WO2023136098A1 - Curable resin composition, cured product, adhesive agent, and adhesive film - Google Patents

Curable resin composition, cured product, adhesive agent, and adhesive film Download PDF

Info

Publication number
WO2023136098A1
WO2023136098A1 PCT/JP2022/047610 JP2022047610W WO2023136098A1 WO 2023136098 A1 WO2023136098 A1 WO 2023136098A1 JP 2022047610 W JP2022047610 W JP 2022047610W WO 2023136098 A1 WO2023136098 A1 WO 2023136098A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
cured product
resin composition
cycle test
temperature cycle
Prior art date
Application number
PCT/JP2022/047610
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 北條
さやか 脇岡
悠 中村
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023136098A1 publication Critical patent/WO2023136098A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a curable resin composition.
  • the present invention also relates to a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
  • Patent Documents 1 and 2 disclose a curable resin composition containing an epoxy resin and an imide compound as a curing agent.
  • JP-A-61-270852 Japanese Patent Publication No. 2004-502859
  • An object of the present invention is to provide a curable resin composition from which a highly reliable cured product can be obtained.
  • Another object of the present invention is to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
  • the present disclosure 1 contains a curable resin and a curing agent, the curing agent has a structure derived from a diamine represented by the following formula (1), the cured product is -55 ° C. to 150 ° C., 1000
  • the rate of change in the storage elastic modulus of the cured product at 25 ° C. before and after the temperature cycle test is 25% or less, and the cured product at 150 ° C. before and after the temperature cycle test.
  • a curable resin composition having a storage elastic modulus change rate of 250% or less.
  • the cured product before the temperature cycle test has a storage elastic modulus at 25 ° C.
  • Present Disclosure 3 is the curable resin composition of Present Disclosure 1 or 2, wherein the amount of change in the glass transition temperature of the cured product before and after the temperature cycle test is 15° C. or less.
  • the present disclosure 4 is the curable resin composition of the present disclosure 1, 2 or 3, wherein the curable resin contains an epoxy resin.
  • Present Disclosure 5 is the curable resin composition of Present Disclosure 1, 2, 3, or 4, wherein the curing agent includes an imide oligomer having a structure derived from the diamine represented by formula (1).
  • the present disclosure 6 is a cured product of the curable resin composition of the present disclosure 1, 2, 3, 4 or 5.
  • the present disclosure 7 is an adhesive using the curable resin composition of the present disclosure 1, 2, 3, 4 or 5.
  • Disclosure 8 is an adhesive film using the adhesive of Disclosure 7.
  • the present invention will be described in detail below.
  • the present inventors used a curable resin composition having a specific structure as a curing agent, and stored the cured product at 25 ° C. before and after the temperature cycle test under the conditions of -55 ° C. to 150 ° C. and 1000 cycles.
  • a study was made to make the rate of change in elastic modulus and the rate of change in storage elastic modulus at 150° C. of the cured product before and after the temperature cycle test each less than a specific value.
  • the inventors have found that the resulting curable resin composition can provide a highly reliable cured product, and have completed the present invention.
  • the curable resin composition of the present invention is subjected to a temperature cycle test under the conditions of -55 ° C. to 150 ° C. and 1000 cycles for the cured product, and the change in storage elastic modulus at 25 ° C. of the cured product before and after the temperature cycle test. rate is 25% or less.
  • the curable resin composition of the present invention has a storage elastic modulus change rate of 250% or less at 150° C. of the cured product before and after the temperature cycle test.
  • the rate of change in the storage elastic modulus of the cured product at 25°C before and after the temperature cycle test is 25% or less
  • the rate of change in the storage elastic modulus of the cured product at 150°C before and after the temperature cycle test is 250% or less.
  • the curable resin composition of the present invention can provide a highly reliable cured product.
  • the rate of change in the storage elastic modulus of the cured product at 25° C. before and after the temperature cycle test is preferably 22% or less, more preferably 18% or less.
  • the rate of change in the storage elastic modulus of the cured product at 150° C. before and after the temperature cycle test is preferably 240% or less, more preferably 220% or less.
  • the rate of change in storage elastic modulus at 25° C. of the cured product before and after the temperature cycle test and the rate of change in storage elastic modulus at 150° C. of the cured product before and after the temperature cycle test are most preferably 0%.
  • the "change rate of the storage elastic modulus of the cured product at 25 ° C. before and after the temperature cycle test” is 100 ⁇ ((storage elastic modulus of the cured product at 25 ° C. after the temperature cycle test) - ( It is a value represented by (storage modulus at 25° C. of cured product before temperature cycle test))/(storage modulus at 25° C. of cured product before temperature cycle test).
  • the above-mentioned "change rate of the storage elastic modulus of the cured product at 150 ° C. before and after the temperature cycle test” is 100 ⁇ ((storage elastic modulus of the cured product at 150 ° C.
  • the dynamic viscoelasticity measuring device examples include EXSTAR6000 (manufactured by SII).
  • the cured product for measuring the storage elastic modulus is a curable resin composition film having a thickness of about 15 ⁇ m obtained by coating the curable resin composition on the base film and then drying it to a thickness of about 300 ⁇ m. It can be obtained by stacking layers so as to form a layer, cutting out a piece having a width of 3 mm and a length of 5 cm, and heating it at 190° C. for 1 hour.
  • the curable resin composition of the present invention has a storage elastic modulus of 2.8 GPa or more at 25 ° C. of the cured product before the temperature cycle test, and a storage elastic modulus at 150 ° C. of the cured product before the temperature cycle test. is preferably 1.3 GPa or more.
  • the cured product before the temperature cycle test has a storage elastic modulus of 2.8 GPa or more at 25°C, and the cured product has a storage elastic modulus of 1.3 GPa or more at 150°C before the temperature cycle test,
  • the curable resin composition of the present invention can provide a cured product with excellent reliability.
  • the storage elastic modulus at 150° C. of the cured product before the temperature cycle test is more preferably 1.4 GPa or more, and even more preferably 1.5 GPa or more.
  • the practical upper limit is 10 GPa at both 25°C and 150°C.
  • the curable resin composition of the present invention preferably has a glass transition temperature change of 15° C. or less before and after the temperature cycle test.
  • the amount of change in the glass transition temperature of the cured product before and after the temperature cycle test is 15° C. or less, the curable resin composition of the present invention makes it possible to obtain a cured product with excellent reliability.
  • the amount of change in the glass transition temperature of the cured product before and after the temperature cycle test is preferably 14° C. or less, more preferably 12° C. or less.
  • the above "change in glass transition temperature of the cured product before and after the temperature cycle test” is (glass transition temperature of the cured product after the temperature cycle test) - (glass of the cured product before the temperature cycle test) transition temperature).
  • the term “glass transition temperature” means the temperature at which the maximum loss tangent (tan ⁇ ) obtained by dynamic viscoelasticity measurement appears due to micro-Brownian motion. Specifically, using a dynamic viscoelasticity measuring device, the tan ⁇ curve obtained when measured in a temperature range from 25 ° C. to 250 ° C. under the conditions of a strain amplitude of 10 ⁇ m, a measurement frequency of 10 Hz, and a temperature increase rate of 10 ° C./min. It can be obtained as a peak temperature. Examples of the dynamic viscoelasticity measuring device include EXSTAR6000 (manufactured by SII).
  • the cured product for measuring the glass transition temperature is a curable resin composition film having a thickness of about 15 ⁇ m obtained by coating the curable resin composition on the base film and then drying it to a thickness of about 300 ⁇ m. It can be obtained by stacking layers so as to form a layer, cutting out a piece having a width of 3 mm and a length of 5 cm, and heating it at 190° C. for 1 hour.
  • the preferable lower limit of the glass transition temperature of the cured product is 173°C.
  • the cured product of the curable resin composition of the present invention is excellent in mechanical strength and high-temperature long-term heat resistance.
  • a more preferable lower limit of the glass transition temperature of the cured product is 175°C.
  • the practical upper limit is 230°C.
  • the curable resin composition of the present invention contains a curable resin.
  • the curable resins include epoxy resins, acrylic resins, phenol resins, cyanate resins, isocyanate resins, maleimide resins, benzoxazine resins, silicone resins, and fluororesins.
  • the said curable resin contains an epoxy resin.
  • the curable resin may be used alone, or two or more of them may be used in combination.
  • the curable resin is preferably liquid or semi-solid at 25 ° C. in order to improve tackiness at room temperature and processability such as film processing, and is liquid at 25 ° C. More preferably, it contains an epoxy resin that is liquid at 25°C.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallylbisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , propylene oxide-added bisphenol A type epoxy resin, triazine type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin Resin, naphthylene ether type epoxy resin, phenol novolac type epoxy resin, ortho-cresol novolak type epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, naphthalenephenol novolak type epoxy resin, glycidylamine type epoxy resin, alkyl Polyol-type epoxy resins, rubber-modified epoxy resins, glycidy
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol E type epoxy resin, resorcinol type epoxy resin, and triazine are preferred because they have a low viscosity and make it easier to adjust the processability of the resulting curable resin composition.
  • type epoxy resins are preferred.
  • the curable resin composition of the present invention contains a curing agent.
  • the curing agent has a structure derived from the diamine represented by formula (1).
  • the curing agent having a structure derived from the diamine represented by the above formula (1) is also referred to as "curing agent according to the present invention”.
  • the curable resin composition of the present invention has a rate of change in storage elastic modulus at 25 ° C. of the cured product before and after the temperature cycle test, and a cured product before and after the temperature cycle test. It becomes easy to make the rate of change of the storage elastic modulus at 150° C. equal to or less than the values described above.
  • the curing agent according to the present invention is the above formula (1) It preferably contains an imide oligomer having a structure derived from a diamine represented by.
  • the imide oligomer preferably has an acid anhydride group or a phenolic hydroxyl group at the end of the main chain, and more preferably has an acid anhydride group or a phenolic hydroxyl group at both ends of the main chain.
  • the imide oligomer preferably has a structure represented by formula (2-1) or formula (2-2) below.
  • formula (2-1) or formula (2-2) By having the structure represented by the following formula (2-1) or the following formula (2-2), the imide oligomer is superior in reactivity and compatibility with the curable resin.
  • A is an acid dianhydride residue
  • B is a divalent group represented by the following formula (3)
  • Ar is an optionally substituted divalent aromatic group.
  • * is a binding position
  • the acid dianhydride residue is preferably a tetravalent group represented by the following formula (4-1) or the following formula (4-2).
  • Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a straight It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Z is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (4-1), Z is a divalent group having an aromatic ring.
  • an oxygen atom may be present between the divalent group having the aromatic ring and each aromatic ring in formula (4-1).
  • the hydrogen atoms of the aromatic rings in formulas (4-1) and (4-2) may be substituted.
  • Z in the above formula (4-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring
  • these groups are substituted good too.
  • substituents in the case where the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted include, for example, a halogen atom, a linear or branched chain linear alkyl groups, linear or branched alkenyl groups, alicyclic groups, aryl groups, alkoxy groups, nitro groups, cyano groups and the like.
  • Examples of acid dianhydrides from which the acid dianhydride residue is derived include acid dianhydrides represented by formula (8) described later.
  • the imide oligomer may lower the glass transition temperature after curing and may contaminate the adherend and cause adhesion failure. imide oligomers are preferred.
  • the imide oligomer preferably has a number average molecular weight of 5,000 or less.
  • the imide oligomer has a number average molecular weight of 5,000 or less, the resulting cured product of the curable resin composition is excellent in long-term heat resistance.
  • a more preferable upper limit of the number average molecular weight of the imide oligomer is 4,000, and a more preferable upper limit is 3,000.
  • the number average molecular weight of the imide oligomer is preferably 900 or more and 5000 or less when it has the structure represented by the formula (2-1), and the structure represented by the formula (2-2) is When it has, it is preferably 550 or more and 4000 or less.
  • a more preferable lower limit of the number average molecular weight in the case of having the structure represented by the above formula (2-1) is 950, and a more preferable lower limit is 1,000.
  • a more preferred lower limit of the number average molecular weight is 580, and a more preferred lower limit is 600, in the case of having the structure represented by the above formula (2-2).
  • the above-mentioned "number average molecular weight" in this specification is a value measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and calculated by polystyrene conversion. Examples of the column used for measuring the polystyrene-equivalent number-average molecular weight by GPC include JAIGEL-2H-A (manufactured by Japan Analytical Industry Co., Ltd.).
  • the imide oligomer is represented by the following formula (5-1), the following formula (5-2), the following formula (5-3), or the following formula (5-4).
  • it is preferably an imide oligomer represented by the following formula (6-1), (6-2), (6-3) or (6-4) below.
  • A is the acid dianhydride residue
  • B is a divalent group represented by formula (3) above
  • X is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group
  • W is a hydrogen atom, a halogen atom , or an optionally substituted monovalent hydrocarbon group.
  • n is the number of repetitions.
  • A is the acid dianhydride residue, and in formulas (6-1) to (6-4), A is the same. may be different.
  • B is a divalent group represented by the above formula (3), and R is a hydrogen atom, a halogen atom, or optionally substituted It is a monovalent hydrocarbon group, and in formulas (6-1) and (6-3), R may be the same or different.
  • W is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group.
  • a in the above formulas (5-1) to (5-4) and the above formulas (6-1) to (6-4) is the following formula (7-1) or the following formula (7-2) It is preferably a tetravalent group represented.
  • Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a direct It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Z is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (7-1), Z is a divalent group having an aromatic ring.
  • an oxygen atom may be present between the divalent group having an aromatic ring and each aromatic ring in formula (7-1).
  • the hydrogen atoms of the aromatic rings in formulas (7-1) and (7-2) may be substituted.
  • an imide oligomer having a structure represented by the above formula (2-1) for example, an acid dianhydride represented by the following formula (8) and a diamine represented by the above formula (1) and the like.
  • A is the same tetravalent group as A in formula (2-1) above.
  • a specific example of the method for reacting the acid dianhydride represented by the above formula (8) with the diamine represented by the above formula (1) is shown below.
  • the diamine represented by the above formula (1) is dissolved in advance in a solvent (for example, N-methylpyrrolidone) in which the amic acid oligomer obtained by the reaction is soluble, and the resulting solution is added with the above formula (8).
  • An acid dianhydride represented by is added and reacted to obtain an amic acid oligomer solution.
  • the solvent is removed by heating, pressure reduction, or the like, and the mixture is heated at about 200° C. or higher for 1 hour or longer to react the amic acid oligomer.
  • the acid dianhydride represented by the above formula (8) and the acid anhydride represented by the following formula (9) may be added simultaneously or separately.
  • a part of the diamine represented by the above formula (1) with a monoamine represented by the following formula (10)
  • it has a desired number average molecular weight, and one end has the above formula (2-1) ) and having at the other end a structure derived from a monoamine represented by the following formula (10).
  • the diamine represented by the above formula (1) and the monoamine represented by the following formula (10) may be added simultaneously or separately.
  • Ar is an optionally substituted divalent aromatic group.
  • Ar is an optionally substituted monovalent aromatic group
  • R 1 and R 2 are each independently a hydrogen atom or a monovalent hydrocarbon group.
  • an imide oligomer having a structure represented by the above formula (2-2) for example, an acid dianhydride represented by the above formula (8) and a diamine represented by the above formula (1)
  • Examples thereof include a method of reacting with a phenolic hydroxyl group-containing monoamine represented by the following formula (11).
  • Ar is an optionally substituted divalent aromatic group
  • R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group.
  • the solvent is removed by heating, pressure reduction, or the like, and the mixture is heated at about 200° C. or higher for 1 hour or longer to react the amic acid oligomer.
  • the molar ratio of the acid dianhydride represented by the above formula (8), the diamine represented by the above formula (1) and the phenolic hydroxyl group-containing monoamine represented by the above formula (11), and the imidization conditions By adjusting, it is possible to obtain an imide oligomer having a desired number average molecular weight and a structure represented by the above formula (2-2) at both ends.
  • the phenolic hydroxyl group-containing monoamine represented by the above formula (11) by replacing part of the phenolic hydroxyl group-containing monoamine represented by the above formula (11) with the monoamine represented by the above formula (10), it has a desired number average molecular weight, and one end has the above formula An imide oligomer having a structure represented by (2-2) and having a structure derived from a monoamine represented by the above formula (10) at the other end can be obtained.
  • the phenolic hydroxyl group-containing monoamine represented by the above formula (11) and the monoamine represented by the above formula (10) may be added simultaneously or separately.
  • acid dianhydride represented by the above formula (8) examples include pyromellitic anhydride, 3,3′-oxydiphthalic anhydride, 3,4′-oxydiphthalic anhydride, 4, 4'-oxydiphthalic anhydride, 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride, 4,4'-bis(2,3-dicarboxylphenoxy)diphenyl ether acid dianhydride , p-phenylenebis(trimellitate anhydride), 2,3,3′,4′-biphenyltetracarboxylic dianhydride and the like.
  • the acid dianhydride is preferably an aromatic acid dianhydride having a melting point of 240° C. or less, and an aromatic acid having a melting point of 220° C. or less, because it has excellent solubility and heat resistance.
  • a dianhydride is more preferred, and an aromatic acid dianhydride having a melting point of 200° C. or less is even more preferred.
  • -isopropylidenediphenoxy)diphthalic anhydride (melting point 190° C.) is particularly preferred.
  • the "melting point” means a value measured as an endothermic peak temperature when the temperature is raised at 10°C/min using a differential scanning calorimeter. Examples of the differential scanning calorimeter include EXTEAR DSC6100 (manufactured by SII Nano Technology Co., Ltd.).
  • Examples of the acid anhydride represented by the formula (9) include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 1,2-naphthalic anhydride, and 2,3-naphthalic anhydride.
  • Monoamines represented by the above formula (10) include, for example, aniline, o-toluidine, m-toluidine, p-toluidine, 2,4-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-tert-butylaniline, 3-tert-butylaniline, 4-tert-butylaniline, 1-naphthylamine, 2-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, 9-aminoanthracene, 1-aminopyrene, 3- Chloroaniline, o-anisidine, m-anisidine, p-anisidine, 1-amino-2-methylnaphthalene, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 3,4-dimethyl aniline, 4-ethylaniline, 4-ethynylaniline, 4-is
  • Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (11) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, 4-amino-2 ,3-xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -amino-2,6-diphenylphenol and the like.
  • 4-amino-o-cresol and 5-amino-o-cresol are preferred because they are excellent in availability and storage stability and provide a high glass transition temperature after curing.
  • the imide oligomer is a plurality of imide oligomers having a structure represented by the above formula (2-1) or a structure represented by the above formula (2-2). and a mixture of each raw material (imide oligomer composition).
  • the imide oligomer composition has an imidization rate of 70% or more, it can provide a cured product having excellent mechanical strength at high temperatures and long-term heat resistance when used as a curing agent.
  • a preferable lower limit of the imidization rate of the imide oligomer composition is 75%, and a more preferable lower limit is 80%.
  • imidization rate of the imide oligomer composition Although there is no particular upper limit for the imidization rate of the imide oligomer composition, the practical upper limit is 98%.
  • the above-mentioned "imidation rate” is measured by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (FT-IR), and is derived from the carbonyl group of amic acid at 1660 cm -1 It can be derived from the peak absorbance area in the vicinity by the following formula. Examples of the Fourier transform infrared spectrophotometer include UMA600 (manufactured by Agilent Technologies).
  • the imide oligomer composition dissolve in 10 g of tetrahydrofuran at 25°C.
  • the preferable lower limit of the content of the imide oligomer in the total 100 parts by weight of the curable resin and the curing agent is 20 parts by weight, and the preferable upper limit is 80. weight part.
  • the content of the imide oligomer is within this range, the resulting curable resin composition is superior in flexibility and workability before curing and heat resistance after curing.
  • a more preferable lower limit to the content of the imide oligomer is 25 parts by weight, and a more preferable upper limit is 75 parts by weight.
  • the content of the imide oligomer is the same as the imide oligomer composition (and the imide oligomer composition when other imide oligomers are used in combination). (total with other imide oligomers).
  • a preferable lower limit of the content ratio of the structure derived from the diamine represented by the formula (1) in the imide oligomer composition is 2% by weight, and a preferable upper limit is 80% by weight.
  • the curable resin composition of the present invention can provide a cured product with excellent reliability.
  • a more preferred lower limit to the content of the structure derived from the diamine represented by formula (1) in the imide oligomer composition is 5% by weight, and a more preferred upper limit is 50% by weight.
  • the curable resin composition of the present invention preferably contains a curing accelerator.
  • a curing accelerator By containing the curing accelerator, the curing time can be shortened and the productivity can be improved.
  • curing accelerator examples include imidazole-based curing accelerators, tertiary amine-based curing accelerators, phosphine-based curing accelerators, phosphorus-based curing accelerators, photobase generators, sulfonium salt-based curing accelerators, and the like. . Of these, imidazole-based curing accelerators are preferred because of their excellent storage stability.
  • the content of the curing accelerator has a preferable lower limit of 0.01 parts by weight and a preferable upper limit of 10 parts by weight based on a total of 100 parts by weight of the curable resin, the curing agent and the curing accelerator.
  • a more preferred lower limit to the content of the curing accelerator is 0.05 parts by weight, and a more preferred upper limit is 5 parts by weight.
  • the curable resin composition of the present invention may contain an inorganic filler.
  • the inorganic filler preferably contains at least one selected from the group consisting of silica and barium sulfate.
  • the curable resin composition of the present invention is superior in reflow resistance, plating resistance, and workability. Become.
  • inorganic fillers other than silica and barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, magnesium carbonate, barium carbonate, glass powder, glass frit, glass fiber, carbon fiber, and inorganic ion exchange. A body etc. are mentioned.
  • the above inorganic fillers may be used alone, or two or more of them may be used in combination.
  • a preferable lower limit of the average particle size of the inorganic filler is 50 nm, and a preferable upper limit thereof is 4 ⁇ m. When the average particle size of the inorganic filler is within this range, the resulting curable resin composition is superior in coatability and workability.
  • a more preferable lower limit of the average particle size of the inorganic filler is 100 nm, and a more preferable upper limit thereof is 3 ⁇ m.
  • the content of the inorganic filler has a preferable upper limit of 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). be.
  • the content of the inorganic filler is within this range, the obtained cured product of the curable resin composition is excellent in reflow resistance and plating resistance while maintaining excellent tackiness and the like.
  • a more preferable upper limit of the content of the inorganic filler is 150 parts by weight.
  • the curable resin composition of the present invention preferably contains a fluidity modifier for the purpose of improving wettability to an adherend in a short time and shape retention.
  • a fluidity modifier for the purpose of improving wettability to an adherend in a short time and shape retention.
  • the flow control agent include fumed silica such as Aerosil and layered silicate.
  • the flow modifiers may be used alone, or two or more of them may be used in combination.
  • the fluidity control agent one having an average particle size of less than 100 nm is preferably used.
  • the preferable lower limit of the content of the flow control agent is 0.1 weight part with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). parts, and the preferred upper limit is 50 parts by weight. When the content of the flow control agent is within this range, the effect of improving the wettability to the adherend in a short time and the shape retention property, etc., is excellent.
  • a more preferable lower limit of the content of the flow control agent is 0.5 parts by weight, and a more preferable upper limit thereof is 30 parts by weight.
  • the curable resin composition of the present invention may contain an organic filler for the purpose of relaxing stress, imparting toughness, and the like.
  • organic filler examples include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Among them, polyamide particles, polyamideimide particles, and polyimide particles are preferred.
  • the above organic fillers may be used alone, or two or more of them may be used in combination.
  • the preferred upper limit of the content of the organic filler is 300 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). be.
  • the content of the organic filler is within this range, the resulting cured product of the curable resin composition is superior in toughness and the like while maintaining excellent adhesiveness and the like.
  • a more preferable upper limit of the content of the organic filler is 200 parts by weight.
  • the curable resin composition of the invention may contain a polymer component.
  • the polymer component serves as a film-forming component, and the use of the polymer component makes the cured product of the curable resin composition of the present invention more excellent in heat resistance.
  • a preferable lower limit of the number average molecular weight of the polymer component is 3,000, and a preferable upper limit thereof is 100,000. When the number average molecular weight of the polymer component is within this range, the resulting curable resin composition will be more excellent in heat resistance of the cured product.
  • a more preferable lower limit of the number average molecular weight of the polymer component is 5,000, and a more preferable upper limit thereof is 80,000.
  • the polymer component examples include polyimide, phenoxy resin, polyamide, polyamideimide, polymaleimide, cyanate resin, benzoxazine resin, acrylic resin, urethane resin, and polyester resin.
  • it preferably contains at least one selected from the group consisting of a polyimide resin, a polyamide resin, a polyamideimide resin, and a polymaleimide resin, and more preferably contains a polyimide resin.
  • the above polymer components may be used alone, or two or more may be used in combination.
  • the preferable lower limit of the content of the polymer component is 0.5 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained).
  • the preferred upper limit is 20 parts by weight.
  • a more preferable lower limit for the content of the polymer component is 1 part by weight, and a more preferable upper limit is 15 parts by weight.
  • the curable resin composition of the invention may contain a flame retardant.
  • the flame retardant include boehmite-type aluminum hydroxide, aluminum hydroxide, metal hydrates such as magnesium hydroxide, halogen-based compounds, phosphorus-based compounds, and nitrogen compounds. Among them, boehmite-type aluminum hydroxide is preferable.
  • the flame retardants may be used alone, or two or more of them may be used in combination.
  • the content of the flame retardant is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). .
  • the content of the flame retardant is within this range, the resulting curable resin composition has excellent flame retardancy while maintaining excellent adhesion and the like.
  • a more preferable upper limit of the content of the flame retardant is 150 parts by weight.
  • the curable resin composition of the present invention may contain a solvent from the viewpoint of coatability and the like.
  • a solvent having a boiling point of less than 200° C. is preferable from the viewpoint of coatability, storage stability, and the like.
  • the solvent having a boiling point of less than 200° C. include alcohol-based solvents, ketone-based solvents, ester-based solvents, hydrocarbon-based solvents, halogen-based solvents, ether-based solvents, and nitrogen-containing solvents.
  • the alcohol solvent include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, normal butyl alcohol, tertiary butyl alcohol, and 2-ethylhexanol.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, and diacetone alcohol.
  • Examples of the ester solvent include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methoxybutyl acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, and butyl lactate.
  • hydrocarbon solvent examples include benzene, toluene, xylene, normal hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, isooctane, normal decane, normal heptane and the like.
  • halogen-based solvent examples include dichloromethane, chloroform, and trichlorethylene.
  • ether solvent examples include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether acetate. , propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, ethylene glycol monotertiary butyl ether, propylene glycol monomethyl ether propionate, 3-methoxybutanol, diethylene glycol dimethyl ether, anisole, 4-methylanisole and the like. be done.
  • nitrogen-containing solvent examples include acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide and the like.
  • ketone solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C. from the viewpoint of handleability and solubility of imide oligomers, ketone solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C., ester solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C., and boiling points of 60 ° C. or higher and 200 ° C.
  • At least one selected from the group consisting of ether-based solvents having a temperature of less than °C is preferred.
  • solvents examples include methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, cyclohexanone, methylcyclohexanone, diethylene glycol dimethyl ether, and anisole.
  • the "boiling point” means a value measured under conditions of 101 kPa, or a value converted to 101 kPa using a boiling point conversion chart or the like.
  • a preferable lower limit of the content of the solvent in 100 parts by weight of the curable resin composition containing the solvent is 20 parts by weight, and a preferable upper limit thereof is 90 parts by weight.
  • the content of the solvent is within this range, the resulting curable resin composition is more excellent in coatability and the like.
  • a more preferable lower limit for the content of the solvent is 30 parts by weight, and a more preferable upper limit is 80 parts by weight.
  • the curable resin composition of the present invention may contain a reactive diluent.
  • the reactive diluent is preferably a reactive diluent having two or more reactive functional groups in one molecule.
  • the curable resin composition of the present invention may further contain additives such as coupling agents, dispersants, storage stabilizers, anti-bleeding agents, fluxing agents and leveling agents.
  • Examples of the method for producing the curable resin composition include a method of mixing a curable resin, a curing agent, a curing accelerator and the like using a mixer.
  • Examples of the mixer include a homodisper, a universal mixer, a Banbury mixer, a kneader, and the like.
  • a film of the curable resin composition of the present invention before curing can be obtained by coating the curable resin composition on a substrate film and drying it.
  • the curable resin composition of the present invention can be used in a wide range of applications, and can be suitably used in electronic material applications that particularly require high reliability.
  • it can be used as a die attach agent for aviation and automotive electric control unit (ECU) applications, and for power device applications using SiC and GaN.
  • adhesives for power overlay packages, sealants, adhesives for flexible printed circuit boards or coverlay films, copper-clad laminates, adhesives for semiconductor bonding, interlayer insulating films, prepregs, sealants for LEDs, structures It can also be used as an adhesive for materials and the like.
  • it is suitably used for adhesion of a flexible printed circuit board or a coverlay film.
  • a cured product of the curable resin composition of the present invention is also one aspect of the present invention.
  • An adhesive using the curable resin composition of the present invention is also one aspect of the present invention.
  • An adhesive film can be obtained by a method such as drying after coating the adhesive of the present invention on a film.
  • An adhesive film using the adhesive of the present invention is also one aspect of the present invention.
  • the curable resin composition which can obtain the hardened
  • the imide oligomer composition A is an imide oligomer having a structure represented by the above formula (5-1) or (5-3) (A is 4 ,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride residue, B is a divalent group represented by the above formula (3)). Also, the number average molecular weight of the imide oligomer composition A was 3,000.
  • the imide oligomer composition B is an imide oligomer having a structure represented by the above formula (5-1) or (5-3) (A is 4 ,4'-oxydiphthalic anhydride residue, B is a divalent group represented by the above formula (3)).
  • the number average molecular weight of the imide oligomer composition B was 2,800.
  • Synthesis Example 3 (preparation of imide oligomer composition C)
  • Synthesis Example 1 was repeated except that the amount of Etacure 100 Plus added was changed to 3.6 parts by weight, and 11.2 parts by weight of Priamine 1074 (manufactured by Croda), a hydrogenated dimer diamine, was newly added.
  • An imide oligomer composition C (imidization rate 99.6%) was obtained.
  • the imide oligomer composition C is an imide oligomer having a structure represented by the above formula (5-1) or (5-3) (A is 4 , 4'-(4,4'-isopropylidenediphenoxy) diphthalic anhydride residue, B is a divalent group represented by the above formula (3) or a hydrogenated dimer diamine residue). confirmed. Also, the number average molecular weight of the imide oligomer composition C was 3,200.
  • each material was stirred and mixed to prepare each curable resin composition.
  • Each curable resin composition obtained was coated on a substrate PET film and dried to form films of the curable resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 on the substrate PET film.
  • a compound (about 15 ⁇ m thick) was prepared.
  • the obtained film material was laminated so as to have a thickness of about 300 ⁇ m, cut to a width of 3 mm and a length of 5 cm, and cured by heating at 190° C. for 1 hour to prepare a cured product.
  • the dynamic viscoelasticity was measured in the range of 25°C to 250°C at , and the storage elastic modulus at 25°C and 150°C was determined. Also, the temperature of the maximum value of the loss tangent (tan ⁇ ) was determined as the glass transition temperature. Table 1 shows the results.
  • Each curable resin composition obtained was applied to a polyimide substrate having a length of 10 mm and a width of 10 mm, and a silicon chip having a length of 50 ⁇ m, a width of 3 mm and a thickness of 3 mm was placed thereon. Then, the curable resin composition was cured by heating at 190° C. for 1 hour to obtain a test piece. The obtained test pieces were evaluated for reliability according to the following "(1) temperature cycle test" and "(2) high temperature holding test” below.
  • the curable resin composition which can obtain the hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

