Z2331: 2006 and MIL-STD-883 METHOD 1014.15 No. 2.1.2.3.
  • the leak amount of helium is set to 1.0E-5 (in the case of the leak amount A in FIGS. 6 and 7) with an equivalent standard leak rate, and the work content is increased by 0.01h while increasing the leaving time t2.
  • the graph can be displayed as shown in FIGS. 6 and 7.
  • the size (dimension) of the leak hole as a hypothetical value according to the size of the work.
  • the size of the leak hole can be expressed, for example, by the hole diameter.
  • the air leak amount Q obtained by the above relational expression is converted into an equivalent standard leak rate.
  • the differential pressure between the work and the master is obtained by the simulation, and this is converted into the equivalent standard leak rate and used as the differential pressure conversion value as the equivalent standard. It can be represented on a graph with the leak rate on the horizontal axis (or vertical axis).
  • FIG. 8 is a graph showing the differential pressure conversion value converted into the equivalent standard leak rate by the above simulation.
  • the curve AL1 shown by the solid line shows the case of a small leak in which the hole diameter of the leak hole is relatively small in the gross leak region
  • the curve AL2 shown by the broken line shows the case of a large leak having a relatively large hole diameter of the leak hole.
  • a range in which the differential pressure exceeds 150 Pa can be determined to be defective.
  • the range where the differential pressure exceeds 2000 Pa can be determined to be defective.
  • step S06 the simulation processing unit 22 predicts the amount of helium leak that would be obtained when the helium leak test is performed by the helium leak test unit 12 according to the helium bombing conditions determined in step S04. Is converted to the equivalent standard leak rate L as described below.
  • Annex D of JIS C6000068-2-17: 2001 defines the relational expression between the helium leak rate and the equivalent standard leak rate. Similar relational expressions are specified in Annex 7 of JIS Z2331: 2006 and 2.1.2.3 of MIL-STD-883 METHOD 1014.15.
  • the work internal volume obtained in step S01, the bombing pressure and bombing time determined in step S04, the atmospheric pressure, the mass of air, the mass of helium gas, and the work are taken out from the bombing tank 73 and helium. Substitute the time until the measurement of the leak amount is completed. Furthermore, in consideration of the conditions of the work itself (structure, form, material, internal volume of the work, etc.), the actual usage conditions of the work, the test conditions of the helium leak test, etc., the equivalent standard leak rate and / or the leaving time are appropriately set. Set and calculate the amount of helium leak that would be obtained in that case.
  • the equivalent standard leak rate and the leaving time can be set by the simulation processing unit 22 based on the data stored in the control device 2 in advance, or the operator directly inputs from the input unit, or the simulation processing. This is done by modifying or adjusting the value set by the unit 22.
  • the helium leak amount predicted by the simulation is obtained, and this is converted into the equivalent standard leak rate and equivalent as the helium leak amount conversion value. It can be represented on a graph with the standard leak rate on the horizontal axis (or vertical axis).
  • FIG. 9 is a graph showing the helium leak amount converted value converted into the equivalent standard leak rate by the above-mentioned simulation.
  • the curve HL1 shows a case where the leaving time after bombing is set to a short time of 5 minutes
  • the curve HL2 shows a case where the leaving time after bombing is set to a long time of 20 minutes.
  • a range in which the amount of helium leak exceeds 1.0 E- 9 Pa ⁇ m 3 / s can be determined to be defective.
  • the test condition determination unit 23 can display the graph 1 obtained in step S05 and the graph 2 obtained in step S06 on the same graph having the equivalent standard leak rate on the horizontal axis (or vertical axis). (Step S07).
  • the integrated data of the graph 1 and the graph 2 are output to the L conversion result display unit 32 of the display unit 3 and displayed as the graph 3 on the display screen.
  • the integrated data can also be output to the external device connected to the control device 2 and / or a printer or the like.
  • the graph of FIG. 10 displays the graph of FIG. 8 and the graph of FIG. 9 on the same graph with the equivalent standard leak rate as the horizontal axis. From this graph, the operator can clearly confirm the range that can be detected by the differential pressure air leak test and the helium leak test on the work. Thereby, the operator can easily determine the suitability of the test conditions of the air leak test and / or the helium leak test determined as described above. Further, the operator can determine the threshold value for determining the quality of the work in the differential pressure type air leak test and / or the helium leak test from the graph of FIG. The operator can input the determined threshold value to the control device 2.
  • the curve AL1 shown by the solid line and the curve AL2 shown by the broken line in the air leak test are 6.5E- 5 Pa ⁇ m 3 / s to 2.1E -4 Pa ⁇ m on the horizontal axis of the equivalent standard leak rate. It overlaps in the range R1 of 3 / s. Therefore, by setting the conditions of the air leak test so that the curves AL1 and AL2 are formed, it is evaluated that the measurement is possible without causing a dead zone between the large leak and the small leak in the gross leak test region. can do.
  • the curve AL1 of the air leak test and the curve HL1 of the helium leak test are 1.0E- 6 Pa ⁇ m 3 / s to 7.5E- 6 Pa ⁇ m 3 / s on the horizontal axis of the equivalent standard leak rate.
  • the range R2 is sufficiently overlapped. Therefore, by setting the test conditions of the air leak test and the helium leak test so that the curve AL1 and the curve HL1 are formed, it can be evaluated that the measurement is possible without causing a dead zone between the two test regions. can.
  • the curve AL1 of the air leak test and the curve HL2 of the helium leak test are 1.0E- 6 Pa ⁇ m 3 / s to 1.5E- 6 Pa ⁇ m 3 / on the horizontal axis of the equivalent standard leak rate. It overlaps only in the very narrow range R3 of s. From this, if the test conditions of the air leak test and the helium leak test are set so that the curve AL1 and the curve HL2 are formed, when the air leak test and the helium leak test are actually performed on the work, those test areas are used. It can be evaluated that there is a risk of creating a dead zone between them.
  • the test condition determination unit 23 determines the test range of the air leak test and the helium leak test, that is, the leak region that can be measured in both leak tests, on the equivalent standard leak rate axis. It is determined whether there is a sufficiently overlapping region between the ranges and / or between the test ranges of the air leak tests having different test conditions or the test ranges of the helium leak tests, and whether there is a possibility of forming a dead zone (step S09). ..
  • the determination result can be output to the L conversion result display unit 32 of the display unit 3 and / or can be output to the external device, printer, or the like.
  • the test condition determination unit 23 determines that there is a sufficiently overlapping region and there is no possibility of causing a dead zone
  • the test conditions of the air leak test and the helium leak test determined in steps S03 and S04 as described above are suitable. It is transmitted to the leak test control unit 21 and stored.
  • the leak test control unit 21 has the air leak test unit 11 and the helium leak test of the inspection device main body 1 so that the air leak test and the helium leak test are actually performed on the work in a state where there is no possibility of causing a dead zone. It is possible to control the unit 12.
  • the test condition determination unit 23 shows the differential pressure value and / or the helium leak amount, which are considered to be preferable for the threshold value for determining the quality of the work in the differential pressure type air leak test and / or the helium leak test, in the graph shown in FIG. It can be determined from the data of.
  • the determination of the threshold value is performed, for example, based on the information previously input by the operator to the control device 2 or the data stored in the storage device. It is preferable that the threshold value determined by the test condition determination unit 23 is displayed on the display screen of the display unit 3, for example, and after the operator's approval is obtained, the threshold value is transmitted to the leak test control unit 21.
  • test condition determination unit 23 determines that there is no sufficiently overlapping region and there is a possibility that a dead zone may occur, the test conditions for the air leak test and / or the helium leak test determined in step S03 and / or step S04. Can output a warning that it is inappropriate to the L conversion result display unit 32 of the display unit 3, the external device, or the printer. This prevents the operator from accidentally adopting unfavorable test conditions.
  • the operator who received this warning can change the test conditions of the air leak test and / or the helium leak test and have the control device 2 execute the above-mentioned leak test condition design method again. Further, the test condition determination unit 23 automatically determines the remaining volume of the work capsule 52 of the leak test condition design method until a determination result is obtained that there is a sufficiently overlapping region for the same work and there is no possibility of generating a dead zone. It can be configured to repeatedly execute the process after step S02 for obtaining.
  • reviewing the remaining volume of the work capsule 52 in the above-mentioned repeating process is a test range of the air leak test and the helium leak test, considering that the detection sensitivity of the air leak test is improved by reducing the remaining volume of the work capsule 52. It is effective in eliminating dead zones between the two and realizing overlapping areas. Further, the review of the remaining volume can be used for reviewing the shape and design value of the work capsule 52 itself, which is advantageous.
  • the air leak test and the helium leak test are executed based on the test conditions determined to be appropriate by the leak test condition design method described above.
  • the flow chart of FIG. 11 shows a preferred embodiment of an air leak test and a helium leak test performed following the leak test condition design method of FIG. 4 using the leak test apparatus 100 of FIG.
  • step S101 prepare a work and a master to actually perform a leak test (step S101).
  • the work is housed in the bombing tank 73 to supply helium, and bombing is performed based on the bombing conditions determined in step S04 of FIG. 4 (step S102).
  • step S102 After the lapse of the set bombing time, the work is taken out from the bombing tank 73 and conveyed to the air leak test unit 11 to execute the air leak test (step S103).
  • the work air leak test is divided into "small leak” with a small leak amount and "large leak” with a large leak amount, and is carried out in order.
  • the leak test control unit 21 accommodates the work and the master in the work capsule 52 and the master capsule 53 of the air leak test unit 11 with the second on-off valves 55a and 55b closed, respectively, and then from the test pressure supply source 41 to FIG. 4
  • the test air pressure determined in step S03 of the above is applied to the work side branch passage 45a and the master side branch passage 45b.
  • the first on-off valves 51a and 51b are closed, and the differential pressure (small leakage) generated between the closed circuit portion of the work-side branch passage 45a on the downstream side and the closed circuit portion of the master-side branch passage 45b is applied. It is detected by the differential pressure sensor 58. Further, with the first on-off valves 51a and 51b closed, the second on-off valves 55a and 55b are opened to allow the air in the closed circuit portions of the work side and master side branch passages 45a and 45b to the pressure dividing tanks 56a and 56b. Each pressure is divided, and the pressure difference (large leakage) after the divided pressure is detected by the differential pressure sensor 58. After that, the air in the work side and master side branch passages 45a and 45b is exhausted, the work is taken out from the work capsule 52 and carried out to the helium leak test unit 12, and the process proceeds to the helium leak test.
  • the air leak test unit 11 determines that the work is a non-defective product, outputs a signal to the display unit 3, and displays the test result.
  • the display screen of the unit 31 is displayed to indicate that the product is non-defective.
  • the air leak test unit 11 determines that the work is a defective product having a gross leak and outputs a signal to the display unit 3, and the test result is obtained.
  • the display screen of the display unit 31 is displayed to indicate that the product is defective.
  • step S104 the helium leak test unit 12 executes the helium leak test.
  • the work carried out from the air leak test unit 11 to the helium leak test unit 12 is transferred to the inspection capsule 81, and the amount of helium leak leaking from the work is detected by the helium leak detector 82.
  • the helium leak test unit 12 can count the time until the work is moved from the bombing tank 73 to the inspection capsule 81 and the helium leak test is completed. Then, it is preferable in terms of management of the leaving time to output to the display unit 3 whether or not the counted time is within the preset leaving time and display it on the screen.
  • the helium leak test unit 12 determines that the work is a non-defective product, outputs a signal to the display unit 3, and displays the test result display unit 31. Display that it is a good product on the screen.
  • the helium leak test unit 12 determines that the work is a defective product having a minute leak, outputs a signal to the display unit 3, and outputs the signal to the display unit 3 to display the test result. Display that the product is defective on the display screen.
  • the helium leak test unit 12 defects the work even when the count time until the work is moved from the bombing tank 73 to the inspection capsule 81 and the helium leak test is completed exceeds the preset leaving time. It can be determined that the product is a product, output to the display unit 3, and displayed on the screen together with the count time. This is set by setting the leaving time as a leaving time that can guarantee a leak region that can be inspected in the helium leak test in step S104 described above based on the prediction results exemplified in FIGS. 6 and 7. This is because if it exceeds the limit, it may not be possible to guarantee it.
  • the curve HL1 of the helium leak test is a simulation result when the work is taken out from the bombing tank 73 and measured 5 minutes later, and is compared with the curve HL2 which is a simulation result when the work is measured 20 minutes later. It is closer to the curve AL1 side of the air leak test, and there is a sufficiently overlapping region with the curve AL1.
  • the allowable leaving time in the helium leak test can be set to 5 minutes in consideration of the safety factor. If the leaving time exceeds 5 minutes, the graph of the helium measured flow rate in FIG. 10 shifts from the curve HL1 to the curve HL2 side in a direction away from the curve AL1, and the overlapping area with the curve AL1 becomes narrower. , It may not be possible to guarantee.
  • the detection results of the above-mentioned air leak test and helium leak test are output from the air leak test unit 11 and the helium leak test unit 12 to the control device 2, respectively.
  • the leak test control unit 21 of the control device 2 converts the measured values of the differential pressure and the helium leak amount obtained from the air leak test unit 11 and the helium leak test unit 12 into the equivalent standard leak rate (step S105), and displays the display unit 3. It is output and displayed on the screen (step S106).
  • the display unit 3 displays the equivalent standard leak rate conversion value of the measured value received from the leak test control unit 21 on the L conversion result display unit 32 on the integrated graph 3 generated in step S07 of FIG. , It can be easily visually verified whether or not the measurement results of the air leak test and the helium leak test are within the test range assumed by the above-mentioned leak test condition design method.
  • the equivalent standard leak rate conversion value of the measured value in step S105 can also be output to the external device or printer.
  • a leak test method in which helium bombing is first performed on a work and then an air leak test and a helium leak test are continuously performed within a set leaving time is described. It is particularly suitable for performing both leak tests automatically and continuously with one automatic inspection device.
  • the air leak test and the helium leak test can be performed by separate inspection devices. In this case, after the air leak test is first performed by the air leak test device, the work is conveyed to the helium leak test device, transferred to the bombing tank 73, helium bombing is performed, and the helium leak test is performed.
  • step S103 the air leak test (step S103) and the helium leak test (step S104) are executed may be reversed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

