WO2018221217A1 - Curable resin composition, cured product, adhesive agent, adhesive film, coverlay film and printed wiring board - Google Patents

Curable resin composition, cured product, adhesive agent, adhesive film, coverlay film and printed wiring board Download PDF

Info

Publication number
WO2018221217A1
WO2018221217A1 PCT/JP2018/018892 JP2018018892W WO2018221217A1 WO 2018221217 A1 WO2018221217 A1 WO 2018221217A1 JP 2018018892 W JP2018018892 W JP 2018018892W WO 2018221217 A1 WO2018221217 A1 WO 2018221217A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin composition
imide oligomer
weight
composition according
Prior art date
Application number
PCT/JP2018/018892
Other languages
French (fr)
Japanese (ja)
Inventor
さやか 脇岡
幸平 竹田
新城 隆
悠太 大當
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018087192A external-priority patent/JP7207863B2/en
Priority claimed from JP2018087191A external-priority patent/JP7144182B2/en
Priority claimed from JP2018087193A external-priority patent/JP7211715B2/en
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201880036020.0A priority Critical patent/CN110691805A/en
Priority to KR1020197033879A priority patent/KR102671097B1/en
Publication of WO2018221217A1 publication Critical patent/WO2018221217A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers

Definitions

  • the present invention relates to a curable resin composition having excellent flow characteristics before curing and excellent adhesiveness, heat resistance, and flex resistance after curing. Moreover, this invention relates to the hardened
  • this invention relates to the curable resin composition which is excellent in flexibility and workability before hardening, and is excellent in adhesiveness and heat resistance after hardening. Moreover, this invention relates to the adhesive agent and adhesive film which use the hardened
  • a flexible printed wiring board usually has a structure in which a copper foil or the like is bonded to one side or both sides of an insulating film such as a polyimide film via an adhesive layer.
  • the adhesive used for the adhesive layer of the flexible printed wiring board is required to have excellent flow characteristics capable of satisfying both sufficient fillability (unevenness embedding property) and leaching prevention during thermocompression bonding.
  • Patent Documents 1 to 3 include a thermosetting component such as an epoxy resin, a thermoplastic resin such as acrylic resin, polyamide, and polyester, and a flexible component such as acrylonitrile butadiene rubber.
  • a curable resin composition is disclosed.
  • Patent Document 4 discloses an adhesive containing a soluble polyester, a phenoxy resin, and an imidosiloxane oligomer.
  • the adhesive disclosed in Patent Document 4 is inferior in flow characteristics, and it is difficult to achieve both filling properties and leaching prevention properties.
  • Curable resins such as epoxy resins that have low shrinkage and are excellent in adhesion, insulation, and chemical resistance are used in many industrial products.
  • curable resin compositions are used that can give good results in a solder reflow test for short-term heat resistance and a thermal cycle test for repeated heat resistance.
  • Patent Document 5 discloses improving the low thermal expansion property, heat resistance, and the like of a curable resin composition by using a specific imide oligomer having a phenolic hydroxyl group or an amino group at a terminal as a curing agent. .
  • the curable resin composition disclosed in Patent Document 5 has a problem that the storage stability is inferior, or the cured product is inferior in long-term heat resistance, although it is excellent in heat decomposition resistance.
  • Patent Document 6 discloses a curable resin composition using an imide oligomer curing agent having an acid anhydride structure at both ends.
  • the curable resin composition disclosed in Patent Document 6 has a problem that the adhesiveness is inferior, or the cured product is inferior in long-term heat resistance and low linear expansion.
  • Patent Document 6 and Patent Document 7 described above disclose curable resin compositions containing an epoxy resin and an imide oligomer as a curing agent.
  • imide oligomers are generally hard and brittle at room temperature
  • the curable resin compositions disclosed in Patent Documents 6 and 7 have problems in flexibility, workability, fluidity, etc. at room temperature. there were.
  • Patent Document 5 described above includes a curable resin composition containing a liquid epoxy resin and an imide oligomer having a specific reactive functional group. It is disclosed.
  • Patent Document 8 discloses a curable resin before curing by dispersing a nitrile rubber component in a resin mixture containing an imide oligomer having a specific reactive functional group, an epoxy resin, and a bismaleimide-triazine resin. A method for improving the flexibility of the composition is disclosed. However, the method disclosed in Patent Document 8 has a problem that the heat resistance of the cured product deteriorates due to the nitrile rubber component.
