WO2021241548A1 - Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object - Google Patents

Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object Download PDF

Info

Publication number
WO2021241548A1
WO2021241548A1 PCT/JP2021/019735 JP2021019735W WO2021241548A1 WO 2021241548 A1 WO2021241548 A1 WO 2021241548A1 JP 2021019735 W JP2021019735 W JP 2021019735W WO 2021241548 A1 WO2021241548 A1 WO 2021241548A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin composition
composition according
adhesive
weight
Prior art date
Application number
PCT/JP2021/019735
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 北條
さやか 脇岡
幸平 竹田
誠実 新土
和良 岩根
良平 増井
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2021534893A priority Critical patent/JPWO2021241548A1/ja
Publication of WO2021241548A1 publication Critical patent/WO2021241548A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition

Definitions

  • the present invention relates to a curable resin composition having excellent coatability by a spin coating method, adhesiveness of a cured product, and long-term heat resistance.
  • the present invention also relates to an adhesive, an adhesive varnish, and an adhesive film made of the curable resin composition, and a cured product of the curable resin composition.
  • Curable resins such as epoxy resins, which have low shrinkage and are excellent in adhesiveness, insulation, and chemical resistance, are used in many industrial products. In particular, in electronic equipment applications, curable resin compositions that give good results in a solder reflow test for short-time heat resistance and a cold-heat cycle test for repeated heat resistance are often used.
  • a curable resin composition having excellent heat resistance and adhesiveness for example, Patent Documents 1 and 2 disclose a curable resin composition containing an epoxy resin and an imide compound as a curing agent.
  • a varnish is applied onto the base material by a spin coating method, and then the adherend is layered to cure the varnish.
  • the adhesive layer can be easily formed at low cost.
  • a curable resin composition having excellent heat resistance and adhesiveness is applied by a spin coating method, there is a problem that the coating film does not spread sufficiently and a uniform coating film cannot be obtained. Therefore, there has been a demand for a curable resin composition that can be uniformly applied by the spin coating method and has excellent adhesiveness and long-term heat resistance of the cured product.
  • the viscosity at 25 ° C. is 200 mPa ⁇ s or more and 600 mPa ⁇ s or less
  • the thixotropic index at 25 ° C. is 2.0 or less
  • the initial adhesive force of the cured product to the silicon chip is 3 MPa or more
  • the present inventors have a viscosity at 25 ° C., a thixotropic index at 25 ° C., an initial adhesive force of the cured product to a silicon chip, and silicon of the cured product after storage at 150 ° C. for 100 hours in the curable resin composition. It was examined to keep the adhesive strength to the chip within a specific range. As a result, it has been found that a curable resin composition having excellent coatability by the spin coating method, adhesiveness of the cured product and long-term heat resistance can be obtained, and the present invention has been completed.
  • the curable resin composition of the present invention has a lower limit of viscosity of 200 mPa ⁇ s and an upper limit of 600 mPa ⁇ s at 25 ° C. When the viscosity is in this range, the curable resin composition of the present invention is excellent in coatability by the spin coating method.
  • the preferable lower limit of the viscosity is 220 mPa ⁇ s, and the preferred upper limit is 550 mPa ⁇ s.
  • the above-mentioned "viscosity” means a value measured under the condition of 10 rpm using an E-type viscometer. Examples of the E-type viscometer include VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.), and a CP1 type cone plate can be used.
  • the curable resin composition of the present invention preferably has a viscosity of 2.0 times or less the initial viscosity after being stored at 25 ° C. for 8 days.
  • the viscosity after storage at 25 ° C. for 8 days is 2.0 times or less the initial viscosity
  • the curable resin composition of the present invention has excellent storage stability.
  • the viscosity after storage at 25 ° C. for 8 days is preferably 1.5 times or less, more preferably 1.3 times or less the initial viscosity.
  • the above-mentioned "inioned "inioned "inioned "inioned "inioned "inioned "inioned "initial viscosity” means the viscosity of the curable resin composition measured at 25 ° C. within 60 minutes after production or within 30 minutes after thawing when stored frozen.
  • viscosity after storage at 25 ° C. for 8 days is a curable resin composition measured at 25 ° C. after being manufactured or thawed after being stored frozen and then stored at 25 ° C. for 8 days. Means viscosity.
  • the curable resin composition of the present invention has an upper limit of the thixotropic index at 25 ° C. of 2.0.
  • the thixotropic index is 2.0 or less, the curable resin composition of the present invention has excellent coatability by the spin coating method.
  • the preferred upper limit of the thixotropic index is 1.9, and the more preferable upper limit is 1.8.
  • the lower limit of the thixotropic index is not particularly preferable, but the practical lower limit is 1.0.
  • the above-mentioned "thixotropic index” means a value obtained by dividing the viscosity measured under the condition of 1.0 rpm using an E-type viscometer by the viscosity measured under the condition of 10 rpm.
  • the lower limit of the initial adhesive force of the cured product to the silicon chip is 3 MPa.
  • the curable resin composition of the present invention can be suitably used for bonding electronic components.
  • the preferable lower limit of the initial adhesive force of the cured product to the silicon chip is 3.2 MPa.
  • the initial adhesive force of the cured product to the silicon chip can be measured by the following method. That is, first, the curable resin composition is applied to the polyimide substrate, and the silicon chips are laminated.
  • the curable resin composition is cured by heating at 190 ° C. for 1 hour to obtain a test piece.
  • the obtained test piece is measured for die shear strength at 25 ° C. at a speed of 100 ⁇ m / s and a test height of 100 ⁇ m using a die shear tester.
  • the obtained die shear strength is used as the initial adhesive force of the cured product to the silicon chip.
  • Kapton 200H manufactured by Toray Industries, Inc., surface roughness 0.03 to 0.07 ⁇ m
  • the silicon chip a silicon chip manufactured by Global Wafer Co., Ltd. (surface roughness 0. 5 to 1.0 nm) can be used.
  • DAGE4000 manufactured by Nordson
  • the lower limit of the adhesive force of the cured product to the silicon chip after storage at 150 ° C. for 100 hours is 2 MPa.
  • the curable resin composition of the present invention can be suitably used for adhering electronic components. ..
  • the preferable lower limit of the adhesive force of the cured product after storage at 150 ° C. for 100 hours with respect to the silicon chip is 2.1 MPa, and the more preferable lower limit is 2.2 MPa.
  • the adhesive strength of the cured product after storage at 150 ° C. for 100 hours can be measured by the following method. That is, first, the test piece obtained in the same manner as the above-mentioned "initial adhesive force of the cured product to the silicon chip" is stored in an oven at 150 ° C. for 100 hours. Next, the die shear strength of the stored test piece is measured at a speed of 100 ⁇ m / s and a test height of 100 ⁇ m at 25 ° C. using a die shear tester. The obtained die shear strength is used as the adhesive strength to the silicon chip of the cured product after being stored at 150 ° C. for 100 hours.
  • the viscosity, the thixotropic index, the initial adhesive force of the cured product to the silicon chip, and the adhesive force of the cured product to the silicon chip after storage at 150 ° C. for 100 hours are within the above-mentioned ranges.
  • a method of adjusting the type of each constituent component contained in the curable resin composition and the content ratio thereof is preferable.
  • the curable resin composition of the present invention preferably contains a curable resin and a curing agent.
  • the curable resin composition of the present invention is preferably a thermosetting resin composition, and more preferably contains a curable resin and a thermosetting agent as a curing agent.
  • the curable resin examples include epoxy resin, acrylic resin, phenol resin, cyanate resin, isocyanate resin, maleimide resin, benzoxazine resin, silicone resin, fluororesin and the like.
  • the curable resin preferably contains an epoxy resin.
  • these curable resins may be used alone or in combination of two or more.
  • the curable resin is preferably liquid or semi-solid at 25 ° C. because it is easier to set the viscosity and the thixotropic index of the obtained curable resin composition within the above ranges. It is more preferable that it is liquid at 25 ° C.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , Propoxy oxide-added bisphenol A type epoxy resin, triazine type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy Resin, naphthylene ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalenephenol novolac type epoxy resin, glycidylamine type epoxy resin, alkyl Examples thereof include a polyol type epoxy resin, a rubber-modified epoxy resin, and a
  • the heat-curing agent examples include an imide skeleton in the main chain, an imide oligomer having a crosslinkable functional group at the end, an acid anhydride-based curing agent, a phenol-based curing agent, a thiol-based curing agent, an amine-based curing agent, and a cyanate-based.
  • the thermosetting agent preferably contains an imide oligomer from the viewpoint of adhesiveness and long-term heat resistance of the cured product of the obtained curable resin composition.
  • the curable resin composition of the present invention is more excellent in adhesiveness and long-term heat resistance of the cured product, and it is easier to set the viscosity and the thixotropic index in the above-mentioned range. It is preferable that the curing agent contains an imide oligomer and also contains a polymer compound described later.
  • the imide oligomer preferably has a structure represented by the following formula (1-1) or the following formula (1-2) as a structure containing the crosslinkable functional group.
  • the imide oligomer is excellent in reactivity and compatibility with a curable resin such as an epoxy resin.
  • A is an acid dianhydride residue
  • B is an aliphatic diamine residue or an aromatic diamine residue.
  • Ar is a optionally substituted divalent aromatic group.
  • the acid dianhydride residue is preferably a tetravalent group represented by the following formula (2-1) or the following formula (2-2).
  • * is a bond position
  • Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a bond.
  • the hydrogen atom of the aromatic ring in the formula (2-1) and the formula (2-2) may be substituted.
  • Z in the above formula (2-1) has a linear or branched divalent hydrocarbon group which may have an oxygen atom at the bond position, or an oxygen atom at the bond position. If it is a divalent group having a optionally aromatic ring, these groups may be substituted.
  • substituent include a halogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group and an alkoxy group. , Nitro group, cyano group and the like.
  • Examples of the acid dianhydride from which the acid dianhydride residue is derived include an acid dianhydride represented by the formula (8) described later.
  • the preferable lower limit of the carbon number of the aliphatic diamine residue is 4.
  • the obtained thermosetting adhesive film is excellent in handleability before curing and dielectric properties after curing.
  • the more preferable lower limit of the number of carbon atoms of the aliphatic diamine residue is 5, and the more preferable lower limit is 6.
  • the practical upper limit is 60.
  • Examples of the aliphatic diamine from which the above aliphatic diamine residue is derived include an aliphatic diamine derived from dimer acid, a linear or branched aliphatic diamine, an aliphatic ether diamine, and an aliphatic alicyclic type. Examples include diamine. Examples of the aliphatic diamine derived from the dimer acid include dimer diamine and hydrogenated diamine diamine.
  • linear or branched aliphatic diamine examples include 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonandiamine, 1,10-decanediamine, and 1, 11-Undecanediamine, 1,12-Dodecanediamine, 1,14-Tetradecanediamine, 1,16-Hexadecanediamine, 1,18-Octadecanediamine, 1,20-Eicosandiamine, 2-Methyl-1,8-octane Examples thereof include diamine, 2-methyl-1,9-nonanediamine, 2,7-dimethyl-1,8-octanediamine and the like.
  • Examples of the aliphatic ether diamine include 2,2'-oxybis (ethylamine), 3,3'-oxybis (propylamine), 1,2-bis (2-aminoethoxy) ethane and the like.
  • Examples of the aliphatic alicyclic diamine include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine.
  • the aliphatic diamine residue is preferably an aliphatic diamine residue derived from the dimer acid.
  • the aromatic diamine residue is a divalent represented by the following formula (3-1) or the following formula (3-2). It is preferably the basis of.
  • Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a bond.
  • the hydrogen atom of the aromatic ring in the formula (3-1) and the formula (3-2) may be substituted.
  • Y in the above formula (3-1) has a linear or branched divalent hydrocarbon group which may have an oxygen atom at the bond position, or an oxygen atom at the bond position. If it is a divalent group having a optionally aromatic ring, these groups may be substituted.
  • substituent include a halogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group and an alkoxy group. , Nitro group, cyano group and the like.
  • aromatic diamine from which the aromatic diamine residue is derived examples include those in which the diamine represented by the formula (9) described later is an aromatic diamine.
  • the imide oligomer when the imide oligomer has a siloxane skeleton in the structure, it may lower the glass transition temperature after curing or contaminate the adherend and cause poor adhesion. Therefore, the imide oligomer has a siloxane skeleton in the structure. It is preferably not an imide oligomer.
  • the number average molecular weight of the imide oligomer is preferably 4000 or less.
  • the number average molecular weight of the imide oligomer is 4000 or less, the cured product of the obtained curable resin composition is superior in long-term heat resistance.
  • a more preferable upper limit of the number average molecular weight of the imide oligomer is 3400, and a further preferable upper limit is 2800.
  • the number average molecular weight of the imide oligomer is preferably 900 or more and 4000 or less when the structure is represented by the above formula (1-1), and the structure represented by the above formula (1-2) is preferable. If it has, it is preferably 550 or more and 4000 or less.
  • the more preferable lower limit of the number average molecular weight is 950, and the more preferable lower limit is 1000.
  • the more preferable lower limit of the number average molecular weight is 580, and the further preferable lower limit is 600.
  • the above-mentioned "number average molecular weight” is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industry Co., Ltd.).
  • the imide oligomer is an imide oligomer represented by the following formula (4-1), the following formula (4-2), the following formula (4-3), or the following formula (4-4).
  • it is preferably an imide oligomer represented by the following formula (5-1), the following formula (5-2), the following formula (5-3), or the following formula (5-4).
  • A is the acid dianhydride residue, and in formulas (4-1), formula (4-3), and formula (4-4). , A may be the same or different from each other.
  • B is the aliphatic diamine residue or the aromatic diamine residue, and in formulas (4-3) and (4-4), B is. , Each may be the same or different.
  • X is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted
  • W is a hydrogen atom, a halogen atom. , Or a monovalent hydrocarbon group which may be substituted.
  • A is the acid dianhydride residue, and in formulas (5-3) and (5-4), A is the same. It may or may not be different.
  • R is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted, and formulas (5-1) and (5). -3) In the middle, R may be the same or different.
  • W is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted, and the formula (5-3) and the formula (5-3).
  • B is the aliphatic diamine residue or the aromatic diamine residue.
  • a in the above formulas (4-1) to (4-4) and the above formulas (5-1) to (5-4) is the following formula (6-1) or the following formula (6-2). It is preferably a tetravalent group represented.
  • * is a bond position
  • Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a bond.
  • the hydrogen atom of the aromatic ring in the formula (6-1) and the formula (6-2) may be substituted.
  • Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a bond.
  • the hydrogen atom of the aromatic ring in the formula (7-1) and the formula (7-2) may be substituted.
  • an acid dianhydride represented by the following formula (8) and a diamine represented by the following formula (9) are used as a method for producing an imide oligomer having a structure represented by the above formula (1-1).
  • an acid dianhydride represented by the following formula (8) and a diamine represented by the following formula (9) are used as a method for producing an imide oligomer having a structure represented by the above formula (1-1).
  • a method of reacting with the above can be mentioned.
  • A is the same tetravalent group as A in formula (1-1) above.
  • B is the same divalent group as B in the above formula (1-1), and R 1 to R 4 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively. ..
  • the method for reacting the acid dianhydride represented by the above formula (8) with the diamine represented by the above formula (9) are shown below.
  • the diamine represented by the above formula (9) is previously dissolved in a solvent (for example, N-methylpyrrolidone) in which the amic acid oligomer obtained by the reaction is soluble, and the above formula (8) is added to the obtained solution.
  • the acid dianhydride represented by is added and reacted to obtain an amic acid oligomer solution.
  • a method of removing the solvent by heating, depressurization or the like, and further heating at about 200 ° C. or higher for 1 hour or longer to react the amic acid oligomer and the like can be mentioned.
  • the desired number average molecular weight can be obtained.
  • An imide oligomer having a structure represented by the above formula (1-1) can be obtained at the end.
  • substituting a part of the acid anhydride represented by the above formula (8) with the acid anhydride represented by the following formula (10) it has a desired number average molecular weight and has the above-mentioned number average molecular weight at one end.
  • An imide oligomer having a structure represented by the formula (1-1) and having a structure derived from an acid anhydride represented by the following formula (10) at the other end can be obtained.
  • the acid dianhydride represented by the above formula (8) and the acid anhydride represented by the following formula (10) may be added at the same time or separately.
  • a part of the diamine represented by the above formula (9) with a monoamine represented by the following formula (11), it has a desired number average molecular weight and has the above formula (1-1) at one end.
  • an imide oligomer having a structure derived from a monoamine represented by the following formula (11) at the other end can be obtained.
  • the diamine represented by the above formula (9) and the monoamine represented by the following formula (11) may be added at the same time or separately.
  • Ar is a divalent aromatic group that may be substituted.
  • Ar is a optionally substituted monovalent aromatic group
  • R 5 and R 6 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively.
  • an imide oligomer having a structure represented by the above formula (1-2) for example, an acid dianhydride represented by the above formula (8) and a phenolic oligomer represented by the following formula (12) are used. Examples thereof include a method of reacting with a hydroxyl group-containing monoamine.
  • Ar is a optionally substituted divalent aromatic group
  • R 7 and R 8 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively.
  • the desired number average molecular weight can be obtained. It is possible to obtain an imide oligomer having a structure represented by the above formula (1-2) at both ends. Further, by substituting a part of the phenolic hydroxyl group-containing monoamine represented by the above formula (12) with the monoamine represented by the above formula (11), it has a desired number average molecular weight and has the above formula at one end.
  • An imide oligomer having a structure represented by (1-2) and having a structure derived from a monoamine represented by the above formula (11) at the other end can be obtained.
  • the phenolic hydroxyl group-containing monoamine represented by the above formula (12) and the monoamine represented by the above formula (11) may be added at the same time or separately.
  • Examples of the acid dianhydride represented by the above formula (8) include pyromellitic acid dianhydride, 3,3'-oxydiphthalic acid dianhydride, 3,4'-oxydiphthalic acid dianhydride, 4,4. '-Oxydiphthalic acid dianhydride, 4,4'-(4,4'-isopropylidene diphenoxy) diphthalic acid anhydride, 4,4'-bis (2,3-dicarboxyphenoxy) diphenyl ether dianhydride, p. -Phenylenebis (trimeritate anhydride), 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride and the like can be mentioned.
  • aromatic acid dianhydride having a melting point of 240 ° C. or lower is preferable as the acid dianhydride used as a raw material of the imide oligomer because it is more excellent in solubility and heat resistance, and the melting point is 220 ° C.
  • aromatic acid dianhydrides are more preferred, aromatic acid dianhydrides having a melting point of 200 ° C. or lower are even more preferred, and 3,4'-oxydiphthalic acid dianhydrides (melting point 180 ° C.), 4,4'. -(4,4'-Isopropylidene diphenoxy) diphthalic anhydride (melting point 190 ° C.) is particularly preferable.
  • melting point means a value measured as the temperature of the endothermic peak when the temperature is raised at 10 ° C./min using a differential scanning calorimeter.
  • Examples of the differential scanning calorimeter include EXTER DSC6100 (manufactured by SII Nanotechnology).
  • Examples of the diamine represented by the above formula (9) include 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenyl ether, and 3,4.
  • Examples of the acid anhydride represented by the above formula (10) include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 1,2-naphthalanhydride, and 2,3-naphthal. Acid Anhydride, 1,8-Naphthalic Acid Anhydride, 2,3-Anthracendicarboxylic Acid Anhydride, 4-tert-butylphthalic Acid Anhydride, 4-Etinylphthalic Acid Anhydride, 4-Phenylethynylphthalic Acid Anhydride, Examples thereof include 4-fluorophthalic anhydride, 4-chlorophthalic anhydride, 4-bromophthalic anhydride, 3,4-dichlorophthalic anhydride and the like.
  • Examples of the monoamine represented by the above formula (11) include aniline, o-toluidine, m-toluidine, p-toluidine, 2,4-dimethylaniline, 3,4-dimethylaniline, and 3,5-dimethylaniline.
  • Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (12) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, and 4-amino-2. , 3-Xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -Amino-2,6-diphenylphenol and the like can be mentioned. Of these, 4-amino-o-cresol and 5-amino-o-cresol are preferable because they are excellent in availability and storage stability, and a high glass transition temperature can be obtained after curing.
  • the imide oligomer is a plurality of imide oligomers having a structure represented by the above formula (1-1) or a structure represented by the above formula (1-2). It is obtained as a mixture of a plurality of types of imide oligomers having the above and each raw material (imide oligomer composition).
  • the imide oligomer composition has an imidization ratio of 70% or more, a cured product having superior mechanical strength and long-term heat resistance at high temperatures can be obtained when used as a curing agent.
  • the preferable lower limit of the imidization ratio of the imide oligomer composition is 75%, and the more preferable lower limit is 80%.
  • the practical upper limit is 98%.
  • the above “imidization rate” was measured by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (FT-IR), and was derived from the carbonyl group of amic acid at 1660 cm -1. It can be derived from the peak absorbance area in the vicinity by the following formula.
  • Examples of the Fourier transform infrared spectrophotometer include UMA600 (manufactured by Agilent Technologies) and the like.
  • the imide oligomer composition is used as a curing agent in a curable resin composition, it is preferable to dissolve 3 g or more of the imide oligomer composition in 10 g of tetrahydrofuran at 25 ° C.
  • the imide oligomer has an imide skeleton in the main chain, an aliphatic diamine residue which may be substituted and / or an aliphatic triamine residue which may be substituted, and a crosslinkable functional group at the terminal.
  • An imide oligomer having an imide oligomer (hereinafter, also referred to as "oliphatic diamine residue and / or aliphatic triamine residue-containing imide oligomer”) is preferable. Since the aliphatic diamine residue and / or the aliphatic triamine residue-containing imide oligomer has the aliphatic diamine residue and / or the aliphatic triamine residue, the curable resin composition obtained can be obtained before curing. Flexibility and workability, as well as tackability at room temperature can be improved.
  • the preferable lower limit of the content of the imide oligomer in 100 parts by weight of the total of the curable resin and the curing agent (further curing accelerator when the curing accelerator described later is contained) is 20 parts by weight, and the preferable upper limit is 80 parts by weight. Is.
  • the content of the imide oligomer is in this range, the obtained curable resin composition becomes more excellent in flexibility and processability before curing and heat resistance after curing.
  • the more preferable lower limit of the content of the imide oligomer is 25 parts by weight, and the more preferable upper limit is 75 parts by weight.
  • the content of the imide oligomer is the imide oligomer composition (when another imide oligomer is used in combination, the imide oligomer is used). It means the content of the composition and other imide oligomers).
  • the curable resin composition of the present invention preferably contains a polymer compound.
  • a flow conditioner composed of inorganic particles or the like is used to adjust the viscosity of the curable resin composition within the above range, it may be difficult to set the thixotropic index within the above range. In addition, it may be difficult to keep the initial adhesive force of the cured product on the silicon chip and the adhesive force of the cured product on the silicon chip after storage at 150 ° C. for 100 hours within the above-mentioned range.
  • the above-mentioned polymer compound it becomes easier to keep the viscosity and the thixotropic index within the above-mentioned range while maintaining the adhesiveness and long-term heat resistance of the cured product.
  • the preferable lower limit of the number average molecular weight of the polymer compound is 10,000, and the preferable upper limit is 80,000.
  • the viscosity and the thixotropic index should be in the above range while maintaining the adhesiveness and long-term heat resistance of the cured product of the obtained curable resin composition. Will be easier.
  • the more preferable lower limit of the number average molecular weight of the polymer compound is 12000, and the upper limit is 70,000.
  • polymer compound examples include polyimide, polyamideimide, bismaleimide, phenoxy resin, polyester and the like. Of these, polyimide and phenoxy resin are preferable, and polyimide is more preferable, from the viewpoint of heat resistance.
  • the polymer compound may be used alone or in combination of two or more.
  • the preferable lower limit is 1 part by weight
  • the preferable upper limit is 1 part by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (in the case of further containing the curing accelerator described later, the curing accelerator). Is 25 parts by weight.
  • the content of the polymer compound is in this range, the viscosity and the thixotropic index can be set in the above range while maintaining the adhesiveness and long-term heat resistance of the cured product of the obtained curable resin composition. It will be easier.
  • the more preferable lower limit of the content of the polymer compound is 5 parts by weight
  • the more preferable upper limit is 20 parts by weight.
  • the curable resin composition of the present invention preferably contains a curing accelerator.
  • a curing accelerator By containing the above-mentioned curing accelerator, the curing time can be shortened and the productivity can be improved.
  • the curing accelerator examples include an imidazole-based curing accelerator, a hydrazide-based curing accelerator, a tertiary amine-based curing accelerator, a phosphine-based curing accelerator, a photobase generator, a sulfonium salt-based curing accelerator, and the like. .. Among them, at least one selected from the group consisting of an imidazole compound, a hydrazide compound, and a phosphorus-based compound is preferable from the viewpoint of storage stability and curability.
  • the curing accelerator may be a microcapsule type curing accelerator containing at least one selected from the group consisting of an imidazole compound, a hydrazide compound, and a phosphorus-based compound.
  • the curing accelerator may be used alone or in combination of two or more.
  • the preferable upper limit of the content of the curing accelerator with respect to a total of 100 parts by weight of the curing resin, the curing agent and the curing accelerator is 1.5 parts by weight.
  • the content of the curing accelerator is 1.5 parts by weight or less, the obtained curable resin composition becomes more excellent in storage stability.
  • a more preferable upper limit of the content of the curing accelerator is 1.0 part by weight.
  • the preferable lower limit of the content of the curing accelerator with respect to a total of 100 parts by weight of the curing resin, the curing agent and the curing accelerator is 0.4 parts by weight. When the content of the curing accelerator is 0.4 parts by weight or more, the effect of shortening the curing time is more excellent.
  • a more preferable lower limit of the content of the curing accelerator is 0.5 parts by weight.
  • the curable resin composition of the present invention may contain an inorganic filler for the purpose of improving moisture absorption / reflow resistance and plating resistance as long as the object of the present invention is not impaired.
  • the inorganic filler is preferably at least one of silica and barium sulfate.
  • the curable resin composition of the present invention is excellent in moisture absorption reflow resistance, plating resistance, and processability.
  • Examples of the inorganic filler other than the silica and barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and an inorganic ion exchanger.
  • the inorganic filler may be used alone or in combination of two or more. Further, as the inorganic filler, one having an average particle size of 50 nm or more and less than 4 ⁇ m is preferably used.
  • the content of the inorganic filler is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (further, if the curing accelerator is contained, the curing accelerator). be.
  • the content of the inorganic filler is in this range, the cured product of the obtained curable resin composition is superior in moisture absorption reflow resistance and plating resistance while maintaining excellent tackiness and the like.
  • a more preferable upper limit of the content of the inorganic filler is 150 parts by weight.
  • the curable resin composition of the present invention may contain a flow conditioner.
  • the flow conditioner include fumed silica such as Aerosil and layered silicate.
  • the flow adjusting agent may be used alone or in combination of two or more. Further, as the flow adjusting agent, one having an average particle size of less than 100 nm is preferably used.
  • the preferable upper limit of the content of the flow adjusting agent is 2.0 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (further, if the curing accelerator is contained, the curing accelerator).
  • the content of the flow adjusting agent is 2.0 parts by weight or less, the obtained curable resin composition is more excellent in the applicability to the adherend in a short time.
  • a more preferable upper limit of the content of the flow adjusting agent is 1.5 parts by weight.
  • the curable resin composition of the present invention may contain an organic filler for the purpose of stress relaxation, toughness imparting, etc., as long as the object of the present invention is not impaired.
  • organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamide-imide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamide-imide particles, and polyimide particles are preferable.
  • the organic filler may be used alone or in combination of two or more.
  • the content of the organic filler is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (further, if the curing accelerator is contained, the curing accelerator). be.
  • the content of the organic filler is in this range, the cured product of the obtained curable resin composition becomes more excellent in toughness and the like while maintaining excellent adhesiveness and the like.
  • a more preferable upper limit of the content of the organic filler is 150 parts by weight.
  • the curable resin composition of the present invention may contain a flame retardant as long as the object of the present invention is not impaired.
  • the flame retardant include metal hydrates such as boehmite type aluminum hydroxide, aluminum hydroxide and magnesium hydroxide, halogen compounds, phosphorus compounds, nitrogen compounds and the like. Of these, boehmite-type aluminum hydroxide is preferable.
  • the flame retardant may be used alone or in combination of two or more.
  • the content of the flame retardant is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (further, if the curing accelerator is contained, the curing accelerator). ..
  • the content of the flame retardant is in this range, the obtained curable resin composition has excellent flame retardancy while maintaining excellent adhesiveness and the like.
  • a more preferable upper limit of the content of the flame retardant is 150 parts by weight.
  • the curable resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
  • a reactive diluent a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesive reliability.
  • the curable resin composition of the present invention preferably contains a solvent.
  • a solvent having a boiling point of less than 200 ° C. is preferable from the viewpoint of coatability, storage stability and the like.
  • the solvent having a boiling point of less than 200 ° C. include alcohol-based solvents, ketone-based solvents, ester-based solvents, hydrocarbon-based solvents, halogen-based solvents, ether-based solvents, nitrogen-containing solvents and the like.
  • the alcohol-based solvent include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, normal butyl alcohol, tertiary butyl alcohol, 2-ethielhexanol and the like.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, diacetone alcohol and the like. Of these, annon-based solvents are preferable.
  • ester-based solvent examples include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methoxybutyl acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate and the like.
  • hydrocarbon solvent examples include benzene, toluene, xylene, normal hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, isooctane, normal decane, normal heptane and the like.
  • halogen-based solvent examples include dichloromethane, chloroform, trichlorethylene and the like.
  • ether-based solvent examples include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and propylene glycol monomethyl ether acetate.
  • nitrogen-containing solvent examples include acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • a ketone solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C. an ester solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C., and a boiling point of 60 ° C. or higher and 200 ° C.
  • At least one selected from the group consisting of ether solvents below ° C is preferred.
  • a particularly preferable solvent has a boiling point of 100 ° C. or higher and lower than 200 ° C. When the boiling point of the solvent is in this range, the coatability by the spin coating method is improved.
  • the curable resin composition of the present invention may contain a solvent having a boiling point of 200 ° C. or higher.
  • Examples of the solvent having a boiling point of 200 ° C. or higher include a nitrogen-containing solvent.
  • Examples of the nitrogen-containing solvent include N-methyl-2-pyrrolidone.
  • the above "boiling point” means a value measured under the condition of 101 kPa or a value converted to 101 kPa in a boiling point conversion chart or the like.
  • the preferable lower limit of the solid content concentration is 40% by weight, and the preferable upper limit is 70% by weight.
  • the preferable lower limit of the solid content concentration is 40% by weight, and the preferable upper limit is 70% by weight.
  • the more preferable lower limit of the solid content concentration is 45% by weight, and the more preferable upper limit is 65% by weight.
  • the preferable lower limit of the solid content concentration is 40% by weight, and the preferable upper limit is 60% by weight.
  • the term "solid content” means a component other than the solvent when the curable resin composition contains the solvent.
  • the curable resin composition of the present invention may further contain additives such as a coupling agent, a dispersant, a storage stabilizer, an antibleeding agent, a flux agent, and a leveling agent.
  • additives such as a coupling agent, a dispersant, a storage stabilizer, an antibleeding agent, a flux agent, and a leveling agent.
  • Examples of the method for producing the curable resin composition of the present invention include a method of mixing a curable resin, a curing agent, a polymer compound, a curing accelerator, and the like using a mixer.
  • Examples of the mixer include a homodisper, a universal mixer, a Banbury mixer, a kneader and the like.
  • the curable resin composition of the present invention can be used for a wide range of applications, but can be suitably used for electronic material applications in which high long-term heat resistance is particularly required. For example, it can be used as a diagnostic agent in aviation and in-vehicle electric control unit applications, and in power device applications using SiC and GaN. Further, for example, an adhesive for a printed wiring board, an adhesive for a coverlay of a flexible printed circuit board, a copper-clad laminate, an adhesive for semiconductor bonding, an interlayer insulating material, a prepreg, an adhesive for an LED, and an adhesive for a structural material. , Can also be used as an adhesive for power overlay packages. Among them, it is preferably used for adhesive applications. An adhesive containing the curable resin composition of the present invention is also one of the present inventions. An adhesive varnish containing a solvent in the curable resin composition of the present invention is also one of the present inventions.
  • a curable resin composition film composed of the curable resin composition of the present invention can be obtained, and the curable resin can be obtained.
  • the composition film can be cured to obtain a cured product.
  • the curable resin film can be suitably used as an adhesive film.
  • An adhesive film having an adhesive layer containing the curable resin composition of the present invention is also one of the present inventions.
  • the cured product of the curable resin composition of the present invention is also one of the present inventions.
  • the present invention it is possible to provide a curable resin composition having excellent coatability by a spin coating method, adhesiveness of a cured product, and long-term heat resistance. Further, according to the present invention, it is possible to provide an adhesive, an adhesive varnish, and an adhesive film using the curable resin composition, and a cured product of the curable resin composition.
  • the obtained imide oligomer composition is an aliphatic diamine residue having a structure represented by the above formula (4-1) or (4-3) by 1 H-NMR, GPC, and FT-IR analysis. It was confirmed that the group-containing imide oligomer (A is a 4,4'-(4,4'-isopropyridenediphenoxy) diphthalic acid anhydride residue and B is a diamine diamine residue) is contained.
  • the number average molecular weight of the imide oligomer composition was 2200.
  • Examples 1 to 9, Comparative Examples 1 to 4 Each material was stirred and mixed according to the compounding ratios shown in Tables 1 and 2, and the curable resin compositions of Examples 1 to 9 and Comparative Examples 1 to 4 were prepared.
  • Kapton 200H manufactured by Toray Industries, Inc., surface roughness 0.03 to 0.07 ⁇ m
  • silicon chip a silicon chip manufactured by Global Wafer Co., Ltd. (surface roughness 0.5 to 1) is used. 0.0 nm) was used, and as the die share tester, DAGE4000 (manufactured by Toray Industries, Inc.) was used. The results are shown in Tables 1 and 2.
  • Each of the curable resin compositions obtained in Examples and Comparative Examples was coated on a base material PET film so as to have a thickness of about 20 ⁇ m, and dried to obtain a curable resin composition on the base material PET film.
  • a film was made.
  • the base material PET film is peeled off from the obtained curable resin composition film, a polyimide film having a thickness of 20 ⁇ m (manufactured by Toray DuPont, “Kapton V”) is laminated on both sides, and heated at 190 ° C. for 1 hour. After curing, heat treatment was performed at 175 ° C. for 1000 hours.
  • a laminate of the cured product of the curable resin composition after the heat treatment and the polyimide film was placed along a semicircular shape on a cylinder having a diameter of 5 mm or 3 mm at room temperature, and then the state of the laminate was visually observed. No cracks or cracks were found even when the laminate was placed along a semicircular shape on a 3 mm cylinder. No cracks or cracks were found even when the laminate was placed along a semicircular shape on a 5 mm cylinder. However, if cracks or cracks are found along a semicircle on a 3 mm cylinder, it is marked as " ⁇ ", and if cracks or cracks are found along a semicircle on a 5 mm cylinder, it is marked as "x". The long-term heat resistance was evaluated.
  • the present invention it is possible to provide a curable resin composition having excellent coatability by a spin coating method, adhesiveness of a cured product, and long-term heat resistance. Further, according to the present invention, it is possible to provide an adhesive, an adhesive varnish, and an adhesive film using the curable resin composition, and a cured product of the curable resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

One purpose of the present invention is to provide a curable resin composition having excellent applicability by spin coating and giving cured objects which are excellent in terms of adhesiveness and long-term heat resistance. Another purpose of the present invention is to provide: an adhesive, an adhesive varnish, and an adhesive film each including or obtained from the curable resin composition; and a cured object obtained from the curable resin composition. This curable resin composition has a viscosity at 25°C of 200-600 mPa·s and a thixotropic index at 25°C of 2.0 or less and gives a cured object on a silicon chip, the cured object having initial adhesion force on the silicon chip of 3 MPa or greater and, after 100-hour storage at 150°C, having adhesion force on the silicon chip of 2 MPa or greater.