One purpose of the present invention is to provide a curable resin composition from which a cured product having high reliability can be obtained. Another purpose of the present invention is to provide a cured product of the aforesaid curable resin composition, as well as an adhesive agent and an adhesive film obtained by using the curable resin composition. The present invention relates to a curable resin composition that contains a curable resin and a curing agent, said curing agent having a structure derived from a diamine represented by formula (1), wherein, when a cured product thereof is subjected to a temperature cycling test under the conditions of -55°C to 150°C and 1000 cycles, the change rate of storage modulus of the cured product at 25°C before and after the temperature cycling test is 25% or less, and the change rate of storage modulus of the cured product at 150°C before and after the temperature cycling test is 250% or less.

Description

硬化性樹脂組成物、硬化物、接着剤、及び、接着フィルムCurable resin composition, cured product, adhesive and adhesive film
本発明は、硬化性樹脂組成物に関する。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムに関する。 The present invention relates to a curable resin composition. The present invention also relates to a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
近年、フレキシブルプリント配線板(FPC)は、用途が車載用途にまで拡大しており、FPCやFPCを保護するカバーレイフィルムに用いられる接着剤には、高温での耐熱性が求められている。このような接着剤には、低収縮であり、接着性、絶縁性、及び、耐薬品性に優れるエポキシ樹脂等の硬化性樹脂を用いた硬化性樹脂組成物が使用されており、特に、短時間の耐熱性に関するはんだリフロー試験や長期耐熱性試験において良好な結果が得られる硬化性樹脂組成物が求められている。耐熱性や接着性に優れる硬化性樹脂組成物として、例えば、特許文献1、2には、エポキシ樹脂と硬化剤としてイミド化合物とを含有する硬化性樹脂組成物が開示されている。 In recent years, the use of flexible printed circuit boards (FPCs) has expanded to include vehicle-mounted applications, and adhesives used for FPCs and coverlay films that protect FPCs are required to have heat resistance at high temperatures. For such adhesives, curable resin compositions using curable resins such as epoxy resins, which have low shrinkage and excellent adhesiveness, insulation, and chemical resistance, are used. There is a demand for a curable resin composition that gives good results in a solder reflow test and a long-term heat resistance test related to long-term heat resistance. As a curable resin composition excellent in heat resistance and adhesiveness, for example, Patent Documents 1 and 2 disclose a curable resin composition containing an epoxy resin and an imide compound as a curing agent.
特開昭61-270852号公報JP-A-61-270852 特表2004-502859号公報Japanese Patent Publication No. 2004-502859
従来の硬化性樹脂組成物は、短時間の耐熱性や長期耐熱性に優れるものであっても、硬化物について温度サイクル試験(TCT)行った際にクラックが発生する等、信頼性に劣るものとなることがあった。
本発明は、信頼性に優れる硬化物を得ることができる硬化性樹脂組成物を提供することを目的とする。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することを目的とする。
Conventional curable resin compositions, even if they are excellent in short-term heat resistance and long-term heat resistance, are inferior in reliability, such as cracks occurring when the cured product is subjected to a temperature cycle test (TCT). It happened to be.
An object of the present invention is to provide a curable resin composition from which a highly reliable cured product can be obtained. Another object of the present invention is to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
本開示1は、硬化性樹脂と硬化剤とを含有し、上記硬化剤は、下記式(1)で表されるジアミンに由来する構造を有し、硬化物について-55℃~150℃、1000サイクルの条件で温度サイクル試験を行った際、上記温度サイクル試験前後における硬化物の25℃における貯蔵弾性率の変化率が25%以下であり、かつ、上記温度サイクル試験前後における硬化物の150℃における貯蔵弾性率の変化率が250%以下である硬化性樹脂組成物である。
本開示2は、上記温度サイクル試験前の硬化物の25℃における貯蔵弾性率が2.8GPa以上であり、かつ、上記温度サイクル試験前の硬化物の150℃における貯蔵弾性率が1.3GPa以上である本開示1の硬化性樹脂組成物である。
本開示3は、上記温度サイクル試験前後における硬化物のガラス転移温度の変化量が15℃以下である本開示1又は2の硬化性樹脂組成物である。
本開示4は、上記硬化性樹脂は、エポキシ樹脂を含む本開示1、2又は3の硬化性樹脂組成物である。
本開示5は、上記硬化剤は、上記式(1)で表されるジアミンに由来する構造を有するイミドオリゴマーを含む本開示1、2、3又は4の硬化性樹脂組成物である。
本開示6は、本開示1、2、3、4又は5の硬化性樹脂組成物の硬化物である。
本開示7は、本開示1、2、3、4又は5の硬化性樹脂組成物を用いてなる接着剤である。
本開示8は、本開示7の接着剤を用いてなる接着フィルムである。
The present disclosure 1 contains a curable resin and a curing agent, the curing agent has a structure derived from a diamine represented by the following formula (1), the cured product is -55 ° C. to 150 ° C., 1000 When a temperature cycle test is performed under cycle conditions, the rate of change in the storage elastic modulus of the cured product at 25 ° C. before and after the temperature cycle test is 25% or less, and the cured product at 150 ° C. before and after the temperature cycle test. A curable resin composition having a storage elastic modulus change rate of 250% or less.
In the present disclosure 2, the cured product before the temperature cycle test has a storage elastic modulus at 25 ° C. of 2.8 GPa or more, and the cured product before the temperature cycle test has a storage elastic modulus of 1.3 GPa or more at 150 ° C. It is a curable resin composition of the present disclosure 1.
Present Disclosure 3 is the curable resin composition of Present Disclosure 1 or 2, wherein the amount of change in the glass transition temperature of the cured product before and after the temperature cycle test is 15° C. or less.
The present disclosure 4 is the curable resin composition of the present disclosure 1, 2 or 3, wherein the curable resin contains an epoxy resin.
Present Disclosure 5 is the curable resin composition of Present Disclosure 1, 2, 3, or 4, wherein the curing agent includes an imide oligomer having a structure derived from the diamine represented by formula (1).
The present disclosure 6 is a cured product of the curable resin composition of the present disclosure 1, 2, 3, 4 or 5.
The present disclosure 7 is an adhesive using the curable resin composition of the present disclosure 1, 2, 3, 4 or 5.
Disclosure 8 is an adhesive film using the adhesive of Disclosure 7.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
以下に本発明を詳述する。
本発明者らは、硬化性樹脂組成物について、硬化剤として特定の構造を有するものを用い、-55℃~150℃、1000サイクルの条件での温度サイクル試験前後における硬化物の25℃における貯蔵弾性率の変化率及び該温度サイクル試験前後における硬化物の150℃における貯蔵弾性率の変化率をそれぞれ特定値以下とすることを検討した。その結果、得られた硬化性樹脂組成物は、信頼性に優れる硬化物を得ることができるものとなることを見出し、本発明を完成させるに至った。
The present invention will be described in detail below.
The present inventors used a curable resin composition having a specific structure as a curing agent, and stored the cured product at 25 ° C. before and after the temperature cycle test under the conditions of -55 ° C. to 150 ° C. and 1000 cycles. A study was made to make the rate of change in elastic modulus and the rate of change in storage elastic modulus at 150° C. of the cured product before and after the temperature cycle test each less than a specific value. As a result, the inventors have found that the resulting curable resin composition can provide a highly reliable cured product, and have completed the present invention.
本発明の硬化性樹脂組成物は、硬化物について-55℃~150℃、1000サイクルの条件で温度サイクル試験を行った際、上記温度サイクル試験前後における硬化物の25℃における貯蔵弾性率の変化率が25%以下である。また、本発明の硬化性樹脂組成物は、上記温度サイクル試験前後における硬化物の150℃における貯蔵弾性率の変化率が250%以下である。上記温度サイクル試験前後における硬化物の25℃における貯蔵弾性率の変化率が25%以下であり、かつ、上記温度サイクル試験前後における硬化物の150℃における貯蔵弾性率の変化率が250%以下であることにより、本発明の硬化性樹脂組成物は、信頼性に優れる硬化物を得ることができるものとなる。上記温度サイクル試験前後における硬化物の25℃における貯蔵弾性率の変化率は、22%以下であることが好ましく、18%以下であることがより好ましい。また、上記温度サイクル試験前後における硬化物の150℃における貯蔵弾性率の変化率は、240%以下であることが好ましく、220%以下であることがより好ましい。上記温度サイクル試験前後における硬化物の25℃における貯蔵弾性率の変化率、及び、上記温度サイクル試験前後における硬化物の150℃における貯蔵弾性率の変化率は、0%であることが最も好ましい。
なお、本明細書において、上記「温度サイクル試験前後における硬化物の25℃における貯蔵弾性率の変化率」は、100×((温度サイクル試験後の硬化物の25℃における貯蔵弾性率)-(温度サイクル試験前の硬化物の25℃における貯蔵弾性率))/(温度サイクル試験前の硬化物の25℃における貯蔵弾性率)で表される値である。また、本明細書において、上記「温度サイクル試験前後における硬化物の150℃における貯蔵弾性率の変化率」は、100×((温度サイクル試験後の硬化物の150℃における貯蔵弾性率)-(温度サイクル試験前の硬化物の150℃における貯蔵弾性率))/(温度サイクル試験前の硬化物の150℃における貯蔵弾性率)で表される値である。
上記温度サイクル試験は、-55℃で16分保持した後、15分かけて150℃まで昇温し、150℃で16分保持した後、15分かけて-55℃まで降温するまでのサイクルを1サイクルとして1000サイクル行う。
また、上記貯蔵弾性率は、動的粘弾性測定装置を用いて、歪振幅10μm、測定周波数10Hz、昇温速度10℃/minの条件で測定することができる。上記動的粘弾性測定装置としては、例えば、EXSTAR6000(SII社製)等が挙げられる。
上記貯蔵弾性率を測定する硬化物は、硬化性樹脂組成物を基材フィルム上に塗工した後、乾燥させることにより得られる厚さ約15μmの硬化性樹脂組成物フィルムを厚さ約300μmとなるように積層し、幅3mm、長さ5cmに切り出し、190℃で1時間加熱することにより得ることができる。
The curable resin composition of the present invention is subjected to a temperature cycle test under the conditions of -55 ° C. to 150 ° C. and 1000 cycles for the cured product, and the change in storage elastic modulus at 25 ° C. of the cured product before and after the temperature cycle test. rate is 25% or less. In addition, the curable resin composition of the present invention has a storage elastic modulus change rate of 250% or less at 150° C. of the cured product before and after the temperature cycle test. The rate of change in the storage elastic modulus of the cured product at 25°C before and after the temperature cycle test is 25% or less, and the rate of change in the storage elastic modulus of the cured product at 150°C before and after the temperature cycle test is 250% or less. As a result, the curable resin composition of the present invention can provide a highly reliable cured product. The rate of change in the storage elastic modulus of the cured product at 25° C. before and after the temperature cycle test is preferably 22% or less, more preferably 18% or less. Moreover, the rate of change in the storage elastic modulus of the cured product at 150° C. before and after the temperature cycle test is preferably 240% or less, more preferably 220% or less. Most preferably, the rate of change in storage elastic modulus at 25° C. of the cured product before and after the temperature cycle test and the rate of change in storage elastic modulus at 150° C. of the cured product before and after the temperature cycle test are most preferably 0%.
In the present specification, the "change rate of the storage elastic modulus of the cured product at 25 ° C. before and after the temperature cycle test" is 100 × ((storage elastic modulus of the cured product at 25 ° C. after the temperature cycle test) - ( It is a value represented by (storage modulus at 25° C. of cured product before temperature cycle test))/(storage modulus at 25° C. of cured product before temperature cycle test). Further, in the present specification, the above-mentioned "change rate of the storage elastic modulus of the cured product at 150 ° C. before and after the temperature cycle test" is 100 × ((storage elastic modulus of the cured product at 150 ° C. after the temperature cycle test) - ( It is a value represented by (storage elastic modulus at 150° C. of cured product before temperature cycle test))/(storage elastic modulus at 150° C. of cured product before temperature cycle test).
In the temperature cycle test, after holding at -55 ° C. for 16 minutes, the temperature was raised to 150 ° C. over 15 minutes, held at 150 ° C. for 16 minutes, and then the temperature was lowered to -55 ° C. over 15 minutes. 1000 cycles are performed as one cycle.
The storage elastic modulus can be measured using a dynamic viscoelasticity measuring device under the conditions of strain amplitude of 10 μm, measurement frequency of 10 Hz, and temperature increase rate of 10° C./min. Examples of the dynamic viscoelasticity measuring device include EXSTAR6000 (manufactured by SII).
The cured product for measuring the storage elastic modulus is a curable resin composition film having a thickness of about 15 μm obtained by coating the curable resin composition on the base film and then drying it to a thickness of about 300 μm. It can be obtained by stacking layers so as to form a layer, cutting out a piece having a width of 3 mm and a length of 5 cm, and heating it at 190° C. for 1 hour.
本発明の硬化性樹脂組成物は、上記温度サイクル試験前の硬化物の25℃における貯蔵弾性率が2.8GPa以上であり、かつ、上記温度サイクル試験前の硬化物の150℃における貯蔵弾性率が1.3GPa以上であることが好ましい。上記温度サイクル試験前の硬化物の25℃における貯蔵弾性率が2.8GPa以上であり、かつ、上記温度サイクル試験前の硬化物の150℃における貯蔵弾性率が1.3GPa以上であることにより、本発明の硬化性樹脂組成物は、信頼性により優れる硬化物を得ることができるものとなる。上記温度サイクル試験前の硬化物の25℃における貯蔵弾性率は、2.9GPa以上であることがより好ましく、3.0GPa以上であることが更に好ましい。また、上記温度サイクル試験前の硬化物の150℃における貯蔵弾性率は、1.4GPa以上であることがより好ましく、1.5GPa以上であることが更に好ましい。上記貯蔵弾性率の好ましい上限は特にないが、実質的な上限は25℃、150℃ともに10GPaである。 The curable resin composition of the present invention has a storage elastic modulus of 2.8 GPa or more at 25 ° C. of the cured product before the temperature cycle test, and a storage elastic modulus at 150 ° C. of the cured product before the temperature cycle test. is preferably 1.3 GPa or more. The cured product before the temperature cycle test has a storage elastic modulus of 2.8 GPa or more at 25°C, and the cured product has a storage elastic modulus of 1.3 GPa or more at 150°C before the temperature cycle test, The curable resin composition of the present invention can provide a cured product with excellent reliability. The storage elastic modulus at 25° C. of the cured product before the temperature cycle test is more preferably 2.9 GPa or more, further preferably 3.0 GPa or more. Moreover, the storage elastic modulus at 150° C. of the cured product before the temperature cycle test is more preferably 1.4 GPa or more, and even more preferably 1.5 GPa or more. Although there is no particular upper limit for the storage elastic modulus, the practical upper limit is 10 GPa at both 25°C and 150°C.
本発明の硬化性樹脂組成物は、上記温度サイクル試験前後における硬化物のガラス転移温度の変化量が15℃以下であることが好ましい。上記温度サイクル試験前後における硬化物のガラス転移温度の変化量が15℃以下であることにより、本発明の硬化性樹脂組成物は、信頼性により優れる硬化物を得ることができるものとなる。上記温度サイクル試験前後における硬化物のガラス転移温度の変化量は、14℃以下であることが好ましく、12℃以下であることがより好ましい。
なお、本明細書において、上記「温度サイクル試験前後における硬化物のガラス転移温度の変化量」は、(温度サイクル試験後の硬化物のガラス転移温度)-(温度サイクル試験前の硬化物のガラス転移温度)で表される値である。
本明細書において上記「ガラス転移温度」とは、動的粘弾性測定により得られる損失正接(tanδ)の極大のうち、ミクロブラウン運動に起因する極大が現れる温度を意味する。具体的には、動的粘弾性測定装置を用い、歪振幅10μm、測定周波数10Hz、昇温速度10℃/minの条件で25℃から250℃の温度範囲で測定した際に得られるtanδカーブのピーク温度として求めることができる。上記動的粘弾性測定装置としては、例えば、EXSTAR6000(SII社製)等が挙げられる。
上記ガラス転移温度を測定する硬化物は、硬化性樹脂組成物を基材フィルム上に塗工した後、乾燥させることにより得られる厚さ約15μmの硬化性樹脂組成物フィルムを厚さ約300μmとなるように積層し、幅3mm、長さ5cmに切り出し、190℃で1時間加熱することにより得ることができる。
The curable resin composition of the present invention preferably has a glass transition temperature change of 15° C. or less before and after the temperature cycle test. When the amount of change in the glass transition temperature of the cured product before and after the temperature cycle test is 15° C. or less, the curable resin composition of the present invention makes it possible to obtain a cured product with excellent reliability. The amount of change in the glass transition temperature of the cured product before and after the temperature cycle test is preferably 14° C. or less, more preferably 12° C. or less.
In this specification, the above "change in glass transition temperature of the cured product before and after the temperature cycle test" is (glass transition temperature of the cured product after the temperature cycle test) - (glass of the cured product before the temperature cycle test) transition temperature).
As used herein, the term “glass transition temperature” means the temperature at which the maximum loss tangent (tan δ) obtained by dynamic viscoelasticity measurement appears due to micro-Brownian motion. Specifically, using a dynamic viscoelasticity measuring device, the tan δ curve obtained when measured in a temperature range from 25 ° C. to 250 ° C. under the conditions of a strain amplitude of 10 μm, a measurement frequency of 10 Hz, and a temperature increase rate of 10 ° C./min. It can be obtained as a peak temperature. Examples of the dynamic viscoelasticity measuring device include EXSTAR6000 (manufactured by SII).