  • An object of this invention is to provide the curable resin composition which is excellent in a fluid characteristic before hardening, and is excellent in adhesiveness, heat resistance, and bending resistance after hardening.
  • Another object of the present invention is to provide a cured product of the curable resin composition, and an adhesive, an adhesive film, a cover lay film, and a printed wiring board using the curable resin composition. To do.
  • Another object of the present invention is to provide a curable resin composition capable of obtaining a cured product having excellent storage stability and low linear expansion, adhesion, and long-term heat resistance.
  • Another object of the present invention is to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
  • an object of this invention is to provide the curable resin composition which is excellent in flexibility and workability before hardening, and is excellent in adhesiveness and heat resistance after hardening.
  • Another object of the present invention is to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
  • Invention 1 contains a thermosetting resin, a thermoplastic resin, and an imide oligomer, and the imide oligomer is a curable resin composition having a reactive functional group capable of reacting with the thermosetting resin.
  • the present invention 1 will be described in detail below.
  • the present inventors use an imide oligomer having a reactive functional group capable of reacting with a thermosetting resin as the imide oligomer. I examined that. As a result, it was found that a curable resin composition having excellent flow characteristics before curing and having excellent adhesiveness, heat resistance, and bending resistance after curing was obtained, and the present invention 1 was completed.
  • the curable resin composition of the present invention 1 contains a thermosetting resin.
  • a thermosetting resin an epoxy resin is preferably used.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin.
  • Propylene oxide-added bisphenol A type epoxy resin resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether Type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolak type epoxy resin, biffe Examples thereof include nil novolac type epoxy resins, naphthalene phenol novolac type epoxy resins, glycidyl amine type epoxy resins, alkyl polyol type epoxy resins, rubber-modified epoxy resins, fluorene type epoxy resins, and glycidyl ester compounds.
  • the minimum with a preferable number average molecular weight of the said thermosetting resin is 90, and a preferable upper limit is 3000.
  • the more preferable lower limit of the number average molecular weight of the thermosetting resin is 100, and the more preferable upper limit is 2500.
  • the “number average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industrial Co., Ltd.).
  • the minimum with preferable content of the said thermosetting resin in the total 100 weight part of a thermosetting resin, a thermoplastic resin, and an imide oligomer is 10 weight part, and a preferable upper limit is 90 weight part.
  • a preferable upper limit is 90 weight part.
  • the content of the thermosetting resin is 10 parts by weight or more, the resulting curable resin composition is more excellent in adhesiveness and heat resistance.
  • the content of the thermosetting resin is 90 parts by weight or less, the resulting curable resin composition has superior flow characteristics.
  • the minimum with more preferable content of the said thermosetting resin is 20 weight part, and a more preferable upper limit is 80 weight part.
  • the curable resin composition of the present invention 1 contains a thermoplastic resin.
  • the curable resin composition of the first aspect of the present invention has excellent flow characteristics, is easy to achieve both filling property and leaching prevention property at the time of thermocompression bonding, and resistance after curing. Excellent flexibility.
  • thermoplastic resin examples include phenoxy resin, polyamide, acrylic resin, and polyester.
  • phenoxy resins and polyamides are preferable from the viewpoint of heat resistance, and phenoxy resins are more preferable from the viewpoints of leaching prevention and handleability during thermocompression bonding.
  • phenoxy resin examples include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol E type phenoxy resin, bisphenol A-bisphenol F type phenoxy resin, acetophenone-biphenyl type phenoxy resin, bisphenol S type phenoxy resin, phosphorus-containing Examples include phenoxy resin, trimethylcyclohexane skeleton phenoxy resin, bisphenolfluorene skeleton phenoxy resin, and the like. Of these, bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, and bisphenol A-bisphenol F type phenoxy resin are preferred.
  • the minimum with a preferable weight average molecular weight of the said thermoplastic resin is 3000, and a preferable upper limit is 200,000.
  • the weight average molecular weight of the thermoplastic resin is within this range, the resulting curable resin composition is excellent in flow characteristics and bending resistance after curing.
  • a more preferable lower limit of the weight average molecular weight of the thermoplastic resin is 5000, a more preferable upper limit is 150,000, and a further preferable upper limit is 100,000.
  • the minimum with the preferable weight average molecular weight of the said thermoplastic resin is 10,000.
  • weight average molecular weight is a value determined by gel conversion chromatography (GPC) using tetrahydrofuran as a solvent and calculated in terms of polystyrene.
