WO2022138488A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2022138488A1
WO2022138488A1 PCT/JP2021/046732 JP2021046732W WO2022138488A1 WO 2022138488 A1 WO2022138488 A1 WO 2022138488A1 JP 2021046732 W JP2021046732 W JP 2021046732W WO 2022138488 A1 WO2022138488 A1 WO 2022138488A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
current collector
aqueous electrolyte
secondary battery
slit
Prior art date
Application number
PCT/JP2021/046732
Other languages
English (en)
French (fr)
Inventor
洋平 内山
隆弘 福岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21910633.3A priority Critical patent/EP4270516A1/en
Priority to US18/268,426 priority patent/US20230395810A1/en
Priority to JP2022571403A priority patent/JPWO2022138488A1/ja
Priority to CN202180086231.7A priority patent/CN116636031A/zh
Publication of WO2022138488A1 publication Critical patent/WO2022138488A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries are used for ICT such as personal computers and smartphones, for in-vehicle use, and for storage.
  • ICT such as personal computers and smartphones
  • improvements have been attempted to improve the characteristics of non-aqueous electrolyte secondary batteries.
  • improvement of the shape of the current collector has also been proposed.
  • Patent Document 1 proposes that a metal current collector is provided with a cut in the electrode of a non-aqueous electrolyte battery so that it can be bent freely.
  • the expansion and contraction of the negative electrode due to charging and discharging is remarkable. Due to the expansion of the negative electrode during charging, the negative electrode current collector may not be able to follow and break, and the electrical connection may be disconnected. When the electrical connection in the negative electrode current collector is disconnected, the cycle characteristics of the non-aqueous electrolyte secondary battery deteriorate.
  • the present disclosure includes a group of electrodes and a non-aqueous electrolyte.
  • the electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the negative electrode includes a band-shaped negative electrode current collector having a first end portion and a second end portion in the lateral direction.
  • the negative electrode current collector includes a plurality of slits extending in a broken line shape from one end of the first end and the second end toward the other end along the lateral direction, and the plurality of slits.
  • the present invention relates to a non-aqueous electrolyte secondary battery having at least one slit group formed of a hole formed on the other end side of the slit and having a width larger than the average width of the plurality of slits.
  • the cycle characteristics of non-aqueous electrolyte secondary batteries can be improved.
  • the non-aqueous electrolyte secondary battery of the present disclosure includes an electrode group and a non-aqueous electrolyte.
  • the electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the negative electrode includes a band-shaped negative electrode current collector having a first end portion and a second end portion in the lateral direction.
  • the negative electrode current collector has a plurality of slits extending in a broken line from one end of the first end and the second end toward the other end in a dashed line direction, and the other of the plurality of slits. It has at least one slit group composed of a hole formed on the end side and having a width larger than the average width of the plurality of slits.
  • the negative electrode current collector breaks along a plurality of broken slits.
  • the holes formed on the other end side of the plurality of slits and having a width larger than the average width of the slits relieve the stress and terminate the fracture of the negative electrode current collector at the holes. Therefore, the negative electrode current collector breaks on one end side, but the negative electrode current collector breaks on the other end side.
  • the above-mentioned slit group in the negative electrode current collector it is possible to control the position where the negative electrode current collector is broken when the stress due to the expansion of the negative electrode is applied to the negative electrode current collector. Therefore, it is suppressed that the negative electrode current collector is completely cut along the lateral direction, and the electrical connection of the negative electrode current collector is maintained. As a result, the cycle characteristics can be improved.
  • the negative electrode will be described in more detail below.
  • a plurality of slits are arranged at intervals along the lateral direction of the negative electrode current collector.
  • each slit is formed so as to extend along the lateral direction of the negative electrode current collector.
  • the width of the slit is a value obtained by averaging the maximum value of the size of the slit in the longitudinal direction of the negative electrode current collector of each slit for the slit group.
  • the hole width is the maximum value of the hole size in the longitudinal direction of the negative electrode current collector.
  • one end may be cut by the slit on the one end side of the plurality of slits. Since the strength of one end of the negative electrode current collector is low, when stress is applied to the negative electrode current collector, fracture proceeds smoothly along the plurality of slits. Therefore, it becomes easier to control the position where the negative electrode current collector breaks.
  • the slit on one end side is a slit located closest to one end in the lateral direction of the negative electrode current collector among the plurality of slits constituting one slit group.
  • the slit on the other end side is a slit located closest to the other end in the lateral direction of the negative electrode current collector among the plurality of slits constituting one slit group.
  • the negative electrode current collector may have at least one slit group, and may have a plurality of slit groups.
  • all the slit groups are directed from one end (for example, the first end) to the other end (for example, the second end) of the negative electrode current collector. It may be formed so as to extend along the lateral direction (in other words, in the same direction).
  • the plurality of slit groups includes a plurality of first slits extending from the first end portion to the second end portion of the negative electrode current collector along the lateral direction, and a plurality of first slits.
  • a first group of slits composed of a first hole formed on the second end side, a plurality of second slits extending from the second end toward the first end along the lateral direction, and a plurality of second slits.
  • a second slit group composed of a second hole formed on the first end side of the second slit of the above may be included.
  • the stress applied to the negative electrode current collector due to the expansion of the negative electrode can be more easily dispersed, and the effect of suppressing breakage at a position other than the slit group can be enhanced. Therefore, when the negative electrode current collector breaks. It also makes it easier to maintain electrical connections.
  • FIG. 1 shows an example of a negative electrode current collector in which the first slit group and the second slit group are alternately arranged.
  • FIG. 1 is a plan view showing an example of a negative electrode current collector used in the non-aqueous electrolyte secondary battery of one embodiment of the present disclosure.
  • the band-shaped negative electrode current collector 112 has a plurality of slit groups 113.
  • Each slit group 113 includes a plurality of slits 113a extending in a broken line from one end of the negative electrode current collector 112 toward the other end along the short side DS , and a circular hole. It is composed of 113b.
  • the hole 113b is formed on the other end side of the plurality of slits 113a.
  • the hole 113b is continuous with the slit on the other end side of the plurality of slits 113a. Further, in each slit group 113, the width of the hole 113b has a width larger than the average width of the plurality of slits 113a.
  • the negative electrode current collector 112 has a plurality of slit groups 113. The plurality of slit groups 113 are formed at intervals along the longitudinal direction DL of the negative electrode current collector 112. In FIG. 1, the plurality of slit groups 113 extend from the first end portion e1 of the lateral end portion e1 of the negative electrode current collector 112 toward the second end portion e2 along the lateral direction DS.
  • the first slit group 1131 and the second slit group 1132 are arranged alternately. The following description is not limited to the description of the specific example of FIG.
  • the direction in which the plurality of slits constituting the slit group extend in a broken line shape may be parallel to or intersect with the lateral direction of the negative electrode current collector.
  • the acute angle between the direction in which the plurality of slits extend in a broken line shape and the lateral direction of the negative electrode current collector is, for example, 30 ° or less, and may be 15 ° or less.
  • the direction in which the plurality of slits extend in a broken line shape is the average direction in the length direction of each slit constituting one slit group.
  • the average distance between adjacent slits in the direction extending in a broken line is, for example, 0.02 mm or more, preferably 0.1 mm or more, and may be 0.2 mm or more.
  • the average spacing between the adjacent slits is in such a range, it is possible to suppress the breakage of the negative electrode current collector in the process of manufacturing the negative electrode or the step of manufacturing the electrode group.
  • the average distance between adjacent slits in the direction extending in a broken line is, for example, 3 mm or less, preferably 2.5 mm or less, and more preferably 1.5 mm or less or 1 mm or less.
  • the distance between adjacent slits in the direction extending in a broken line is the distance between adjacent slits (in other words, the distance between the ends of the adjacent slits that abut each other).
  • the length of the slit may be, for example, 0.1 mm or more and 7 mm or less, 0.5 mm or more and 3 mm or less, or 0.5 mm or more and 1 mm or less.
  • the length of the slit is a value obtained by averaging the length of each slit in the direction extending in a broken line shape in the slit group.
  • the length of the slit is larger than the width of the slit.
  • the width of the slit may be, for example, 0.005 mm or more and 0.1 mm or less, 0.01 mm or more and 0.05 mm or less, or 0.02 mm or more and 0.04 mm or less.
  • the width of the slits is within such a range, the negative electrode current collector can be broken more smoothly along the plurality of slits arranged in a broken line.
  • the hole is formed on the other end side of the plurality of slits in the slit group. As shown in FIG. 1, the hole may be continuous with the slit on the other end side of the plurality of slits. Further, the hole may be formed at a distance from the slit on the other end side. In this case, the hole is formed in the vicinity of the slit on the other end side so that the plurality of slits and the hole form one slit group.
  • the distance between the hole and the slit on the other end side is, for example, 3 mm or less, preferably 2.5 mm or less, and more preferably 1.5 mm or less or 1 mm or less.
  • the hole is preferably continuous with the slit on the other end side.
  • the distance between the hole and the slit on the other end side is the distance between the hole and the slit on the other end side.
  • the width of the hole is, for example, 0.05 mm or more, and may be 0.1 mm or more or 0.2 mm or more.
  • the width of the hole is preferably 2 mm or less, more preferably 1.5 mm or less, or 1 mm or less. These lower limit values and upper limit values can be arbitrarily combined.
  • the length of the hole in the lateral direction of the negative electrode current collector can be selected from the range described for the width of the hole. The hole length is the maximum value of the hole size in the lateral direction of the negative electrode current collector.
  • the negative electrode current collector has a pair of main surfaces that occupy most of the surface of the strip-shaped negative electrode current collector.
  • the shape of the hole when the main surface of the negative electrode current collector is viewed from the direction perpendicular to the main surface may be, for example, a polygon (square, pentagon, hexagon, etc.), but is circular or elliptical. Is preferable.
  • the shape of the hole is circular or elliptical, the effect of relaxing the stress applied to the negative electrode current collector due to the expansion of the negative electrode is enhanced, and the negative electrode current collector is prevented from breaking at an unintended position with the hole as the base point. The effect is enhanced.
  • the distance between the hole and the other end of the negative electrode current collector is 0.1 W or more and 0. It is preferably .5 W or less, more preferably 0.15 W or more and 0.4 W or less, and further preferably 0.15 W or more and 0.35 W or less.
  • the distance between the hole and the other end of the negative electrode current collector is the shortest distance between the hole closest to the other end of the negative electrode current collector and the other end. be.
  • the plurality of slit groups may be formed at intervals along the longitudinal direction of the negative electrode current collector.
  • the average spacing between adjacent slits is greater than the width of the hole.
  • the average spacing between adjacent slit groups is, for example, 0.2 mm or more, preferably 0.5 mm or more, and may be 1.5 mm or more or 2 mm or more.
  • the upper limit of the average spacing between adjacent slit groups is not particularly limited. From the viewpoint of further controlling the position where the negative electrode current collector breaks when the negative electrode expands, the average distance between adjacent slit groups is preferably 10 mm or less, and may be 5 mm or less. These lower limit values and upper limit values can be arbitrarily combined.
  • the spacing between adjacent slit groups may be the same.