Description

硬化性樹脂組成物、接着剤、接着剤ワニス、接着フィルム、及び、硬化物Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured product
本発明は、スピンコート法による塗布性、並びに、硬化物の接着性及び長期耐熱性に優れる硬化性樹脂組成物に関する。また、本発明は、該硬化性樹脂組成物を用いてなる接着剤、接着剤ワニス、及び、接着フィルム、並びに、該硬化性樹脂組成物の硬化物に関する。 The present invention relates to a curable resin composition having excellent coatability by a spin coating method, adhesiveness of a cured product, and long-term heat resistance. The present invention also relates to an adhesive, an adhesive varnish, and an adhesive film made of the curable resin composition, and a cured product of the curable resin composition.
低収縮であり、接着性、絶縁性、及び、耐薬品性に優れるエポキシ樹脂等の硬化性樹脂は、多くの工業製品に使用されている。特に電子機器用途では、短時間の耐熱性に関するはんだリフロー試験や繰り返しの耐熱性に関する冷熱サイクル試験において良好な結果が得られる硬化性樹脂組成物が多く用いられている。耐熱性や接着性に優れる硬化性樹脂組成物として、例えば、特許文献1、2には、エポキシ樹脂と硬化剤としてイミド化合物とを含有する硬化性樹脂組成物が開示されている。 Curable resins such as epoxy resins, which have low shrinkage and are excellent in adhesiveness, insulation, and chemical resistance, are used in many industrial products. In particular, in electronic equipment applications, curable resin compositions that give good results in a solder reflow test for short-time heat resistance and a cold-heat cycle test for repeated heat resistance are often used. As a curable resin composition having excellent heat resistance and adhesiveness, for example, Patent Documents 1 and 2 disclose a curable resin composition containing an epoxy resin and an imide compound as a curing agent.
特開昭61-270852号公報Japanese Unexamined Patent Publication No. 61-270852 特表2004-502859号公報Japanese Patent Publication No. 2004-502859
硬化性樹脂組成物を用いた接着剤ワニスによって基材と被着体とを接着する方法として、スピンコート法を用いて基材上にワニスを塗布した後、被着体を重ね、ワニスを硬化させる方法がある。このようなスピンコート法による塗布方法を用いれば、低コストかつ簡易に接着剤層を形成することができる。しかしながら、従来の耐熱性や接着性に優れる硬化性樹脂組成物をスピンコート法を用いて塗布した場合、充分に濡れ広がらず均一な塗膜が得られない等の問題があった。そのため、スピンコート法によって均一に塗布することができ、かつ、硬化物の接着性及び長期耐熱性に優れる硬化性樹脂組成物が求められていた。 As a method of adhering a base material and an adherend with an adhesive varnish using a curable resin composition, a varnish is applied onto the base material by a spin coating method, and then the adherend is layered to cure the varnish. There is a way to make it. By using such a coating method by the spin coating method, the adhesive layer can be easily formed at low cost. However, when a conventional curable resin composition having excellent heat resistance and adhesiveness is applied by a spin coating method, there is a problem that the coating film does not spread sufficiently and a uniform coating film cannot be obtained. Therefore, there has been a demand for a curable resin composition that can be uniformly applied by the spin coating method and has excellent adhesiveness and long-term heat resistance of the cured product.
本発明は、スピンコート法による塗布性、並びに、硬化物の接着性及び長期耐熱性に優れる硬化性樹脂組成物を提供することを目的とする。また、本発明は、該硬化性樹脂組成物を用いてなる接着剤、接着剤ワニス、及び、接着フィルム、並びに、該硬化性樹脂組成物の硬化物を提供することを目的とする。 An object of the present invention is to provide a curable resin composition having excellent coatability by a spin coating method, adhesiveness of a cured product, and long-term heat resistance. Another object of the present invention is to provide an adhesive, an adhesive varnish, and an adhesive film using the curable resin composition, and a cured product of the curable resin composition.
本発明は、25℃における粘度が200mPa・s以上600mPa・s以下であり、25℃におけるチクソトロピックインデックスが2.0以下であり、硬化物のシリコンチップに対する初期接着力が3MPa以上であり、かつ、150℃で100時間保管した後の硬化物のシリコンチップに対する接着力が2MPa以上である硬化性樹脂組成物である。
以下に本発明を詳述する。
In the present invention, the viscosity at 25 ° C. is 200 mPa · s or more and 600 mPa · s or less, the thixotropic index at 25 ° C. is 2.0 or less, the initial adhesive force of the cured product to the silicon chip is 3 MPa or more, and , A curable resin composition having an adhesive strength of a cured product to a silicon chip of 2 MPa or more after being stored at 150 ° C. for 100 hours.
The present invention will be described in detail below.
本発明者らは、硬化性樹脂組成物における、25℃における粘度、25℃におけるチクソトロピックインデックス、硬化物のシリコンチップに対する初期接着力、及び、150℃で100時間保管した後の硬化物のシリコンチップに対する接着力をそれぞれ特定の範囲内とすることを検討した。その結果、スピンコート法による塗布性、並びに、硬化物の接着性及び長期耐熱性に優れる硬化性樹脂組成物を得ることができることを見出し、本発明を完成させるに至った。 The present inventors have a viscosity at 25 ° C., a thixotropic index at 25 ° C., an initial adhesive force of the cured product to a silicon chip, and silicon of the cured product after storage at 150 ° C. for 100 hours in the curable resin composition. It was examined to keep the adhesive strength to the chip within a specific range. As a result, it has been found that a curable resin composition having excellent coatability by the spin coating method, adhesiveness of the cured product and long-term heat resistance can be obtained, and the present invention has been completed.
本発明の硬化性樹脂組成物は、25℃における粘度の下限が200mPa・s、上限が600mPa・sである。上記粘度がこの範囲であることにより、本発明の硬化性樹脂組成物は、スピンコート法による塗布性に優れるものとなる。上記粘度の好ましい下限は220mPa・s、好ましい上限は550mPa・sである。
なお、本明細書において上記「粘度」は、E型粘度計を用いて、10rpmの条件で測定される値を意味する。上記E型粘度計としては、例えば、VISCOMETER TV-22(東機産業社製)等が挙げられ、CP1型のコーンプレートを用いることができる。
The curable resin composition of the present invention has a lower limit of viscosity of 200 mPa · s and an upper limit of 600 mPa · s at 25 ° C. When the viscosity is in this range, the curable resin composition of the present invention is excellent in coatability by the spin coating method. The preferable lower limit of the viscosity is 220 mPa · s, and the preferred upper limit is 550 mPa · s.
In the present specification, the above-mentioned "viscosity" means a value measured under the condition of 10 rpm using an E-type viscometer. Examples of the E-type viscometer include VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.), and a CP1 type cone plate can be used.
本発明の硬化性樹脂組成物は、25℃で8日間保管した後の粘度が初期粘度の2.0倍以下であることが好ましい。上記25℃で8日間保管した後の粘度が上記初期粘度の2.0倍以下であることにより、本発明の硬化性樹脂組成物は、貯蔵安定性に優れるものとなる。上記25℃で8日間保管した後の粘度は上記初期粘度の1.5倍以下であることが好ましく、1.3倍以下であることがより好ましい。
なお、本明細書において、上記「初期粘度」は、製造後60分以内又は冷凍保存していた場合は解凍後30分以内に25℃において測定された硬化性樹脂組成物の粘度を意味する。また、上記「25℃で8日間保管した後の粘度」は、製造後又は冷凍保存していた場合は解凍後、25℃で8日間保管した後に25℃において測定された硬化性樹脂組成物の粘度を意味する。
The curable resin composition of the present invention preferably has a viscosity of 2.0 times or less the initial viscosity after being stored at 25 ° C. for 8 days. When the viscosity after storage at 25 ° C. for 8 days is 2.0 times or less the initial viscosity, the curable resin composition of the present invention has excellent storage stability. The viscosity after storage at 25 ° C. for 8 days is preferably 1.5 times or less, more preferably 1.3 times or less the initial viscosity.
In the present specification, the above-mentioned "initial viscosity" means the viscosity of the curable resin composition measured at 25 ° C. within 60 minutes after production or within 30 minutes after thawing when stored frozen. Further, the above-mentioned "viscosity after storage at 25 ° C. for 8 days" is a curable resin composition measured at 25 ° C. after being manufactured or thawed after being stored frozen and then stored at 25 ° C. for 8 days. Means viscosity.
本発明の硬化性樹脂組成物は、25℃におけるチクソトロピックインデックスの上限が2.0である。上記チクソトロピックインデックスが2.0以下であることにより、本発明の硬化性樹脂組成物は、スピンコート法による塗布性に優れるものとなる。上記チクソトロピックインデックスの好ましい上限は1.9、より好ましい上限は1.8である。
また、チクソトロピックインデックスの好ましい下限は特にないが、実質的な下限は1.0である。
なお、本明細書において上記「チクソトロピックインデックス」は、E型粘度計を用いて1.0rpmの条件で測定した粘度を、10rpmの条件で測定した粘度で除した値を意味する。
The curable resin composition of the present invention has an upper limit of the thixotropic index at 25 ° C. of 2.0. When the thixotropic index is 2.0 or less, the curable resin composition of the present invention has excellent coatability by the spin coating method. The preferred upper limit of the thixotropic index is 1.9, and the more preferable upper limit is 1.8.
Further, the lower limit of the thixotropic index is not particularly preferable, but the practical lower limit is 1.0.
In the present specification, the above-mentioned "thixotropic index" means a value obtained by dividing the viscosity measured under the condition of 1.0 rpm using an E-type viscometer by the viscosity measured under the condition of 10 rpm.
本発明の硬化性樹脂組成物は、硬化物のシリコンチップに対する初期接着力の下限が3MPaである。上記硬化物のシリコンチップに対する初期接着力が3MPa以上であることにより、本発明の硬化性樹脂組成物は、電子部品の接着に好適に用いることができるものとなる。上記硬化物のシリコンチップに対する初期接着力の好ましい下限は3.2MPaである。
上記硬化物のシリコンチップに対する初期接着力の好ましい上限は特にないが、実質的な上限は4.6MPaである。
上記硬化物のシリコンチップに対する初期接着力は、以下の方法で測定することができる。
即ち、まず、ポリイミド基板に硬化性樹脂組成物を塗布し、シリコンチップを重ねる。次いで、190℃で1時間加熱することにより硬化性樹脂組成物を硬化させ、試験片を得る。得られた試験片について、ダイシェアテスターを用いて、100μm/sの速度、テスト高さ100μmで25℃におけるダイシェア強度を測定する。得られたダイシェア強度を硬化物のシリコンチップに対する初期接着力とする。上記ポリイミドとしては、カプトン200H(東レ・デュポン社製、表面粗さ0.03~0.07μm)を用いることができ、上記シリコンチップとしては、グローバルウェーハ社製のシリコンチップ(表面粗さ0.5~1.0nm)を用いることができる。また、上記ダイシェアテスターとしては、DAGE4000(Nordson社製)を用いることができる。
In the curable resin composition of the present invention, the lower limit of the initial adhesive force of the cured product to the silicon chip is 3 MPa. When the initial adhesive force of the cured product to the silicon chip is 3 MPa or more, the curable resin composition of the present invention can be suitably used for bonding electronic components. The preferable lower limit of the initial adhesive force of the cured product to the silicon chip is 3.2 MPa.
There is no particular preferable upper limit of the initial adhesive force of the cured product to the silicon chip, but the practical upper limit is 4.6 MPa.
The initial adhesive force of the cured product to the silicon chip can be measured by the following method.
That is, first, the curable resin composition is applied to the polyimide substrate, and the silicon chips are laminated. Then, the curable resin composition is cured by heating at 190 ° C. for 1 hour to obtain a test piece. The obtained test piece is measured for die shear strength at 25 ° C. at a speed of 100 μm / s and a test height of 100 μm using a die shear tester. The obtained die shear strength is used as the initial adhesive force of the cured product to the silicon chip. As the polyimide, Kapton 200H (manufactured by Toray Industries, Inc., surface roughness 0.03 to 0.07 μm) can be used, and as the silicon chip, a silicon chip manufactured by Global Wafer Co., Ltd. (surface roughness 0. 5 to 1.0 nm) can be used. Further, as the die share tester, DAGE4000 (manufactured by Nordson) can be used.
本発明の硬化性樹脂組成物は、150℃で100時間保管した後の硬化物のシリコンチップに対する接着力の下限が2MPaである。上記150℃で100時間保管した後の硬化物のシリコンチップに対する接着力が2MPa以上であることにより、本発明の硬化性樹脂組成物は、電子部品の接着に好適に用いることができるものとなる。上記150℃で100時間保管した後の硬化物のシリコンチップに対する接着力の好ましい下限は2.1MPa、より好ましい下限は2.2MPaである。
上記150℃で100時間保管した後の硬化物のシリコンチップに対する接着力の好ましい上限は特にないが、実質的な上限は4.6MPaである。
上記150℃で100時間保管した後の硬化物のシリコンチップに対する接着力は、以下の方法で測定することができる。
即ち、まず、上述した「硬化物のシリコンチップに対する初期接着力」と同様にして得られた試験片を150℃のオーブンで100時間保管する。次いで、保管後の試験片について、ダイシェアテスターを用いて、100μm/sの速度、テスト高さ100μmで25℃におけるダイシェア強度を測定する。得られたダイシェア強度を150℃で100時間保管した後の硬化物のシリコンチップに対する接着力とする。
In the curable resin composition of the present invention, the lower limit of the adhesive force of the cured product to the silicon chip after storage at 150 ° C. for 100 hours is 2 MPa. When the adhesive strength of the cured product to the silicon chip after storage at 150 ° C. for 100 hours is 2 MPa or more, the curable resin composition of the present invention can be suitably used for adhering electronic components. .. The preferable lower limit of the adhesive force of the cured product after storage at 150 ° C. for 100 hours with respect to the silicon chip is 2.1 MPa, and the more preferable lower limit is 2.2 MPa.
There is no particular preferable upper limit of the adhesive strength of the cured product after storage at 150 ° C. for 100 hours to the silicon chip, but the practical upper limit is 4.6 MPa.
The adhesive strength of the cured product after storage at 150 ° C. for 100 hours can be measured by the following method.
That is, first, the test piece obtained in the same manner as the above-mentioned "initial adhesive force of the cured product to the silicon chip" is stored in an oven at 150 ° C. for 100 hours. Next, the die shear strength of the stored test piece is measured at a speed of 100 μm / s and a test height of 100 μm at 25 ° C. using a die shear tester. The obtained die shear strength is used as the adhesive strength to the silicon chip of the cured product after being stored at 150 ° C. for 100 hours.
本発明の硬化性樹脂組成物において、粘度、チクソトロピックインデックス、硬化物のシリコンチップに対する初期接着力、及び、150℃で100時間保管した後の硬化物のシリコンチップに対する接着力をそれぞれ上述した範囲とする方法としては、硬化性樹脂組成物に含まれる各構成成分の種類やその含有割合を調整する方法が好適である。 In the curable resin composition of the present invention, the viscosity, the thixotropic index, the initial adhesive force of the cured product to the silicon chip, and the adhesive force of the cured product to the silicon chip after storage at 150 ° C. for 100 hours are within the above-mentioned ranges. A method of adjusting the type of each constituent component contained in the curable resin composition and the content ratio thereof is preferable.
本発明の硬化性樹脂組成物は、硬化性樹脂と硬化剤とを含有することが好ましい。特に、本発明の硬化性樹脂組成物は、熱硬化性樹脂組成物であることが好ましく、硬化性樹脂と硬化剤として熱硬化剤とを含有することがより好ましい。 The curable resin composition of the present invention preferably contains a curable resin and a curing agent. In particular, the curable resin composition of the present invention is preferably a thermosetting resin composition, and more preferably contains a curable resin and a thermosetting agent as a curing agent.
上記硬化性樹脂としては、エポキシ樹脂、アクリル樹脂、フェノール樹脂、シアネート樹脂、イソシアネート樹脂、マレイミド樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、フッ素樹脂等が挙げられる。なかでも、上記硬化性樹脂は、エポキシ樹脂を含むことが好ましい。また、これらの硬化性樹脂は、単独で用いられてもよいし、2種以上が混合して用いられてもよい。
また、上記硬化性樹脂は、得られる硬化性樹脂組成物の粘度やチクソトロピックインデックスを上述した範囲とすることがより容易となることから、25℃において液状又は半固形状であることが好ましく、25℃において液状であることがより好ましい。
Examples of the curable resin include epoxy resin, acrylic resin, phenol resin, cyanate resin, isocyanate resin, maleimide resin, benzoxazine resin, silicone resin, fluororesin and the like. Among them, the curable resin preferably contains an epoxy resin. Further, these curable resins may be used alone or in combination of two or more.
Further, the curable resin is preferably liquid or semi-solid at 25 ° C. because it is easier to set the viscosity and the thixotropic index of the obtained curable resin composition within the above ranges. It is more preferable that it is liquid at 25 ° C.
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、トリアジン型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。なかでも、得られる硬化性樹脂組成物の粘度やチクソトロピックインデックスを上述した範囲とすることがより容易となることから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、レゾルシノール型エポキシ樹脂、トリアジン型エポキシ樹脂が好ましい。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , Propoxy oxide-added bisphenol A type epoxy resin, triazine type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy Resin, naphthylene ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalenephenol novolac type epoxy resin, glycidylamine type epoxy resin, alkyl Examples thereof include a polyol type epoxy resin, a rubber-modified epoxy resin, and a glycidyl ester compound. In particular, since it becomes easier to set the viscosity and thixotropic index of the obtained curable resin composition within the above-mentioned ranges, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, and resorcinol. Type epoxy resin and triazine type epoxy resin are preferable.
上記熱硬化剤としては、例えば、主鎖にイミド骨格、末端に架橋性官能基を有するイミドオリゴマー、酸無水物系硬化剤、フェノール系硬化剤、チオール系硬化剤、アミン系硬化剤、シアネート系硬化剤、活性エステル系硬化剤等が挙げられる。なかでも、得られる硬化性樹脂組成物の硬化物の接着性及び長期耐熱性の観点から、上記熱硬化剤は、イミドオリゴマーを含むことが好ましい。更に、本発明の硬化性樹脂組成物は、硬化物の接着性及び長期耐熱性により優れるものとなり、かつ、粘度やチクソトロピックインデックスを上述した範囲とすることがより容易となることから、上記熱硬化剤としてイミドオリゴマーを含有し、かつ、後述する高分子化合物を含有することが好ましい。 Examples of the heat-curing agent include an imide skeleton in the main chain, an imide oligomer having a crosslinkable functional group at the end, an acid anhydride-based curing agent, a phenol-based curing agent, a thiol-based curing agent, an amine-based curing agent, and a cyanate-based. Examples thereof include a curing agent and an active ester-based curing agent. Among them, the thermosetting agent preferably contains an imide oligomer from the viewpoint of adhesiveness and long-term heat resistance of the cured product of the obtained curable resin composition. Further, the curable resin composition of the present invention is more excellent in adhesiveness and long-term heat resistance of the cured product, and it is easier to set the viscosity and the thixotropic index in the above-mentioned range. It is preferable that the curing agent contains an imide oligomer and also contains a polymer compound described later.