The cured product for measuring the glass transition temperature is a curable resin composition film having a thickness of about 15 μm obtained by coating the curable resin composition on the base film and then drying it to a thickness of about 300 μm. It can be obtained by stacking layers so as to form a layer, cutting out a piece having a width of 3 mm and a length of 5 cm, and heating it at 190° C. for 1 hour.
本発明の硬化性樹脂組成物は、硬化物のガラス転移温度の好ましい下限が173℃である。上記硬化物のガラス転移温度が173℃以上であることにより、本発明の硬化性樹脂組成物は、硬化物が機械的強度及び高温長期耐熱性により優れるものとなる。上記硬化物のガラス転移温度のより好ましい下限は175℃である。
また、上記硬化物のガラス転移温度の好ましい上限は特にないが、実質的な上限は230℃である。
In the curable resin composition of the present invention, the preferable lower limit of the glass transition temperature of the cured product is 173°C. When the glass transition temperature of the cured product is 173° C. or higher, the cured product of the curable resin composition of the present invention is excellent in mechanical strength and high-temperature long-term heat resistance. A more preferable lower limit of the glass transition temperature of the cured product is 175°C.
Although there is no particular upper limit for the glass transition temperature of the cured product, the practical upper limit is 230°C.
本発明の硬化性樹脂組成物は、硬化性樹脂を含有する。
上記硬化性樹脂としては、エポキシ樹脂、アクリル樹脂、フェノール樹脂、シアネート樹脂、イソシアネート樹脂、マレイミド樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、フッ素樹脂等が挙げられる。なかでも、上記硬化性樹脂は、エポキシ樹脂を含むことが好ましい。これらの硬化性樹脂は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
また、上記硬化性樹脂は、常温でのタック性や、フィルム加工する場合等の加工性をより良好にするために、25℃において液状又は半固形状であることが好ましく、25℃において液状であることがより好ましく、25℃において液状のエポキシ樹脂を含むことが更に好ましい。
The curable resin composition of the present invention contains a curable resin.
Examples of the curable resins include epoxy resins, acrylic resins, phenol resins, cyanate resins, isocyanate resins, maleimide resins, benzoxazine resins, silicone resins, and fluororesins. Especially, it is preferable that the said curable resin contains an epoxy resin. These curable resins may be used alone, or two or more of them may be used in combination.
In addition, the curable resin is preferably liquid or semi-solid at 25 ° C. in order to improve tackiness at room temperature and processability such as film processing, and is liquid at 25 ° C. More preferably, it contains an epoxy resin that is liquid at 25°C.
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、トリアジン型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。なかでも、粘度が低く、得られる硬化性樹脂組成物の加工性をより調整しやすくなることから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、レゾルシノール型エポキシ樹脂、トリアジン型エポキシ樹脂が好ましい。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallylbisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , propylene oxide-added bisphenol A type epoxy resin, triazine type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin Resin, naphthylene ether type epoxy resin, phenol novolac type epoxy resin, ortho-cresol novolak type epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, naphthalenephenol novolak type epoxy resin, glycidylamine type epoxy resin, alkyl Polyol-type epoxy resins, rubber-modified epoxy resins, glycidyl ester compounds, and the like can be mentioned. Among them, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, resorcinol type epoxy resin, and triazine are preferred because they have a low viscosity and make it easier to adjust the processability of the resulting curable resin composition. type epoxy resins are preferred.
本発明の硬化性樹脂組成物は、硬化剤を含有する。
上記硬化剤は、上記式(1)で表されるジアミンに由来する構造を有する。以下、上記式(1)で表されるジアミンに由来する構造を有する硬化剤を「本発明にかかる硬化剤」ともいう。本発明にかかる硬化剤を含有することにより、本発明の硬化性樹脂組成物は、上記温度サイクル試験前後における硬化物の25℃における貯蔵弾性率の変化率及び上記温度サイクル試験前後における硬化物の150℃における貯蔵弾性率の変化率をそれぞれ上述した値以下とすることが容易となる。
The curable resin composition of the present invention contains a curing agent.
The curing agent has a structure derived from the diamine represented by formula (1). Hereinafter, the curing agent having a structure derived from the diamine represented by the above formula (1) is also referred to as "curing agent according to the present invention". By containing the curing agent according to the present invention, the curable resin composition of the present invention has a rate of change in storage elastic modulus at 25 ° C. of the cured product before and after the temperature cycle test, and a cured product before and after the temperature cycle test. It becomes easy to make the rate of change of the storage elastic modulus at 150° C. equal to or less than the values described above.
上記硬化剤は、得られる硬化性樹脂組成物の硬化物の初期接着性、温度サイクル試験後の接着性、及び、長期耐熱性の観点から、本発明にかかる硬化剤として、上記式(1)で表されるジアミンに由来する構造を有するイミドオリゴマーを含むことが好ましい。 From the viewpoint of the initial adhesiveness of the cured product of the curable resin composition obtained, the adhesiveness after the temperature cycle test, and the long-term heat resistance, the curing agent according to the present invention is the above formula (1) It preferably contains an imide oligomer having a structure derived from a diamine represented by.
上記イミドオリゴマーは、主鎖の末端に酸無水物基又はフェノール性水酸基を有することが好ましく、主鎖の両末端に酸無水物基又はフェノール性水酸基を有することがより好ましい。 The imide oligomer preferably has an acid anhydride group or a phenolic hydroxyl group at the end of the main chain, and more preferably has an acid anhydride group or a phenolic hydroxyl group at both ends of the main chain.
上記イミドオリゴマーは、下記式(2-1)又は下記式(2-2)で表される構造を有することが好ましい。下記式(2-1)又は下記式(2-2)で表される構造を有することにより、上記イミドオリゴマーは、上記硬化性樹脂との反応性及び相溶性により優れるものとなる。 The imide oligomer preferably has a structure represented by formula (2-1) or formula (2-2) below. By having the structure represented by the following formula (2-1) or the following formula (2-2), the imide oligomer is superior in reactivity and compatibility with the curable resin.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(2-1)及び式(2-2)中、Aは、酸二無水物残基であり、Bは、下記式(3)で表される2価の基であり、式(2-2)中、Arは、置換されていてもよい2価の芳香族基である。 In formulas (2-1) and (2-2), A is an acid dianhydride residue, B is a divalent group represented by the following formula (3), and formula (2- In 2), Ar is an optionally substituted divalent aromatic group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(3)中、*は、結合位置である。 In formula (3), * is a binding position.
上記酸二無水物残基は、下記式(4-1)又は下記式(4-2)で表される4価の基であることが好ましい。 The acid dianhydride residue is preferably a tetravalent group represented by the following formula (4-1) or the following formula (4-2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(4-1)及び式(4-2)中、*は、結合位置であり、式(4-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Zが炭化水素基である場合、該炭化水素基と式(4-1)中の各芳香環との間に酸素原子を有していてもよく、Zが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(4-1)中の各芳香環との間に酸素原子を有していてもよい。式(4-1)及び式(4-2)中における芳香環の水素原子は置換されていてもよい。 In formulas (4-1) and (4-2), * is a bonding position, and in formula (4-1), Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a straight It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring. When Z is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (4-1), Z is a divalent group having an aromatic ring In some cases, an oxygen atom may be present between the divalent group having the aromatic ring and each aromatic ring in formula (4-1). The hydrogen atoms of the aromatic rings in formulas (4-1) and (4-2) may be substituted.
上記式(4-1)中のZが、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である場合、これらの基は、置換されていてもよい。
上記直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、上記芳香環を有する2価の基が置換されている場合の置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
When Z in the above formula (4-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring, these groups are substituted good too.
Examples of substituents in the case where the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted include, for example, a halogen atom, a linear or branched chain linear alkyl groups, linear or branched alkenyl groups, alicyclic groups, aryl groups, alkoxy groups, nitro groups, cyano groups and the like.
上記酸二無水物残基の由来となる酸二無水物としては、例えば、後述する式(8)で表される酸二無水物等が挙げられる。 Examples of acid dianhydrides from which the acid dianhydride residue is derived include acid dianhydrides represented by formula (8) described later.
また、上記イミドオリゴマーは、構造中にシロキサン骨格を有する場合、硬化後のガラス転移温度を低下させたり、被着体を汚染し接着不良の原因となり得ることから、構造中にシロキサン骨格を有さないイミドオリゴマーであることが好ましい。 In addition, if the imide oligomer has a siloxane skeleton in its structure, it may lower the glass transition temperature after curing and may contaminate the adherend and cause adhesion failure. imide oligomers are preferred.
上記イミドオリゴマーの数平均分子量は、5000以下であることが好ましい。上記イミドオリゴマーの数平均分子量が5000以下であることにより、得られる硬化性樹脂組成物の硬化物が長期耐熱性により優れるものとなる。上記イミドオリゴマーの数平均分子量のより好ましい上限は4000、更に好ましい上限は3000である。
特に、上記イミドオリゴマーの数平均分子量は、上記式(2-1)で表される構造を有する場合は900以上5000以下であることが好ましく、上記式(2-2)で表される構造を有する場合は550以上4000以下であることが好ましい。上記式(2-1)で表される構造を有する場合の数平均分子量のより好ましい下限は950、更に好ましい下限は1000である。上記式(2-2)で表される構造を有する場合の数平均分子量のより好ましい下限は580、更に好ましい下限は600である。
なお、本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
The imide oligomer preferably has a number average molecular weight of 5,000 or less. When the imide oligomer has a number average molecular weight of 5,000 or less, the resulting cured product of the curable resin composition is excellent in long-term heat resistance. A more preferable upper limit of the number average molecular weight of the imide oligomer is 4,000, and a more preferable upper limit is 3,000.
In particular, the number average molecular weight of the imide oligomer is preferably 900 or more and 5000 or less when it has the structure represented by the formula (2-1), and the structure represented by the formula (2-2) is When it has, it is preferably 550 or more and 4000 or less. A more preferable lower limit of the number average molecular weight in the case of having the structure represented by the above formula (2-1) is 950, and a more preferable lower limit is 1,000. A more preferred lower limit of the number average molecular weight is 580, and a more preferred lower limit is 600, in the case of having the structure represented by the above formula (2-2).
In addition, the above-mentioned "number average molecular weight" in this specification is a value measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and calculated by polystyrene conversion. Examples of the column used for measuring the polystyrene-equivalent number-average molecular weight by GPC include JAIGEL-2H-A (manufactured by Japan Analytical Industry Co., Ltd.).
上記イミドオリゴマーは、具体的には、下記式(5-1)、下記式(5-2)、下記式(5-3)、若しくは、下記式(5-4)で表されるイミドオリゴマー、又は、下記式(6-1)、下記式(6-2)、下記式(6-3)、若しくは、下記式(6-4)で表されるイミドオリゴマーであることが好ましい。 Specifically, the imide oligomer is represented by the following formula (5-1), the following formula (5-2), the following formula (5-3), or the following formula (5-4). Alternatively, it is preferably an imide oligomer represented by the following formula (6-1), (6-2), (6-3) or (6-4) below.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(5-1)~(5-4)中、Aは、上記酸二無水物残基であり、式(5-1)、(5-3)、(5-4)中、Aは、それぞれ同一であってもよいし、異なっていてもよい。式(5-1)~(5-4)中、Bは、上記式(3)で表される2価の基である。式(5-2)中、Xは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基であり、式(5-4)中、Wは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基である。式(5-3)及び式(5-4)中、nは、繰り返し数である。 In formulas (5-1) to (5-4), A is the acid dianhydride residue, and in formulas (5-1), (5-3), and (5-4), A is They may be the same or different. In formulas (5-1) to (5-4), B is a divalent group represented by formula (3) above. In formula (5-2), X is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group, and in formula (5-4), W is a hydrogen atom, a halogen atom , or an optionally substituted monovalent hydrocarbon group. In formulas (5-3) and (5-4), n is the number of repetitions.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(6-1)~(6-4)中、Aは、上記酸二無水物残基であり、式(6-1)~(6-4)中、Aは、それぞれ同一であってもよいし、異なっていてもよい。式(6-1)~(6-4)中、Bは、上記式(3)で表される2価の基であり、Rは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基であり、式(6-1)及び式(6-3)中、Rは、それぞれ同一であってもよいし、異なっていてもよい。式(6-2)及び式(6-4)中、Wは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基である。 In formulas (6-1) to (6-4), A is the acid dianhydride residue, and in formulas (6-1) to (6-4), A is the same. may be different. In formulas (6-1) to (6-4), B is a divalent group represented by the above formula (3), and R is a hydrogen atom, a halogen atom, or optionally substituted It is a monovalent hydrocarbon group, and in formulas (6-1) and (6-3), R may be the same or different. In formulas (6-2) and (6-4), W is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group.
上記式(5-1)~(5-4)、及び、上記式(6-1)~(6-4)中のAは、下記式(7-1)又は下記式(7-2)で表される4価の基であることが好ましい。 A in the above formulas (5-1) to (5-4) and the above formulas (6-1) to (6-4) is the following formula (7-1) or the following formula (7-2) It is preferably a tetravalent group represented.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(7-1)及び式(7-2)中、*は、結合位置であり、式(7-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Zが炭化水素基である場合、該炭化水素基と式(7-1)中の各芳香環との間に酸素原子を有していてもよく、Zが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(7-1)中の各芳香環との間に酸素原子を有していてもよい。式(7-1)及び式(7-2)中における芳香環の水素原子は置換されていてもよい。 In formulas (7-1) and (7-2), * is a bonding position, and in formula (7-1), Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a direct It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring. When Z is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (7-1), Z is a divalent group having an aromatic ring In some cases, an oxygen atom may be present between the divalent group having an aromatic ring and each aromatic ring in formula (7-1). The hydrogen atoms of the aromatic rings in formulas (7-1) and (7-2) may be substituted.
上記式(2-1)で表される構造を有するイミドオリゴマーを製造する方法としては、例えば、下記式(8)で表される酸二無水物と上記式(1)で表されるジアミンとを反応させる方法等が挙げられる。 As a method for producing an imide oligomer having a structure represented by the above formula (2-1), for example, an acid dianhydride represented by the following formula (8) and a diamine represented by the above formula (1) and the like.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(8)中、Aは、上記式(2-1)中のAと同じ4価の基である。 In formula (8), A is the same tetravalent group as A in formula (2-1) above.
上記式(8)で表される酸二無水物と上記式(1)で表されるジアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(1)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(8)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、加熱や減圧等により溶媒を除去し、更に、約200℃以上で1時間以上加熱してアミック酸オリゴマーを反応させる方法等が挙げられる。上記式(8)で表される酸二無水物と上記式(1)で表されるジアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に上記式(2-1)で表される構造を有するイミドオリゴマーを得ることができる。
また、上記式(8)で表される酸二無水物の一部を下記式(9)で表される酸無水物に置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(2-1)で表される構造を有し、他方の末端に下記式(9)で表される酸無水物に由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(8)で表される酸二無水物と下記式(9)で表される酸無水物とは、同時に添加してもよいし、別々に添加してもよい。
更に、上記式(1)で表されるジアミンの一部を下記式(10)で表されるモノアミンに置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(2-1)で表される構造を有し、他方の末端に下記式(10)で表されるモノアミンに由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(1)で表されるジアミンと下記式(10)で表されるモノアミンとは、同時に添加してもよいし、別々に添加してもよい。