  • the distance between adjacent slit groups is smaller in the portion where stress due to the expansion of the negative electrode is likely to be applied, as compared with the other portions.
  • the stress associated with the expansion of the negative electrode can be more effectively relaxed, so that the effect of suppressing the negative electrode current collector from breaking at an unintended position can be further enhanced.
  • the distance between adjacent slit groups is smaller than that in the portion away from the tab or lead.
  • the electrode group is a wound electrode group in which a positive electrode, a negative electrode, and a separator are wound
  • the stress associated with the expansion of the negative electrode is difficult to be released inside the wound electrode group, and therefore goes outward. Therefore, it is preferable to reduce the distance between the adjacent slit groups in the outer peripheral side portion of the negative electrode current collector and the distance between the adjacent slit groups in the remaining portion. More specifically, when the length of the negative electrode current collector in the longitudinal direction is L, the average spacing between adjacent slit groups in the L / 4 portion from the outer peripheral end of the negative electrode current collector is It is preferably smaller than the average spacing between adjacent slits in the rest.
  • the distance between the adjacent slit groups 113 in the portion from the end Eo on the outer peripheral side of the negative electrode current collector 112 to the L / 4 portion is the remaining portion (specifically, in the negative electrode current collector 112).
  • An example is shown in which the distance between adjacent slit groups 113 at the peripheral end Ei to 3L / 4) is smaller than the distance between the adjacent slit groups 113.
  • the ratio Po / Pi is, for example, less than 0 ⁇ Po / Pi ⁇ 1, preferably 0.1 ⁇ Po / Pi ⁇ 0.7, and more preferably 0.2 ⁇ Po / Pi ⁇ 0.5.
  • the average spacing between the adjacent slit groups 113 in the portion Eo to L / 4 on the outer peripheral side of the negative electrode current collector 112 is the sum of the spacing p1 between the adjacent slit groups 113. Obtained by averaging.
  • the average spacing between the adjacent slit groups can be obtained by summing and averaging the spacing p2 between the adjacent slit groups.
  • the distance between adjacent slit groups means that when a straight line is drawn from the first end to the second end in the direction in which a plurality of slits constituting each slit group extend in a broken line shape in the adjacent slit group. The distance between the two straight lines at the first end.
  • Examples of the material of the negative electrode current collector include metal materials such as metals and alloys.
  • Examples of the metal material include copper (Cu), nickel (Ni), iron (Fe), and alloys containing these metal elements.
  • Examples of the alloy include copper alloys and stainless steel (SUS). Of these, copper and copper alloys having high conductivity are preferable.
  • the negative electrode current collector is obtained by forming a slit group on a sheet (foil or the like) made of the above material by using a known slit and hole forming technique.
  • Techniques for forming slits and holes include, for example, laser machining, etching, pressing, cutting, and punching.
  • the thickness of the negative electrode current collector is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • the negative electrode contains a negative electrode active material.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer may further contain at least one selected from the group consisting of a binder, a conductive material, a thickener, and an additive, if necessary.
  • the negative electrode active material layer may be formed on only one main surface of the negative electrode current collector, or may be formed on both main surfaces.
  • the non-aqueous electrolyte secondary battery of the present disclosure uses a negative electrode current collector having the above-mentioned slit group, the negative electrode collection due to the expansion of the negative electrode even when a negative electrode active material having a large volume change due to expansion during charging is used. It is possible to prevent the electric body from being completely cut off, and high cycle characteristics can be obtained.
  • the thickness of the negative electrode containing such a negative electrode active material at the time of full charge is significantly larger than the thickness of the negative electrode after the initial discharge.
  • the thickness of the negative electrode at the time of full charge is preferably 1.18 times or more, more preferably 1.3 times or more, and may be 2 times or more the thickness of the negative electrode after the initial discharge. ..
  • the thickness of the negative electrode when fully charged is It is about 1.1 times the thickness of the negative electrode after the initial discharge.
  • the non-aqueous electrolyte secondary battery of the present disclosure is particularly effective when a negative electrode active material having a larger volume change than graphite is used.
  • the thickness of the negative electrode is determined by taking a photograph of the cross section of the electrode group, measuring the thickness of the negative electrode at a plurality of points (for example, 10 points) in this photograph, and averaging them. However, the thickness of the negative electrode is measured at any plurality of points in the region where the negative electrode active material is present on both main surfaces of the negative electrode current collector, at least in the charged state.
  • the thickness of the negative electrode when fully charged is the thickness of the negative electrode in the non-aqueous electrolyte secondary battery in the fully charged state.
  • a fully charged non-aqueous electrolyte secondary battery is a battery charged to a state of charge (SOC: State of Charge) of 0.98 C or more when the rated capacity of the battery is C.
  • SOC State of Charge
  • the thickness of the negative electrode after the initial discharge is the thickness of the negative electrode in the non-aqueous electrolyte secondary battery in the state of being discharged to the completely discharged state by the initial discharge.
  • a non-aqueous electrolyte secondary battery that has been discharged to a completely discharged state by the first discharge is a non-aqueous electrolyte secondary battery that is charged and discharged after the battery is assembled, and then charged for the first time until the SOC reaches 0.05 C or less. It is a battery after discharging.
  • the non-aqueous electrolyte secondary battery discharged to the fully discharged state by the first discharge is, for example, after the first discharge of the battery in the state of being commercially available in the charged state until the SOC becomes 0.05 C or less. It may be a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery in a state of being discharged to a completely discharged state by the first discharge may be, for example, a battery after the first discharge to the lower limit voltage with a constant current of 0.05 C.
  • the negative electrode active material is selected according to the type of non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery when the ion that becomes a carrier of charge is lithium ion, a metallic lithium, a lithium alloy, or a material that can electrochemically store and release lithium ion is used as a negative electrode active material.
  • the lithium alloy include a lithium-aluminum alloy and a lithium-magnesium alloy.
  • the material that can electrochemically occlude and release lithium ions include a carbonaceous material, a material containing at least one selected from the group consisting of Si and Sn, and the like.
  • the negative electrode may contain one kind of negative electrode active material, or may contain two or more kinds in combination.
  • Examples of carbonaceous materials include graphite, soft carbon, hard carbon, and amorphous carbon.
  • Examples of graphite include natural graphite, artificial graphite, and graphitized mesophase carbon particles.
  • Graphite is a carbonaceous material with a developed graphite-type crystal structure.
  • the interplanar spacing d002 of the (002) plane of graphite measured by the X-ray diffraction method may be, for example, 0.340 nm or less, or 0.3354 nm or more and 0.340 nm or less.
  • Examples of the Si-containing material include Si alone, a silicon alloy, and a silicon compound (silicon oxide, silicate, silicon nitride, etc.).
  • Examples of the silicon oxide include SiO x particles.
  • x is 0.5 ⁇ x ⁇ 2, and may be 0.8 ⁇ x ⁇ 1.6.
  • As the Si-containing material a material containing a lithium silicate phase and silicon particles dispersed in the lithium silicate phase may be used.
  • Examples of the Sn-containing material include Sn simple substance, tin alloy, tin compound (tin oxide, tin nitride, etc.) and the like.
  • the negative electrode containing the Si-containing material or the Sn-containing material has a large volume change due to expansion during charging.
  • the non-aqueous electrolyte secondary battery of the present disclosure uses the negative electrode current collector having the above-mentioned slit group, high cycle characteristics can be obtained even when a Si-containing material or a Sn-containing material is used.
  • the negative electrode may contain, as the negative electrode active material, at least one selected from the group consisting of Si-containing materials and Sn-containing materials, and carbonaceous materials.
  • the non-aqueous electrolyte secondary battery of the present disclosure is particularly useful as a lithium secondary battery.
  • Lithium secondary batteries are also referred to as lithium metal secondary batteries.
  • the negative electrode active material in a lithium secondary battery is a lithium metal.
  • lithium metal is deposited on the surface of the negative electrode current collector during charging, and the lithium metal is dissolved during discharging. Therefore, the volume change of the negative electrode due to charging / discharging is very large.
  • lithium metal may be deposited in a dendrite shape on the negative electrode during charging. When the lithium metal is deposited in the form of dendrites, the amount of expansion of the negative electrode is further increased.
  • the dendrite-like precipitated lithium metal is harder and bulkier than the lithium metal available as a commercially available product. Therefore, when the lithium metal is deposited in the form of dendrites, a large stress is applied to the negative electrode current collector. Even in a lithium secondary battery in which a large stress is likely to be applied to the negative electrode current collector during charging as described above, the position where the negative electrode current collector breaks can be controlled by using the negative electrode current collector having the above slit group. can. Since the electrical connection of the negative electrode current collector can be maintained, high cycle characteristics can be ensured.
  • a lithium secondary battery for example, 70% or more of the rated capacity is expressed by precipitation and dissolution of lithium metal.
  • the movement of electrons in the negative electrode during charging and discharging is mainly due to the precipitation and dissolution of lithium metal in the negative electrode.
  • 70 to 100% (for example, 80 to 100% or 90 to 100%) of electron transfer (current in another aspect) in the negative electrode during charging and discharging is due to the precipitation and dissolution of the lithium metal. That is, the negative electrode in the lithium secondary battery differs from the negative electrode in which the movement of electrons in the negative electrode during charging and discharging is mainly due to the storage and release of lithium ions by the negative electrode active material (graphite or the like).
  • the open circuit potential (OCV: Open Circuit Voltage) of the negative electrode at full charge is, for example, with respect to the lithium metal (lithium dissolution precipitation potential). It is 70 mV or less.
  • the OCV of the negative electrode at the time of full charge may be measured by disassembling the fully charged battery in an argon atmosphere, taking out the negative electrode, and assembling the cell with lithium metal as the counter electrode.
  • the non-aqueous electrolyte of the cell may have the same composition as the non-aqueous electrolyte in the decomposed battery.
  • binder contained in the negative electrode active material layer examples include fluororesin, polyacrylonitrile, polyimide resin, acrylic resin, polyolefin resin, and rubber-like polymer.
  • fluororesin examples include polytetrafluoroethylene and polyvinylidene fluoride.
  • Examples of the conductive material contained in the negative electrode active material layer include a conductive carbonaceous material.
  • Examples of the conductive carbonaceous material include carbon black and carbon nanotubes. Examples of carbon black include acetylene black and ketjen black.
  • the negative electrode may be formed by depositing a negative electrode active material on the main surface of a negative electrode current collector by using a gas phase method such as electrodeposition or vapor deposition, for example.
  • the negative electrode may be formed by applying a negative electrode slurry containing the constituent components of the negative electrode active material layer and a dispersion medium to the main surface of the negative electrode current collector, and drying and compressing the coating film.
  • the dispersion medium include at least one selected from the group consisting of water and an organic medium.
  • the negative electrode current collector may be used for producing the electrode group. More specifically, in a lithium secondary battery, for example, an electrode group is produced by laminating a negative electrode current collector and a positive electrode via a separator. In such a lithium secondary battery, lithium ions move from the positive electrode during charging and deposit on the surface of the negative electrode current collector.
  • the positive electrode includes, for example, a band-shaped positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
  • the positive electrode current collector may be in the form of a sheet (for example, foil, film) or may be porous.