上記イミドオリゴマーは、上記架橋性官能基を含む構造として、下記式(1-1)又は下記式(1-2)で表される構造を有することが好ましい。下記式(1-1)又は下記式(1-2)で表される構造を有することにより、上記イミドオリゴマーは、エポキシ樹脂等の硬化性樹脂との反応性及び相溶性により優れるものとなる。 The imide oligomer preferably has a structure represented by the following formula (1-1) or the following formula (1-2) as a structure containing the crosslinkable functional group. By having the structure represented by the following formula (1-1) or the following formula (1-2), the imide oligomer is excellent in reactivity and compatibility with a curable resin such as an epoxy resin.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(1-1)及び式(1-2)中、Aは、酸二無水物残基であり、式(1-1)中、Bは、脂肪族ジアミン残基又は芳香族ジアミン残基であり、式(1-2)中、Arは、置換されていてもよい2価の芳香族基である。 In formulas (1-1) and (1-2), A is an acid dianhydride residue, and in formula (1-1), B is an aliphatic diamine residue or an aromatic diamine residue. Yes, in formula (1-2), Ar is a optionally substituted divalent aromatic group.
上記酸二無水物残基は、下記式(2-1)又は下記式(2-2)で表される4価の基であることが好ましい。 The acid dianhydride residue is preferably a tetravalent group represented by the following formula (2-1) or the following formula (2-2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(2-1)及び式(2-2)中、*は、結合位置であり、式(2-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有していてもよい芳香環を有する2価の基である。式(2-1)及び式(2-2)中における芳香環の水素原子は置換されていてもよい。 In the formula (2-1) and the formula (2-2), * is a bond position, and in the formula (2-1), Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a bond. A linear or branched divalent hydrocarbon group that may have an oxygen atom at the position, or a divalent group that has an aromatic ring that may have an oxygen atom at the bond position. .. The hydrogen atom of the aromatic ring in the formula (2-1) and the formula (2-2) may be substituted.
上記式(2-1)中のZが、結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有していてもよい芳香環を有する2価の基である場合、これらの基は、置換されていてもよい。
上記結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、上記結合位置に酸素原子を有していてもよい芳香環を有する2価の基が置換されている場合の置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
Z in the above formula (2-1) has a linear or branched divalent hydrocarbon group which may have an oxygen atom at the bond position, or an oxygen atom at the bond position. If it is a divalent group having a optionally aromatic ring, these groups may be substituted.
A linear or branched divalent hydrocarbon group which may have an oxygen atom at the bond position, or a divalent divalent group having an aromatic ring which may have an oxygen atom at the bond position. When the group is substituted, examples of the substituent include a halogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group and an alkoxy group. , Nitro group, cyano group and the like.
上記酸二無水物残基の由来となる酸二無水物としては、例えば、後述する式(8)で表される酸二無水物等が挙げられる。 Examples of the acid dianhydride from which the acid dianhydride residue is derived include an acid dianhydride represented by the formula (8) described later.
上記式(1-1)中のBが上記脂肪族ジアミン残基である場合の該脂肪族ジアミン残基の炭素数の好ましい下限は4である。上記脂肪族ジアミン残基の炭素数が4以上であることにより、得られる熱硬化性接着フィルムが、硬化前におけるハンドリング性、及び、硬化後の誘電特性により優れるものとなる。上記脂肪族ジアミン残基の炭素数のより好ましい下限は5、更に好ましい下限は6である。
また、上記脂肪族ジアミン残基及び上記脂肪族トリアミン残基の炭素数の好ましい上限は特にないが、実質的な上限は60である。
When B in the above formula (1-1) is the above aliphatic diamine residue, the preferable lower limit of the carbon number of the aliphatic diamine residue is 4. When the aliphatic diamine residue has 4 or more carbon atoms, the obtained thermosetting adhesive film is excellent in handleability before curing and dielectric properties after curing. The more preferable lower limit of the number of carbon atoms of the aliphatic diamine residue is 5, and the more preferable lower limit is 6.
Further, although there is no particular preferable upper limit of the carbon number of the aliphatic diamine residue and the aliphatic triamine residue, the practical upper limit is 60.
上記脂肪族ジアミン残基の由来となる脂肪族ジアミンとしては、例えば、ダイマー酸から誘導される脂肪族ジアミンや、直鎖若しくは分岐鎖脂肪族ジアミンや、脂肪族エーテルジアミンや、脂肪族脂環式ジアミン等が挙げられる。
上記ダイマー酸から誘導される脂肪族ジアミンとしては、例えば、ダイマージアミン、水添型ダイマージアミン等が挙げられる。
上記直鎖若しくは分岐鎖脂肪族ジアミンとしては、例えば、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,14-テトラデカンジアミン、1,16-ヘキサデカンジアミン、1,18-オクタデカンジアミン、1,20-エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2-メチル-1,9-ノナンジアミン、2,7-ジメチル-1,8-オクタンジアミン等が挙げられる。
上記脂肪族エーテルジアミンとしては、例えば、2,2’-オキシビス(エチルアミン)、3,3’-オキシビス(プロピルアミン)、1,2-ビス(2-アミノエトキシ)エタン等が挙げられる。
上記脂肪族脂環式ジアミンとしては、例えば、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等が挙げられる。
なかでも、上記脂肪族ジアミン残基は、上記ダイマー酸から誘導される脂肪族ジアミン残基であることが好ましい。
Examples of the aliphatic diamine from which the above aliphatic diamine residue is derived include an aliphatic diamine derived from dimer acid, a linear or branched aliphatic diamine, an aliphatic ether diamine, and an aliphatic alicyclic type. Examples include diamine.
Examples of the aliphatic diamine derived from the dimer acid include dimer diamine and hydrogenated diamine diamine.
Examples of the linear or branched aliphatic diamine include 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonandiamine, 1,10-decanediamine, and 1, 11-Undecanediamine, 1,12-Dodecanediamine, 1,14-Tetradecanediamine, 1,16-Hexadecanediamine, 1,18-Octadecanediamine, 1,20-Eicosandiamine, 2-Methyl-1,8-octane Examples thereof include diamine, 2-methyl-1,9-nonanediamine, 2,7-dimethyl-1,8-octanediamine and the like.
Examples of the aliphatic ether diamine include 2,2'-oxybis (ethylamine), 3,3'-oxybis (propylamine), 1,2-bis (2-aminoethoxy) ethane and the like.
Examples of the aliphatic alicyclic diamine include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine.
Among them, the aliphatic diamine residue is preferably an aliphatic diamine residue derived from the dimer acid.
上記式(1-1)中のBが上記芳香族ジアミン残基である場合の該芳香族ジアミン残基は、下記式(3-1)又は下記式(3-2)で表される2価の基であることが好ましい。 When B in the above formula (1-1) is the above aromatic diamine residue, the aromatic diamine residue is a divalent represented by the following formula (3-1) or the following formula (3-2). It is preferably the basis of.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(3-1)及び式(3-2)中、*は、結合位置であり、式(3-1)中、Yは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有していてもよい芳香環を有する2価の基である。式(3-1)及び式(3-2)中における芳香環の水素原子は置換されていてもよい。 In the formula (3-1) and the formula (3-2), * is a bond position, and in the formula (3-1), Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a bond. A linear or branched divalent hydrocarbon group that may have an oxygen atom at the position, or a divalent group that has an aromatic ring that may have an oxygen atom at the bond position. .. The hydrogen atom of the aromatic ring in the formula (3-1) and the formula (3-2) may be substituted.
上記式(3-1)中のYが、結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有していてもよい芳香環を有する2価の基である場合、これらの基は、置換されていてもよい。
上記結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、上記結合位置に酸素原子を有していてもよい芳香環を有する2価の基が置換されている場合の置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
Y in the above formula (3-1) has a linear or branched divalent hydrocarbon group which may have an oxygen atom at the bond position, or an oxygen atom at the bond position. If it is a divalent group having a optionally aromatic ring, these groups may be substituted.
A linear or branched divalent hydrocarbon group which may have an oxygen atom at the bond position, or a divalent divalent group having an aromatic ring which may have an oxygen atom at the bond position. When the group is substituted, examples of the substituent include a halogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group and an alkoxy group. , Nitro group, cyano group and the like.
上記芳香族ジアミン残基の由来となる芳香族ジアミンとしては、例えば、後述する式(9)で表されるジアミンが芳香族ジアミンである場合のもの等が挙げられる。 Examples of the aromatic diamine from which the aromatic diamine residue is derived include those in which the diamine represented by the formula (9) described later is an aromatic diamine.
また、上記イミドオリゴマーは、構造中にシロキサン骨格を有する場合、硬化後のガラス転移温度を低下させたり、被着体を汚染し接着不良の原因となり得ることから、構造中にシロキサン骨格を有さないイミドオリゴマーであることが好ましい。 Further, when the imide oligomer has a siloxane skeleton in the structure, it may lower the glass transition temperature after curing or contaminate the adherend and cause poor adhesion. Therefore, the imide oligomer has a siloxane skeleton in the structure. It is preferably not an imide oligomer.
上記イミドオリゴマーの数平均分子量は、4000以下であることが好ましい。上記イミドオリゴマーの数平均分子量が4000以下であることにより、得られる硬化性樹脂組成物の硬化物が長期耐熱性により優れるものとなる。上記イミドオリゴマーの数平均分子量のより好ましい上限は3400、更に好ましい上限は2800である。
特に、上記イミドオリゴマーの数平均分子量は、上記式(1-1)で表される構造を有する場合は900以上4000以下であることが好ましく、上記式(1-2)で表される構造を有する場合は550以上4000以下であることが好ましい。上記式(1-1)で表される構造を有する場合の数平均分子量のより好ましい下限は950、更に好ましい下限は1000である。上記式(1-2)で表される構造を有する場合の数平均分子量のより好ましい下限は580、更に好ましい下限は600である。
なお、本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
The number average molecular weight of the imide oligomer is preferably 4000 or less. When the number average molecular weight of the imide oligomer is 4000 or less, the cured product of the obtained curable resin composition is superior in long-term heat resistance. A more preferable upper limit of the number average molecular weight of the imide oligomer is 3400, and a further preferable upper limit is 2800.
In particular, the number average molecular weight of the imide oligomer is preferably 900 or more and 4000 or less when the structure is represented by the above formula (1-1), and the structure represented by the above formula (1-2) is preferable. If it has, it is preferably 550 or more and 4000 or less. When the structure is represented by the above formula (1-1), the more preferable lower limit of the number average molecular weight is 950, and the more preferable lower limit is 1000. When the structure represented by the above formula (1-2) is provided, the more preferable lower limit of the number average molecular weight is 580, and the further preferable lower limit is 600.
In the present specification, the above-mentioned "number average molecular weight" is a value obtained by measuring by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and converting it into polystyrene. Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industry Co., Ltd.).
上記イミドオリゴマーは、具体的には、下記式(4-1)、下記式(4-2)、下記式(4-3)、若しくは、下記式(4-4)で表されるイミドオリゴマー、又は、下記式(5-1)、下記式(5-2)、下記式(5-3)、若しくは、下記式(5-4)で表されるイミドオリゴマーであることが好ましい。 Specifically, the imide oligomer is an imide oligomer represented by the following formula (4-1), the following formula (4-2), the following formula (4-3), or the following formula (4-4). Alternatively, it is preferably an imide oligomer represented by the following formula (5-1), the following formula (5-2), the following formula (5-3), or the following formula (5-4).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(4-1)~(4-4)中、Aは、上記酸二無水物残基であり、式(4-1)、式(4-3)、及び、式(4-4)中、Aは、それぞれ同一であってもよいし、異なっていてもよい。式(4-1)~(4-4)中、Bは、上記脂肪族ジアミン残基又は上記芳香族ジアミン残基であり、式(4-3)及び式(4-4)中、Bは、それぞれ同一であってもよいし、異なっていてもよい。式(4-2)中、Xは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基であり、式(4-4)中、Wは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基である。 In formulas (4-1) to (4-4), A is the acid dianhydride residue, and in formulas (4-1), formula (4-3), and formula (4-4). , A may be the same or different from each other. In formulas (4-1) to (4-4), B is the aliphatic diamine residue or the aromatic diamine residue, and in formulas (4-3) and (4-4), B is. , Each may be the same or different. In the formula (4-2), X is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted, and in the formula (4-4), W is a hydrogen atom, a halogen atom. , Or a monovalent hydrocarbon group which may be substituted.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(5-1)~(5-4)中、Aは、上記酸二無水物残基であり、式(5-3)及び式(5-4)中、Aは、それぞれ同一であってもよいし、異なっていてもよい。式(5-1)~(5-4)中、Rは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基であり、式(5-1)及び式(5-3)中、Rは、それぞれ同一であってもよいし、異なっていてもよい。式(5-2)及び式(5-4)中、Wは、水素原子、ハロゲン原子、又は、置換されていてもよい1価の炭化水素基であり、式(5-3)及び式(5-4)中、Bは、上記脂肪族ジアミン残基又は上記芳香族ジアミン残基である。 In formulas (5-1) to (5-4), A is the acid dianhydride residue, and in formulas (5-3) and (5-4), A is the same. It may or may not be different. In formulas (5-1) to (5-4), R is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted, and formulas (5-1) and (5). -3) In the middle, R may be the same or different. In the formula (5-2) and the formula (5-4), W is a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may be substituted, and the formula (5-3) and the formula (5-3). In 5-4), B is the aliphatic diamine residue or the aromatic diamine residue.
上記式(4-1)~(4-4)、及び、上記式(5-1)~(5-4)中のAは、下記式(6-1)又は下記式(6-2)で表される4価の基であることが好ましい。 A in the above formulas (4-1) to (4-4) and the above formulas (5-1) to (5-4) is the following formula (6-1) or the following formula (6-2). It is preferably a tetravalent group represented.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(6-1)及び式(6-2)中、*は、結合位置であり、式(6-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有していてもよい芳香環を有する2価の基である。式(6-1)及び式(6-2)中における芳香環の水素原子は置換されていてもよい。 In the formula (6-1) and the formula (6-2), * is a bond position, and in the formula (6-1), Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a bond. A linear or branched divalent hydrocarbon group that may have an oxygen atom at the position, or a divalent group that has an aromatic ring that may have an oxygen atom at the bond position. .. The hydrogen atom of the aromatic ring in the formula (6-1) and the formula (6-2) may be substituted.
上記式(4-1)~(4-4)、並びに、上記式(5-3)及び式(5-4)中のBは、下記式(7-1)又は下記式(7-2)で表される2価の基であることが好ましい。 B in the above formulas (4-1) to (4-4), and the above formulas (5-3) and (5-4) is the following formula (7-1) or the following formula (7-2). It is preferably a divalent group represented by.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(7-1)及び式(7-2)中、*は、結合位置であり、式(7-1)中、Yは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有していてもよい芳香環を有する2価の基である。式(7-1)及び式(7-2)中における芳香環の水素原子は置換されていてもよい。 In the formula (7-1) and the formula (7-2), * is a bond position, and in the formula (7-1), Y is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, and a bond. A linear or branched divalent hydrocarbon group that may have an oxygen atom at the position, or a divalent group that has an aromatic ring that may have an oxygen atom at the bond position. .. The hydrogen atom of the aromatic ring in the formula (7-1) and the formula (7-2) may be substituted.
上記式(1-1)で表される構造を有するイミドオリゴマーを製造する方法としては、例えば、下記式(8)で表される酸二無水物と下記式(9)で表されるジアミンとを反応させる方法等が挙げられる。 As a method for producing an imide oligomer having a structure represented by the above formula (1-1), for example, an acid dianhydride represented by the following formula (8) and a diamine represented by the following formula (9) are used. A method of reacting with the above can be mentioned.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(8)中、Aは、上記式(1-1)中のAと同じ4価の基である。 In formula (8), A is the same tetravalent group as A in formula (1-1) above.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(9)中、Bは、上記式(1-1)中のBと同じ2価の基であり、R~Rは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In the formula (9), B is the same divalent group as B in the above formula (1-1), and R 1 to R 4 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively. ..
上記式(8)で表される酸二無水物と上記式(9)で表されるジアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(9)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(8)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、加熱や減圧等により溶媒を除去し、更に、約200℃以上で1時間以上加熱してアミック酸オリゴマーを反応させる方法等が挙げられる。上記式(8)で表される酸二無水物と上記式(9)で表されるジアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に上記式(1-1)で表される構造を有するイミドオリゴマーを得ることができる。
また、上記式(8)で表される酸二無水物の一部を下記式(10)で表される酸無水物に置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-1)で表される構造を有し、他方の末端に下記式(10)で表される酸無水物に由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(8)で表される酸二無水物と下記式(10)で表される酸無水物とは、同時に添加してもよいし、別々に添加してもよい。
更に、上記式(9)で表されるジアミンの一部を下記式(11)で表されるモノアミンに置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-1)で表される構造を有し、他方の末端に下記式(11)で表されるモノアミンに由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(9)で表されるジアミンと下記式(11)で表されるモノアミンとは、同時に添加してもよいし、別々に添加してもよい。
Specific examples of the method for reacting the acid dianhydride represented by the above formula (8) with the diamine represented by the above formula (9) are shown below.
First, the diamine represented by the above formula (9) is previously dissolved in a solvent (for example, N-methylpyrrolidone) in which the amic acid oligomer obtained by the reaction is soluble, and the above formula (8) is added to the obtained solution. The acid dianhydride represented by is added and reacted to obtain an amic acid oligomer solution. Then, a method of removing the solvent by heating, depressurization or the like, and further heating at about 200 ° C. or higher for 1 hour or longer to react the amic acid oligomer and the like can be mentioned. By adjusting the molar ratio of the acid dianhydride represented by the above formula (8) and the diamine represented by the above formula (9) and the imidization conditions, the desired number average molecular weight can be obtained. An imide oligomer having a structure represented by the above formula (1-1) can be obtained at the end.
