WO2022138407A1 - Curable resin composition, cured product, adhesive agent, and adhesion film - Google Patents

Curable resin composition, cured product, adhesive agent, and adhesion film Download PDF

Info

Publication number
WO2022138407A1
WO2022138407A1 PCT/JP2021/046401 JP2021046401W WO2022138407A1 WO 2022138407 A1 WO2022138407 A1 WO 2022138407A1 JP 2021046401 W JP2021046401 W JP 2021046401W WO 2022138407 A1 WO2022138407 A1 WO 2022138407A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
meth
resin composition
acrylate
group
Prior art date
Application number
PCT/JP2021/046401
Other languages
French (fr)
Japanese (ja)
Inventor
さやか 脇岡
健太郎 北條
悠 中村
幸平 竹田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2021578055A priority Critical patent/JPWO2022138407A1/ja
Publication of WO2022138407A1 publication Critical patent/WO2022138407A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated

Definitions

  • the present invention relates to a curable resin composition having excellent flow characteristics before curing, excellent leaching prevention property after semi-curing, and excellent heat resistance after main curing.
  • the present invention also relates to a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
  • Patent Documents 1 to 3 describe a thermosetting component such as an epoxy resin and a flexible component such as a thermoplastic resin such as an acrylic resin, polyamide and polyester, and an acrylonitrile butadiene rubber.
  • the curable resin composition contained is disclosed.
  • Japanese Unexamined Patent Publication No. 2006-232984 Japanese Unexamined Patent Publication No. 2009-167396 Japanese Unexamined Patent Publication No. 2008-308686 Japanese Unexamined Patent Publication No. 5-306386
  • Patent Document 4 discloses an adhesive containing a soluble polyester, a phenoxy resin, and an imidesiloxane oligomer. However, it has been difficult for the adhesive disclosed in Patent Document 4 to have both flow characteristics and leaching prevention properties at the same time.
  • the present invention contains a curable resin, a photopolymerization initiator, and a thermosetting agent, and the thermosetting agent is a curable resin composition containing an imide oligomer.
  • the thermosetting agent is a curable resin composition containing an imide oligomer.
  • the present inventors further add a photopolymerization initiator to a curable resin composition containing a curable resin and a thermosetting agent, and photocure (semi-cure) the curable resin with the photopolymerization initiator. It was examined to use a material that can be used and to use an imide oligomer as a thermosetting agent. As a result, it has been found that a curable resin composition having excellent flow characteristics before curing, excellent leaching prevention property after semi-curing, and excellent heat resistance after main curing can be obtained, and the present invention has been completed. ..
  • the curable resin composition of the present invention contains a curable resin.
  • the curable resin preferably contains a liquid at 25 ° C.
  • the curable resin is a compound that can be photocured by a photopolymerization initiator described later when irradiated with light (thermosetting resin) and a compound that can be thermally cured by a thermosetting agent described later when heated. It is preferable to contain resin).
  • the photocurable resin and the thermosetting resin may be the same compound (thermosetting resin), and even when the curable resin contains the thermosetting resin, the photocurable resin and / or the thermosetting resin may be further used. It may contain a thermosetting resin.
  • the curable resin preferably contains a radically polymerizable compound having no epoxy group, an epoxy compound having no radically polymerizable group, and / or a compound having an epoxy group and a radically polymerizable group.
  • the curable resin is a radical polymerizable compound having no radical polymerizable group, an epoxy compound having no radical polymerizable group, and an epoxy. It is more preferable to contain a compound having a radical and a radically polymerizable group.
  • a compound having an ethylenically unsaturated double bond is preferable, and a (meth) acrylic compound is more preferable.
  • the above-mentioned "(meth) acrylic” means acrylic or methacrylic
  • the above-mentioned “(meth) acrylic compound” means a compound having a (meth) acryloyl group
  • "" Means acryloyl or methacryloyl.
  • Examples of the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, and (meth) acrylamide compounds.
  • (meth) acrylate means acrylate or methacrylate
  • epoxy (meth) acrylate means that all epoxy groups in the epoxy compound are reacted with (meth) acrylic acid. Represents the compound that has been made to.
  • monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • Dimethylol dicyclopentadienyldi (meth) acrylate Dimethylol dicyclopentadienyldi (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, Examples thereof include polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene diol di (meth) acrylate, and tricyclodecanedimethanol di (meth) acrylate.
  • examples thereof include trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, and propylene oxide-added trimethylolpropane tri (meth) acrylate.
  • Examples of the epoxy (meth) acrylate include bisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylate, bisphenol E type epoxy (meth) acrylate, phenol novolac type epoxy (meth) acrylate, and cresol novolak type. Examples thereof include epoxy (meth) acrylates, resorcinol-type epoxy (meth) acrylates, and modified caprolactones thereof.
  • Examples of the (meth) acrylamide compound include N, N-dimethyl (meth) acrylamide, N- (meth) acryloylmorpholine, N-hydroxyethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, and N-. Examples thereof include isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide and the like.
  • Examples of the epoxy compound having no radically polymerizable group include bisphenol A type epoxy compound, bisphenol E type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, bisphenol O type epoxy compound, 2,2'. -Diallyl bisphenol A type epoxy compound, alicyclic epoxy compound, hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, Dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadiene novolac type epoxy compound, biphenylnovolac type epoxy compound, naphthalenephenol novolac type epoxy compound, glycidylamine type epoxy Examples thereof include compounds, alkyl polyol type epoxy compounds, rubber-modified epoxy compounds, and glycidyl ester compounds.
  • the curable resin preferably contains a compound having an epoxy group and a (meth) acryloyl group as the compound having the epoxy group and the radically polymerizable group.
  • the compound having the epoxy group and the (meth) acryloyl group include a partially (meth) acrylic modified epoxy compound, glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether and the like.
  • the above-mentioned "partially (meth) acrylic-modified epoxy compound” is obtained by reacting an epoxy group of a part of an epoxy compound having two or more epoxy groups in one molecule with (meth) acrylic acid. 1 means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in one molecule.
  • Examples of the partial (meth) acrylic-modified epoxy compound include a partial (meth) acrylic-modified bisphenol A-type epoxy compound, a partial (meth) acrylic-modified bisphenol F-type epoxy compound, and a partial (meth) acrylic-modified bisphenol E-type epoxy compound.
  • Examples thereof include a partially (meth) acrylic-modified phenol novolac-type epoxy compound, a partially (meth) acrylic-modified cresol novolac-type epoxy compound, and a partially (meth) acrylic-modified resorcinol-type epoxy compound.
  • the curable resin composition of the present invention contains a photopolymerization initiator.
  • the photopolymerization initiator include ⁇ -hydroxyketone compounds, ⁇ -hydroxyalkylphenone compounds, benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds and the like. Can be mentioned.
  • Specific examples of the photopolymerization initiator include an oligomer of 2-hydroxy-1- (4-isopropenylphenyl) -2-methyl-1-propanol, 1-hydroxycyclohexylphenylketone, and 2-benzyl-2.
  • the content of the photopolymerization initiator is preferably 0.1 part by weight and a preferable upper limit of 20 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the photopolymerization initiator is in this range, the obtained curable resin composition has excellent photocurability while maintaining excellent storage stability, and prevents leaching after semi-curing. It will be superior to the sex.
  • the more preferable lower limit of the content of the photopolymerization initiator is 0.5 parts by weight, and the more preferable upper limit is 10 parts by weight.
  • the curable resin composition of the present invention contains a thermosetting agent.
  • the thermosetting agent contains an imide oligomer.
  • the imide oligomer As the thermosetting agent, the curable resin composition of the present invention has excellent heat resistance after the main curing.
  • the imide oligomer preferably has an acid anhydride group or a phenolic hydroxyl group at the end of the main chain, and more preferably has an acid anhydride group or a phenolic hydroxyl group at both ends of the main chain.
  • the imide oligomer preferably has a structure represented by the following formula (1-1) or the following formula (1-2), or the following formula (2-1) or the following formula (2-2).
  • the imide oligomer can be cured. It becomes more excellent in reactivity and compatibility with the sex resin.
  • A is an acid dianhydride residue
  • B is an aliphatic diamine residue or an aromatic diamine residue.
  • Ar is a optionally substituted divalent aromatic group.
  • A is an acid dianhydride residue
  • B is an aliphatic triamine residue or an aromatic triamine residue
  • Ar is a divalent aromatic group which may be substituted.
  • the acid dianhydride residue is preferably a tetravalent group represented by the following formula (3-1) or the following formula (3-2).
  • Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a direct chain. It is a chain-like or branched chain-like divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Z is a hydrocarbon group
  • an oxygen atom may be contained between the hydrocarbon group and each aromatic ring in the formula (3-1)
  • Z is a divalent group having an aromatic ring.
  • an oxygen atom may be provided between the divalent group having the aromatic ring and each aromatic ring in the formula (3-1).
  • the hydrogen atom of the aromatic ring in the formula (3-1) and the formula (3-2) may be substituted.
  • Z in the above formula (3-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring
  • these groups are substituted. May be good.
  • the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted, the substituent includes, for example, a halogen atom, a linear or branched chain. Examples thereof include a linear alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, a cyano group and the like.
  • Examples of the acid dianhydride from which the acid dianhydride residue is derived include an acid dianhydride represented by the formula (9) described later.
  • B in the above formula (1-1) is the above aliphatic diamine residue
  • B in the above formula (2-1) or the above formula (2-2) is the above aliphatic triamine residue.
  • the preferable lower limit of the carbon number of the aliphatic diamine residue and the aliphatic triamine residue is 4.
  • the curable resin composition obtained by having 4 or more carbon atoms in the aliphatic diamine residue and the aliphatic triamine residue has flexibility and processability before curing and dielectric properties after curing. Will be better.
  • the more preferable lower limit of the number of carbon atoms of the aliphatic diamine residue and the aliphatic triamine residue is 5, and the more preferable lower limit is 6.
  • the practical upper limit is 60.
  • Examples of the aliphatic diamine from which the above aliphatic diamine residue is derived include an aliphatic diamine derived from dimer acid, a linear or branched aliphatic diamine, an aliphatic ether diamine, and an aliphatic alicyclic type. Examples include diamine. Examples of the aliphatic diamine derived from the dimer acid include dimer diamine, hydrogenated diamine diamine and the like.
  • linear or branched aliphatic diamine examples include 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonandiamine, 1,10-decanediamine, and 1, 11-Undecanediamine, 1,12-Dodecanediamine, 1,14-Tetradecanediamine, 1,16-Hexadecanediamine, 1,18-Octadecanediamine, 1,20-Eicosandiamine, 2-Methyl-1,8-octane Examples thereof include diamine, 2-methyl-1,9-nonanediamine, 2,7-dimethyl-1,8-octanediamine and the like.
  • Examples of the aliphatic ether diamine include 2,2'-oxybis (ethylamine), 3,3'-oxybis (propylamine), 1,2-bis (2-aminoethoxy) ethane and the like.
  • Examples of the aliphatic alicyclic diamine include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine.
  • the aliphatic diamine residue is preferably an aliphatic diamine residue derived from the dimer acid.
  • Examples of the aliphatic triamine from which the above aliphatic triamine residue is derived include an aliphatic triamine derived from trimeric acid, a linear or branched aliphatic triamine, an aliphatic ether triamine, and an aliphatic alicyclic type. Examples thereof include triamine. Examples of the aliphatic triamine derived from the trimer acid include trimer triamine, hydrogenated trimer triamine and the like. Examples of the linear or branched aliphatic triamine include 3,3'-diamino-N-methyldipropylamine, 3,3'-diaminodipropylamine, diethylenetriamine, bis (hexamethylene) triamine, and 2,2. '-Bis (methylamino) -N-methyldiethylamine and the like can be mentioned. Among them, the aliphatic triamine residue is preferably an aliphatic triamine residue derived from the trimeric acid.
  • aliphatic diamine and / or the aliphatic triamine a mixture of the dimer diamine and the trimer triamine can also be used.
  • Examples of commercially available products of the aliphatic diamine and / or the aliphatic triamine derived from the dimer acid and / or the trimer acid include the aliphatic diamine and / or the aliphatic triamine manufactured by BASF and the fat manufactured by Croder. Examples thereof include group diamines and / or aliphatic triamines. Examples of the aliphatic diamine and / or aliphatic triamine manufactured by BASF include Versamine 551 and Versamine 552. Examples of the aliphatic diamine and / or aliphatic triamine manufactured by Croda International include preamine 1071, preamine 1073, preamine 1074, and preamine 1075.
  • the aromatic diamine residue is a divalent represented by the following formula (4-1) or the following formula (4-2). It is preferably the basis of.
  • Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a direct chain. It is a chain-like or branched chain-like divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Y is a hydrocarbon group
  • an oxygen atom may be contained between the hydrocarbon group and each aromatic ring in the formula (4-1)
  • Y is a divalent group having an aromatic ring.
  • an oxygen atom may be provided between the divalent group having the aromatic ring and each aromatic ring in the formula (4-1).
  • the hydrogen atom of the aromatic ring in the formula (4-1) and the formula (4-2) may be substituted.
  • Y in the above formula (4-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring
  • these groups are substituted. May be good.
  • the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted, the substituent includes, for example, a halogen atom, a linear or branched chain. Examples thereof include a linear alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, a cyano group and the like.
  • aromatic diamine from which the aromatic diamine residue is derived examples include those in which the diamine represented by the formula (10) described later is an aromatic diamine.
  • the imide oligomer may lower the glass transition temperature after curing or contaminate the adherend and cause poor adhesion.
  • it is an imide oligomer having no siloxane skeleton in its structure.
  • the number average molecular weight of the imide oligomer is preferably 5000 or less.
  • the number average molecular weight of the imide oligomer is 5000 or less, the cured product of the obtained curable resin composition is superior in long-term heat resistance.
  • a more preferable upper limit of the number average molecular weight of the imide oligomer is 4000, and a further preferable upper limit is 3000.
  • the number average molecular weight of the imide oligomer is preferably 900 or more and 5000 or less when it has a structure represented by the above formula (1-1) and the above formula (2-1), and the above formula (1-). 2) When having a structure represented by the above formula (2-2), it is preferably 550 or more and 4000 or less.
  • the more preferable lower limit of the number average molecular weight is 950, and the further preferable lower limit is 1000.
  • the more preferable lower limit of the number average molecular weight is 580, and the further preferable lower limit is 600.
  • the above-mentioned "number average molecular weight” is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industry Co., Ltd.).
  • the above-mentioned imide oligomer has the following formula (5-1), the following formula (5-2), the following formula (5-3), the following formula (5-4), or the following formula (5-5). ), Or the following formula (6-1), the following formula (6-2), the following formula (6-3), the following formula (6-4), the following formula (6-5), Alternatively, it is preferably an imide oligomer represented by the following formula (6-6).
  • A is the acid dianhydride residue, and in formulas (5-1), (5-3) to (5-5), A is. Each may be the same or different.
  • B is the aliphatic diamine residue or the aromatic diamine residue, and in the formulas (5-3) and (5-4), B is. , Each may be the same or different.
  • B is the aliphatic triamine residue or the aromatic triamine residue.
  • X is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted
  • W is a hydrogen atom, a halogen atom. , Or a monovalent hydrocarbon group which may be substituted.
  • n is a repetition number.
  • A is the acid dianhydride residue, and in formulas (6-1) to (6-6), A is the same. It may or may not be different.
  • R is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted, and formulas (6-1) and (6). -2), in the formula (6-4), and in the formula (6-6), R may be the same or different.
  • W is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted.
  • B is the aliphatic diamine residue or the aromatic diamine residue
  • B is.
  • Each may be the same or different.
  • B is, or the aliphatic triamine residue or the aromatic triamine residue.
  • a in the above formulas (5-1) to (5-5) and the above formulas (6-1) to (6-6) is the following formula (7-1) or the following formula (7-2). It is preferably a tetravalent group represented.
  • Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a direct chain. It is a chain-like or branched chain-like divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Z is a hydrocarbon group
  • an oxygen atom may be contained between the hydrocarbon group and each aromatic ring in the formula (7-1)
  • Z is a divalent group having an aromatic ring.
  • an oxygen atom may be provided between the divalent group having the aromatic ring and each aromatic ring in the formula (7-1).
  • the hydrogen atom of the aromatic ring in the formula (7-1) and the formula (7-2) may be substituted.
  • Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a direct chain. It is a chain-like or branched chain-like divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Y is a hydrocarbon group
  • an oxygen atom may be contained between the hydrocarbon group and each aromatic ring in the formula (8-1)
  • Y is a divalent group having an aromatic ring.
  • an oxygen atom may be provided between the divalent group having the aromatic ring and each aromatic ring in the formula (8-1).
  • the hydrogen atom of the aromatic ring in the formula (8-1) and the formula (8-2) may be substituted.
  • an imide oligomer having a structure represented by the above formula (1-1) for example, an acid dianhydride represented by the following formula (9) and a diamine represented by the following formula (10) are used. A method of reacting with the above can be mentioned. Further, by using an aliphatic triamine or an aromatic triamine instead of the diamine represented by the following formula (10), an imide oligomer having a structure represented by the above formula (2-1) can be produced.
  • A is the same tetravalent group as A in the above formula (1-1).
  • B is the same divalent group as B in the above formula (1-1), and R 1 to R 4 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively. ..
  • the method for reacting the acid dianhydride represented by the above formula (9) with the diamine represented by the above formula (10) are shown below.
  • the diamine represented by the above formula (10) is previously dissolved in a solvent (for example, N-methylpyrrolidone) in which the amic acid oligomer obtained by the reaction is soluble, and the obtained solution is prepared with the above formula (9).
  • the acid dianhydride represented by is added and reacted to obtain an amic acid oligomer solution.
  • a method of removing the solvent by heating, reducing the pressure, or the like, and further heating at about 200 ° C. or higher for 1 hour or longer to react the amic acid oligomer and the like can be mentioned.
  • the desired number average molecular weight can be obtained.
  • An imide oligomer having a structure represented by the above formula (1-1) can be obtained at the end. Further, by substituting a part of the acid anhydride represented by the above formula (9) with the acid anhydride represented by the following formula (11), the acid anhydride has a desired number average molecular weight, and the above-mentioned one end is described. An imide oligomer having a structure represented by the formula (1-1) and having a structure derived from an acid anhydride represented by the following formula (11) at the other end can be obtained.
  • the acid anhydride represented by the above formula (9) and the acid anhydride represented by the following formula (11) may be added at the same time or separately. Further, by substituting a part of the diamine represented by the above formula (10) with a monoamine represented by the following formula (12), it has a desired number average molecular weight and has the above formula (1-1) at one end. ), And an imide oligomer having a structure derived from a monoamine represented by the following formula (12) at the other end can be obtained. In this case, the diamine represented by the above formula (10) and the monoamine represented by the following formula (12) may be added at the same time or separately.
  • Ar is a divalent aromatic group that may be substituted.
  • Ar is a optionally substituted monovalent aromatic group
  • R 5 and R 6 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively.
  • an acid dianhydride represented by the above formula (9) and a phenolic agent represented by the following formula (13) are used as a method for producing an imide oligomer having a structure represented by the above formula (1-2).
  • a method of reacting with the above can be mentioned.
  • an imide oligomer having a structure represented by the above formula (2-2) can be produced.
  • Ar is a divalent aromatic group which may be substituted, and R 7 and R 8 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively.
  • the desired number average molecular weight can be obtained. It is possible to obtain an imide oligomer having a structure represented by the above formula (1-2) at both ends. Further, by substituting a part of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) with the monoamine represented by the above formula (12), it has a desired number average molecular weight and has the above formula at one end.
  • An imide oligomer having a structure represented by (1-2) and having a structure derived from a monoamine represented by the above formula (12) at the other end can be obtained.
  • the phenolic hydroxyl group-containing monoamine represented by the above formula (13) and the monoamine represented by the above formula (12) may be added at the same time or separately.
  • the phenolic hydroxyl group-containing monoamine represented by the above formula (13) by substituting a part of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) with the monoamine represented by the above formula (12), it has a desired number average molecular weight and has the above formula at one end.
  • An imide oligomer having a structure represented by (1-2) and having a structure derived from a monoamine represented by the above formula (12) at the other end can be obtained.
  • the phenolic hydroxyl group-containing monoamine represented by the above formula (13) and the monoamine represented by the above formula (12) may be added at the same time or separately.
  • Examples of the acid dianhydride represented by the above formula (9) include pyromellitic acid anhydride, 3,3'-oxydiphthalic acid anhydride, 3,4'-oxydiphthalic acid anhydride, and 4,4'-oxydiphthalic acid.
  • the acid dianhydride used as the raw material of the imide oligomer is preferably an aromatic acid dianhydride having a melting point of 240 ° C. or lower, and has a melting point of 220 ° C., because it is more excellent in solubility and heat resistance.
  • aromatic acid dianhydrides are more preferred, aromatic acid dianhydrides having a melting point of 200 ° C. or lower are even more preferred, and 3,4'-oxydiphthalic acid dianhydrides (melting point 180 ° C.), 4,4'. -(4,4'-isopropyridenediphenoxy) diphthalic anhydride (melting point 190 ° C.) is particularly preferred.
  • melting point means a value measured as the temperature of the endothermic peak when the temperature is raised at 10 ° C./min using a differential scanning calorimeter.
  • Examples of the differential scanning calorimeter include EXTER DSC6100 (manufactured by SII Nanotechnology).
  • examples of the aromatic diamine include 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, and 3,3'-.
  • Examples of the acid anhydride represented by the above formula (11) include phthalic acid anhydride, 3-methylphthalic acid anhydride, 4-methylphthalic acid anhydride, 1,2-naphthalic acid anhydride, and 2,3-naphthal. Acid anhydride, 1,8-naphthalic acid anhydride, 2,3-anthracene dicarboxylic acid anhydride, 4-tert-butylphthalic acid anhydride, 4-ethynylphthalic acid anhydride, 4-phenylethynylphthalic acid anhydride, Examples thereof include 4-fluorophthalic acid anhydride, 4-chlorophthalic acid anhydride, 4-bromophthalic acid anhydride, 3,4-dichlorophthalic acid anhydride and the like.
  • Examples of the monoamine represented by the above formula (12) include aniline, o-toluidine, m-toluidine, p-toluidine, 2,4-dimethylaniline, 3,4-dimethylaniline, and 3,5-dimethylaniline.
  • Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, and 4-amino-2. , 3-Xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -Amino-2,6-diphenylphenol and the like can be mentioned. Of these, 4-amino-o-cresol and 5-amino-o-cresol are preferable because they are excellent in availability and storage stability, and a high glass transition temperature can be obtained after curing.
  • the imide oligomer is a plurality of imide oligomers having a structure represented by the above formula (1-1) or a structure represented by the above formula (1-2). It is obtained as a mixture of a plurality of types of imide oligomers having the above and each raw material (imide oligomer composition).
  • the imide oligomer is a plurality of types of imide oligomers having a structure represented by the above formula (2-1).
  • the imide oligomer composition has an imidization ratio of 70% or more, a cured product having superior mechanical strength and long-term heat resistance at high temperatures can be obtained when used as a curing agent.
  • the preferable lower limit of the imidization ratio of the imide oligomer composition is 75%, and the more preferable lower limit is 80%. Further, although there is no particular preferable upper limit of the imidization ratio of the imide oligomer composition, the practical upper limit is 98%.
  • the above “imidization rate” was measured by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (FT-IR), and was derived from the carbonyl group of amic acid at 1660 cm -1 . It can be derived from the peak absorbance area in the vicinity by the following formula. Examples of the Fourier transform infrared spectrophotometer include UMA600 (manufactured by Agilent Technologies) and the like.
  • the imide oligomer composition is preferably dissolved in an amount of 3 g or more with respect to 10 g of tetrahydrofuran at 25 ° C.
  • the preferable lower limit of the content of the imide oligomer in 100 parts by weight of the total of the curable resin and the thermosetting agent (further curing accelerator when the curing accelerator described later is contained) is 20 parts by weight, and the preferable upper limit is 20 parts by weight. It is 80 parts by weight.
  • the content of the imide oligomer is in this range, the obtained curable resin composition becomes more excellent in flexibility and processability before curing and heat resistance after curing.
  • the more preferable lower limit of the content of the imide oligomer is 25 parts by weight, and the more preferable upper limit is 75 parts by weight.
  • the content of the imide oligomer is the imide oligomer composition (when another imide oligomer is used in combination, the imide oligomer is used). It means the content of the composition and other imide oligomers).
  • the curable resin composition of the present invention preferably contains a curing accelerator.
  • a curing accelerator By containing the above-mentioned curing accelerator, the curing time can be shortened and the productivity can be improved.
  • the curing accelerator examples include an imidazole-based curing accelerator, a tertiary amine-based curing accelerator, a phosphine-based curing accelerator, a phosphorus-based curing accelerator, a photobase generator, a sulfonium salt-based curing accelerator, and the like. .. Of these, an imidazole-based curing accelerator is preferable because it has excellent storage stability.
  • the content of the curing accelerator is preferably 0.01 part by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the total of the curable resin, the thermosetting agent and the curing accelerator. ..
  • the more preferable lower limit of the content of the curing accelerator is 0.05 parts by weight, and the more preferable upper limit is 5 parts by weight.
  • the curable resin composition of the present invention may contain an inorganic filler as long as the object of the present invention is not impaired.
  • the inorganic filler is preferably at least one of silica and barium sulfate.
  • the curable resin composition of the present invention is excellent in reflow resistance, plating resistance, and processability.
  • Examples of the inorganic filler other than the silica and the barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and an inorganic ion exchanger.
  • the inorganic filler those having an average particle size of 50 nm or more and less than 4 ⁇ m are preferably used.
  • the content of the inorganic filler is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the thermosetting agent (further, if the curing accelerator is contained, the curing accelerator). Is.
  • the content of the inorganic filler is in this range, the cured product of the obtained curable resin composition is excellent in reflow resistance and plating resistance while maintaining excellent tackiness and the like.
  • a more preferable upper limit of the content of the inorganic filler is 150 parts by weight.
  • the curable resin composition of the present invention preferably contains a flow conditioner for the purpose of improving the applicability to the adherend in a short time and the shape retention property.
  • a flow conditioner for the purpose of improving the applicability to the adherend in a short time and the shape retention property.
  • the flow adjusting agent include fumed silica such as Aerosil and layered silicate. Further, as the flow adjusting agent, one having an average particle size of less than 100 nm is preferably used.
  • the content of the flow modifier is preferably 0.1 with respect to 100 parts by weight in total of the curable resin and the thermosetting agent (in the case of further containing the curing accelerator, the curing accelerator).
  • the preferred upper limit is 50 parts by weight.
  • the more preferable lower limit of the content of the flow adjusting agent is 0.5 parts by weight, and the more preferable upper limit is 30 parts by weight.
  • the curable resin composition of the present invention may contain an organic filler for the purpose of stress relaxation, toughness imparting and the like.
  • organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamide-imide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamide-imide particles, and polyimide particles are preferable.
  • the content of the organic filler is preferably 300 parts by weight with respect to a total of 100 parts by weight of the curable resin and the thermosetting agent (further, if the curing accelerator is contained, the curing accelerator). Is. When the content of the organic filler is in this range, the obtained cured product becomes more excellent in toughness and the like while maintaining excellent adhesiveness and the like. A more preferable upper limit of the content of the organic filler is 200 parts by weight.
  • the curable resin composition of the present invention preferably contains a polymer compound within a range that does not impair the object of the present invention.
  • the polymer compound plays a role as a film-forming component, and by containing the polymer compound, the obtained curable resin composition becomes more excellent in leaching prevention property.
  • the preferable lower limit of the number average molecular weight of the polymer compound is 3000, and the preferable upper limit is 100,000.
  • the obtained curable resin composition is superior in flexibility and processability before curing and heat resistance after curing.
  • the more preferable lower limit of the number average molecular weight of the polymer compound is 5000, and the more preferable upper limit is 80,000.
  • polymer compound examples include polyimide, phenoxy resin, polyamide, polyamideimide, polymaleimide, cyanate resin, benzoxazine resin, acrylic resin, urethane resin, polyester and the like.
  • polyimide, polyamide, polyamideimide, and polymaleimide are preferable, and polyimide is more preferable, from the viewpoint of heat resistance.
  • the polymer compound may be used alone or in combination of two or more.
  • the content of the polymer compound is preferably 1 part by weight with respect to a total of 100 parts by weight of the curable resin and the thermosetting agent (in the case of further containing the curing accelerator, the curing accelerator).
  • the preferred upper limit is 40 parts by weight.
  • the more preferable lower limit of the content of the polymer compound is 5 parts by weight, and the more preferable upper limit is 30 parts by weight.
  • the curable resin composition of the present invention may contain a flame retardant as long as the object of the present invention is not impaired.
  • the flame retardant include metal hydrates such as boehmite type aluminum hydroxide, aluminum hydroxide and magnesium hydroxide, halogen-based compounds, phosphorus-based compounds and nitrogen compounds. Of these, boehmite-type aluminum hydroxide is preferable.
  • the content of the flame retardant is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the thermosetting agent (in the case of further containing the curing accelerator, the curing accelerator). be.
  • the content of the flame retardant is in this range, the obtained curable resin composition has excellent flame retardancy while maintaining excellent adhesiveness and the like.
  • a more preferable upper limit of the content of the flame retardant is 150 parts by weight.
  • the curable resin composition may contain a solvent from the viewpoint of coatability and the like.
  • a solvent having a boiling point of less than 200 ° C. is preferable from the viewpoint of coatability, storage stability and the like.
  • the solvent having a boiling point of less than 200 ° C. include alcohol-based solvents, ketone-based solvents, ester-based solvents, hydrocarbon-based solvents, halogen-based solvents, ether-based solvents, nitrogen-containing solvents and the like.
  • the alcohol-based solvent include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, normal butyl alcohol, tertiary butyl alcohol, 2-ethielhexanol and the like.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, diacetone alcohol and the like.
  • Examples of the ester solvent include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methoxybutyl acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate and the like.
  • hydrocarbon solvent examples include benzene, toluene, xylene, normal hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, isooctane, normal decane, normal heptane and the like.
  • halogen-based solvent examples include dichloromethane, chloroform, trichlorethylene and the like.
  • ether-based solvent examples include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and propylene glycol monomethyl ether acetate.
  • nitrogen-containing solvent examples include acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • a ketone solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C. an ester solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C., and a boiling point of 60 ° C. or higher and 200 ° C.
  • At least one selected from the group consisting of ether solvents below ° C is preferred.
  • solvents examples include methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, cyclohexanone, methylcyclohexanone, diethylene glycol dimethyl ether, anisole and the like.
  • the above "boiling point” means a value measured under the condition of 101 kPa or a value converted to 101 kPa in a boiling point conversion chart or the like.
  • the preferable lower limit of the content of the solvent in 100 parts by weight of the curable resin composition containing the solvent is 20 parts by weight, and the preferable upper limit is 90 parts by weight.
  • the content of the solvent is in this range, the obtained curable resin composition is excellent in coatability and the like.
  • the more preferable lower limit of the content of the solvent is 30 parts by weight, and the more preferable upper limit is 80 parts by weight.
  • the curable resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
  • a reactive diluent a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesive reliability.
  • the curable resin composition of the present invention may further contain additives such as a coupling agent, a dispersant, a storage stabilizer, an antibleeding agent, a flux agent, and a leveling agent.
  • additives such as a coupling agent, a dispersant, a storage stabilizer, an antibleeding agent, a flux agent, and a leveling agent.
  • a method for producing the curable resin composition of the present invention for example, using a mixer, a curable resin, a photopolymerization initiator, a thermosetting agent, a curing accelerator added as necessary, and the like can be used.
  • examples include a method of mixing.
  • the mixer include a homodisper, a universal mixer, a Banbury mixer, a kneader and the like.
  • the curable resin composition of the present invention preferably has a gel fraction of 5% or more and less than 90% after irradiation with ultraviolet rays of 2000 mJ / cm 2 .
  • the gel fraction after irradiation with the above-mentioned 2000 mJ / cm 2 ultraviolet rays is within this range, the leaching prevention property after semi-curing is more excellent.
  • the more preferable lower limit of the gel fraction after irradiation with the above 2000 mJ / cm 2 ultraviolet rays is 8%, and the more preferable upper limit is 80%.
  • the curable resin composition of the present invention preferably has a gel fraction of 90% or more after being heated at 190 ° C. for 1 hour.
  • the gel fraction after heating at 190 ° C. for 1 hour is 90% or more, the heat resistance and adhesiveness after curing are excellent.
  • a more preferable lower limit of the gel fraction after heating at 190 ° C. for 1 hour is 92%. After heating at 190 ° C.
  • the above-mentioned "gel fraction” means that the composition after semi-curing or heat-curing is impregnated into a solvent having a solubility capable of sufficiently dissolving the curable resin composition, and the mixture is stirred for 24 hours or more. It is a value expressed as a percentage of the ratio of the weight of the undissolved material obtained by drying to the initial weight of the curable resin composition when it is filtered into a mesh and then dried at 110 ° C. for 1 hour.
  • the solvent for example, tetrahydrofuran or the like can be used.
  • Gel fraction (%) 100 x W 2 / W 1 (W 1 : Initial weight of curable resin composition, W 2 : Weight of undissolved material obtained by drying)
  • the preferable lower limit of the 5% weight loss temperature of the cured product obtained by heating at 190 ° C. for 1 hour is 350 ° C. or higher.
  • the curable resin composition of the present invention has excellent heat resistance after curing and can be suitably used as a heat-resistant adhesive for automobiles and the like. ..
  • a more preferable lower limit of the 5% weight loss temperature of the cured product is 360 ° C., and a further preferable lower limit is 370 ° C.
  • the practical upper limit is 450 ° C.
  • the 5% weight reduction temperature can be derived by thermogravimetric measurement using a thermogravimetric measuring device at a heating rate of 10 ° C./min under heating conditions of 30 ° C. to 500 ° C.
  • thermogravimetric measuring device examples include TG / DTA6200 (manufactured by Hitachi High-Tech Science Corporation).
  • the curable resin composition of the present invention can be used for a wide range of applications, but can be suitably used for electronic material applications in which high heat resistance is particularly required.
  • it can be used as a diagnostic agent in aeronautical and in-vehicle electric control unit (ECU) applications, power device applications using SiC and GaN, and the like.
  • an adhesive for a power overlay package an adhesive, an adhesive for a flexible printed substrate or a coverlay film, a copper-clad laminate, an adhesive for semiconductor bonding, an interlayer insulating film, a prepreg, an adhesive for an LED, and a structure.
  • It can also be used as an adhesive for materials. Among them, it is suitably used for adhering a flexible printed substrate or a coverlay film.
  • a cured product of the curable resin composition of the present invention is also one of the present inventions.
  • An adhesive made by using the curable resin composition of the present invention is also one of the present inventions.
  • An adhesive film can be obtained by applying the adhesive of the present invention onto a film and then drying the film.
  • An adhesive film using the adhesive of the present invention is also one of the present inventions.
  • the present invention it is possible to provide a curable resin composition having excellent flow characteristics before curing, excellent leaching prevention property after semi-curing, and excellent heat resistance after main curing. Further, according to the present invention, it is possible to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
  • the imide oligomer composition A has a structure represented by the above formula (5-1) or (5-3) (A is 4, 4). It was confirmed that'-(4,4'-isopropyridenediphenoxy) diphthalic acid anhydride residue and B contained 1,3-bis (3-aminophenoxy) benzene residue). The number average molecular weight of the imide oligomer composition A was 2100.
  • the imide oligomer composition B After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain an imide oligomer composition B (imidization ratio 95%).
  • the imide oligomer composition B has an imide oligomer having a structure represented by the above formula (6-1) (A is 4,4'-(4,4). ''-Isopropyridenediphenoxy) Diphthalic acid anhydride residue, R is a hydrogen atom) was confirmed to be contained.
  • the number average molecular weight of the imide oligomer composition B was 700.
  • Examples 1 to 6 Comparative Examples 1 and 2
  • Each material was stirred and mixed according to the compounding ratio shown in Table 1 to prepare each curable resin composition of Examples 1 to 6 and Comparative Examples 1 and 2.
  • a cured product was infiltrated into tetrahydrofuran, stirred for 24 hours or more, filtered through a mesh, and then dried at 110 ° C. for 1 hour to derive a gel fraction by the above formula.
  • Each of the curable resin compositions obtained in Examples and Comparative Examples was coated on a base material PET film so as to have a thickness of about 20 ⁇ m, and dried to obtain a curable resin composition on the base material PET film.
  • a film was made.
  • a cured product was prepared by irradiating each of the obtained curable resin composition films with ultraviolet rays of 2000 mJ / cm 2 and then heating at 190 ° C. for 1 hour.
  • the obtained cured product was subjected to a 5% weight under a temperature range of 30 ° C to 500 ° C and a temperature rise condition of 10 ° C / min using a thermogravimetric measuring device (“TG / DTA6200” manufactured by Hitachi High-Tech Science Co., Ltd.). The reduced temperature was measured.
  • TG / DTA6200 thermogravimetric measuring device manufactured by Hitachi High-Tech Science Co., Ltd.
  • the curable resin composition around the opening was semi-cured by irradiating ultraviolet rays of 2000 mJ / cm 2 from the polyimide film side. Then, it was heat-cured at 160 ° C. and 1.0 MPa for 1 hour using a hot press machine. The resin length exuded inside the hole was measured as the amount of exudation. " ⁇ " when there was no leaching (the amount of leaching was less than 0.2 mm), “ ⁇ " when the amount of leaching was 0.2 mm or more and 0.5 mm or less, and the amount of leaching exceeded 0.5 mm. The case of leaching was evaluated as "x".
  • the present invention it is possible to provide a curable resin composition having excellent flow characteristics before curing, excellent leaching prevention property after semi-curing, and excellent heat resistance after main curing. Further, according to the present invention, it is possible to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

One purpose of the present invention is to provide a curable resin composition that has excellent fluid characteristics before being cured, excellent leach preventing ability when being semi-cured, and excellent heat resistance after being fully cured. Another purpose of the present invention is to provide: a cured product of said curable resin composition; and an adhesive agent and an adhesion film which are obtained by using said curable resin composition. This curable resin composition contains a curable resin, a photoinitiator, and a thermosetting agent. The thermosetting agent contains an imide oligomer.