  • the sheet-shaped positive electrode current collector may have a slit group as described for the negative electrode current collector, if necessary. For the slit group, the description of the positive electrode current collector can be referred to.
  • the positive electrode mixture layer may be formed on a pair of main surfaces of a sheet-shaped positive electrode current collector, or may be formed on one main surface. Further, the positive electrode mixture layer may be formed in a state of being filled in a mesh-shaped positive electrode current collector.
  • Examples of the material of the positive electrode current collector include metal materials containing Al, Ti, Fe and the like.
  • the metal material may be Al, Al alloy, Ti, Ti alloy, Fe alloy or the like.
  • the Fe alloy may be stainless steel.
  • the positive electrode mixture layer contains a positive electrode active material.
  • the positive electrode mixture layer may contain at least one selected from the group consisting of a binder, a conductive material, and an additive. If necessary, a conductive carbonaceous material may be arranged between the positive electrode current collector and the positive electrode mixture layer.
  • the binder include at least one selected from the binders exemplified for the negative electrode active material layer.
  • the conductive material include at least one selected from the group consisting of the conductive material exemplified for the negative electrode active material layer and graphite.
  • the conductive carbonaceous material include at least one selected from the conductive carbonaceous materials exemplified as the conductive material of the negative electrode active material layer.
  • the positive electrode active material is selected according to the type of non-aqueous electrolyte secondary battery.
  • a material that electrochemically absorbs and releases lithium ion is used as the positive electrode active material.
  • Such materials include, for example, at least one selected from the group consisting of lithium-containing transition metal oxides, transition metal fluorides, polyanions, fluorinated polyanions, and transition metal sulfides. From the viewpoint of high average discharge voltage and cost advantage, the positive electrode active material may be a lithium-containing transition metal oxide.
  • transition metal element contained in the lithium-containing transition metal oxide examples include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, W and the like.
  • the lithium-containing transition metal oxide may contain one kind of transition metal element, or may contain two or more kinds of transition metal elements.
  • the transition metal element may be at least one selected from the group consisting of Co, Ni, and Mn.
  • Lithium-containing transition metal oxides can optionally contain one or more main group elemental elements. Typical metal elements include Mg, Al, Ca, Zn, Ga, Ge, Sn, Sb, Pb, Bi and the like.
  • the main group element may be Al or the like.
  • the positive electrode is obtained, for example, by applying or filling a positive electrode current collector with a slurry containing the constituent components of the positive electrode mixture layer and a dispersion medium, and drying and compressing the coating film. If necessary, a conductive carbonaceous material may be applied to the surface of the positive electrode current collector.
  • the dispersion medium include at least one selected from the group consisting of water and organic media.
  • the separator As the separator, a porous sheet having ion permeability and insulating property is used. Examples of the porous sheet include a microporous film, a woven fabric, and a non-woven fabric.
  • the material of the separator may be a polymer material. Examples of the polymer material include olefin resin, polyamide resin, cellulose and the like. Examples of the olefin resin include polyethylene, polypropylene and a copolymer of ethylene and propylene.
  • the separator may contain additives, if desired. Examples of the additive include an inorganic filler and the like.
  • the separator may include a plurality of layers that differ in at least one of morphology and composition.
  • a separator may be, for example, a laminate of a polyethylene microporous film and a polypropylene microporous film, or a laminate of a nonwoven fabric containing cellulose fibers and a nonwoven fabric containing thermoplastic resin fibers.
  • the non-aqueous electrolyte contains, for example, a non-aqueous solvent, an ion that becomes a carrier of electric charge, and, if necessary, a counter ion of the ion.
  • a non-aqueous electrolyte secondary battery when the ion that becomes a carrier of charge is lithium ion, the non-aqueous electrolyte has lithium ion conductivity.
  • the lithium ion conductive non-aqueous electrolyte contains, for example, a non-aqueous solvent and lithium ions and anions dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte may be in the form of a liquid or in the form of a gel.
  • the liquid non-aqueous electrolyte is prepared, for example, by dissolving a lithium salt in a non-aqueous solvent.
  • the dissolution of the lithium salt in a non-aqueous solvent produces lithium ions and anions.
  • the lithium salt a salt of lithium ion and an anion is used.
  • the gel-like non-aqueous electrolyte contains, for example, a liquid non-aqueous electrolyte and a matrix polymer.
  • a matrix polymer for example, a polymer material that absorbs a non-aqueous solvent and gels is used. Examples of such a polymer material include at least one selected from the group consisting of fluororesins, acrylic resins, and polyether resins.
  • the lithium salt or anion a known component used for a non-aqueous electrolyte of a lithium secondary battery can be used.
  • the anion include BF 4-, ClO 4-, PF 6-, CF 3 SO 3-, CF 3 CO 2- , an anion of an imide compound , an anion of an oxalate compound, and the like.
  • the anion of the imide compound include N (SO 2 C m F 2 m + 1 ) (SO 2 C n F 2n + 1 ) - (m and n are independently integers of 0 or more). m and n may be 0 to 3, respectively, and may be 0, 1 or 2, respectively.
  • the anion of the imide compound may be N (SO 2 CF 3 ) 2- , N (SO 2 C 2 F 5 ) 2- , N (SO 2 F ) 2- .
  • the anion of the oxalate compound may contain boron and / or phosphorus.
  • the anion of the oxalate compound may be the anion of the oxalate complex. Examples of the anion of the oxalate compound include bisoxalate borate anion, BF 2 (C 2 O 4 ) - , PF 4 (C 2 O 4 ) - , PF 2 (C 2 O 4 ) 2- and the like.
  • the non-aqueous electrolyte may contain one kind of these anions, or may contain two or more kinds of these anions.
  • non-aqueous solvent examples include esters, ethers, nitriles, amides, and halogen substituents thereof.
  • the non-aqueous electrolyte may contain one kind of these non-aqueous solvents, or may contain two or more kinds of these non-aqueous solvents.
  • halogen substituent examples include fluoride and the like.
  • Examples of the ester include carbonic acid ester and carboxylic acid ester.
  • Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, fluoroethylene carbonate and the like.
  • Examples of the chain carbonic acid ester include dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate and the like.
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Examples of the chain carboxylic acid ester include ethyl acetate, methyl propionate, methyl fluoropropionate and the like.
  • Examples of the ether include cyclic ether and chain ether.
  • Examples of the cyclic ether include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran and the like.
  • Examples of the chain ether include 1,2-dimethoxyethane, diethyl ether, ethyl vinyl ether, methylphenyl ether, benzyl ethyl ether, diphenyl ether, dibenzyl ether, 1,2-diethoxyethane, diethylene glycol dimethyl ether and the like.
  • nitriles include acetonitrile, propionitrile, benzonitrile and the like.
  • amide examples include dimethylformamide and dimethylacetamide.
  • the concentration of the lithium salt in the non-aqueous electrolyte is, for example, 0.5 mol / L or more and 3.5 mol / L or less.
  • the concentration of the lithium salt is the sum of the concentration of the dissociated lithium salt and the concentration of the undissociated lithium salt.
  • the concentration of anions in the non-aqueous electrolyte may be 0.5 mol / L or more and 3.5 mol / L or less.
  • the non-aqueous electrolyte may contain additives.
  • the additive include vinylene carbonate, fluoroethylene carbonate, and vinylethylene carbonate.
  • the additive one type may be used alone, or two or more types may be used in combination.
  • the non-aqueous electrolyte secondary battery is manufactured, for example, by accommodating a group of electrodes and a non-aqueous electrolyte in a battery case.
  • the electrode group is produced, for example, by winding a positive electrode and a negative electrode with a separator interposed therebetween.
  • the shape of the end face of the winding electrode group in the winding axis direction may be circular, elliptical or oval.
  • known configurations can be used without particular limitation.
  • FIG. 2 is a vertical sectional view schematically showing a non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure.
  • the non-aqueous electrolyte secondary battery 10 is a cylindrical battery including a cylindrical battery case, a winding electrode group 14 housed in the battery case, and a non-aqueous electrolyte (not shown).
  • the battery case is composed of a case body 15 which is a bottomed cylindrical metal container and a sealing body 16 which seals an opening of the case body 15.
  • a gasket 27 is arranged between the case body 15 and the sealing body 16, whereby the airtightness of the battery case is ensured.
  • insulating plates 17 and 18 are arranged at both ends of the electrode group 14 in the winding axis direction, respectively.
  • the case body 15 has, for example, a step portion 21 formed by partially pressing the side wall of the case body 15 from the outside.
  • the step portion 21 may be formed on the side wall of the case body 15 in an annular shape along the circumferential direction of the case body 15.
  • the sealing body 16 is supported on the opening side surface of the step portion 21.
  • the sealing body 16 includes a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26. In the sealing body 16, these members are laminated in this order.
  • the sealing body 16 is attached to the opening of the case body 15 so that the cap 26 is located on the outside of the case body 15 and the filter 22 is located on the inside of the case body 15.
  • Each of the above-mentioned members constituting the sealing body 16 has, for example, a disk shape or a ring shape.
  • Each member except the insulating member 24 is electrically connected to each other.
  • the electrode group 14 has a positive electrode 11, a negative electrode 12, and a separator 13.
  • the positive electrode 11, the negative electrode 12, and the separator 13 are all band-shaped.
  • the negative electrode 12 includes, for example, a negative electrode current collector 112 as shown in FIG.
  • the positive electrode 11 and the negative electrode 12 are spirally wound with a separator 13 interposed between the electrodes so that the width direction of the band-shaped positive electrode 11 and the negative electrode 12 is parallel to the winding axis. ..
  • the positive electrode 11 and the negative electrode 12 are alternately laminated in the radial direction of the electrode group 14 with the separator 13 interposed between the electrodes. be.
  • the positive electrode 11 is electrically connected to the cap 26 which also serves as the positive electrode terminal via the positive electrode lead 19.
  • One end of the positive electrode lead 19 is connected, for example, near the center of the positive electrode 11 in the longitudinal direction.
  • the positive electrode lead 19 extending from the positive electrode 11 extends to the filter 22 through a through hole (not shown) formed in the insulating plate 17.
  • the other end of the positive electrode lead 19 is welded to the surface of the filter 22 on the electrode group 14 side.
  • the negative electrode 12 is electrically connected to the case body 15 which also serves as a negative electrode terminal via the negative electrode lead 20.
  • One end of the negative electrode lead 20 is connected to, for example, the longitudinal end of the negative electrode 12, and the other end is welded to the inner bottom surface of the case body 15.
  • non-aqueous electrolyte secondary battery of the present disclosure will be specifically described based on Examples and Comparative Examples, but the non-aqueous electrolyte secondary battery of the present disclosure is not limited to the following examples.
  • a cylindrical lithium secondary battery was manufactured by the following procedure.
  • (1) Preparation of Positive Electrode A positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride as a binder were mixed at a mass ratio of 95: 2.5: 2.5. An appropriate amount of N-methyl-2-pyrrolidone as a dispersion medium was added to the mixture and stirred to prepare a positive electrode slurry.
  • As the positive electrode active material a lithium-containing transition metal oxide containing Ni, Co and Al was used.