  • GPC gel conversion chromatography
  • Examples of the column used when measuring the weight average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industrial Co., Ltd.).
  • the minimum with preferable content of the said thermoplastic resin in 100 weight part in total of a thermosetting resin, a thermoplastic resin, and an imide oligomer is 1 weight part, and a preferable upper limit is 60 weight part.
  • a preferable upper limit is 60 weight part.
  • the content of the thermoplastic resin is 1 part by weight or more, the resulting curable resin composition is superior in flow characteristics and bending resistance after curing.
  • the content of the thermoplastic resin is 60 parts by weight or less, the resulting curable resin composition is more excellent in adhesiveness and heat resistance.
  • the minimum with more preferable content of the said thermosetting resin is 3 weight part, and a more preferable upper limit is 50 weight part.
  • the curable resin composition of the present invention 1 contains an imide oligomer.
  • the imide oligomer has a reactive functional group that can react with the thermosetting resin.
  • the curable resin composition of the present invention 1 has the effect of achieving both filling properties and anti-leaching properties during thermocompression bonding, and The adhesiveness and heat resistance after curing are excellent while maintaining the bending resistance after curing.
  • the reactive functional group which the said imide oligomer has depends on the kind of thermosetting resin to be used, when using an epoxy resin as a thermosetting resin, it is preferable that they are an acid anhydride group and / or a phenolic hydroxyl group.
  • the imide oligomer preferably has the reactive functional group at the ends of the main chain, and more preferably at both ends.
  • an acid dianhydride represented by the following formula (1) and a diamine represented by the following formula (2) are reacted. And the like.
  • a method for producing an imide oligomer having a phenolic hydroxyl group as the reactive functional group for example, an acid dianhydride represented by the following formula (1) and a phenolic hydroxyl group represented by the following formula (3): Examples include a method of reacting the contained monoamine. Furthermore, after reacting the acid dianhydride represented by the following formula (1) and the diamine represented by the following formula (2), the phenolic hydroxyl group-containing monoamine represented by the following formula (3) is further reacted. The method etc. to make are also mentioned.
  • A is a tetravalent group represented by the following formula (4-1) or the following formula (4-2).
  • B is a divalent group represented by the following formula (5-1) or the following formula (5-2), and R 1 to R 4 are each independently a hydrogen atom or 1 Valent hydrocarbon group.
  • Ar is an optionally substituted divalent aromatic group
  • R 5 and R 6 are each independently a hydrogen atom or a monovalent hydrocarbon group.
  • the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like.
  • the imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer.
  • the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like.
  • the imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer.
  • a desired number average molecular weight is obtained. It is possible to obtain an imide oligomer having a phenolic hydroxyl group as a reactive functional group at both ends.
  • the diamine represented by the above formula (2) is previously dissolved in a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.), and the resulting solution
  • the acid dianhydride represented by the above formula (1) is added and reacted to obtain a solution of an amic acid oligomer (A) having acid anhydride groups at both ends.
  • the solvent is removed from the solution of the obtained amic acid oligomer (A) by heating, reduced pressure, or the like, or it is poured into a poor solvent such as water, methanol, hexane, etc. to cause reprecipitation, so that the amic acid oligomer (A) Is further heated at about 200 ° C. or higher for 1 hour or longer to allow the imidization reaction to proceed.
  • a poor solvent such as water, methanol, hexane, etc.
  • the thus obtained imide oligomer having an acid anhydride group as a reactive functional group at both ends is dissolved again in a soluble solvent (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.)
  • a soluble solvent for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.
  • the phenolic hydroxyl group-containing monoamine represented by the above formula (3) is added and reacted to obtain a solution of the amic acid oligomer (B).
  • the solvent is removed from the resulting solution of the amic acid oligomer (B) by heating, decompression, or the like, or it is poured into a poor solvent such as water, methanol, hexane, etc. to recover the amic acid oligomer (B). Further, the imidization reaction is advanced by heating at about 200 ° C.
  • Examples of the acid dianhydride represented by the above formula (1) include pyromellitic dianhydride, 3,3′-oxydiphthalic dianhydride, 3,4′-oxydiphthalic dianhydride, 4,4 '-Oxydiphthalic dianhydride, 4,4'-(4,4'-isopropylidenediphenoxy) diphthalic anhydride, 4,4'-bis (3,4-dicarboxylphenoxy) diphenyl ether, p-phenylenebis (Trimellitate anhydride), 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-carbonyldiphthalate An acid dianhydride etc.