Description

硬化性樹脂組成物、硬化物、接着剤、及び、接着フィルムCurable resin composition, cured product, adhesive, and adhesive film
本発明は、硬化前は流動特性に優れ、半硬化後は浸出防止性に優れ、本硬化後は耐熱性に優れる硬化性樹脂組成物に関する。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムに関する。 The present invention relates to a curable resin composition having excellent flow characteristics before curing, excellent leaching prevention property after semi-curing, and excellent heat resistance after main curing. The present invention also relates to a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
近年、フレキシブルプリント配線板(FPC)は、用途が車載用途にまで拡大しており、FPCやFPCを保護するカバーレイフィルムに用いられる接着剤には、高温長期耐熱性が求められている。このような接着剤には、低収縮であり、接着性、絶縁性、及び、耐薬品性に優れるエポキシ樹脂等の硬化性樹脂を用いた硬化性樹脂組成物が使用されており、特に、短時間の耐熱性に関するはんだリフロー試験や繰り返しの耐熱性に関する冷熱サイクル試験において良好な結果が得られる硬化性樹脂組成物が多く用いられている。 In recent years, flexible printed wiring boards (FPCs) have been used for in-vehicle applications, and adhesives used for coverlay films that protect FPCs and FPCs are required to have high-temperature long-term heat resistance. As such an adhesive, a curable resin composition using a curable resin such as an epoxy resin, which has low shrinkage and is excellent in adhesiveness, insulating property, and chemical resistance, is used, and is particularly short. Curable resin compositions that give good results in solder reflow tests related to time heat resistance and cold heat cycle tests related to repeated heat resistance are often used.
フレキシブルプリント配線板の接着剤層に用いられる接着剤には、部品実装時のボイドを抑制し、凹凸への追従性を良くするためには流動性を高くする必要があるが、流動性が高すぎると端部で浸出しやすくなるという問題がある。そのため、優れた流動特性と浸出防止性とを両立することが求められる。このような接着剤として、例えば、特許文献1~3には、エポキシ樹脂等の熱硬化性成分と、アクリル樹脂、ポリアミド、ポリエステル等の熱可塑性樹脂やアクリロニトリルブタジエンゴム等の可撓性成分とを含有する硬化性樹脂組成物が開示されている。 The adhesive used for the adhesive layer of flexible printed wiring boards needs to have high fluidity in order to suppress voids during component mounting and improve the ability to follow irregularities, but it has high fluidity. If it is too much, there is a problem that it is easy to seep out at the end. Therefore, it is required to have both excellent flow characteristics and leaching prevention properties. As such an adhesive, for example, Patent Documents 1 to 3 describe a thermosetting component such as an epoxy resin and a flexible component such as a thermoplastic resin such as an acrylic resin, polyamide and polyester, and an acrylonitrile butadiene rubber. The curable resin composition contained is disclosed.
特開2006-232984号公報Japanese Unexamined Patent Publication No. 2006-232984 特開2009-167396号公報Japanese Unexamined Patent Publication No. 2009-167396 特開2008-308686号公報Japanese Unexamined Patent Publication No. 2008-308686 特開平5-306386号公報Japanese Unexamined Patent Publication No. 5-306386
近年の車載用等への用途拡大に伴い、接着剤には長期耐熱性が求められている。しかしながら、特許文献1~3に開示されている硬化性樹脂組成物を用いた接着剤は、耐熱性が不充分であった。
耐熱性に優れる接着剤として、特許文献4には、可溶性ポリエステル、フェノキシ樹脂、及び、イミドシロキサンオリゴマーを含有する接着剤が開示されている。しかしながら、特許文献4に開示されている接着剤は、流動特性と浸出防止性とを両立することが困難であった。
With the recent expansion of applications for automobiles and the like, long-term heat resistance is required for adhesives. However, the adhesive using the curable resin composition disclosed in Patent Documents 1 to 3 has insufficient heat resistance.
As an adhesive having excellent heat resistance, Patent Document 4 discloses an adhesive containing a soluble polyester, a phenoxy resin, and an imidesiloxane oligomer. However, it has been difficult for the adhesive disclosed in Patent Document 4 to have both flow characteristics and leaching prevention properties at the same time.
本発明は、硬化前は流動特性に優れ、半硬化後は浸出防止性に優れ、本硬化後は耐熱性に優れる硬化性樹脂組成物を提供することを目的とする。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することを目的とする。 An object of the present invention is to provide a curable resin composition having excellent flow characteristics before curing, excellent leaching prevention property after semi-curing, and excellent heat resistance after main curing. Another object of the present invention is to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
本発明は、硬化性樹脂と、光重合開始剤と、熱硬化剤とを含有し、上記熱硬化剤は、イミドオリゴマーを含む硬化性樹脂組成物である。
以下に本発明を詳述する。
The present invention contains a curable resin, a photopolymerization initiator, and a thermosetting agent, and the thermosetting agent is a curable resin composition containing an imide oligomer.
The present invention will be described in detail below.
本発明者らは、硬化性樹脂と熱硬化剤とを含有する硬化性樹脂組成物に、更に光重合開始剤を配合し、硬化性樹脂として該光重合開始剤により光硬化(半硬化)させることのできるものを用い、かつ、熱硬化剤としてイミドオリゴマーを用いることを検討した。その結果、硬化前は流動特性に優れ、半硬化後は浸出防止性に優れ、本硬化後は耐熱性に優れる硬化性樹脂組成物を得ることができることを見出し、本発明を完成させるに至った。 The present inventors further add a photopolymerization initiator to a curable resin composition containing a curable resin and a thermosetting agent, and photocure (semi-cure) the curable resin with the photopolymerization initiator. It was examined to use a material that can be used and to use an imide oligomer as a thermosetting agent. As a result, it has been found that a curable resin composition having excellent flow characteristics before curing, excellent leaching prevention property after semi-curing, and excellent heat resistance after main curing can be obtained, and the present invention has been completed. ..
本発明の硬化性樹脂組成物は、硬化性樹脂を含有する。
硬化前の流動特性等の観点から、上記硬化性樹脂は、25℃で液状のものを含有することが好ましい。
The curable resin composition of the present invention contains a curable resin.
From the viewpoint of flow characteristics before curing, the curable resin preferably contains a liquid at 25 ° C.
上記硬化性樹脂は、光照射時に後述する光重合開始剤によって光硬化させることのできる化合物(光硬化性樹脂)と、加熱時に後述する熱硬化剤によって熱硬化させることのできる化合物(熱硬化性樹脂)とを含有することが好ましい。上記光硬化性樹脂と上記熱硬化性樹脂は、同じ化合物(光熱硬化性樹脂)であってもよく、上記硬化性樹脂が該光熱硬化性樹脂を含む場合でも、更に光硬化性樹脂及び/又は熱硬化性樹脂を含んでもよい。 The curable resin is a compound that can be photocured by a photopolymerization initiator described later when irradiated with light (thermosetting resin) and a compound that can be thermally cured by a thermosetting agent described later when heated. It is preferable to contain resin). The photocurable resin and the thermosetting resin may be the same compound (thermosetting resin), and even when the curable resin contains the thermosetting resin, the photocurable resin and / or the thermosetting resin may be further used. It may contain a thermosetting resin.
上記硬化性樹脂は、エポキシ基を有さないラジカル重合性化合物及びラジカル重合性基を有さないエポキシ化合物、並びに/又は、エポキシ基とラジカル重合性基とを有する化合物を含むことが好ましい。硬化をより均一にし、機械強度と信頼性とを向上させる観点からは、上記硬化性樹脂は、エポキシ基を有さないラジカル重合性化合物、ラジカル重合性基を有さないエポキシ化合物、及び、エポキシ基とラジカル重合性基とを有する化合物を含むことがより好ましい。 The curable resin preferably contains a radically polymerizable compound having no epoxy group, an epoxy compound having no radically polymerizable group, and / or a compound having an epoxy group and a radically polymerizable group. From the viewpoint of making the curing more uniform and improving the mechanical strength and reliability, the curable resin is a radical polymerizable compound having no radical polymerizable group, an epoxy compound having no radical polymerizable group, and an epoxy. It is more preferable to contain a compound having a radical and a radically polymerizable group.
上記エポキシ基を有さないラジカル重合性化合物としては、エチレン性不飽和二重結合を有する化合物が好ましく、(メタ)アクリル化合物がより好ましい。
なお、本明細書において上記「(メタ)アクリル」は、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」は、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味する。
As the radically polymerizable compound having no epoxy group, a compound having an ethylenically unsaturated double bond is preferable, and a (meth) acrylic compound is more preferable.
In the present specification, the above-mentioned "(meth) acrylic" means acrylic or methacrylic, and the above-mentioned "(meth) acrylic compound" means a compound having a (meth) acryloyl group, and the above-mentioned "(meth) acryloyl". "" Means acryloyl or methacryloyl.
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、(メタ)アクリルアミド化合物等が挙げられる。
なお、本明細書において、上記「(メタ)アクリレート」は、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Examples of the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, and (meth) acrylamide compounds.
In the present specification, the above-mentioned "(meth) acrylate" means acrylate or methacrylate, and the above-mentioned "epoxy (meth) acrylate" means that all epoxy groups in the epoxy compound are reacted with (meth) acrylic acid. Represents the compound that has been made to.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、テトラヒドロフルフリルアルコールアクリル酸多量体エステル、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、2-(((ブチルアミノ)カルボニル)オキシ)エチル(メタ)アクリレート、(3-プロピルオキセタン-3-イル)メチル(メタ)アクリレート、(3-ブチルオキセタン-3-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)エチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)プロピル(メタ)アクリレート、(3-エチルオキセタン-3-イル)ブチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)ペンチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)ヘキシル(メタ)アクリレート、γ-ブチロラクトン(メタ)アクリレート、(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(2-メチル-2-イソブチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(2-シクロヘキシル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、環状トリメチロールプロパンホルマールアクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxybutyl (meth) Acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl ( Meta) acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) ) Acrylate, tetrahydrofurfuryl (meth) acrylate, tetrahydrofurfuryl alcohol acrylic acid multimer ester, ethylcarbitol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3 -Tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-Octafluoropentyl (meth) acrylate, imide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2- (meth) acrylic Loyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropylphthalate, 2- (meth) acryloyloxyethyl phosphate, (3-ethyl) Oxetane-3-yl) Methyl (meth) acrylate, 2-(((butylamino) carboni) Le) Oxy) ethyl (meth) acrylate, (3-propyloxetane-3-yl) methyl (meth) acrylate, (3-butyloxetane-3-yl) methyl (meth) acrylate, (3-ethyloxetane-3-3) Il) ethyl (meth) acrylate, (3-ethyloxetane-3-yl) propyl (meth) acrylate, (3-ethyloxetane-3-yl) butyl (meth) acrylate, (3-ethyloxetane-3-yl) Pentyl (meth) acrylate, (3-ethyloxetane-3-yl) hexyl (meth) acrylate, γ-butyrolactone (meth) acrylate, (2,2-dimethyl-1,3-dioxolan-4-yl) methyl (meth) ) Acrylate, (2-Methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, (2-methyl-2-isobutyl-1,3-dioxolan-4-yl) methyl (meth) ) Acrylate, (2-cyclohexyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, cyclic trimethylolpropaneformal acrylate and the like.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Didioldi (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meta) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate ) Acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate. , Dimethylol dicyclopentadienyldi (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, Examples thereof include polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene diol di (meth) acrylate, and tricyclodecanedimethanol di (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, examples thereof include trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, and propylene oxide-added trimethylolpropane tri (meth) acrylate. Meta) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Examples thereof include tris (meth) acryloyloxyethyl phosphate, trimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェノールE型エポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、レゾルシノール型エポキシ(メタ)アクリレート及び、これらのカプロラクトン変性体等が挙げられる。 Examples of the epoxy (meth) acrylate include bisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylate, bisphenol E type epoxy (meth) acrylate, phenol novolac type epoxy (meth) acrylate, and cresol novolak type. Examples thereof include epoxy (meth) acrylates, resorcinol-type epoxy (meth) acrylates, and modified caprolactones thereof.
上記(メタ)アクリルアミド化合物としては、例えば、N,N-ジメチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、N-ヒドロキシエチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等が挙げられる。 Examples of the (meth) acrylamide compound include N, N-dimethyl (meth) acrylamide, N- (meth) acryloylmorpholine, N-hydroxyethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, and N-. Examples thereof include isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide and the like.
上記ラジカル重合性基を有さないエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノールO型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、脂環式エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy compound having no radically polymerizable group include bisphenol A type epoxy compound, bisphenol E type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, bisphenol O type epoxy compound, 2,2'. -Diallyl bisphenol A type epoxy compound, alicyclic epoxy compound, hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, Dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadiene novolac type epoxy compound, biphenylnovolac type epoxy compound, naphthalenephenol novolac type epoxy compound, glycidylamine type epoxy Examples thereof include compounds, alkyl polyol type epoxy compounds, rubber-modified epoxy compounds, and glycidyl ester compounds.
上記硬化性樹脂は、上記エポキシ基とラジカル重合性基とを有する化合物として、エポキシ基と(メタ)アクリロイル基とを有する化合物を含むことが好ましい。
上記エポキシ基と(メタ)アクリロイル基とを有する化合物としては、例えば、部分(メタ)アクリル変性エポキシ化合物、グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等が挙げられる。
なお、本明細書において上記「部分(メタ)アクリル変性エポキシ化合物」は、1分子中に2以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得られる、1分子中に1以上のエポキシ基と1以上の(メタ)アクリロイル基とを有する化合物を意味する。
The curable resin preferably contains a compound having an epoxy group and a (meth) acryloyl group as the compound having the epoxy group and the radically polymerizable group.
Examples of the compound having the epoxy group and the (meth) acryloyl group include a partially (meth) acrylic modified epoxy compound, glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether and the like.
In the present specification, the above-mentioned "partially (meth) acrylic-modified epoxy compound" is obtained by reacting an epoxy group of a part of an epoxy compound having two or more epoxy groups in one molecule with (meth) acrylic acid. 1 means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in one molecule.
上記部分(メタ)アクリル変性エポキシ化合物としては、例えば、部分(メタ)アクリル変性ビスフェノールA型エポキシ化合物、部分(メタ)アクリル変性ビスフェノールF型エポキシ化合物、部分(メタ)アクリル変性ビスフェノールE型エポキシ化合物、部分(メタ)アクリル変性フェノールノボラック型エポキシ化合物、部分(メタ)アクリル変性クレゾールノボラック型エポキシ化合物、部分(メタ)アクリル変性レゾルシノール型エポキシ化合物等が挙げられる。 Examples of the partial (meth) acrylic-modified epoxy compound include a partial (meth) acrylic-modified bisphenol A-type epoxy compound, a partial (meth) acrylic-modified bisphenol F-type epoxy compound, and a partial (meth) acrylic-modified bisphenol E-type epoxy compound. Examples thereof include a partially (meth) acrylic-modified phenol novolac-type epoxy compound, a partially (meth) acrylic-modified cresol novolac-type epoxy compound, and a partially (meth) acrylic-modified resorcinol-type epoxy compound.
本発明の硬化性樹脂組成物は、光重合開始剤を含有する。
上記光重合開始剤としては、例えば、α-ヒドロキシケトン化合物、α-ヒドロキシアルキルフェノン化合物、ベンゾフェノン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、オキシムエステル化合物、ベンゾインエーテル化合物、チオキサントン化合物等が挙げられる。
上記光重合開始剤としては、具体的には例えば、2-ヒドロキシ-1-(4-イソプロペニルフェニル)-2-メチル-1-プロパノンのオリゴマー、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-((4-メチルフェニル)メチル)-1-(4-(4-モルホリニル)フェニル)-1-ブタノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-(フェニルチオ)フェニル)-1,2-オクタンジオン2-(O-ベンゾイルオキシム)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル))プロパノン、2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)フェノキシ)フェニル)-2-メチルプロパン-1-オン、2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン、1-(4-(4-ベンゾイルフェニルスルファニル)フェニル)-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン等が挙げられる。
The curable resin composition of the present invention contains a photopolymerization initiator.
Examples of the photopolymerization initiator include α-hydroxyketone compounds, α-hydroxyalkylphenone compounds, benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds and the like. Can be mentioned.
Specific examples of the photopolymerization initiator include an oligomer of 2-hydroxy-1- (4-isopropenylphenyl) -2-methyl-1-propanol, 1-hydroxycyclohexylphenylketone, and 2-benzyl-2. -Dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino) -2-((4-methylphenyl) methyl) -1- (4- (4-morpholinyl) phenyl)- 1-butanone, 2,2-dimethoxy-1,2-diphenylethan-1-one, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- (4-methylthiophenyl) -2 -Morphorinopropane-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propane-1-one, 1- (4- (phenylthio) phenyl) -1,2-octanedione 2- (O-benzoyloxime), 2,4,6-trimethylbenzoyldiphenylphosphine oxide, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, oligo (2-hydroxy-2-methyl- 1- (4- (1-methylvinyl) phenyl)) propanone, 2-hydroxy-1- (4- (4- (2-hydroxy-2-methylpropionyl) phenoxy) phenyl) -2-methylpropane-1- On, 2-hydroxy-1- (4- (4- (2-hydroxy-2-methylpropionyl) benzyl) phenyl) -2-methylpropan-1-one, 1- (4- (4-benzoylphenylsulfanyl)) Phenyl) -2-methyl-2- (4-methylphenylsulfonyl) propan-1-one and the like can be mentioned.
上記光重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が20重量部である。上記光重合開始剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が優れた保存安定性を維持しつつ、光硬化性により優れるものとなって、半硬化後の浸出防止性により優れるものとなる。上記光重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は10重量部である。 The content of the photopolymerization initiator is preferably 0.1 part by weight and a preferable upper limit of 20 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the photopolymerization initiator is in this range, the obtained curable resin composition has excellent photocurability while maintaining excellent storage stability, and prevents leaching after semi-curing. It will be superior to the sex. The more preferable lower limit of the content of the photopolymerization initiator is 0.5 parts by weight, and the more preferable upper limit is 10 parts by weight.
本発明の硬化性樹脂組成物は、熱硬化剤を含有する。
上記熱硬化剤は、イミドオリゴマーを含む。上記熱硬化剤として上記イミドオリゴマーを用いることにより、本発明の硬化性樹脂組成物は、本硬化後の耐熱性に優れるものとなる。
The curable resin composition of the present invention contains a thermosetting agent.
The thermosetting agent contains an imide oligomer. By using the imide oligomer as the thermosetting agent, the curable resin composition of the present invention has excellent heat resistance after the main curing.
上記イミドオリゴマーは、主鎖の末端に酸無水物基又はフェノール性水酸基を有することが好ましく、主鎖の両末端に酸無水物基又はフェノール性水酸基を有することがより好ましい。 The imide oligomer preferably has an acid anhydride group or a phenolic hydroxyl group at the end of the main chain, and more preferably has an acid anhydride group or a phenolic hydroxyl group at both ends of the main chain.