リーク試験条件設計方法は、ワーク内容積と、差圧式エアリーク試験でワークを格納した状態でのワークカプセルの残容積とを求め、差圧式エアリーク試験でワークカプセルに印加するテスト空気圧を決定し、ヘリウムリーク試験におけるボンビング条件を決定し、決定したテスト空気圧を印加する差圧式エアリーク試験で得られるワークとマスターとの差圧値を等価標準リーク率に換算して差圧換算値を求め、決定したボンビング条件のヘリウムリーク試験で得られるワークのヘリウムリーク率を等価標準リーク率に換算してヘリウムリーク率換算値を求め、求められた差圧換算値及びヘリウムリーク率換算値を、等価標準リーク率を横軸とする同一グラフ上に表示する。

Description

リーク試験条件設計方法、リーク試験条件設計装置、リーク試験方法及びリーク試験装置
 本発明は、検査対象の試験体(ワーク)の気密性を検査するリーク試験技術に関し、特にリーク試験の実施前にその試験条件を評価しかつ/又は決定するための設計方法及び設計装置に関する。更に本発明は、かかる設計方法の実施を含むリーク試験方法及び設計装置を備えたリーク試験装置に関する。
 従来、水晶振動子やMEMS(Micro Electro Mechanical Systems)等の小型電子デバイス、医薬包装、食品包装等の広範な分野で、内部に密閉空間を有するワークの気密性を検査するために、様々なリーク試験が行われている。JIS(日本産業規格)では、等価標準リーク率が1Pa・cm/s以上のリークを大リークと、等価標準リーク率が1Pa・cm/s未満のリークを微小リークと定義している。JIS及びMIL規格には、大リーク(以下、グロスリークという)を検出するグロスリーク試験及び微小リーク(以下、ファインリークという)を検出するファインリーク試験の具体的な試験方法が記載されている。多くの場合、ワークのリーク試験は、グロスリーク試験とファインリーク試験が併用して行われる(例えば、特許文献1~3を参照)。
 グロスリーク試験として、例えばJIS Z2332:2012(圧力変化による漏れ試験方法)に準拠した差圧式エアリーク試験が広く採用されている。差圧式エアリーク試験では、検査対象のワークを入れたワークカプセルと、漏れの無いワークであるマスターを入れたマスターカプセルとに所定のテスト空気圧を供給し、これらカプセルの内圧の差圧を差圧センサーで検出する。ワークの気密性の良否は、差圧検出の有無又は検出した差圧値と事前設定された判別値との比較によって判定する。
 ファインリーク試験として、例えばJIS Z2331:2006に記載されるヘリウム漏れ試験方法がよく知られており、その附属書7に準拠した浸漬法(ボンビング法)が広く採用されている。浸漬法によるヘリウムリーク試験では、充填チャンバに多数(例えば、数百個)のワークを収容し、試験用ガスとして加圧したヘリウムガスを充填して所定のボンビング時間(例えば、1~2時間)維持するボンビングを行う。この後、ワークに微小リーク(漏れ孔)があれば、ボンビングによってワークの内部空間に侵入したヘリウムガスが徐々に漏れ出るので、これをヘリウムリークディテクターで検出する。
 等価標準リーク率は、JIS C60068-2-17:2001に、試験用ガスに空気を用いたときの試験体の標準リーク率(温度25℃,圧力差100kPaの標準条件でのリーク率(Pa・cm/s))と定義されている。更に、JIS C60068-2-17:2001の附属書D、JIS Z2331:2006の附属書7、及びMIL-STD-883 METHOD 1014.15の2.1.2.3には、ヘリウムガスリーク率と等価標準リーク率との関係を表した式が記載されている。これらの関係式から、ヘリウムリーク試験で検出したヘリウムリーク量は、等価標準リーク率に換算することができる。
 例えば、特許文献4には、JIS C60068-2-17の附属書Dに記載の式に従って作成されたヘリウムリーク量と等価標準リーク率との関係が、図14にグラフ表示されており、これからヘリウムリーク試験で判定可能な漏れ領域を知ることができる。更に、異なる試験条件下で行われたヘリウムリーク試験の結果も、等価標準リーク率という同じ座標軸上で比較、評価することが可能である。
 また、被試験容器からの気体の漏れを測定する漏れ試験装置において、基準容器と被試験容器との間に生じる差圧と被試験容器の容積とに基づいて、被試験容器から漏れる気体の量を算出できることが知られている(例えば、特許文献5を参照)。
特開2007-278914号公報 特開2002-206982号公報 特開2010-169515号公報 再表2015/056661号公報 特開平08-043242号公報
 特許文献4によれば、等価標準リーク率でグラフ表示される検出可能な漏れ領域よりも大きい大リークは、ボンビング後に充填チャンバから取り出したワークから、ヘリウムがヘリウムリークディテクターで検出する前に漏出してしまうため、測定できないという問題が生じる。グロスリークの検査のために、別途エアリーク試験を行う場合、エアリーク試験で検出可能な漏れ領域と、ヘリウムリーク試験で検出可能な漏れ領域とは、部分的に重複していることが好ましい。しかしながら、差圧式エアリーク試験とヘリウムリーク試験とがそれぞれ検出可能な漏れ領域の間には、いずれのリーク試験でも検出不能な漏れ領域(本明細書中、不感帯という)が生じる虞がある。
 しかも、上述したJISやMIL規格に記載されるグロスリーク試験は、いずれも定性的な手法であり、それらの試験結果からグロスリーク領域のリーク率を具体的な数値で提示することは困難であった。そのため、エアリーク試験によるグロスリーク領域の試験結果とヘリウムリーク試験によるファインリークの試験結果とを、同一の基準で判定、評価することはできなかった。更に、上述した不感帯の存在有無を明確に判定することも、同様に困難であった。
 そこで、本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、第一に、検査対象のワークに対して行う差圧式エアリーク試験の試験結果とヘリウムリーク試験の試験結果とを同一の基準、尺度で均等に判定、評価することができ、それにより、事前に両リーク試験の試験条件をそれぞれ適切に決定し得るリーク試験条件設計方法、及びその方法を実施するためのリーク試験条件設計装置を提供することにある。
 更に本発明の目的は、差圧式エアリーク試験及びヘリウムリーク試験でそれぞれ検出可能な漏れ領域の間に不感帯が生じないように、両リーク試験の試験条件を適切に決定し得るリーク試験条件設計方法及び装置を提供することにある。
 更に本発明の目的は、本発明のリーク試験条件設計装置を備えたリーク試験装置を提供することにある。
 本発明のリーク試験条件設計方法は、
 検査対象のワークの密閉内部空間の容積を求める過程と、
 差圧式エアリーク試験において前記ワークを格納するワーク密閉容器の、前記ワークを格納したときの残容積を求める過程と、
 差圧式エアリーク試験において前記ワークを格納した前記ワーク密閉容器とマスターを格納したマスター密閉容器とに印加するテスト空気圧を決定する過程と、
 ヘリウムリーク試験において前記ワークを格納する充填チャンバにヘリウムガスを充填するボンビングの条件を決定する過程と、
 前記ワークの密閉内部空間の容積、前記ワーク密閉容器の残容積及び前記テスト空気圧に基づいて、前記ワークと前記マスターとの差圧値を求める差圧式エアリーク試験のシミュレーションを行い、得られた差圧値を等価標準リーク率に換算して差圧換算値を求める過程と、
 前記ボンビングの条件に基づいて、前記ワークのヘリウムリーク率を求めるヘリウムリーク試験のシミュレーションを行い、得られたヘリウムリーク率を等価標準リーク率に換算してヘリウムリーク率換算値を求める過程とを含み、
 前記差圧換算値及び前記ヘリウムリーク率換算値は、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示されるように生成される、ことを特徴とする。
 或る実施形態では、前記差圧換算値と前記ヘリウムリーク率換算値とを、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示する過程を更に含んでいる。
 別の実施形態では、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示された前記差圧換算値と前記ヘリウムリーク率換算値とが、等価標準リーク率に関して部分的に重複する領域を有するか否かを判定する過程を更に含んでいる。
 また、別の実施形態では、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示されるように生成された前記差圧換算値及び前記ヘリウムリーク率換算値が、等価標準リーク率に関して重複する領域を有するか否かによって、決定された前記テスト空気圧及び/または決定された前記ボンビングの条件の適否を判定する。
 更に別の実施形態において、前記差圧換算値と前記ヘリウムリーク率換算値とが等価標準リーク率に関して部分的に重複する領域を有しないと判定された場合、前記残容積を求める過程以降の過程を繰り返し実行する。
 或る実施形態では、前記差圧換算値を求める過程において、差圧式エアリーク試験で得られる前記ワークと前記マスターとの差圧値を、前記テスト空気圧に対するエアリーク量に変換し、得られた前記エアリーク量を前記ワークの漏れ孔の寸法に換算し、得られた前記漏れ孔の寸法に基づいて前記差圧値を等価標準リーク率に換算する。
 別の実施形態において、前記漏れ孔の寸法は、前記漏れ孔の直径とガス流れ方向長さとである。
 また、或る実施形態では、前記ヘリウムリーク率換算値を求める過程において、ヘリウムリーク試験で得られる前記ワークのヘリウムリーク率を、JIS C60068-2-17:2001の附属書Dに準拠したヘリウムリーク率と等価標準リーク率との関係式に従って等価標準リーク率に換算する。
 本発明のリーク試験条件設計装置は、
 検査対象のワークの密閉内部空間の容積を求め、差圧式エアリーク試験において前記ワークを格納するワーク密閉容器の、前記ワークを格納したときの残容積を求める演算部と、