  • the positive electrode slurry was applied to both sides of the aluminum foil as the positive electrode current collector and dried.
  • the dried product was compressed in the thickness direction using a roller.
  • a positive electrode having positive electrode mixture layers on both sides of the positive electrode current collector was produced.
  • An exposed portion of the positive electrode current collector having no positive electrode mixture layer was formed in a part of the positive electrode.
  • One end of an aluminum positive electrode lead was attached to the exposed portion of the positive electrode current collector by welding.
  • LiPF 6 Lithium hexafluorophosphate
  • a non-aqueous electrolyte was prepared by dissolving oxalate volate lithium (LiFOB).
  • concentrations of LiPF 6 and LiFOB in the non-aqueous electrolyte were 1 mol / L and 100 mmol / L, respectively.
  • the negative electrode current collector was manufactured by forming a slit group by laser processing on a strip-shaped copper foil (thickness 10 ⁇ m).
  • a plurality of slit groups extending in parallel in the lateral direction from one end of the first end and the second end toward the other end were formed. More specifically, in the negative electrode current collector, the first slit group extending in parallel in the lateral direction from the first end to the second end and the short from the second end to the first end.
  • the second slit group extending parallel to the direction was formed alternately along the longitudinal direction. In each slit group of the negative electrode current collector used in the examples, as shown in FIG.
  • the circular hole is continuous with the slit on the other end side of the plurality of slits constituting each slit group. Formed.
  • the width of the circular hole (in other words, the diameter of the circle) was set to the value shown in Table 1.
  • the slit group consisted of only a plurality of slits and did not form holes.
  • Table 1 shows the average values of the length and width of the slits in the negative electrode current collector used in the examples or comparative examples, the spacing between adjacent slits, and the spacing between adjacent slit groups.
  • Example 7 and Comparative Example 2 as shown in FIG.
  • the average distance Po between adjacent slit groups in the portion L / 4 from the end on the outer peripheral side is set in the remaining portion. It was made smaller than the average spacing Pi between adjacent slit groups.
  • Each slit group was formed at a position of 2 W / 3 from the first end portion or the second end portion.
  • the electrode group was housed in a bag-shaped exterior body formed of a laminated sheet provided with an Al layer, and after injecting a non-aqueous electrolyte, the exterior body was sealed to prepare a lithium secondary battery.
  • the electrode group was housed in the exterior body, the other end of the positive electrode lead and the other end of the negative electrode lead were exposed to the outside from the exterior body.
  • the thickness of the negative electrode after the initial discharge required by the procedure described above was 10 ⁇ m, which corresponds to the thickness of the copper foil. Further, when fully charged, lithium was deposited on both main surfaces of the copper foil with a thickness of about 10 ⁇ m, and the thickness of the negative electrode was about 30 ⁇ m. The thickness of the negative electrode at the time of full charge obtained by the above-mentioned procedure was about three times the thickness of the negative electrode after the initial discharge. In the lithium secondary battery, unlike the case where the negative electrode active material layer containing graphite or the like is formed, the negative electrode after the initial discharge is in a state of containing almost no negative electrode active material. Therefore, in the lithium secondary battery, the ratio of the thickness of the negative electrode at the time of full charge to the thickness of the negative electrode after the initial discharge is significantly larger than that in the case where the negative electrode contains a negative electrode active material layer containing graphite or the like.
  • Constant current charging is performed with a current of 10 mA per unit area (unit: square centimeter) of the electrode until the battery voltage reaches 4.3 V, and then a current of 4.3 V per unit area (unit: square centimeter) of the electrode. Constant voltage charging is performed until the value reaches 1 mA.
  • (B) Breakage of the negative electrode current collector The lithium secondary battery after the cycle test was disassembled, the negative electrode was taken out, and the broken state of the negative electrode current collector was visually observed and evaluated according to the following criteria.
  • E1 to E7 are examples, and C1 to C2 are comparative examples.
  • the negative electrode current collector is broken not only in the slit group but also in a portion other than the slit group.
  • the cycle characteristics were also low.
  • the negative electrode current collector was suppressed from breaking in the portion other than the slit group, and high cycle characteristics were obtained. This is because, in the embodiment, as the negative electrode expands during charging, the negative electrode current collector breaks along the slit group, and the stress applied to the negative electrode current collector is relaxed by the holes, so that the breakage is a portion of the hole. It is probable that it ended at.
  • the average spacing Po between the adjacent slit groups in the L / 4 portion from the outer peripheral end of the negative electrode current collector is made smaller than the average spacing Pi between the adjacent slit groups in the remaining portion, it is determined.
  • the cycle characteristics can be further improved.
  • the non-aqueous electrolyte secondary battery according to the present disclosure high cycle characteristics can be obtained even when the negative electrode expands and contracts significantly due to charging and discharging.
