WO2023032723A1 - Curable resin composition and interlayer insulating material - Google Patents

Curable resin composition and interlayer insulating material Download PDF

Info

Publication number
WO2023032723A1
WO2023032723A1 PCT/JP2022/031479 JP2022031479W WO2023032723A1 WO 2023032723 A1 WO2023032723 A1 WO 2023032723A1 JP 2022031479 W JP2022031479 W JP 2022031479W WO 2023032723 A1 WO2023032723 A1 WO 2023032723A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin composition
formula
weight
represented
Prior art date
Application number
PCT/JP2022/031479
Other languages
French (fr)
Japanese (ja)
Inventor
良平 増井
幸平 竹田
達史 林
悠太 大當
圭 釜我
さやか 脇岡
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023032723A1 publication Critical patent/WO2023032723A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a curable resin composition having excellent dielectric properties and adhesiveness after curing.
  • the present invention also relates to an interlayer insulating material using the curable resin composition.
  • Curable resins such as epoxy resins, which have low shrinkage and excellent adhesiveness, insulation, and chemical resistance, are used in many industrial products.
  • dielectric properties such as a low dielectric constant and a low dielectric loss tangent are required for a curable resin composition used as an interlayer insulating material for printed wiring boards.
  • Patent Documents 1 and 2 disclose a curable resin composition containing a curable resin and a compound having a specific structure as a curing agent. ing.
  • An object of the present invention is to provide a curable resin composition that exhibits excellent dielectric properties and adhesion after curing. Another object of the present invention is to provide an interlayer insulating material using the curable resin composition.
  • the present disclosure 1 contains a curable resin, a curing agent, an inorganic filler, and a dispersant, and has a complex viscosity of 8000 Pa s or less at 90 ° C., 5% strain, and 1 rad / sec. It is a thing.
  • the present disclosure 2 is the curable resin composition of the present disclosure 1, wherein the inorganic filler is silica.
  • Present Disclosure 3 is the curable resin composition of Present Disclosure 1 or 2, wherein the content of the inorganic filler in 100 parts by weight of the total solid content of the curable resin composition is 65 parts by weight or more.
  • the present disclosure 4 is the curable resin composition of the present disclosure 1, 2 or 3, wherein the dispersant is a polyurethane-based dispersant.
  • Disclosure 5 is the curable resin composition of Disclosure 1, 2, 3 or 4, further comprising a polymer component.
  • the present disclosure 6 is an interlayer insulating material using the curable resin composition of the present disclosure 1, 2, 3, 4 or 5. The present invention will
  • the present inventors have found that the cause of peeling on the adherend when a large amount of inorganic filler is blended is that the dispersion state of the inorganic filler in the curable resin composition becomes uneven. It was thought that this was due to the fact that slight unevenness occurred on the surface of the Therefore, the present inventors have studied adjusting the melt viscosity of the curable resin composition, but the peeling of the adherend could not be sufficiently suppressed even if the melt viscosity is lowered. Therefore, the present inventors have investigated to make the complex viscosity of the curable resin composition at 90° C., 5% strain, 1 rad/sec to be a specific value or less. As a result, the inorganic filler in the resulting curable resin composition can be uniformly dispersed, and a cured product having excellent dielectric properties and adhesiveness can be obtained. This led to the completion of the present invention. rice field.
  • the curable resin composition of the present invention has an upper limit of complex viscosity of 8000 Pa ⁇ s at 90° C., strain of 5%, and 1 rad/sec.
  • the complex viscosity at 90° C., 5% strain, and 1 rad/sec is 8000 Pa s or less
  • the curable resin composition of the present invention has a uniform dispersion state of the inorganic filler and adhesion after curing. It will be excellent in quality.
  • a preferable upper limit of the complex viscosity at 90° C., 5% strain, and 1 rad/sec is 7500 Pa ⁇ s, and a more preferable upper limit is 7000 Pa ⁇ s.
  • the complex viscosity at 90° C., 5% strain, and 1 rad/sec can be measured using a rotary rheometer at a frequency of 0.01 Hz to 1 Hz and 90° C. for the curable resin composition film. can.
  • the curable resin composition film can be obtained by applying the curable resin composition onto a base film and drying the coating.
  • the rotational rheometer include HAAKE MARS series (manufactured by Thermo Fisher Scientific), VAR-100 (manufactured by Rheologicala), and ARES (manufactured by TA Instruments).
  • the curable resin composition of the present invention contains a curable resin.
  • the curable resins include epoxy resins, cyanate resins, phenol resins, imide resins, maleimide resins, silicone resins, acrylic resins, and fluorine resins.
  • the curable resin preferably contains at least one selected from the group consisting of epoxy resins, cyanate resins, phenol resins, imide resins, and maleimide resins, and more preferably contains epoxy resins.
  • the curable resins may be used alone, or two or more of them may be used in combination.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallylbisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , propylene oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether type epoxy resin, phenol novolak type epoxy resin, ortho-cresol novolak type epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, naphthalenephenol novolak type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, Examples include rubber-modified epoxy resins and glycidyl ester compounds.
  • the curable resin composition of the present invention further contains a curing agent.
  • the curing agent include an imide skeleton in the main chain and an imide oligomer having a crosslinkable functional group at the end, an acid anhydride-based curing agent, a phenol-based curing agent, a thiol-based curing agent, an amine-based curing agent, and a cyanate-based curing agent. curing agents, active ester curing agents, and the like.
  • the curing agent preferably contains the imide oligomer from the viewpoint of the adhesiveness and long-term heat resistance of the cured product of the curable resin composition to be obtained.
  • the imide oligomer is represented by the following formula (1-1) or the following formula (1-2), or the following formula (2-1) or the following formula (2-2) as a structure containing the crosslinkable functional group. It is preferred to have a structure that By having a structure represented by the following formula (1-1) or the following formula (1-2), or the following formula (2-1) or the following formula (2-2), the imide oligomer is an epoxy resin It becomes excellent in reactivity and compatibility with curable resins such as.
  • A is an acid dianhydride residue
  • B is an aliphatic diamine residue or an aromatic diamine residue
  • Ar is an optionally substituted divalent aromatic group.
  • A is an acid dianhydride residue
  • B is an aliphatic triamine residue or an aromatic triamine residue
  • Ar is an optionally substituted divalent aromatic group.
  • the acid dianhydride residue is preferably a tetravalent group represented by the following formula (3-1) or the following formula (3-2).
  • Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a direct It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Z is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (3-1), Z is a divalent group having an aromatic ring.
  • an oxygen atom may be present between the divalent group having the aromatic ring and each aromatic ring in formula (3-1).
  • the hydrogen atoms of the aromatic rings in formulas (3-1) and (3-2) may be substituted.
  • Z in the above formula (3-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring
  • these groups are substituted good too.
  • substituents in the case where the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted include, for example, a halogen atom, a linear or branched chain linear alkyl groups, linear or branched alkenyl groups, alicyclic groups, aryl groups, alkoxy groups, nitro groups, cyano groups and the like.
  • Examples of acid dianhydrides from which the acid dianhydride residue is derived include acid dianhydrides represented by formula (9) described later.
  • a preferable lower limit of the number of carbon atoms of the aliphatic diamine residue and the aliphatic triamine residue when they are residues is 4. Since the number of carbon atoms in the aliphatic diamine residue and the aliphatic triamine residue is 4 or more, the resulting curable resin composition has flexibility and workability before curing, and dielectric properties after curing. It will be better. A more preferable lower limit for the number of carbon atoms in the aliphatic diamine residue and the aliphatic triamine residue is 5, and a more preferable lower limit is 6. Although there is no particular upper limit for the number of carbon atoms in the aliphatic diamine residue and the aliphatic triamine residue, the practical upper limit is 60.
  • Examples of the aliphatic diamine from which the aliphatic diamine residue is derived include aliphatic diamines derived from dimer acid, linear or branched aliphatic diamines, aliphatic ether diamines, and aliphatic lipids. Cyclic diamines and the like can be mentioned. Examples of the aliphatic diamines derived from the above dimer acids include dimer diamines and hydrogenated dimer diamines.
  • linear or branched aliphatic diamines examples include 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,14-tetradecanediamine, 1,16-hexadecanediamine, 1,18-octadecanediamine, 1,20-eicosanediamine, 2-methyl-1,8 -octanediamine, 2-methyl-1,9-nonanediamine, 2,7-dimethyl-1,8-octanediamine and the like.
  • aliphatic ether diamines examples include 2,2'-oxybis(ethylamine), 3,3'-oxybis(propylamine), 1,2-bis(2-aminoethoxy)ethane and the like.
  • aliphatic alicyclic diamines examples include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine.
  • the aliphatic diamine residue is preferably an aliphatic diamine residue derived from the dimer acid.
  • aliphatic triamines from which the above-mentioned aliphatic triamine residues are derived include aliphatic triamines derived from trimer acid, linear or branched aliphatic triamines, aliphatic ether triamines, and aliphatic lipids. Cyclic triamines and the like can be mentioned. Examples of aliphatic triamines derived from trimer acids include trimer triamines and hydrogenated trimer triamines.
  • linear or branched aliphatic triamines examples include 3,3′-diamino-N-methyldipropylamine, 3,3′-diaminodipropylamine, diethylenetriamine, bis(hexamethylene)triamine, 2 , 2′-bis(methylamino)-N-methyldiethylamine and the like.
  • the aliphatic triamine residue is preferably an aliphatic triamine residue derived from the trimer acid.
  • a mixture of the dimer diamine and the trimer triamine can also be used as the aliphatic diamine and/or the aliphatic triamine.
  • aliphatic diamines and/or aliphatic triamines derived from the dimer acid and/or the trimer acid include, for example, aliphatic diamines and/or triamines manufactured by BASF, and fatty acids manufactured by Croda. triamines and/or aliphatic triamines. Examples of the aliphatic diamines and/or aliphatic triamines manufactured by BASF include Versamin 551 and Versamin 552. Examples of the aliphatic diamines and/or aliphatic triamines manufactured by Croda include Priamine 1071, Priamine 1073, Priamine 1074, and Priamine 1075.
  • the aromatic when B in the above formula (1-1), the above formula (1-2), the above formula (2-1), or the above formula (2-2) is the above aromatic diamine residue
  • the diamine residue is preferably a divalent group represented by formula (4-1) or formula (4-2) below.
  • Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a straight It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Y is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (4-1), Y is a divalent group having an aromatic ring.
  • an oxygen atom may be present between the divalent group having the aromatic ring and each aromatic ring in formula (4-1).
  • the hydrogen atoms of the aromatic rings in formulas (4-1) and (4-2) may be substituted.
  • Y in the above formula (4-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring
  • substituents in the case where the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted include, for example, a halogen atom, a linear or branched chain linear alkyl groups, linear or branched alkenyl groups, alicyclic groups, aryl groups, alkoxy groups, nitro groups, cyano groups and the like.
  • aromatic diamine from which the aromatic diamine residue is derived examples include those in which the diamine represented by formula (10) described below is an aromatic diamine.
  • the imide oligomer when it has a siloxane skeleton in its structure, it may lower the glass transition temperature after curing, contaminate the adherend, and cause poor adhesion. , preferably an imide oligomer having no siloxane skeleton in its structure.
  • the imide oligomer preferably has a number average molecular weight of 5,000 or less.
  • the imide oligomer has a number average molecular weight of 5,000 or less, the resulting cured product of the curable resin composition is excellent in long-term heat resistance.
  • a more preferable upper limit of the number average molecular weight of the imide oligomer is 4,000, and a more preferable upper limit is 3,000.
  • the number average molecular weight of the imide oligomer is preferably 900 or more and 5000 or less when it has a structure represented by the above formula (1-1) or (2-1), and the above formula (1- 2) When it has a structure represented by the above formula (2-2), it is preferably 550 or more and 4000 or less.
  • a more preferable lower limit of the number average molecular weight is 950, and a more preferable lower limit is 1,000 in the case of having a structure represented by the above formula (1-1) or the above formula (2-1).
  • a more preferable lower limit of the number average molecular weight is 580, and a more preferable lower limit is 600, in the case of having a structure represented by the formula (1-2) or (2-2).
  • the above-mentioned "number average molecular weight" in this specification is a value measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and calculated by polystyrene conversion. Examples of the column used for measuring the polystyrene-equivalent number-average molecular weight by GPC include JAIGEL-2H-A (manufactured by Japan Analytical Industry Co., Ltd.).
  • the imide oligomer is represented by the following formula (5-1), the following formula (5-2), the following formula (5-3), the following formula (5-4), or the following formula (5-5 ), or the following formula (6-1), the following formula (6-2), the following formula (6-3), the following formula (6-4), or the following formula (6-5 ) is preferably an imide oligomer represented by
  • A is the acid dianhydride residue
  • B is the aliphatic diamine residue or the aromatic diamine residue, or the aliphatic triamine residue or the aromatic triamine residue
  • X is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group
  • W is a hydrogen atom, a halogen atom , or an optionally substituted monovalent hydrocarbon group.
  • n is the number of repetitions.
  • A is the acid dianhydride residue, and in formulas (6-1) to (6-5), A is the same. may be different.
  • R is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group, formula (6-1), formula (6 -3) and in formula (6-5), R may be the same or different.
  • W is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group.
  • B is the aliphatic diamine residue or the aromatic diamine residue, or the aliphatic triamine residue or the aromatic triamine residue, In (6-3) and formula (6-4), B may be the same or different.
  • a in the above formulas (5-1) to (5-5) and the above formulas (6-1) to (6-5) is the following formula (7-1) or the following formula (7-2) It is preferably a tetravalent group represented.
  • Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a direct It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Z is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (7-1), Z is a divalent group having an aromatic ring.
  • an oxygen atom may be present between the divalent group having an aromatic ring and each aromatic ring in formula (7-1).
  • the hydrogen atoms of the aromatic rings in formulas (7-1) and (7-2) may be substituted.
  • Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a straight It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring.
  • Y is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (8-1), Y is a divalent group having an aromatic ring.
  • an oxygen atom may be present between the divalent group having an aromatic ring and each aromatic ring in formula (8-1).
  • the hydrogen atoms of the aromatic rings in formulas (8-1) and (8-2) may be substituted.
  • an imide oligomer having a structure represented by the above formula (1-1) for example, an acid dianhydride represented by the following formula (9) and a diamine represented by the following formula (10) and the like. Also, by using an aliphatic triamine or an aromatic triamine instead of the diamine represented by the following formula (10), an imide oligomer having a structure represented by the above formula (2-1) can be produced.
  • A is the same tetravalent group as A in formula (1-1) above.
  • B is the same divalent group as B in formula (1-1) above, and R 1 to R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group. .
  • a specific example of the method for reacting the acid dianhydride represented by the above formula (9) with the diamine represented by the above formula (10) is shown below.
  • the diamine represented by the above formula (10) is dissolved in advance in a solvent (for example, N-methylpyrrolidone, etc.) in which the amic acid oligomer obtained by the reaction is soluble, and the resulting solution is added with the above formula (9).
  • An acid dianhydride represented by is added and reacted to obtain an amic acid oligomer solution.
  • the solvent is removed by heating, pressure reduction, or the like, and the mixture is heated at about 200° C. or higher for 1 hour or longer to react the amic acid oligomer.
  • the acid dianhydride represented by the above formula (9) and the acid anhydride represented by the following formula (11) may be added simultaneously or separately. Furthermore, by replacing part of the diamine represented by the above formula (10) with a monoamine represented by the following formula (12), it has a desired number average molecular weight, and one end has the above formula (1-1) ) and having at the other end a structure derived from a monoamine represented by the following formula (12). In this case, the diamine represented by the above formula (10) and the monoamine represented by the following formula (12) may be added simultaneously or separately.
  • Ar is an optionally substituted divalent aromatic group.
  • Ar is an optionally substituted monovalent aromatic group
  • R 5 and R 6 are each independently a hydrogen atom or a monovalent hydrocarbon group.
  • an imide oligomer having a structure represented by the above formula (1-2) for example, an acid dianhydride represented by the above formula (9) and a diamine represented by the above formula (10) Examples thereof include a method of reacting with a phenolic hydroxyl group-containing monoamine represented by the following formula (13). Further, by using an aliphatic triamine or an aromatic triamine instead of the diamine represented by the above formula (10), an imide oligomer having a structure represented by the above formula (2-2) can be produced.
  • Ar is an optionally substituted divalent aromatic group
  • R 7 and R 8 are each independently a hydrogen atom or a monovalent hydrocarbon group.
  • the solvent is removed by heating, pressure reduction, or the like, and the mixture is heated at about 200° C. or higher for 1 hour or longer to react the amic acid oligomer.
  • the molar ratio of the acid dianhydride represented by the above formula (9), the diamine represented by the above formula (10) and the phenolic hydroxyl group-containing monoamine represented by the above formula (13), and the imidization conditions By adjusting, it is possible to obtain an imide oligomer having a desired number average molecular weight and a structure represented by the above formula (1-2) at both ends.
  • the phenolic hydroxyl group-containing monoamine represented by the above formula (13) by replacing part of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) with the monoamine represented by the above formula (12), it has a desired number average molecular weight, and one end has the above formula An imide oligomer having a structure represented by (1-2) and having a structure derived from a monoamine represented by the above formula (12) at the other end can be obtained.
  • the phenolic hydroxyl group-containing monoamine represented by the above formula (13) and the monoamine represented by the above formula (12) may be added simultaneously or separately.
  • Examples of the acid dianhydride represented by the above formula (9) include pyromellitic anhydride, 3,3'-oxydiphthalic anhydride, 3,4'-oxydiphthalic anhydride, 4,4'-oxydiphthalic anhydride.
  • acid anhydride, 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride, 4,4'-bis(2,3-dicarboxylphenoxy)diphenyl ether dianhydride, p-phenylene Bis(trimellitate anhydride), 2,3,3',4'-biphenyltetracarboxylic acid dianhydride and the like can be mentioned.
  • aromatic acid dianhydrides having a melting point of 240° C. or less are preferable as the acid dianhydrides used as raw materials for the imide oligomers, since they are excellent in solubility and heat resistance, and have a melting point of 220° C.
  • the following aromatic acid dianhydrides are more preferred, and aromatic acid dianhydrides having a melting point of 200°C or less are more preferred, and 3,4'-oxydiphthalic dianhydride (melting point 180°C), 4,4'-(4,4'-Isopropylidenediphenoxy)diphthalic anhydride (melting point 190°C) is particularly preferred.
  • the "melting point” means a value measured as an endothermic peak temperature when the temperature is raised at 10°C/min using a differential scanning calorimeter.
  • Examples of the differential scanning calorimeter include EXTEAR DSC6100 (manufactured by SII Nano Technology Co., Ltd.).
  • aromatic diamines include, for example, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′- Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfone, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, bis(4-(4-aminophenoxy ) phenyl)
  • Examples of acid anhydrides represented by the above formula (11) include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 1,2-naphthalic anhydride, and 2,3-naphthalic anhydride.
  • Monoamines represented by the above formula (12) include, for example, aniline, o-toluidine, m-toluidine, p-toluidine, 2,4-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-tert-butylaniline, 3-tert-butylaniline, 4-tert-butylaniline, 1-naphthylamine, 2-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, 9-aminoanthracene, 1-aminopyrene, 3- Chloroaniline, o-anisidine, m-anisidine, p-anisidine, 1-amino-2-methylnaphthalene, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 3,4-dimethyl aniline, 4-ethylaniline, 4-ethynylaniline, 4-is
  • Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, 4-amino-2 ,3-xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -amino-2,6-diphenylphenol and the like.
  • 4-amino-o-cresol and 5-amino-o-cresol are preferred because they are excellent in availability and storage stability and provide a high glass transition temperature after curing.
  • the imide oligomer is a plurality of imide oligomers having a structure represented by the above formula (1-1) or a structure represented by the above formula (1-2). and a mixture of each raw material (imide oligomer composition).
  • the imide oligomer is a plurality of imide oligomers having a structure represented by the formula (2-1).
  • it can be obtained as one contained in a mixture (imide oligomer composition) of a plurality of kinds of imide oligomers having a structure represented by the above formula (2-2) and each raw material.
  • the imide oligomer composition When the imide oligomer composition has an imidization rate of 70% or more, it can provide a cured product having excellent mechanical strength at high temperatures and long-term heat resistance when used as a curing agent.
  • a preferred lower limit for the imidization rate of the imide oligomer composition is 75%, and a more preferred lower limit is 80%. Although there is no particular upper limit for the imidization rate of the imide oligomer composition, the practical upper limit is 98%.
  • the above-mentioned "imidation rate” is measured by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (FT-IR), and is derived from the carbonyl group of amic acid at 1660 cm -1 It can be derived from the peak absorbance area in the vicinity by the following formula.
  • Examples of the Fourier transform infrared spectrophotometer include UMA600 (manufactured by Agilent Technologies).
  • the imide oligomer composition dissolve in 10 g of tetrahydrofuran at 25°C.
  • the preferable lower limit of the content of the curing agent in the total 100 parts by weight of the curable resin and the curing agent (further curing accelerator when containing the curing accelerator described later) is 20 parts by weight, and the preferable upper limit is 80 parts. weight part.
  • the content of the curing agent is within this range, the resulting curable resin composition is more excellent in curability and storage stability.
  • a more preferable lower limit to the content of the curing agent is 25 parts by weight, and a more preferable upper limit is 75 parts by weight.
  • the curable resin composition of the present invention contains an inorganic filler. By containing the inorganic filler, the curable resin composition of the present invention provides a cured product with excellent dielectric properties.
  • examples of the inorganic filler include silica, alumina, boron nitride, magnesium oxide, and boehmite. Among them, silica is preferable.
  • a preferable lower limit of the average particle size of the inorganic filler is 0.2 ⁇ m, and a preferable upper limit thereof is 5 ⁇ m.
  • the average particle size of the inorganic filler is within this range, it becomes more excellent in dispersibility in the curable resin composition without deteriorating the coatability, etc., and the dielectric properties and adhesiveness of the cured product are improved. It becomes excellent by the effect of compatibility.
  • a more preferable lower limit of the average particle size of the inorganic filler is 0.5 ⁇ m, and a more preferable upper limit thereof is 2 ⁇ m.
  • the average particle size of the inorganic filler can be measured by dispersing the inorganic filler in a solvent (water, organic solvent, etc.) using a particle size distribution analyzer. Examples of the particle size distribution analyzer include NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS).
  • a preferable lower limit of the content of the inorganic filler in 100 parts by weight of the solid content of the curable resin composition is 65 parts by weight.
  • the content of the inorganic filler is 65 parts by weight or more, the resulting curable resin composition is more excellent in dielectric properties after curing.
  • a more preferable lower limit for the content of the inorganic filler is 70 parts by weight.
  • the upper limit of the content of the inorganic filler in 100 parts by weight of the total solid content of the curable resin composition is preferably 73 parts by weight, and a more preferred upper limit is 71 parts by weight. be.
  • the above-mentioned "entire solid content of the curable resin composition” means the entire components other than the solvent when the curable resin composition contains a solvent described later.
  • the curable resin composition of the present invention contains a dispersant. By containing the dispersant, the curable resin composition of the present invention can uniformly disperse the inorganic filler, and the cured product has excellent adhesiveness.
  • dispersant examples include polyurethane-based dispersants, fatty acid-based dispersants, polyamino-based dispersants, and polyacrylate-based dispersants.
  • polyurethane-based dispersants are preferred because they make it particularly easy to set the complex viscosity at 90° C., 5% strain, and 1 rad/sec within the above range.
  • a preferable lower limit of the content of the dispersing agent in 100 parts by weight of the total solid content of the curable resin composition is 0.05 parts by weight, and a preferable upper limit thereof is 1.0 parts by weight.
  • the content of the dispersant is within this range, the resulting curable resin composition is more excellent in the effect of achieving both dielectric properties and adhesiveness after curing.
  • a more preferred lower limit to the content of the dispersant is 0.1 parts by weight, and a more preferred upper limit is 0.7 parts by weight.
  • the curable resin composition of the present invention preferably contains a curing accelerator.
  • a curing accelerator By containing the curing accelerator, the curing time can be shortened and the productivity can be improved.
  • the curing accelerator examples include imidazole-based curing accelerators, tertiary amine-based curing accelerators, phosphine-based curing accelerators, phosphorus-based curing accelerators, photobase generators, sulfonium salt-based curing accelerators, and the like. . Of these, imidazole-based curing accelerators are preferred because of their excellent storage stability. The curing accelerators may be used alone, or two or more of them may be used in combination.
  • the content of the curing accelerator has a preferable lower limit of 0.01 parts by weight and a preferable upper limit of 10 parts by weight based on a total of 100 parts by weight of the curable resin, the curing agent and the curing accelerator.
  • a more preferred lower limit to the content of the curing accelerator is 0.05 parts by weight, and a more preferred upper limit is 5 parts by weight.
  • the curable resin composition of the present invention may contain an organic filler for the purpose of relaxing stress, imparting toughness, and the like.
  • organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Among them, polyamide particles, polyamideimide particles, and polyimide particles are preferred.
  • the preferred upper limit of the content of the organic filler is 300 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). be.
  • the content of the organic filler is within this range, the obtained cured product is superior in toughness and the like while maintaining excellent adhesiveness and the like.
  • a more preferable upper limit of the content of the organic filler is 200 parts by weight.
  • the curable resin composition of the present invention may contain a polymer component as long as the object of the present invention is not impaired.
  • the polymer component serves as a film-forming component.
  • a preferable lower limit of the number average molecular weight of the polymer component is 3,000, and a preferable upper limit thereof is 100,000. When the number average molecular weight of the polymer component is within this range, the resulting curable resin composition will be superior in flexibility and workability before curing and in heat resistance after curing.
  • a more preferable lower limit of the number average molecular weight of the polymer component is 5,000, and a more preferable upper limit thereof is 80,000.
  • polymer component examples include polyimide, phenoxy resin, polyamide, polyamideimide, polymaleimide, cyanate resin, benzoxazine resin, acrylic resin, urethane resin, and polyester.
  • polyimide, polyamide, polyamideimide, and polymaleimide are preferable, and polyimide is more preferable.
  • the preferable lower limit of the content of the polymer component is 0.5 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained).
  • the preferred upper limit is 20 parts by weight.
  • a more preferable lower limit of the content of the polymer component is 1 part by weight, and a more preferable upper limit is 10 parts by weight.
  • the curable resin composition of the present invention may contain a flame retardant as long as the object of the present invention is not impaired.
  • the flame retardant include boehmite-type aluminum hydroxide, aluminum hydroxide, metal hydrates such as magnesium hydroxide, halogen-based compounds, phosphorus-based compounds, and nitrogen compounds. Among them, boehmite-type aluminum hydroxide is preferable.
  • the content of the flame retardant is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). .
  • the content of the flame retardant is within this range, the resulting curable resin composition has excellent flame retardancy while maintaining excellent adhesion and the like.
  • a more preferable upper limit of the content of the flame retardant is 150 parts by weight.
  • the curable resin composition may contain a solvent from the viewpoint of coatability and the like.
  • a solvent having a boiling point of less than 200° C. is preferable from the viewpoint of coatability, storage stability, and the like.
  • the solvent having a boiling point of less than 200° C. include alcohol-based solvents, ketone-based solvents, ester-based solvents, hydrocarbon-based solvents, halogen-based solvents, ether-based solvents, and nitrogen-containing solvents.
  • the alcohol solvent include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, normal butyl alcohol, tertiary butyl alcohol, and 2-ethylhexanol.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, and diacetone alcohol.
  • Examples of the ester solvent include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methoxybutyl acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate and the like.
  • hydrocarbon solvent examples include benzene, toluene, xylene, normal hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, isooctane, normal decane, normal heptane, and the like.
  • halogen-based solvent examples include dichloromethane, chloroform, and trichlorethylene.
  • ether solvent examples include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether acetate. , propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, ethylene glycol monotertiary butyl ether, propylene glycol monomethyl ether propionate, 3-methoxybutanol, diethylene glycol dimethyl ether, anisole, 4-methylanisole and the like. be done.
  • nitrogen-containing solvent examples include acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide and the like.
  • ketone solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C. from the viewpoint of handleability and solubility of imide oligomers, ketone solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C., ester solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C., and boiling points of 60 ° C. or higher and 200 ° C.
  • At least one selected from the group consisting of ether-based solvents having a temperature of less than °C is preferred.
  • solvents examples include methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, cyclohexanone, methylcyclohexanone, diethylene glycol dimethyl ether, and anisole.
  • the "boiling point” means a value measured under conditions of 101 kPa, or a value converted to 101 kPa using a boiling point conversion chart or the like.
  • a preferable lower limit of the content of the solvent in 100 parts by weight of the curable resin composition containing the solvent is 20 parts by weight, and a preferable upper limit thereof is 90 parts by weight.
  • the content of the solvent is within this range, the resulting curable resin composition is more excellent in coatability and the like.
  • a more preferable lower limit for the content of the solvent is 30 parts by weight, and a more preferable upper limit is 80 parts by weight.
  • the curable resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
  • the reactive diluent is preferably a reactive diluent having two or more reactive functional groups in one molecule.
  • the curable resin composition of the present invention may further contain additives such as coupling agents, storage stabilizers, anti-bleeding agents, fluxing agents and leveling agents.
  • the method for producing the curable resin composition of the present invention includes, for example, a method of mixing a curable resin, a curing agent, an inorganic filler, a dispersant, a polymer component, etc. using a mixer. is mentioned.
  • the mixer include a homodisper, a universal mixer, a Banbury mixer, a kneader, and the like.
  • a curable resin composition film comprising the curable resin composition of the present invention can be obtained by applying the curable resin composition of the present invention onto a substrate film and drying the curable resin composition.
  • a cured product can be obtained by curing the product film.
  • the preferable upper limit of dielectric loss tangent at 23° C. of the cured product is 0.0045. Since the cured product has a dielectric loss tangent within this range at 23° C., the curable resin composition of the present invention can be suitably used as an interlayer insulating material for multilayer printed wiring boards and the like. A more preferable upper limit of the dielectric loss tangent at 23° C. of the cured product is 0.0040, and a more preferable upper limit is 0.0035.
  • the above-mentioned "dielectric loss tangent” is a value measured under conditions of 1.0 GHz using a dielectric constant measuring device and a network analyzer.
  • the cured product for measuring the “dielectric loss tangent” can be obtained by heating the curable resin composition film having a thickness of 40 to 200 ⁇ m at 190° C. for 90 minutes.
  • the curable resin composition of the present invention can be used in a wide variety of applications.
  • adhesives for printed wiring boards, adhesives for coverlays of flexible printed circuit boards, copper-clad laminates, adhesives for bonding semiconductors, interlayer insulating materials, prepregs, sealants for LEDs, adhesives for structural materials, etc. can be used.
  • the curable resin composition of the present invention can be suitably used as an interlayer insulating material such as a multilayer printed wiring board because the cured product thereof has a low dielectric constant and a low dielectric loss tangent and is excellent in dielectric properties.
  • An interlayer insulating material using the curable resin composition of the present invention is also one aspect of the present invention.
  • the curable resin composition which is excellent in the dielectric property and adhesiveness after hardening can be provided. Further, according to the present invention, it is possible to provide an interlayer insulating material using the curable resin composition.
  • the obtained imide oligomer composition was confirmed by 1 H-NMR, GPC, and FT-IR analysis as an aliphatic diamine residue having a structure represented by the above formula (5-1) or (5-3). It was confirmed that a group-containing imide oligomer (A is a 4,4′-(4,4′-isopropylidenediphenoxy)diphthalic anhydride residue, B is a dimer diamine residue). Moreover, the weight average molecular weight of the imide oligomer composition was 2,200.
  • Examples 1 to 7, Comparative Examples 1 to 4 According to the compounding ratio shown in Table 1, each material was stirred and mixed to prepare curable resin compositions of Examples 1 to 7 and Comparative Examples 1 to 4. Each obtained curable resin composition was coated on a substrate PET film so as to have a thickness of about 20 ⁇ m, and dried to prepare a curable resin composition film on the substrate PET film. The PET film was peeled off from the obtained curable resin composition film, and laminated with a laminator to a thickness of 500 ⁇ m to obtain a laminate. Using a rotary rheometer, the obtained laminate was heated to 90° C.
  • the laminate obtained in the same manner was heated from 40° C. to 120° C. at a frequency of 1.0 Hz, a strain of 21%, and the melt viscosity at 90° C. was measured using a rotary rheometer.
  • ARES manufactured by TA Instruments
  • Table 1 shows the measurement results of the complex viscosity and the melt viscosity.
  • Each curable resin composition obtained in Examples and Comparative Examples was coated on a base PET film and dried to form a base PET film and a cured film having a thickness of 40 ⁇ m on the base PET film.
  • An uncured laminated film having a flexible resin composition layer was obtained.
  • the obtained uncured laminated film was cut into a size of 2 mm in width and 80 mm in length.
  • the substrate PET film was peeled off from the curable resin composition layer of the cut uncured laminated film, and five curable resin composition layers were laminated using a laminator to obtain a laminate having a thickness of about 200 ⁇ m.
  • the resulting laminate was heated at 190° C. for 90 minutes to obtain a cured product.
  • a cavity resonance perturbation method permittivity measuring device CP521 manufactured by Kanto Denshi Applied Development Co., Ltd.
  • a network analyzer N5224A PNA manufactured by Keysight Technologies
  • the resulting laminate was cut to a width of 1 cm, and a 35 ⁇ m thick copper foil (manufactured by Fukuda Metal Foil and Powder Co., Ltd., a glossy surface of electrolytic copper foil, “CF-T8G-UN-35 ”) was laminated and heat-pressed under the conditions of 190° C., 3 MPa, and 1 hour to cure the curable resin composition layer and obtain a test piece.
  • a test piece within 24 hours after preparation was subjected to a 90° peel test at a peel rate of 50 mm/min at 25° C. using a tensile tester ("UCT-500" manufactured by ORIENTEC) to measure the peel strength.
  • the curable resin composition which is excellent in the dielectric property and adhesiveness after hardening can be provided. Further, according to the present invention, it is possible to provide an interlayer insulating material using the curable resin composition.