 差圧式エアリーク試験において前記ワークを格納した前記ワーク密閉容器とマスターを格納したマスター密閉容器とに印加するテスト空気圧を決定する第1試験条件設定部と、
 ヘリウムリーク試験において前記ワークを格納する充填チャンバにヘリウムガスを充填するボンビングの条件を決定する第2試験条件設定部と、
 前記ワークの密閉内部空間の容積、前記ワーク密閉容器の残容積及び前記テスト空気圧に基づいて、前記ワークと前記マスターとの差圧値を求める差圧式エアリーク試験のシミュレーションを行い、得られた前記差圧値を等価標準リーク率に換算して差圧換算値を求める第1シミュレーション処理部と、
 前記ボンビングの条件に基づいて、前記ワークのヘリウムリーク率を求めるヘリウムリーク試験のシミュレーションを行い、得られた前記ヘリウムリーク率を等価標準リーク率に換算してヘリウムリーク率換算値を求める第2シミュレーション処理部と、
 前記第1及び第2シミュレーション処理部からそれぞれ得られた前記差圧換算値と前記ヘリウムリーク率換算値とを、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示する表示部と、を備えることを特徴とする。
 或る実施形態では、前記差圧換算値と前記ヘリウムリーク率換算値とが、同一グラフ上に表示されたときに等価標準リーク率に関して部分的に重複する領域を有するか否かを判定する判定部を更に備える。
 別の実施形態では、前記判定部によって、前記差圧換算値と前記ヘリウムリーク率換算値とが、同一グラフ上に表示されたときに等価標準リーク率に関して部分的に重複する領域を有しないと判定されたとき、前記演算部が前記ワーク密閉容器の残容積を求め、前記第1試験条件設定部が前記テスト空気圧を決定し、前記第2試験条件設定部が前記ボンビングの条件を決定し、前記第1シミュレーション処理部が前記差圧換算値を求め、前記第2シミュレーション処理部が前記ヘリウムリーク率換算値を求め、前記表示部が前記差圧換算値と前記ヘリウムリーク率換算値とを前記同一グラフ上に表示する一連の動作が繰り返し実行されるように、前記演算部、前記第1試験条件設定部、前記第2試験条件設定部、前記第1シミュレーション処理部、前記第2シミュレーション処理部、及び前記表示部を制御する制御部を更に備える。
 また、或る実施形態において、前記第1シミュレーション処理部は、差圧式エアリーク試験で得られる前記ワークと前記マスターとの差圧値を前記テスト空気圧に対するエアリーク量に変換し、得られた前記エアリーク量を前記ワークの漏れ孔の寸法に換算し、得られた前記漏れ孔の寸法に基づいて前記差圧値を等価標準リーク率に換算して、前記差圧換算値を求める。
 別の実施形態では、前記ワークの漏れ孔の寸法は、前記漏れ孔の直径とガス流れ方向長さとである。
 また、別の実施形態において、前記第2シミュレーション処理部は、ヘリウムリーク試験で得られる前記ワークのヘリウムリーク率を、JIS C60068-2-17:2001の附属書Dに準拠したヘリウムリーク率と等価標準リーク率との関係式に従って等価標準リーク率に換算して、前記ヘリウムリーク率換算値を求める。
 本発明のリーク試験方法は、
 検査対象のワークに対して、上述した本発明のリーク試験条件設計方法を実施する過程と、前記ワークに対して差圧式エアリーク試験を実施する過程と、前記ワークに対してヘリウムのボンビング法によるヘリウムリーク試験を実施する過程と、を含み、
 前記差圧式エアリーク試験及び/またはヘリウムリーク試験は、前記リーク試験条件設計方法において、前記差圧換算値及び前記ヘリウムリーク率換算値が、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示されるとき、等価標準リーク率に関して重複する領域を有するように決定された前記テスト空気圧及び/または決定された前記ボンビングの条件に基づいて行う、ことを特徴とする。
 本発明のリーク試験装置は、
 上述した本発明のリーク試験条件設計装置と、
 検査対象のワークについて、前記リーク試験条件設計装置の第1試験条件設定部により決定されたテスト空気圧に基づいて差圧式エアリーク試験を実行するエアリーク試験部と、
 検査対象のワークについて、前記リーク試験条件設計装置の第2試験条件設定部により決定されたボンビングの条件に基づいてヘリウムのボンビング法によるヘリウムリーク試験を実行するヘリウムリーク試験部と、を備えることを特徴とする。
 本発明のリーク試験条件設計方法及び装置によれば、実際に差圧式エアリーク試験とヘリウムリーク試験とを併用する前に、事前に決定したテスト空気圧を差圧式エアリーク試験で印加したときに得られるであろうワークとマスターとの差圧値と、事前に決定したボンビングの条件でヘリウムリーク試験を行ったときに得られるであろうワークのヘリウムリーク率とを、それぞれ等価標準リーク率で換算し、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示することができる。それによって、元々単位の異なる差圧とヘリウムリーク率とを同じ座標軸上で同じ尺度で比較し、差圧式エアリーク試験とヘリウムリーク試験でそれぞれ検出可能な漏れ領域の間に不感帯が生じないことを簡単に検証し、不感帯を生じない試験条件を簡単に決定することができる。更に、ワークの良否を判定する閾値を、等価標準リーク率をベースにして差圧式エアリーク試験とヘリウムリーク試験を対比しながら決定し、実際の試験では、それぞれ差圧及びヘリウムリーク率に戻して判定することができる。
図1は、本発明によるリーク試験条件設計方法の実施形態にかかるリーク試験装置の構成を概略的に示すブロック図である。 図2は、図1のエアリーク試験部の回路構成図である。 図3は、図1のヘリウムリーク試験部の回路構成図である。 図4は、本実施形態のリーク試験条件設計方法のフロー図である。 図5は、ワークWを収容したワークカプセルを模式的に示す断面図である。 図6は、内容積1mmのワークにおけるヘリウムリーク量の時間変化を示すグラフである。 図7は、内容積0.1mmのワークにおけるヘリウムリーク量の時間変化を示すグラフである。 図8は、エアリーク試験のシミュレーションにより得られた差圧値と等価標準リーク率との関係を示すグラフである。 図9は、ヘリウムリーク試験のシミュレーションにより得られたヘリウムリーク量と等価標準リーク率との関係を示すグラフである。 図10は、図8のグラフと図9のグラフとを統合した統合グラフである。 図11は、本実施形態のリーク試験方法のフロー図である。
 以下に、本発明の好適な実施形態について、添付図面を参照しつつ、詳細に説明する。
 図1は、本発明によるリーク試験条件設計方法の実施形態にかかるリーク試験装置の構成を概略的に示している。リーク試験装置100は、検査装置本体1と、制御装置2と、表示部3と、検査装置本体1に検査対象のワークを供給するためのワークローダー4とを備える。更に、検査装置本体1には、パーソナルコンピューター等の外部装置や、外部出力手段としてのプリンターを接続することができる。
 検査装置本体1は、エアリーク試験部11と、ヘリウムリーク試験部12とを備える。更に検査装置本体1は、エアリーク試験部11及びヘリウムリーク試験部12の試験結果を出力するための出力部13を備える。出力部13は、前記試験結果を表示部3、及び図示しない外部の装置やシステムに出力する。ここで、外部の装置及びシステムには、有線及び/または無線の様々な通信手段を介して出力部13に接続される外部のパーソナルコンピューター、プリンター、記憶装置、サーバー等、あらゆる装置及びシステムが含まれる。
 制御装置2は、検査装置本体1のエアリーク試験部11及びヘリウムリーク試験部12によるエアリーク試験及びヘリウムリーク試験の実行を制御するリーク試験制御部21を備える。更に制御装置2は、本実施形態のリーク試験条件設計方法を実行するために、シミュレーション処理部22及び試験条件決定部23を備える。制御装置2には、出力部24が設けられており、後述するシミュレーション処理部22によるシミュレーション処理の結果、及び試験条件決定部23による試験条件決定の結果を表示部3に出力することができる。更に、前記シミュレーション処理の結果及び前記試験条件決定の結果は、出力部24を介して外部のパーソナルコンピューターやプリンター、その他の外部の装置及び/またはシステムに出力することができる。
 制御装置2は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、記憶装置等を有する。CPUは、ROMに格納された制御手順に対応するプログラムを読み出しながら、リーク試験制御部21、シミュレーション処理部22及び試験条件決定部23の制御を行う。前記記憶装置には、シミュレーション処理部22によるシミュレーション処理及び試験条件決定部23による試験条件決定処理に必要なデータが格納されており、CPUは、前記プログラム等に基づいて前記記憶装置に格納されているデータを参照して、前記シミュレーション処理及び試験条件決定処理を制御する。
 表示部3は、試験結果表示部31と、等価標準リーク率(L)換算結果表示部32とを備える。試験結果表示部31には、検査装置本体1からエアリーク試験部11及びヘリウムリーク試験部12の試験結果が直接または制御装置2を介して出力され、表示される。L換算結果表示部32には、制御装置2から前記シミュレーション処理の結果及び前記試験条件決定の結果が出力され、表示される。表示部3は、例えばLCD(液晶ディスプレイ)からなる単数または複数の表示画面を備える。例えば、試験結果表示部31及びL換算結果表示部32にそれぞれ各1つの表示画面を設け、または試験結果表示部31及びL換算結果表示部32に共通の1つの表示画面を設けることができる。
 エアリーク試験部11は、公知の差圧式エアリーク試験装置からなり、図2には、その好適な回路構成が例示されている。図2の差圧式エアリーク試験装置は、正圧または負圧のテスト空気圧を供給するためのテスト圧供給源41と、エア通路42とを有する。エア通路42には、上流側からレギュレーター46,47と、圧力計48と、電磁三方弁49とが設けられている。エア通路42は、電磁三方弁49の下流側でワーク側分岐通路45aとマスター側分岐通路45bとに分岐されている。