上記イミドオリゴマーは、下記式(1-1)若しくは下記式(1-2)、又は、下記式(2-1)若しくは下記式(2-2)で表される構造を有することが好ましい。下記式(1-1)若しくは下記式(1-2)、又は、下記式(2-1)若しくは下記式(2-2)で表される構造を有することにより、上記イミドオリゴマーは、上記硬化性樹脂との反応性及び相溶性により優れるものとなる。 The imide oligomer preferably has a structure represented by the following formula (1-1) or the following formula (1-2), or the following formula (2-1) or the following formula (2-2). By having a structure represented by the following formula (1-1) or the following formula (1-2), or the following formula (2-1) or the following formula (2-2), the imide oligomer can be cured. It becomes more excellent in reactivity and compatibility with the sex resin.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
式(1-1)及び式(1-2)中、Aは、酸二無水物残基であり、式(1-1)中、Bは、脂肪族ジアミン残基又は芳香族ジアミン残基であり、式(1-2)中、Arは、置換されていてもよい2価の芳香族基である。 In formulas (1-1) and (1-2), A is an acid dianhydride residue, and in formula (1-1), B is an aliphatic diamine residue or an aromatic diamine residue. Yes, in formula (1-2), Ar is a optionally substituted divalent aromatic group.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(2-1)及び式(2-2)中、Aは、酸二無水物残基であり、Bは、脂肪族トリアミン残基又は芳香族トリアミン残基であり、式(2-2)中、Arは、置換されていてもよい2価の芳香族基である。 In the formula (2-1) and the formula (2-2), A is an acid dianhydride residue, B is an aliphatic triamine residue or an aromatic triamine residue, and the formula (2-2). Among them, Ar is a divalent aromatic group which may be substituted.
上記酸二無水物残基は、下記式(3-1)又は下記式(3-2)で表される4価の基であることが好ましい。 The acid dianhydride residue is preferably a tetravalent group represented by the following formula (3-1) or the following formula (3-2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(3-1)及び式(3-2)中、*は、結合位置であり、式(3-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Zが炭化水素基である場合、該炭化水素基と式(3-1)中の各芳香環との間に酸素原子を有していてもよく、Zが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(3-1)中の各芳香環との間に酸素原子を有していてもよい。式(3-1)及び式(3-2)中における芳香環の水素原子は置換されていてもよい。 In the formula (3-1) and the formula (3-2), * is a bond position, and in the formula (3-1), Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a direct chain. It is a chain-like or branched chain-like divalent hydrocarbon group or a divalent group having an aromatic ring. When Z is a hydrocarbon group, an oxygen atom may be contained between the hydrocarbon group and each aromatic ring in the formula (3-1), and Z is a divalent group having an aromatic ring. In some cases, an oxygen atom may be provided between the divalent group having the aromatic ring and each aromatic ring in the formula (3-1). The hydrogen atom of the aromatic ring in the formula (3-1) and the formula (3-2) may be substituted.
上記式(3-1)中のZが、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である場合、これらの基は、置換されていてもよい。
上記直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、上記芳香環を有する2価の基が置換されている場合の置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
When Z in the above formula (3-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring, these groups are substituted. May be good.
When the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted, the substituent includes, for example, a halogen atom, a linear or branched chain. Examples thereof include a linear alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, a cyano group and the like.
上記酸二無水物残基の由来となる酸二無水物としては、例えば、後述する式(9)で表される酸二無水物等が挙げられる。 Examples of the acid dianhydride from which the acid dianhydride residue is derived include an acid dianhydride represented by the formula (9) described later.
上記式(1-1)のBが上記脂肪族ジアミン残基である場合や、上記式(2-1)又は上記式(2-2)中のBが上記脂肪族トリアミン残基である場合の該脂肪族ジアミン残基及び該脂肪族トリアミン残基の炭素数の好ましい下限は4である。上記脂肪族ジアミン残基及び上記脂肪族トリアミン残基の炭素数が4以上であることにより、得られる硬化性樹脂組成物が、硬化前における可撓性及び加工性、及び、硬化後の誘電特性により優れるものとなる。上記脂肪族ジアミン残基及び上記脂肪族トリアミン残基の炭素数のより好ましい下限は5、更に好ましい下限は6である。
また、上記脂肪族ジアミン残基及び上記脂肪族トリアミン残基の炭素数の好ましい上限は特にないが、実質的な上限は60である。
When B in the above formula (1-1) is the above aliphatic diamine residue, or when B in the above formula (2-1) or the above formula (2-2) is the above aliphatic triamine residue. The preferable lower limit of the carbon number of the aliphatic diamine residue and the aliphatic triamine residue is 4. The curable resin composition obtained by having 4 or more carbon atoms in the aliphatic diamine residue and the aliphatic triamine residue has flexibility and processability before curing and dielectric properties after curing. Will be better. The more preferable lower limit of the number of carbon atoms of the aliphatic diamine residue and the aliphatic triamine residue is 5, and the more preferable lower limit is 6.
Further, although there is no particular preferable upper limit of the carbon number of the aliphatic diamine residue and the aliphatic triamine residue, the practical upper limit is 60.
上記脂肪族ジアミン残基の由来となる脂肪族ジアミンとしては、例えば、ダイマー酸から誘導される脂肪族ジアミンや、直鎖若しくは分岐鎖脂肪族ジアミンや、脂肪族エーテルジアミンや、脂肪族脂環式ジアミン等が挙げられる。
上記ダイマー酸から誘導される脂肪族ジアミンとしては、例えば、ダイマージアミン、水添型ダイマージアミン等が挙げられる。
上記直鎖若しくは分岐鎖脂肪族ジアミンとしては、例えば、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,14-テトラデカンジアミン、1,16-ヘキサデカンジアミン、1,18-オクタデカンジアミン、1,20-エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2-メチル-1,9-ノナンジアミン、2,7-ジメチル-1,8-オクタンジアミン等が挙げられる。
上記脂肪族エーテルジアミンとしては、例えば、2,2’-オキシビス(エチルアミン)、3,3’-オキシビス(プロピルアミン)、1,2-ビス(2-アミノエトキシ)エタン等が挙げられる。
上記脂肪族脂環式ジアミンとしては、例えば、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等が挙げられる。
なかでも、上記脂肪族ジアミン残基は、上記ダイマー酸から誘導される脂肪族ジアミン残基であることが好ましい。
Examples of the aliphatic diamine from which the above aliphatic diamine residue is derived include an aliphatic diamine derived from dimer acid, a linear or branched aliphatic diamine, an aliphatic ether diamine, and an aliphatic alicyclic type. Examples include diamine.
Examples of the aliphatic diamine derived from the dimer acid include dimer diamine, hydrogenated diamine diamine and the like.
Examples of the linear or branched aliphatic diamine include 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonandiamine, 1,10-decanediamine, and 1, 11-Undecanediamine, 1,12-Dodecanediamine, 1,14-Tetradecanediamine, 1,16-Hexadecanediamine, 1,18-Octadecanediamine, 1,20-Eicosandiamine, 2-Methyl-1,8-octane Examples thereof include diamine, 2-methyl-1,9-nonanediamine, 2,7-dimethyl-1,8-octanediamine and the like.
Examples of the aliphatic ether diamine include 2,2'-oxybis (ethylamine), 3,3'-oxybis (propylamine), 1,2-bis (2-aminoethoxy) ethane and the like.
Examples of the aliphatic alicyclic diamine include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine.
Among them, the aliphatic diamine residue is preferably an aliphatic diamine residue derived from the dimer acid.
上記脂肪族トリアミン残基の由来となる脂肪族トリアミンとしては、例えば、トリマー酸から誘導される脂肪族トリアミンや、直鎖若しくは分岐鎖脂肪族トリアミンや、脂肪族エーテルトリアミンや、脂肪族脂環式トリアミン等が挙げられる。
上記トリマー酸から誘導される脂肪族トリアミンとしては、例えば、トリマートリアミン、水添型トリマートリアミン等が挙げられる。
上記直鎖若しくは分岐鎖脂肪族トリアミンとしては、例えば、3,3’-ジアミノ-N-メチルジプロピルアミン、3,3’-ジアミノジプロピルアミン、ジエチレントリアミン、ビス(ヘキサメチレン)トリアミン、2,2’-ビス(メチルアミノ)-N-メチルジエチルアミン等が挙げられる。
なかでも、上記脂肪族トリアミン残基は、上記トリマー酸から誘導される脂肪族トリアミン残基であることが好ましい。
Examples of the aliphatic triamine from which the above aliphatic triamine residue is derived include an aliphatic triamine derived from trimeric acid, a linear or branched aliphatic triamine, an aliphatic ether triamine, and an aliphatic alicyclic type. Examples thereof include triamine.
Examples of the aliphatic triamine derived from the trimer acid include trimer triamine, hydrogenated trimer triamine and the like.
Examples of the linear or branched aliphatic triamine include 3,3'-diamino-N-methyldipropylamine, 3,3'-diaminodipropylamine, diethylenetriamine, bis (hexamethylene) triamine, and 2,2. '-Bis (methylamino) -N-methyldiethylamine and the like can be mentioned.
Among them, the aliphatic triamine residue is preferably an aliphatic triamine residue derived from the trimeric acid.
また、上記脂肪族ジアミン及び/又は上記脂肪族トリアミンとして、上記ダイマージアミン及び上記トリマートリアミンの混合物を用いることもできる。 Further, as the aliphatic diamine and / or the aliphatic triamine, a mixture of the dimer diamine and the trimer triamine can also be used.
上記ダイマー酸及び/又は上記トリマー酸から誘導される脂肪族ジアミン及び/又は脂肪族トリアミンの市販品としては、例えば、BASF社製の脂肪族ジアミン及び/又は脂肪族トリアミンや、クローダ社製の脂肪族ジアミン及び/又は脂肪族トリアミン等が挙げられる。
上記BASF社製の脂肪族ジアミン及び/又は脂肪族トリアミンとしては、例えば、バーサミン551、バーサミン552等が挙げられる。
上記クローダ社製の脂肪族ジアミン及び/又は脂肪族トリアミンとしては、例えば、プリアミン1071、プリアミン1073、プリアミン1074、プリアミン1075等が挙げられる。
Examples of commercially available products of the aliphatic diamine and / or the aliphatic triamine derived from the dimer acid and / or the trimer acid include the aliphatic diamine and / or the aliphatic triamine manufactured by BASF and the fat manufactured by Croder. Examples thereof include group diamines and / or aliphatic triamines.
Examples of the aliphatic diamine and / or aliphatic triamine manufactured by BASF include Versamine 551 and Versamine 552.
Examples of the aliphatic diamine and / or aliphatic triamine manufactured by Croda International include preamine 1071, preamine 1073, preamine 1074, and preamine 1075.
上記式(1-1)中のBが上記芳香族ジアミン残基である場合の該芳香族ジアミン残基は、下記式(4-1)又は下記式(4-2)で表される2価の基であることが好ましい。 When B in the above formula (1-1) is the above aromatic diamine residue, the aromatic diamine residue is a divalent represented by the following formula (4-1) or the following formula (4-2). It is preferably the basis of.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(4-1)及び式(4-2)中、*は、結合位置であり、式(4-1)中、Yは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Yが炭化水素基である場合、該炭化水素基と式(4-1)中の各芳香環との間に酸素原子を有していてもよく、Yが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(4-1)中の各芳香環との間に酸素原子を有していてもよい。式(4-1)及び式(4-2)中における芳香環の水素原子は置換されていてもよい。 In the formula (4-1) and the formula (4-2), * is a bond position, and in the formula (4-1), Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a direct chain. It is a chain-like or branched chain-like divalent hydrocarbon group or a divalent group having an aromatic ring. When Y is a hydrocarbon group, an oxygen atom may be contained between the hydrocarbon group and each aromatic ring in the formula (4-1), and Y is a divalent group having an aromatic ring. In some cases, an oxygen atom may be provided between the divalent group having the aromatic ring and each aromatic ring in the formula (4-1). The hydrogen atom of the aromatic ring in the formula (4-1) and the formula (4-2) may be substituted.
上記式(4-1)中のYが、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である場合、これらの基は、置換されていてもよい。
上記直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、上記芳香環を有する2価の基が置換されている場合の置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
When Y in the above formula (4-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring, these groups are substituted. May be good.
When the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted, the substituent includes, for example, a halogen atom, a linear or branched chain. Examples thereof include a linear alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, a cyano group and the like.
上記芳香族ジアミン残基の由来となる芳香族ジアミンとしては、例えば、後述する式(10)で表されるジアミンが芳香族ジアミンである場合のもの等が挙げられる。 Examples of the aromatic diamine from which the aromatic diamine residue is derived include those in which the diamine represented by the formula (10) described later is an aromatic diamine.
また、上記イミドオリゴマーは、構造中にシロキサン骨格を有する場合、構造中にシロキサン骨格を有する場合、硬化後のガラス転移温度を低下させたり、被着体を汚染し接着不良の原因となり得ることから、構造中にシロキサン骨格を有さないイミドオリゴマーであることが好ましい。 Further, if the imide oligomer has a siloxane skeleton in the structure, or if it has a siloxane skeleton in the structure, it may lower the glass transition temperature after curing or contaminate the adherend and cause poor adhesion. , It is preferable that it is an imide oligomer having no siloxane skeleton in its structure.
上記イミドオリゴマーの数平均分子量は、5000以下であることが好ましい。上記イミドオリゴマーの数平均分子量が5000以下であることにより、得られる硬化性樹脂組成物の硬化物が長期耐熱性により優れるものとなる。上記イミドオリゴマーの数平均分子量のより好ましい上限は4000、更に好ましい上限は3000である。
特に、上記イミドオリゴマーの数平均分子量は、上記式(1-1)、上記式(2-1)で表される構造を有する場合は900以上5000以下であることが好ましく、上記式(1-2)、上記式(2-2)で表される構造を有する場合は550以上4000以下であることが好ましい。上記式(1-1)、上記式(2-1)で表される構造を有する場合の数平均分子量のより好ましい下限は950、更に好ましい下限は1000である。上記式(1-2)、上記式(2-2)で表される構造を有する場合の数平均分子量のより好ましい下限は580、更に好ましい下限は600である。
なお、本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
The number average molecular weight of the imide oligomer is preferably 5000 or less. When the number average molecular weight of the imide oligomer is 5000 or less, the cured product of the obtained curable resin composition is superior in long-term heat resistance. A more preferable upper limit of the number average molecular weight of the imide oligomer is 4000, and a further preferable upper limit is 3000.
In particular, the number average molecular weight of the imide oligomer is preferably 900 or more and 5000 or less when it has a structure represented by the above formula (1-1) and the above formula (2-1), and the above formula (1-). 2) When having a structure represented by the above formula (2-2), it is preferably 550 or more and 4000 or less. When the structure represented by the above formula (1-1) and the above formula (2-1) is provided, the more preferable lower limit of the number average molecular weight is 950, and the further preferable lower limit is 1000. When the structure represented by the above formula (1-2) and the above formula (2-2) is formed, the more preferable lower limit of the number average molecular weight is 580, and the further preferable lower limit is 600.
In the present specification, the above-mentioned "number average molecular weight" is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industry Co., Ltd.).
上記イミドオリゴマーは、具体的には、下記式(5-1)、下記式(5-2)、下記式(5-3)、下記式(5-4)、若しくは、下記式(5-5)で表されるイミドオリゴマー、又は、下記式(6-1)、下記式(6-2)、下記式(6-3)、下記式(6-4)、下記式(6-5)、若しくは、下記式(6-6)で表されるイミドオリゴマーであることが好ましい。 Specifically, the above-mentioned imide oligomer has the following formula (5-1), the following formula (5-2), the following formula (5-3), the following formula (5-4), or the following formula (5-5). ), Or the following formula (6-1), the following formula (6-2), the following formula (6-3), the following formula (6-4), the following formula (6-5), Alternatively, it is preferably an imide oligomer represented by the following formula (6-6).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(5-1)~(5-5)中、Aは、上記酸二無水物残基であり、式(5-1)、(5-3)~(5-5)中、Aは、それぞれ同一であってもよいし、異なっていてもよい。式(5-1)~(5-4)中、Bは、上記脂肪族ジアミン残基若しくは上記芳香族ジアミン残基であり、式(5-3)及び式(5-4)中、Bは、それぞれ同一であってもよいし、異なっていてもよい。式(5-5)中、Bは、上記脂肪族トリアミン残基若しくは上記芳香族トリアミン残基である。式(5-2)中、Xは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基であり、式(5-4)中、Wは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基である。式(5-3)及び式(5-4)中、nは、繰り返し数である。 In formulas (5-1) to (5-5), A is the acid dianhydride residue, and in formulas (5-1), (5-3) to (5-5), A is. Each may be the same or different. In the formulas (5-1) to (5-4), B is the aliphatic diamine residue or the aromatic diamine residue, and in the formulas (5-3) and (5-4), B is. , Each may be the same or different. In formula (5-5), B is the aliphatic triamine residue or the aromatic triamine residue. In the formula (5-2), X is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted, and in the formula (5-4), W is a hydrogen atom, a halogen atom. , Or a monovalent hydrocarbon group which may be substituted. In the formula (5-3) and the formula (5-4), n is a repetition number.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(6-1)~(6-6)中、Aは、上記酸二無水物残基であり、式(6-1)~(6-6)中、Aは、それぞれ同一であってもよいし、異なっていてもよい。式(6-1)~(6-6)中、Rは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基であり、式(6-1)、式(6-2)、式(6-4)、及び、式(6-6)中、Rは、それぞれ同一であってもよいし、異なっていてもよい。式(6-3)及び式(6-5)中、Wは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基である。式(6-2)~(6-4)中、Bは、上記脂肪族ジアミン残基若しくは上記芳香族ジアミン残基であり、式(6-4)及び式(6-5)中、Bは、それぞれ同一であってもよいし、異なっていてもよい。式(6-6)中、Bは、又は、上記脂肪族トリアミン残基若しくは上記芳香族トリアミン残基である。 In formulas (6-1) to (6-6), A is the acid dianhydride residue, and in formulas (6-1) to (6-6), A is the same. It may or may not be different. In formulas (6-1) to (6-6), R is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted, and formulas (6-1) and (6). -2), in the formula (6-4), and in the formula (6-6), R may be the same or different. In formulas (6-3) and (6-5), W is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted. In formulas (6-2) to (6-4), B is the aliphatic diamine residue or the aromatic diamine residue, and in formulas (6-4) and (6-5), B is. , Each may be the same or different. In formula (6-6), B is, or the aliphatic triamine residue or the aromatic triamine residue.
上記式(5-1)~(5-5)、及び、上記式(6-1)~(6-6)中のAは、下記式(7-1)又は下記式(7-2)で表される4価の基であることが好ましい。 A in the above formulas (5-1) to (5-5) and the above formulas (6-1) to (6-6) is the following formula (7-1) or the following formula (7-2). It is preferably a tetravalent group represented.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(7-1)及び式(7-2)中、*は、結合位置であり、式(7-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Zが炭化水素基である場合、該炭化水素基と式(7-1)中の各芳香環との間に酸素原子を有していてもよく、Zが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(7-1)中の各芳香環との間に酸素原子を有していてもよい。式(7-1)及び式(7-2)中における芳香環の水素原子は置換されていてもよい。 In the formula (7-1) and the formula (7-2), * is a bond position, and in the formula (7-1), Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a direct chain. It is a chain-like or branched chain-like divalent hydrocarbon group or a divalent group having an aromatic ring. When Z is a hydrocarbon group, an oxygen atom may be contained between the hydrocarbon group and each aromatic ring in the formula (7-1), and Z is a divalent group having an aromatic ring. In some cases, an oxygen atom may be provided between the divalent group having the aromatic ring and each aromatic ring in the formula (7-1). The hydrogen atom of the aromatic ring in the formula (7-1) and the formula (7-2) may be substituted.
上記式(5-1)~(5-4)、及び、上記式(6-2)~(6-5)中のBは、下記式(8-1)又は下記式(8-2)で表される2価の基であることが好ましい。 B in the above formulas (5-1) to (5-4) and the above formulas (6-2) to (6-5) is the following formula (8-1) or the following formula (8-2). It is preferably a divalent group represented.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(8-1)及び式(8-2)中、*は、結合位置であり、式(8-1)中、Yは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Yが炭化水素基である場合、該炭化水素基と式(8-1)中の各芳香環との間に酸素原子を有していてもよく、Yが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(8-1)中の各芳香環との間に酸素原子を有していてもよい。式(8-1)及び式(8-2)中における芳香環の水素原子は置換されていてもよい。 In the formula (8-1) and the formula (8-2), * is a bond position, and in the formula (8-1), Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a direct chain. It is a chain-like or branched chain-like divalent hydrocarbon group or a divalent group having an aromatic ring. When Y is a hydrocarbon group, an oxygen atom may be contained between the hydrocarbon group and each aromatic ring in the formula (8-1), and Y is a divalent group having an aromatic ring. In some cases, an oxygen atom may be provided between the divalent group having the aromatic ring and each aromatic ring in the formula (8-1). The hydrogen atom of the aromatic ring in the formula (8-1) and the formula (8-2) may be substituted.