Further, by substituting a part of the acid anhydride represented by the above formula (8) with the acid anhydride represented by the following formula (10), it has a desired number average molecular weight and has the above-mentioned number average molecular weight at one end. An imide oligomer having a structure represented by the formula (1-1) and having a structure derived from an acid anhydride represented by the following formula (10) at the other end can be obtained. In this case, the acid dianhydride represented by the above formula (8) and the acid anhydride represented by the following formula (10) may be added at the same time or separately.
Further, by substituting a part of the diamine represented by the above formula (9) with a monoamine represented by the following formula (11), it has a desired number average molecular weight and has the above formula (1-1) at one end. ), And an imide oligomer having a structure derived from a monoamine represented by the following formula (11) at the other end can be obtained. In this case, the diamine represented by the above formula (9) and the monoamine represented by the following formula (11) may be added at the same time or separately.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(10)中、Arは、置換されていてもよい2価の芳香族基である。 In formula (10), Ar is a divalent aromatic group that may be substituted.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(11)中、Arは、置換されていてもよい1価の芳香族基であり、R及びRは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (11), Ar is a optionally substituted monovalent aromatic group, and R 5 and R 6 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively.
上記式(1-2)で表される構造を有するイミドオリゴマーを製造する方法としては、例えば、上記式(8)で表される酸二無水物と下記式(12)で表されるフェノール性水酸基含有モノアミンとを反応させる方法等が挙げられる。 As a method for producing an imide oligomer having a structure represented by the above formula (1-2), for example, an acid dianhydride represented by the above formula (8) and a phenolic oligomer represented by the following formula (12) are used. Examples thereof include a method of reacting with a hydroxyl group-containing monoamine.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
式(12)中、Arは、置換されていてもよい2価の芳香族基であり、R及びRは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (12), Ar is a optionally substituted divalent aromatic group, and R 7 and R 8 are independently hydrogen atoms or monovalent hydrocarbon groups, respectively.
上記式(8)で表される酸二無水物と上記式(12)で表されるフェノール性水酸基含有モノアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(12)で表されるフェノール性水酸基含有モノアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(8)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、加熱や減圧等により溶媒を除去し、更に、約200℃以上で1時間以上加熱してアミック酸オリゴマーを反応させる方法等が挙げられる。上記式(8)で表される酸二無水物と上記式(12)で表されるフェノール性水酸基含有モノアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に上記式(1-2)で表される構造を有するイミドオリゴマーを得ることができる。
また、上記式(12)で表されるフェノール性水酸基含有モノアミンの一部を上記式(11)で表されるモノアミンに置き換えることにより、所望の数平均分子量を有し、一方の末端に上記式(1-2)で表される構造を有し、他方の末端に上記式(11)で表されるモノアミンに由来する構造を有するイミドオリゴマーを得ることができる。この場合、上記式(12)で表されるフェノール性水酸基含有モノアミンと上記式(11)で表されるモノアミンとは、同時に添加してもよいし、別々に添加してもよい。
Specific examples of the method for reacting the acid dianhydride represented by the above formula (8) with the phenolic hydroxyl group-containing monoamine represented by the above formula (12) are shown below.
First, the phenolic hydroxyl group-containing monoamine represented by the above formula (12) is previously dissolved in a solvent (for example, N-methylpyrrolidone) in which the amic acid oligomer obtained by the reaction is soluble, and the above solution is used. The acid dianhydride represented by the formula (8) is added and reacted to obtain an amic acid oligomer solution. Then, a method of removing the solvent by heating, depressurization or the like, and further heating at about 200 ° C. or higher for 1 hour or longer to react the amic acid oligomer and the like can be mentioned. By adjusting the molar ratio of the acid dianhydride represented by the above formula (8) to the phenolic hydroxyl group-containing monoamine represented by the above formula (12) and the imidization conditions, the desired number average molecular weight can be obtained. It is possible to obtain an imide oligomer having a structure represented by the above formula (1-2) at both ends.
Further, by substituting a part of the phenolic hydroxyl group-containing monoamine represented by the above formula (12) with the monoamine represented by the above formula (11), it has a desired number average molecular weight and has the above formula at one end. An imide oligomer having a structure represented by (1-2) and having a structure derived from a monoamine represented by the above formula (11) at the other end can be obtained. In this case, the phenolic hydroxyl group-containing monoamine represented by the above formula (12) and the monoamine represented by the above formula (11) may be added at the same time or separately.
上記式(8)で表される酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’-オキシジフタル酸二無水物、3,4’-オキシジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、4,4’-ビス(2,3-ジカルボキシルフェノキシ)ジフェニルエーテル二無水物、p-フェニレンビス(トリメリテート無水物)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物等が挙げられる。
なかでも、溶解性及び耐熱性により優れるものとなることから、上記イミドオリゴマーの原料に用いる酸二無水物としては、融点が240℃以下の芳香族性酸二無水物が好ましく、融点が220℃以下の芳香族性酸二無水物がより好ましく、融点が200℃以下の芳香族性酸二無水物が更に好ましく、3,4’-オキシジフタル酸二無水物(融点180℃)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(融点190℃)が特に好ましい。
なお、本明細書において上記「融点」は、示差走査熱量計を用いて、10℃/minにて昇温した際の吸熱ピークの温度として測定される値を意味する。上記示差走査熱量計としては、例えば、EXTEAR DSC6100(エスアイアイ・ナノテクノロジー社製)等が挙げられる。
Examples of the acid dianhydride represented by the above formula (8) include pyromellitic acid dianhydride, 3,3'-oxydiphthalic acid dianhydride, 3,4'-oxydiphthalic acid dianhydride, 4,4. '-Oxydiphthalic acid dianhydride, 4,4'-(4,4'-isopropylidene diphenoxy) diphthalic acid anhydride, 4,4'-bis (2,3-dicarboxyphenoxy) diphenyl ether dianhydride, p. -Phenylenebis (trimeritate anhydride), 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride and the like can be mentioned.
Among them, aromatic acid dianhydride having a melting point of 240 ° C. or lower is preferable as the acid dianhydride used as a raw material of the imide oligomer because it is more excellent in solubility and heat resistance, and the melting point is 220 ° C. The following aromatic acid dianhydrides are more preferred, aromatic acid dianhydrides having a melting point of 200 ° C. or lower are even more preferred, and 3,4'-oxydiphthalic acid dianhydrides (melting point 180 ° C.), 4,4'. -(4,4'-Isopropylidene diphenoxy) diphthalic anhydride (melting point 190 ° C.) is particularly preferable.
In the present specification, the above-mentioned "melting point" means a value measured as the temperature of the endothermic peak when the temperature is raised at 10 ° C./min using a differential scanning calorimeter. Examples of the differential scanning calorimeter include EXTER DSC6100 (manufactured by SII Nanotechnology).
上記式(9)で表されるジアミンとしては、例えば、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-(4-アミノフェノキシ)フェニル)メタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルメタン、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルメタン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルエーテル、ビスアミノフェニルフルオレン、ビストルイジンフルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-2,2’-ジヒドロキシビフェニル等が挙げられる。なかでも、入手性に優れることから、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼンが好ましく、更に溶解性及び耐熱性に優れることから、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼンがより好ましい。 Examples of the diamine represented by the above formula (9) include 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenyl ether, and 3,4. '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3'-diaminodiphenylsulphon, 4,4'-diaminodiphenylsulphon, 1,3- Bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, bis (4- (4-aminophenoxy) phenyl) methane, 2 , 2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene, 1,4-bis (2- (4-amino) Phenyl) -2-propyl) benzene, 3,3'-diamino-4,4'-dihydroxyphenylmethane, 4,4'-diamino-3,3'-dihydroxyphenylmethane, 3,3'-diamino-4, 4'-Dihydroxyphenyl ether, bisaminophenylfluorene, bistoluidinefluorene, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-diamino-3,3'-dihydroxyphenyl ether, 3,3' -Diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-2,2'-dihydroxybiphenyl and the like can be mentioned. Among them, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene, 1,4 because of its excellent availability. -Bis (2- (4-aminophenyl) -2-propyl) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis ( 4-Aminophenoxy) benzene is preferable, and since it is excellent in solubility and heat resistance, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene and 1,4-bis (2- (2- ( 4-Aminophenyl) -2-propyl) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene Is more preferable.
上記式(10)で表される酸無水物としては、例えば、フタル酸無水物、3-メチルフタル酸無水物、4-メチルフタル酸無水物、1,2-ナフタル酸無水物、2,3-ナフタル酸無水物、1,8-ナフタル酸無水物、2,3-アントラセンジカルボキシ酸無水物、4-tert-ブチルフタル酸無水物、4-エチニルフタル酸無水物、4-フェニルエチニルフタル酸無水物、4-フルオロフタル酸無水物、4-クロロフタル酸無水物、4-ブロモフタル酸無水物、3,4-ジクロロフタル酸無水物等が挙げられる。 Examples of the acid anhydride represented by the above formula (10) include phthalic anhydride, 3-methylphthalic anhydride, 4-methylphthalic anhydride, 1,2-naphthalanhydride, and 2,3-naphthal. Acid Anhydride, 1,8-Naphthalic Acid Anhydride, 2,3-Anthracendicarboxylic Acid Anhydride, 4-tert-butylphthalic Acid Anhydride, 4-Etinylphthalic Acid Anhydride, 4-Phenylethynylphthalic Acid Anhydride, Examples thereof include 4-fluorophthalic anhydride, 4-chlorophthalic anhydride, 4-bromophthalic anhydride, 3,4-dichlorophthalic anhydride and the like.
上記式(11)で表されるモノアミンとしては、例えば、アニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,4-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2-tert-ブチルアニリン、3-tert-ブチルアニリン、4-tert-ブチルアニリン、1-ナフチルアミン、2-ナフチルアミン、1-アミノアントラセン、2-アミノアントラセン、9-アミノアントラセン、1-アミノピレン、3-クロロアニリン、o-アニシジン、m-アニシジン、p-アニシジン、1-アミノ-2-メチルナフタレン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、3,4-ジメチルアニリン、4-エチルアニリン、4-エチニルアニリン、4-イソプロピルアニリン、4-(メチルチオ)アニリン、N,N-ジメチル-1,4-フェニレンジアミン等が挙げられる。 Examples of the monoamine represented by the above formula (11) include aniline, o-toluidine, m-toluidine, p-toluidine, 2,4-dimethylaniline, 3,4-dimethylaniline, and 3,5-dimethylaniline. 2-tert-butylaniline, 3-tert-butylaniline, 4-tert-butylaniline, 1-naphthylamine, 2-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, 9-aminoanthracene, 1-aminopyrene, 3- Chloroaniline, o-aniline, m-anisidine, p-anisidine, 1-amino-2-methylnaphthalene, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 3,4-dimethyl Examples thereof include aniline, 4-ethylaniline, 4-ethynylaniline, 4-isopropylaniline, 4- (methylthio) aniline, N, N-dimethyl-1,4-phenylenediamine and the like.
上記式(12)で表されるフェノール性水酸基含有モノアミンとしては、例えば、3-アミノフェノール、4-アミノフェノール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾール、4-アミノ-2,3-キシレノール、4-アミノ-2,5-キシレノール、4-アミノ-2,6-キシレノール、4-アミノ-1-ナフトール、5-アミノ-2-ナフトール、6-アミノ-1-ナフトール、4-アミノ-2,6-ジフェニルフェノール等が挙げられる。なかでも、入手性及び保存安定性に優れ、硬化後に高いガラス転移温度が得られることから、4-アミノ-o-クレゾール、5-アミノ-o-クレゾールが好ましい。 Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (12) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, and 4-amino-2. , 3-Xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -Amino-2,6-diphenylphenol and the like can be mentioned. Of these, 4-amino-o-cresol and 5-amino-o-cresol are preferable because they are excellent in availability and storage stability, and a high glass transition temperature can be obtained after curing.
上述した製造方法で上記イミドオリゴマーを製造した場合、上記イミドオリゴマーは、上記式(1-1)で表される構造を有する複数種のイミドオリゴマー又は上記式(1-2)で表される構造を有する複数種のイミドオリゴマーと、各原料との混合物(イミドオリゴマー組成物)に含まれるものとして得られる。該イミドオリゴマー組成物は、イミド化率が70%以上であることにより、硬化剤として用いた場合に高温での機械的強度及び長期耐熱性により優れる硬化物を得ることができる。
上記イミドオリゴマー組成物のイミド化率の好ましい下限は75%、より好ましい下限は80%である。また、上記イミドオリゴマー組成物のイミド化率の好ましい上限は特にないが、実質的な上限は98%である。
なお、上記「イミド化率」は、フーリエ変換赤外分光光度計(FT-IR)を用いて全反射測定法(ATR法)にて測定を行い、アミック酸のカルボニル基に由来する1660cm-1付近のピーク吸光度面積から下記式にて導出することができる。上記フーリエ変換赤外分光光度計としては、例えば、UMA600(Agilent Technologies社製)等が挙げられる。なお、下記式中における「アミック酸オリゴマーのピーク吸光度面積」は、酸二無水物とジアミン又はフェノール性水酸基含有モノアミンとを反応させた後、イミド化工程を行わずに溶媒をエバポレーション等により除去することで得られるアミック酸オリゴマーの吸光度面積である。
イミド化率(%)=100×(1-(イミド化後のピーク吸光度面積)/(アミック酸オリゴマーのピーク吸光度面積))
When the imide oligomer is produced by the above-mentioned production method, the imide oligomer is a plurality of imide oligomers having a structure represented by the above formula (1-1) or a structure represented by the above formula (1-2). It is obtained as a mixture of a plurality of types of imide oligomers having the above and each raw material (imide oligomer composition). When the imide oligomer composition has an imidization ratio of 70% or more, a cured product having superior mechanical strength and long-term heat resistance at high temperatures can be obtained when used as a curing agent.
The preferable lower limit of the imidization ratio of the imide oligomer composition is 75%, and the more preferable lower limit is 80%. Further, although there is no particular preferable upper limit of the imidization ratio of the imide oligomer composition, the practical upper limit is 98%.
The above "imidization rate" was measured by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (FT-IR), and was derived from the carbonyl group of amic acid at 1660 cm -1. It can be derived from the peak absorbance area in the vicinity by the following formula. Examples of the Fourier transform infrared spectrophotometer include UMA600 (manufactured by Agilent Technologies) and the like. The "peak absorbance area of the amic acid oligomer" in the following formula is determined by reacting the acid dianhydride with a diamine or a phenolic hydroxyl group-containing monoamine, and then removing the solvent by evaporation or the like without performing an imidization step. It is the absorbance area of the amic acid oligomer obtained by the above.
Imidization rate (%) = 100 × (1- (peak absorbance area after imidization) / (peak absorbance area of amic acid oligomer)))
上記イミドオリゴマー組成物は、硬化剤として硬化性樹脂組成物に用いた場合における溶解性の観点から、25℃においてテトラヒドロフラン10gに対して3g以上溶解することが好ましい。 From the viewpoint of solubility when the imide oligomer composition is used as a curing agent in a curable resin composition, it is preferable to dissolve 3 g or more of the imide oligomer composition in 10 g of tetrahydrofuran at 25 ° C.
また、上記イミドオリゴマーとしては、主鎖にイミド骨格及び置換されていてもよい脂肪族ジアミン残基及び/又は置換されていてもよい脂肪族トリアミン残基を有し、末端に架橋性官能基を有するイミドオリゴマー(以下、「脂肪族ジアミン残基及び/又は脂肪族トリアミン残基含有イミドオリゴマー」ともいう)が好ましい。上記脂肪族ジアミン残基及び/又は脂肪族トリアミン残基含有イミドオリゴマーは、上記脂肪族ジアミン残基及び/又は上記脂肪族トリアミン残基を有するため、得られる硬化性樹脂組成物の硬化前における可撓性及び加工性、並びに、常温でのタック性を向上させることができる。 Further, the imide oligomer has an imide skeleton in the main chain, an aliphatic diamine residue which may be substituted and / or an aliphatic triamine residue which may be substituted, and a crosslinkable functional group at the terminal. An imide oligomer having an imide oligomer (hereinafter, also referred to as "oliphatic diamine residue and / or aliphatic triamine residue-containing imide oligomer") is preferable. Since the aliphatic diamine residue and / or the aliphatic triamine residue-containing imide oligomer has the aliphatic diamine residue and / or the aliphatic triamine residue, the curable resin composition obtained can be obtained before curing. Flexibility and workability, as well as tackability at room temperature can be improved.
硬化性樹脂と硬化剤(後述する硬化促進剤を含有する場合は更に硬化促進剤)との合計100重量部中における上記イミドオリゴマーの含有量の好ましい下限は20重量部、好ましい上限は80重量部である。上記イミドオリゴマーの含有量がこの範囲であることにより、得られる硬化性樹脂組成物が、硬化前における可撓性及び加工性、及び、硬化後の耐熱性により優れるものとなる。上記イミドオリゴマーの含有量のより好ましい下限は25重量部、より好ましい上限は75重量部である。
なお、本発明にかかるイミドオリゴマーが上述したイミドオリゴマー組成物に含まれるものである場合、上記イミドオリゴマーの含有量は、該イミドオリゴマー組成物(更に他のイミドオリゴマーを併用する場合は該イミドオリゴマー組成物と他のイミドオリゴマーとの合計)の含有量を意味する。
The preferable lower limit of the content of the imide oligomer in 100 parts by weight of the total of the curable resin and the curing agent (further curing accelerator when the curing accelerator described later is contained) is 20 parts by weight, and the preferable upper limit is 80 parts by weight. Is. When the content of the imide oligomer is in this range, the obtained curable resin composition becomes more excellent in flexibility and processability before curing and heat resistance after curing. The more preferable lower limit of the content of the imide oligomer is 25 parts by weight, and the more preferable upper limit is 75 parts by weight.
When the imide oligomer according to the present invention is contained in the above-mentioned imide oligomer composition, the content of the imide oligomer is the imide oligomer composition (when another imide oligomer is used in combination, the imide oligomer is used). It means the content of the composition and other imide oligomers).