 ワーク側分岐通路45aには、常開の第1開閉弁51aが設けられ、その下流端には、ワークを密閉状態で収容するワークカプセル52が接続されている。マスター側分岐通路45bには、常開の第1開閉弁51bが設けられ、その下流端には、漏れの無い良品ワークであるマスターを密閉状態で収容するマスターカプセル53が接続されている。
 ワーク側分岐通路45aとマスター側分岐通路45bとの間には、ワーク側の第1開閉弁51a及びマスター側の第1開閉弁51bの下流側にそれぞれ接続された導入通路57a,57bを介して差圧センサー58が設けられている。差圧センサー58は、該差圧センサーが検出する差圧を出力可能に制御装置2のリーク試験制御部21に接続され、かつ該差圧を表示可能に圧力表示部59に接続されている。
 ワーク側分岐通路45aは、第1開閉弁51aとワークカプセル52との間に補助通路54aが接続され、その途中には常開の第2開閉弁55aが設けられ、下流端にはワーク側分圧タンク56aが接続されている。マスター側分岐通路45bは、第1開閉弁51bとマスターカプセル53との間に補助通路54bが接続され、その途中には常開の第2開閉弁55bが設けられ、下流端にはマスター側分圧タンク56bが接続されている。
 制御用分圧タンク56a,56bは、グロスリーク試験によって測定される漏れのグロスリーク領域の範囲内で、リーク量の大きい「大漏れ」とリーク量の小さい「小漏れ」とを判別して検出するために使用される。エアリーク試験部11により差圧式エアリーク試験を実施する際、第2開閉弁55a,55bを閉じた状態でテスト圧供給源41からテスト空気圧を印加した後、第1開閉弁51a,51bを閉じて、ワーク側分岐通路45a及びマスター側分岐通路45bの第1開閉弁51a,51bより下流側をそれぞれ閉回路にする。ワーク側分岐通路45aの閉回路部分では、テスト空気圧が正圧の場合、ワークカプセル52内のワークの欠陥が小漏れであれば、圧縮空気がワーク内にゆっくりと侵入する。それによりワーク側分岐通路45aの閉回路部分に発生する微小な圧力変動が、マスター側分岐通路45bの閉回路部分との差圧として、差圧センサー58によって検出される。
 これに対し、ワークカプセル52内のワークの欠陥が大漏れの場合、テスト圧供給源41からテスト空気圧を印加した時点で、圧縮空気がワーク内に一気に侵入するので、第1開閉弁51a,51bを閉じた後、ワーク側分岐通路45aの閉回路部分には、上述した小漏れの場合の微小な圧力変動が発生しない。その結果、ワーク側分岐通路45aの閉回路部分とマスター側分岐通路45bの閉回路部分との間には差圧が発生せず、差圧センサー58は反応しないので、ワークの欠陥を検出することができない。このように差圧センサー58が反応しないとき、第2開閉弁55a,55bを開いて、ワーク側分岐通路45a及びマスター側分岐通路45bの閉回路部分内の空気をそれぞれ分圧タンク56a,56bに分圧し、前記閉回路部分内を減圧する。ワーク側分岐通路45aの閉回路部分は、分圧による圧力降下がマスター側分岐通路45bの閉回路部分よりも小さく、それにより圧力がマスター側分岐通路45bの閉回路部分よりも高くなるので、その圧力差を差圧センサー58が検出することによって、ワークの大漏れが検出される。
 エアリーク試験部11には、第1開閉弁51a,51b、及び第2開閉弁55a,55bを駆動するためのバルブ駆動回路が併設されている。前記バルブ駆動回路は、第1及び第2開閉弁51a,51b,55a,55bにバルブ駆動圧を供給するためのバルブ駆動圧供給源43と、駆動圧通路44とを有する。駆動圧通路44は、第1分岐通路61aと第2分岐通路61bとに分岐され、第1分岐通路61aにはレギュレーター62が設けられ、その下流側は更に、第1駆動分岐通路63aと第2駆動分岐通路63bとに分岐されている。
 第1駆動分岐通路63aの下流端には、バルブ駆動圧供給源43から印加されるバルブ駆動圧によって第1開閉弁51a,51bを開閉する電磁三方弁64が設けられている。第2駆動分岐通路63bの下流端には、バルブ駆動圧供給源43から印加されるバルブ駆動圧によって第2開閉弁55a,55bを開閉する電磁三方弁65が設けられている。第2分岐通路61bにはレギュレーター66が設けられ、その下流端には、電磁三方弁67がシリンダー68を駆動するように接続されている。
 ヘリウムリーク試験部12は、公知のヘリウムリーク試験装置からなり、図3には、その好適な回路構成が例示されている。図3のヘリウムリーク試験装置は、ヘリウム供給部71と、漏れ検査部72とを備える。ヘリウム供給部71は、ボンビングタンク73と、例えばヘリウムボンベからなるヘリウム供給源74(トレーサガス供給源)と、真空ポンプ75とを有する。ボンビングタンク73は、密封可能な圧力容器からなり、その中に検査対象のワークが収容される。ヘリウム供給源74及び真空ポンプ75は、それぞれ開閉弁76,77やレギュレーター(図示せず)を設けた通路78,79を介してボンビングタンク73に接続されている。
 ワークWのボンビングタンク73から検査カプセル81への移送は、ボンビングタンク73からの取り出し、搬送、検査カプセル81への収容までの全工程を、公知の自動搬送手段(図示せず)を用いることによって、短時間で行うことができる。このような自動搬送手段は、例えば上記特許文献3に記載されている。当然ながら、作業者が手作業でワークWをボンビングタンク73から取り出し、搬送して検査カプセル81内に収容することもできる。
 漏れ検査部72は、検査カプセル81と、ヘリウムリークディテクター82(トレーサガス検知手段)とを有する。検査カプセル81は、密封可能な真空容器で構成され、その中にボンビングタンク73から取り出したボンビング後のワークが収容される。検査カプセル81は、管路83を介してヘリウムリークディテクター82と接続されている。
 管路83の下流側は、ヘリウムリークディテクター82の内部において検出通路84と吸引通路85とに分岐されている。検出通路84には、上流側から開閉弁86とヘリウム検知部87とが設けられ、下流端に真空ポンプ88aが接続されている。吸引通路85には、開閉弁89が設けられ、下流端に真空ポンプ88bが接続されている。開閉弁86と開閉弁89とは、その一方が開のときに他方が閉じられ、択一的に開かれるように構成されている。
 ヘリウム検知部87は、例えば質量分析器からなり、検査カプセル81から吸引されるガス中のヘリウム(トレーサガス)を検知する。ヘリウムリークディテクター82は、ヘリウム検知部87がヘリウムを検知すると検知信号を出力するように制御装置2に接続されている。
 本発明によれば、リーク試験装置100の検査装置本体1を用いてワークに対して差圧式エアリーク試験及びヘリウムリーク試験を実行する前に、制御装置2において本実施形態のリーク試験条件設計方法を実施して、差圧式エアリーク試験及びヘリウムリーク試験の測定可能な漏れ範囲を予測し、両試験の試験条件を決定する。次に、図4のフロー図を用いて、本実施形態のリーク試験条件設計方法を説明する。
 最初に、制御装置2のシミュレーション処理部22において、ワークの密閉された内部空間の容積を取得する(ステップS01)。この密閉内部空間の容積(以下、ワーク内容積という)は、例えばワークの仕様書に記載されている内部寸法から算出することによって、またはその容積自体が仕様書等に記載されていたり、ワークの製造者若しくは提供者から入手できる場合は直接取得することによって、求められる。ワークの内部寸法は、例えば制御装置2の図示しない入力部をオペレーターが操作することによって、または外部装置からの通信を受信することによって、制御装置2に入力することができ、事前に制御装置2に記憶させておくことができる。尚、ワーク内容積とは、例えば、ワークがMEMSのように密閉されたパッケージを有する小型電子部品の場合、パッケージ自体の内部空間の容積からパッケージ内に搭載されているデバイス等の部品の容積を除外した残りの容積をいう。
 次に、シミュレーション処理部22は、ワークを収容した状態でのワークカプセル52の残容積を取得する(ステップS02)。ワークカプセル52の残容積とは、図5に示すように、その中にワークWを収容した状態での内部空間52aの容積をいう。空の状態でのワークカプセル52の内容積(内部空間52aの容積)は予め制御装置2に記憶されており、これからワークWの体積(ワーク外容積)を減算することによって、容易に求められる。ワーク外容積も、ワーク内容積と同様に、仕様書等の記載やワーク製造者若しくは提供者から、またはオペレーターの操作や外部からの通信を受信して取得し、またはそのようにして入手した外部寸法から算出することができる。
 更にシミュレーション処理部22は、差圧式エアリーク試験においてワークを収容したワークカプセル52に印加するべきテスト空気圧を決定する(ステップS03)。テスト空気圧の決定には、制御装置2にオペレーターによって入力されまたは外部装置から提供されたワークの耐圧を考慮して、予め制御装置2に記憶されているデータに基づいて、最適と考えられる値を選択する。
 次に、ヘリウムリーク試験においてワークに対して行われるヘリウムボンビングの条件を決定する(ステップS04)。ここで決定されるボンビング条件には、ワークを収容したボンビングタンク73に印加されるボンビング圧力、ボンビング圧力を維持するボンビング時間が含まれる。ボンビング圧力の決定には、前記テスト空気圧と同様に、ワークの耐圧を考慮して、予め制御装置2に記憶されているデータに基づいて、最適と考えられる値を選択する。
 ボンビング時間は、ワーク内容積、ボンビング圧力、ワークについて予想される微小リークの大きさを考慮して、ボンビング後にヘリウムリークディテクター82によって検出可能な十分な量のヘリウムがワーク内部に侵入するように決定される。この決定は、予め制御装置2に記憶されているデータに基づいて、シミュレーション処理部22が行う。
 ヘリウムリーク試験では、ボンビング後にボンビングタンク73から取り出したワークを検査カプセル81に収容するまでに経過する放置時間の管理が重要である。当業者によく知られているように、ボンビングによりワーク内部に侵入したヘリウムは、ボンビングタンク73内に加圧充填していたヘリウムの排気を開始した時点からワークの外に放出され、その放出量は時間の経過と共に減少する。ここで、ワーク内部に侵入するヘリウムの量は、ワークの密閉内部空間の容積、ボンビング圧力、ボンビング時間、及び漏れ孔の大きさ(例えば、直径とガス流れ方向長さ)に依存する。