  • the capacity of the non-aqueous electrolyte secondary battery can be increased. Therefore, the non-aqueous electrolyte secondary battery according to the present disclosure can be applied to various applications requiring high cycle characteristics or high capacity. Examples of such applications include various electronic devices (for example, mobile phones, smartphones, tablet terminals, wearable terminals), electric vehicles including hybrids and plug-in hybrids, household storage batteries combined with solar cells, and the like.
  • the use of the non-aqueous electrolyte secondary battery is not limited to these.
  • Negative electrode current collector 113 Slit group 113a Multiple slits 113b Holes 1131 First slit group 1132 Second slit group DS Negative electrode current collector short side e1 Negative electrode current collector short side first end e2 Negative electrode Second end of the current collector in the lateral direction DL Negative electrode Longitudinal end of the current collector Eo The outer peripheral end of the winding of the negative electrode current collector Ei The inner peripheral end of the winding of the negative electrode current collector L Longitudinal length of the negative electrode collector W Long side length of the negative electrode current collector p1, p2 Spacing between adjacent slit groups 10 Non-aqueous electrolyte secondary battery 11 Positive electrode 12 Negative electrode 13 Separator 14 Electrode group 15 Case body 16 Seals 17, 18 Insulation plate 19 Positive electrode lead 20 Negative electrode lead 21 Step 22 Filter 23 Lower valve body 24 Insulation member 25 Upper valve body 26 Cap 27 Gasket 30 Positive electrode current collector 31 Positive electrode mixture layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池は、電極群と、非水電解質と、を含む。前記電極群は、正極と、負極と、前記正極および前記負極の間に介在するセパレータと、を含む。前記負極は、短手方向における第1端部および第2端部を有する帯状の負極集電体を含む。前記負極集電体は、前記第1端部および前記第2端部の一方の端部から他方の端部に向かって前記短手方向に沿って破線状に延びる複数のスリットと、前記複数のスリットの前記他方の端部側に形成され、かつ前記複数のスリットの平均の幅よりも大きな幅を有する孔と、で構成されたスリット群を少なくとも1つ有する。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 非水電解質二次電池は、パソコンおよびスマートフォン等のICT用、車載用、ならびに蓄電用等の用途に用いられている。非水電解質二次電池の特性を向上するため、様々な改良が試みられている。例えば、集電体の形状の改良も提案されている。
 特許文献1は、非水電解質電池の電極において、金属集電体に切れ目を設けて、折り曲げ自在にすることを提案している。
特開2001-266894号公報
 非水電解質二次電池では、充放電に伴う負極の膨張収縮が顕著である。充電時の負極の膨張によって、負極集電体が追随できずに破断して、電気的接続が切断されることがある。負極集電体における電気的接続が切断されると、非水電解質二次電池のサイクル特性が低下する。
 本開示の一側面は、電極群と、非水電解質と、を含み、
 前記電極群は、正極と、負極と、前記正極および前記負極の間に介在するセパレータと、を含み、
 前記負極は、短手方向における第1端部および第2端部を有する帯状の負極集電体を含み、
 前記負極集電体は、前記第1端部および前記第2端部の一方の端部から他方の端部に向かって前記短手方向に沿って破線状に延びる複数のスリットと、前記複数のスリットの前記他方の端部側に形成され、かつ前記複数のスリットの平均の幅よりも大きな幅を有する孔と、で構成されたスリット群を少なくとも1つ有する、非水電解質二次電池に関する。
 非水電解質二次電池のサイクル特性を向上できる。
本開示の一実施形態に係る非水電解質二次電池に用いられる負極集電体の一例を示す平面図である。 本開示の一実施形態に係る非水電解質二次電池を模式的に示す縦断面図である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 本開示の非水電解質二次電池は、電極群と、非水電解質と、を含む。電極群は、正極と、負極と、正極および負極の間に介在するセパレータと、を含む。負極は、短手方向における第1端部および第2端部を有する帯状の負極集電体を含む。負極集電体は、第1端部および第2端部の一方の端部から他方の端部に向かって短手方向に沿って破線状に延びる複数のスリットと、複数のスリットの上記他方の端部側に形成され、かつ複数のスリットの平均の幅よりも大きな幅を有する孔と、で構成されたスリット群を少なくとも1つ有する。
 上記の非水電解質二次電池では、充電時の負極の膨張による応力が負極集電体に加わると、破線状の複数のスリットに沿って負極集電体が破断する。複数のスリットの他方の端部側に形成され、かつスリットの平均の幅よりも大きな幅を有する孔によって、応力が緩和され、負極集電体の破断が孔の部分で終止する。そのため、上記一方の端部側では負極集電体が破断するが、上記他方の端部側では負極集電体の破断が抑制される。換言すると、負極集電体に上記のスリット群を設けることによって、負極の膨張による応力が負極集電体に加わった場合に、負極集電体が破断される位置を制御することができる。よって、負極集電体が短手方向に沿って完全に切断されることが抑制され、負極集電体の電気的接続が維持される。その結果、サイクル特性を向上できる。
 以下に、負極についてより詳細に説明する。
(負極)
 1つのスリット群において、複数のスリットは、負極集電体の短手方向に沿って間隔を空けて配置されている。1つのスリット群において、各スリットは、負極集電体の短手方向に沿って延びるように形成されている。スリットの幅は、スリット群について、各スリットの負極集電体の長手方向におけるスリットのサイズの最大値を平均化した値である。孔の幅とは、負極集電体の長手方向における孔のサイズの最大値である。
 負極集電体の第1端部および第2端部のうち、一方の端部は、複数のスリットの一方の端部側のスリットで切断されていてもよい。負極集電体の一方の端部の強度が低くなるため、負極集電体に応力が加わったときに、複数のスリットに沿ってスムーズに破断が進行する。そのため、負極集電体が破断する位置をさらに制御し易くなる。
 なお、一方の端部側のスリットとは、1つのスリット群を構成する複数のスリットのうち、負極集電体の短手方向の一方の端部の最も近くに位置するスリットである。また、他方の端部側のスリットとは、1つのスリット群を構成する複数のスリットのうち、負極集電体の短手方向の他方の端部の最も近くに位置するスリットである。
 負極集電体は、少なくとも1つのスリット群を有していればよく、複数のスリット群を有していてもよい。負極集電体が複数のスリット群を有する場合、全てのスリット群が負極集電体の一方の端部(例えば、第1端部)から他方の端部(例えば、第2端部)に向かって短手方向に沿って延びるように(換言すると同じ向きに)形成されていてもよい。
 負極集電体が複数のスリット群を有する場合、一部のスリット群と残りのスリット群とは異なる向きに形成されていてもよい。より具体的に説明すると、複数のスリット群は、負極集電体の第1端部から第2端部に向かって短手方向に沿って延びる複数の第1スリットと、複数の第1スリットの第2端部側に形成された第1孔とで構成された第1スリット群と、第2端部から第1端部に向かって短手方向に沿って延びる複数の第2スリットと、複数の第2スリットの第1端部側に形成された第2孔とで構成された第2スリット群と、を含んでもよい。この場合、負極の膨張に伴い負極集電体に加わる応力をより分散させ易くなり、スリット群以外の位置での破断を抑制する効果を高めることができるため、負極集電体が破断した場合の電気的接続をさらに維持し易くなる。
 第1スリット群と、第2スリット群とは、交互に並んでいることが好ましい。この場合、負極集電体が破断する位置の制御がさらに容易になり、負極集電体が破断した場合の電気的接続をさらに維持し易くなる。第1スリット群と第2スリット群とが交互に並んでいる負極集電体の一例を図1に示す。
 図1は、本開示の一実施形態の非水電解質二次電池に用いられる負極集電体の一例を示す平面図である。図1では、帯状の負極集電体112は、複数のスリット群113を有する。各スリット群113は、負極集電体112の短手方向Dの一方の端部から他方の端部に向かって短手方向Dに沿って破線状に延びる複数のスリット113aと円形の孔113bとで構成されている。各スリット群113において、孔113bは、複数のスリット113aの上記他方の端部側に形成されている。より具体的には、孔113bは、複数のスリット113aの上記他方の端部側のスリットと連続している。また、各スリット群113において、孔113bの幅は複数のスリット113aの平均の幅よりも大きな幅を有する。図1では、負極集電体112は、複数のスリット群113を有する。複数のスリット群113は、負極集電体112の長手方向Dに沿って、間隔を開けて形成されている。図1では、複数のスリット群113は、負極集電体112の短手方向Dの第1端部e1から第2端部e2に向かって短手方向Dに沿って延びる複数の第1スリット群1131と、第2端部e2から第1端部e1に向かって短手方向Dに沿って延びる複数の第2スリット群1132とで構成されている。第1スリット群1131と第2スリット群1132とは交互に配置されている。なお、以下の説明は、図1の具体例の説明に限定されない。
 1つのスリット群において、このスリット群を構成する複数のスリットが破線状に延びる方向は、負極集電体の短手方向と平行であってもよく、交差していてもよい。複数のスリットが破線状に延びる方向と、負極集電体の短手方向とがなす鋭角の角度は、例えば、30°以下であり、15°以下であってもよい。なお、複数のスリットが破線状に延びる方向とは、1つのスリット群を構成する各スリットの長さ方向の平均的な方向である。
 破線状に延びる方向において隣接するスリット間の平均の間隔は、例えば、0.02mm以上であり、0.1mm以上が好ましく、0.2mm以上であってもよい。隣接するスリット間の平均の間隔がこのような範囲である場合、負極の作製工程または電極群の作製工程における負極集電体の破断を抑制することができる。破線状に延びる方向において隣接するスリット間の平均の間隔は、例えば、3mm以下であり、2.5mm以下が好ましく、1.5mm以下または1mm以下がより好ましい。この場合、負極の膨張に伴い負極集電体が破断する位置の制御がさらに容易であり、破断後の負極集電体の高い集電性をより容易に確保することができる。これらの下限値と上限値とは任意に組み合わせることができる。なお、破線状に延びる方向において隣接するスリット間の間隔とは、隣接するスリット間の離間距離(換言すると、隣接するスリットの互いに突き合う端部間の距離)である。
 スリットの長さは、例えば、0.1mm以上7mm以下であり、0.5mm以上3mm以下であってもよく、0.5mm以上1mm以下であってもよい。スリットの長さがこのような範囲である場合、負極の膨張に伴い負極集電体が破断する位置の制御がより容易である。スリットの長さとは、スリット群において、破線状に延びる方向における各スリットの長さを平均化した値である。スリットの長さは、スリットの幅よりも大きい。
 スリットの幅は、例えば、0.005mm以上0.1mm以下であり、0.01mm以上0.05mm以下であってもよく、0.02mm以上0.04mm以下であってもよい。スリットの幅がこのような範囲である場合、破線状に並んだ複数のスリットに沿って、負極集電体をよりスムーズに破断させることができる。
 孔は、スリット群において、複数のスリットの他方の端部側に形成されている。孔は、図1に示されるように、複数のスリットのうち他方の端部側のスリットと連続していてもよい。また、孔は、他方の端部側のスリットと間隔を開けて形成されていてもよい。この場合、複数のスリットと孔とが1つのスリット群を構成するように、孔は、他方の端部側のスリットの近傍に形成される。孔と他方の端部側のスリットとの間隔は、例えば、3mm以下であり、2.5mm以下が好ましく、1.5mm以下または1mm以下がより好ましい。負極の膨張時に、負極集電体が意図しない位置で破断することを抑制する効果がより高まる観点からは、孔は、他方の端部側のスリットと連続していることが好ましい。なお、孔と他方の端部側のスリットとの間隔とは、孔と他方の端部側のスリットとの離間距離である。
 孔の幅は、例えば、0.05mm以上であり、0.1mm以上または0.2mm以上であってもよい。この場合、負極の膨張に伴い負極集電体に加わる応力を緩和する効果が高まり、負極集電体が意図しない位置で破断することを抑制する効果をさらに高めることができる。より高い集電性を確保し易い観点からは、孔の幅は、2mm以下が好ましく、1.5mm以下または1mm以下がより好ましい。これらの下限値と上限値とは任意に組み合わせることができる。また、負極集電体の短手方向における孔の長さは、孔の幅について記載した範囲から選択できる。なお、孔の長さとは、負極集電体の短手方向における孔のサイズの最大値である。