  • Examples of the diamine represented by the above formula (2) include 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenyl ether, 3,4 '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4 -Aminophenoxy) benzene,
  • 3,4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,2-phenylenediamine, 1,3-phenylene is superior because of its excellent solubility, heat resistance, and availability.
  • Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (3) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, 4-amino-2. , 3-xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -Amino-2,6-diphenylphenol and the like. Among them, a cured product having excellent availability and storage stability and a high glass transition temperature can be obtained, so that 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o- Cresol is preferred.
  • the minimum with the preferable imidation ratio of the said imide oligomer is 70%.
  • the imidation ratio is 70% or more, a cured product having excellent mechanical strength at high temperatures and long-term heat resistance can be obtained.
  • a more preferable lower limit of the imidization ratio is 75%, and a more preferable lower limit is 80%.
  • there is no particular upper limit for the imidation ratio of the imide oligomer but the substantial upper limit is 98%.
  • the “imidation ratio” can be determined by Fourier transform infrared spectroscopy (FT-IR).
  • measurement is performed by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (for example, “UMA600” manufactured by Agilent Technologies), and is derived from a carbonyl group of an amic acid. It can be derived from the peak absorbance area around 1660 cm ⁇ 1 by the following equation.
  • the said imide oligomer may be used independently and 2 or more types may be used together.
  • the preferable lower limit of the number average molecular weight of the imide oligomer is 400, and the preferable upper limit is 5000. When the number average molecular weight is within this range, the obtained cured product is superior in long-term heat resistance.
  • the more preferable lower limit of the number average molecular weight of the imide oligomer is 500, and the more preferable upper limit is 4000.
  • a preferable upper limit of the softening point of the imide oligomer is 250 ° C.
  • the softening point of the imide oligomer is 250 ° C. or less, the obtained cured product is excellent in adhesiveness and long-term heat resistance.
  • a more preferable upper limit of the softening point of the imide oligomer is 200 ° C.
  • the softening point of the imide oligomer can be determined by the ring and ball method according to JIS K 2207.
  • the minimum with preferable content of the said imide oligomer in the total 100 weight part of a thermosetting resin, a thermoplastic resin, and an imide oligomer is 10 weight part, and a preferable upper limit is 90 weight part.
  • a preferable upper limit is 90 weight part.
  • the content of the imide oligomer is within this range, the cured product of the resulting curable resin composition is superior in mechanical strength, adhesiveness, and long-term heat resistance at high temperatures.
  • the minimum with more preferable content of the said imide oligomer is 20 weight part, and a more preferable upper limit is 80 weight part.
  • the curable resin composition of this invention 1 may contain another hardening
  • curing agent examples include phenolic curing agents, thiol curing agents, amine curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents. Of these, phenolic curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents are preferred.
  • curing agent is 70. Part by weight, more preferred upper limit is 50 parts by weight, and still more preferred upper limit is 30 parts by weight.
  • the curable resin composition of this invention 1 contains a hardening accelerator.
  • a hardening accelerator By containing the said hardening accelerator, hardening time can be shortened and productivity can be improved.
  • the curing accelerator examples include imidazole-based curing accelerators, tertiary amine-based curing accelerators, phosphine-based curing accelerators, phosphorus-based curing accelerators, photobase generators, and sulfonium salt-based curing accelerators. . Especially, since it is excellent in storage stability, an imidazole type hardening accelerator is preferable.
  • the content of the curing accelerator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the thermosetting resin. When the content of the curing accelerator is within this range, the effect of shortening the curing time is maintained while maintaining excellent adhesiveness and the like.
  • the minimum with more preferable content of the said hardening accelerator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
  • the curable resin composition of the present invention 1 may contain an inorganic filler for the purpose of reducing warpage by reducing the linear expansion coefficient after curing, improving adhesion reliability, and the like.
  • the said inorganic filler can be used suitably also as a flow regulator.
  • examples of the inorganic filler include silica such as fumed silica and colloidal silica, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, inorganic ion exchanger, and the like. .
  • the content of the inorganic filler is preferably 500 parts by weight with respect to 100 parts by weight of the thermosetting resin.
  • the content of the inorganic filler is 500 parts by weight or less, the adhesive reliability is improved or the flow is adjusted while maintaining excellent processability and the like.