上記式(1-1)で表される構造を有するイミドオリゴマーを製造する方法としては、例えば、下記式(9)で表される酸二無水物と下記式(10)で表されるジアミンとを反応させる方法等が挙げられる。また、下記式(10)で表されるジアミンに代えて脂肪族トリアミン又は芳香族トリアミンを用いることにより、上記式(2-1)で表される構造を有するイミドオリゴマーを製造することができる。 As a method for producing an imide oligomer having a structure represented by the above formula (1-1), for example, an acid dianhydride represented by the following formula (9) and a diamine represented by the following formula (10) are used. A method of reacting with the above can be mentioned. Further, by using an aliphatic triamine or an aromatic triamine instead of the diamine represented by the following formula (10), an imide oligomer having a structure represented by the above formula (2-1) can be produced.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(9)中、Aは、上記式(1-1)中のAと同じ4価の基である。 In the formula (9), A is the same tetravalent group as A in the above formula (1-1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(10)中、Bは、上記式(1-1)中のBと同じ2価の基であり、R~Rは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In the formula (10), B is the same divalent group as B in the above formula (1-1), and R 1 to R 4 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively. ..
上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(10)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(9)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、加熱や減圧等により溶媒を除去し、更に、約200℃以上で1時間以上加熱してアミック酸オリゴマーを反応させる方法等が挙げられる。上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に上記式(1-1)で表される構造を有するイミドオリゴマーを得ることができる。
また、上記式(9)で表される酸二無水物の一部を下記式(11)で表される酸無水物に置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-1)で表される構造を有し、他方の末端に下記式(11)で表される酸無水物に由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(9)で表される酸二無水物と下記式(11)で表される酸無水物とは、同時に添加してもよいし、別々に添加してもよい。
更に、上記式(10)で表されるジアミンの一部を下記式(12)で表されるモノアミンに置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-1)で表される構造を有し、他方の末端に下記式(12)で表されるモノアミンに由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(10)で表されるジアミンと下記式(12)で表されるモノアミンとは、同時に添加してもよいし、別々に添加してもよい。
Specific examples of the method for reacting the acid dianhydride represented by the above formula (9) with the diamine represented by the above formula (10) are shown below.
First, the diamine represented by the above formula (10) is previously dissolved in a solvent (for example, N-methylpyrrolidone) in which the amic acid oligomer obtained by the reaction is soluble, and the obtained solution is prepared with the above formula (9). The acid dianhydride represented by is added and reacted to obtain an amic acid oligomer solution. Then, a method of removing the solvent by heating, reducing the pressure, or the like, and further heating at about 200 ° C. or higher for 1 hour or longer to react the amic acid oligomer and the like can be mentioned. By adjusting the molar ratio of the acid dianhydride represented by the above formula (9) and the diamine represented by the above formula (10) and the imidization conditions, the desired number average molecular weight can be obtained. An imide oligomer having a structure represented by the above formula (1-1) can be obtained at the end.
Further, by substituting a part of the acid anhydride represented by the above formula (9) with the acid anhydride represented by the following formula (11), the acid anhydride has a desired number average molecular weight, and the above-mentioned one end is described. An imide oligomer having a structure represented by the formula (1-1) and having a structure derived from an acid anhydride represented by the following formula (11) at the other end can be obtained. In this case, the acid anhydride represented by the above formula (9) and the acid anhydride represented by the following formula (11) may be added at the same time or separately.
Further, by substituting a part of the diamine represented by the above formula (10) with a monoamine represented by the following formula (12), it has a desired number average molecular weight and has the above formula (1-1) at one end. ), And an imide oligomer having a structure derived from a monoamine represented by the following formula (12) at the other end can be obtained. In this case, the diamine represented by the above formula (10) and the monoamine represented by the following formula (12) may be added at the same time or separately.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(11)中、Arは、置換されていてもよい2価の芳香族基である。 In formula (11), Ar is a divalent aromatic group that may be substituted.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(12)中、Arは、置換されていてもよい1価の芳香族基であり、R及びRは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (12), Ar is a optionally substituted monovalent aromatic group, and R 5 and R 6 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively.
上記式(1-2)で表される構造を有するイミドオリゴマーを製造する方法としては、例えば、上記式(9)で表される酸二無水物と下記式(13)で表されるフェノール性水酸基含有モノアミンとを反応させる方法や、上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンと下記式(13)で表されるフェノール性水酸基含有モノアミンとを反応させる方法等が挙げられる。また、上記式(10)で表されるジアミンに代えて脂肪族トリアミン又は芳香族トリアミンを用いることにより、上記式(2-2)で表される構造を有するイミドオリゴマーを製造することができる。 As a method for producing an imide oligomer having a structure represented by the above formula (1-2), for example, an acid dianhydride represented by the above formula (9) and a phenolic agent represented by the following formula (13) are used. A method for reacting with a hydroxyl group-containing monoamine, an acid dianhydride represented by the above formula (9), a diamine represented by the above formula (10), and a phenolic hydroxyl group-containing monoamine represented by the following formula (13). A method of reacting with the above can be mentioned. Further, by using an aliphatic triamine or an aromatic triamine instead of the diamine represented by the above formula (10), an imide oligomer having a structure represented by the above formula (2-2) can be produced.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
式(13)中、Arは、置換されていてもよい2価の芳香族基であり、R及びRは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (13), Ar is a divalent aromatic group which may be substituted, and R 7 and R 8 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively.
上記式(9)で表される酸二無水物と上記式(13)で表されるフェノール性水酸基含有モノアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(13)で表されるフェノール性水酸基含有モノアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(9)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、加熱や減圧等により溶媒を除去し、更に、約200℃以上で1時間以上加熱してアミック酸オリゴマーを反応させる方法等が挙げられる。上記式(9)で表される酸二無水物と上記式(13)で表されるフェノール性水酸基含有モノアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に上記式(1-2)で表される構造を有するイミドオリゴマーを得ることができる。
また、上記式(13)で表されるフェノール性水酸基含有モノアミンの一部を上記式(12)で表されるモノアミンに置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-2)で表される構造を有し、他方の末端に上記式(12)で表されるモノアミンに由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(13)で表されるフェノール性水酸基含有モノアミンと上記式(12)で表されるモノアミンとは、同時に添加してもよいし、別々に添加してもよい。
Specific examples of the method for reacting the acid dianhydride represented by the above formula (9) with the phenolic hydroxyl group-containing monoamine represented by the above formula (13) are shown below.
First, the phenolic hydroxyl group-containing monoamine represented by the above formula (13) is previously dissolved in a solvent (for example, N-methylpyrrolidone) in which the amic acid oligomer obtained by the reaction is soluble, and the above solution is used. The acid dianhydride represented by the formula (9) is added and reacted to obtain an amic acid oligomer solution. Then, a method of removing the solvent by heating, reducing the pressure, or the like, and further heating at about 200 ° C. or higher for 1 hour or longer to react the amic acid oligomer and the like can be mentioned. By adjusting the molar ratio of the acid dianhydride represented by the above formula (9) to the phenolic hydroxyl group-containing monoamine represented by the above formula (13) and the imidization conditions, the desired number average molecular weight can be obtained. It is possible to obtain an imide oligomer having a structure represented by the above formula (1-2) at both ends.
Further, by substituting a part of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) with the monoamine represented by the above formula (12), it has a desired number average molecular weight and has the above formula at one end. An imide oligomer having a structure represented by (1-2) and having a structure derived from a monoamine represented by the above formula (12) at the other end can be obtained. In this case, the phenolic hydroxyl group-containing monoamine represented by the above formula (13) and the monoamine represented by the above formula (12) may be added at the same time or separately.
上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンと上記式(13)で表されるフェノール性水酸基含有モノアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(13)で表されるフェノール性水酸基含有モノアミン及び上記式(10)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(9)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、加熱や減圧等により溶媒を除去し、更に、約200℃以上で1時間以上加熱してアミック酸オリゴマーを反応させる方法等が挙げられる。上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンと上記式(13)で表されるフェノール性水酸基含有モノアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に上記式(1-2)で表される構造を有するイミドオリゴマーを得ることができる。
また、上記式(13)で表されるフェノール性水酸基含有モノアミンの一部を上記式(12)で表されるモノアミンに置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-2)で表される構造を有し、他方の末端に上記式(12)で表されるモノアミンに由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(13)で表されるフェノール性水酸基含有モノアミンと上記式(12)で表されるモノアミンとは、同時に添加してもよいし、別々に添加してもよい。
Specific examples of the method for reacting the acid dianhydride represented by the above formula (9) with the diamine represented by the above formula (10) and the phenolic hydroxyl group-containing monoamine represented by the above formula (13) are described below. show.
First, a solvent (for example, N-methylpyrrolidone, etc.) in which the amic acid oligomer obtained by the reaction is soluble in the phenolic hydroxyl group-containing monoamine represented by the above formula (13) and the diamine represented by the above formula (10) in advance. ), And the acid dianhydride represented by the above formula (9) is added to the obtained solution and reacted to obtain an amic acid oligomer solution. Then, a method of removing the solvent by heating, reducing the pressure, or the like, and further heating at about 200 ° C. or higher for 1 hour or longer to react the amic acid oligomer and the like can be mentioned. The molar ratio of the acid dianhydride represented by the above formula (9), the diamine represented by the above formula (10), and the phenolic hydroxyl group-containing monoamine represented by the above formula (13), and the imidization conditions are set. By adjusting, an imide oligomer having a desired number average molecular weight and having a structure represented by the above formula (1-2) at both ends can be obtained.
Further, by substituting a part of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) with the monoamine represented by the above formula (12), it has a desired number average molecular weight and has the above formula at one end. An imide oligomer having a structure represented by (1-2) and having a structure derived from a monoamine represented by the above formula (12) at the other end can be obtained. In this case, the phenolic hydroxyl group-containing monoamine represented by the above formula (13) and the monoamine represented by the above formula (12) may be added at the same time or separately.
上記式(9)で表される酸二無水物としては、例えば、ピロメリット酸無水物、3,3’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、4,4’-オキシジフタル酸無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、4,4’-ビス(2,3-ジカルボキシルフェノキシ)ジフェニルエーテルの酸二無水物、p-フェニレンビス(トリメリテート無水物)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物等が挙げられる。
なかでも、溶解性及び耐熱性により優れるものとなることから、上記イミドオリゴマーの原料に用いる酸二無水物としては、融点が240℃以下の芳香族性酸二無水物が好ましく、融点が220℃以下の芳香族性酸二無水物がより好ましく、融点が200℃以下の芳香族性酸二無水物が更に好ましく、3,4’-オキシジフタル酸二無水物(融点180℃)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(融点190℃)が特に好ましい。
なお、本明細書において上記「融点」は、示差走査熱量計を用いて、10℃/minにて昇温した際の吸熱ピークの温度として測定される値を意味する。上記示差走査熱量計としては、例えば、EXTEAR DSC6100(エスアイアイ・ナノテクノロジー社製)等が挙げられる。
Examples of the acid dianhydride represented by the above formula (9) include pyromellitic acid anhydride, 3,3'-oxydiphthalic acid anhydride, 3,4'-oxydiphthalic acid anhydride, and 4,4'-oxydiphthalic acid. Acid Anhydride, 4,4'-(4,4'-isopropylidene diphenoxy) diphthalic acid anhydride, 4,4'-bis (2,3-dicarboxyphenoxy) acid dianhydride of diphenyl ether, p-phenylene Examples thereof include bis (trimeritate anhydride), 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride and the like.
Among them, the acid dianhydride used as the raw material of the imide oligomer is preferably an aromatic acid dianhydride having a melting point of 240 ° C. or lower, and has a melting point of 220 ° C., because it is more excellent in solubility and heat resistance. The following aromatic acid dianhydrides are more preferred, aromatic acid dianhydrides having a melting point of 200 ° C. or lower are even more preferred, and 3,4'-oxydiphthalic acid dianhydrides (melting point 180 ° C.), 4,4'. -(4,4'-isopropyridenediphenoxy) diphthalic anhydride (melting point 190 ° C.) is particularly preferred.
In the present specification, the above-mentioned "melting point" means a value measured as the temperature of the endothermic peak when the temperature is raised at 10 ° C./min using a differential scanning calorimeter. Examples of the differential scanning calorimeter include EXTER DSC6100 (manufactured by SII Nanotechnology).
上記式(10)で表されるジアミンのうち、芳香族ジアミンとしては、例えば、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-(4-アミノフェノキシ)フェニル)メタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルメタン、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルメタン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルエーテル、ビスアミノフェニルフルオレン、ビストルイジンフルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-2,2’-ジヒドロキシビフェニル等が挙げられる。なかでも、入手性に優れることから、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼンが好ましく、更に溶解性及び耐熱性に優れることから、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼンがより好ましい。 Among the diamines represented by the above formula (10), examples of the aromatic diamine include 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, and 3,3'-. Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3'-diaminodiphenylsulphon, 4,4'-diaminodiphenyl Sulfone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, bis (4- (4-aminophenoxy) ) Phenyl) methane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene, 1,4-bis ( 2- (4-Aminophenyl) -2-propyl) benzene, 3,3'-diamino-4,4'-dihydroxyphenylmethane, 4,4'-diamino-3,3'-dihydroxyphenylmethane, 3,3 '-Diamino-4,4'-dihydroxyphenyl ether, bisaminophenylfluorene, bistoluidinefluorene, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-diamino-3,3'-dihydroxyphenyl Examples thereof include ether, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-2,2'-dihydroxybiphenyl and the like. Among them, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene, 1,4 because of its excellent availability. -Bis (2- (4-aminophenyl) -2-propyl) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis ( 4-Aminophenoxy) benzene is preferable, and since it is excellent in solubility and heat resistance, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene and 1,4-bis (2- (2- ( 4-Aminophenyl) -2-propyl) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene Is more preferable.
上記式(11)で表される酸無水物としては、例えば、フタル酸無水物、3-メチルフタル酸無水物、4-メチルフタル酸無水物、1,2-ナフタル酸無水物、2,3-ナフタル酸無水物、1,8-ナフタル酸無水物、2,3-アントラセンジカルボキシ酸無水物、4-tert-ブチルフタル酸無水物、4-エチニルフタル酸無水物、4-フェニルエチニルフタル酸無水物、4-フルオロフタル酸無水物、4-クロロフタル酸無水物、4-ブロモフタル酸無水物、3,4-ジクロロフタル酸無水物等が挙げられる。 Examples of the acid anhydride represented by the above formula (11) include phthalic acid anhydride, 3-methylphthalic acid anhydride, 4-methylphthalic acid anhydride, 1,2-naphthalic acid anhydride, and 2,3-naphthal. Acid anhydride, 1,8-naphthalic acid anhydride, 2,3-anthracene dicarboxylic acid anhydride, 4-tert-butylphthalic acid anhydride, 4-ethynylphthalic acid anhydride, 4-phenylethynylphthalic acid anhydride, Examples thereof include 4-fluorophthalic acid anhydride, 4-chlorophthalic acid anhydride, 4-bromophthalic acid anhydride, 3,4-dichlorophthalic acid anhydride and the like.
上記式(12)で表されるモノアミンとしては、例えば、アニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,4-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2-tert-ブチルアニリン、3-tert-ブチルアニリン、4-tert-ブチルアニリン、1-ナフチルアミン、2-ナフチルアミン、1-アミノアントラセン、2-アミノアントラセン、9-アミノアントラセン、1-アミノピレン、3-クロロアニリン、o-アニシジン、m-アニシジン、p-アニシジン、1-アミノ-2-メチルナフタレン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、3,4-ジメチルアニリン、4-エチルアニリン、4-エチニルアニリン、4-イソプロピルアニリン、4-(メチルチオ)アニリン、N,N-ジメチル-1,4-フェニレンジアミン等が挙げられる。 Examples of the monoamine represented by the above formula (12) include aniline, o-toluidine, m-toluidine, p-toluidine, 2,4-dimethylaniline, 3,4-dimethylaniline, and 3,5-dimethylaniline. 2-tert-butylaniline, 3-tert-butylaniline, 4-tert-butylaniline, 1-naphthylamine, 2-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, 9-aminoanthracene, 1-aminopyrene, 3- Chloroaniline, o-aniline, m-anisidine, p-anisidine, 1-amino-2-methylnaphthalene, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 3,4-dimethyl Examples thereof include aniline, 4-ethylaniline, 4-ethynylaniline, 4-isopropylaniline, 4- (methylthio) aniline, N, N-dimethyl-1,4-phenylenediamine and the like.
上記式(13)で表されるフェノール性水酸基含有モノアミンとしては、例えば、3-アミノフェノール、4-アミノフェノール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾール、4-アミノ-2,3-キシレノール、4-アミノ-2,5-キシレノール、4-アミノ-2,6-キシレノール、4-アミノ-1-ナフトール、5-アミノ-2-ナフトール、6-アミノ-1-ナフトール、4-アミノ-2,6-ジフェニルフェノール等が挙げられる。なかでも、入手性及び保存安定性に優れ、硬化後に高いガラス転移温度が得られることから、4-アミノ-o-クレゾール、5-アミノ-o-クレゾールが好ましい。 Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, and 4-amino-2. , 3-Xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -Amino-2,6-diphenylphenol and the like can be mentioned. Of these, 4-amino-o-cresol and 5-amino-o-cresol are preferable because they are excellent in availability and storage stability, and a high glass transition temperature can be obtained after curing.