A specific example of the method for reacting the acid dianhydride represented by the above formula (8) with the diamine represented by the above formula (1) is shown below.
First, the diamine represented by the above formula (1) is dissolved in advance in a solvent (for example, N-methylpyrrolidone) in which the amic acid oligomer obtained by the reaction is soluble, and the resulting solution is added with the above formula (8). An acid dianhydride represented by is added and reacted to obtain an amic acid oligomer solution. Next, the solvent is removed by heating, pressure reduction, or the like, and the mixture is heated at about 200° C. or higher for 1 hour or longer to react the amic acid oligomer. By adjusting the molar ratio of the acid dianhydride represented by the above formula (8) and the diamine represented by the above formula (1), and the imidization conditions, it has a desired number average molecular weight, and both An imide oligomer having a structure represented by the above formula (2-1) at the end can be obtained.
Further, by replacing a part of the acid dianhydride represented by the above formula (8) with the acid anhydride represented by the following formula (9), it has a desired number average molecular weight and one end has the above An imide oligomer having a structure represented by the formula (2-1) and having a structure derived from an acid anhydride represented by the following formula (9) at the other end can be obtained. In this case, the acid dianhydride represented by the above formula (8) and the acid anhydride represented by the following formula (9) may be added simultaneously or separately.
Furthermore, by replacing a part of the diamine represented by the above formula (1) with a monoamine represented by the following formula (10), it has a desired number average molecular weight, and one end has the above formula (2-1) ) and having at the other end a structure derived from a monoamine represented by the following formula (10). In this case, the diamine represented by the above formula (1) and the monoamine represented by the following formula (10) may be added simultaneously or separately.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(9)中、Arは、置換されていてもよい2価の芳香族基である。 In formula (9), Ar is an optionally substituted divalent aromatic group.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(10)中、Arは、置換されていてもよい1価の芳香族基であり、R及びRは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (10), Ar is an optionally substituted monovalent aromatic group, and R 1 and R 2 are each independently a hydrogen atom or a monovalent hydrocarbon group.
上記式(2-2)で表される構造を有するイミドオリゴマーを製造する方法としては、例えば、上記式(8)で表される酸二無水物と上記式(1)で表されるジアミンと下記式(11)で表されるフェノール性水酸基含有モノアミンとを反応させる方法等が挙げられる。 As a method for producing an imide oligomer having a structure represented by the above formula (2-2), for example, an acid dianhydride represented by the above formula (8) and a diamine represented by the above formula (1) Examples thereof include a method of reacting with a phenolic hydroxyl group-containing monoamine represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(11)中、Arは、置換されていてもよい2価の芳香族基であり、R及びRは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (11), Ar is an optionally substituted divalent aromatic group, and R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group.
上記式(8)で表される酸二無水物と上記式(1)で表されるジアミンと上記式(11)で表されるフェノール性水酸基含有モノアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(11)で表されるフェノール性水酸基含有モノアミン及び上記式(1)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(8)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、加熱や減圧等により溶媒を除去し、更に、約200℃以上で1時間以上加熱してアミック酸オリゴマーを反応させる方法等が挙げられる。上記式(8)で表される酸二無水物と上記式(1)で表されるジアミンと上記式(11)で表されるフェノール性水酸基含有モノアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に上記式(2-2)で表される構造を有するイミドオリゴマーを得ることができる。
また、上記式(11)で表されるフェノール性水酸基含有モノアミンの一部を上記式(10)で表されるモノアミンに置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(2-2)で表される構造を有し、他方の末端に上記式(10)で表されるモノアミンに由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(11)で表されるフェノール性水酸基含有モノアミンと上記式(10)で表されるモノアミンとは、同時に添加してもよいし、別々に添加してもよい。
Specific examples of the method for reacting the acid dianhydride represented by the above formula (8), the diamine represented by the above formula (1), and the phenolic hydroxyl group-containing monoamine represented by the above formula (11) are shown below. show.
First, a phenolic hydroxyl group-containing monoamine represented by the above formula (11) and a diamine represented by the above formula (1) are mixed in advance with a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, etc.) ), and the acid dianhydride represented by the above formula (8) is added to the obtained solution and reacted to obtain an amic acid oligomer solution. Next, the solvent is removed by heating, pressure reduction, or the like, and the mixture is heated at about 200° C. or higher for 1 hour or longer to react the amic acid oligomer. The molar ratio of the acid dianhydride represented by the above formula (8), the diamine represented by the above formula (1) and the phenolic hydroxyl group-containing monoamine represented by the above formula (11), and the imidization conditions By adjusting, it is possible to obtain an imide oligomer having a desired number average molecular weight and a structure represented by the above formula (2-2) at both ends.
Further, by replacing part of the phenolic hydroxyl group-containing monoamine represented by the above formula (11) with the monoamine represented by the above formula (10), it has a desired number average molecular weight, and one end has the above formula An imide oligomer having a structure represented by (2-2) and having a structure derived from a monoamine represented by the above formula (10) at the other end can be obtained. In this case, the phenolic hydroxyl group-containing monoamine represented by the above formula (11) and the monoamine represented by the above formula (10) may be added simultaneously or separately.
上記式(8)で表される酸二無水物としては、具体的には例えば、ピロメリット酸無水物、3,3’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、4,4’-オキシジフタル酸無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、4,4’-ビス(2,3-ジカルボキシルフェノキシ)ジフェニルエーテルの酸二無水物、p-フェニレンビス(トリメリテート無水物)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物等が挙げられる。
なかでも、溶解性及び耐熱性により優れるものとなることから、上記酸二無水物としては、融点が240℃以下の芳香族性酸二無水物が好ましく、融点が220℃以下の芳香族性酸二無水物がより好ましく、融点が200℃以下の芳香族性酸二無水物が更に好ましく、3,4’-オキシジフタル酸二無水物(融点180℃)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(融点190℃)が特に好ましい。
なお、本明細書において上記「融点」は、示差走査熱量計を用いて、10℃/minにて昇温した際の吸熱ピークの温度として測定される値を意味する。上記示差走査熱量計としては、例えば、EXTEAR DSC6100(エスアイアイ・ナノテクノロジー社製)等が挙げられる。
Specific examples of the acid dianhydride represented by the above formula (8) include pyromellitic anhydride, 3,3′-oxydiphthalic anhydride, 3,4′-oxydiphthalic anhydride, 4, 4'-oxydiphthalic anhydride, 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride, 4,4'-bis(2,3-dicarboxylphenoxy)diphenyl ether acid dianhydride , p-phenylenebis(trimellitate anhydride), 2,3,3′,4′-biphenyltetracarboxylic dianhydride and the like.
Among them, the acid dianhydride is preferably an aromatic acid dianhydride having a melting point of 240° C. or less, and an aromatic acid having a melting point of 220° C. or less, because it has excellent solubility and heat resistance. A dianhydride is more preferred, and an aromatic acid dianhydride having a melting point of 200° C. or less is even more preferred. -isopropylidenediphenoxy)diphthalic anhydride (melting point 190° C.) is particularly preferred.
In this specification, the "melting point" means a value measured as an endothermic peak temperature when the temperature is raised at 10°C/min using a differential scanning calorimeter. Examples of the differential scanning calorimeter include EXTEAR DSC6100 (manufactured by SII Nano Technology Co., Ltd.).
上記式(9)で表される酸無水物としては、例えば、フタル酸無水物、3-メチルフタル酸無水物、4-メチルフタル酸無水物、1,2-ナフタル酸無水物、2,3-ナフタル酸無水物、1,8-ナフタル酸無水物、2,3-アントラセンジカルボキシ酸無水物、4-tert-ブチルフタル酸無水物、4-エチニルフタル酸無水物、4-フェニルエチニルフタル酸無水物、4-フルオロフタル酸無水物、4-クロロフタル酸無水物、4-ブロモフタル酸無水物、3,4-ジクロロフタル酸無水物等が挙げられる。 Examples of the acid anhydride represented by the formula (9) include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 1,2-naphthalic anhydride, and 2,3-naphthalic anhydride. acid anhydride, 1,8-naphthalic anhydride, 2,3-anthracenedicarboxylic anhydride, 4-tert-butyl phthalic anhydride, 4-ethynyl phthalic anhydride, 4-phenylethynyl phthalic anhydride, 4-fluorophthalic anhydride, 4-chlorophthalic anhydride, 4-bromophthalic anhydride, 3,4-dichlorophthalic anhydride and the like.
上記式(10)で表されるモノアミンとしては、例えば、アニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,4-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2-tert-ブチルアニリン、3-tert-ブチルアニリン、4-tert-ブチルアニリン、1-ナフチルアミン、2-ナフチルアミン、1-アミノアントラセン、2-アミノアントラセン、9-アミノアントラセン、1-アミノピレン、3-クロロアニリン、o-アニシジン、m-アニシジン、p-アニシジン、1-アミノ-2-メチルナフタレン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、3,4-ジメチルアニリン、4-エチルアニリン、4-エチニルアニリン、4-イソプロピルアニリン、4-(メチルチオ)アニリン、N,N-ジメチル-1,4-フェニレンジアミン等が挙げられる。 Monoamines represented by the above formula (10) include, for example, aniline, o-toluidine, m-toluidine, p-toluidine, 2,4-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-tert-butylaniline, 3-tert-butylaniline, 4-tert-butylaniline, 1-naphthylamine, 2-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, 9-aminoanthracene, 1-aminopyrene, 3- Chloroaniline, o-anisidine, m-anisidine, p-anisidine, 1-amino-2-methylnaphthalene, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 3,4-dimethyl aniline, 4-ethylaniline, 4-ethynylaniline, 4-isopropylaniline, 4-(methylthio)aniline, N,N-dimethyl-1,4-phenylenediamine and the like.
上記式(11)で表されるフェノール性水酸基含有モノアミンとしては、例えば、3-アミノフェノール、4-アミノフェノール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾール、4-アミノ-2,3-キシレノール、4-アミノ-2,5-キシレノール、4-アミノ-2,6-キシレノール、4-アミノ-1-ナフトール、5-アミノ-2-ナフトール、6-アミノ-1-ナフトール、4-アミノ-2,6-ジフェニルフェノール等が挙げられる。なかでも、入手性及び保存安定性に優れ、硬化後に高いガラス転移温度が得られることから、4-アミノ-o-クレゾール、5-アミノ-o-クレゾールが好ましい。 Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (11) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, 4-amino-2 ,3-xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -amino-2,6-diphenylphenol and the like. Among them, 4-amino-o-cresol and 5-amino-o-cresol are preferred because they are excellent in availability and storage stability and provide a high glass transition temperature after curing.
上述した製造方法で上記イミドオリゴマーを製造した場合、上記イミドオリゴマーは、上記式(2-1)で表される構造を有する複数種のイミドオリゴマー又は上記式(2-2)で表される構造を有する複数種のイミドオリゴマーと、各原料との混合物(イミドオリゴマー組成物)に含まれるものとして得られる。該イミドオリゴマー組成物は、イミド化率が70%以上であることにより、硬化剤として用いた場合に高温での機械的強度及び長期耐熱性により優れる硬化物を得ることができる。
上記イミドオリゴマー組成物のイミド化率の好ましい下限は75%、より好ましい下限は80%である。また、上記イミドオリゴマー組成物のイミド化率の好ましい上限は特にないが、実質的な上限は98%である。
なお、上記「イミド化率」は、フーリエ変換赤外分光光度計(FT-IR)を用いて全反射測定法(ATR法)にて測定を行い、アミック酸のカルボニル基に由来する1660cm-1付近のピーク吸光度面積から下記式にて導出することができる。上記フーリエ変換赤外分光光度計としては、例えば、UMA600(Agilent Technologies社製)等が挙げられる。なお、下記式中における「アミック酸オリゴマーのピーク吸光度面積」は、酸二無水物とジアミン又はフェノール性水酸基含有モノアミンとを反応させた後、イミド化工程を行わずに溶媒をエバポレーション等により除去することで得られるアミック酸オリゴマーの吸光度面積である。
イミド化率(%)=100×(1-(イミド化後のピーク吸光度面積)/(アミック酸オリゴマーのピーク吸光度面積))
When the imide oligomer is produced by the production method described above, the imide oligomer is a plurality of imide oligomers having a structure represented by the above formula (2-1) or a structure represented by the above formula (2-2). and a mixture of each raw material (imide oligomer composition). When the imide oligomer composition has an imidization rate of 70% or more, it can provide a cured product having excellent mechanical strength at high temperatures and long-term heat resistance when used as a curing agent.
A preferable lower limit of the imidization rate of the imide oligomer composition is 75%, and a more preferable lower limit is 80%. Although there is no particular upper limit for the imidization rate of the imide oligomer composition, the practical upper limit is 98%.
The above-mentioned "imidation rate" is measured by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (FT-IR), and is derived from the carbonyl group of amic acid at 1660 cm -1 It can be derived from the peak absorbance area in the vicinity by the following formula. Examples of the Fourier transform infrared spectrophotometer include UMA600 (manufactured by Agilent Technologies). In addition, the "peak absorbance area of the amic acid oligomer" in the following formula is obtained by removing the solvent by evaporation or the like without performing the imidization step after reacting the acid dianhydride with the diamine or the phenolic hydroxyl group-containing monoamine. is the absorbance area of the amic acid oligomer obtained by
Imidation rate (%) = 100 × (1-(peak absorbance area after imidization)/(peak absorbance area of amic acid oligomer))
上記イミドオリゴマー組成物は、硬化性樹脂組成物中における溶解性の観点から、25℃においてテトラヒドロフラン10gに対して3g以上溶解することが好ましい。 From the viewpoint of solubility in the curable resin composition, it is preferable that 3 g or more of the imide oligomer composition dissolve in 10 g of tetrahydrofuran at 25°C.
上記硬化性樹脂と上記硬化剤(後述する硬化促進剤を含有する場合は更に硬化促進剤)との合計100重量部中における上記イミドオリゴマーの含有量の好ましい下限は20重量部、好ましい上限は80重量部である。上記イミドオリゴマーの含有量がこの範囲であることにより、得られる硬化性樹脂組成物が、硬化前における可撓性及び加工性、及び、硬化後の耐熱性により優れるものとなる。上記イミドオリゴマーの含有量のより好ましい下限は25重量部、より好ましい上限は75重量部である。
なお、上記イミドオリゴマーが上述したイミドオリゴマー組成物に含まれるものである場合、上記イミドオリゴマーの含有量は、該イミドオリゴマー組成物(更に他のイミドオリゴマーを併用する場合は該イミドオリゴマー組成物と他のイミドオリゴマーとの合計)の含有量を意味する。
また、上記イミドオリゴマー組成物中における、上記式(1)で表されるジアミンに由来する構造の含有割合の好ましい下限は2重量%、好ましい上限は80重量%である。上記式(1)で表されるジアミンに由来する構造の含有割合がこの範囲であることにより、本発明の硬化性樹脂組成物は、信頼性により優れる硬化物を得ることができるものとなる。上記イミドオリゴマー組成物中における、上記式(1)で表されるジアミンに由来する構造の含有割合のより好ましい下限は5重量%、より好ましい上限は50重量%である。
The preferable lower limit of the content of the imide oligomer in the total 100 parts by weight of the curable resin and the curing agent (further curing accelerator when containing a curing accelerator described later) is 20 parts by weight, and the preferable upper limit is 80. weight part. When the content of the imide oligomer is within this range, the resulting curable resin composition is superior in flexibility and workability before curing and heat resistance after curing. A more preferable lower limit to the content of the imide oligomer is 25 parts by weight, and a more preferable upper limit is 75 parts by weight.
In addition, when the imide oligomer is contained in the imide oligomer composition described above, the content of the imide oligomer is the same as the imide oligomer composition (and the imide oligomer composition when other imide oligomers are used in combination). (total with other imide oligomers).
A preferable lower limit of the content ratio of the structure derived from the diamine represented by the formula (1) in the imide oligomer composition is 2% by weight, and a preferable upper limit is 80% by weight. When the content ratio of the structure derived from the diamine represented by the above formula (1) is within this range, the curable resin composition of the present invention can provide a cured product with excellent reliability. A more preferred lower limit to the content of the structure derived from the diamine represented by formula (1) in the imide oligomer composition is 5% by weight, and a more preferred upper limit is 50% by weight.