Abstract

The present invention provides a curable resin composition excellent in terms of dielectric characteristics after curing and adhesiveness. Also provided is an interlayer insulating material obtained from the curable resin composition. This curable resin composition comprises a curable resin, a hardener, an inorganic filler, and a dispersant and has a complex viscosity, as measured at 90°C, 5% strain, and 1 rad/sec, of 8,000 Pa·s or less.

Description

硬化性樹脂組成物及び層間絶縁材料Curable resin composition and interlayer insulating material
本発明は、硬化後の誘電特性及び接着性に優れる硬化性樹脂組成物に関する。また、本発明は、該硬化性樹脂組成物を用いてなる層間絶縁材料に関する。 TECHNICAL FIELD The present invention relates to a curable resin composition having excellent dielectric properties and adhesiveness after curing. The present invention also relates to an interlayer insulating material using the curable resin composition.
低収縮であり、接着性、絶縁性、及び、耐薬品性に優れるエポキシ樹脂等の硬化性樹脂は、多くの工業製品に使用されている。特に、プリント配線板の層間絶縁材料等に用いられる硬化性樹脂組成物には、低誘電率、低誘電正接といった誘電特性が必要となる。このような誘電特性に優れる硬化性樹脂組成物として、例えば、特許文献1、2には、硬化性樹脂と、硬化剤として特定の構造を有する化合物とを含有する硬化性樹脂組成物が開示されている。 Curable resins such as epoxy resins, which have low shrinkage and excellent adhesiveness, insulation, and chemical resistance, are used in many industrial products. In particular, dielectric properties such as a low dielectric constant and a low dielectric loss tangent are required for a curable resin composition used as an interlayer insulating material for printed wiring boards. As a curable resin composition having such excellent dielectric properties, for example, Patent Documents 1 and 2 disclose a curable resin composition containing a curable resin and a compound having a specific structure as a curing agent. ing.
特開2017-186551号公報JP 2017-186551 A 国際公開第2016/114286号WO2016/114286
硬化性樹脂組成物について、硬化後の誘電正接を低くするためには、シリカ等の無機充填剤を多量に配合することが考えられるが、無機充填剤を多量に配合した場合、銅等の金属からなる被着体に剥がれが生じることがあった。
本発明は、硬化後の誘電特性及び接着性に優れる硬化性樹脂組成物を提供することを目的とする。また、本発明は、該硬化性樹脂組成物を用いてなる層間絶縁材料を提供することを目的とする。
Regarding the curable resin composition, in order to lower the dielectric loss tangent after curing, it is conceivable to add a large amount of an inorganic filler such as silica. There was a case where peeling occurred in the adherend consisting of.
An object of the present invention is to provide a curable resin composition that exhibits excellent dielectric properties and adhesion after curing. Another object of the present invention is to provide an interlayer insulating material using the curable resin composition.
本開示1は、硬化性樹脂と、硬化剤と、無機充填剤と、分散剤とを含有し、90℃、歪5%、1rad/secにおける複素粘度が8000Pa・s以下である硬化性樹脂組成物である。
本開示2は、上記無機充填剤は、シリカである本開示1の硬化性樹脂組成物である。
本開示3は、上記硬化性樹脂組成物の固形分全体100重量部中における上記無機充填剤の含有量が65重量部以上である本開示1又は2の硬化性樹脂組成物である。
本開示4は、上記分散剤は、ポリウレタン系分散剤である本開示1、2又は3の硬化性樹脂組成物である。
本開示5は、更に、ポリマー成分を含有する本開示1、2、3又は4の硬化性樹脂組成物である。
本開示6は、本開示1、2、3、4又は5の硬化性樹脂組成物を用いてなる層間絶縁材料である。
以下に本発明を詳述する。
The present disclosure 1 contains a curable resin, a curing agent, an inorganic filler, and a dispersant, and has a complex viscosity of 8000 Pa s or less at 90 ° C., 5% strain, and 1 rad / sec. It is a thing.
The present disclosure 2 is the curable resin composition of the present disclosure 1, wherein the inorganic filler is silica.
Present Disclosure 3 is the curable resin composition of Present Disclosure 1 or 2, wherein the content of the inorganic filler in 100 parts by weight of the total solid content of the curable resin composition is 65 parts by weight or more.
The present disclosure 4 is the curable resin composition of the present disclosure 1, 2 or 3, wherein the dispersant is a polyurethane-based dispersant.
Disclosure 5 is the curable resin composition of Disclosure 1, 2, 3 or 4, further comprising a polymer component.
The present disclosure 6 is an interlayer insulating material using the curable resin composition of the present disclosure 1, 2, 3, 4 or 5.
The present invention will be described in detail below.
本発明者らは、無機充填剤を多量に配合した場合に被着体に剥がれが生じる原因が、硬化性樹脂組成物中の無機充填剤の分散状態が不均一となったことで、硬化物の表面に僅かな凹凸が生じていることにあると考えた。そこで本発明者らは、硬化性樹脂組成物の溶融粘度を調整することを検討したが、溶融粘度を低くしても充分に被着体の剥がれを抑制することができなかった。そこで本発明者らは、硬化性樹脂組成物の90℃、歪5%、1rad/secにおける複素粘度を特定値以下となるようにすることを検討した。その結果、得られる硬化性樹脂組成物中の無機充填剤の分散状態を均一にすることができ、誘電特性及び接着性に優れる硬化物を得ることができることを見出し、本発明を完成させるに至った。 The present inventors have found that the cause of peeling on the adherend when a large amount of inorganic filler is blended is that the dispersion state of the inorganic filler in the curable resin composition becomes uneven. It was thought that this was due to the fact that slight unevenness occurred on the surface of the Therefore, the present inventors have studied adjusting the melt viscosity of the curable resin composition, but the peeling of the adherend could not be sufficiently suppressed even if the melt viscosity is lowered. Therefore, the present inventors have investigated to make the complex viscosity of the curable resin composition at 90° C., 5% strain, 1 rad/sec to be a specific value or less. As a result, the inorganic filler in the resulting curable resin composition can be uniformly dispersed, and a cured product having excellent dielectric properties and adhesiveness can be obtained. This led to the completion of the present invention. rice field.
本発明の硬化性樹脂組成物は、90℃、歪5%、1rad/secにおける複素粘度の上限が8000Pa・sである。上記90℃、歪5%、1rad/secにおける複素粘度が8000Pa・s以下であることにより、本発明の硬化性樹脂組成物は、無機充填剤の分散状態が均一となって、硬化後の接着性に優れるものとなる。上記90℃、歪5%、1rad/secにおける複素粘度の好ましい上限は7500Pa・s、より好ましい上限は7000Pa・sである。
また、上記90℃、歪5%、1rad/secにおける複素粘度の好ましい下限は特にないが、実質的な下限は500Pa・sである。
なお、上記90℃、歪5%、1rad/secにおける複素粘度は、硬化性樹脂組成物フィルムについて、回転式レオメーターを用いて、周波数0.01Hzから1Hz、90℃の条件で測定することができる。上記硬化性樹脂組成物フィルムは、硬化性樹脂組成物を基材フィルム上に塗工し、乾燥させることにより得ることができる。上記回転式レオメーターとしては、例えば、HAAKE MARSシリーズ(サーモフィッシャーサイエンティフィック社製)、VAR-100(レオロジカ社製)、ARES(TAインスツルメント社製)等が挙げられる。
The curable resin composition of the present invention has an upper limit of complex viscosity of 8000 Pa·s at 90° C., strain of 5%, and 1 rad/sec. When the complex viscosity at 90° C., 5% strain, and 1 rad/sec is 8000 Pa s or less, the curable resin composition of the present invention has a uniform dispersion state of the inorganic filler and adhesion after curing. It will be excellent in quality. A preferable upper limit of the complex viscosity at 90° C., 5% strain, and 1 rad/sec is 7500 Pa·s, and a more preferable upper limit is 7000 Pa·s.
Although there is no particular lower limit for the complex viscosity at 90° C., 5% strain, and 1 rad/sec, the practical lower limit is 500 Pa·s.
The complex viscosity at 90° C., 5% strain, and 1 rad/sec can be measured using a rotary rheometer at a frequency of 0.01 Hz to 1 Hz and 90° C. for the curable resin composition film. can. The curable resin composition film can be obtained by applying the curable resin composition onto a base film and drying the coating. Examples of the rotational rheometer include HAAKE MARS series (manufactured by Thermo Fisher Scientific), VAR-100 (manufactured by Rheologicala), and ARES (manufactured by TA Instruments).
本発明の硬化性樹脂組成物は、硬化性樹脂を含有する。
上記硬化性樹脂としては、エポキシ樹脂、シアネート樹脂、フェノール樹脂、イミド樹脂、マレイミド樹脂、シリコーン樹脂、アクリル樹脂、フッ素樹脂等が挙げられる。なかでも、上記硬化性樹脂は、エポキシ樹脂、シアネート樹脂、フェノール樹脂、イミド樹脂、及び、マレイミド樹脂からなる群より選択される少なくとも1種を含むことが好ましく、エポキシ樹脂を含むことがより好ましい。上記硬化性樹脂は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The curable resin composition of the present invention contains a curable resin.
Examples of the curable resins include epoxy resins, cyanate resins, phenol resins, imide resins, maleimide resins, silicone resins, acrylic resins, and fluorine resins. In particular, the curable resin preferably contains at least one selected from the group consisting of epoxy resins, cyanate resins, phenol resins, imide resins, and maleimide resins, and more preferably contains epoxy resins. The curable resins may be used alone, or two or more of them may be used in combination.
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallylbisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , propylene oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether type epoxy resin, phenol novolak type epoxy resin, ortho-cresol novolak type epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, naphthalenephenol novolak type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, Examples include rubber-modified epoxy resins and glycidyl ester compounds.
本発明の硬化性樹脂組成物は、更に、硬化剤を含有する。
上記硬化剤としては、例えば、主鎖にイミド骨格、末端に架橋性官能基を有するイミドオリゴマー、酸無水物系硬化剤、フェノール系硬化剤、チオール系硬化剤、アミン系硬化剤、シアネート系硬化剤、活性エステル系硬化剤等が挙げられる。なかでも、得られる硬化性樹脂組成物の硬化物の接着性及び長期耐熱性の観点から、上記硬化剤は、上記イミドオリゴマーを含むことが好ましい。
The curable resin composition of the present invention further contains a curing agent.
Examples of the curing agent include an imide skeleton in the main chain and an imide oligomer having a crosslinkable functional group at the end, an acid anhydride-based curing agent, a phenol-based curing agent, a thiol-based curing agent, an amine-based curing agent, and a cyanate-based curing agent. curing agents, active ester curing agents, and the like. Above all, the curing agent preferably contains the imide oligomer from the viewpoint of the adhesiveness and long-term heat resistance of the cured product of the curable resin composition to be obtained.
上記イミドオリゴマーは、上記架橋性官能基を含む構造として、下記式(1-1)若しくは下記式(1-2)、又は、下記式(2-1)若しくは下記式(2-2)で表される構造を有することが好ましい。下記式(1-1)若しくは下記式(1-2)、又は、下記式(2-1)若しくは下記式(2-2)で表される構造を有することにより、上記イミドオリゴマーは、エポキシ樹脂等の硬化性樹脂との反応性及び相溶性により優れるものとなる。 The imide oligomer is represented by the following formula (1-1) or the following formula (1-2), or the following formula (2-1) or the following formula (2-2) as a structure containing the crosslinkable functional group. It is preferred to have a structure that By having a structure represented by the following formula (1-1) or the following formula (1-2), or the following formula (2-1) or the following formula (2-2), the imide oligomer is an epoxy resin It becomes excellent in reactivity and compatibility with curable resins such as.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
式(1-1)及び式(1-2)中、Aは、酸二無水物残基であり、Bは、脂肪族ジアミン残基又は芳香族ジアミン残基であり、式(1-2)中、Arは、置換されていてもよい2価の芳香族基である。 In formulas (1-1) and (1-2), A is an acid dianhydride residue, B is an aliphatic diamine residue or an aromatic diamine residue, and formula (1-2) Ar is an optionally substituted divalent aromatic group.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(2-1)及び式(2-2)中、Aは、酸二無水物残基であり、Bは、脂肪族トリアミン残基又は芳香族トリアミン残基であり、式(2-2)中、Arは、置換されていてもよい2価の芳香族基である。 In formulas (2-1) and (2-2), A is an acid dianhydride residue, B is an aliphatic triamine residue or an aromatic triamine residue, and formula (2-2) Ar is an optionally substituted divalent aromatic group.
上記酸二無水物残基は、下記式(3-1)又は下記式(3-2)で表される4価の基であることが好ましい。 The acid dianhydride residue is preferably a tetravalent group represented by the following formula (3-1) or the following formula (3-2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(3-1)及び式(3-2)中、*は、結合位置であり、式(3-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Zが炭化水素基である場合、該炭化水素基と式(3-1)中の各芳香環との間に酸素原子を有していてもよく、Zが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(3-1)中の各芳香環との間に酸素原子を有していてもよい。式(3-1)及び式(3-2)中における芳香環の水素原子は置換されていてもよい。 In formulas (3-1) and (3-2), * is a bonding position, and in formula (3-1), Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a direct It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring. When Z is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (3-1), Z is a divalent group having an aromatic ring In some cases, an oxygen atom may be present between the divalent group having the aromatic ring and each aromatic ring in formula (3-1). The hydrogen atoms of the aromatic rings in formulas (3-1) and (3-2) may be substituted.
上記式(3-1)中のZが、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である場合、これらの基は、置換されていてもよい。
上記直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、上記芳香環を有する2価の基が置換されている場合の置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
When Z in the above formula (3-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring, these groups are substituted good too.
Examples of substituents in the case where the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted include, for example, a halogen atom, a linear or branched chain linear alkyl groups, linear or branched alkenyl groups, alicyclic groups, aryl groups, alkoxy groups, nitro groups, cyano groups and the like.
上記酸二無水物残基の由来となる酸二無水物としては、例えば、後述する式(9)で表される酸二無水物等が挙げられる。 Examples of acid dianhydrides from which the acid dianhydride residue is derived include acid dianhydrides represented by formula (9) described later.
上記式(1-1)、上記式(1-2)、上記式(2-1)、又は、上記式(2-2)中のBが上記脂肪族ジアミン残基及び/又は上記脂肪族トリアミン残基である場合の該脂肪族ジアミン残基及び該脂肪族トリアミン残基の炭素数の好ましい下限は4である。上記脂肪族ジアミン残基及び上記脂肪族トリアミン残基の炭素数が4以上であることにより、得られる硬化性樹脂組成物が、硬化前における可撓性及び加工性、及び、硬化後の誘電特性により優れるものとなる。上記脂肪族ジアミン残基及び上記脂肪族トリアミン残基の炭素数のより好ましい下限は5、更に好ましい下限は6である。
また、上記脂肪族ジアミン残基及び上記脂肪族トリアミン残基の炭素数の好ましい上限は特にないが、実質的な上限は60である。
B in the formula (1-1), the formula (1-2), the formula (2-1), or the formula (2-2) is the aliphatic diamine residue and/or the aliphatic triamine A preferable lower limit of the number of carbon atoms of the aliphatic diamine residue and the aliphatic triamine residue when they are residues is 4. Since the number of carbon atoms in the aliphatic diamine residue and the aliphatic triamine residue is 4 or more, the resulting curable resin composition has flexibility and workability before curing, and dielectric properties after curing. It will be better. A more preferable lower limit for the number of carbon atoms in the aliphatic diamine residue and the aliphatic triamine residue is 5, and a more preferable lower limit is 6.
Although there is no particular upper limit for the number of carbon atoms in the aliphatic diamine residue and the aliphatic triamine residue, the practical upper limit is 60.
上記脂肪族ジアミン残基の由来となる脂肪族ジアミンとしては、例えば、ダイマー酸から誘導される脂肪族ジアミンや、直鎖状若しくは分岐鎖状脂肪族ジアミンや、脂肪族エーテルジアミンや、脂肪族脂環式ジアミン等が挙げられる。
上記ダイマー酸から誘導される脂肪族ジアミンとしては、例えば、ダイマージアミン、水添型ダイマージアミン等が挙げられる。
上記直鎖状若しくは分岐鎖状脂肪族ジアミンとしては、例えば、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,14-テトラデカンジアミン、1,16-ヘキサデカンジアミン、1,18-オクタデカンジアミン、1,20-エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2-メチル-1,9-ノナンジアミン、2,7-ジメチル-1,8-オクタンジアミン等が挙げられる。
上記脂肪族エーテルジアミンとしては、例えば、2,2’-オキシビス(エチルアミン)、3,3’-オキシビス(プロピルアミン)、1,2-ビス(2-アミノエトキシ)エタン等が挙げられる。
上記脂肪族脂環式ジアミンとしては、例えば、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等が挙げられる。
なかでも、上記脂肪族ジアミン残基は、上記ダイマー酸から誘導される脂肪族ジアミン残基であることが好ましい。
Examples of the aliphatic diamine from which the aliphatic diamine residue is derived include aliphatic diamines derived from dimer acid, linear or branched aliphatic diamines, aliphatic ether diamines, and aliphatic lipids. Cyclic diamines and the like can be mentioned.
Examples of the aliphatic diamines derived from the above dimer acids include dimer diamines and hydrogenated dimer diamines.