  • the upper limit with more preferable content of the said inorganic filler is 400 weight part.
  • the curable resin composition of the present invention 1 may contain an organic filler for the purpose of relaxing stress, imparting toughness, and the like.
  • organic filler examples include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamideimide particles, and polyimide particles are preferable.
  • the content of the organic filler is preferably 500 parts by weight with respect to 100 parts by weight of the thermosetting resin.
  • the content of the organic filler is 500 parts by weight or less, the obtained cured product is excellent in toughness and the like while maintaining excellent adhesiveness and the like.
  • the upper limit with more preferable content of the said organic filler is 400 weight part.
  • the curable resin composition of the present invention 1 may contain a reactive diluent as long as the object of the present invention is not impaired.
  • a reactive diluent a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesion reliability.
  • a reactive functional group which the said reactive diluent has the thing similar to the reactive functional group which the high molecular compound mentioned above has is mentioned.
  • the curable resin composition of the present invention 1 may further contain additives such as a solvent, a coupling agent, a dispersant, a storage stabilizer, a bleed inhibitor, and a flux agent.
  • additives such as a solvent, a coupling agent, a dispersant, a storage stabilizer, a bleed inhibitor, and a flux agent.
  • the curable resin composition of the present invention for example, using a mixer such as a homodisper, a universal mixer, a Banbury mixer, a kneader, a thermosetting resin, a thermoplastic resin, and a curing agent And other curing agents, curing accelerators, inorganic fillers (flow control agents) and the like that are added as necessary.
  • a mixer such as a homodisper, a universal mixer, a Banbury mixer, a kneader, a thermosetting resin, a thermoplastic resin, and a curing agent
  • other curing agents, curing accelerators, inorganic fillers (flow control agents) and the like that are added as necessary.
  • the minimum with the minimum melt viscosity of the curable resin composition of this invention 1 is 5 kPa * s, and a preferable upper limit is 300 kPa * s.
  • the curable resin composition of the present invention 1 has more excellent flow characteristics.
  • a more preferable lower limit of the minimum melt viscosity is 10 kPa ⁇ s, a more preferable upper limit is 200 kPa ⁇ s, and a still more preferable upper limit is 150 kPa ⁇ s.
  • the minimum melt viscosity is measured using a rotary rheometer (for example, “VAR-100” manufactured by Rheology Corporation) under the conditions of a heating rate of 10 ° C./min, a frequency of 1 Hz, and a strain of 1%. It can be determined from the lowest value of the complex viscosity when measured from a temperature range of 60 ° C to 300 ° C.
  • the curable resin composition of the present invention 1 can be used for a wide range of applications, it can be suitably used for an electronic material application that requires particularly high heat resistance.
  • it can be used for die attach agents in aviation, in-vehicle electric control unit (ECU) applications, power device applications using SiC, and GaN.
  • An adhesive comprising the curable resin composition of the present invention 1 (hereinafter also referred to as “adhesive of the present invention 1”) is also one aspect of the present invention.
  • the adhesive of the present invention 1 can form an adhesive film (curable resin composition film) by a method such as drying after coating on a release film, and by curing the adhesive film. A cured product can be obtained.
  • the cured product of the curable resin composition of the present invention 1 is also one aspect of the present invention.
  • An adhesive film using the adhesive of the present invention 1 is also one aspect of the present invention.
  • cover lay film of the present invention 1 having an adhesive layer made of a cured product of the curable resin composition of the present invention 1 and an insulating film is also 1 of the present invention.
  • cover lay film of the present invention 1 having an adhesive layer made of a cured product of the curable resin composition of the present invention 1 and an insulating film is also 1 of the present invention.
  • the flexible printed wiring board which has the coverlay film of this invention 1 is also one of this invention.
  • the present invention 2 is a curable resin composition containing a curable resin, an imide oligomer, and a curing accelerator, and the imide oligomer is a curable resin composition represented by the following formula (6).
  • X is a tetravalent group represented by the following formula (7-1), (7-2), or (7-3), and Y is a formula (8-1) ), (8-2), (8-3), or (8-4).
  • Z represents a bond, an oxygen atom, a sulfonyl group, or a linear or branched divalent carbon atom which may have an oxygen atom at the bonding position. It is a hydrogen group or a divalent group having an aromatic ring which may have an oxygen atom at the bonding position.
  • the hydrogen atom of the aromatic ring in formulas (8-1) and (8-2) may be substituted.