上述した製造方法で上記イミドオリゴマーを製造した場合、上記イミドオリゴマーは、上記式(1-1)で表される構造を有する複数種のイミドオリゴマー又は上記式(1-2)で表される構造を有する複数種のイミドオリゴマーと、各原料との混合物(イミドオリゴマー組成物)に含まれるものとして得られる。上記式(10)で表されるジアミンに代えて脂肪族トリアミン又は芳香族トリアミンを用いた場合は、上記イミドオリゴマーは、上記式(2-1)で表される構造を有する複数種のイミドオリゴマー又は上記式(2-2)で表される構造を有する複数種のイミドオリゴマーと、各原料との混合物(イミドオリゴマー組成物)に含まれるものとして得られる。該イミドオリゴマー組成物は、イミド化率が70%以上であることにより、硬化剤として用いた場合に高温での機械的強度及び長期耐熱性により優れる硬化物を得ることができる。
上記イミドオリゴマー組成物のイミド化率の好ましい下限は75%、より好ましい下限は80%である。また、上記イミドオリゴマー組成物のイミド化率の好ましい上限は特にないが、実質的な上限は98%である。
なお、上記「イミド化率」は、フーリエ変換赤外分光光度計(FT-IR)を用いて全反射測定法(ATR法)にて測定を行い、アミック酸のカルボニル基に由来する1660cm-1付近のピーク吸光度面積から下記式にて導出することができる。上記フーリエ変換赤外分光光度計としては、例えば、UMA600(Agilent Technologies社製)等が挙げられる。なお、下記式中における「アミック酸オリゴマーのピーク吸光度面積」は、酸二無水物とジアミン又はフェノール性水酸基含有モノアミンとを反応させた後、イミド化工程を行わずに溶媒をエバポレーション等により除去することで得られるアミック酸オリゴマーの吸光度面積である。
イミド化率(%)=100×(1-(イミド化後のピーク吸光度面積)/(アミック酸オリゴマーのピーク吸光度面積))
When the imide oligomer is produced by the above-mentioned production method, the imide oligomer is a plurality of imide oligomers having a structure represented by the above formula (1-1) or a structure represented by the above formula (1-2). It is obtained as a mixture of a plurality of types of imide oligomers having the above and each raw material (imide oligomer composition). When an aliphatic triamine or an aromatic triamine is used instead of the diamine represented by the above formula (10), the imide oligomer is a plurality of types of imide oligomers having a structure represented by the above formula (2-1). Alternatively, it is obtained as being contained in a mixture (imide oligomer composition) of a plurality of types of imide oligomers having a structure represented by the above formula (2-2) and each raw material. When the imide oligomer composition has an imidization ratio of 70% or more, a cured product having superior mechanical strength and long-term heat resistance at high temperatures can be obtained when used as a curing agent.
The preferable lower limit of the imidization ratio of the imide oligomer composition is 75%, and the more preferable lower limit is 80%. Further, although there is no particular preferable upper limit of the imidization ratio of the imide oligomer composition, the practical upper limit is 98%.
The above "imidization rate" was measured by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (FT-IR), and was derived from the carbonyl group of amic acid at 1660 cm -1 . It can be derived from the peak absorbance area in the vicinity by the following formula. Examples of the Fourier transform infrared spectrophotometer include UMA600 (manufactured by Agilent Technologies) and the like. The "peak absorbance area of the amic acid oligomer" in the following formula is determined by reacting the acid dianhydride with a diamine or a phenolic hydroxyl group-containing monoamine, and then removing the solvent by evaporation or the like without performing an imidization step. It is the absorbance area of the amic acid oligomer obtained by the above.
Imidization rate (%) = 100 × (1- (peak absorbance area after imidization) / (peak absorbance area of amic acid oligomer)))
上記イミドオリゴマー組成物は、硬化性樹脂組成物中における溶解性の観点から、25℃においてテトラヒドロフラン10gに対して3g以上溶解することが好ましい。 From the viewpoint of solubility in the curable resin composition, the imide oligomer composition is preferably dissolved in an amount of 3 g or more with respect to 10 g of tetrahydrofuran at 25 ° C.
上記硬化性樹脂と上記熱硬化剤(後述する硬化促進剤を含有する場合は更に硬化促進剤)との合計100重量部中における上記イミドオリゴマーの含有量の好ましい下限は20重量部、好ましい上限は80重量部である。上記イミドオリゴマーの含有量がこの範囲であることにより、得られる硬化性樹脂組成物が、硬化前における可撓性及び加工性、及び、硬化後の耐熱性により優れるものとなる。上記イミドオリゴマーの含有量のより好ましい下限は25重量部、より好ましい上限は75重量部である。
なお、本発明にかかるイミドオリゴマーが上述したイミドオリゴマー組成物に含まれるものである場合、上記イミドオリゴマーの含有量は、該イミドオリゴマー組成物(更に他のイミドオリゴマーを併用する場合は該イミドオリゴマー組成物と他のイミドオリゴマーとの合計)の含有量を意味する。
The preferable lower limit of the content of the imide oligomer in 100 parts by weight of the total of the curable resin and the thermosetting agent (further curing accelerator when the curing accelerator described later is contained) is 20 parts by weight, and the preferable upper limit is 20 parts by weight. It is 80 parts by weight. When the content of the imide oligomer is in this range, the obtained curable resin composition becomes more excellent in flexibility and processability before curing and heat resistance after curing. The more preferable lower limit of the content of the imide oligomer is 25 parts by weight, and the more preferable upper limit is 75 parts by weight.
When the imide oligomer according to the present invention is contained in the above-mentioned imide oligomer composition, the content of the imide oligomer is the imide oligomer composition (when another imide oligomer is used in combination, the imide oligomer is used). It means the content of the composition and other imide oligomers).
本発明の硬化性樹脂組成物は、硬化促進剤を含有することが好ましい。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができる。 The curable resin composition of the present invention preferably contains a curing accelerator. By containing the above-mentioned curing accelerator, the curing time can be shortened and the productivity can be improved.
上記硬化促進剤としては、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤、ホスフィン系硬化促進剤、リン系硬化促進剤、光塩基発生剤、スルホニウム塩系硬化促進剤等が挙げられる。なかでも、保存安定性に優れることから、イミダゾール系硬化促進剤が好ましい。 Examples of the curing accelerator include an imidazole-based curing accelerator, a tertiary amine-based curing accelerator, a phosphine-based curing accelerator, a phosphorus-based curing accelerator, a photobase generator, a sulfonium salt-based curing accelerator, and the like. .. Of these, an imidazole-based curing accelerator is preferable because it has excellent storage stability.
上記硬化促進剤の含有量は、上記硬化性樹脂と上記熱硬化剤と上記硬化促進剤との合計100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記硬化促進剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、硬化時間を短縮させる効果により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。 The content of the curing accelerator is preferably 0.01 part by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the total of the curable resin, the thermosetting agent and the curing accelerator. .. When the content of the curing accelerator is in this range, the effect of shortening the curing time while maintaining excellent adhesiveness and the like becomes more excellent. The more preferable lower limit of the content of the curing accelerator is 0.05 parts by weight, and the more preferable upper limit is 5 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、無機充填剤を含有してもよい。 The curable resin composition of the present invention may contain an inorganic filler as long as the object of the present invention is not impaired.
上記無機充填剤は、シリカ及び硫酸バリウムの少なくともいずれかであることが好ましい。上記無機充填剤としてシリカ及び硫酸バリウムの少なくともいずれかを含有することにより、本発明の硬化性樹脂組成物は、耐リフロー性、めっき耐性、及び、加工性により優れるものとなる。 The inorganic filler is preferably at least one of silica and barium sulfate. By containing at least one of silica and barium sulfate as the inorganic filler, the curable resin composition of the present invention is excellent in reflow resistance, plating resistance, and processability.
上記シリカ及び上記硫酸バリウム以外のその他の無機充填剤としては、例えば、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体等が挙げられる。 Examples of the inorganic filler other than the silica and the barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and an inorganic ion exchanger.
上記無機充填剤としては、平均粒子径が50nm以上4μm未満のものが好適に用いられる。 As the inorganic filler, those having an average particle size of 50 nm or more and less than 4 μm are preferably used.
上記無機充填剤の含有量は、上記硬化性樹脂と上記熱硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が200重量部である。上記無機充填剤の含有量がこの範囲であることにより、優れたタック性等を維持したまま、得られる硬化性樹脂組成物の硬化物が耐リフロー性やめっき耐性により優れるものとなる。上記無機充填剤の含有量のより好ましい上限は150重量部である。 The content of the inorganic filler is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the thermosetting agent (further, if the curing accelerator is contained, the curing accelerator). Is. When the content of the inorganic filler is in this range, the cured product of the obtained curable resin composition is excellent in reflow resistance and plating resistance while maintaining excellent tackiness and the like. A more preferable upper limit of the content of the inorganic filler is 150 parts by weight.
本発明の硬化性樹脂組成物は、被着体への短時間での塗れ性と形状保持性とを向上させる等の目的で流動調整剤を含有することが好ましい。
上記流動調整剤としては、例えば、アエロジル等のヒュームドシリカや層状ケイ酸塩等が挙げられる。
また、上記流動調整剤としては、平均粒子径が100nm未満のものが好適に用いられる。
The curable resin composition of the present invention preferably contains a flow conditioner for the purpose of improving the applicability to the adherend in a short time and the shape retention property.
Examples of the flow adjusting agent include fumed silica such as Aerosil and layered silicate.
Further, as the flow adjusting agent, one having an average particle size of less than 100 nm is preferably used.
上記流動調整剤の含有量は、上記硬化性樹脂と上記熱硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい下限が0.1重量部、好ましい上限が50重量部である。上記流動調整剤の含有量がこの範囲であることにより、被着体への短時間での塗れ性と形状保持性とを向上させる等の効果により優れるものとなる。上記流動調整剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は30重量部である。 The content of the flow modifier is preferably 0.1 with respect to 100 parts by weight in total of the curable resin and the thermosetting agent (in the case of further containing the curing accelerator, the curing accelerator). By weight, the preferred upper limit is 50 parts by weight. When the content of the flow adjusting agent is within this range, the effect of improving the applicability to the adherend in a short time and the shape retention property becomes excellent. The more preferable lower limit of the content of the flow adjusting agent is 0.5 parts by weight, and the more preferable upper limit is 30 parts by weight.
本発明の硬化性樹脂組成物は、応力緩和、靭性付与等を目的として有機充填剤を含有してもよい。
上記有機充填剤としては、例えば、シリコーンゴム粒子、アクリルゴム粒子、ウレタンゴム粒子、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子、ベンゾグアナミン粒子、及び、これらのコアシェル粒子等が挙げられる。なかでも、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子が好ましい。
The curable resin composition of the present invention may contain an organic filler for the purpose of stress relaxation, toughness imparting and the like.
Examples of the organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamide-imide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamide-imide particles, and polyimide particles are preferable.
上記有機充填剤の含有量は、上記硬化性樹脂と上記熱硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が300重量部である。上記有機充填剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、得られる硬化物が靭性等により優れるものとなる。上記有機充填剤の含有量のより好ましい上限は200重量部である。 The content of the organic filler is preferably 300 parts by weight with respect to a total of 100 parts by weight of the curable resin and the thermosetting agent (further, if the curing accelerator is contained, the curing accelerator). Is. When the content of the organic filler is in this range, the obtained cured product becomes more excellent in toughness and the like while maintaining excellent adhesiveness and the like. A more preferable upper limit of the content of the organic filler is 200 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で高分子化合物を含有することが好ましい。上記高分子化合物は、造膜成分としての役割を果たし、上記高分子化合物を含有することにより、得られる硬化性樹脂組成物が浸出防止性により優れるものとなる。 The curable resin composition of the present invention preferably contains a polymer compound within a range that does not impair the object of the present invention. The polymer compound plays a role as a film-forming component, and by containing the polymer compound, the obtained curable resin composition becomes more excellent in leaching prevention property.
上記高分子化合物の数平均分子量の好ましい下限は3000、好ましい上限は10万である。上記高分子化合物の数平均分子量がこの範囲であることにより、得られる硬化性樹脂組成物が硬化前における可撓性及び加工性、及び、硬化後の耐熱性により優れるものとなる。上記高分子化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は8万である。 The preferable lower limit of the number average molecular weight of the polymer compound is 3000, and the preferable upper limit is 100,000. When the number average molecular weight of the polymer compound is in this range, the obtained curable resin composition is superior in flexibility and processability before curing and heat resistance after curing. The more preferable lower limit of the number average molecular weight of the polymer compound is 5000, and the more preferable upper limit is 80,000.
上記高分子化合物としては、例えば、ポリイミド、フェノキシ樹脂、ポリアミド、ポリアミドイミド、ポリマレイミド、シアネート樹脂、ベンゾオキサジン樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル等が挙げられる。なかでも、耐熱性の観点から、ポリイミド、ポリアミド、ポリアミドイミド、ポリマレイミドが好ましく、ポリイミドがより好ましい。上記高分子化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the polymer compound include polyimide, phenoxy resin, polyamide, polyamideimide, polymaleimide, cyanate resin, benzoxazine resin, acrylic resin, urethane resin, polyester and the like. Of these, polyimide, polyamide, polyamideimide, and polymaleimide are preferable, and polyimide is more preferable, from the viewpoint of heat resistance. The polymer compound may be used alone or in combination of two or more.
上記高分子化合物の含有量は、上記硬化性樹脂と上記熱硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい下限が1重量部、好ましい上限が40重量部である。上記高分子化合物の含有量がこの範囲であることにより、得られる硬化性樹脂組成物の硬化物が耐熱性により優れるものとなる。上記高分子化合物の含有量のより好ましい下限は5重量部、より好ましい上限は30重量部である。 The content of the polymer compound is preferably 1 part by weight with respect to a total of 100 parts by weight of the curable resin and the thermosetting agent (in the case of further containing the curing accelerator, the curing accelerator). The preferred upper limit is 40 parts by weight. When the content of the polymer compound is in this range, the cured product of the obtained curable resin composition becomes more excellent in heat resistance. The more preferable lower limit of the content of the polymer compound is 5 parts by weight, and the more preferable upper limit is 30 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で難燃剤を含有してもよい。
上記難燃剤としては、例えば、ベーマイト型水酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム等の金属水和物、ハロゲン系化合物、りん系化合物、窒素化合物等が挙げられる。なかでも、ベーマイト型水酸化アルミニウムが好ましい。
The curable resin composition of the present invention may contain a flame retardant as long as the object of the present invention is not impaired.
Examples of the flame retardant include metal hydrates such as boehmite type aluminum hydroxide, aluminum hydroxide and magnesium hydroxide, halogen-based compounds, phosphorus-based compounds and nitrogen compounds. Of these, boehmite-type aluminum hydroxide is preferable.
上記難燃剤の含有量は、上記硬化性樹脂と上記熱硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が200重量部である。上記難燃剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が優れた接着性等を維持したまま、難燃性に優れるものとなる。上記難燃剤の含有量のより好ましい上限は150重量部である。 The content of the flame retardant is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the thermosetting agent (in the case of further containing the curing accelerator, the curing accelerator). be. When the content of the flame retardant is in this range, the obtained curable resin composition has excellent flame retardancy while maintaining excellent adhesiveness and the like. A more preferable upper limit of the content of the flame retardant is 150 parts by weight.
上記硬化性樹脂組成物は、塗工性等の観点から溶剤を含有してもよい。
上記溶剤としては、塗工性や貯蔵安定性等の観点から、沸点が200℃未満の溶剤が好ましい。
上記沸点が200℃未満の溶剤としては、例えば、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、炭化水素系溶剤、ハロゲン系溶剤、エーテル系溶剤、含窒素系溶剤等が挙げられる。
上記アルコール系溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、イソブチルアルコール、ノルマルブチルアルコール、ターシャリーブチルアルコール、2-エチエルヘキサノール等が挙げられる。
上記ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルプロピルケトン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジアセトンアルコール等が挙げられる。
上記エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸メトキシブチル、酢酸アミル、酢酸ノルマルプロピル、酢酸イソプロピル、乳酸メチル、乳酸エチル、乳酸ブチル等が挙げられる。
上記炭化水素系溶剤としては、例えば、ベンゼン、トルエン、キシレン、ノルマルヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、イソオクタン、ノルマルデカン、ノルマルヘプタン等が挙げられる。
上記ハロゲン系溶剤としては、例えば、ジクロロメタン、クロロホルム、トリクロロエチレン等が挙げられる。
上記エーテル系溶剤としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジイソプロピルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノターシャリーブチルエーテル、プロピレングリコールモノメチルエーテルプロピオネート、3-メトキシブタノール、ジエチレングリコールジメチルエーテル、アニソール、4-メチルアニソール等が挙げられる。
上記含窒素系溶剤としては、例えば、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
なかでも、取り扱い性やイミドオリゴマーの溶解性等の観点から、沸点が60℃以上200℃未満のケトン系溶剤、沸点が60℃以上200℃未満のエステル系溶剤、及び、沸点が60℃以上200℃未満のエーテル系溶剤からなる群より選択される少なくとも1種が好ましい。このような溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸イソブチル、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、シクロヘキサノン、メチルシクロヘキサノン、ジエチレングリコールジメチルエーテル、アニソール等が挙げられる。
なお、上記「沸点」は、101kPaの条件で測定される値、又は、沸点換算図表等で101kPaに換算された値を意味する。
The curable resin composition may contain a solvent from the viewpoint of coatability and the like.
As the solvent, a solvent having a boiling point of less than 200 ° C. is preferable from the viewpoint of coatability, storage stability and the like.
Examples of the solvent having a boiling point of less than 200 ° C. include alcohol-based solvents, ketone-based solvents, ester-based solvents, hydrocarbon-based solvents, halogen-based solvents, ether-based solvents, nitrogen-containing solvents and the like.
Examples of the alcohol-based solvent include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, normal butyl alcohol, tertiary butyl alcohol, 2-ethielhexanol and the like.
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, diacetone alcohol and the like.
Examples of the ester solvent include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methoxybutyl acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate and the like.
Examples of the hydrocarbon solvent include benzene, toluene, xylene, normal hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, isooctane, normal decane, normal heptane and the like.
Examples of the halogen-based solvent include dichloromethane, chloroform, trichlorethylene and the like.
Examples of the ether-based solvent include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and propylene glycol monomethyl ether acetate. , Propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, ethylene glycol monotersial butyl ether, propylene glycol monomethyl ether propionate, 3-methoxybutanol, diethylene glycol dimethyl ether, anisole, 4-methylanisole and the like. Be done.
Examples of the nitrogen-containing solvent include acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
Among them, from the viewpoint of handleability and solubility of imide oligomers, a ketone solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C., an ester solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C., and a boiling point of 60 ° C. or higher and 200 ° C. At least one selected from the group consisting of ether solvents below ° C is preferred. Examples of such a solvent include methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, cyclohexanone, methylcyclohexanone, diethylene glycol dimethyl ether, anisole and the like.