 従って、ボンビング後にワークから放出されて検出されるヘリウムの量も、時間の経過と共に減少する。ボンビング後にヘリウムを検出可能な放置時間は、ワークの密閉内部空間の容積、ボンビング圧力、ボンビング時間、及び漏れ孔から放出されるヘリウムのリーク量によって異なる。漏れ孔から放出されるヘリウムのリーク量は、漏れ孔の大きさ(例えば、直径とガス流れ方向長さ)に依存するが、本実施形態によれば、これをJISに定義される等価標準リーク率に換算して表す。
 図6は、ワーク内容積Vが1.0mmのワークについて、ボンビング圧力Pを500kPaG、ボンビング時間t1を1時間とした場合に、ヘリウムのリーク量をA~Gの7段階に設定して予測されるヘリウム測定量Rと放置時間t2との関係を示している。同図において、リーク量A~Gは、上述したように等価標準リーク率L(Pa・m/s)に換算して表している。図7は、ワーク内容積Vが0.1mmのワークについて、図6と同じボンビング圧力P、ボンビング時間t1で、同じく等価標準リーク率L(Pa・m/s)に換算した7段階のリーク量A~Gで予測されるヘリウム測定量Rと放置時間t2との関係を示している。
 従来技術に関連して上述したように、JIS C60068-2-17:2001の附属書Dには、ヘリウムリーク率と等価標準リーク率との関係式が規定されている。JIS Z2331:2006の附属書7、及びMIL-STD-883 METHOD 1014.15ノ2.1.2.3にも、同様の関係式が規定されている。これらの式を用いて、例えばヘリウムのリーク量を等価標準リーク率で1.0E-5(図6及び図7におけるリーク量Aの場合)として、放置時間t2を0.01hずつ増やしながらワーク内容積V、ボンビング圧力P、ボンビング時間t1等の数値を代入し、それぞれについて算出されるヘリウム測定量Rをプロットすることによって、図6及び図7のようにグラフ表示することができる。
 図6及び図7から、等価標準リーク率L(ヘリウムリーク量)が小さいほど、ヘリウム測定量Rが少なく、従ってヘリウムがワークから抜け出る時間も長くなり、ヘリウムを検出可能な放置時間t2が長くなることが分かる。また、図7には、等価標準リーク率Lが最も大きいリーク量Aの測定結果が示されていない。これは、リーク量Aの場合、ヘリウム量の測定開始(最小の放置時間t2=0.01h)前に、測定可能な量のヘリウムがワークから放出されてしまうことを示唆している。
 このように、ワーク内容積、ボンビング圧力、及びボンビング時間が決定すれば、ヘリウム測定量Rと放置時間t2との関係を予測することが可能である。従って、ヘリウムリーク試験における放置時間の管理が容易になる。しかも、ヘリウムリーク量に関する変化を等価標準リーク率に換算して表すことによって、異なる試験条件(テストガス種、印加圧力、試験温度、試験時間等)で行われる複数のヘリウムリーク試験について、それぞれの試験結果を互いに同一の基準、尺度で均等に比較、評価することができる。更に、後述するようにヘリウムリーク試験とエアリーク試験との併用において、それぞれ検出可能な漏れ領域の間に不感帯を生じることなく、ヘリウムリーク試験で測定可能であるとして許容される放置時間を推定することが可能になる。
 次に、ステップS05において、シミュレーション処理部22は、ステップS03で決定したテスト空気圧を印加した場合に、エアリーク試験部11によるエアリーク試験で得られる差圧値を、以下に説明するように、等価標準リーク率Lに変換する。具体的には、ワークとマスターとの差圧をΔP、大気圧をP0、ワーク内容積をVW、測定に要した時間をtとしたとき、テスト空気圧下でワークから大気へ漏れ出たエアリーク量Qは、次式で表わすことができる。
Q=ΔP/(P0×t)×VW
この関係式から、前記差圧値を前記テスト空気圧印加時のエアリーク量に変換する。
 得られたエアリーク量から、ワークの大きさに対応して、その漏れ孔の大きさ(寸法)を仮定値として決定する。漏れ孔の大きさは、例えば孔径で表すことができる。この漏れ孔の孔径に基づいて、上記関係式により得られたエアリーク量Qを等価標準リーク率に換算する。このように、エアリーク試験部11により実際にワークをエアリーク試験する前に、そのシミュレーションによりワークとマスターとの差圧を求め、これを等価標準リーク率に換算して差圧換算値として、等価標準リーク率を横軸(または縦軸)とするグラフ上に表すことができる。
 図8は、上述したシミュレーションによって等価標準リーク率に換算した差圧換算値をグラフ表示している。同図において、実線で示す曲線AL1は、グロスリーク領域において漏れ孔の孔径が比較的小さい小漏れの場合、破線で示す曲線AL2は、漏れ孔の孔径が比較的大きい大漏れの場合をそれぞれ示している。例えば、実線で示す曲線AL1において、差圧が150Paを超える範囲は、不良と判定することができる。また、破線で示す曲線AL2では、差圧が2000Paを超える範囲を、不良と判定することができる。
 更に、ステップS06において、シミュレーション処理部22は、ステップS04で決定したヘリウムボンビング条件に従って、ヘリウムリーク試験部12でヘリウムリーク試験を行った場合に得られるであろうヘリウムリーク量を予測し、それを以下に説明するように等価標準リーク率Lに変換する。上述したように、JIS C60068-2-17:2001の附属書Dには、ヘリウムリーク率と等価標準リーク率との関係式が規定されている。JIS Z2331:2006の附属書7、及びMIL-STD-883 METHOD 1014.15の2.1.2.3にも、同様の関係式が規定されている。
 これら関係式のいずれかに、ステップS01で求めたワーク内容積、ステップS04で決定したボンビング圧力及びボンビング時間、大気圧、空気の質量、ヘリウムガスの質量、ワークをボンビングタンク73から取り出してヘリウムリーク量の測定が終了するまでの時間を代入する。更に、ワーク自体の条件(構造、形態、材質、ワーク内容積等)やワークの実際の使用条件、ヘリウムリーク試験の試験条件等を考慮して、等価標準リーク率及び/または放置時間を適当に設定し、その場合に得られるであろうヘリウムリーク量を算出する。
 この等価標準リーク率及び放置時間の設定は、シミュレーション処理部22が、予め制御装置2に記憶されているデータに基づいて行うことができ、またはオペレーターが前記入力部から直接入力し、若しくはシミュレーション処理部22が設定した値を修正または調整することによって行われる。これによって、ヘリウムリーク試験部12により実際にワークをヘリウムリーク試験する前に、そのシミュレーションにより予測されるヘリウムリーク量を求め、これを等価標準リーク率に換算してヘリウムリーク量換算値として、等価標準リーク率を横軸(または縦軸)とするグラフ上に表すことができる。
 図9は、上述したシミュレーションによって等価標準リーク率に換算したヘリウムリーク量換算値をグラフ表示している。同図において、曲線HL1は、ボンビング後の放置時間を短く5分に設定した場合を、曲線HL2は、ボンビング後の放置時間を長く20分に設定した場合をそれぞれ示している。同図において、例えばへリウムリーク量が1.0E-9Pa・m/sを超える範囲を、不良と判定することができる。
 次に、試験条件決定部23は、ステップS05で得られたグラフ1とステップS06で得られたグラフ2とを、等価標準リーク率を横軸(または縦軸)とする同一グラフ上に表示可能に統合する(ステップS07)。統合されたグラフ1及びグラフ2のデータは、表示部3のL換算結果表示部32に出力され、その表示画面にグラフ3として表示される。統合された前記データは、制御装置2に接続された前記外部装置及び/またはプリンター等にも出力することができる。
 図10のグラフは、等価標準リーク率を横軸とする同一グラフ上に図8のグラフと図9のグラフとを表示している。このグラフから、オペレーターは、ワークに対する差圧式エアリーク試験及びヘリウムリーク試験で検出可能な範囲を一目ではっきりと確認することができる。それにより、オペレーターは、上述したように決定したエアリーク試験及び/またはヘリウムリーク試験の試験条件の適否を簡単に判定することができる。更にオペレーターは、差圧式エアリーク試験及び/またはヘリウムリーク試験でワークの良否を判定するための閾値を、図10のグラフから決定することができる。オペレーターは、決定した閾値を制御装置2に入力することができる。
 同図において、エアリーク試験の実線で示す曲線AL1と破線で示す曲線AL2とは、等価標準リーク率の横軸上で6.5E-5Pa・m/s~2.1E-4Pa・m/sの範囲R1で重複している。従って、曲線AL1及び曲線AL2が形成されるように、エアリーク試験の条件を設定することにより、グロスリーク試験領域で大漏れと小漏れとの間で不感帯を生じることなく、測定可能であると評価することができる。
 また、エアリーク試験の曲線AL1とヘリウムリーク試験の曲線HL1とは、等価標準リーク率の横軸上で1.0E-6Pa・m/s~7.5E-6Pa・m/sの範囲R2で十分に重複している。従って、曲線AL1及び曲線HL1が形成されるように、エアリーク試験及びヘリウムリーク試験の試験条件を設定することにより、両試験領域の間で不感帯を生じることなく、測定可能であると評価することができる。
 これに対し、エアリーク試験の曲線AL1とヘリウムリーク試験の曲線HL2とは、等価標準リーク率の横軸上で1.0E-6Pa・m/s~1.5E-6Pa・m/sの非常に狭い範囲R3でしか重複していない。このことから、曲線AL1及び曲線HL2が形成されるように、エアリーク試験及びヘリウムリーク試験の試験条件を設定すると、実際にワークにエアリーク試験とヘリウムリーク試験とを行ったとき、それらの試験領域の間で不感帯を生じる虞があると、評価することができる。