Examples of the linear or branched aliphatic diamines include 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,14-tetradecanediamine, 1,16-hexadecanediamine, 1,18-octadecanediamine, 1,20-eicosanediamine, 2-methyl-1,8 -octanediamine, 2-methyl-1,9-nonanediamine, 2,7-dimethyl-1,8-octanediamine and the like.
Examples of the aliphatic ether diamines include 2,2'-oxybis(ethylamine), 3,3'-oxybis(propylamine), 1,2-bis(2-aminoethoxy)ethane and the like.
Examples of the aliphatic alicyclic diamines include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine.
Among them, the aliphatic diamine residue is preferably an aliphatic diamine residue derived from the dimer acid.
上記脂肪族トリアミン残基の由来となる脂肪族トリアミンとしては、例えば、トリマー酸から誘導される脂肪族トリアミンや、直鎖状若しくは分岐鎖状脂肪族トリアミンや、脂肪族エーテルトリアミンや、脂肪族脂環式トリアミン等が挙げられる。
上記トリマー酸から誘導される脂肪族トリアミンとしては、例えば、トリマートリアミン、水添型トリマートリアミン等が挙げられる。
上記直鎖状若しくは分岐鎖状脂肪族トリアミンとしては、例えば、3,3’-ジアミノ-N-メチルジプロピルアミン、3,3’-ジアミノジプロピルアミン、ジエチレントリアミン、ビス(ヘキサメチレン)トリアミン、2,2’-ビス(メチルアミノ)-N-メチルジエチルアミン等が挙げられる。
なかでも、上記脂肪族トリアミン残基は、上記トリマー酸から誘導される脂肪族トリアミン残基であることが好ましい。
Examples of the aliphatic triamines from which the above-mentioned aliphatic triamine residues are derived include aliphatic triamines derived from trimer acid, linear or branched aliphatic triamines, aliphatic ether triamines, and aliphatic lipids. Cyclic triamines and the like can be mentioned.
Examples of aliphatic triamines derived from trimer acids include trimer triamines and hydrogenated trimer triamines.
Examples of the linear or branched aliphatic triamines include 3,3′-diamino-N-methyldipropylamine, 3,3′-diaminodipropylamine, diethylenetriamine, bis(hexamethylene)triamine, 2 , 2′-bis(methylamino)-N-methyldiethylamine and the like.
Among them, the aliphatic triamine residue is preferably an aliphatic triamine residue derived from the trimer acid.
また、上記脂肪族ジアミン及び/又は上記脂肪族トリアミンとして、上記ダイマージアミン及び上記トリマートリアミンの混合物を用いることもできる。 A mixture of the dimer diamine and the trimer triamine can also be used as the aliphatic diamine and/or the aliphatic triamine.
上記ダイマー酸及び/又は上記トリマー酸から誘導される脂肪族ジアミン及び/又は脂肪族トリアミンの市販品としては、例えば、BASF社製の脂肪族ジアミン及び/又は脂肪族トリアミンや、クローダ社製の脂肪族ジアミン及び/又は脂肪族トリアミン等が挙げられる。
上記BASF社製の脂肪族ジアミン及び/又は脂肪族トリアミンとしては、例えば、バーサミン551、バーサミン552等が挙げられる。
上記クローダ社製の脂肪族ジアミン及び/又は脂肪族トリアミンとしては、例えば、プリアミン1071、プリアミン1073、プリアミン1074、プリアミン1075等が挙げられる。
Commercially available aliphatic diamines and/or aliphatic triamines derived from the dimer acid and/or the trimer acid include, for example, aliphatic diamines and/or triamines manufactured by BASF, and fatty acids manufactured by Croda. triamines and/or aliphatic triamines.
Examples of the aliphatic diamines and/or aliphatic triamines manufactured by BASF include Versamin 551 and Versamin 552.
Examples of the aliphatic diamines and/or aliphatic triamines manufactured by Croda include Priamine 1071, Priamine 1073, Priamine 1074, and Priamine 1075.
上記式(1-1)、上記式(1-2)、上記式(2-1)、又は、上記式(2-2)中のBが上記芳香族ジアミン残基である場合の該芳香族ジアミン残基は、下記式(4-1)又は下記式(4-2)で表される2価の基であることが好ましい。 The aromatic when B in the above formula (1-1), the above formula (1-2), the above formula (2-1), or the above formula (2-2) is the above aromatic diamine residue The diamine residue is preferably a divalent group represented by formula (4-1) or formula (4-2) below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(4-1)及び式(4-2)中、*は、結合位置であり、式(4-1)中、Yは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Yが炭化水素基である場合、該炭化水素基と式(4-1)中の各芳香環との間に酸素原子を有していてもよく、Yが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(4-1)中の各芳香環との間に酸素原子を有していてもよい。式(4-1)及び式(4-2)中における芳香環の水素原子は置換されていてもよい。 In formulas (4-1) and (4-2), * is a bonding position, and in formula (4-1), Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a straight It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring. When Y is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (4-1), Y is a divalent group having an aromatic ring In some cases, an oxygen atom may be present between the divalent group having the aromatic ring and each aromatic ring in formula (4-1). The hydrogen atoms of the aromatic rings in formulas (4-1) and (4-2) may be substituted.
上記式(4-1)中のYが、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である場合、これらの基は、置換されていてもよい。
上記直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、上記芳香環を有する2価の基が置換されている場合の置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
When Y in the above formula (4-1) is a linear or branched divalent hydrocarbon group or a divalent group having an aromatic ring, these groups are substituted good too.
Examples of substituents in the case where the linear or branched divalent hydrocarbon group or the divalent group having an aromatic ring is substituted include, for example, a halogen atom, a linear or branched chain linear alkyl groups, linear or branched alkenyl groups, alicyclic groups, aryl groups, alkoxy groups, nitro groups, cyano groups and the like.
上記芳香族ジアミン残基の由来となる芳香族ジアミンとしては、例えば、後述する式(10)で表されるジアミンが芳香族ジアミンである場合のもの等が挙げられる。 Examples of the aromatic diamine from which the aromatic diamine residue is derived include those in which the diamine represented by formula (10) described below is an aromatic diamine.
また、上記イミドオリゴマーは、構造中にシロキサン骨格を有する場合、構造中にシロキサン骨格を有する場合、硬化後のガラス転移温度を低下させたり、被着体を汚染し接着不良の原因となり得ることから、構造中にシロキサン骨格を有さないイミドオリゴマーであることが好ましい。 In addition, when the imide oligomer has a siloxane skeleton in its structure, it may lower the glass transition temperature after curing, contaminate the adherend, and cause poor adhesion. , preferably an imide oligomer having no siloxane skeleton in its structure.
上記イミドオリゴマーの数平均分子量は、5000以下であることが好ましい。上記イミドオリゴマーの数平均分子量が5000以下であることにより、得られる硬化性樹脂組成物の硬化物が長期耐熱性により優れるものとなる。上記イミドオリゴマーの数平均分子量のより好ましい上限は4000、更に好ましい上限は3000である。
特に、上記イミドオリゴマーの数平均分子量は、上記式(1-1)、上記式(2-1)で表される構造を有する場合は900以上5000以下であることが好ましく、上記式(1-2)、上記式(2-2)で表される構造を有する場合は550以上4000以下であることが好ましい。上記式(1-1)、上記式(2-1)で表される構造を有する場合の数平均分子量のより好ましい下限は950、更に好ましい下限は1000である。上記式(1-2)、上記式(2-2)で表される構造を有する場合の数平均分子量のより好ましい下限は580、更に好ましい下限は600である。
なお、本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
The imide oligomer preferably has a number average molecular weight of 5,000 or less. When the imide oligomer has a number average molecular weight of 5,000 or less, the resulting cured product of the curable resin composition is excellent in long-term heat resistance. A more preferable upper limit of the number average molecular weight of the imide oligomer is 4,000, and a more preferable upper limit is 3,000.
In particular, the number average molecular weight of the imide oligomer is preferably 900 or more and 5000 or less when it has a structure represented by the above formula (1-1) or (2-1), and the above formula (1- 2) When it has a structure represented by the above formula (2-2), it is preferably 550 or more and 4000 or less. A more preferable lower limit of the number average molecular weight is 950, and a more preferable lower limit is 1,000 in the case of having a structure represented by the above formula (1-1) or the above formula (2-1). A more preferable lower limit of the number average molecular weight is 580, and a more preferable lower limit is 600, in the case of having a structure represented by the formula (1-2) or (2-2).
In addition, the above-mentioned "number average molecular weight" in this specification is a value measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and calculated by polystyrene conversion. Examples of the column used for measuring the polystyrene-equivalent number-average molecular weight by GPC include JAIGEL-2H-A (manufactured by Japan Analytical Industry Co., Ltd.).
上記イミドオリゴマーは、具体的には、下記式(5-1)、下記式(5-2)、下記式(5-3)、下記式(5-4)、若しくは、下記式(5-5)で表されるイミドオリゴマー、又は、下記式(6-1)、下記式(6-2)、下記式(6-3)、下記式(6-4)、若しくは、下記式(6-5)で表されるイミドオリゴマーであることが好ましい。 Specifically, the imide oligomer is represented by the following formula (5-1), the following formula (5-2), the following formula (5-3), the following formula (5-4), or the following formula (5-5 ), or the following formula (6-1), the following formula (6-2), the following formula (6-3), the following formula (6-4), or the following formula (6-5 ) is preferably an imide oligomer represented by
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(5-1)~(5-5)中、Aは、上記酸二無水物残基であり、式(5-1)~(5-5)中、Aは、それぞれ同一であってもよいし、異なっていてもよい。式(5-1)~(5-5)中、Bは、上記脂肪族ジアミン残基若しくは上記芳香族ジアミン残基、又は、上記脂肪族トリアミン残基若しくは上記芳香族トリアミン残基であり、式(5-3)及び式(5-4)中、Bは、それぞれ同一であってもよいし、異なっていてもよい。式(5-2)中、Xは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基であり、式(5-4)中、Wは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基である。式(5-3)及び式(5-4)中、nは、繰り返し数である。 In formulas (5-1) to (5-5), A is the acid dianhydride residue, and in formulas (5-1) to (5-5), A is the same. may be different. In formulas (5-1) to (5-5), B is the aliphatic diamine residue or the aromatic diamine residue, or the aliphatic triamine residue or the aromatic triamine residue, In (5-3) and formula (5-4), B may be the same or different. In formula (5-2), X is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group, and in formula (5-4), W is a hydrogen atom, a halogen atom , or an optionally substituted monovalent hydrocarbon group. In formulas (5-3) and (5-4), n is the number of repetitions.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(6-1)~(6-5)中、Aは、上記酸二無水物残基であり、式(6-1)~(6-5)中、Aは、それぞれ同一であってもよいし、異なっていてもよい。式(6-1)~(6-5)中、Rは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基であり、式(6-1)、式(6-3)、及び、式(6-5)中、Rは、それぞれ同一であってもよいし、異なっていてもよい。式(6-2)及び式(6-4)中、Wは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基である。式(6-1)~(6-5)中、Bは、上記脂肪族ジアミン残基若しくは上記芳香族ジアミン残基、又は、上記脂肪族トリアミン残基若しくは上記芳香族トリアミン残基であり、式(6-3)及び式(6-4)中、Bは、それぞれ同一であってもよいし、異なっていてもよい。 In formulas (6-1) to (6-5), A is the acid dianhydride residue, and in formulas (6-1) to (6-5), A is the same. may be different. In formulas (6-1) to (6-5), R is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group, formula (6-1), formula (6 -3) and in formula (6-5), R may be the same or different. In formulas (6-2) and (6-4), W is a hydrogen atom, a halogen atom, or an optionally substituted monovalent hydrocarbon group. In formulas (6-1) to (6-5), B is the aliphatic diamine residue or the aromatic diamine residue, or the aliphatic triamine residue or the aromatic triamine residue, In (6-3) and formula (6-4), B may be the same or different.
上記式(5-1)~(5-5)、及び、上記式(6-1)~(6-5)中のAは、下記式(7-1)又は下記式(7-2)で表される4価の基であることが好ましい。 A in the above formulas (5-1) to (5-5) and the above formulas (6-1) to (6-5) is the following formula (7-1) or the following formula (7-2) It is preferably a tetravalent group represented.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(7-1)及び式(7-2)中、*は、結合位置であり、式(7-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Zが炭化水素基である場合、該炭化水素基と式(7-1)中の各芳香環との間に酸素原子を有していてもよく、Zが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(7-1)中の各芳香環との間に酸素原子を有していてもよい。式(7-1)及び式(7-2)中における芳香環の水素原子は置換されていてもよい。 In formulas (7-1) and (7-2), * is a bonding position, and in formula (7-1), Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a direct It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring. When Z is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (7-1), Z is a divalent group having an aromatic ring In some cases, an oxygen atom may be present between the divalent group having an aromatic ring and each aromatic ring in formula (7-1). The hydrogen atoms of the aromatic rings in formulas (7-1) and (7-2) may be substituted.
上記式(5-1)~(5-5)、及び、上記式(6-1)~(6-5)中のBは、下記式(8-1)又は下記式(8-2)で表される2価の基であることが好ましい。 B in the above formulas (5-1) to (5-5) and the above formulas (6-1) to (6-5) is the following formula (8-1) or the following formula (8-2) It is preferably a divalent group represented.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(8-1)及び式(8-2)中、*は、結合位置であり、式(8-1)中、Yは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、芳香環を有する2価の基である。Yが炭化水素基である場合、該炭化水素基と式(8-1)中の各芳香環との間に酸素原子を有していてもよく、Yが芳香環を有する2価の基である場合、該芳香環を有する2価の基と式(8-1)中の各芳香環との間に酸素原子を有していてもよい。式(8-1)及び式(8-2)中における芳香環の水素原子は置換されていてもよい。 In formulas (8-1) and (8-2), * is a bonding position, and in formula (8-1), Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a straight It is a chain or branched divalent hydrocarbon group or a divalent group having an aromatic ring. When Y is a hydrocarbon group, it may have an oxygen atom between the hydrocarbon group and each aromatic ring in formula (8-1), Y is a divalent group having an aromatic ring In some cases, an oxygen atom may be present between the divalent group having an aromatic ring and each aromatic ring in formula (8-1). The hydrogen atoms of the aromatic rings in formulas (8-1) and (8-2) may be substituted.
上記式(1-1)で表される構造を有するイミドオリゴマーを製造する方法としては、例えば、下記式(9)で表される酸二無水物と下記式(10)で表されるジアミンとを反応させる方法等が挙げられる。また、下記式(10)で表されるジアミンに代えて脂肪族トリアミン又は芳香族トリアミンを用いることにより、上記式(2-1)で表される構造を有するイミドオリゴマーを製造することができる。 As a method for producing an imide oligomer having a structure represented by the above formula (1-1), for example, an acid dianhydride represented by the following formula (9) and a diamine represented by the following formula (10) and the like. Also, by using an aliphatic triamine or an aromatic triamine instead of the diamine represented by the following formula (10), an imide oligomer having a structure represented by the above formula (2-1) can be produced.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(9)中、Aは、上記式(1-1)中のAと同じ4価の基である。 In formula (9), A is the same tetravalent group as A in formula (1-1) above.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(10)中、Bは、上記式(1-1)中のBと同じ2価の基であり、R~Rは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (10), B is the same divalent group as B in formula (1-1) above, and R 1 to R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group. .
上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(10)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(9)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、加熱や減圧等により溶媒を除去し、更に、約200℃以上で1時間以上加熱してアミック酸オリゴマーを反応させる方法等が挙げられる。上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に上記式(1-1)で表される構造を有するイミドオリゴマーを得ることができる。
また、上記式(9)で表される酸二無水物の一部を下記式(11)で表される酸無水物に置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-1)で表される構造を有し、他方の末端に下記式(11)で表される酸無水物に由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(9)で表される酸二無水物と下記式(11)で表される酸無水物とは、同時に添加してもよいし、別々に添加してもよい。
更に、上記式(10)で表されるジアミンの一部を下記式(12)で表されるモノアミンに置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-1)で表される構造を有し、他方の末端に下記式(12)で表されるモノアミンに由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(10)で表されるジアミンと下記式(12)で表されるモノアミンとは、同時に添加してもよいし、別々に添加してもよい。
A specific example of the method for reacting the acid dianhydride represented by the above formula (9) with the diamine represented by the above formula (10) is shown below.