本発明の硬化性樹脂組成物は、硬化促進剤を含有することが好ましい。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができる。 The curable resin composition of the present invention preferably contains a curing accelerator. By containing the curing accelerator, the curing time can be shortened and the productivity can be improved.
上記硬化促進剤としては、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤、ホスフィン系硬化促進剤、リン系硬化促進剤、光塩基発生剤、スルホニウム塩系硬化促進剤等が挙げられる。なかでも、保存安定性に優れることから、イミダゾール系硬化促進剤が好ましい。 Examples of the curing accelerator include imidazole-based curing accelerators, tertiary amine-based curing accelerators, phosphine-based curing accelerators, phosphorus-based curing accelerators, photobase generators, sulfonium salt-based curing accelerators, and the like. . Of these, imidazole-based curing accelerators are preferred because of their excellent storage stability.
上記硬化促進剤の含有量は、上記硬化性樹脂と上記硬化剤と上記硬化促進剤との合計100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記硬化促進剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、硬化時間を短縮させる効果により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。 The content of the curing accelerator has a preferable lower limit of 0.01 parts by weight and a preferable upper limit of 10 parts by weight based on a total of 100 parts by weight of the curable resin, the curing agent and the curing accelerator. When the content of the curing accelerator is within this range, the effect of shortening the curing time while maintaining excellent adhesiveness and the like is enhanced. A more preferred lower limit to the content of the curing accelerator is 0.05 parts by weight, and a more preferred upper limit is 5 parts by weight.
本発明の硬化性樹脂組成物は、無機充填剤を含有してもよい。
上記無機充填剤は、シリカ及び硫酸バリウムからなる群より選択される少なくとも1種を含むことが好ましい。上記無機充填剤としてシリカ及び硫酸バリウムからなる群より選択される少なくとも1種を含有することにより、本発明の硬化性樹脂組成物は、耐リフロー性、めっき耐性、及び、加工性により優れるものとなる。
The curable resin composition of the present invention may contain an inorganic filler.
The inorganic filler preferably contains at least one selected from the group consisting of silica and barium sulfate. By containing at least one selected from the group consisting of silica and barium sulfate as the inorganic filler, the curable resin composition of the present invention is superior in reflow resistance, plating resistance, and workability. Become.
上記シリカ及び上記硫酸バリウム以外のその他の無機充填剤としては、例えば、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、炭酸マグネシウム、炭酸バリウム、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体等が挙げられる。
上記無機充填剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
Examples of inorganic fillers other than silica and barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, magnesium carbonate, barium carbonate, glass powder, glass frit, glass fiber, carbon fiber, and inorganic ion exchange. A body etc. are mentioned.
The above inorganic fillers may be used alone, or two or more of them may be used in combination.
上記無機充填剤の平均粒子径の好ましい下限は50nm、好ましい上限は4μmである。上記無機充填剤の平均粒子径がこの範囲であることにより、得られる硬化性樹脂組成物が塗布性や加工性により優れるものとなる。上記無機充填剤の平均粒子径のより好ましい下限は100nm、より好ましい上限は3μmである。 A preferable lower limit of the average particle size of the inorganic filler is 50 nm, and a preferable upper limit thereof is 4 μm. When the average particle size of the inorganic filler is within this range, the resulting curable resin composition is superior in coatability and workability. A more preferable lower limit of the average particle size of the inorganic filler is 100 nm, and a more preferable upper limit thereof is 3 μm.
上記無機充填剤の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が200重量部である。上記無機充填剤の含有量がこの範囲であることにより、優れたタック性等を維持したまま、得られる硬化性樹脂組成物の硬化物が耐リフロー性やめっき耐性により優れるものとなる。上記無機充填剤の含有量のより好ましい上限は150重量部である。 The content of the inorganic filler has a preferable upper limit of 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). be. When the content of the inorganic filler is within this range, the obtained cured product of the curable resin composition is excellent in reflow resistance and plating resistance while maintaining excellent tackiness and the like. A more preferable upper limit of the content of the inorganic filler is 150 parts by weight.
本発明の硬化性樹脂組成物は、被着体への短時間での塗れ性と形状保持性とを向上させる等の目的で流動調整剤を含有することが好ましい。
上記流動調整剤としては、例えば、アエロジル等のヒュームドシリカや層状ケイ酸塩等が挙げられる。
上記流動調整剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
また、上記流動調整剤としては、平均粒子径が100nm未満のものが好適に用いられる。
The curable resin composition of the present invention preferably contains a fluidity modifier for the purpose of improving wettability to an adherend in a short time and shape retention.
Examples of the flow control agent include fumed silica such as Aerosil and layered silicate.
The flow modifiers may be used alone, or two or more of them may be used in combination.
Moreover, as the fluidity control agent, one having an average particle size of less than 100 nm is preferably used.
上記流動調整剤の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい下限が0.1重量部、好ましい上限が50重量部である。上記流動調整剤の含有量がこの範囲であることにより、被着体への短時間での塗れ性と形状保持性とを向上させる等の効果により優れるものとなる。上記流動調整剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は30重量部である。 The preferable lower limit of the content of the flow control agent is 0.1 weight part with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). parts, and the preferred upper limit is 50 parts by weight. When the content of the flow control agent is within this range, the effect of improving the wettability to the adherend in a short time and the shape retention property, etc., is excellent. A more preferable lower limit of the content of the flow control agent is 0.5 parts by weight, and a more preferable upper limit thereof is 30 parts by weight.
本発明の硬化性樹脂組成物は、応力緩和、靭性付与等を目的として有機充填剤を含有してもよい。
上記有機充填剤としては、例えば、シリコーンゴム粒子、アクリルゴム粒子、ウレタンゴム粒子、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子、ベンゾグアナミン粒子、及び、これらのコアシェル粒子等が挙げられる。なかでも、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子が好ましい。
上記有機充填剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
The curable resin composition of the present invention may contain an organic filler for the purpose of relaxing stress, imparting toughness, and the like.
Examples of the organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Among them, polyamide particles, polyamideimide particles, and polyimide particles are preferred.
The above organic fillers may be used alone, or two or more of them may be used in combination.
上記有機充填剤の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が300重量部である。上記有機充填剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、得られる硬化性樹脂組成物の硬化物が靭性等により優れるものとなる。上記有機充填剤の含有量のより好ましい上限は200重量部である。 The preferred upper limit of the content of the organic filler is 300 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). be. When the content of the organic filler is within this range, the resulting cured product of the curable resin composition is superior in toughness and the like while maintaining excellent adhesiveness and the like. A more preferable upper limit of the content of the organic filler is 200 parts by weight.
本発明の硬化性樹脂組成物は、ポリマー成分を含有してもよい。上記ポリマー成分は造膜成分としての役割を果たし、更に、上記ポリマー成分を用いることにより、本発明の硬化性樹脂組成物の硬化物が耐熱性により優れるものとなる。 The curable resin composition of the invention may contain a polymer component. The polymer component serves as a film-forming component, and the use of the polymer component makes the cured product of the curable resin composition of the present invention more excellent in heat resistance.
上記ポリマー成分の数平均分子量の好ましい下限は3000、好ましい上限は10万である。上記ポリマー成分の数平均分子量がこの範囲であることにより、得られる硬化性樹脂組成物が硬化物の耐熱性により優れるものとなる。上記ポリマー成分の数平均分子量のより好ましい下限は5000、より好ましい上限は8万である。 A preferable lower limit of the number average molecular weight of the polymer component is 3,000, and a preferable upper limit thereof is 100,000. When the number average molecular weight of the polymer component is within this range, the resulting curable resin composition will be more excellent in heat resistance of the cured product. A more preferable lower limit of the number average molecular weight of the polymer component is 5,000, and a more preferable upper limit thereof is 80,000.
上記ポリマー成分としては、例えば、ポリイミド、フェノキシ樹脂、ポリアミド、ポリアミドイミド、ポリマレイミド、シアネート樹脂、ベンゾオキサジン樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂等が挙げられる。なかでも、耐熱性の観点から、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、及び、ポリマレイミド樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリイミド樹脂を含むことがより好ましい。
上記ポリマー成分は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the polymer component include polyimide, phenoxy resin, polyamide, polyamideimide, polymaleimide, cyanate resin, benzoxazine resin, acrylic resin, urethane resin, and polyester resin. Among them, from the viewpoint of heat resistance, it preferably contains at least one selected from the group consisting of a polyimide resin, a polyamide resin, a polyamideimide resin, and a polymaleimide resin, and more preferably contains a polyimide resin.
The above polymer components may be used alone, or two or more may be used in combination.
上記ポリマー成分の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい下限が0.5重量部、好ましい上限が20重量部である。上記ポリマー成分の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が硬化物の耐熱性により優れるものとなる。上記ポリマー成分の含有量のより好ましい下限は1重量部、より好ましい上限は15重量部である。 The preferable lower limit of the content of the polymer component is 0.5 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). , the preferred upper limit is 20 parts by weight. When the content of the polymer component is within this range, the resulting curable resin composition will be more excellent in the heat resistance of the cured product. A more preferable lower limit for the content of the polymer component is 1 part by weight, and a more preferable upper limit is 15 parts by weight.
本発明の硬化性樹脂組成物は、難燃剤を含有してもよい。
上記難燃剤としては、例えば、ベーマイト型水酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム等の金属水和物、ハロゲン系化合物、りん系化合物、窒素化合物等が挙げられる。なかでも、ベーマイト型水酸化アルミニウムが好ましい。
上記難燃剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
The curable resin composition of the invention may contain a flame retardant.
Examples of the flame retardant include boehmite-type aluminum hydroxide, aluminum hydroxide, metal hydrates such as magnesium hydroxide, halogen-based compounds, phosphorus-based compounds, and nitrogen compounds. Among them, boehmite-type aluminum hydroxide is preferable.
The flame retardants may be used alone, or two or more of them may be used in combination.
上記難燃剤の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が200重量部である。上記難燃剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が優れた接着性等を維持したまま、難燃性に優れるものとなる。上記難燃剤の含有量のより好ましい上限は150重量部である。 The content of the flame retardant is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). . When the content of the flame retardant is within this range, the resulting curable resin composition has excellent flame retardancy while maintaining excellent adhesion and the like. A more preferable upper limit of the content of the flame retardant is 150 parts by weight.
本発明の硬化性樹脂組成物は、塗工性等の観点から溶剤を含有してもよい。
上記溶剤としては、塗工性や貯蔵安定性等の観点から、沸点が200℃未満の溶剤が好ましい。
上記沸点が200℃未満の溶剤としては、例えば、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、炭化水素系溶剤、ハロゲン系溶剤、エーテル系溶剤、含窒素系溶剤等が挙げられる。
上記アルコール系溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、イソブチルアルコール、ノルマルブチルアルコール、ターシャリーブチルアルコール、2-エチエルヘキサノール等が挙げられる。
上記ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルプロピルケトン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジアセトンアルコール等が挙げられる。
上記エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸メトキシブチル、酢酸アミル、酢酸ノルマルプロピル、酢酸イソプロピル、乳酸メチル、乳酸エチル、乳酸ブチル等が挙げられる。
上記炭化水素系溶剤としては、例えば、ベンゼン、トルエン、キシレン、ノルマルヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、イソオクタン、ノルマルデカン、ノルマルヘプタン等が挙げられる。
上記ハロゲン系溶剤としては、例えば、ジクロロメタン、クロロホルム、トリクロロエチレン等が挙げられる。
上記エーテル系溶剤としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジイソプロピルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノターシャリーブチルエーテル、プロピレングリコールモノメチルエーテルプロピオネート、3-メトキシブタノール、ジエチレングリコールジメチルエーテル、アニソール、4-メチルアニソール等が挙げられる。
上記含窒素系溶剤としては、例えば、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
なかでも、取り扱い性やイミドオリゴマーの溶解性等の観点から、沸点が60℃以上200℃未満のケトン系溶剤、沸点が60℃以上200℃未満のエステル系溶剤、及び、沸点が60℃以上200℃未満のエーテル系溶剤からなる群より選択される少なくとも1種が好ましい。このような溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸イソブチル、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、シクロヘキサノン、メチルシクロヘキサノン、ジエチレングリコールジメチルエーテル、アニソール等が挙げられる。
なお、上記「沸点」は、101kPaの条件で測定される値、又は、沸点換算図表等で101kPaに換算された値を意味する。
The curable resin composition of the present invention may contain a solvent from the viewpoint of coatability and the like.
As the solvent, a solvent having a boiling point of less than 200° C. is preferable from the viewpoint of coatability, storage stability, and the like.
Examples of the solvent having a boiling point of less than 200° C. include alcohol-based solvents, ketone-based solvents, ester-based solvents, hydrocarbon-based solvents, halogen-based solvents, ether-based solvents, and nitrogen-containing solvents.
Examples of the alcohol solvent include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, normal butyl alcohol, tertiary butyl alcohol, and 2-ethylhexanol.
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, and diacetone alcohol.
Examples of the ester solvent include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methoxybutyl acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, and butyl lactate.
Examples of the hydrocarbon solvent include benzene, toluene, xylene, normal hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, isooctane, normal decane, normal heptane and the like.
Examples of the halogen-based solvent include dichloromethane, chloroform, and trichlorethylene.
Examples of the ether solvent include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether acetate. , propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, ethylene glycol monotertiary butyl ether, propylene glycol monomethyl ether propionate, 3-methoxybutanol, diethylene glycol dimethyl ether, anisole, 4-methylanisole and the like. be done.
Examples of the nitrogen-containing solvent include acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide and the like.
Among them, from the viewpoint of handleability and solubility of imide oligomers, ketone solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C., ester solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C., and boiling points of 60 ° C. or higher and 200 ° C. At least one selected from the group consisting of ether-based solvents having a temperature of less than °C is preferred. Examples of such solvents include methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, cyclohexanone, methylcyclohexanone, diethylene glycol dimethyl ether, and anisole.
The "boiling point" means a value measured under conditions of 101 kPa, or a value converted to 101 kPa using a boiling point conversion chart or the like.