 試験条件決定部23は、図10に示されるように統合されたグラフのデータから、等価標準リーク率軸上で、エアリーク試験とヘリウムリーク試験の試験範囲即ち両リーク試験で測定可能な漏れ領域の範囲の間に、かつ/または試験条件が異なるエアリーク試験同士若しくはヘリウムリーク試験同士の試験範囲の間に、十分に重複した領域があるか、不感帯を生じる虞があるかを判定する(ステップS09)。判定結果は、表示部3のL換算結果表示部32に出力され、かつ/または前記外部装置やプリンター等に出力することができる。
 更に試験条件決定部23は、十分に重複した領域があり、不感帯を生じる虞が無いと判定した場合、上述したようにステップS03及びステップS04で決定したエアリーク試験及びヘリウムリーク試験の試験条件を適であるとしてリーク試験制御部21に送信し、記憶させる。これにより、リーク試験制御部21は、不感帯を生じる虞が無い状態で、ワークに対して実際にエアリーク試験及びヘリウムリーク試験が行われるように、検査装置本体1のエアリーク試験部11とヘリウムリーク試験部12とを制御することができる。
 この場合、試験条件決定部23は、差圧式エアリーク試験及び/またはヘリウムリーク試験でワークの良否を判定する閾値に好ましいと考えられる差圧値及び/またはヘリウムリーク量を、図10に示されるグラフのデータから決定することができる。この閾値の決定は、例えばオペレーターが予め制御装置2に入力した情報や、前記記憶装置に記憶されているデータに基づいて行われる。このように試験条件決定部23が決定した閾値は、例えば表示部3の表示画面に表示させて、オペレーターの承認が得られた後、リーク試験制御部21に送信することが好ましい。
 逆に、試験条件決定部23が、十分に重複した領域が無く、不感帯を生じる虞があると判定した場合、ステップS03及び/またはステップS04で決定したエアリーク試験及び/またはヘリウムリーク試験の試験条件は、不適であるとの警告を表示部3のL換算結果表示部32や前記外部装置やプリンターに出力することができる。これにより、オペレーターが誤って、好ましくない試験条件を採用する虞を防止することができる。
 この警告を受けたオペレーターは、エアリーク試験及び/またはヘリウムリーク試験の試験条件を変更して、制御装置2に上述したリーク試験条件設計方法を再度実行させることができる。また、試験条件決定部23は、その後同じワークについて、十分に重複した領域があり、不感帯を生じる虞が無いという判定結果が得られるまで、自動でリーク試験条件設計方法のワークカプセル52の残容積を求めるステップS02以降の過程を繰り返し実行するように構成することができる。
 また、上記繰り返しの過程でワークカプセル52の残容積を見直すことは、ワークカプセル52の残容積を減らすとエアリーク試験の検出感度が向上することを考慮すれば、エアリーク試験及びヘリウムリーク試験の試験範囲の間で不感帯を排除して重複する領域を実現する上で有効である。更に、前記残容積の見直しは、ワークカプセル52自体の形状や設計値の見直しにも利用することができるので、有利である。
 本実施形態のリーク試験方法によれば、上述したリーク試験条件設計方法によって適と判定された試験条件に基づいて、エアリーク試験及びヘリウムリーク試験を実行する。図11のフロー図は、図1のリーク試験装置100を用いて、図4のリーク試験条件設計方法に続いて実行されるエアリーク試験及びヘリウムリーク試験の好適な実施形態を示している。
 先ず、実際にリーク試験を行うワークとマスターとを準備する(ステップS101)。次に、ワークをボンビングタンク73に収容してヘリウムを供給し、図4のステップS04で決定したボンビング条件に基づいてボンビングを行う(ステップS102)。設定されたボンビング時間の経過後、ボンビングタンク73からワークを取り出し、エアリーク試験部11に搬送してエアリーク試験を実行する(ステップS103)。
 ワークのエアリーク試験は、リーク量の小さい「小漏れ」とリーク量の大きい「大漏れ」とに分けて、順に実施する。リーク試験制御部21は、第2開閉弁55a,55bを閉じた状態で、ワークとマスターをエアリーク試験部11のワークカプセル52とマスターカプセル53にそれぞれ収容した後、テスト圧供給源41から図4のステップS03で決定したテスト空気圧をワーク側分岐通路45a及びマスター側分岐通路45bに印加させる。
 次に、第1開閉弁51a,51bを閉じて、それより下流側のワーク側分岐通路45aの閉回路部分とマスター側分岐通路45bの閉回路部分との間に生じる差圧(小漏れ)を差圧センサー58により検出させる。更に、第1開閉弁51a,51bを閉じたまま、第2開閉弁55a,55bを開けて、分圧タンク56a,56bにワーク側及びマスター側分岐通路45a,45bの閉回路部分内の空気をそれぞれ分圧し、分圧後の圧力差(大漏れ)を差圧センサー58により検出させる。この後、ワーク側及びマスター側分岐通路45a,45b内の空気を排気し、ワークカプセル52からワークを取り出してヘリウムリーク試験部12に搬出し、ヘリウムリーク試験に移行する。
 エアリーク試験部11は、検出した小漏れまたは大漏れの差圧が事前に設定した閾値の範囲内であれば、ワークが良品であると判断して信号を表示部3に出力し、試験結果表示部31の表示画面に良品であることを表示させる。検出した小漏れまたは大漏れの差圧が前記閾値を超えている場合、エアリーク試験部11は、ワークがグロスリークを有する欠陥品であると判断して信号を表示部3に出力し、試験結果表示部31の表示画面に欠陥品であることを表示させる。
 次に、ステップS104において、ヘリウムリーク試験部12は、ヘリウムリーク試験を実行する。エアリーク試験部11からヘリウムリーク試験部12に搬出されたワークは検査カプセル81に移され、該ワークから漏出するヘリウムリーク量をヘリウムリークディテクター82によって検出する。
 このとき、ヘリウムリーク試験部12は、ワークをボンビングタンク73から検査カプセル81へ移動してヘリウムリーク試験を完了するまでの時間をカウントすることができる。そして、カウントした時間が予め設定された放置時間内であったか否かを表示部3に出力して画面表示させることが、放置時間の管理上好ましい。
 ヘリウムリーク試験部12は、検出したヘリウムリーク量が事前に設定した閾値の範囲内であれば、ワークが良品であると判断して信号を表示部3に出力し、試験結果表示部31の表示画面に良品であることを表示させる。検出したヘリウムリーク量が前記閾値を超えている場合、ヘリウムリーク試験部12は、ワークが微小リークを有する欠陥品であると判断して信号を表示部3に出力し、試験結果表示部31の表示画面に欠陥品であることを表示させる。
 更にヘリウムリーク試験部12は、ワークをボンビングタンク73から検査カプセル81へ移動してヘリウムリーク試験を完了するまでのカウント時間が前記予め設定された放置時間を超えた場合にも、ワークを欠陥品であると判断し、表示部3に出力して、カウント時間と共に画面表示させることができる。これは、前記放置時間を、図6及び図7に例示される予測結果に基づいて、上述したステップS104のヘリウムリーク試験で検査可能な漏れ領域を保証できる放置時間として設定しており、これを超えると保証できなくなる虞があるからである。
 これを、図10のグラフを用いて具体的に説明する。同図において、ヘリウムリーク試験の曲線HL1は、ワークをボンビングタンク73から取り出して5分後に測定した場合のシミュレーション結果であり、20分後に測定した場合のシミュレーション結果である曲線HL2と比較すると、エアリーク試験の曲線AL1側により近くなっており、曲線AL1との間に十分に重複した領域が存在している。これに対し、曲線HL2は、曲線AL1と重複する領域が狭いことから、安全率をも考慮して、ヘリウムリーク試験で許容できる放置時間を5分と設定することができる。放置時間を5分を超過すれば、図10におけるヘリウム測定流量のグラフは、曲線HL1から曲線HL2側へと、曲線AL1から離れる向きにシフトし、曲線AL1との重複領域が狭くなっていくので、保証できなくなる場合が起こり得る。
 上述したエアリーク試験及びヘリウムリーク試験の検出結果は、それぞれエアリーク試験部11及びヘリウムリーク試験部12から制御装置2に出力される。制御装置2のリーク試験制御部21は、エアリーク試験部11及びヘリウムリーク試験部12から入手した差圧及びヘリウムリーク量の測定値を等価標準リーク率に換算し(ステップS105)、表示部3に出力して画面表示させる(ステップS106)。
 表示部3が、リーク試験制御部21から受信した前記測定値の等価標準リーク率換算値をL換算結果表示部32に、図4のステップS07で生成した統合グラフ3上に重ねて表示させると、エアリーク試験及びヘリウムリーク試験の測定結果が、上述したリーク試験条件設計方法によって想定された試験範囲内にあるか否かを視覚的に簡単に検証することができる。ステップS105の前記測定値の等価標準リーク率換算値は、前記外部装置やプリンターに出力することもできる。
 本実施形態において、図11に関連して上述したように、最初にワークにヘリウムボンビングを行い、設定された放置時間内にエアリーク試験とヘリウムリーク試験とを連続して行うリーク試験方法は、特に1台の自動検査装置で両リーク試験を自動で連続して行う場合に適している。別の実施形態では、エアリーク試験とヘリウムリーク試験とをそれぞれ別個の検査装置で行うことができる。この場合、先にエアリーク試験装置でエアリーク試験を行った後、ワークをヘリウムリーク試験装置へ搬送し、ボンビングタンク73に移してヘリウムボンビングを行い、ヘリウムリーク試験を行うことになる。
 以上、本発明をその好適な実施形態に関連して詳細に説明したが、本発明は上記実施形態に限定されるものでなく、その技術的範囲において、様々な変更又は変形を加えて実施することができる。例えば、図11に示すリーク試験方法において、エアリーク試験(ステップS103)とヘリウムリーク試験(ステップS104)を実行する順序は、逆にしてもよい。
1   検査装置本体
2   制御装置
3   表示部
11  エアリーク試験部
12  ヘリウムリーク試験部
21  リーク試験制御部
22  シミュレーション処理部
23  試験条件決定部
31  試験結果表示部
32  等価標準リーク率換算結果表示部(L換算結果表示部)
100 リーク試験装置