  • R 7 to R 14 each represents a hydrogen atom or a monovalent hydrocarbon group, and may be the same or different.
  • * represents a bonding position. The present invention 2 will be described in detail below.
  • the present inventors have excellent storage stability by using the imide oligomer having a specific structure, and The inventors found that a cured product excellent in low linear expansion property, adhesiveness, and long-term heat resistance can be obtained, and completed the present invention 2.
  • the curable resin composition of the present invention 2 contains an imide oligomer.
  • the imide oligomer is represented by the above formula (6).
  • the imide oligomer represented by the above formula (6) is also referred to as an imide oligomer according to the present invention 2.
  • the curable resin composition of the present invention 2 is a cured product having excellent storage stability and low linear expansion, adhesion, and long-term heat resistance. It can be obtained.
  • the minimum with a preferable number average molecular weight of the imide oligomer concerning this invention 2 is 400, and a preferable upper limit is 5000.
  • the more preferable lower limit of the number average molecular weight of the imide oligomer according to the present invention 2 is 500, and the more preferable upper limit is 4000.
  • the “number average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industrial Co., Ltd.).
  • the upper limit with the softening point of the imide oligomer concerning this invention 2 is 250 degreeC.
  • the softening point of the imide oligomer according to the second aspect of the invention is 250 ° C. or less, the obtained cured product is excellent in adhesiveness and long-term heat resistance.
  • the upper limit with a more preferable softening point of the imide oligomer concerning this invention 2 is 200 degreeC.
  • the softening point can be determined by the ring and ball method according to JIS K 2207.
  • Examples of the method for producing the imide oligomer according to the present invention 2 include a method of reacting an acid dianhydride represented by the following formula (9) and a diamine represented by the following formula (10).
  • X is the same tetravalent group as X in formula (6).
  • Y is the same divalent group as Y in formula (6), and R 15 to R 18 are each independently a hydrogen atom or a monovalent hydrocarbon group.
  • the diamine represented by the above formula (10) is previously dissolved in a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.), and the resulting solution
  • a solvent in which the amic acid oligomer obtained by the reaction is soluble for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.
  • the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like.
  • the imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer.
  • the molar ratio of the acid dianhydride represented by the above formula (9) and the diamine represented by the above formula (10) and the imidization conditions it is represented by the above formula (6) and desired.
  • acid dianhydride represented by the above formula (9) examples include 3,4′-oxydiphthalic dianhydride, 4,4′-oxydiphthalic dianhydride, 4,4 ′-(4 , 4'-isopropylidenediphenoxy) diphthalic anhydride can be used.
  • Examples of the diamine represented by the above formula (10) include 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 1,3 -Phenylenediamine, 1,4-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4- Aminophenoxy) phenyl) sulfone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, bis (4- (4-Aminophenoxy) phenyl) methane, 2,2-
  • 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (1, because of excellent solubility, heat resistance and availability.
  • 1,3-bis (4-aminophenoxy) benzene is particularly preferred because of its excellent low linear expansion.
  • the minimum with the preferable imidation ratio of the imide oligomer concerning this invention 2 is 70%.
  • the imidation ratio is 70% or more, a cured product having excellent mechanical strength at high temperatures and long-term heat resistance can be obtained.
  • a more preferable lower limit of the imidization ratio is 75%, and a more preferable lower limit is 80%.
  • a substantial upper limit is 98%.
  • the “imidation ratio” can be determined by Fourier transform infrared spectroscopy (FT-IR).
  • measurement is performed by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (for example, “UMA600” manufactured by Agilent Technologies), and is derived from a carbonyl group of an amic acid. It can be derived from the peak absorbance area around 1660 cm ⁇ 1 by the following equation.
  • the “peak absorbance area of the amic acid oligomer” in the following formula is obtained by reacting the acid dianhydride represented by the above formula (9) with the diamine represented by the above formula (10), and then imidizing. This is the absorbance area of the amic acid oligomer obtained by removing the solvent by evaporation without performing the step.
  • Imidation ratio (%) 100 ⁇ (1- (peak absorbance area after imidization) / (peak absorbance area of amic acid oligomer))
  • the minimum with preferable content of the imide oligomer concerning this invention 2 in a total of 100 weight part of curable resin, an imide oligomer, and a hardening accelerator is 20 weight part, and a preferable upper limit is 90 weight part.
  • a preferable upper limit is 90 weight part.