上記溶剤を含む硬化性樹脂組成物100重量部中における上記溶剤の含有量の好ましい下限は20重量部、好ましい上限は90重量部である。上記溶剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が塗工性等により優れるものとなる。上記溶剤の含有量のより好ましい下限は30重量部、より好ましい上限は80重量部である。 A preferable lower limit of the content of the solvent in 100 parts by weight of the curable resin composition containing the solvent is 20 parts by weight, and a preferable upper limit thereof is 90 parts by weight. When the content of the solvent is within this range, the resulting curable resin composition is more excellent in coatability and the like. A more preferable lower limit for the content of the solvent is 30 parts by weight, and a more preferable upper limit is 80 parts by weight.
本発明の硬化性樹脂組成物は、反応性希釈剤を含有してもよい。
上記反応性希釈剤としては、接着信頼性の観点から、1分子中に2つ以上の反応性官能基を有する反応性希釈剤が好ましい。
The curable resin composition of the present invention may contain a reactive diluent.
From the viewpoint of adhesion reliability, the reactive diluent is preferably a reactive diluent having two or more reactive functional groups in one molecule.
本発明の硬化性樹脂組成物は、更に、カップリング剤、分散剤、貯蔵安定化剤、ブリード防止剤、フラックス剤、レベリング剤等の添加剤を含有してもよい。 The curable resin composition of the present invention may further contain additives such as coupling agents, dispersants, storage stabilizers, anti-bleeding agents, fluxing agents and leveling agents.
上記硬化性樹脂組成物を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、硬化剤と、硬化促進剤等とを混合する方法等が挙げられる。上記混合機としては、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等が挙げられる。 Examples of the method for producing the curable resin composition include a method of mixing a curable resin, a curing agent, a curing accelerator and the like using a mixer. Examples of the mixer include a homodisper, a universal mixer, a Banbury mixer, a kneader, and the like.
上記硬化性樹脂組成物を基材フィルム上に塗工し、乾燥させることにより、硬化前の本発明の硬化性樹脂組成物のフィルム化物を得ることができる。 A film of the curable resin composition of the present invention before curing can be obtained by coating the curable resin composition on a substrate film and drying it.
本発明の硬化性樹脂組成物は、広い用途に用いることができるが、特に高い信頼性が求められている電子材料用途に好適に用いることができる。例えば、航空、車載用電気制御ユニット(ECU)用途や、SiC、GaNを用いたパワーデバイス用途におけるダイアタッチ剤等に用いることができる。また、例えば、パワーオーバーレイパッケージ用接着剤、封止剤、フレキシブルプリント基板又はカバーレイフィルム用接着剤、銅張積層板、半導体接合用接着剤、層間絶縁膜、プリプレグ、LED用封止剤、構造材料用接着剤等にも用いることができる。なかでも、フレキシブルプリント基板又はカバーレイフィルムの接着に好適に用いられる。 INDUSTRIAL APPLICABILITY The curable resin composition of the present invention can be used in a wide range of applications, and can be suitably used in electronic material applications that particularly require high reliability. For example, it can be used as a die attach agent for aviation and automotive electric control unit (ECU) applications, and for power device applications using SiC and GaN. Also, for example, adhesives for power overlay packages, sealants, adhesives for flexible printed circuit boards or coverlay films, copper-clad laminates, adhesives for semiconductor bonding, interlayer insulating films, prepregs, sealants for LEDs, structures It can also be used as an adhesive for materials and the like. Especially, it is suitably used for adhesion of a flexible printed circuit board or a coverlay film.
本発明の硬化性樹脂組成物の硬化物もまた、本発明の1つである。
本発明の硬化性樹脂組成物を用いてなる接着剤もまた、本発明の1つである。本発明の接着剤をフィルム上に塗工した後、乾燥させる等の方法により、接着フィルムを得ることができる。本発明の接着剤を用いてなる接着フィルムもまた、本発明の1つである。
A cured product of the curable resin composition of the present invention is also one aspect of the present invention.
An adhesive using the curable resin composition of the present invention is also one aspect of the present invention. An adhesive film can be obtained by a method such as drying after coating the adhesive of the present invention on a film. An adhesive film using the adhesive of the present invention is also one aspect of the present invention.
本発明によれば、信頼性に優れる硬化物を得ることができる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the curable resin composition which can obtain the hardened|cured material which is excellent in reliability can be provided. Moreover, according to the present invention, it is possible to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(合成例1(イミドオリゴマー組成物Aの作製))
4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)83.3重量部をN-メチルピロリドン(富士フイルム和光純薬社製、「NMP」)150重量部に溶解させた。得られた溶液に上記式(1)で表されるジアミン(三井化学社製、「エタキュア100プラス」)7.1重量部をN-メチルピロリドン50重量部で希釈した溶液を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー組成物A(イミド化率99.5%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー組成物Aは、上記式(5-1)又は(5-3)で表される構造を有するイミドオリゴマー(Aは4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物残基、Bは上記式(3)で表される2価の基)を含むことを確認した。また、該イミドオリゴマー組成物Aの数平均分子量は3000であった。
(Synthesis Example 1 (preparation of imide oligomer composition A))
4,4′-(4,4′-Isopropylidenediphenoxy)diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) 83.3 parts by weight of N-methylpyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., “NMP”) It was dissolved in 150 parts by weight. To the obtained solution was added a solution obtained by diluting 7.1 parts by weight of the diamine represented by the above formula (1) (manufactured by Mitsui Chemicals, "Etacure 100 Plus") with 50 parts by weight of N-methylpyrrolidone, and the temperature was maintained at 25°C. was stirred for 2 hours for reaction to obtain an amic acid oligomer solution. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the solution was heated at 300° C. for 2 hours to obtain an imide oligomer composition A (imidization rate: 99.5%).
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer composition A is an imide oligomer having a structure represented by the above formula (5-1) or (5-3) (A is 4 ,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride residue, B is a divalent group represented by the above formula (3)). Also, the number average molecular weight of the imide oligomer composition A was 3,000.
(合成例2(イミドオリゴマー組成物Bの作製))
4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物83.3重量部に代えて4,4’-オキシジフタル酸無水物(東京化成工業社製)37.2重量部を用いたこと以外は合成例1と同様にしてイミドオリゴマー組成物B(イミド化率99.6%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー組成物Bは、上記式(5-1)又は(5-3)で表される構造を有するイミドオリゴマー(Aは4,4’-オキシジフタル酸無水物残基、Bは上記式(3)で表される2価の基)を含むことを確認した。また、該イミドオリゴマー組成物Bの数平均分子量は2800であった。
(Synthesis Example 2 (preparation of imide oligomer composition B))
4,4'-(4,4'-Isopropylidenediphenoxy)diphthalic anhydride 83.3 parts by weight was replaced with 37.2 parts by weight of 4,4'-oxydiphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) An imide oligomer composition B (imidization rate: 99.6%) was obtained in the same manner as in Synthesis Example 1 except that it was used.
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer composition B is an imide oligomer having a structure represented by the above formula (5-1) or (5-3) (A is 4 ,4'-oxydiphthalic anhydride residue, B is a divalent group represented by the above formula (3)). In addition, the number average molecular weight of the imide oligomer composition B was 2,800.
(合成例3(イミドオリゴマー組成物Cの作製))
エタキュア100プラスの添加量を3.6重量部に変更し、新たに水添型ダイマージアミンであるプリアミン1074(クローダ社製)を11.2重量部加えたこと以外は合成例1と同様にしてイミドオリゴマー組成物C(イミド化率99.6%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー組成物Cは、上記式(5-1)又は(5-3)で表される構造を有するイミドオリゴマー(Aは4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物残基、Bは上記式(3)で表される2価の基又は水添型ダイマージアミン残基)を含むことを確認した。また、該イミドオリゴマー組成物Cの数平均分子量は3200であった。
(Synthesis Example 3 (preparation of imide oligomer composition C))
Synthesis Example 1 was repeated except that the amount of Etacure 100 Plus added was changed to 3.6 parts by weight, and 11.2 parts by weight of Priamine 1074 (manufactured by Croda), a hydrogenated dimer diamine, was newly added. An imide oligomer composition C (imidization rate 99.6%) was obtained.
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer composition C is an imide oligomer having a structure represented by the above formula (5-1) or (5-3) (A is 4 , 4'-(4,4'-isopropylidenediphenoxy) diphthalic anhydride residue, B is a divalent group represented by the above formula (3) or a hydrogenated dimer diamine residue). confirmed. Also, the number average molecular weight of the imide oligomer composition C was 3,200.
(合成例4(イミドオリゴマー組成物Dの作製))
4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物83.3重量部に代えて4,4’-オキシジフタル酸無水物(東京化成工業社製)37.2重量部を用い、エタキュア100プラスに代えて水添型ダイマージアミンであるプリアミン1074(クローダ社製)22.4重量部を用いたこと以外は合成例1と同様にしてイミドオリゴマー組成物D(イミド化率97.5%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー組成物Dは、上記式(5-1)又は(5-3)におけるAに相当する部分が4,4’-オキシジフタル酸無水物残基であり、Bに相当する部分が水添型ダイマージアミン残基であるイミドオリゴマーを含むことを確認した。また、該イミドオリゴマー組成物Dの数平均分子量は4800であった。
(Synthesis Example 4 (preparation of imide oligomer composition D))
4,4'-(4,4'-Isopropylidenediphenoxy)diphthalic anhydride 83.3 parts by weight was replaced with 37.2 parts by weight of 4,4'-oxydiphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) An imide oligomer composition D (imidation rate 97) was prepared in the same manner as in Synthesis Example 1 except that 22.4 parts by weight of Priamine 1074 (manufactured by Croda), a hydrogenated dimer diamine, was used in place of Ethacure 100 Plus. .5%) was obtained.
1 H-NMR, GPC, and FT-IR analysis revealed that the portion corresponding to A in the formula (5-1) or (5-3) in the imide oligomer composition D was 4,4'-oxydiphthal It was confirmed that the portion corresponding to B, which is an acid anhydride residue, contains an imide oligomer which is a hydrogenated dimer diamine residue. In addition, the number average molecular weight of the imide oligomer composition D was 4,800.
(実施例1~6、比較例1~3)
表1に記載された配合比に従い、各材料を撹拌混合し、各硬化性樹脂組成物を作製した。
得られた各硬化性樹脂組成物を基材PETフィルム上に塗工し、乾燥させることにより、基材PETフィルム上に実施例1~5、比較例1、2の硬化性樹脂組成物のフィルム化物(厚さ約15μm)を作製した。得られたフィルム化物を厚さ約300μmとなるように積層し、幅3mm、長さ5cmに切り出し、190℃で1時間加熱することにより硬化させ、硬化物を作製した。
(Examples 1 to 6, Comparative Examples 1 to 3)
According to the compounding ratio described in Table 1, each material was stirred and mixed to prepare each curable resin composition.
Each curable resin composition obtained was coated on a substrate PET film and dried to form films of the curable resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 on the substrate PET film. A compound (about 15 μm thick) was prepared. The obtained film material was laminated so as to have a thickness of about 300 μm, cut to a width of 3 mm and a length of 5 cm, and cured by heating at 190° C. for 1 hour to prepare a cured product.
(温度サイクル試験前の硬化物の貯蔵弾性率及びガラス転移温度)
実施例及び比較例で得られた各硬化性樹脂組成物の硬化物について、動的粘弾性測定装置(SII社製、「EXSTAR6000」)を用いて、変形モード:引っぱり、歪振幅10μm、測定周波数10Hz、昇温速度10℃/minの条件で25℃~250℃の範囲で動的粘弾性を測定し、25℃及び150℃における貯蔵弾性率を求めた。また、損失正接(tanδ)の極大値の温度をガラス転移温度として求めた。結果を表1に示した。
(Storage elastic modulus and glass transition temperature of cured product before temperature cycle test)
For the cured product of each curable resin composition obtained in Examples and Comparative Examples, using a dynamic viscoelasticity measuring device (manufactured by SII, "EXSTAR6000"), deformation mode: tensile, strain amplitude 10 μm, measurement frequency The dynamic viscoelasticity was measured in the range of 25°C to 250°C under the conditions of 10Hz and a heating rate of 10°C/min to obtain the storage elastic modulus at 25°C and 150°C. Also, the temperature of the maximum value of the loss tangent (tan δ) was determined as the glass transition temperature. Table 1 shows the results.
(温度サイクル試験後の硬化物の貯蔵弾性率及びガラス転移温度)
実施例及び比較例で得られた各硬化性樹脂組成物の硬化物について、-55℃で16分保持した後、15分かけて150℃まで昇温し、150℃で16分保持した後、15分かけて-55℃まで降温するまでのサイクルを1サイクルとして1000サイクル行う温度サイクル試験を行った。
温度サイクル試験後の硬化物について、動的粘弾性測定装置(SII社製、「EXSTAR6000」)を用いて、変形モード:引っぱり、歪振幅10μm、測定周波数10Hz、昇温速度10℃/minの条件で25℃~250℃の範囲で動的粘弾性を測定し、25℃及び150℃における貯蔵弾性率を求めた。また、損失正接(tanδ)の極大値の温度をガラス転移温度として求めた。結果を表1に示した。
(Storage elastic modulus and glass transition temperature of cured product after temperature cycle test)
The cured product of each curable resin composition obtained in Examples and Comparative Examples was held at −55° C. for 16 minutes, then heated to 150° C. over 15 minutes, and held at 150° C. for 16 minutes. A temperature cycle test was conducted in which 1000 cycles were performed, one cycle being a cycle in which the temperature was lowered to −55° C. over 15 minutes.
For the cured product after the temperature cycle test, using a dynamic viscoelasticity measuring device (manufactured by SII, "EXSTAR6000"), deformation mode: tensile, strain amplitude 10 μm, measurement frequency 10 Hz, heating rate 10 ° C. / min. The dynamic viscoelasticity was measured in the range of 25°C to 250°C at , and the storage elastic modulus at 25°C and 150°C was determined. Also, the temperature of the maximum value of the loss tangent (tan δ) was determined as the glass transition temperature. Table 1 shows the results.
<評価>
実施例及び比較例で得られた各硬化性樹脂組成物について以下の評価を行った。結果を表1に示した。
<Evaluation>
Each curable resin composition obtained in Examples and Comparative Examples was evaluated as follows. Table 1 shows the results.
(硬化物の信頼性)
得られた各硬化性樹脂組成物を、長さ10mm、幅10mmのポリイミド基板に塗布し、長さ50μm、幅3mm、厚さ3mmのシリコンチップを重ねた。次いで、190℃で1時間加熱することにより硬化性樹脂組成物を硬化させ、試験片を得た。得られた試験片について、下記「(1)温度サイクル試験」及び下記「(2)高温保持試験」の通りに信頼性を評価した。
(Reliability of cured product)
Each curable resin composition obtained was applied to a polyimide substrate having a length of 10 mm and a width of 10 mm, and a silicon chip having a length of 50 μm, a width of 3 mm and a thickness of 3 mm was placed thereon. Then, the curable resin composition was cured by heating at 190° C. for 1 hour to obtain a test piece. The obtained test pieces were evaluated for reliability according to the following "(1) temperature cycle test" and "(2) high temperature holding test" below.
(1)温度サイクル試験
得られた試験片ついて、上記温度サイクル試験を実施した後、シリコンチップと接着剤の接着面をポリイミド側から目視又は顕微鏡で観察し、クラック及び剥離の有無を確認した。
クラック及び剥離が確認されなかった場合を「○」、クラックは確認されなかったものの端部に一部剥離が見られた場合を「△」、クラックが確認された場合を「×」として硬化物の信頼性を評価した。
(1) Temperature cycle test After the temperature cycle test was performed on the obtained test piece, the adhesion surface between the silicon chip and the adhesive was visually or microscopically observed from the polyimide side to confirm the presence or absence of cracks and peeling.
Cured product with "○" when no cracks or peeling was confirmed, "△" when cracks were not confirmed but some peeling was seen at the end, and "×" when cracks were confirmed We evaluated the reliability of
(2)高温保持試験
得られた試験片ついて、175℃で1000時間保持する高温保持試験を実施した後、シリコンチップと接着剤の接着面をポリイミド側から目視又は顕微鏡で観察し、クラック及び剥離の有無を確認した。
クラック及び剥離が確認されなかった場合を「○」、クラックは確認されなかったものの端部に一部剥離が見られた場合を「△」、クラックが確認された場合を「×」として硬化物の信頼性を評価した。
(2) High temperature retention test After carrying out a high temperature retention test in which the obtained test piece is held at 175°C for 1000 hours, the bonding surface between the silicon chip and the adhesive is visually or microscopically observed from the polyimide side, and cracks and peeling occur. I checked the presence or absence of
Cured product with "○" when no cracks or peeling was confirmed, "△" when cracks were not confirmed but some peeling was seen at the end, and "×" when cracks were confirmed We evaluated the reliability of
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
本発明によれば、信頼性に優れる硬化物を得ることができる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the curable resin composition which can obtain the hardened|cured material which is excellent in reliability can be provided. Moreover, according to the present invention, it is possible to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.