Claims (16)

  1.  検査対象のワークの密閉内部空間の容積を求める過程と、
     差圧式エアリーク試験において前記ワークを格納するワーク密閉容器の、前記ワークを格納したときの残容積を求める過程と、
     差圧式エアリーク試験において前記ワークを格納した前記ワーク密閉容器とマスターを格納したマスター密閉容器とに印加するテスト空気圧を決定する過程と、
     ヘリウムリーク試験において前記ワークを格納する充填チャンバにヘリウムガスを充填するボンビングの条件を決定する過程と、
     前記ワークの密閉内部空間の容積、前記ワーク密閉容器の残容積及び前記テスト空気圧に基づいて、前記ワークと前記マスターとの差圧値を求める差圧式エアリーク試験のシミュレーションを行い、得られた差圧値を等価標準リーク率に換算して差圧換算値を求める過程と、
     前記ボンビングの条件に基づいて、前記ワークのヘリウムリーク率を求めるヘリウムリーク試験のシミュレーションを行い、得られたヘリウムリーク率を等価標準リーク率に換算してヘリウムリーク率換算値を求める過程とを含み、
     前記差圧換算値及び前記ヘリウムリーク率換算値は、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示されるように生成される、
    ことを特徴とするリーク試験条件設計方法。
  2.  前記差圧換算値と前記ヘリウムリーク率換算値とを、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示する過程を更に含むことを特徴とする請求項1に記載のリーク試験条件設計方法。
  3.  等価標準リーク率を横軸または縦軸とする同一グラフ上に表示された前記差圧換算値と前記ヘリウムリーク率換算値とが、等価標準リーク率に関して部分的に重複する領域を有するか否かを判定する過程を更に含むことを特徴とする請求項1または請求項2に記載のリーク試験条件設計方法。
  4.  等価標準リーク率を横軸または縦軸とする同一グラフ上に表示されるように生成された前記差圧換算値及び前記ヘリウムリーク率換算値が、等価標準リーク率に関して重複する領域を有するか否かによって、決定された前記テスト空気圧及び/または決定された前記ボンビングの条件の適否を判定することを特徴とする請求項1から請求項3の何れか一項に記載のリーク試験条件設計方法。
  5.  前記差圧換算値と前記ヘリウムリーク率換算値とが等価標準リーク率に関して部分的に重複する領域を有しないと判定された場合、前記残容積を求める過程以降の過程を繰り返し実行する、ことを特徴とする請求項3または請求項4に記載のリーク試験条件設計方法。
  6.  前記差圧換算値を求める過程において、差圧式エアリーク試験で得られる前記ワークと前記マスターとの差圧値を、前記テスト空気圧に対するエアリーク量に変換し、得られた前記エアリーク量を前記ワークの漏れ孔の寸法に換算し、得られた前記漏れ孔の寸法に基づいて前記差圧値を等価標準リーク率に換算することを特徴とする請求項1から請求項5の何れか一項に記載のリーク試験条件設計方法。
  7.  前記漏れ孔の寸法は、前記漏れ孔の直径とガス流れ方向長さとであることを特徴とする請求項6に記載のリーク試験条件設計方法。
  8.  前記ヘリウムリーク率換算値を求める過程において、ヘリウムリーク試験で得られる前記ワークのヘリウムリーク率を、JIS C60068-2-17:2001の附属書Dに準拠したヘリウムリーク率と等価標準リーク率との関係式に従って等価標準リーク率に換算することを特徴とする請求項1から請求項7の何れか一項に記載のリーク試験条件設計方法。
  9.  検査対象のワークの密閉内部空間の容積を求め、差圧式エアリーク試験において前記ワークを格納するワーク密閉容器の、前記ワークを格納したときの残容積を求める演算部と、
     差圧式エアリーク試験において前記ワークを格納した前記ワーク密閉容器とマスターを格納したマスター密閉容器とに印加するテスト空気圧を決定する第1試験条件設定部と、
     ヘリウムリーク試験において前記ワークを格納する充填チャンバにヘリウムガスを充填するボンビングの条件を決定する第2試験条件設定部と、
     前記ワークの密閉内部空間の容積、前記ワーク密閉容器の残容積及び前記テスト空気圧に基づいて、前記ワークと前記マスターとの差圧値を求める差圧式エアリーク試験のシミュレーションを行い、得られた前記差圧値を等価標準リーク率に換算して差圧換算値を求める第1シミュレーション処理部と、
     前記ボンビングの条件に基づいて、前記ワークのヘリウムリーク率を求めるヘリウムリーク試験のシミュレーションを行い、得られた前記ヘリウムリーク率を等価標準リーク率に換算してヘリウムリーク率換算値を求める第2シミュレーション処理部と、
     前記第1及び第2シミュレーション処理部からそれぞれ得られた前記差圧換算値と前記ヘリウムリーク率換算値とを、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示する表示部と、を備えることを特徴とするリーク試験条件設計装置。
  10.  前記差圧換算値と前記ヘリウムリーク率換算値とが、同一グラフ上に表示されたときに等価標準リーク率に関して部分的に重複する領域を有するか否かを判定する判定部を更に備えることを特徴とする請求項9に記載のリーク試験条件設計装置。
  11.  前記判定部によって、前記差圧換算値と前記ヘリウムリーク率換算値とが、同一グラフ上に表示されたときに等価標準リーク率に関して部分的に重複する領域を有しないと判定されたとき、前記演算部が前記ワーク密閉容器の残容積を求め、前記第1試験条件設定部が前記テスト空気圧を決定し、前記第2試験条件設定部が前記ボンビングの条件を決定し、前記第1シミュレーション処理部が前記差圧換算値を求め、前記第2シミュレーション処理部が前記ヘリウムリーク率換算値を求め、前記表示部が前記差圧換算値と前記ヘリウムリーク率換算値とを前記同一グラフ上に表示する一連の動作が繰り返し実行されるように、前記演算部、前記第1試験条件設定部、前記第2試験条件設定部、前記第1シミュレーション処理部、前記第2シミュレーション処理部、及び前記表示部を制御する制御部を更に備えることを特徴とする請求項9または請求項10に記載のリーク試験条件設計装置。
  12.  前記第1シミュレーション処理部は、差圧式エアリーク試験で得られる前記ワークと前記マスターとの差圧値を前記テスト空気圧に対するエアリーク量に変換し、得られた前記エアリーク量を前記ワークの漏れ孔の寸法に換算し、得られた前記漏れ孔の寸法に基づいて前記差圧値を等価標準リーク率に換算して、前記差圧換算値を求めることを特徴とする請求項9から請求項11の何れか一項に記載のリーク試験条件設計装置。
  13.  前記ワークの漏れ孔の寸法は、前記漏れ孔の直径とガス流れ方向長さとであることを特徴とする請求項12に記載のリーク試験条件設計装置。
  14.  前記第2シミュレーション処理部は、ヘリウムリーク試験で得られる前記ワークのヘリウムリーク率を、JIS C60068-2-17:2001の附属書Dに準拠したヘリウムリーク率と等価標準リーク率との関係式に従って等価標準リーク率に換算して、前記ヘリウムリーク率換算値を求めることを特徴とする請求項9から請求項13の何れか一項に記載のリーク試験条件設計装置。
  15.  検査対象のワークに対して請求項1から請求項8の何れか一項に記載のリーク試験条件設計方法を実施する過程と、
     前記ワークに対して差圧式エアリーク試験を実施する過程と、
     前記ワークに対してヘリウムのボンビング法によるヘリウムリーク試験を実施する過程と、を含み、
     前記差圧式エアリーク試験及び/またはヘリウムリーク試験は、
     前記リーク試験条件設計方法において、前記差圧換算値及び前記ヘリウムリーク率換算値が、等価標準リーク率を横軸または縦軸とする同一グラフ上に表示されるとき、等価標準リーク率に関して重複する領域を有するように決定された前記テスト空気圧及び/または決定された前記ボンビングの条件に基づいて行う、ことを特徴とするリーク試験方法。
  16.  請求項9から請求項14の何れか一項に記載のリーク試験条件設計装置と、
     検査対象のワークについて、前記リーク試験条件設計装置の第1試験条件設定部により決定されたテスト空気圧に基づいて差圧式エアリーク試験を実行するエアリーク試験部と、
     検査対象のワークについて、前記リーク試験条件設計装置の第2試験条件設定部により決定されたボンビングの条件に基づいてヘリウムのボンビング法によるヘリウムリーク試験を実行するヘリウムリーク試験部と、を備えることを特徴とするリーク試験装置。
     