本発明の硬化性樹脂組成物は、高分子化合物を含有することが好ましい。硬化性樹脂組成物の粘度を上述した範囲に調整するために無機粒子等で構成される流動調整剤を用いた場合、チクソトロピックインデックスを上述した範囲とすることが困難となる場合がある。また、硬化物のシリコンチップに対する初期接着力、及び、150℃で100時間保管した後の硬化物のシリコンチップに対する接着力を上述した範囲とすることが困難となる場合もある。一方、上記高分子化合物を用いることで、硬化物の接着性及び長期耐熱性を維持しつつ、粘度やチクソトロピックインデックスを上述した範囲とすることがより容易となる。 The curable resin composition of the present invention preferably contains a polymer compound. When a flow conditioner composed of inorganic particles or the like is used to adjust the viscosity of the curable resin composition within the above range, it may be difficult to set the thixotropic index within the above range. In addition, it may be difficult to keep the initial adhesive force of the cured product on the silicon chip and the adhesive force of the cured product on the silicon chip after storage at 150 ° C. for 100 hours within the above-mentioned range. On the other hand, by using the above-mentioned polymer compound, it becomes easier to keep the viscosity and the thixotropic index within the above-mentioned range while maintaining the adhesiveness and long-term heat resistance of the cured product.
上記高分子化合物の数平均分子量の好ましい下限は1万、好ましい上限は8万である。上記高分子化合物の数平均分子量がこの範囲であることにより、得られる硬化性樹脂組成物の硬化物の接着性及び長期耐熱性を維持しつつ、粘度やチクソトロピックインデックスを上述した範囲とすることがより容易となる。上記高分子化合物の数平均分子量のより好ましい下限は12000より好ましい上限は7万である。 The preferable lower limit of the number average molecular weight of the polymer compound is 10,000, and the preferable upper limit is 80,000. When the number average molecular weight of the polymer compound is in this range, the viscosity and the thixotropic index should be in the above range while maintaining the adhesiveness and long-term heat resistance of the cured product of the obtained curable resin composition. Will be easier. The more preferable lower limit of the number average molecular weight of the polymer compound is 12000, and the upper limit is 70,000.
上記高分子化合物としては、例えば、ポリイミド、ポリアミドイミド、ビスマレイミド、フェノキシ樹脂、ポリエステル等が挙げられる。なかでも、耐熱性の観点から、ポリイミド、フェノキシ樹脂が好ましく、ポリイミドがより好ましい。
上記高分子化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the polymer compound include polyimide, polyamideimide, bismaleimide, phenoxy resin, polyester and the like. Of these, polyimide and phenoxy resin are preferable, and polyimide is more preferable, from the viewpoint of heat resistance.
The polymer compound may be used alone or in combination of two or more.
上記高分子化合物の含有量は、硬化性樹脂と硬化剤(後述する硬化促進剤を含有する場合は更に硬化促進剤)との合計100重量部に対して、好ましい下限が1重量部、好ましい上限が25重量部である。上記高分子化合物の含有量がこの範囲であることにより、得られる硬化性樹脂組成物の硬化物の接着性及び長期耐熱性を維持しつつ、粘度やチクソトロピックインデックスを上述した範囲とすることがより容易となる。上記高分子化合物の含有量のより好ましい下限は5重量部、より好ましい上限は20重量部である。 Regarding the content of the polymer compound, the preferable lower limit is 1 part by weight, and the preferable upper limit is 1 part by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (in the case of further containing the curing accelerator described later, the curing accelerator). Is 25 parts by weight. When the content of the polymer compound is in this range, the viscosity and the thixotropic index can be set in the above range while maintaining the adhesiveness and long-term heat resistance of the cured product of the obtained curable resin composition. It will be easier. The more preferable lower limit of the content of the polymer compound is 5 parts by weight, and the more preferable upper limit is 20 parts by weight.
本発明の硬化性樹脂組成物は、硬化促進剤を含有することが好ましい。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができる。 The curable resin composition of the present invention preferably contains a curing accelerator. By containing the above-mentioned curing accelerator, the curing time can be shortened and the productivity can be improved.
上記硬化促進剤としては、例えば、イミダゾール系硬化促進剤、ヒドラジド系硬化促進剤、3級アミン系硬化促進剤、ホスフィン系硬化促進剤、光塩基発生剤、スルホニウム塩系硬化促進剤等が挙げられる。なかでも、貯蔵安定性及び硬化性の観点から、イミダゾール化合物、ヒドラジド化合物、及び、りん系化合物からなる群より選択される少なくとも1種であることが好ましい。また、上記硬化促進剤は、イミダゾール化合物、ヒドラジド化合物、及び、りん系化合物からなる群より選択される少なくとも1種を含むマイクロカプセル型の硬化促進剤であってもよい。
上記硬化促進剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
Examples of the curing accelerator include an imidazole-based curing accelerator, a hydrazide-based curing accelerator, a tertiary amine-based curing accelerator, a phosphine-based curing accelerator, a photobase generator, a sulfonium salt-based curing accelerator, and the like. .. Among them, at least one selected from the group consisting of an imidazole compound, a hydrazide compound, and a phosphorus-based compound is preferable from the viewpoint of storage stability and curability. Further, the curing accelerator may be a microcapsule type curing accelerator containing at least one selected from the group consisting of an imidazole compound, a hydrazide compound, and a phosphorus-based compound.
The curing accelerator may be used alone or in combination of two or more.
硬化性樹脂と硬化剤と硬化促進剤との合計100重量部に対する上記硬化促進剤の含有量の好ましい上限は1.5重量部である。上記硬化促進剤の含有量が1.5重量部以下であることにより、得られる硬化性樹脂組成物が貯蔵安定性により優れるものとなる。上記硬化促進剤の含有量のより好ましい上限は1.0重量部である。
また、硬化性樹脂と硬化剤と硬化促進剤との合計100重量部に対する上記硬化促進剤の含有量の好ましい下限は0.4重量部である。上記硬化促進剤の含有量が0.4重量部以上であることにより、硬化時間を短縮させる効果により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は0.5重量部である。
The preferable upper limit of the content of the curing accelerator with respect to a total of 100 parts by weight of the curing resin, the curing agent and the curing accelerator is 1.5 parts by weight. When the content of the curing accelerator is 1.5 parts by weight or less, the obtained curable resin composition becomes more excellent in storage stability. A more preferable upper limit of the content of the curing accelerator is 1.0 part by weight.
Further, the preferable lower limit of the content of the curing accelerator with respect to a total of 100 parts by weight of the curing resin, the curing agent and the curing accelerator is 0.4 parts by weight. When the content of the curing accelerator is 0.4 parts by weight or more, the effect of shortening the curing time is more excellent. A more preferable lower limit of the content of the curing accelerator is 0.5 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、吸湿リフロー耐性やめっき耐性向上等の目的で無機充填剤を含有してもよい。 The curable resin composition of the present invention may contain an inorganic filler for the purpose of improving moisture absorption / reflow resistance and plating resistance as long as the object of the present invention is not impaired.
上記無機充填剤は、シリカ及び硫酸バリウムの少なくともいずれかであることが好ましい。上記無機充填剤としてシリカ及び硫酸バリウムの少なくともいずれかを含有することにより、本発明の硬化性樹脂組成物は、吸湿リフロー耐性、めっき耐性、及び、加工性により優れるものとなる。 The inorganic filler is preferably at least one of silica and barium sulfate. By containing at least one of silica and barium sulfate as the inorganic filler, the curable resin composition of the present invention is excellent in moisture absorption reflow resistance, plating resistance, and processability.
上記シリカ及び上記硫酸バリウム以外のその他の無機充填剤としては、例えば、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体等が挙げられる。 Examples of the inorganic filler other than the silica and barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and an inorganic ion exchanger.
上記無機充填剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
また、上記無機充填剤としては、平均粒子径が50nm以上4μm未満のものが好適に用いられる。
The inorganic filler may be used alone or in combination of two or more.
Further, as the inorganic filler, one having an average particle size of 50 nm or more and less than 4 μm is preferably used.
上記無機充填剤の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が200重量部である。上記無機充填剤の含有量がこの範囲であることにより、優れたタック性等を維持したまま、得られる硬化性樹脂組成物の硬化物が吸湿リフロー耐性やめっき耐性により優れるものとなる。上記無機充填剤の含有量のより好ましい上限は150重量部である。 The content of the inorganic filler is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (further, if the curing accelerator is contained, the curing accelerator). be. When the content of the inorganic filler is in this range, the cured product of the obtained curable resin composition is superior in moisture absorption reflow resistance and plating resistance while maintaining excellent tackiness and the like. A more preferable upper limit of the content of the inorganic filler is 150 parts by weight.
本発明の硬化性樹脂組成物は、流動調整剤を含有してもよい。
上記流動調整剤としては、例えば、アエロジル等のヒュームドシリカや層状ケイ酸塩等が挙げられる。
上記流動調整剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
また、上記流動調整剤としては、平均粒子径が100nm未満のものが好適に用いられる。
The curable resin composition of the present invention may contain a flow conditioner.
Examples of the flow conditioner include fumed silica such as Aerosil and layered silicate.
The flow adjusting agent may be used alone or in combination of two or more.
Further, as the flow adjusting agent, one having an average particle size of less than 100 nm is preferably used.
硬化性樹脂と硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対する上記流動調整剤の含有量の好ましい上限は2.0重量部である。上記流動調整剤の含有量が2.0重量部以下であることにより、得られる硬化性樹脂組成物が被着体への短時間での塗れ性により優れるものとなる。上記流動調整剤の含有量のより好ましい上限は1.5重量部である。
また、塗布後の形状保持性の観点から、上記流動調整剤の含有量の好ましい下限は特にないが、実質的な下限は0重量部である。
The preferable upper limit of the content of the flow adjusting agent is 2.0 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (further, if the curing accelerator is contained, the curing accelerator). When the content of the flow adjusting agent is 2.0 parts by weight or less, the obtained curable resin composition is more excellent in the applicability to the adherend in a short time. A more preferable upper limit of the content of the flow adjusting agent is 1.5 parts by weight.
Further, from the viewpoint of shape retention after coating, there is no particular preferable lower limit of the content of the flow adjusting agent, but the practical lower limit is 0 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、応力緩和、靭性付与等を目的として有機充填剤を含有してもよい。
上記有機充填剤としては、例えば、シリコーンゴム粒子、アクリルゴム粒子、ウレタンゴム粒子、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子、ベンゾグアナミン粒子、及び、これらのコアシェル粒子等が挙げられる。なかでも、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子が好ましい。
上記有機充填剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
The curable resin composition of the present invention may contain an organic filler for the purpose of stress relaxation, toughness imparting, etc., as long as the object of the present invention is not impaired.
Examples of the organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamide-imide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamide-imide particles, and polyimide particles are preferable.
The organic filler may be used alone or in combination of two or more.
上記有機充填剤の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が200重量部である。上記有機充填剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、得られる硬化性樹脂組成物の硬化物が靭性等により優れるものとなる。上記有機充填剤の含有量のより好ましい上限は150重量部である。 The content of the organic filler is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (further, if the curing accelerator is contained, the curing accelerator). be. When the content of the organic filler is in this range, the cured product of the obtained curable resin composition becomes more excellent in toughness and the like while maintaining excellent adhesiveness and the like. A more preferable upper limit of the content of the organic filler is 150 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で難燃剤を含有してもよい。
上記難燃剤としては、例えば、ベーマイト型水酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム等の金属水和物、ハロゲン系化合物、りん系化合物、窒素化合物等が挙げられる。なかでも、ベーマイト型水酸化アルミニウムが好ましい。
上記難燃剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
The curable resin composition of the present invention may contain a flame retardant as long as the object of the present invention is not impaired.
Examples of the flame retardant include metal hydrates such as boehmite type aluminum hydroxide, aluminum hydroxide and magnesium hydroxide, halogen compounds, phosphorus compounds, nitrogen compounds and the like. Of these, boehmite-type aluminum hydroxide is preferable.
The flame retardant may be used alone or in combination of two or more.
上記難燃剤の含有量は、上記硬化性樹脂と上記硬化剤(上記硬化促進剤を含有する場合は更に上記硬化促進剤)との合計100重量部に対して、好ましい上限が200重量部である。上記難燃剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が優れた接着性等を維持したまま、難燃性に優れるものとなる。上記難燃剤の含有量のより好ましい上限は150重量部である。 The content of the flame retardant is preferably 200 parts by weight with respect to a total of 100 parts by weight of the curable resin and the curing agent (further, if the curing accelerator is contained, the curing accelerator). .. When the content of the flame retardant is in this range, the obtained curable resin composition has excellent flame retardancy while maintaining excellent adhesiveness and the like. A more preferable upper limit of the content of the flame retardant is 150 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で反応性希釈剤を含有してもよい。
上記反応性希釈剤としては、接着信頼性の観点から、1分子中に2つ以上の反応性官能基を有する反応性希釈剤が好ましい。
The curable resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
As the reactive diluent, a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesive reliability.
本発明の硬化性樹脂組成物は、溶剤を含有することが好ましい。
上記溶剤としては、塗工性や貯蔵安定性等の観点から、沸点が200℃未満の溶剤が好ましい。
上記沸点が200℃未満の溶剤としては、例えば、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、炭化水素系溶剤、ハロゲン系溶剤、エーテル系溶剤、含窒素系溶剤等が挙げられる。
上記アルコール系溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、イソブチルアルコール、ノルマルブチルアルコール、ターシャリーブチルアルコール、2-エチエルヘキサノール等が挙げられる。
上記ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルプロピルケトン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジアセトンアルコール等が挙げられる。なかでも、アノン系溶剤が好ましい。
上記エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸メトキシブチル、酢酸アミル、酢酸ノルマルプロピル、酢酸イソプロピル、乳酸メチル、乳酸エチル、乳酸ブチル等が挙げられる。
上記炭化水素系溶剤としては、例えば、ベンゼン、トルエン、キシレン、ノルマルヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、イソオクタン、ノルマルデカン、ノルマルヘプタン等が挙げられる。
上記ハロゲン系溶剤としては、例えば、ジクロロメタン、クロロホルム、トリクロロエチレン等が挙げられる。
上記エーテル系溶剤としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジイソプロピルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノターシャリーブチルエーテル、プロピレングリコールモノメチルエーテルプロピオネート、3-メトキシブタノール、ジエチレングリコールジメチルエーテル、アニソール、4-メチルアニソール等が挙げられる。
上記含窒素系溶剤としては、例えば、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
なかでも、取り扱い性やイミドオリゴマーの溶解性等の観点から、沸点が60℃以上200℃未満のケトン系溶剤、沸点が60℃以上200℃未満のエステル系溶剤、及び、沸点が60℃以上200℃未満のエーテル系溶剤からなる群より選択される少なくとも1種が好ましい。このような溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸イソブチル、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、シクロヘキサノン、メチルシクロヘキサノン、ジエチレングリコールジメチルエーテル、アニソール等が挙げられる。
特に好ましい溶剤の沸点は100℃以上200度未満である。上記溶剤の沸点がこの範囲であることにより、スピンコート法による塗布性により優れるものとなる。
本発明の硬化性樹脂組成物は、沸点200℃以上の溶剤を含んでもよい。
上記沸点が200℃以上の溶剤としては、例えば、含窒素系溶剤が挙げられる。
上記含窒素系溶剤としては、例えば、N-メチル-2-ピロリドンが挙げられる。
なお、上記「沸点」は、101kPaの条件で測定される値、又は、沸点換算図表等で101kPaに換算された値を意味する。
The curable resin composition of the present invention preferably contains a solvent.
As the solvent, a solvent having a boiling point of less than 200 ° C. is preferable from the viewpoint of coatability, storage stability and the like.
Examples of the solvent having a boiling point of less than 200 ° C. include alcohol-based solvents, ketone-based solvents, ester-based solvents, hydrocarbon-based solvents, halogen-based solvents, ether-based solvents, nitrogen-containing solvents and the like.
Examples of the alcohol-based solvent include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, normal butyl alcohol, tertiary butyl alcohol, 2-ethielhexanol and the like.
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, diacetone alcohol and the like. Of these, annon-based solvents are preferable.
Examples of the ester-based solvent include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methoxybutyl acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate and the like.
Examples of the hydrocarbon solvent include benzene, toluene, xylene, normal hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, isooctane, normal decane, normal heptane and the like.
Examples of the halogen-based solvent include dichloromethane, chloroform, trichlorethylene and the like.
Examples of the ether-based solvent include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and propylene glycol monomethyl ether acetate. , Propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, ethylene glycol monotersial butyl ether, propylene glycol monomethyl ether propionate, 3-methoxybutanol, diethylene glycol dimethyl ether, anisole, 4-methylanisole and the like. Be done.
Examples of the nitrogen-containing solvent include acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
Among them, from the viewpoint of handleability and solubility of imide oligomers, a ketone solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C., an ester solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C., and a boiling point of 60 ° C. or higher and 200 ° C. At least one selected from the group consisting of ether solvents below ° C is preferred. Examples of such a solvent include methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, cyclohexanone, methylcyclohexanone, diethylene glycol dimethyl ether, anisole and the like.
A particularly preferable solvent has a boiling point of 100 ° C. or higher and lower than 200 ° C. When the boiling point of the solvent is in this range, the coatability by the spin coating method is improved.
The curable resin composition of the present invention may contain a solvent having a boiling point of 200 ° C. or higher.