Claims (8)

  1. 硬化性樹脂と硬化剤とを含有し、
    前記硬化剤は、下記式(1)で表されるジアミンに由来する構造を有し、
    硬化物について-55℃~150℃、1000サイクルの条件で温度サイクル試験を行った際、前記温度サイクル試験前後における硬化物の25℃における貯蔵弾性率の変化率が25%以下であり、かつ、前記温度サイクル試験前後における硬化物の150℃における貯蔵弾性率の変化率が250%以下である
    ことを特徴とする硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    containing a curable resin and a curing agent,
    The curing agent has a structure derived from a diamine represented by the following formula (1),
    When the cured product is subjected to a temperature cycle test under the conditions of -55 ° C. to 150 ° C. and 1000 cycles, the change rate of the storage elastic modulus of the cured product at 25 ° C. before and after the temperature cycle test is 25% or less, and A curable resin composition, wherein the rate of change in storage elastic modulus at 150° C. of the cured product before and after the temperature cycle test is 250% or less.
    Figure JPOXMLDOC01-appb-C000001
  2. 前記温度サイクル試験前の硬化物の25℃における貯蔵弾性率が2.8GPa以上であり、かつ、前記温度サイクル試験前の硬化物の150℃における貯蔵弾性率が1.3GPa以上である請求項1記載の硬化性樹脂組成物。 2. The cured product before the temperature cycle test has a storage elastic modulus at 25° C. of 2.8 GPa or more, and the cured product before the temperature cycle test has a storage elastic modulus of 1.3 GPa or more at 150° C. A curable resin composition as described.
  3. 前記温度サイクル試験前後における硬化物のガラス転移温度の変化量が15℃以下である請求項1又は2記載の硬化性樹脂組成物。 3. The curable resin composition according to claim 1, wherein the amount of change in the glass transition temperature of the cured product before and after the temperature cycle test is 15[deg.] C. or less.
  4. 前記硬化性樹脂は、エポキシ樹脂を含む請求項1、2又は3記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, 2 or 3, wherein the curable resin contains an epoxy resin.
  5. 前記硬化剤は、前記式(1)で表されるジアミンに由来する構造を有するイミドオリゴマーを含む請求項1、2、3又は4記載の硬化性樹脂組成物。 5. The curable resin composition according to claim 1, wherein the curing agent contains an imide oligomer having a structure derived from the diamine represented by formula (1).
  6. 請求項1、2、3、4又は5記載の硬化性樹脂組成物の硬化物。 A cured product of the curable resin composition according to claim 1, 2, 3, 4 or 5.
  7. 請求項1、2、3、4又は5記載の硬化性樹脂組成物を用いてなる接着剤。 An adhesive comprising the curable resin composition according to claim 1, 2, 3, 4 or 5.
  8. 請求項7記載の接着剤を用いてなる接着フィルム。 An adhesive film using the adhesive according to claim 7.
PCT/JP2022/047610 2022-01-12 2022-12-23 Curable resin composition, cured product, adhesive agent, and adhesive film WO2023136098A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022002924 2022-01-12
JP2022-002924 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023136098A1 true WO2023136098A1 (en) 2023-07-20