First, the diamine represented by the above formula (10) is dissolved in advance in a solvent (for example, N-methylpyrrolidone, etc.) in which the amic acid oligomer obtained by the reaction is soluble, and the resulting solution is added with the above formula (9). An acid dianhydride represented by is added and reacted to obtain an amic acid oligomer solution. Next, the solvent is removed by heating, pressure reduction, or the like, and the mixture is heated at about 200° C. or higher for 1 hour or longer to react the amic acid oligomer. By adjusting the molar ratio of the acid dianhydride represented by the above formula (9) and the diamine represented by the above formula (10), and the imidization conditions, it has a desired number average molecular weight, and both An imide oligomer having a structure represented by the above formula (1-1) at the end can be obtained.
Further, by replacing a part of the acid dianhydride represented by the above formula (9) with the acid anhydride represented by the following formula (11), it has a desired number average molecular weight and one end has the above An imide oligomer having a structure represented by the formula (1-1) and having a structure derived from an acid anhydride represented by the following formula (11) at the other end can be obtained. In this case, the acid dianhydride represented by the above formula (9) and the acid anhydride represented by the following formula (11) may be added simultaneously or separately.
Furthermore, by replacing part of the diamine represented by the above formula (10) with a monoamine represented by the following formula (12), it has a desired number average molecular weight, and one end has the above formula (1-1) ) and having at the other end a structure derived from a monoamine represented by the following formula (12). In this case, the diamine represented by the above formula (10) and the monoamine represented by the following formula (12) may be added simultaneously or separately.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(11)中、Arは、置換されていてもよい2価の芳香族基である。 In formula (11), Ar is an optionally substituted divalent aromatic group.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(12)中、Arは、置換されていてもよい1価の芳香族基であり、R及びRは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (12), Ar is an optionally substituted monovalent aromatic group, and R 5 and R 6 are each independently a hydrogen atom or a monovalent hydrocarbon group.
上記式(1-2)で表される構造を有するイミドオリゴマーを製造する方法としては、例えば、上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンと下記式(13)で表されるフェノール性水酸基含有モノアミンとを反応させる方法等が挙げられる。また、上記式(10)で表されるジアミンに代えて脂肪族トリアミン又は芳香族トリアミンを用いることにより、上記式(2-2)で表される構造を有するイミドオリゴマーを製造することができる。 As a method for producing an imide oligomer having a structure represented by the above formula (1-2), for example, an acid dianhydride represented by the above formula (9) and a diamine represented by the above formula (10) Examples thereof include a method of reacting with a phenolic hydroxyl group-containing monoamine represented by the following formula (13). Further, by using an aliphatic triamine or an aromatic triamine instead of the diamine represented by the above formula (10), an imide oligomer having a structure represented by the above formula (2-2) can be produced.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
式(13)中、Arは、置換されていてもよい2価の芳香族基であり、R及びRは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (13), Ar is an optionally substituted divalent aromatic group, and R 7 and R 8 are each independently a hydrogen atom or a monovalent hydrocarbon group.
上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンと上記式(13)で表されるフェノール性水酸基含有モノアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(13)で表されるフェノール性水酸基含有モノアミン及び上記式(10)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(9)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、加熱や減圧等により溶媒を除去し、更に、約200℃以上で1時間以上加熱してアミック酸オリゴマーを反応させる方法等が挙げられる。上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンと上記式(13)で表されるフェノール性水酸基含有モノアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に上記式(1-2)で表される構造を有するイミドオリゴマーを得ることができる。
また、上記式(13)で表されるフェノール性水酸基含有モノアミンの一部を上記式(12)で表されるモノアミンに置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-2)で表される構造を有し、他方の末端に上記式(12)で表されるモノアミンに由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(13)で表されるフェノール性水酸基含有モノアミンと上記式(12)で表されるモノアミンとは、同時に添加してもよいし、別々に添加してもよい。
Specific examples of the method for reacting the acid dianhydride represented by the above formula (9), the diamine represented by the above formula (10), and the phenolic hydroxyl group-containing monoamine represented by the above formula (13) are shown below. show.
First, a phenolic hydroxyl group-containing monoamine represented by the above formula (13) and a diamine represented by the above formula (10) are mixed in advance with a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, etc.) ), and the acid dianhydride represented by the above formula (9) is added to the obtained solution and reacted to obtain an amic acid oligomer solution. Next, the solvent is removed by heating, pressure reduction, or the like, and the mixture is heated at about 200° C. or higher for 1 hour or longer to react the amic acid oligomer. The molar ratio of the acid dianhydride represented by the above formula (9), the diamine represented by the above formula (10) and the phenolic hydroxyl group-containing monoamine represented by the above formula (13), and the imidization conditions By adjusting, it is possible to obtain an imide oligomer having a desired number average molecular weight and a structure represented by the above formula (1-2) at both ends.
Further, by replacing part of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) with the monoamine represented by the above formula (12), it has a desired number average molecular weight, and one end has the above formula An imide oligomer having a structure represented by (1-2) and having a structure derived from a monoamine represented by the above formula (12) at the other end can be obtained. In this case, the phenolic hydroxyl group-containing monoamine represented by the above formula (13) and the monoamine represented by the above formula (12) may be added simultaneously or separately.
上記式(9)で表される酸二無水物としては、例えば、ピロメリット酸無水物、3,3’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、4,4’-オキシジフタル酸無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、4,4’-ビス(2,3-ジカルボキシルフェノキシ)ジフェニルエーテルの酸二無水物、p-フェニレンビス(トリメリテート無水物)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物等が挙げられる。
なかでも、溶解性及び耐熱性により優れるものとなることから、上記イミドオリゴマーの原料に用いる酸二無水物としては、融点が240℃以下の芳香族性酸二無水物が好ましく、融点が220℃以下の芳香族性酸二無水物がより好ましく、融点が200℃以下の芳香族性酸二無水物が更に好ましく、3,4’-オキシジフタル酸二無水物(融点180℃)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(融点190℃)が特に好ましい。
なお、本明細書において上記「融点」は、示差走査熱量計を用いて、10℃/minにて昇温した際の吸熱ピークの温度として測定される値を意味する。上記示差走査熱量計としては、例えば、EXTEAR DSC6100(エスアイアイ・ナノテクノロジー社製)等が挙げられる。
Examples of the acid dianhydride represented by the above formula (9) include pyromellitic anhydride, 3,3'-oxydiphthalic anhydride, 3,4'-oxydiphthalic anhydride, 4,4'-oxydiphthalic anhydride. acid anhydride, 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride, 4,4'-bis(2,3-dicarboxylphenoxy)diphenyl ether dianhydride, p-phenylene Bis(trimellitate anhydride), 2,3,3',4'-biphenyltetracarboxylic acid dianhydride and the like can be mentioned.
Among them, aromatic acid dianhydrides having a melting point of 240° C. or less are preferable as the acid dianhydrides used as raw materials for the imide oligomers, since they are excellent in solubility and heat resistance, and have a melting point of 220° C. The following aromatic acid dianhydrides are more preferred, and aromatic acid dianhydrides having a melting point of 200°C or less are more preferred, and 3,4'-oxydiphthalic dianhydride (melting point 180°C), 4,4'-(4,4'-Isopropylidenediphenoxy)diphthalic anhydride (melting point 190°C) is particularly preferred.
In this specification, the "melting point" means a value measured as an endothermic peak temperature when the temperature is raised at 10°C/min using a differential scanning calorimeter. Examples of the differential scanning calorimeter include EXTEAR DSC6100 (manufactured by SII Nano Technology Co., Ltd.).
上記式(10)で表されるジアミンのうち、芳香族ジアミンとしては、例えば、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-(4-アミノフェノキシ)フェニル)メタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルメタン、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルメタン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルエーテル、ビスアミノフェニルフルオレン、ビストルイジンフルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-2,2’-ジヒドロキシビフェニル等が挙げられる。なかでも、入手性に優れることから、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼンが好ましく、更に溶解性及び耐熱性に優れることから、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼンがより好ましい。 Among the diamines represented by the above formula (10), aromatic diamines include, for example, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′- Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfone, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, bis(4-(4-aminophenoxy ) phenyl)methane, 2,2-bis(4-(4-aminophenoxy)phenyl)propane, 1,3-bis(2-(4-aminophenyl)-2-propyl)benzene, 1,4-bis( 2-(4-aminophenyl)-2-propyl)benzene, 3,3′-diamino-4,4′-dihydroxyphenylmethane, 4,4′-diamino-3,3′-dihydroxyphenylmethane, 3,3 '-diamino-4,4'-dihydroxyphenyl ether, bisaminophenylfluorene, bistoluidinefluorene, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-diamino-3,3'-dihydroxyphenyl ether, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-2,2'-dihydroxybiphenyl and the like. Among them, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 1,3-bis(2-(4-aminophenyl)-2-propyl)benzene, 1,4 -bis(2-(4-aminophenyl)-2-propyl)benzene, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis( 4-Aminophenoxy)benzene is preferred, and 1,3-bis(2-(4-aminophenyl)-2-propyl)benzene, 1,4-bis(2-(2-( 4-aminophenyl)-2-propyl)benzene, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene is more preferred.
上記式(11)で表される酸無水物としては、例えば、フタル酸無水物、3-メチルフタル酸無水物、4-メチルフタル酸無水物、1,2-ナフタル酸無水物、2,3-ナフタル酸無水物、1,8-ナフタル酸無水物、2,3-アントラセンジカルボキシ酸無水物、4-tert-ブチルフタル酸無水物、4-エチニルフタル酸無水物、4-フェニルエチニルフタル酸無水物、4-フルオロフタル酸無水物、4-クロロフタル酸無水物、4-ブロモフタル酸無水物、3,4-ジクロロフタル酸無水物等が挙げられる。 Examples of acid anhydrides represented by the above formula (11) include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 1,2-naphthalic anhydride, and 2,3-naphthalic anhydride. acid anhydride, 1,8-naphthalic anhydride, 2,3-anthracenedicarboxylic anhydride, 4-tert-butyl phthalic anhydride, 4-ethynyl phthalic anhydride, 4-phenylethynyl phthalic anhydride, 4-fluorophthalic anhydride, 4-chlorophthalic anhydride, 4-bromophthalic anhydride, 3,4-dichlorophthalic anhydride and the like.
上記式(12)で表されるモノアミンとしては、例えば、アニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,4-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2-tert-ブチルアニリン、3-tert-ブチルアニリン、4-tert-ブチルアニリン、1-ナフチルアミン、2-ナフチルアミン、1-アミノアントラセン、2-アミノアントラセン、9-アミノアントラセン、1-アミノピレン、3-クロロアニリン、o-アニシジン、m-アニシジン、p-アニシジン、1-アミノ-2-メチルナフタレン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、3,4-ジメチルアニリン、4-エチルアニリン、4-エチニルアニリン、4-イソプロピルアニリン、4-(メチルチオ)アニリン、N,N-ジメチル-1,4-フェニレンジアミン等が挙げられる。 Monoamines represented by the above formula (12) include, for example, aniline, o-toluidine, m-toluidine, p-toluidine, 2,4-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-tert-butylaniline, 3-tert-butylaniline, 4-tert-butylaniline, 1-naphthylamine, 2-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, 9-aminoanthracene, 1-aminopyrene, 3- Chloroaniline, o-anisidine, m-anisidine, p-anisidine, 1-amino-2-methylnaphthalene, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 3,4-dimethyl aniline, 4-ethylaniline, 4-ethynylaniline, 4-isopropylaniline, 4-(methylthio)aniline, N,N-dimethyl-1,4-phenylenediamine and the like.
上記式(13)で表されるフェノール性水酸基含有モノアミンとしては、例えば、3-アミノフェノール、4-アミノフェノール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾール、4-アミノ-2,3-キシレノール、4-アミノ-2,5-キシレノール、4-アミノ-2,6-キシレノール、4-アミノ-1-ナフトール、5-アミノ-2-ナフトール、6-アミノ-1-ナフトール、4-アミノ-2,6-ジフェニルフェノール等が挙げられる。なかでも、入手性及び保存安定性に優れ、硬化後に高いガラス転移温度が得られることから、4-アミノ-o-クレゾール、5-アミノ-o-クレゾールが好ましい。 Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, 4-amino-2 ,3-xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -amino-2,6-diphenylphenol and the like. Among them, 4-amino-o-cresol and 5-amino-o-cresol are preferred because they are excellent in availability and storage stability and provide a high glass transition temperature after curing.
上述した製造方法で上記イミドオリゴマーを製造した場合、上記イミドオリゴマーは、上記式(1-1)で表される構造を有する複数種のイミドオリゴマー又は上記式(1-2)で表される構造を有する複数種のイミドオリゴマーと、各原料との混合物(イミドオリゴマー組成物)に含まれるものとして得られる。上記式(10)で表されるジアミンに代えて脂肪族トリアミン又は芳香族トリアミンを用いた場合は、上記イミドオリゴマーは、上記式(2-1)で表される構造を有する複数種のイミドオリゴマー又は上記式(2-2)で表される構造を有する複数種のイミドオリゴマーと、各原料との混合物(イミドオリゴマー組成物)に含まれるものとして得られる。該イミドオリゴマー組成物は、イミド化率が70%以上であることにより、硬化剤として用いた場合に高温での機械的強度及び長期耐熱性により優れる硬化物を得ることができる。
上記イミドオリゴマー組成物のイミド化率の好ましい下限は75%、より好ましい下限は80%である。また、上記イミドオリゴマー組成物のイミド化率の好ましい上限は特にないが、実質的な上限は98%である。
なお、上記「イミド化率」は、フーリエ変換赤外分光光度計(FT-IR)を用いて全反射測定法(ATR法)にて測定を行い、アミック酸のカルボニル基に由来する1660cm-1付近のピーク吸光度面積から下記式にて導出することができる。上記フーリエ変換赤外分光光度計としては、例えば、UMA600(Agilent Technologies社製)等が挙げられる。なお、下記式中における「アミック酸オリゴマーのピーク吸光度面積」は、酸二無水物とジアミン又はフェノール性水酸基含有モノアミンとを反応させた後、イミド化工程を行わずに溶媒をエバポレーション等により除去することで得られるアミック酸オリゴマーの吸光度面積である。
イミド化率(%)=100×(1-(イミド化後のピーク吸光度面積)/(アミック酸オリゴマーのピーク吸光度面積))
When the imide oligomer is produced by the production method described above, the imide oligomer is a plurality of imide oligomers having a structure represented by the above formula (1-1) or a structure represented by the above formula (1-2). and a mixture of each raw material (imide oligomer composition). When an aliphatic triamine or an aromatic triamine is used in place of the diamine represented by the formula (10), the imide oligomer is a plurality of imide oligomers having a structure represented by the formula (2-1). Alternatively, it can be obtained as one contained in a mixture (imide oligomer composition) of a plurality of kinds of imide oligomers having a structure represented by the above formula (2-2) and each raw material. When the imide oligomer composition has an imidization rate of 70% or more, it can provide a cured product having excellent mechanical strength at high temperatures and long-term heat resistance when used as a curing agent.
A preferred lower limit for the imidization rate of the imide oligomer composition is 75%, and a more preferred lower limit is 80%. Although there is no particular upper limit for the imidization rate of the imide oligomer composition, the practical upper limit is 98%.
The above-mentioned "imidation rate" is measured by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (FT-IR), and is derived from the carbonyl group of amic acid at 1660 cm -1 It can be derived from the peak absorbance area in the vicinity by the following formula. Examples of the Fourier transform infrared spectrophotometer include UMA600 (manufactured by Agilent Technologies). The "peak absorbance area of the amic acid oligomer" in the following formula is obtained by removing the solvent by evaporation or the like without performing the imidization step after reacting the acid dianhydride with a diamine or a phenolic hydroxyl group-containing monoamine. is the absorbance area of the amic acid oligomer obtained by