 負極集電体は、帯状の負極集電体の表面の大部分を占める一対の主面を有する。負極集電体の主面を主面と垂直な方向から見たときの孔の形状は、例えば、多角形(四角形、五角形、六角形等)であってもよいが、円形または楕円形であることが好ましい。孔の形状が円形または楕円形である場合、負極の膨張に伴い負極集電体に加わる応力を緩和する効果が高まり、孔を基点として負極集電体が意図しない位置で破断することを抑制する効果が高まる。
 負極集電体の短手方向の長さ(換言すると負極集電体の幅)をWとするとき、孔と負極集電体の他方の端部との間の距離は、0.1W以上0.5W以下が好ましく、0.15W以上0.4W以下がより好ましく、0.15W以上0.35W以下がさらに好ましい。孔と負極集電体の他方の端部との間の距離がこのような範囲である場合、負極の膨張に伴う応力を緩和しながら、負極集電体の完全な切断を抑制する効果が高まる。なお、孔と負極集電体の他方の端部との間の距離とは、孔の、負極集電体の他方の端部に最も近い位置と、他方の端部との間の最短距離である。
 負極集電体が複数のスリット群を有する場合、複数のスリット群は、負極集電体の長手方向に沿って間隔を開けて形成されていてもよい。隣接するスリット群間の平均の間隔は、孔の幅よりも大きい。隣接するスリット群間の平均の間隔は、例えば、0.2mm以上であり、0.5mm以上が好ましく、1.5mm以上または2mm以上であってもよい。隣接するスリット群間の平均の間隔がこのような範囲である場合、負極の膨張に伴う応力が負極集電体に加わっても、複数のスリットが破線状に延びる方向に沿って負極集電体をスムーズに破断させ易くなる。隣接するスリット群間の平均の間隔の上限は特に制限されない。負極の膨張時に負極集電体が破断する位置をさらに制御し易い観点からは、隣接するスリット群間の平均の間隔は、10mm以下が好ましく、5mm以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 電極群において、隣接するスリット群間の間隔は同じであってもよい。電極群において、負極の膨張に伴う応力が加わり易い部分では、それ以外の部分に比べて、隣接するスリット群間の間隔を小さくすることが好ましい。これによって、負極の膨張に伴う応力をより効果的に緩和することができるため、負極集電体が意図しない位置で破断することを抑制する効果をさらに高めることができる。例えば、負極に接続された集電用のタブまたはリードの近傍では、タブまたはリードから離れた部分に比べて、隣接するスリット群間の間隔を小さくすることが好ましい。
 電極群が、正極、負極、およびセパレータが巻回された巻回式電極群である場合、負極の膨張に伴う応力は、巻回式電極群の内側では解放され難いため、外側に向かう。よって、負極集電体の外周側の部分における隣接するスリット群間の間隔を、残りの部分における隣接するスリット群間の間隔を小さくすることが好ましい。より具体的には、負極集電体の長手方向の長さをLとするとき、負極集電体の外周側の端部からL/4の部分における隣接するスリット群間の平均の間隔は、残りの部分における隣接するスリット群間の平均の間隔よりも小さいことが好ましい。図1には、負極集電体112の外周側の端部EoからL/4の部分における隣接するスリット群113間の間隔が、残りの部分(具体的には、負極集電体112の内周側の端部Eiから3L/4の部分)における隣接するスリット群113間の間隔よりも小さい場合の例を示している。
 負極集電体の外周側の端部からL/4の部分における隣接するスリット群間の平均の間隔をPo、残りの部分における隣接するスリット群間の平均の間隔をPiとするとき、比Po/Piは、例えば、0<Po/Pi<1未満であり、0.1≦Po/Pi≦0.7が好ましく、0.2≦Po/Pi≦0.5がより好ましい。例えば、図1では、負極集電体112の外周側の端部EoからL/4の部分における隣接するスリット群113間の平均の間隔は、隣接するスリット群113間の間隔p1を合計し、平均化することによって求められる。残りの部分についても、隣接するスリット群間の間隔p2を合計し、平均化することによって、隣接するスリット群間の平均の間隔が求められる。
 なお、隣接するスリット群間の間隔とは、隣接するスリット群において、各スリット群を構成する複数のスリットが破線状に延びる方向に第1端部から第2端部まで直線を引いたとき、第1端部における2つの直線間の距離である。
 負極集電体の材質としては、例えば、金属、合金等の金属材料が挙げられる。金属材料としては、例えば、銅(Cu)、ニッケル(Ni)、鉄(Fe)、およびこれらの金属元素を含む合金が挙げられる。合金としては、銅合金、ステンレス鋼(SUS)等が挙げられる。中でも高い導電性を有する銅および銅合金が好ましい。
 負極集電体は、上記の材質のシート(箔等)に、公知のスリットおよび孔の形成技術を利用してスリット群を形成することによって得られる。スリットおよび孔の形成技術としては、例えば、レーザー加工、エッチング、プレス加工、切削、および打ち抜き加工が挙げられる。
 負極集電体の厚さは、例えば5μm以上300μm以下である。
 負極は、負極活物質を含む。負極は、負極集電体と負極活物質層とを備えてもよい。負極活物質層は、負極活物質に加え、必要に応じて、さらに、結着材、導電材、増粘剤、および添加剤からなる群より選択される少なくとも一種を含んでもよい。負極活物質層は、負極集電体の一方の主面のみに形成されてもよく、両方の主面に形成されてもよい。
 本開示の非水電解質二次電池では、上記のスリット群を有する負極集電体を用いるため、充電時の膨張に伴う体積変化が大きな負極活物質を用いる場合でも、負極の膨張に伴う負極集電体が完全に切断されることを抑制でき、高いサイクル特性が得られる。このような負極活物質を含む負極は、満充電時の厚さが初回放電後の負極の厚さに比べて顕著に大きくなる。満充電時の負極の厚さは、初回放電後の負極の厚さの1.18倍以上であることが好ましく、1.3倍以上であることがより好ましく、2倍以上であってもよい。例えば、負極活物質として黒鉛を用いるリチウムイオン二次電池では、負極集電体の両方の主面に黒鉛を含む負極活物質層が形成されている場合でも、満充電時の負極の厚さは、初回放電後の負極の厚さの1.1倍程度である。このように、本開示の非水電解質二次電池は、黒鉛よりも体積変化が大きい負極活物質を用いる場合に特に有効である。
 上記の負極の厚さは、電極群の断面の写真を撮影し、この写真において、複数箇所(例えば、10箇所)について負極の厚さを測定し、平均化することによって求められる。ただし、負極の厚さは、少なくとも充電状態では負極集電体の両方の主面に負極活物質が存在する領域において、任意の複数箇所について測定する。
 満充電時の負極の厚さは、満充電状態の非水電解質二次電池における負極の厚さである。満充電状態の非水電解質二次電池とは、電池の定格容量をCとするとき、0.98C以上の充電状態(SOC:State of Charge)まで充電した状態の電池である。初回放電後の負極の厚さは、初回の放電で完全放電状態まで放電した状態の非水電解質二次電池における負極の厚さである。初回の放電で完全放電状態まで放電した状態の非水電解質二次電池とは、電池を組み立てた後、慣らし充放電を行い、さらに初回の充電を行い、0.05C以下のSOCとなるまで初回の放電を行った後の電池である。初回の放電で完全放電状態まで放電した状態の非水電解質二次電池は、例えば、充電状態で市販されている状態の電池を0.05C以下のSOCとなるまで初回の放電を行った後の非水電解質二次電池であってもよい。初回の放電で完全放電状態まで放電した状態の非水電解質二次電池は、例えば、0.05Cの定電流で下限電圧まで初回の放電を行った後の電池であってもよい。
 負極活物質は、非水電解質二次電池の種類に応じて選択される。例えば、非水電解質二次電池において、電荷のキャリアとなるイオンがリチウムイオンである場合、負極活物質としては、金属リチウム、リチウム合金、電気化学的にリチウムイオンを吸蔵および放出可能な材料が用いられる。リチウム合金としては、例えば、リチウム-アルミニウム合金またはリチウム-マグネシウム合金が挙げられる。電気化学的にリチウムイオンを吸蔵および放出可能な材料としては、炭素質材料、SiおよびSnからなる群より選択される少なくとも一種を含む材料等が挙げられる。負極は、負極活物質を1種含んでいてもよく、2種以上組み合わせて含んでもよい。
 炭素質材料としては、例えば、黒鉛、ソフトカーボン、ハードカーボン、非晶質炭素が挙げられる。黒鉛としては、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子が挙げられる。黒鉛とは、黒鉛型結晶構造が発達した炭素質材料である。X線回折法によって測定される黒鉛の(002)面の面間隔d002は、例えば、0.340nm以下であってもよく、0.3354nm以上0.340nm以下であってもよい。
 Si含有材料としては、Si単体、ケイ素合金、およびケイ素化合物(ケイ素酸化物、シリケート、ケイ素窒化物等)等が挙げられる。ケイ素酸化物としては、SiO粒子が挙げられる。xは、例えば0.5≦x<2であり、0.8≦x≦1.6であってもよい。Si含有材料として、リチウムシリケート相と、リチウムシリケート相内に分散しているシリコン粒子と、を含む材料を用いてもよい。Sn含有材料としては、Sn単体、スズ合金、およびスズ化合物(スズ酸化物、スズ窒化物等)等が挙げられる。Si含有材料またはSn含有材料を含む負極は、充電時の膨張に伴う体積変化が大きい。本開示の非水電解質二次電池では、上記のスリット群を有する負極集電体を用いるため、Si含有材料またはSn含有材料を用いる場合でも、高いサイクル特性が得られる。負極は、負極活物質として、Si含有材料およびSn含有材料からなる群より選択される少なくとも一種と、炭素質材料とを含んでもよい。
 本開示の非水電解質二次電池は、特に、リチウム二次電池として有用である。リチウム二次電池は、リチウム金属二次電池とも称される。リチウム二次電池における負極活物質はリチウム金属である。リチウム二次電池では、充電時に負極集電体の表面にリチウム金属が析出し、放電時にリチウム金属が溶解する。そのため、充放電に伴う負極の体積変化が非常に大きい。また、リチウム二次電池では、充電時に、負極にリチウム金属がデンドライト状に析出する場合がある。リチウム金属がデンドライト状に析出すると、負極の膨張量はさらに大きくなる。加えて、デンドライト状に析出したリチウム金属は、市販品等として入手可能なリチウム金属よりも硬く、嵩高い。そのため、リチウム金属がデンドライト状に析出すると負極集電体に大きな応力が加わることになる。このように充電時に負極集電体に大きな応力が加わり易いリチウム二次電池においても、上記のスリット群を有する負極集電体を用いることによって、負極集電体が破断する位置を制御することができる。負極集電体の電気的接続を維持することができるため、高いサイクル特性を確保することができる。
 リチウム二次電池では、定格容量の例えば70%以上がリチウム金属の析出と溶解により発現する。充電時および放電時の負極における電子の移動は、主に負極におけるリチウム金属の析出および溶解による。具体的には、充電時および放電時の負極における電子の移動(別の観点では電流)の70~100%(例えば80~100%や90~100%)がリチウム金属の析出および溶解による。すなわち、リチウム二次電池における負極は、充電時および放電時の負極における電子の移動が主に負極活物質(黒鉛など)によるリチウムイオンの吸蔵および放出による負極とは異なる。
 リチウム二次電池などの充電時に負極においてリチウム金属を析出させる電池では、満充電時における負極の開回路電位(OCV:Open Circuit Voltage)は、リチウム金属(リチウムの溶解析出電位)に対して、例えば70mV以下である。満充電時における負極のOCVは、満充電状態の電池をアルゴン雰囲気下で分解して負極を取り出し、リチウム金属を対極としてセルを組み立てて測定すればよい。セルの非水電解質は、分解した電池中の非水電解質と同じ組成でもよい。
 負極活物質層に含まれる結着材としては、例えば、フッ素樹脂、ポリアクリロニトリル、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂、ゴム状重合体が挙げられる。フッ素樹脂としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。
 負極活物質層に含まれる導電材としては、例えば、導電性の炭素質材料が挙げられる。導電性の炭素質材料としては、カーボンブラック、カーボンナノチューブ等が挙げられる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック等が挙げられる。
 負極は、例えば、電析または蒸着のような気相法を利用して負極活物質を負極集電体の主面に堆積させることによって形成してもよい。負極は、負極活物質層の構成成分と分散媒とを含む負極スラリーを、負極集電体の主面に塗布し、塗膜を乾燥および圧縮することによって形成してもよい。分散媒としては、水および有機媒体からなる群より選択される少なくとも一種等が挙げられる。リチウム二次電池では、負極集電体を電極群の作製に用いてもよい。より具体的には、リチウム二次電池では、例えば、負極集電体と正極とをセパレータを介して積層することによって電極群が作製される。このようなリチウム二次電池では、充電時に正極からリチウムイオンが移動して負極集電体の表面に析出する。
 以下に、負極以外の非水電解質二次電池の構成について説明する。
(正極)
 正極は、例えば、帯状の正極集電体と、正極集電体の表面に形成された正極合材層とを含む。正極集電体は、シート状(例えば、箔、フィルム)であってもよく、多孔質であってもよい。シート状の正極集電体は、必要に応じて、負極集電体について説明したようなスリット群を有していてもよい。スリット群については、正極集電体についての説明を参照できる。正極合材層は、シート状の正極集電体の一対の主面に形成されていてもよく、一方の主面に形成されていてもよい。また、正極合材層は、メッシュ状の正極集電体に充填された状態で形成されていてもよい。
 正極集電体の材質としては、例えば、Al、Ti、Fe等を含む金属材料が挙げられる。金属材料は、Al、Al合金、Ti、Ti合金、およびFe合金等であってもよい。Fe合金は、ステンレス鋼であってもよい。