Examples of the solvent having a boiling point of 200 ° C. or higher include a nitrogen-containing solvent.
Examples of the nitrogen-containing solvent include N-methyl-2-pyrrolidone.
The above "boiling point" means a value measured under the condition of 101 kPa or a value converted to 101 kPa in a boiling point conversion chart or the like.
本発明の硬化性樹脂組成物は、固形分濃度の好ましい下限が40重量%、好ましい上限が70重量%である。上記固形分濃度がこの範囲であることにより、スピンコート法による塗布性により優れるものとなる。上記固形分濃度のより好ましい下限は45重量%、より好ましい上限は65重量%である。
また、貯蔵安定性の観点からは、上記固形分濃度の好ましい下限は40重量%、好ましい上限は60重量%である。
なお、上記「固形分」とは、硬化性樹脂組成物が上記溶剤を含む場合は該溶剤以外の成分を意味する。
In the curable resin composition of the present invention, the preferable lower limit of the solid content concentration is 40% by weight, and the preferable upper limit is 70% by weight. When the solid content concentration is in this range, the applicability by the spin coating method is improved. The more preferable lower limit of the solid content concentration is 45% by weight, and the more preferable upper limit is 65% by weight.
From the viewpoint of storage stability, the preferable lower limit of the solid content concentration is 40% by weight, and the preferable upper limit is 60% by weight.
The term "solid content" means a component other than the solvent when the curable resin composition contains the solvent.
本発明の硬化性樹脂組成物は、更に、カップリング剤、分散剤、貯蔵安定化剤、ブリード防止剤、フラックス剤、レベリング剤等の添加剤を含有してもよい。 The curable resin composition of the present invention may further contain additives such as a coupling agent, a dispersant, a storage stabilizer, an antibleeding agent, a flux agent, and a leveling agent.
本発明の硬化性樹脂組成物を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、硬化剤と、高分子化合物や硬化促進剤等とを混合する方法等が挙げられる。上記混合機としては、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等が挙げられる。 Examples of the method for producing the curable resin composition of the present invention include a method of mixing a curable resin, a curing agent, a polymer compound, a curing accelerator, and the like using a mixer. Examples of the mixer include a homodisper, a universal mixer, a Banbury mixer, a kneader and the like.
本発明の硬化性樹脂組成物は、広い用途に用いることができるが、特に高い長期耐熱性が求められている電子材料用途に好適に用いることができる。例えば、航空、車載用電気制御ユニット用途や、SiC、GaNを用いたパワーデバイス用途におけるダイアタッチ剤等に用いることができる。また、例えば、プリント配線基板用接着剤、フレキシブルプリント回路基板のカバーレイ用接着剤、銅張積層板、半導体接合用接着剤、層間絶縁材料、プリプレグ、LED用封止剤、構造材料用接着剤、パワーオーバーレイパッケージ用接着剤等にも用いることができる。
なかでも、接着剤用途に好適に用いられる。本発明の硬化性樹脂組成物を含む接着剤もまた、本発明の1つである。また、本発明の硬化性樹脂組成物中に溶剤を含有する接着剤ワニスもまた、本発明の1つである。
The curable resin composition of the present invention can be used for a wide range of applications, but can be suitably used for electronic material applications in which high long-term heat resistance is particularly required. For example, it can be used as a diagnostic agent in aviation and in-vehicle electric control unit applications, and in power device applications using SiC and GaN. Further, for example, an adhesive for a printed wiring board, an adhesive for a coverlay of a flexible printed circuit board, a copper-clad laminate, an adhesive for semiconductor bonding, an interlayer insulating material, a prepreg, an adhesive for an LED, and an adhesive for a structural material. , Can also be used as an adhesive for power overlay packages.
Among them, it is preferably used for adhesive applications. An adhesive containing the curable resin composition of the present invention is also one of the present inventions. An adhesive varnish containing a solvent in the curable resin composition of the present invention is also one of the present inventions.
本発明の硬化性樹脂組成物を基材上に塗工し、乾燥させることにより、本発明の硬化性樹脂組成物で構成される硬化性樹脂組成物フィルムを得ることができ、該硬化性樹脂組成物フィルムを硬化させて硬化物を得ることができる。上記硬化性樹脂フィルムは、接着フィルムとして好適に用いることができる。本発明の硬化性樹脂組成物を含む接着層を有する接着フィルムもまた、本発明の1つである。
また、本発明の硬化性樹脂組成物の硬化物もまた、本発明の1つである。
By applying the curable resin composition of the present invention on a substrate and drying it, a curable resin composition film composed of the curable resin composition of the present invention can be obtained, and the curable resin can be obtained. The composition film can be cured to obtain a cured product. The curable resin film can be suitably used as an adhesive film. An adhesive film having an adhesive layer containing the curable resin composition of the present invention is also one of the present inventions.
The cured product of the curable resin composition of the present invention is also one of the present inventions.
本発明によれば、スピンコート法による塗布性、並びに、硬化物の接着性及び長期耐熱性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物を用いてなる接着剤、接着剤ワニス、及び、接着フィルム、並びに、該硬化性樹脂組成物の硬化物を提供することができる。 According to the present invention, it is possible to provide a curable resin composition having excellent coatability by a spin coating method, adhesiveness of a cured product, and long-term heat resistance. Further, according to the present invention, it is possible to provide an adhesive, an adhesive varnish, and an adhesive film using the curable resin composition, and a cured product of the curable resin composition.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(イミドオリゴマー組成物の作製)
4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)104重量部をN-メチルピロリドン(富士フイルム和光純薬社製、「NMP」)300重量部に溶解させた。得られた溶液にダイマージアミンであるプリアミン1074(クローダ社製)28重量部をN-メチルピロリドン100重量部で希釈した溶液を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー組成物(イミド化率93%)を得た。
なお、得られたイミドオリゴマー組成物は、H-NMR、GPC、及び、FT-IR分析により、上記式(4-1)又は(4-3)で表される構造を有する脂肪族ジアミン残基含有イミドオリゴマー(Aは4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物残基、Bはダイマージアミン残基)を含むことを確認した。また、該イミドオリゴマー組成物の数平均分子量は2200であった。
(Preparation of imide oligomer composition)
4,4'-(4,4'-isopropyridendiphenoxy) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) 104 parts by weight N-methylpyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "NMP") 300 weight Dissolved in the part. To the obtained solution, add a solution obtained by diluting 28 parts by weight of preamine 1074 (manufactured by Croda), which is a diamine diamine, with 100 parts by weight of N-methylpyrrolidone, and stir at 25 ° C. for 2 hours to react to make an amic acid oligomer solution. Got After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain an imide oligomer composition (imidization ratio 93%).
The obtained imide oligomer composition is an aliphatic diamine residue having a structure represented by the above formula (4-1) or (4-3) by 1 H-NMR, GPC, and FT-IR analysis. It was confirmed that the group-containing imide oligomer (A is a 4,4'-(4,4'-isopropyridenediphenoxy) diphthalic acid anhydride residue and B is a diamine diamine residue) is contained. The number average molecular weight of the imide oligomer composition was 2200.
(合成例1(ポリイミド樹脂溶液A)の作製)
撹拌機、分水器、及び、窒素ガス導入管を備えた反応容器に4,4’-オキシジフタル酸無水物(東京化成工業社製)52.3重量部、及び、シクロヘキサノン200重量部を仕込み、溶解させた。得られた溶液に、ダイマージアミンであるプリアミン1074(クローダ社製)56.1重量部とシクロヘキサノン55.0重量部の混合溶液を滴下した後、150℃で8時間かけてイミド化反応を行い、ポリイミド樹脂溶液Aを得た。なお、得られたポリイミド樹脂溶液Aの固形分濃度は30重量%、ポリイミド樹脂の数平均分子量は23000であった。
(Preparation of Synthesis Example 1 (Polyimide Resin Solution A))
52.3 parts by weight of 4,4'-oxydiphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 200 parts by weight of cyclohexanone were charged in a reaction vessel equipped with a stirrer, a water divider, and a nitrogen gas introduction pipe. Dissolved. A mixed solution of 56.1 parts by weight of the polyimide diamine Priamine (manufactured by Croda) and 55.0 parts by weight of cyclohexanone was added dropwise to the obtained solution, and then an imidization reaction was carried out at 150 ° C. for 8 hours. A polyimide resin solution A was obtained. The solid content concentration of the obtained polyimide resin solution A was 30% by weight, and the number average molecular weight of the polyimide resin was 23000.
(合成例2(ポリイミド樹脂溶液B)の作製)
撹拌機、分水器、及び、窒素ガス導入管を備えた反応容器に4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)54.6重量部、及び、シクロヘキサノン200重量部を仕込み、溶解させた。得られた溶液に、ダイマージアミンであるプリアミン1074(クローダ社製)56.1重量部とシクロヘキサノン55.0重量部の混合溶液を滴下した後、150℃で8時間かけてイミド化反応を行い、ポリイミド樹脂溶液Bを得た。なお、得られたポリイミド樹脂溶液Bの固形分濃度は30重量%、ポリイミド樹脂の数平均分子量は25000であった。
(Preparation of Synthesis Example 2 (Polyimide Resin Solution B))
4,4'-(4,4'-isopropyridendiphenoxy) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) 54.6 weight in a reaction vessel equipped with a stirrer, a water divider, and a nitrogen gas introduction tube. A portion and 200 parts by weight of cyclohexanone were charged and dissolved. A mixed solution of 56.1 parts by weight of the polyimide diamine Priamine (manufactured by Croda) and 55.0 parts by weight of cyclohexanone was added dropwise to the obtained solution, and then an imidization reaction was carried out at 150 ° C. for 8 hours. A polyimide resin solution B was obtained. The solid content concentration of the obtained polyimide resin solution B was 30% by weight, and the number average molecular weight of the polyimide resin was 25,000.
(実施例1~9、比較例1~4)
表1、2に記載された配合比に従い、各材料を撹拌混合し、実施例1~9、比較例1~4の各硬化性樹脂組成物を作製した。
(Examples 1 to 9, Comparative Examples 1 to 4)
Each material was stirred and mixed according to the compounding ratios shown in Tables 1 and 2, and the curable resin compositions of Examples 1 to 9 and Comparative Examples 1 to 4 were prepared.
(25℃における粘度及びチクソトロピックインデックス)
得られた各硬化性樹脂組成物について、製造後60分以内に、E型粘度計(東機産業社製、「VISCOMETER TV-22」)を用い、CP1型のコーンプレートにて、25℃、10rpmの条件における粘度を測定した。また、実施例6~9、比較例3、4で得られた各硬化性樹脂組成物については、製造後、25℃で8日間保管した後に、E型粘度計(東機産業社製、「VISCOMETER TV-22」)を用い、CP1型のコーンプレートにて、25℃、10rpmの条件における粘度を測定した。
また、同様にして、製造後60分以内の各硬化性樹脂組成物について、25℃、1.0rpmの条件、及び、25℃、10rpmの条件で粘度を測定し、チクソトロピックインデックスを導出した。
結果を表1、2に示した。
(Viscosity at 25 ° C and Chixotropic Index)
For each of the obtained curable resin compositions, within 60 minutes after production, a CP1 type cone plate was used at 25 ° C. using an E-type viscometer (“VISCOMETER TV-22” manufactured by Toki Sangyo Co., Ltd.). The viscosity under the condition of 10 rpm was measured. Further, each of the curable resin compositions obtained in Examples 6 to 9 and Comparative Examples 3 and 4 was stored at 25 ° C. for 8 days after production, and then an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., “ Using VISCOMETER TV-22 ”), the viscosity was measured on a CP1 type cone plate under the conditions of 25 ° C. and 10 rpm.
Further, in the same manner, the viscosity of each curable resin composition within 60 minutes after production was measured under the conditions of 25 ° C. and 1.0 rpm and 25 ° C. and 10 rpm, and a thixotropic index was derived.
The results are shown in Tables 1 and 2.
(硬化物のシリコンチップに対する初期接着力)
得られた各硬化性樹脂組成物を、長さ10mm、幅10mmのポリイミド基板に塗布し、長さ3mm、幅3mm、厚さ0.3mmのシリコンチップを重ねた。次いで、190℃で1時間加熱することにより硬化性樹脂組成物を硬化させ、試験片を得た。得られた試験片について、ダイシェアテスターを用いて、100μm/sの速度で25℃におけるダイシェア強度を測定し、得られたダイシェア強度を硬化物のシリコンチップに対する初期接着力とした。上記ポリイミドとしては、カプトン200H(東レ・デュポン社製、表面粗さ0.03~0.07μm)を用い、上記シリコンチップとしては、グローバルウェーハ社製のシリコンチップ(表面粗さ0.5~1.0nm)を用い、上記ダイシェアテスターとしては、DAGE4000(Nordson社製)を用いた。結果を表1、2に示した。
(Initial adhesive strength of cured product to silicon chip)
Each of the obtained curable resin compositions was applied to a polyimide substrate having a length of 10 mm and a width of 10 mm, and silicon chips having a length of 3 mm, a width of 3 mm and a thickness of 0.3 mm were laminated. Then, the curable resin composition was cured by heating at 190 ° C. for 1 hour to obtain a test piece. The obtained test piece was measured for die shear strength at 25 ° C. at a speed of 100 μm / s using a die shear tester, and the obtained die shear strength was used as the initial adhesive force to the silicon chip of the cured product. As the polyimide, Kapton 200H (manufactured by Toray Industries, Inc., surface roughness 0.03 to 0.07 μm) is used, and as the silicon chip, a silicon chip manufactured by Global Wafer Co., Ltd. (surface roughness 0.5 to 1) is used. 0.0 nm) was used, and as the die share tester, DAGE4000 (manufactured by Toray Industries, Inc.) was used. The results are shown in Tables 1 and 2.
(150℃で100時間保管した後の硬化物のシリコンチップに対する接着力)
上記「(硬化物のシリコンチップに対する初期接着力)」と同様にして得られた試験片を150℃のオーブンで100時間保管した。次いで、保管後の試験片について、ダイシェアテスターを用いて、100μm/sの速度で25℃におけるダイシェア強度を測定し、得られたダイシェア強度を150℃で100時間保管した後の硬化物のシリコンチップに対する接着力とした。結果を表1、2に示した。
(Adhesive strength of cured product to silicon chips after storage at 150 ° C for 100 hours)
The test piece obtained in the same manner as the above "(Initial adhesive strength of the cured product to the silicon chip)" was stored in an oven at 150 ° C. for 100 hours. Next, for the test piece after storage, the die shear strength at 25 ° C. was measured at a speed of 100 μm / s using a die shear tester, and the obtained die shear strength was stored at 150 ° C. for 100 hours, and then the cured product silicon was obtained. Adhesive strength to the chip. The results are shown in Tables 1 and 2.
<評価>
実施例及び比較例で得られた各硬化性樹脂組成物について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluations were performed on each of the curable resin compositions obtained in Examples and Comparative Examples. The results are shown in Tables 1 and 2.
(スピンコート法による塗布性(塗膜均一性))
得られた各硬化性樹脂組成物を、4inchφ、厚さ0.3mmのシリコンウエハ上に2.0mL滴下し、スピンコーターを用いて、25℃、1300rpmの条件で10秒間回転させることにより、シリコンウエハ上に硬化性樹脂組成物を塗布した。上記スピンコーターとしては、SPINCOATER 1H-D7(ミカサ社製)を用いた。
得られた硬化性樹脂組成物フィルムを90℃、10分の条件で乾燥させた後、硬化性樹脂組成物フィルムの厚みを定圧厚さ測定器(ミツトヨ社製)で測定した。塗膜中心部と端部の厚みの差が1μm以下であった場合を「◎」、1μmを超え5μm以下であった場合を「○」、5μmを超え15μm以下であった場合を「△」、15μmを超えた場合を「×」として、スピンコート法による塗布性(塗膜均一性)を評価した。
(Applicability by spin coating method (coating uniformity))
2.0 mL of each of the obtained curable resin compositions was dropped onto a silicon wafer having a thickness of 4 inches and a thickness of 0.3 mm, and the mixture was rotated at 25 ° C. and 1300 rpm for 10 seconds using a spin coater to make silicon. The curable resin composition was applied onto the wafer. As the spin coater, SPINCOATER 1HD7 (manufactured by Mikasa) was used.
The obtained curable resin composition film was dried at 90 ° C. for 10 minutes, and then the thickness of the curable resin composition film was measured with a constant pressure thickness measuring device (manufactured by Mitutoyo Co., Ltd.). When the difference in thickness between the center and the edge of the coating film is 1 μm or less, it is “◎”, when it is more than 1 μm and 5 μm or less, it is “○”, and when it is more than 5 μm and 15 μm or less, it is “△”. , The case where it exceeded 15 μm was regarded as “x”, and the coatability (coating film uniformity) by the spin coating method was evaluated.
(長期耐熱性)
実施例及び比較例で得られた各硬化性樹脂組成物を厚みが約20μmとなるように基材PETフィルム上に塗工し、乾燥させることにより、基材PETフィルム上に硬化性樹脂組成物フィルムを作製した。得られた硬化性樹脂組成物フィルムから基材PETフィルムを剥離し、両面に厚さ20μmのポリイミドフィルム(東レ・デュポン社製、「カプトンV」)を積層し、190℃で1時間加熱することにより硬化させた後、175℃で1000時間熱処理を行った。熱処理後の硬化性樹脂組成物の硬化物とポリイミドフィルムとの積層体を常温で直径5mm又は3mmの円柱に半円状に沿わせた後、該積層体の状態を目視にて観察した。
積層体を3mmの円柱に半円状に沿わせてもひびや割れが全く確認されなかった場合を「○」、5mmの円柱に半円状に沿わせてもひびや割れが確認されなかったが、3mmの円柱に半円状に沿わせるとひびや割れが確認された場合を「△」、5mmの円柱に半円状に沿わせるとひびや割れが確認された場合を「×」として長期耐熱性を評価した。
(Long-term heat resistance)
Each of the curable resin compositions obtained in Examples and Comparative Examples was coated on a base material PET film so as to have a thickness of about 20 μm, and dried to obtain a curable resin composition on the base material PET film. A film was made. The base material PET film is peeled off from the obtained curable resin composition film, a polyimide film having a thickness of 20 μm (manufactured by Toray DuPont, “Kapton V”) is laminated on both sides, and heated at 190 ° C. for 1 hour. After curing, heat treatment was performed at 175 ° C. for 1000 hours. A laminate of the cured product of the curable resin composition after the heat treatment and the polyimide film was placed along a semicircular shape on a cylinder having a diameter of 5 mm or 3 mm at room temperature, and then the state of the laminate was visually observed.
No cracks or cracks were found even when the laminate was placed along a semicircular shape on a 3 mm cylinder. No cracks or cracks were found even when the laminate was placed along a semicircular shape on a 5 mm cylinder. However, if cracks or cracks are found along a semicircle on a 3 mm cylinder, it is marked as "△", and if cracks or cracks are found along a semicircle on a 5 mm cylinder, it is marked as "x". The long-term heat resistance was evaluated.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
本発明によれば、スピンコート法による塗布性、並びに、硬化物の接着性及び長期耐熱性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物を用いてなる接着剤、接着剤ワニス、及び、接着フィルム、並びに、該硬化性樹脂組成物の硬化物を提供することができる。 According to the present invention, it is possible to provide a curable resin composition having excellent coatability by a spin coating method, adhesiveness of a cured product, and long-term heat resistance. Further, according to the present invention, it is possible to provide an adhesive, an adhesive varnish, and an adhesive film using the curable resin composition, and a cured product of the curable resin composition.