Imidation rate (%) = 100 × (1-(peak absorbance area after imidization)/(peak absorbance area of amic acid oligomer))
上記イミドオリゴマー組成物は、硬化性樹脂組成物中における溶解性の観点から、25℃においてテトラヒドロフラン10gに対して3g以上溶解することが好ましい。 From the viewpoint of solubility in the curable resin composition, it is preferable that 3 g or more of the imide oligomer composition dissolve in 10 g of tetrahydrofuran at 25°C.
上記硬化性樹脂と上記硬化剤(後述する硬化促進剤を含有する場合は更に硬化促進剤)との合計100重量部中における上記硬化剤の含有量の好ましい下限は20重量部、好ましい上限は80重量部である。上記硬化剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が、硬化性及び保存安定性により優れるものとなる。上記硬化剤の含有量のより好ましい下限は25重量部、より好ましい上限は75重量部である。 The preferable lower limit of the content of the curing agent in the total 100 parts by weight of the curable resin and the curing agent (further curing accelerator when containing the curing accelerator described later) is 20 parts by weight, and the preferable upper limit is 80 parts. weight part. When the content of the curing agent is within this range, the resulting curable resin composition is more excellent in curability and storage stability. A more preferable lower limit to the content of the curing agent is 25 parts by weight, and a more preferable upper limit is 75 parts by weight.
本発明の硬化性樹脂組成物は、無機充填剤を含有する。
上記無機充填剤を含有することにより、本発明の硬化性樹脂組成物は、硬化物が誘電特性に優れるものとなる。
The curable resin composition of the present invention contains an inorganic filler.
By containing the inorganic filler, the curable resin composition of the present invention provides a cured product with excellent dielectric properties.
上記無機充填剤としては、例えば、シリカ、アルミナ、窒化ホウ素、酸化マグネシウム、ベーマイト等が挙げられる。なかでも、シリカが好ましい。 Examples of the inorganic filler include silica, alumina, boron nitride, magnesium oxide, and boehmite. Among them, silica is preferable.
上記無機充填剤の平均粒子径の好ましい下限は0.2μm、好ましい上限は5μmである。上記無機充填剤の平均粒子径がこの範囲であることにより、塗工性等を悪化させることなく、硬化性樹脂組成物中における分散性により優れるものとなり、硬化物の誘電特性と接着性とを両立する効果により優れるものとなる。上記無機充填剤の平均粒子径のより好ましい下限は0.5μm、より好ましい上限は2μmである。
なお、上記無機充填剤の平均粒子径は、粒度分布測定装置を用いて、上記無機充填剤を溶媒(水、有機溶媒等)に分散させて測定することができる。上記粒度分布測定装置としては、例えば、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)等が挙げられる。
A preferable lower limit of the average particle size of the inorganic filler is 0.2 μm, and a preferable upper limit thereof is 5 μm. When the average particle size of the inorganic filler is within this range, it becomes more excellent in dispersibility in the curable resin composition without deteriorating the coatability, etc., and the dielectric properties and adhesiveness of the cured product are improved. It becomes excellent by the effect of compatibility. A more preferable lower limit of the average particle size of the inorganic filler is 0.5 μm, and a more preferable upper limit thereof is 2 μm.
The average particle size of the inorganic filler can be measured by dispersing the inorganic filler in a solvent (water, organic solvent, etc.) using a particle size distribution analyzer. Examples of the particle size distribution analyzer include NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS).
上記硬化性樹脂組成物の固形分全体100重量部中における上記無機充填剤の含有量の好ましい下限は65重量部である。上記無機充填剤の含有量が65重量部以上であることにより、得られる硬化性樹脂組成物が硬化後の誘電特性により優れるものとなる。上記無機充填剤の含有量のより好ましい下限は70重量部である。
また、塗工性及び接着性の観点から、上記硬化性樹脂組成物の固形分全体100重量部中における上記無機充填剤の含有量の好ましい上限は73重量部、より好ましい上限は71重量部である。
なお、本明細書において、上記「硬化性樹脂組成物の固形分全体」とは、硬化性樹脂組成物が後述する溶剤を含む場合は該溶剤以外の成分全体を意味する。
A preferable lower limit of the content of the inorganic filler in 100 parts by weight of the solid content of the curable resin composition is 65 parts by weight. When the content of the inorganic filler is 65 parts by weight or more, the resulting curable resin composition is more excellent in dielectric properties after curing. A more preferable lower limit for the content of the inorganic filler is 70 parts by weight.
Further, from the viewpoint of coatability and adhesiveness, the upper limit of the content of the inorganic filler in 100 parts by weight of the total solid content of the curable resin composition is preferably 73 parts by weight, and a more preferred upper limit is 71 parts by weight. be.
In addition, in the present specification, the above-mentioned "entire solid content of the curable resin composition" means the entire components other than the solvent when the curable resin composition contains a solvent described later.
本発明の硬化性樹脂組成物は、分散剤を含有する。
上記分散剤を含有することにより、本発明の硬化性樹脂組成物は、上記無機充填剤の分散状態を均一にすることができ、硬化物が接着性に優れるものとなる。
The curable resin composition of the present invention contains a dispersant.
By containing the dispersant, the curable resin composition of the present invention can uniformly disperse the inorganic filler, and the cured product has excellent adhesiveness.
上記分散剤としては、例えば、ポリウレタン系分散剤、脂肪酸系分散剤、ポリアミノ系分散剤、ポリアクリレート系分散剤等が挙げられる。なかでも、90℃、歪5%、1rad/secにおける複素粘度を上述した範囲とすることが特に容易となることから、ポリウレタン系分散剤が好ましい。 Examples of the dispersant include polyurethane-based dispersants, fatty acid-based dispersants, polyamino-based dispersants, and polyacrylate-based dispersants. Among these, polyurethane-based dispersants are preferred because they make it particularly easy to set the complex viscosity at 90° C., 5% strain, and 1 rad/sec within the above range.
上記硬化性樹脂組成物の固形分全体100重量部中における上記分散剤の含有量の好ましい下限は0.05重量部、好ましい上限は1.0重量部である。上記分散剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が硬化後の誘電特性と接着性とを両立する効果により優れるものとなる。上記分散剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は0.7重量部である。 A preferable lower limit of the content of the dispersing agent in 100 parts by weight of the total solid content of the curable resin composition is 0.05 parts by weight, and a preferable upper limit thereof is 1.0 parts by weight. When the content of the dispersant is within this range, the resulting curable resin composition is more excellent in the effect of achieving both dielectric properties and adhesiveness after curing. A more preferred lower limit to the content of the dispersant is 0.1 parts by weight, and a more preferred upper limit is 0.7 parts by weight.
本発明の硬化性樹脂組成物は、硬化促進剤を含有することが好ましい。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができる。 The curable resin composition of the present invention preferably contains a curing accelerator. By containing the curing accelerator, the curing time can be shortened and the productivity can be improved.
上記硬化促進剤としては、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤、ホスフィン系硬化促進剤、リン系硬化促進剤、光塩基発生剤、スルホニウム塩系硬化促進剤等が挙げられる。なかでも、保存安定性に優れることから、イミダゾール系硬化促進剤が好ましい。上記硬化促進剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。 Examples of the curing accelerator include imidazole-based curing accelerators, tertiary amine-based curing accelerators, phosphine-based curing accelerators, phosphorus-based curing accelerators, photobase generators, sulfonium salt-based curing accelerators, and the like. . Of these, imidazole-based curing accelerators are preferred because of their excellent storage stability. The curing accelerators may be used alone, or two or more of them may be used in combination.
上記硬化促進剤の含有量は、上記硬化性樹脂と上記硬化剤と上記硬化促進剤との合計100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記硬化促進剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、硬化時間を短縮させる効果により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。 The content of the curing accelerator has a preferable lower limit of 0.01 parts by weight and a preferable upper limit of 10 parts by weight based on a total of 100 parts by weight of the curable resin, the curing agent and the curing accelerator. When the content of the curing accelerator is within this range, the effect of shortening the curing time while maintaining excellent adhesiveness and the like is enhanced. A more preferred lower limit to the content of the curing accelerator is 0.05 parts by weight, and a more preferred upper limit is 5 parts by weight.
本発明の硬化性樹脂組成物は、応力緩和、靭性付与等を目的として有機充填剤を含有してもよい。
上記有機充填剤としては、例えば、シリコーンゴム粒子、アクリルゴム粒子、ウレタンゴム粒子、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子、ベンゾグアナミン粒子、及び、これらのコアシェル粒子等が挙げられる。なかでも、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子が好ましい。
The curable resin composition of the present invention may contain an organic filler for the purpose of relaxing stress, imparting toughness, and the like.
Examples of the organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Among them, polyamide particles, polyamideimide particles, and polyimide particles are preferred.
上記有機充填剤の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が300重量部である。上記有機充填剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、得られる硬化物が靭性等により優れるものとなる。上記有機充填剤の含有量のより好ましい上限は200重量部である。 The preferred upper limit of the content of the organic filler is 300 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). be. When the content of the organic filler is within this range, the obtained cured product is superior in toughness and the like while maintaining excellent adhesiveness and the like. A more preferable upper limit of the content of the organic filler is 200 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲でポリマー成分を含有してもよい。上記ポリマー成分は、造膜成分としての役割を果たす。 The curable resin composition of the present invention may contain a polymer component as long as the object of the present invention is not impaired. The polymer component serves as a film-forming component.
上記ポリマー成分の数平均分子量の好ましい下限は3000、好ましい上限は10万である。上記ポリマー成分の数平均分子量がこの範囲であることにより、得られる硬化性樹脂組成物が硬化前における可撓性及び加工性、及び、硬化後の耐熱性により優れるものとなる。上記ポリマー成分の数平均分子量のより好ましい下限は5000、より好ましい上限は8万である。 A preferable lower limit of the number average molecular weight of the polymer component is 3,000, and a preferable upper limit thereof is 100,000. When the number average molecular weight of the polymer component is within this range, the resulting curable resin composition will be superior in flexibility and workability before curing and in heat resistance after curing. A more preferable lower limit of the number average molecular weight of the polymer component is 5,000, and a more preferable upper limit thereof is 80,000.
上記ポリマー成分としては、例えば、ポリイミド、フェノキシ樹脂、ポリアミド、ポリアミドイミド、ポリマレイミド、シアネート樹脂、ベンゾオキサジン樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル等が挙げられる。なかでも、耐熱性の観点から、ポリイミド、ポリアミド、ポリアミドイミド、ポリマレイミドが好ましく、ポリイミドがより好ましい。 Examples of the polymer component include polyimide, phenoxy resin, polyamide, polyamideimide, polymaleimide, cyanate resin, benzoxazine resin, acrylic resin, urethane resin, and polyester. Among these, from the viewpoint of heat resistance, polyimide, polyamide, polyamideimide, and polymaleimide are preferable, and polyimide is more preferable.
上記ポリマー成分の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい下限が0.5重量部、好ましい上限が20重量部である。上記ポリマー成分の含有量がこの範囲であることにより、得られる硬化性樹脂組成物の硬化物が耐熱性により優れるものとなる。上記ポリマー成分の含有量のより好ましい下限は1重量部、より好ましい上限は10重量部である。 The preferable lower limit of the content of the polymer component is 0.5 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). , the preferred upper limit is 20 parts by weight. When the content of the polymer component is within this range, the resulting cured product of the curable resin composition is more excellent in heat resistance. A more preferable lower limit of the content of the polymer component is 1 part by weight, and a more preferable upper limit is 10 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で難燃剤を含有してもよい。
上記難燃剤としては、例えば、ベーマイト型水酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム等の金属水和物、ハロゲン系化合物、りん系化合物、窒素化合物等が挙げられる。なかでも、ベーマイト型水酸化アルミニウムが好ましい。
The curable resin composition of the present invention may contain a flame retardant as long as the object of the present invention is not impaired.
Examples of the flame retardant include boehmite-type aluminum hydroxide, aluminum hydroxide, metal hydrates such as magnesium hydroxide, halogen-based compounds, phosphorus-based compounds, and nitrogen compounds. Among them, boehmite-type aluminum hydroxide is preferable.
上記難燃剤の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が200重量部である。上記難燃剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が優れた接着性等を維持したまま、難燃性に優れるものとなる。上記難燃剤の含有量のより好ましい上限は150重量部である。 The content of the flame retardant is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (and the curing accelerator when the curing accelerator is contained). . When the content of the flame retardant is within this range, the resulting curable resin composition has excellent flame retardancy while maintaining excellent adhesion and the like. A more preferable upper limit of the content of the flame retardant is 150 parts by weight.
上記硬化性樹脂組成物は、塗工性等の観点から溶剤を含有してもよい。
上記溶剤としては、塗工性や貯蔵安定性等の観点から、沸点が200℃未満の溶剤が好ましい。
上記沸点が200℃未満の溶剤としては、例えば、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、炭化水素系溶剤、ハロゲン系溶剤、エーテル系溶剤、含窒素系溶剤等が挙げられる。
上記アルコール系溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、イソブチルアルコール、ノルマルブチルアルコール、ターシャリーブチルアルコール、2-エチエルヘキサノール等が挙げられる。
上記ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルプロピルケトン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジアセトンアルコール等が挙げられる。
上記エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸メトキシブチル、酢酸アミル、酢酸ノルマルプロピル、酢酸イソプロピル、乳酸メチル、乳酸エチル、乳酸ブチル等が挙げられる。
上記炭化水素系溶剤としては、例えば、ベンゼン、トルエン、キシレン、ノルマルヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、イソオクタン、ノルマルデカン、ノルマルヘプタン等が挙げられる。
上記ハロゲン系溶剤としては、例えば、ジクロロメタン、クロロホルム、トリクロロエチレン等が挙げられる。
上記エーテル系溶剤としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジイソプロピルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノターシャリーブチルエーテル、プロピレングリコールモノメチルエーテルプロピオネート、3-メトキシブタノール、ジエチレングリコールジメチルエーテル、アニソール、4-メチルアニソール等が挙げられる。
上記含窒素系溶剤としては、例えば、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
なかでも、取り扱い性やイミドオリゴマーの溶解性等の観点から、沸点が60℃以上200℃未満のケトン系溶剤、沸点が60℃以上200℃未満のエステル系溶剤、及び、沸点が60℃以上200℃未満のエーテル系溶剤からなる群より選択される少なくとも1種が好ましい。このような溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸イソブチル、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、シクロヘキサノン、メチルシクロヘキサノン、ジエチレングリコールジメチルエーテル、アニソール等が挙げられる。
なお、上記「沸点」は、101kPaの条件で測定される値、又は、沸点換算図表等で101kPaに換算された値を意味する。
The curable resin composition may contain a solvent from the viewpoint of coatability and the like.
As the solvent, a solvent having a boiling point of less than 200° C. is preferable from the viewpoint of coatability, storage stability, and the like.
Examples of the solvent having a boiling point of less than 200° C. include alcohol-based solvents, ketone-based solvents, ester-based solvents, hydrocarbon-based solvents, halogen-based solvents, ether-based solvents, and nitrogen-containing solvents.
Examples of the alcohol solvent include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, normal butyl alcohol, tertiary butyl alcohol, and 2-ethylhexanol.
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, and diacetone alcohol.
Examples of the ester solvent include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methoxybutyl acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate and the like.
Examples of the hydrocarbon solvent include benzene, toluene, xylene, normal hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, isooctane, normal decane, normal heptane, and the like.