The above "boiling point" means a value measured under the condition of 101 kPa or a value converted to 101 kPa in a boiling point conversion chart or the like.
上記溶剤を含む硬化性樹脂組成物100重量部中における上記溶剤の含有量の好ましい下限は20重量部、好ましい上限は90重量部である。上記溶剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が塗工性等により優れるものとなる。上記溶剤の含有量のより好ましい下限は30重量部、より好ましい上限は80重量部である。 The preferable lower limit of the content of the solvent in 100 parts by weight of the curable resin composition containing the solvent is 20 parts by weight, and the preferable upper limit is 90 parts by weight. When the content of the solvent is in this range, the obtained curable resin composition is excellent in coatability and the like. The more preferable lower limit of the content of the solvent is 30 parts by weight, and the more preferable upper limit is 80 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で反応性希釈剤を含有してもよい。
上記反応性希釈剤としては、接着信頼性の観点から、1分子中に2つ以上の反応性官能基を有する反応性希釈剤が好ましい。
The curable resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
As the reactive diluent, a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesive reliability.
本発明の硬化性樹脂組成物は、更に、カップリング剤、分散剤、貯蔵安定化剤、ブリード防止剤、フラックス剤、レベリング剤等の添加剤を含有してもよい。 The curable resin composition of the present invention may further contain additives such as a coupling agent, a dispersant, a storage stabilizer, an antibleeding agent, a flux agent, and a leveling agent.
本発明の硬化性樹脂組成物を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、光重合開始剤と、熱硬化剤と、必要に応じて添加する硬化促進剤等とを混合する方法等が挙げられる。上記混合機としては、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等が挙げられる。 As a method for producing the curable resin composition of the present invention, for example, using a mixer, a curable resin, a photopolymerization initiator, a thermosetting agent, a curing accelerator added as necessary, and the like can be used. Examples include a method of mixing. Examples of the mixer include a homodisper, a universal mixer, a Banbury mixer, a kneader and the like.
本発明の硬化性樹脂組成物は、2000mJ/cmの紫外線を照射した後のゲル分率が5%以上90%未満であることが好ましい。上記2000mJ/cmの紫外線を照射した後のゲル分率がこの範囲であることにより、半硬化後の浸出防止性により優れるものとなる。上記2000mJ/cmの紫外線を照射した後のゲル分率のより好ましい下限は8%、より好ましい上限は80%である。硬化性樹脂中に含まれる光硬化性樹脂及び光熱硬化性樹脂の種類や含有量、又は、光重合開始剤の種類や含有量を調整することによって、2000mJ/cmの紫外線を照射した後のゲル分率を上記範囲に調整することが容易となる。
また、本発明の硬化性樹脂組成物は、190℃で1時間加熱した後のゲル分率が90%以上であることが好ましい。上記190℃で1時間加熱した後のゲル分率が90%以上であることにより、硬化後の耐熱性や接着性により優れるものとなる。上記190℃で1時間加熱した後のゲル分率のより好ましい下限は92%である。硬化性樹脂中に含まれる熱硬化性樹脂及び光熱硬化性樹脂の種類や含有量、又は、熱硬化剤及び硬化促進剤の種類や含有量を調整することによって、190℃で1時間加熱した後のゲル分率を上記範囲に調整することが容易となる。
なお、上記「ゲル分率」とは、下記式に示すように、硬化性樹脂組成物を充分に溶解できる溶解度を有する溶剤に半硬化又は熱硬化後の組成物を浸透させ、24時間以上撹拌し、メッシュにろ過した後、110℃で1時間乾燥した際の硬化性樹脂組成物の初期の重量に対する乾燥して得られる未溶解物の重量の割合を百分率で表した値である。上記溶剤としては、例えば、テトラヒドロフラン等を用いることができる。
 ゲル分率(%)=100×W/W
(W:硬化性樹脂組成物の初期の重量、W:乾燥して得られる未溶解物の重量)
The curable resin composition of the present invention preferably has a gel fraction of 5% or more and less than 90% after irradiation with ultraviolet rays of 2000 mJ / cm 2 . When the gel fraction after irradiation with the above-mentioned 2000 mJ / cm 2 ultraviolet rays is within this range, the leaching prevention property after semi-curing is more excellent. The more preferable lower limit of the gel fraction after irradiation with the above 2000 mJ / cm 2 ultraviolet rays is 8%, and the more preferable upper limit is 80%. After irradiating with ultraviolet rays of 2000 mJ / cm 2 by adjusting the type and content of the photocurable resin and the photothermosetting resin contained in the curable resin, or the type and content of the photopolymerization initiator. It becomes easy to adjust the gel fraction within the above range.
Further, the curable resin composition of the present invention preferably has a gel fraction of 90% or more after being heated at 190 ° C. for 1 hour. When the gel fraction after heating at 190 ° C. for 1 hour is 90% or more, the heat resistance and adhesiveness after curing are excellent. A more preferable lower limit of the gel fraction after heating at 190 ° C. for 1 hour is 92%. After heating at 190 ° C. for 1 hour by adjusting the type and content of the thermosetting resin and the thermosetting resin contained in the curable resin, or the type and content of the thermosetting agent and the curing accelerator. It becomes easy to adjust the gel fraction of the above range.
As shown in the following formula, the above-mentioned "gel fraction" means that the composition after semi-curing or heat-curing is impregnated into a solvent having a solubility capable of sufficiently dissolving the curable resin composition, and the mixture is stirred for 24 hours or more. It is a value expressed as a percentage of the ratio of the weight of the undissolved material obtained by drying to the initial weight of the curable resin composition when it is filtered into a mesh and then dried at 110 ° C. for 1 hour. As the solvent, for example, tetrahydrofuran or the like can be used.
Gel fraction (%) = 100 x W 2 / W 1
(W 1 : Initial weight of curable resin composition, W 2 : Weight of undissolved material obtained by drying)
本発明の硬化性樹脂組成物は、190℃で1時間加熱して得られた硬化物の5%重量減少温度の好ましい下限が350℃以上である。上記硬化物の5%重量減少温度が350℃以上であることにより、本発明の硬化性樹脂組成物は、硬化後の耐熱性に優れ、車載用等の耐熱接着剤として好適に用いることができる。上記硬化物の5%重量減少温度のより好ましい下限は360℃、更に好ましい下限は370℃である。
また、上記硬化物の5%重量減少温度の好ましい上限は特にないが、実質的な上限は450℃である。
なお、上記5%重量減少温度は、熱重量測定装置を用いて、昇温速度10℃/minで30℃から500℃までの昇温条件で熱重量測定を行うことにより導出することができる。上記熱重量測定装置としては、例えば、TG/DTA6200(日立ハイテクサイエンス社製)等が挙げられる。
In the curable resin composition of the present invention, the preferable lower limit of the 5% weight loss temperature of the cured product obtained by heating at 190 ° C. for 1 hour is 350 ° C. or higher. When the 5% weight loss temperature of the cured product is 350 ° C. or higher, the curable resin composition of the present invention has excellent heat resistance after curing and can be suitably used as a heat-resistant adhesive for automobiles and the like. .. A more preferable lower limit of the 5% weight loss temperature of the cured product is 360 ° C., and a further preferable lower limit is 370 ° C.
Further, although there is no particular preferable upper limit of the 5% weight loss temperature of the cured product, the practical upper limit is 450 ° C.
The 5% weight reduction temperature can be derived by thermogravimetric measurement using a thermogravimetric measuring device at a heating rate of 10 ° C./min under heating conditions of 30 ° C. to 500 ° C. Examples of the thermogravimetric measuring device include TG / DTA6200 (manufactured by Hitachi High-Tech Science Corporation).
本発明の硬化性樹脂組成物は、広い用途に用いることができるが、特に高い耐熱性が求められている電子材料用途に好適に用いることができる。例えば、航空、車載用電気制御ユニット(ECU)用途や、SiC、GaNを用いたパワーデバイス用途におけるダイアタッチ剤等に用いることができる。また、例えば、パワーオーバーレイパッケージ用接着剤、封止剤、フレキシブルプリント基板又はカバーレイフィルム用接着剤、銅張積層板、半導体接合用接着剤、層間絶縁膜、プリプレグ、LED用封止剤、構造材料用接着剤等にも用いることができる。なかでも、フレキシブルプリント基板又はカバーレイフィルムの接着に好適に用いられる。 The curable resin composition of the present invention can be used for a wide range of applications, but can be suitably used for electronic material applications in which high heat resistance is particularly required. For example, it can be used as a diagnostic agent in aeronautical and in-vehicle electric control unit (ECU) applications, power device applications using SiC and GaN, and the like. Further, for example, an adhesive for a power overlay package, an adhesive, an adhesive for a flexible printed substrate or a coverlay film, a copper-clad laminate, an adhesive for semiconductor bonding, an interlayer insulating film, a prepreg, an adhesive for an LED, and a structure. It can also be used as an adhesive for materials. Among them, it is suitably used for adhering a flexible printed substrate or a coverlay film.
本発明の硬化性樹脂組成物の硬化物もまた、本発明の1つである。
本発明の硬化性樹脂組成物を用いてなる接着剤もまた、本発明の1つである。本発明の接着剤をフィルム上に塗工した後、乾燥させる等の方法により、接着フィルムを得ることができる。本発明の接着剤を用いてなる接着フィルムもまた、本発明の1つである。
A cured product of the curable resin composition of the present invention is also one of the present inventions.
An adhesive made by using the curable resin composition of the present invention is also one of the present inventions. An adhesive film can be obtained by applying the adhesive of the present invention onto a film and then drying the film. An adhesive film using the adhesive of the present invention is also one of the present inventions.
本発明によれば、硬化前は流動特性に優れ、半硬化後は浸出防止性に優れ、本硬化後は耐熱性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することができる。 According to the present invention, it is possible to provide a curable resin composition having excellent flow characteristics before curing, excellent leaching prevention property after semi-curing, and excellent heat resistance after main curing. Further, according to the present invention, it is possible to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(合成例1(イミドオリゴマー組成物Aの作製))
4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)104重量部をN-メチルピロリドン(富士フイルム和光純薬社製、「NMP」)300重量部に溶解させた。得られた溶液に1,3-ビス(3-アミノフェノキシ)ベンゼン(三井化学ファイン社製、「APB-N」)29.2重量部をN-メチルピロリドン100重量部で希釈した溶液を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー組成物A(イミド化率95%)を得た。
H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー組成物Aは、上記式(5-1)又は(5-3)で表される構造を有するイミドオリゴマー(Aは4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物残基、Bは1,3-ビス(3-アミノフェノキシ)ベンゼン残基)を含むことを確認した。また、該イミドオリゴマー組成物Aの数平均分子量は2100であった。
(Synthesis Example 1 (Preparation of Imide Oligomer Composition A))
4,4'-(4,4'-isopropylidene diphenoxy) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) 104 parts by weight N-methylpyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "NMP") 300 weight Dissolved in the part. To the obtained solution, add a solution obtained by diluting 29.2 parts by weight of 1,3-bis (3-aminophenoxy) benzene (manufactured by Mitsui Kagaku Fine Co., Ltd., "APB-N") with 100 parts by weight of N-methylpyrrolidone. , Stirred at 25 ° C. for 2 hours and reacted to obtain an amic acid oligomer solution. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain an imide oligomer composition A (imidization ratio 95%).
1 By H-NMR, GPC, and FT-IR analysis, the imide oligomer composition A has a structure represented by the above formula (5-1) or (5-3) (A is 4, 4). It was confirmed that'-(4,4'-isopropyridenediphenoxy) diphthalic acid anhydride residue and B contained 1,3-bis (3-aminophenoxy) benzene residue). The number average molecular weight of the imide oligomer composition A was 2100.
(合成例2(イミドオリゴマー組成物Bの作製))
3-アミノフェノール(東京化成工業社製)43.6重量部をN-メチルピロリドン(富士フイルム和光純薬社製、「NMP」)400重量部に溶解させた。得られた溶液に4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物34.4重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー組成物B(イミド化率95%)を得た。
H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー組成物Bは、上記式(6-1)で表される構造を有するイミドオリゴマー(Aは4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物残基、Rは水素原子)を含むことを確認した。また、該イミドオリゴマー組成物Bの数平均分子量は700であった。
(Synthesis Example 2 (Preparation of Imide Oligomer Composition B))
4-3.6 parts by weight of 3-aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 400 parts by weight of N-methylpyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "NMP"). To the obtained solution, 34.4 parts by weight of 4,4'-(4,4'-isopropyridendiphenoxy) diphthalic anhydride was added, and the mixture was stirred at 25 ° C. for 2 hours to react to obtain an amic acid oligomer solution. Obtained. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain an imide oligomer composition B (imidization ratio 95%).
1 By H-NMR, GPC, and FT-IR analysis, the imide oligomer composition B has an imide oligomer having a structure represented by the above formula (6-1) (A is 4,4'-(4,4). ''-Isopropyridenediphenoxy) Diphthalic acid anhydride residue, R is a hydrogen atom) was confirmed to be contained. The number average molecular weight of the imide oligomer composition B was 700.
(合成例3(ポリイミド樹脂溶液A)の作製)
撹拌機、分水器、及び、窒素ガス導入管を備えた反応容器に4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)54.6重量部、及び、シクロヘキサノン200重量部を仕込み、溶解させた。得られた溶液に、ダイマージアミンであるプリアミン1074(クローダ社製)56.1重量部とシクロヘキサノン55.0重量部の混合溶液を滴下した後、150℃で8時間かけてイミド化反応を行い、ポリイミド樹脂溶液Aを得た。なお、得られたポリイミド樹脂溶液Aの固形分濃度は30重量%、ポリイミド樹脂の数平均分子量は25000であった。
(Preparation of Synthesis Example 3 (Polyimide Resin Solution A))
4,4'-(4,4'-isopropyridendiphenoxy) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) 54.6 weight in a reaction vessel equipped with a stirrer, a water divider, and a nitrogen gas introduction tube. A portion and 200 parts by weight of cyclohexanone were charged and dissolved. A mixed solution of 56.1 parts by weight of the polyimide diamine Priamine (manufactured by Croda) and 55.0 parts by weight of cyclohexanone was added dropwise to the obtained solution, and then an imidization reaction was carried out at 150 ° C. for 8 hours. A polyimide resin solution A was obtained. The solid content concentration of the obtained polyimide resin solution A was 30% by weight, and the number average molecular weight of the polyimide resin was 25,000.
(実施例1~6、比較例1、2)
表1に記載された配合比に従い、各材料を撹拌混合し、実施例1~6、比較例1、2の各硬化性樹脂組成物を作製した。
(Examples 1 to 6, Comparative Examples 1 and 2)
Each material was stirred and mixed according to the compounding ratio shown in Table 1 to prepare each curable resin composition of Examples 1 to 6 and Comparative Examples 1 and 2.
<評価>
実施例及び比較例で得られた各硬化性樹脂組成物について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluations were performed on each of the curable resin compositions obtained in Examples and Comparative Examples. The results are shown in Table 1.
(ゲル分率)
実施例及び比較例で得られた各硬化性樹脂組成物を厚みが約20μmとなるように基材PETフィルム上に塗工し、乾燥させることにより、基材PETフィルム上に硬化性樹脂組成物フィルムを作製した。得られた各硬化性樹脂組成物フィルムに2000mJ/cmの紫外線を照射することにより、半硬化フィルムを得た。得られた半硬化フィルムをテトラヒドロフランに浸透させ、24時間以上撹拌し、メッシュにろ過した後、110℃で1時間乾燥して、上述した式によりゲル分率を導出した。
また、得られた半硬化フィルムを190℃で1時間加熱することにより、硬化物を作製した。得られた硬化物をテトラヒドロフランに浸透させ、24時間以上撹拌し、メッシュにろ過した後、110℃で1時間乾燥して、上述した式によりゲル分率を導出した。
(Gel fraction)
Each of the curable resin compositions obtained in Examples and Comparative Examples was coated on a base material PET film so as to have a thickness of about 20 μm, and dried to obtain a curable resin composition on the base material PET film. A film was made. A semi-curable film was obtained by irradiating each of the obtained curable resin composition films with ultraviolet rays of 2000 mJ / cm 2 . The obtained semi-cured film was impregnated into tetrahydrofuran, stirred for 24 hours or more, filtered through a mesh, and then dried at 110 ° C. for 1 hour to derive a gel fraction by the above formula.
Further, the obtained semi-cured film was heated at 190 ° C. for 1 hour to prepare a cured product. The obtained cured product was infiltrated into tetrahydrofuran, stirred for 24 hours or more, filtered through a mesh, and then dried at 110 ° C. for 1 hour to derive a gel fraction by the above formula.
(5%重量減少温度)
実施例及び比較例で得られた各硬化性樹脂組成物を厚みが約20μmとなるように基材PETフィルム上に塗工し、乾燥させることにより、基材PETフィルム上に硬化性樹脂組成物フィルムを作製した。得られた各硬化性樹脂組成物フィルムに2000mJ/cmの紫外線を照射した後190℃で1時間加熱することにより、硬化物を作製した。得られた硬化物について、熱重量測定装置(日立ハイテクサイエンス社製、「TG/DTA6200」)を用いて、30℃から500℃までの温度範囲、10℃/minの昇温条件で5%重量減少温度を測定した。
(5% weight loss temperature)
Each of the curable resin compositions obtained in Examples and Comparative Examples was coated on a base material PET film so as to have a thickness of about 20 μm, and dried to obtain a curable resin composition on the base material PET film. A film was made. A cured product was prepared by irradiating each of the obtained curable resin composition films with ultraviolet rays of 2000 mJ / cm 2 and then heating at 190 ° C. for 1 hour. The obtained cured product was subjected to a 5% weight under a temperature range of 30 ° C to 500 ° C and a temperature rise condition of 10 ° C / min using a thermogravimetric measuring device (“TG / DTA6200” manufactured by Hitachi High-Tech Science Co., Ltd.). The reduced temperature was measured.
(実装性(浸出防止性及び埋め込み性))
実施例及び比較例で得られた各硬化性樹脂組成物を厚みが20μmとなるように厚み25μmのポリイミドフィルム(東レ・デュポン社製、「カプトン100H」)上に塗工し、硬化性樹脂組成物を有するポリイミドフィルムを作製した。得られた硬化性樹脂組成物フィルムに、5mmφの穴を開けたのち、L/S=100μm/100μmの銅配線パターンを有するフレキシブル銅張り積層板を、80℃に設定したラミネーターで仮貼りした。ポリイミドフィルム側から2000mJ/cmの紫外線を照射し、開口部周辺の硬化性樹脂組成物を半硬化させた。その後、熱プレス機を用いて160℃、1.0MPaの条件で1時間熱硬化させた。
穴の内側に染み出した樹脂長を浸出量として測定した。浸出がなかった(浸出量が0.2mm未満であった)場合を「○」、浸出量が0.2mm以上0.5mm以下であった場合を「△」、浸出量が0.5mmを超えた場合を「×」として浸出防止性を評価した。
また、熱プレス後のサンプルを断面研磨した後、光学顕微鏡にて観察し、銅配線パターン間にボイドが確認されなかった場合を「○」、ボイドが確認された場合を「×」として埋め込み性を評価した。
(Mountability (prevention of leaching and embedding))
Each of the curable resin compositions obtained in Examples and Comparative Examples was coated on a polyimide film (manufactured by Toray DuPont, "Capton 100H") having a thickness of 25 μm so as to have a thickness of 20 μm, and the curable resin composition was applied. A polyimide film having an object was produced. After making a hole of 5 mmφ in the obtained curable resin composition film, a flexible copper-clad laminate having a copper wiring pattern of L / S = 100 μm / 100 μm was temporarily attached with a laminator set at 80 ° C. The curable resin composition around the opening was semi-cured by irradiating ultraviolet rays of 2000 mJ / cm 2 from the polyimide film side. Then, it was heat-cured at 160 ° C. and 1.0 MPa for 1 hour using a hot press machine.
The resin length exuded inside the hole was measured as the amount of exudation. "○" when there was no leaching (the amount of leaching was less than 0.2 mm), "△" when the amount of leaching was 0.2 mm or more and 0.5 mm or less, and the amount of leaching exceeded 0.5 mm. The case of leaching was evaluated as "x".
In addition, after polishing the cross section of the sample after hot pressing, observe it with an optical microscope, and if no voids are confirmed between the copper wiring patterns, it is marked as "○", and if voids are confirmed, it is marked as "x". Was evaluated.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
本発明によれば、硬化前は流動特性に優れ、半硬化後は浸出防止性に優れ、本硬化後は耐熱性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することができる。 According to the present invention, it is possible to provide a curable resin composition having excellent flow characteristics before curing, excellent leaching prevention property after semi-curing, and excellent heat resistance after main curing. Further, according to the present invention, it is possible to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.