Claims (17)

  1. 25℃における粘度が200mPa・s以上600mPa・s以下であり、
    25℃におけるチクソトロピックインデックスが2.0以下であり、
    硬化物のシリコンチップに対する初期接着力が3MPa以上であり、かつ、
    150℃で100時間保管した後の硬化物のシリコンチップに対する接着力が2MPa以上である
    ことを特徴とする硬化性樹脂組成物。
    The viscosity at 25 ° C. is 200 mPa · s or more and 600 mPa · s or less.
    The thixotropic index at 25 ° C is 2.0 or less,
    The initial adhesive strength of the cured product to the silicon chip is 3 MPa or more, and
    A curable resin composition characterized in that the adhesive strength of the cured product to a silicon chip after storage at 150 ° C. for 100 hours is 2 MPa or more.
  2. 25℃で8日間保管した後の粘度が初期粘度の2.0倍以下である請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the viscosity after storage at 25 ° C. for 8 days is 2.0 times or less the initial viscosity.
  3. 硬化性樹脂と硬化剤とを含有する請求項1又は2記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, which contains a curable resin and a curing agent.
  4. 前記硬化性樹脂は、エポキシ樹脂を含む請求項3記載の硬化性樹脂組成物。 The curable resin composition according to claim 3, wherein the curable resin contains an epoxy resin.
  5. 前記硬化剤は、イミドオリゴマーを含む請求項3又は4記載の硬化性樹脂組成物。 The curable resin composition according to claim 3 or 4, wherein the curing agent contains an imide oligomer.
  6. 前記イミドオリゴマーは、下記式(1-1)又は下記式(1-2)で表される構造を有する請求項5記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    式(1-1)及び式(1-2)中、Aは、酸二無水物残基であり、式(1-1)中、Bは、脂肪族ジアミン残基又は芳香族ジアミン残基であり、式(1-2)中、Arは、置換されていてもよい2価の芳香族基である。
    The curable resin composition according to claim 5, wherein the imide oligomer has a structure represented by the following formula (1-1) or the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000001
    In formulas (1-1) and (1-2), A is an acid dianhydride residue, and in formula (1-1), B is an aliphatic diamine residue or an aromatic diamine residue. Yes, in formula (1-2), Ar is a optionally substituted divalent aromatic group.
  7. 硬化促進剤を含有し、
    硬化性樹脂と硬化剤と硬化促進剤との合計100重量部中における前記硬化促進剤の含有量が1.5重量部以下である請求項1、2、3、4、5又は6記載の硬化性樹脂組成物。
    Contains a curing accelerator,
    The curing according to claim 1, 2, 3, 4, 5 or 6, wherein the content of the curing accelerator in a total of 100 parts by weight of the curable resin, the curing agent and the curing accelerator is 1.5 parts by weight or less. Sex resin composition.
  8. 前記硬化促進剤は、イミダゾール化合物、ヒドラジド化合物、及び、りん系化合物からなる群より選択される少なくとも1種である請求項7記載の硬化性樹脂組成物。 The curable resin composition according to claim 7, wherein the curing accelerator is at least one selected from the group consisting of an imidazole compound, a hydrazide compound, and a phosphorus-based compound.
  9. 高分子化合物を含有する請求項1、2、3、4、5、6、7又は8記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7 or 8, which contains a polymer compound.
  10. 前記高分子化合物は、ポリイミドを含む請求項9記載の硬化性樹脂組成物。 The curable resin composition according to claim 9, wherein the polymer compound contains polyimide.
  11. 流動調整剤を含有し、
    硬化性樹脂と硬化剤との合計100重量部中における前記流動調整剤の含有量が2.0重量部以下である請求項1、2、3、4、5、6、7、8、9又は10記載の硬化性樹脂組成物。
    Contains a flow regulator,
    Claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or the content of the flow adjusting agent in 100 parts by weight of the curable resin and the curing agent is 2.0 parts by weight or less. 10. The curable resin composition according to 10.
  12. 沸点が60℃以上200℃未満のケトン系溶剤、沸点が60℃以上200℃未満のエステル系溶剤、及び、沸点が60℃以上200℃未満のエーテル系溶剤からなる群より選択される少なくとも1種を含有する請求項1、2、3、4、5、6、7、8、9、10又は11記載の硬化性樹脂組成物。 At least one selected from the group consisting of a ketone solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C., an ester solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C., and an ether solvent having a boiling point of 60 ° C. or higher and lower than 200 ° C. The curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11.
  13. 固形分濃度が40重量%以上70重量%以下である請求項1、2、3、4、5、6、7、8、9、10、11又は12記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, wherein the solid content concentration is 40% by weight or more and 70% by weight or less.
  14. 請求項1、2、3、4、5、6、7、8、9、10、11、12又は13記載の硬化性樹脂組成物を含む接着剤。 An adhesive comprising the curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13.
  15. 請求項1、2、3、4、5、6、7、8、9、10、11、12又は13記載の硬化性樹脂組成物中に溶剤を含有する接着剤ワニス。 The adhesive varnish containing a solvent in the curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13.
  16. 請求項1、2、3、4、5、6、7、8、9、10、11、12又は13記載の硬化性樹脂組成物を含む接着層を有する接着フィルム。 An adhesive film having an adhesive layer containing the curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13.
  17. 請求項1、2、3、4、5、6、7、8、9、10、11、12又は13記載の硬化性樹脂組成物の硬化物。 The cured product of the curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13.
PCT/JP2021/019735 2020-05-28 2021-05-25 Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object WO2021241548A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021534893A JPWO2021241548A1 (en) 2020-05-28 2021-05-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020093603 2020-05-28
JP2020-093603 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021241548A1 true WO2021241548A1 (en) 2021-12-02