Examples of the halogen-based solvent include dichloromethane, chloroform, and trichlorethylene.
Examples of the ether solvent include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether acetate. , propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, ethylene glycol monotertiary butyl ether, propylene glycol monomethyl ether propionate, 3-methoxybutanol, diethylene glycol dimethyl ether, anisole, 4-methylanisole and the like. be done.
Examples of the nitrogen-containing solvent include acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide and the like.
Among them, from the viewpoint of handleability and solubility of imide oligomers, ketone solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C., ester solvents with a boiling point of 60 ° C. or higher and lower than 200 ° C., and boiling points of 60 ° C. or higher and 200 ° C. At least one selected from the group consisting of ether-based solvents having a temperature of less than °C is preferred. Examples of such solvents include methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, cyclohexanone, methylcyclohexanone, diethylene glycol dimethyl ether, and anisole.
The "boiling point" means a value measured under conditions of 101 kPa, or a value converted to 101 kPa using a boiling point conversion chart or the like.
上記溶剤を含む硬化性樹脂組成物100重量部中における上記溶剤の含有量の好ましい下限は20重量部、好ましい上限は90重量部である。上記溶剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が塗工性等により優れるものとなる。上記溶剤の含有量のより好ましい下限は30重量部、より好ましい上限は80重量部である。 A preferable lower limit of the content of the solvent in 100 parts by weight of the curable resin composition containing the solvent is 20 parts by weight, and a preferable upper limit thereof is 90 parts by weight. When the content of the solvent is within this range, the resulting curable resin composition is more excellent in coatability and the like. A more preferable lower limit for the content of the solvent is 30 parts by weight, and a more preferable upper limit is 80 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で反応性希釈剤を含有してもよい。
上記反応性希釈剤としては、接着信頼性の観点から、1分子中に2つ以上の反応性官能基を有する反応性希釈剤が好ましい。
The curable resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
From the viewpoint of adhesion reliability, the reactive diluent is preferably a reactive diluent having two or more reactive functional groups in one molecule.
本発明の硬化性樹脂組成物は、更に、カップリング剤、貯蔵安定化剤、ブリード防止剤、フラックス剤、レベリング剤等の添加剤を含有してもよい。 The curable resin composition of the present invention may further contain additives such as coupling agents, storage stabilizers, anti-bleeding agents, fluxing agents and leveling agents.
本発明の硬化性樹脂組成物を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、硬化剤と、無機充填剤と、分散剤と、ポリマー成分等とを混合する方法等が挙げられる。上記混合機としては、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等が挙げられる。 The method for producing the curable resin composition of the present invention includes, for example, a method of mixing a curable resin, a curing agent, an inorganic filler, a dispersant, a polymer component, etc. using a mixer. is mentioned. Examples of the mixer include a homodisper, a universal mixer, a Banbury mixer, a kneader, and the like.
本発明の硬化性樹脂組成物を基材フィルム上に塗工し、乾燥させることにより、本発明の硬化性樹脂組成物からなる硬化性樹脂組成物フィルムを得ることができ、該硬化性樹脂組成物フィルムを硬化させて硬化物を得ることができる。 A curable resin composition film comprising the curable resin composition of the present invention can be obtained by applying the curable resin composition of the present invention onto a substrate film and drying the curable resin composition. A cured product can be obtained by curing the product film.
本発明の硬化性樹脂組成物は、硬化物の23℃における誘電正接の好ましい上限が0.0045である。上記硬化物の23℃における誘電正接がこの範囲であることにより、本発明の硬化性樹脂組成物は、多層プリント配線板等の層間絶縁材料に好適に用いることができる。上記硬化物の23℃における誘電正接のより好ましい上限は0.0040、更に好ましい上限は0.0035である。
なお、上記「誘電正接」は、誘電率測定装置及びネットワークアナライザーを用いて1.0GHzの条件で測定される値である。なお、上記「誘電正接」を測定する硬化物は、厚さを40~200μmとした上記硬化性樹脂組成物フィルムを190℃で90分間加熱することにより得ることができる。
In the curable resin composition of the present invention, the preferable upper limit of dielectric loss tangent at 23° C. of the cured product is 0.0045. Since the cured product has a dielectric loss tangent within this range at 23° C., the curable resin composition of the present invention can be suitably used as an interlayer insulating material for multilayer printed wiring boards and the like. A more preferable upper limit of the dielectric loss tangent at 23° C. of the cured product is 0.0040, and a more preferable upper limit is 0.0035.
The above-mentioned "dielectric loss tangent" is a value measured under conditions of 1.0 GHz using a dielectric constant measuring device and a network analyzer. The cured product for measuring the “dielectric loss tangent” can be obtained by heating the curable resin composition film having a thickness of 40 to 200 μm at 190° C. for 90 minutes.
本発明の硬化性樹脂組成物は、広い用途に用いることができる。例えば、プリント配線基板用接着剤、フレキシブルプリント回路基板のカバーレイ用接着剤、銅張積層板、半導体接合用接着剤、層間絶縁材料、プリプレグ、LED用封止剤、構造材料用接着剤等に用いることができる。
特に、本発明の硬化性樹脂組成物は、硬化物が低誘電率、低誘電正接であり、誘電特性に優れるため、多層プリント配線板等の層間絶縁材料に好適に用いることができる。本発明の硬化性樹脂組成物を用いてなる層間絶縁材料もまた、本発明の1つである。
The curable resin composition of the present invention can be used in a wide variety of applications. For example, adhesives for printed wiring boards, adhesives for coverlays of flexible printed circuit boards, copper-clad laminates, adhesives for bonding semiconductors, interlayer insulating materials, prepregs, sealants for LEDs, adhesives for structural materials, etc. can be used.
In particular, the curable resin composition of the present invention can be suitably used as an interlayer insulating material such as a multilayer printed wiring board because the cured product thereof has a low dielectric constant and a low dielectric loss tangent and is excellent in dielectric properties. An interlayer insulating material using the curable resin composition of the present invention is also one aspect of the present invention.
本発明によれば、硬化後の誘電特性及び接着性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物を用いてなる層間絶縁材料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the curable resin composition which is excellent in the dielectric property and adhesiveness after hardening can be provided. Further, according to the present invention, it is possible to provide an interlayer insulating material using the curable resin composition.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(合成例1(イミドオリゴマー組成物の作製))
4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)104重量部をN-メチルピロリドン(富士フイルム和光純薬社製、「NMP」)300重量部に溶解させた。得られた溶液にダイマージアミンであるプリアミン1074(クローダ社製)28重量部をN-メチルピロリドン100重量部で希釈した溶液を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー組成物(イミド化率93%)を得た。
なお、得られたイミドオリゴマー組成物は、H-NMR、GPC、及び、FT-IR分析により、上記式(5-1)又は(5-3)で表される構造を有する脂肪族ジアミン残基含有イミドオリゴマー(Aは4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物残基、Bはダイマージアミン残基)を含むことを確認した。また、該イミドオリゴマー組成物の重量平均分子量は2200であった。
(Synthesis Example 1 (Preparation of imide oligomer composition))
104 parts by weight of 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 parts by weight of N-methylpyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "NMP") dissolved in parts. To the obtained solution, a solution obtained by diluting 28 parts by weight of Priamine 1074 (manufactured by Croda), which is a dimer diamine, diluted with 100 parts by weight of N-methylpyrrolidone, is added, and the mixture is stirred at 25° C. for 2 hours to react to form an amic acid oligomer solution. got After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the solution was heated at 300° C. for 2 hours to obtain an imide oligomer composition (imidization rate: 93%).
The obtained imide oligomer composition was confirmed by 1 H-NMR, GPC, and FT-IR analysis as an aliphatic diamine residue having a structure represented by the above formula (5-1) or (5-3). It was confirmed that a group-containing imide oligomer (A is a 4,4′-(4,4′-isopropylidenediphenoxy)diphthalic anhydride residue, B is a dimer diamine residue). Moreover, the weight average molecular weight of the imide oligomer composition was 2,200.
(合成例2(ポリイミド樹脂溶液の作製))
撹拌機、分水器、及び、窒素ガス導入管を備えた反応容器に4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)54.6重量部、及び、シクロヘキサノン200重量部を仕込み、溶解させた。得られた溶液に、ダイマージアミンであるプリアミン1074(クローダ社製)56.1重量部とシクロヘキサノン55.0重量部の混合溶液を滴下した後、150℃で8時間かけてイミド化反応を行い、ポリイミド樹脂溶液を得た。なお、得られたポリイミド樹脂溶液の固形分濃度は30重量%、ポリイミド樹脂の数平均分子量は25000であった。
(Synthesis Example 2 (Preparation of polyimide resin solution))
54.6 weight of 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a reaction vessel equipped with a stirrer, a water divider, and a nitrogen gas inlet tube. and 200 parts by weight of cyclohexanone were charged and dissolved. A mixed solution of 56.1 parts by weight of Priamine 1074 (manufactured by Croda), which is a dimer diamine, and 55.0 parts by weight of cyclohexanone was added dropwise to the resulting solution, followed by imidization reaction at 150° C. for 8 hours. A polyimide resin solution was obtained. The polyimide resin solution obtained had a solid concentration of 30% by weight and a number average molecular weight of 25,000.
(実施例1~7、比較例1~4)
表1に記載された配合比に従い、各材料を撹拌混合し、実施例1~7、比較例1~4の各硬化性樹脂組成物を作製した。
得られた各硬化性樹脂組成物を厚みが約20μmとなるように基材PETフィルム上に塗工し、乾燥させることにより、基材PETフィルム上に硬化性樹脂組成物フィルムを作製した。得られた硬化性樹脂組成物フィルムからPETフィルムを剥離し、厚み500μmになるようにラミネーターにより積層し、積層体を得た。得られた積層体について、回転式レオメーターを用いて、周波数0.01Hzから1.0Hzの条件で90℃まで加熱し、90℃、歪5%、1rad/secにおける複素粘度を測定した。また、同様にして得られた積層体について、回転式レオメーターを用いて、周波数1.0Hz、歪21%、40℃から120℃まで加熱し、90℃における溶融粘度を測定した。上記回転式レオメーターとしては、ARES(TAインスツルメント社製)を用いた。複素粘度及び溶融粘度の測定結果を表1に示した。
(Examples 1 to 7, Comparative Examples 1 to 4)
According to the compounding ratio shown in Table 1, each material was stirred and mixed to prepare curable resin compositions of Examples 1 to 7 and Comparative Examples 1 to 4.
Each obtained curable resin composition was coated on a substrate PET film so as to have a thickness of about 20 μm, and dried to prepare a curable resin composition film on the substrate PET film. The PET film was peeled off from the obtained curable resin composition film, and laminated with a laminator to a thickness of 500 μm to obtain a laminate. Using a rotary rheometer, the obtained laminate was heated to 90° C. at a frequency of 0.01 Hz to 1.0 Hz, and the complex viscosity at 90° C., 5% strain, and 1 rad/sec was measured. Also, the laminate obtained in the same manner was heated from 40° C. to 120° C. at a frequency of 1.0 Hz, a strain of 21%, and the melt viscosity at 90° C. was measured using a rotary rheometer. ARES (manufactured by TA Instruments) was used as the rotational rheometer. Table 1 shows the measurement results of the complex viscosity and the melt viscosity.
<評価>
実施例及び比較例で得られた各硬化性樹脂組成物について以下の評価を行った。結果を表1に示した。
<Evaluation>
Each curable resin composition obtained in Examples and Comparative Examples was evaluated as follows. Table 1 shows the results.
(誘電特性)
実施例及び比較例で得られた各硬化性樹脂組成物を基材PETフィルム上に塗工し、乾燥させることにより、基材PETフィルムと、該基材PETフィルム上に厚さが40μmの硬化性樹脂組成物層とを有する未硬化積層フィルムを得た。得られた未硬化積層フィルムを幅2mm、長さ80mmの大きさに裁断した。裁断後の未硬化積層フィルムの硬化性樹脂組成物層から基材PETフィルムを剥離し、ラミネーターを用いて硬化性樹脂組成物層を5層重ね合わせて厚さ約200μmの積層体を得た。得られた積層体を190℃で90分間加熱して、硬化体を得た。得られた硬化体について、空洞共振摂動法誘電率測定装置CP521(関東電子応用開発社製)及びネットワークアナライザーN5224A PNA(キーサイトテクノロジー社製)を用いて、空洞共振法で23℃にて、周波数1.0GHzにて誘電正接を測定した。
誘電正接が0.0035以下であった場合を「◎」、誘電正接が0.0035を超え0.0040以下であった場合を「○」、誘電正接が0.0040を超え0.0045以下であった場合を「△」、誘電正接が0.0045を超えた場合を「×」として誘電特性を評価した。
(dielectric properties)
Each curable resin composition obtained in Examples and Comparative Examples was coated on a base PET film and dried to form a base PET film and a cured film having a thickness of 40 μm on the base PET film. An uncured laminated film having a flexible resin composition layer was obtained. The obtained uncured laminated film was cut into a size of 2 mm in width and 80 mm in length. The substrate PET film was peeled off from the curable resin composition layer of the cut uncured laminated film, and five curable resin composition layers were laminated using a laminator to obtain a laminate having a thickness of about 200 μm. The resulting laminate was heated at 190° C. for 90 minutes to obtain a cured product. For the obtained cured body, a cavity resonance perturbation method permittivity measuring device CP521 (manufactured by Kanto Denshi Applied Development Co., Ltd.) and a network analyzer N5224A PNA (manufactured by Keysight Technologies) were used to measure the frequency at 23 ° C. by the cavity resonance method. Dielectric loss tangent was measured at 1.0 GHz.
"◎" when the dielectric loss tangent was 0.0035 or less, "○" when the dielectric loss tangent was over 0.0035 and 0.0040 or less, and when the dielectric loss tangent was over 0.0040 and 0.0045 or less The dielectric properties were evaluated as “Δ” when there was a dielectric loss tangent, and as “×” when the dielectric loss tangent exceeded 0.0045.
(銅箔に対する接着性)
実施例及び比較例で得られた各硬化性樹脂組成物を、厚みが約20μmとなるようにポリイミド基材(東レ・デュポン社製、「カプトン100H」、厚さ25μm)上に塗工し、乾燥させることにより、ポリイミド基材上に硬化性樹脂組成物フィルムを有する積層体を得た。得られた積層体を1cm幅にカットし、硬化性樹脂組成物面側に厚さ35μmの銅箔(福田金属箔粉工業社製、電解銅箔の光沢面、「CF-T8G-UN-35」)を積層して、190℃、3MPa、1時間の条件で熱プレスを行い、硬化性樹脂組成物層を硬化させ試験片を得た。作製後24時間以内の試験片について、引張試験機(ORIENTEC社製、「UCT-500」)により、25℃において剥離速度50mm/minで90°ピール試験を行って剥離強度を測定した。
初期接着力が5N/cm以上であった場合を「◎」、4N/cm以上5N/cm未満であった場合を「○」、3N/cm以上4N/cm未満であった場合を「△」、3N/cm未満であった場合を「×」として銅箔に対する接着性を評価した。
(Adhesion to copper foil)
Each curable resin composition obtained in Examples and Comparative Examples was coated on a polyimide substrate ("Kapton 100H" manufactured by Toray DuPont Co., Ltd., thickness 25 μm) so as to have a thickness of about 20 μm, By drying, a laminate having a curable resin composition film on the polyimide substrate was obtained. The resulting laminate was cut to a width of 1 cm, and a 35 μm thick copper foil (manufactured by Fukuda Metal Foil and Powder Co., Ltd., a glossy surface of electrolytic copper foil, “CF-T8G-UN-35 ”) was laminated and heat-pressed under the conditions of 190° C., 3 MPa, and 1 hour to cure the curable resin composition layer and obtain a test piece. A test piece within 24 hours after preparation was subjected to a 90° peel test at a peel rate of 50 mm/min at 25° C. using a tensile tester ("UCT-500" manufactured by ORIENTEC) to measure the peel strength.
"◎" when the initial adhesive strength was 5 N / cm or more, "○" when it was 4 N / cm or more and less than 5 N / cm, and "△" when it was 3 N / cm or more and less than 4 N / cm. , and the adhesiveness to the copper foil was evaluated as "x" when it was less than 3 N/cm.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
本発明によれば、硬化後の誘電特性及び接着性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物を用いてなる層間絶縁材料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the curable resin composition which is excellent in the dielectric property and adhesiveness after hardening can be provided. Further, according to the present invention, it is possible to provide an interlayer insulating material using the curable resin composition.