 正極合材層は、正極活物質を含む。正極合材層は、正極活物質に加え、結着材、導電材、および添加剤からなる群より選択される少なくとも一種を含んでもよい。正極集電体と正極合材層との間には、必要に応じて、導電性の炭素質材料を配置してもよい。結着材としては、例えば、負極活物質層について例示した結着材から選択される少なくとも一種が挙げられる。導電材としては、例えば、負極活物質層について例示した導電材、および黒鉛からなる群より選択される少なくとも一種が挙げられる。導電性の炭素質材料としては、例えば、負極活物質層の導電材として例示した導電性の炭素質材料から選択される少なくとも一種が挙げられる。
 正極活物質としては、非水電解質二次電池の種類に応じて選択される。例えば、非水電解質二次電池において、電荷のキャリアとなるイオンがリチウムイオンである場合、正極活物質としては、電気化学的にリチウムイオンを吸蔵および放出する材料が用いられる。このような材料としては、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン、フッ素化ポリアニオン、および遷移金属硫化物よりなる群から選択される少なくとも一つが挙げられる。平均放電電圧が高く、コスト的に有利である観点から、正極活物質はリチウム含有遷移金属酸化物であってもよい。
 リチウム含有遷移金属酸化物に含まれる遷移金属元素としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、W等が挙げられる。リチウム含有遷移金属酸化物は、遷移金属元素を一種含んでもよく、二種以上含んでいてもよい。遷移金属元素は、Co、Ni、およびMnよりなる群から選択される少なくとも一つであってもよい。リチウム含有遷移金属酸化物は、必要に応じて、一種または二種以上の典型金属元素を含むことができる。典型金属元素としては、Mg、Al、Ca、Zn、Ga、Ge、Sn、Sb、Pb、Bi等が挙げられる。典型金属元素は、Al等であってもよい。
 正極は、例えば、正極合材層の構成成分と分散媒とを含むスラリーを、正極集電体に塗布または充填し、塗膜を乾燥および圧縮することによって得られる。正極集電体の表面には、必要に応じて、導電性の炭素質材料を塗布してもよい。分散媒としては、水および有機媒体からなる群より選択される少なくとも一種が挙げられる。
(セパレータ)
 セパレータには、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートは、例えば、微多孔フィルム、織布、不織布が挙げられる。セパレータの材質は、高分子材料であってもよい。高分子材料としては、オレフィン樹脂、ポリアミド樹脂、セルロース等が挙げられる。オレフィン樹脂としては、ポリエチレン、ポリプロピレンおよびエチレンとプロピレンとの共重合体等が挙げられる。セパレータは、必要に応じて、添加剤を含んでもよい。添加剤としては、無機フィラー等が挙げられる。
 セパレータは、形態および組成の少なくとも一方が異なる複数の層を含んでもよい。このようなセパレータは、例えば、ポリエチレン微多孔フィルムとポリプロピレンの微多孔フィルムとの積層体、またはセルロース繊維を含む不織布と熱可塑性樹脂繊維を含む不織布との積層体であってもよい。
(非水電解質)
 非水電解質は、例えば、非水溶媒と、電荷のキャリアとなるイオンと、必要に応じて当該イオンのカウンターイオンとを含む。例えば、非水電解質二次電池において、電荷のキャリアとなるイオンがリチウムイオンである場合、非水電解質は、リチウムイオン伝導性を有する。リチウムイオン伝導性の非水電解質は、例えば、非水溶媒と、非水溶媒に溶解したリチウムイオンおよびアニオンとを含んでいる。非水電解質は、液状であってもよいし、ゲル状であってもよい。
 液状の非水電解質は、例えば、リチウム塩を非水溶媒に溶解させることによって調製される。リチウム塩が非水溶媒中に溶解することによって、リチウムイオンおよびアニオンが生成される。リチウム塩としては、リチウムイオンとアニオンとの塩が使用される。
 ゲル状の非水電解質は、例えば、液状の非水電解質と、マトリックスポリマーとを含む。マトリックスポリマーとしては、例えば、非水溶媒を吸収してゲル化するポリマー材料が使用される。このようなポリマー材料としては、フッ素樹脂、アクリル樹脂、およびポリエーテル樹脂よりなる群から選択される少なくとも一つが挙げられる。
 リチウム塩またはアニオンとしては、リチウム二次電池の非水電解質に利用される公知の成分が使用できる。アニオンとしては、BF 、ClO 、PF 、CFSO 、CFCO 、イミド化合物のアニオン、オキサレート化合物のアニオン等が挙げられる。イミド化合物のアニオンとしては、N(SO2m+1)(SO2n+1(mおよびnは、それぞれ独立して0以上の整数である。)等が挙げられる。mおよびnは、それぞれ、0~3であってもよく、0、1または2であってもよい。イミド化合物のアニオンは、N(SOCF 、N(SO 、N(SOF) であってもよい。オキサレート化合物のアニオンは、ホウ素および/またはリンを含有してもよい。オキサレート化合物のアニオンは、オキサレート錯体のアニオンであってもよい。オキサレート化合物のアニオンとしては、ビスオキサレートボレートアニオン、BF(C、PF(C、PF(C 等が挙げられる。非水電解質は、これらのアニオンを一種含んでもよく、二種以上含んでもよい。
 非水溶媒としては、例えば、エステル、エーテル、ニトリル、アミド、またはこれらのハロゲン置換体が挙げられる。非水電解質は、これらの非水溶媒を一種含んでもよく、二種以上含んでもよい。ハロゲン置換体としては、フッ化物等が挙げられる。
 エステルとしては、炭酸エステル、カルボン酸エステル等が挙げられる。環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート等が挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。鎖状カルボン酸エステルとしては、酢酸エチル、プロピオン酸メチル、フルオロプロピオン酸メチル等が挙げられる。
 上記エーテルとしては、環状エーテル、および鎖状エーテルが挙げられる。環状エーテルとしては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン等が挙げられる。鎖状エーテルとしては、1,2-ジメトキシエタン、ジエチルエーテル、エチルビニルエーテル、メチルフェニルエーテル、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル等が挙げられる。
 ニトリルとしては、アセトニトリル、プロピオニトリル、ベンゾニトリル等が挙げられる。アミドとしては、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
 非水電解質中のリチウム塩の濃度は、例えば、0.5mol/L以上3.5mol/L以下である。ここで、リチウム塩の濃度は、解離したリチウム塩の濃度と未解離のリチウム塩の濃度との合計である。非水電解質中のアニオンの濃度を、0.5mol/L以上3.5mol/L以下としてもよい。
 非水電解質は、添加剤を含んでもよい。添加剤としては、例えば、ビニレンカーボネート、フルオロエチレンカーボネート、ビニルエチレンカーボネートが挙げられる。添加剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
(その他)
 非水電解質二次電池は、例えば、電池ケースに、電極群と非水電解質とを収容することによって作製される。電極群は、例えば、正極と負極とを正極および負極の間にセパレータを介在させた状態で巻回することによって作製される。巻回式電極群の巻回軸方向の端面の形状は、円形であってもよく、楕円形または長円形であってもよい。非水電解質二次電池の電極群および非水電解質以外の構成については、公知の構成を特に制限なく利用できる。
 図2は、本開示の一実施形態に係る非水電解質二次電池を模式的に示す縦断面図である。
 非水電解質二次電池10は、円筒形の電池ケースと、電池ケース内に収容された巻回式の電極群14および図示しない非水電解質とを備える円筒形電池である。電池ケースは、有底円筒形の金属製容器であるケース本体15と、ケース本体15の開口部を封口する封口体16とで構成される。ケース本体15と封口体16との間には、ガスケット27が配置されており、これによって電池ケースの密閉性が確保されている。ケース本体15内において、電極群14の巻回軸方向の両端部には、絶縁板17、18がそれぞれ配置されている。
 ケース本体15は、例えば、ケース本体15の側壁を部分的に外側からプレスして形成された段部21を有する。段部21は、ケース本体15の側壁に、ケース本体15の周方向に沿って環状に形成されていてもよい。この場合、段部21の開口部側の面で封口体16が支持される。
 封口体16は、フィルタ22、下弁体23、絶縁部材24、上弁体25およびキャップ26を備えている。封口体16では、これらの部材がこの順序で積層されている。封口体16は、キャップ26がケース本体15の外側に位置し、フィルタ22がケース本体15の内側に位置するように、ケース本体15の開口部に装着される。封口体16を構成する上記の各部材は、例えば、円板形状またはリング形状である。絶縁部材24を除く各部材は、互いに電気的に接続している。
 電極群14は、正極11と負極12とセパレータ13とを有する。正極11、負極12およびセパレータ13は、いずれも帯状である。負極12は、例えば、図1で示されるような負極集電体112を含む。帯状の正極11および負極12の幅方向が巻回軸と平行となるように、正極11および負極12は、これらの電極の間にセパレータ13を介在させた状態で渦巻状に巻回されている。電極群14の巻回軸に垂直な断面においては、正極11と負極12とは、これらの電極間にセパレータ13を介在させた状態で、電極群14の半径方向に交互に積層された状態である。
 正極11は、正極リード19を介して、正極端子を兼ねるキャップ26と電気的に接続されている。正極リード19の一端部は、例えば、正極11の長手方向の中央付近に接続されている。正極11から延出した正極リード19は、絶縁板17に形成された図示しない貫通孔を通って、フィルタ22まで延びている。正極リード19の他端は、フィルタ22の電極群14側の面に溶接されている。
 負極12は、負極リード20を介して負極端子を兼ねるケース本体15と電気的に接続されている。負極リード20の一端部は、例えば、負極12の長手方向の端部に接続されており、他端部は、ケース本体15の内底面に溶接されている。
[実施例]
 以下、本開示の非水電解質二次電池を実施例および比較例に基づいて具体的に説明するが、本開示の非水電解質二次電池は以下の実施例に限定されない。
《実施例1~7および比較例1~2》
 下記の手順で、円筒形のリチウム二次電池を作製した。
(1)正極の作製
 正極活物質と、導電材としてのアセチレンブラックと、結着材としてのポリフッ化ビニリデンとを、95:2.5:2.5の質量比で混合した。混合物に、分散媒としてのN-メチル-2-ピロリドンを適量加えて撹拌することによって、正極スラリーを調製した。正極活物質としては、Ni、CoおよびAlを含むリチウム含有遷移金属酸化物を用いた。
 正極スラリーを、正極集電体としてのアルミニウム箔の両面に塗布し、乾燥した。乾燥物を、ローラーを用いて厚さ方向に圧縮した。得られた積層体を、所定の電極サイズに切断することによって、正極集電体の両面に正極合材層を備える正極を作製した。なお、正極の一部の領域には、正極合材層を有さない正極集電体の露出部を形成した。正極集電体の露出部に、アルミニウム製の正極リードの一端部を溶接によって取り付けた。
(2)非水電解質の調製
 プロピレンカーボネートと1,2-ジメトキシエタンとを1:2の体積比で含む非水溶媒の混合物に、六フッ化リン酸リチウム(LiPF)を溶解し、さらにジフルオロオキサレートボレートリチウム(LiFOB)を溶解することによって、非水電解質を調製した。非水電解質中のLiPFおよびLiFOBの濃度は、それぞれ、1mol/Lおよび100mmol/Lであった。
(3)電池の組み立て
 負極集電体に、ニッケル製の負極リードの一端部を溶接によって取り付けた。不活性ガス雰囲気中で、負極集電体と正極とを、これらの間にポリエチレン製のセパレータ(微多孔膜)を介して渦巻状に巻回し、電極群を作製した。電極群に含まれるリチウムは全て正極に由来するため、正極および負極が有するリチウムの合計量yLiと、正極が有する金属M(ここではNi、CoおよびAl)の量yMとのモル比:yLi/yMは1.0である。
 負極集電体は、帯状の銅箔(厚さ10μm)にレーザー加工でスリット群を形成することによって作製した。負極集電体では、第1端部および第2端部の一方の端部から他方の端部に向かって短手方向に平行に延びる複数のスリット群を形成した。より具体的には、負極集電体では、第1端部から第2端部に向かって短手方向に平行に延びる第1スリット群と第2端部から第1端部に向かって短手方向に平行に延びる第2スリット群とを、長手方向に沿って交互に形成した。実施例で用いた負極集電体の各スリット群では、図1のように、円形の孔を、各スリット群を構成する複数のスリットのうち上記他方の端部側のスリットと連続した状態で形成した。円形の孔の幅(換言すると円の直径)は、表1に示す値とした。比較例で用いた負極集電体では、スリット群は、複数のスリットのみからなり、孔を形成しなかった。実施例または比較例で用いた負極集電体におけるスリットの長さおよび幅、隣接するスリット間の間隔、ならびに隣接するスリット群間の間隔の平均値を表1に示す。実施例7および比較例2で用いた負極集電体では、図1のように、外周側の端部からL/4の部分における隣接するスリット群間の平均の間隔Poを、残りの部分における隣接するスリット群間の平均の間隔Piよりも小さくした。なお、各スリット群は、第1端部または第2端部から2W/3の位置に形成した。
 電極群を、Al層を備えるラミネートシートで形成された袋状の外装体に収容し、非水電解質を注入した後、外装体を封止し、リチウム二次電池を作製した。なお、電極群を外装体に収容する際、正極リードの他端部および負極リードの他端部は、外装体より外部に露出させた。
 なお、既述の手順で求められる初回放電後の負極の厚さは、銅箔の厚さに相当し、10μmであった。また、満充電時には、銅箔の双方の主面に約10μmの厚さでリチウムが析出し、負極の厚さは約30μmであった。既述の手順で求められる満充電時の負極の厚さは、初回放電後の負極の厚さの約3倍であった。リチウム二次電池では、黒鉛などを含む負極活物質層を形成する場合とは異なり、初回放電後の負極が負極活物質をほとんど含まない状態である。そのため、リチウム二次電池では、満充電時の負極の厚さの初回放電後の負極の厚さに対する比は、負極が黒鉛などを含む負極活物質層を含む場合に比べて格段に大きくなる。