Claims (9)

  1. 硬化性樹脂と、光重合開始剤と、熱硬化剤とを含有し、
    前記熱硬化剤は、イミドオリゴマーを含むことを特徴とする硬化性樹脂組成物。
    It contains a curable resin, a photopolymerization initiator, and a thermosetting agent.
    The thermosetting agent is a curable resin composition containing an imide oligomer.
  2. 前記硬化性樹脂は、エポキシ基を有さないラジカル重合性化合物及びラジカル重合性基を有さないエポキシ化合物、並びに/又は、エポキシ基とラジカル重合性基とを有する化合物を含む請求項1記載の硬化性樹脂組成物。 The first aspect of claim 1, wherein the curable resin contains a radically polymerizable compound having no epoxy group, an epoxy compound having no radically polymerizable group, and / or a compound having an epoxy group and a radically polymerizable group. Curable resin composition.
  3. 前記硬化性樹脂は、エポキシ基と(メタ)アクリロイル基とを有する化合物を含む請求項2記載の硬化性樹脂組成物。 The curable resin composition according to claim 2, wherein the curable resin contains a compound having an epoxy group and a (meth) acryloyl group.
  4. 前記イミドオリゴマーは、主鎖の末端に酸無水物基又はフェノール性水酸基を有する請求項1、2又は3記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, 2 or 3, wherein the imide oligomer has an acid anhydride group or a phenolic hydroxyl group at the end of the main chain.
  5. 2000mJ/cmの紫外線を照射した後のゲル分率が5%以上90%未満であり、かつ、190℃で1時間加熱した後のゲル分率が90%以上である請求項1、2、3又は4記載の硬化性樹脂組成物。 Claims 1, 2, 2. The gel fraction after irradiation with ultraviolet rays of 2000 mJ / cm 2 is 5% or more and less than 90%, and the gel fraction after heating at 190 ° C. for 1 hour is 90% or more. The curable resin composition according to 3 or 4.
  6. 190℃で1時間加熱して得られた硬化物の5%重量減少温度が350℃以上である請求項1、2、3、4又は5記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, 2, 3, 4 or 5, wherein the 5% weight loss temperature of the cured product obtained by heating at 190 ° C. for 1 hour is 350 ° C. or higher.
  7. 請求項1、2、3、4、5又は6記載の硬化性樹脂組成物の硬化物。 The cured product of the curable resin composition according to claim 1, 2, 3, 4, 5 or 6.
  8. 請求項1、2、3、4、5又は6記載の硬化性樹脂組成物を用いてなる接着剤。 An adhesive comprising the curable resin composition according to claim 1, 2, 3, 4, 5 or 6.
  9. 請求項8記載の接着剤を用いてなる接着フィルム。 An adhesive film using the adhesive according to claim 8.
PCT/JP2021/046401 2020-12-23 2021-12-16 Curable resin composition, cured product, adhesive agent, and adhesion film WO2022138407A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021578055A JPWO2022138407A1 (en) 2020-12-23 2021-12-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-213595 2020-12-23
JP2020213595 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022138407A1 true WO2022138407A1 (en) 2022-06-30