Claims (6)

  1. 硬化性樹脂と、硬化剤と、無機充填剤と、分散剤とを含有し、
    90℃、歪5%、1rad/secにおける複素粘度が8000Pa・s以下である
    ことを特徴とする硬化性樹脂組成物。
    containing a curable resin, a curing agent, an inorganic filler, and a dispersant;
    A curable resin composition having a complex viscosity of 8000 Pa·s or less at 90°C, 5% strain and 1 rad/sec.
  2. 前記無機充填剤は、シリカである請求項1記載の硬化性樹脂組成物。 2. The curable resin composition according to claim 1, wherein said inorganic filler is silica.
  3. 前記硬化性樹脂組成物の固形分全体100重量部中における前記無機充填剤の含有量が65重量部以上である請求項1又は2記載の硬化性樹脂組成物。 3. The curable resin composition according to claim 1, wherein the content of said inorganic filler is 65 parts by weight or more in 100 parts by weight of the total solid content of said curable resin composition.
  4. 前記分散剤は、ポリウレタン系分散剤である請求項1、2又は3記載の硬化性樹脂組成物。 4. The curable resin composition according to claim 1, 2 or 3, wherein the dispersant is a polyurethane-based dispersant.
  5. 更に、ポリマー成分を含有する請求項1、2、3又は4記載の硬化性樹脂組成物。 5. The curable resin composition according to claim 1, 2, 3 or 4, further comprising a polymer component.
  6. 請求項1、2、3、4又は5記載の硬化性樹脂組成物を用いてなる層間絶縁材料。 An interlayer insulating material using the curable resin composition according to claim 1, 2, 3, 4 or 5.
PCT/JP2022/031479 2021-09-02 2022-08-22 Curable resin composition and interlayer insulating material WO2023032723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-143094 2021-09-02
JP2021143094 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023032723A1 true WO2023032723A1 (en) 2023-03-09