Family

ID=78744431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019735 WO2021241548A1 (en) 2020-05-28 2021-05-25 Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object

Country Status (3)

Country Link
JP (1) JPWO2021241548A1 (en)
TW (1) TW202212402A (en)
WO (1) WO2021241548A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138407A1 (en) * 2020-12-23 2022-06-30 積水化学工業株式会社 Curable resin composition, cured product, adhesive agent, and adhesion film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091799A (en) * 2005-09-27 2007-04-12 Kaneka Corp Thermosetting resin composition and its application
JP2016147946A (en) * 2015-02-11 2016-08-18 ナミックス株式会社 Resin composition, film, substrate, semiconductor device, adhesive material for thermal transfer roll and office equipment
WO2018139558A1 (en) * 2017-01-27 2018-08-02 積水化学工業株式会社 Curable resin composition, adhesive, imide oligomer, imide oligomer composition, and curing agent
WO2018139559A1 (en) * 2017-01-27 2018-08-02 積水化学工業株式会社 Curable resin composition, cured product, adhesive, bonding film, coverlay film, flexible copper-clad laminate and circuit board
WO2018221217A1 (en) * 2017-05-31 2018-12-06 積水化学工業株式会社 Curable resin composition, cured product, adhesive agent, adhesive film, coverlay film and printed wiring board
WO2019181721A1 (en) * 2018-03-20 2019-09-26 積水化学工業株式会社 Curable resin composition, adhesive, adhesive film, cover lay film, and flexible copper-clad laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091799A (en) * 2005-09-27 2007-04-12 Kaneka Corp Thermosetting resin composition and its application
JP2016147946A (en) * 2015-02-11 2016-08-18 ナミックス株式会社 Resin composition, film, substrate, semiconductor device, adhesive material for thermal transfer roll and office equipment
WO2018139558A1 (en) * 2017-01-27 2018-08-02 積水化学工業株式会社 Curable resin composition, adhesive, imide oligomer, imide oligomer composition, and curing agent
WO2018139559A1 (en) * 2017-01-27 2018-08-02 積水化学工業株式会社 Curable resin composition, cured product, adhesive, bonding film, coverlay film, flexible copper-clad laminate and circuit board
WO2018221217A1 (en) * 2017-05-31 2018-12-06 積水化学工業株式会社 Curable resin composition, cured product, adhesive agent, adhesive film, coverlay film and printed wiring board
WO2019181721A1 (en) * 2018-03-20 2019-09-26 積水化学工業株式会社 Curable resin composition, adhesive, adhesive film, cover lay film, and flexible copper-clad laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138407A1 (en) * 2020-12-23 2022-06-30 積水化学工業株式会社 Curable resin composition, cured product, adhesive agent, and adhesion film

Also Published As

Publication number Publication date
TW202212402A (en) 2022-04-01
JPWO2021241548A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP7184641B2 (en) Curable resin composition and adhesive
TWI823848B (en) Curable resin compositions, cured products, adhesives, adhesive films, cover films, flexible copper-clad laminates, and circuit boards
JP7305315B2 (en) Curable resin composition, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
WO2021241548A1 (en) Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object
JP7265474B2 (en) Curable resin composition, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
JP2020200413A (en) Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured product
JP2022105887A (en) Curable resin composition, cured product, adhesive, and adhesive film
JP2021155493A (en) Thermosetting adhesive film
WO2021193437A1 (en) Curable resin composition, adhesive agent, and adhesive film
WO2022220253A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
WO2023032723A1 (en) Curable resin composition and interlayer insulating material
JP7168326B2 (en) Curable resin composition, cured product, adhesive, adhesive film, and circuit board
JP7168325B2 (en) Curable resin composition, cured product, adhesive, adhesive film, coverlay film, flexible copper-clad laminate, and circuit board
JP2021155494A (en) Curable resin composition, adhesive, and adhesive film
WO2023136098A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
JP2022188991A (en) Thermosetting resin composition, adhesive, adhesive varnish, adhesive film, and cured product
JP2023118258A (en) Curable resin composition and interlayer insulating material
JP2023067452A (en) Curable resin composition, cured product, adhesive, and adhesive film
JP2022173783A (en) Curable resin composition, cured object, adhesive, and adhesive film
WO2023090347A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
WO2022138407A1 (en) Curable resin composition, cured product, adhesive agent, and adhesion film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021534893

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811911

Country of ref document: EP

Kind code of ref document: A1