Family

ID=82159259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046401 WO2022138407A1 (en) 2020-12-23 2021-12-16 Curable resin composition, cured product, adhesive agent, and adhesion film

Country Status (3)

Country Link
JP (1) JPWO2022138407A1 (en)
TW (1) TW202233794A (en)
WO (1) WO2022138407A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270852A (en) * 1985-05-24 1986-12-01 Nitto Electric Ind Co Ltd Semiconductor device
JP2002006490A (en) * 2000-06-26 2002-01-09 Ube Ind Ltd Imido-containing photosensitive resin composition, insulating film and method for forming the same
JP2003162055A (en) * 2001-11-26 2003-06-06 Ube Ind Ltd Photosensitive resin composition, photosensitive film, insulating film, and method for forming the same
JP2004502859A (en) * 2000-07-06 2004-01-29 スリーエム イノベイティブ プロパティズ カンパニー Polyimide hybrid adhesive
JP2007091799A (en) * 2005-09-27 2007-04-12 Kaneka Corp Thermosetting resin composition and its application
US20160177018A1 (en) * 2014-12-19 2016-06-23 Mark D. Soucek Synthesis and characterization of uv-curable maleimide-terminated imide oligomers
WO2018139558A1 (en) * 2017-01-27 2018-08-02 積水化学工業株式会社 Curable resin composition, adhesive, imide oligomer, imide oligomer composition, and curing agent
WO2018193983A1 (en) * 2017-04-21 2018-10-25 積水化学工業株式会社 Imide oligomer, curing agent, adhesive and method for producing imide oligomer
WO2021241548A1 (en) * 2020-05-28 2021-12-02 積水化学工業株式会社 Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270852A (en) * 1985-05-24 1986-12-01 Nitto Electric Ind Co Ltd Semiconductor device
JP2002006490A (en) * 2000-06-26 2002-01-09 Ube Ind Ltd Imido-containing photosensitive resin composition, insulating film and method for forming the same
JP2004502859A (en) * 2000-07-06 2004-01-29 スリーエム イノベイティブ プロパティズ カンパニー Polyimide hybrid adhesive
JP2003162055A (en) * 2001-11-26 2003-06-06 Ube Ind Ltd Photosensitive resin composition, photosensitive film, insulating film, and method for forming the same
JP2007091799A (en) * 2005-09-27 2007-04-12 Kaneka Corp Thermosetting resin composition and its application
US20160177018A1 (en) * 2014-12-19 2016-06-23 Mark D. Soucek Synthesis and characterization of uv-curable maleimide-terminated imide oligomers
WO2018139558A1 (en) * 2017-01-27 2018-08-02 積水化学工業株式会社 Curable resin composition, adhesive, imide oligomer, imide oligomer composition, and curing agent
WO2018193983A1 (en) * 2017-04-21 2018-10-25 積水化学工業株式会社 Imide oligomer, curing agent, adhesive and method for producing imide oligomer
WO2021241548A1 (en) * 2020-05-28 2021-12-02 積水化学工業株式会社 Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object

Also Published As

Publication number Publication date
TW202233794A (en) 2022-09-01
JPWO2022138407A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP7202690B2 (en) Resin composition, film with substrate, metal/resin laminate and semiconductor device
JP7184641B2 (en) Curable resin composition and adhesive
JP7018942B2 (en) Curable resin composition, adhesive, adhesive film, circuit board, interlayer insulation material, and printed wiring board
WO2018139559A1 (en) Curable resin composition, cured product, adhesive, bonding film, coverlay film, flexible copper-clad laminate and circuit board
JP2020007397A (en) Curable resin composition, imide compound, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
JP7171365B2 (en) Curable resin composition, cured product, adhesive and adhesive film
JP7103940B2 (en) Method for producing imide oligomer composition, curing agent, adhesive, and imide oligomer composition
WO2021241548A1 (en) Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object
WO2022138407A1 (en) Curable resin composition, cured product, adhesive agent, and adhesion film
JP7265474B2 (en) Curable resin composition, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
JP2020200413A (en) Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured product
JP2022105887A (en) Curable resin composition, cured product, adhesive, and adhesive film
JP7132084B2 (en) Curable resin composition, cured product, adhesive and adhesive film
WO2023136098A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
JP2022188991A (en) Thermosetting resin composition, adhesive, adhesive varnish, adhesive film, and cured product
JP2021155494A (en) Curable resin composition, adhesive, and adhesive film
JP2021155493A (en) Thermosetting adhesive film
JP7168326B2 (en) Curable resin composition, cured product, adhesive, adhesive film, and circuit board
JP7168325B2 (en) Curable resin composition, cured product, adhesive, adhesive film, coverlay film, flexible copper-clad laminate, and circuit board
JP7249162B2 (en) Resin composition, cured product, and build-up film
JP2023067452A (en) Curable resin composition, cured product, adhesive, and adhesive film
WO2023032723A1 (en) Curable resin composition and interlayer insulating material
JP7207863B2 (en) Curable resin composition, cured product, adhesive and adhesive film
JP2023118258A (en) Curable resin composition and interlayer insulating material
JP2022173783A (en) Curable resin composition, cured object, adhesive, and adhesive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021578055

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910555

Country of ref document: EP

Kind code of ref document: A1