Family

ID=85412515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031479 WO2023032723A1 (en) 2021-09-02 2022-08-22 Curable resin composition and interlayer insulating material

Country Status (2)

Country Link
TW (1) TW202323380A (en)
WO (1) WO2023032723A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241321A (en) * 2011-11-29 2013-12-05 Mitsubishi Chemicals Corp Aggregated boron nitride particle, composition containing aggregated boron nitride particle, and three-dimensional integrated circuit having layer comprising composition
JP2015065368A (en) * 2013-09-26 2015-04-09 日東電工株式会社 Resin sheet, and method for manufacturing electronic device package
JP2020522593A (en) * 2017-12-11 2020-07-30 エルジー・ケム・リミテッド Thermosetting resin composition for metal thin film coating and metal laminate using the same
JP2021070748A (en) * 2019-10-31 2021-05-06 三菱電機株式会社 Sheet type insulation varnish and method for manufacturing the same, electric apparatus and rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241321A (en) * 2011-11-29 2013-12-05 Mitsubishi Chemicals Corp Aggregated boron nitride particle, composition containing aggregated boron nitride particle, and three-dimensional integrated circuit having layer comprising composition
JP2015065368A (en) * 2013-09-26 2015-04-09 日東電工株式会社 Resin sheet, and method for manufacturing electronic device package
JP2020522593A (en) * 2017-12-11 2020-07-30 エルジー・ケム・リミテッド Thermosetting resin composition for metal thin film coating and metal laminate using the same
JP2021070748A (en) * 2019-10-31 2021-05-06 三菱電機株式会社 Sheet type insulation varnish and method for manufacturing the same, electric apparatus and rotary electric machine

Also Published As

Publication number Publication date
TW202323380A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
JP7184641B2 (en) Curable resin composition and adhesive
TWI823848B (en) Curable resin compositions, cured products, adhesives, adhesive films, cover films, flexible copper-clad laminates, and circuit boards
JP2020007397A (en) Curable resin composition, imide compound, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
WO2021241548A1 (en) Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object
JP7265474B2 (en) Curable resin composition, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
WO2023032723A1 (en) Curable resin composition and interlayer insulating material
JP2023118258A (en) Curable resin composition and interlayer insulating material
JP2020200413A (en) Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured product
WO2021193437A1 (en) Curable resin composition, adhesive agent, and adhesive film
JP7168326B2 (en) Curable resin composition, cured product, adhesive, adhesive film, and circuit board
JP7168325B2 (en) Curable resin composition, cured product, adhesive, adhesive film, coverlay film, flexible copper-clad laminate, and circuit board
JP2021155493A (en) Thermosetting adhesive film
JP7207863B2 (en) Curable resin composition, cured product, adhesive and adhesive film
JP2022105887A (en) Curable resin composition, cured product, adhesive, and adhesive film
WO2022220253A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
WO2023136098A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
JP2022188991A (en) Thermosetting resin composition, adhesive, adhesive varnish, adhesive film, and cured product
JP2021155494A (en) Curable resin composition, adhesive, and adhesive film
JP2023067452A (en) Curable resin composition, cured product, adhesive, and adhesive film
WO2023090347A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
JP2022173783A (en) Curable resin composition, cured object, adhesive, and adhesive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022561563

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864307

Country of ref document: EP

Kind code of ref document: A1