     
PCT/JP2021/048421 2020-12-25 2021-12-24 リーク試験条件設計方法、リーク試験条件設計装置、リーク試験方法及びリーク試験装置 WO2022138971A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/269,365 US20240060849A1 (en) 2020-12-25 2021-12-24 Leak test condition design method, leak test condition design device, leak testing method, and leak testing device
JP2022521027A JP7309058B2 (ja) 2020-12-25 2021-12-24 リーク試験条件設計方法、リーク試験条件設計装置、リーク試験方法及びリーク試験装置
EP21911108.5A EP4269975A1 (en) 2020-12-25 2021-12-24 Leak test condition design method, leak test condition design device, leak testing method, and leak testing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-218039 2020-12-25
JP2020218039 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138971A1 true WO2022138971A1 (ja) 2022-06-30

Family

ID=82158228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048421 WO2022138971A1 (ja) 2020-12-25 2021-12-24 リーク試験条件設計方法、リーク試験条件設計装置、リーク試験方法及びリーク試験装置

Country Status (4)

Country Link
US (1) US20240060849A1 (ja)
EP (1) EP4269975A1 (ja)
JP (1) JP7309058B2 (ja)
WO (1) WO2022138971A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296122A (zh) * 2023-05-05 2023-06-23 深圳市海瑞思自动化科技有限公司 一种氦质谱式密封性泄漏的检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843242A (ja) 1994-08-04 1996-02-16 Nagano Keiki Seisakusho Ltd 漏れ試験装置
JPH10232179A (ja) * 1996-12-20 1998-09-02 Cosmo Keiki:Kk 微小部品の洩れ検査方法及びこの検査方法を用いた洩れ検査装置
JP2002206982A (ja) 2001-01-09 2002-07-26 Fukuda:Kk リークテストシステム及びリークテスト方法
JP2007278914A (ja) 2006-04-10 2007-10-25 Fukuda:Kk リークテスト方法及びリークテスト装置
JP2008157899A (ja) * 2006-12-26 2008-07-10 Denso Corp 密閉品並びにその漏れ検査方法及び製造方法
JP2009121898A (ja) * 2007-11-14 2009-06-04 Fukuda:Kk ヘリウムガスボンビング装置
JP2010169515A (ja) 2009-01-22 2010-08-05 Fukuda:Kk テストガスボンビングシステム
CN103207050A (zh) * 2013-04-15 2013-07-17 中国航天科技集团公司第五研究院第五一〇研究所 一种可延长密封器件候检时间的质谱检漏预充氦法
WO2015056661A1 (ja) 2013-10-15 2015-04-23 株式会社フクダ 漏洩試験装置及び方法
US20160313207A1 (en) * 2015-04-23 2016-10-27 Genglin Wang Combination test method by using argon as gross-leak test tracer gas and using helium as fine-leak test tracer gas

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843242A (ja) 1994-08-04 1996-02-16 Nagano Keiki Seisakusho Ltd 漏れ試験装置
JPH10232179A (ja) * 1996-12-20 1998-09-02 Cosmo Keiki:Kk 微小部品の洩れ検査方法及びこの検査方法を用いた洩れ検査装置
JP2002206982A (ja) 2001-01-09 2002-07-26 Fukuda:Kk リークテストシステム及びリークテスト方法
JP2007278914A (ja) 2006-04-10 2007-10-25 Fukuda:Kk リークテスト方法及びリークテスト装置
JP2008157899A (ja) * 2006-12-26 2008-07-10 Denso Corp 密閉品並びにその漏れ検査方法及び製造方法
JP2009121898A (ja) * 2007-11-14 2009-06-04 Fukuda:Kk ヘリウムガスボンビング装置
JP2010169515A (ja) 2009-01-22 2010-08-05 Fukuda:Kk テストガスボンビングシステム
CN103207050A (zh) * 2013-04-15 2013-07-17 中国航天科技集团公司第五研究院第五一〇研究所 一种可延长密封器件候检时间的质谱检漏预充氦法
WO2015056661A1 (ja) 2013-10-15 2015-04-23 株式会社フクダ 漏洩試験装置及び方法
US20160313207A1 (en) * 2015-04-23 2016-10-27 Genglin Wang Combination test method by using argon as gross-leak test tracer gas and using helium as fine-leak test tracer gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296122A (zh) * 2023-05-05 2023-06-23 深圳市海瑞思自动化科技有限公司 一种氦质谱式密封性泄漏的检测方法
CN116296122B (zh) * 2023-05-05 2023-09-22 深圳市海瑞思自动化科技有限公司 一种氦质谱式密封性泄漏的检测方法

Also Published As

Publication number Publication date
JPWO2022138971A1 (ja) 2022-06-30
JP7309058B2 (ja) 2023-07-14
US20240060849A1 (en) 2024-02-22
EP4269975A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
KR101718631B1 (ko) 초저온용 밸브 누설시험방법
KR102093571B1 (ko) 누설 검사 장치 및 방법
US7752892B2 (en) Leak characterization apparatuses and methods for fluid storage containers
CN109540408A (zh) 气密性检测方法及装置
JPH0835906A (ja) 中空容器の試験方法及び装置
KR20090003195A (ko) 배관로의 누설 검사 방법 및 누설 검사 장치
WO2022138971A1 (ja) リーク試験条件設計方法、リーク試験条件設計装置、リーク試験方法及びリーク試験装置
KR101131948B1 (ko) 압력평형을 이용한 기밀검사장치 및 방법
JP2008309698A (ja) 気密検査装置および気密検査方法並びに気密性製品の製造方法
KR101395739B1 (ko) 가스미터 누설 검사 장치 및 방법
JP2583880B2 (ja) パックの気密性検査方法及び装置
US20210172822A1 (en) Apparatus and Method for Testing Package Integrity
JP3771167B2 (ja) エアリークテスト方法および装置
CA3012379C (en) Portable recording apparatus to be used for recording inspection result for hydrogen station
KR100922587B1 (ko) 밀폐용기 누설검사장치
JP2016118528A (ja) 弾性体の漏れ計測方法及び漏れ計測装置
CN214893929U (zh) 一种油箱泄漏检测装置
JP6695153B2 (ja) 漏れ検査装置及び方法
US3793877A (en) Air leakage detector, using a direct pressure system
JP2005037268A (ja) 流量検査装置
JP2023043985A (ja) 欠陥検査方法
JP2004117153A (ja) 容積計測装置及び容積計測方法
WO2022172811A1 (ja) 気密試験方法及びそれを用いた気密試験装置
JPH0658834A (ja) 絶対圧力検出センサおよびそのセンサを用いた容器の漏洩状態検査装置
JPH11230118A (ja) 気圧アクチュエータシステムの摩耗及び洩れ検出装置及び気圧アクチュエータシステムの摩耗及び洩れ異常検出方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022521027

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269365

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911108

Country of ref document: EP

Effective date: 20230725