Family

ID=87279001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047610 WO2023136098A1 (en) 2022-01-12 2022-12-23 Curable resin composition, cured product, adhesive agent, and adhesive film

Country Status (2)

Country Link
TW (1) TW202334346A (en)
WO (1) WO2023136098A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021020A (en) * 2013-07-16 2015-02-02 アイシーケイ株式会社 Fast curing 2-liquid type environmentally friendly urethane waterproof material composition
JP2018203991A (en) * 2017-05-31 2018-12-27 積水化学工業株式会社 Curable resin composition, cured product, adhesive, and adhesive film
JP2020200413A (en) * 2019-06-12 2020-12-17 積水化学工業株式会社 Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021020A (en) * 2013-07-16 2015-02-02 アイシーケイ株式会社 Fast curing 2-liquid type environmentally friendly urethane waterproof material composition
JP2018203991A (en) * 2017-05-31 2018-12-27 積水化学工業株式会社 Curable resin composition, cured product, adhesive, and adhesive film
JP2020200413A (en) * 2019-06-12 2020-12-17 積水化学工業株式会社 Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured product

Also Published As

Publication number Publication date
TW202334346A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
JP7184641B2 (en) Curable resin composition and adhesive
TWI823848B (en) Curable resin compositions, cured products, adhesives, adhesive films, cover films, flexible copper-clad laminates, and circuit boards
JP7305315B2 (en) Curable resin composition, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
WO2021241548A1 (en) Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object
JP7265474B2 (en) Curable resin composition, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
WO2023136098A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
JP2020200413A (en) Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured product
JP2023067452A (en) Curable resin composition, cured product, adhesive, and adhesive film
JP7168325B2 (en) Curable resin composition, cured product, adhesive, adhesive film, coverlay film, flexible copper-clad laminate, and circuit board
JP7168326B2 (en) Curable resin composition, cured product, adhesive, adhesive film, and circuit board
JP7132084B2 (en) Curable resin composition, cured product, adhesive and adhesive film
JP2022188991A (en) Thermosetting resin composition, adhesive, adhesive varnish, adhesive film, and cured product
JP7207863B2 (en) Curable resin composition, cured product, adhesive and adhesive film
WO2023032723A1 (en) Curable resin composition and interlayer insulating material
WO2021193437A1 (en) Curable resin composition, adhesive agent, and adhesive film
JP2021155493A (en) Thermosetting adhesive film
JP2023118258A (en) Curable resin composition and interlayer insulating material
JP2022105887A (en) Curable resin composition, cured product, adhesive, and adhesive film
JP2021155494A (en) Curable resin composition, adhesive, and adhesive film
JP2022173783A (en) Curable resin composition, cured object, adhesive, and adhesive film
WO2022220253A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
TW201925336A (en) Curable resin composition, cured product, adhesive agent, and adhesive film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023504060

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920615

Country of ref document: EP

Kind code of ref document: A1