(4)評価
 作製したリチウム二次電池を用いて下記の評価を行った。
(a)サイクル特性
 25℃の恒温槽中、リチウム二次電池を、下記の充電条件で充電し、20分間休止して、下記の放電条件で放電した。これらの充電、休止および放電を1サイクルとし、10サイクルの充放電試験を行った。10サイクル目の放電容量の、1サイクル目の放電容量に対する比率を、容量維持率として求めた。各リチウム二次電池のサイクル特性は、比較例1のリチウム二次電池の容量維持率を100としたときの比率(%)で評価した。
 (充電)
 電極の単位面積(単位:平方センチメートル)あたり10mAの電流で、電池電圧が4.3Vになるまで定電流充電を行い、その後、4.3Vの電圧で電極の単位面積(単位:平方センチメートル)あたりの電流値が1mAになるまで定電圧充電を行う。
 (放電)
 電極の単位面積(単位:平方センチメートル)あたり10mAの電流で電池電圧が2.5Vになるまで定電流放電を行う。
(b)負極集電体の破断
 サイクル試験後のリチウム二次電池を分解し、負極を取り出して、負極集電体の破断の状態を、目視で観察し、下記の基準で評価した。
 A:負極集電体は、スリット群に沿って破断しており、スリット群以外の部分では破断が見られない。
 B:負極集電体は、スリット群の部分だけでなく、スリット群以外の部分でも破断が見られる。
 評価結果を表1に示す。E1~E7は実施例であり、C1~C2は比較例である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、複数のスリットのみで構成されたスリット群を有する負極集電体を用いた比較例では、負極集電体がスリット群だけでなくスリット群以外の部分でも破断しており、サイクル特性も低くなった。これに対し、実施例では、負極集電体がスリット群以外の部分で破断することが抑制されており、高いサイクル特性が得られた。これは、実施例では、充電時の負極の膨張に伴い、スリット群に沿って負極集電体が破断するとともに、負極集電体に加わる応力が孔によって緩和されることによって破断が孔の部分で終止したためと考えられる。
 また、負極集電体の外周側の端部からL/4の部分における隣接するスリット群間の平均の間隔Poを、残りの部分における隣接するスリット群間の平均の間隔Piよりも小さくすると、サイクル特性をさらに向上することができる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本開示に係る非水電解質二次電池では、充放電に伴う負極の膨張および収縮が顕著な場合であっても高いサイクル特性が得られる。また、非水電解質二次電池の容量を高めることができる。よって、本開示に係る非水電解質二次電池は、高いサイクル特性または高容量が求められる様々な用途に適用できる。このような用途としては、各種電子機器(例えば、携帯電話、スマートフォン、タブレット端末、ウェアラブル端末)、ハイブリッドおよびプラグインハイブリッドを含む電気自動車、太陽電池と組み合わせた家庭用蓄電池等が挙げられる。しかし、非水電解質二次電池の用途は、これらに限定されない。
112 負極集電体
113 スリット群
113a 複数のスリット
113b 孔
1131 第1スリット群
1132 第2スリット群
 負極集電体の短手方向
e1 負極集電体の短手方向の第1端部
e2 負極集電体の短手方向の第2端部
 負極集電体の長手方向
Eo 負極集電体の巻回の外周側の端部
Ei 負極集電体の巻回の内周側の端部
L 負極集電体の長手方向の長さ
W 負極集電体の短手方向の長さ
p1、p2 隣接するスリット群間の間隔
10 非水電解質二次電池
11 正極
12 負極
13 セパレータ
14 電極群
15 ケース本体
16 封口体
17、18 絶縁板
19 正極リード
20 負極リード
21 段部
22 フィルタ
23 下弁体
24 絶縁部材
25 上弁体
26 キャップ
27 ガスケット
30 正極集電体
31 正極合材層

Claims (12)

  1.  電極群と、非水電解質と、を含み、
     前記電極群は、正極と、負極と、前記正極および前記負極の間に介在するセパレータと、を含み、
     前記負極は、短手方向における第1端部および第2端部を有する帯状の負極集電体を含み、
     前記負極集電体は、前記第1端部および前記第2端部の一方の端部から他方の端部に向かって前記短手方向に沿って破線状に延びる複数のスリットと、前記複数のスリットの前記他方の端部側に形成され、かつ前記複数のスリットの平均の幅よりも大きな幅を有する孔と、で構成されたスリット群を少なくとも1つ有する、非水電解質二次電池。
  2.  前記孔は、前記複数のスリットの前記他方の端部側のスリットと連続している、請求項1に記載の非水電解質二次電池。
  3.  満充電時の前記負極の厚さが、初回放電後の前記負極の厚さの1.18倍以上である、請求項1または2に記載の非水電解質二次電池。
  4.  前記一方の端部は、前記複数のスリットの前記一方の端部側のスリットで切断されている、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記負極集電体は、複数の前記スリット群を有し、
     前記複数の前記スリット群は、
     前記第1端部から前記第2端部に向かって前記短手方向に沿って延びる複数の第1スリットと、前記複数の第1スリットの前記第2端部側に形成された第1孔とで構成された第1スリット群と、
     前記第2端部から前記第1端部に向かって前記短手方向に沿って延びる複数の第2スリットと、前記複数の第2スリットの前記第1端部側に形成された第2孔とで構成された第2スリット群と、
    を含む、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記第1スリット群と、前記第2スリット群とが交互に並んでいる、請求項5に記載の非水電解質二次電池。
  7.  破線状に延びる方向において隣接するスリット間の平均の間隔は、0.02mm以上3mm以下である、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記孔の幅は、0.05mm以上2mm以下である、請求項1~7のいずれか1項に記載の非水電解質二次電池。
  9.  前記孔は、円形または楕円形である、請求項1~8のいずれか1項に記載の非水電解質二次電池。
  10.  前記孔と前記他方の端部との間の距離は、前記負極集電体の前記短手方向の長さをWとするとき、0.1W以上0.5W以下である、請求項1~9のいずれか1項に記載の非水電解質二次電池。
  11.  前記電極群は、前記正極、前記負極、および前記セパレータが巻回された巻回式電極群であり、
     前記負極集電体は、前記負極集電体の長手方向に沿って間隔を開けて形成された複数の前記スリット群を有し、
     前記負極集電体の前記長手方向の長さをLとするとき、前記負極集電体の外周側の端部からL/4の部分における隣接する前記スリット群間の平均の間隔は、残りの部分における隣接する前記スリット群間の平均の間隔よりも小さい、請求項1~10のいずれか1項に記載の非水電解質二次電池。
  12.  充電時に前記負極集電体の表面にリチウム金属が析出し、放電時に前記リチウム金属が溶解する、リチウム二次電池である、請求項1~11のいずれか1項に記載の非水電解質二次電池。
PCT/JP2021/046732 2020-12-24 2021-12-17 非水電解質二次電池 WO2022138488A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21910633.3A EP4270516A1 (en) 2020-12-24 2021-12-17 Non-aqueous electrolyte secondary battery
US18/268,426 US20230395810A1 (en) 2020-12-24 2021-12-17 Non-aqueous electrolyte secondary battery
JP2022571403A JPWO2022138488A1 (ja) 2020-12-24 2021-12-17
CN202180086231.7A CN116636031A (zh) 2020-12-24 2021-12-17 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020214909 2020-12-24
JP2020-214909 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138488A1 true WO2022138488A1 (ja) 2022-06-30

Family

ID=82157769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046732 WO2022138488A1 (ja) 2020-12-24 2021-12-17 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20230395810A1 (ja)
EP (1) EP4270516A1 (ja)
JP (1) JPWO2022138488A1 (ja)
CN (1) CN116636031A (ja)
WO (1) WO2022138488A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266894A (ja) 2000-03-22 2001-09-28 Sony Corp 電池用電極及びこれを用いた非水電解質電池
JP2013218804A (ja) * 2012-04-04 2013-10-24 Gs Yuasa Corp 電極体、蓄電素子及び電極体の製造方法
JP2016146340A (ja) * 2015-02-04 2016-08-12 株式会社半導体エネルギー研究所 二次電池
US20170025682A1 (en) * 2015-07-20 2017-01-26 Samsung Electronics Co., Ltd. Electrode plate, and electrode assembly and secondary battery, each including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266894A (ja) 2000-03-22 2001-09-28 Sony Corp 電池用電極及びこれを用いた非水電解質電池
JP2013218804A (ja) * 2012-04-04 2013-10-24 Gs Yuasa Corp 電極体、蓄電素子及び電極体の製造方法
JP2016146340A (ja) * 2015-02-04 2016-08-12 株式会社半導体エネルギー研究所 二次電池
US20170025682A1 (en) * 2015-07-20 2017-01-26 Samsung Electronics Co., Ltd. Electrode plate, and electrode assembly and secondary battery, each including the same

Also Published As

Publication number Publication date
EP4270516A1 (en) 2023-11-01
CN116636031A (zh) 2023-08-22
JPWO2022138488A1 (ja) 2022-06-30
US20230395810A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
JP7329803B2 (ja) リチウム二次電池
JP2016177977A (ja) 電極、非水電解質電池及び電池パック
JP2019009112A (ja) リチウム二次電池
WO2020158181A1 (ja) リチウム金属二次電池
JP2019160777A (ja) リチウム二次電池
TWI635640B (zh) 鋰二次電池及鋰二次電池用電解液
JP7117478B2 (ja) リチウム二次電池
CN112018342A (zh) 正极活性物质和使用该正极活性物质的二次电池
US20220407047A1 (en) Lithium secondary battery
JP2019212608A (ja) リチウム二次電池
JP2018137133A (ja) 非水電解質蓄電素子用の負極、非水電解質蓄電素子及び非水電解質蓄電素子用の負極の製造方法
WO2020202845A1 (ja) 非水電解質二次電池
CN114944468A (zh) 用于锂二次电池的正极和包含其的锂二次电池
JP6747312B2 (ja) 非水電解質、蓄電素子及び蓄電素子の製造方法
JP2019212432A (ja) リチウム二次電池
JP7378032B2 (ja) リチウム二次電池
JP7003775B2 (ja) リチウムイオン二次電池
JP2019212609A (ja) リチウム二次電池
JP2019212601A (ja) リチウム二次電池
CN114792844A (zh) 用于具有含硅电极的电化学电池的电解质
WO2022138488A1 (ja) 非水電解質二次電池
US10559846B2 (en) Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
CN112018389A (zh) 正极活性物质和使用该正极活性物质的二次电池
JP2020198297A (ja) 二次電池
CN112018343A (zh) 正极活性物质和使用该正极活性物质的二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571403

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202347038970

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202180086231.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910633

Country of ref document: EP

Effective date: 20230724