  • the content of the imide oligomer according to the present invention 2 is within this range, the resulting cured product of the curable resin composition is superior in mechanical strength at high temperature, adhesiveness, and long-term heat resistance.
  • the minimum with more preferable content of the imide oligomer concerning this invention 2 is 30 weight part, and a more preferable upper limit is 80 weight part.
  • the curable resin composition of the present invention 2 may contain other imide oligomers and other curing agents in addition to the imide oligomer according to the present invention 2 as long as the object of the present invention is not impaired.
  • the imide oligomer which have an imide group and a reactive functional group in a molecule
  • the other curing agents include phenolic curing agents, thiol curing agents, amine curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents. Of these, phenolic curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents are preferred.
  • curing agent is 70.
  • the upper limit is 50% by weight, and a more preferable upper limit is 30% by weight.
  • the curable resin composition of the present invention 2 contains a curable resin.
  • An epoxy resin is preferably used as the curable resin.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin.
  • Propylene oxide-added bisphenol A type epoxy resin resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether Type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolak type epoxy resin, biffe Examples thereof include nil novolac type epoxy resins, naphthalene phenol novolac type epoxy resins, glycidyl amine type epoxy resins, alkyl polyol type epoxy resins, rubber-modified epoxy resins, fluorene type epoxy resins, and glycidyl ester compounds.
  • the curable resin composition of the present invention 2 contains a curing accelerator.
  • a curing accelerator By containing the curing accelerator, not only the curing time can be shortened and the productivity can be improved, but also the long-term heat resistance of the cured product can be improved.
  • the curing accelerator is preferably a basic catalyst.
  • a curing accelerator having an imidazole skeleton imidazole curing accelerator
  • a tertiary amine curing accelerator a tertiary amine curing accelerator
  • a phosphorus curing accelerator a photobase generator.
  • Etc a curing accelerator having an imidazole skeleton is more preferable because of excellent storage stability.
  • Examples of the curing accelerator having an imidazole skeleton include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4- Methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-s-triazine, 2,4-diamino-6- (2′-un Decylimidazolyl- (1 ′))-ethyl-s-tri
  • Examples of the curing accelerator other than the curing accelerator having the imidazole skeleton include a tertiary amine-based curing accelerator, a phosphine-based curing accelerator, a photobase generator, and a sulfonium salt-based curing accelerator.
  • the minimum with preferable content of the said hardening accelerator in 100 weight part in total of curable resin, an imide oligomer, and a hardening accelerator is 0.8 weight part, and a preferable upper limit is 10 weight part.
  • a preferable upper limit is 10 weight part.
  • the content of the curing accelerator is 0.8 parts by weight or more, the resulting curable resin composition is more excellent in the adhesiveness and long-term heat resistance of the cured product.
  • the content of the curing accelerator is 10 parts by weight or less, the resulting curable resin composition is more excellent in storage stability.
  • a more preferable lower limit of the content of the curing accelerator is 1 part by weight, and a more preferable upper limit is 9 parts by weight.
  • the curable resin composition of the present invention 2 may contain an inorganic filler for the purpose of reducing warpage by reducing the linear expansion coefficient after curing, improving adhesion reliability, or the like.
  • the said inorganic filler can be used suitably also as a flow regulator.
  • examples of the inorganic filler include silica such as fumed silica and colloidal silica, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, inorganic ion exchanger, and the like. .
  • the content of the inorganic filler is preferably 300 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the inorganic filler is 300 parts by weight or less, the adhesive reliability is improved or the flow is adjusted while maintaining excellent processability and the like.
  • the upper limit with more preferable content of the said inorganic filler is 200 weight part.
  • the curable resin composition of the present invention 2 may contain an organic filler for the purpose of stress relaxation, imparting toughness and the like.
  • organic filler examples include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamideimide particles, and polyimide particles are preferable.
  • the upper limit of the content of the organic filler is preferably 300 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the organic filler is 300 parts by weight or less, the obtained cured product is excellent in toughness and the like while maintaining excellent adhesiveness and the like.
  • the upper limit with more preferable content of the said organic filler is 200 weight part.
  • the curable resin composition of the present invention 2 may contain a polymer compound as long as the object of the present invention is not impaired.
  • the polymer compound serves as a film forming component.
  • the polymer compound may have a reactive functional group.
  • the reactive functional group include an amino group, a urethane group, an imide group, a hydroxyl group, a carboxyl group, and an epoxy group.
  • the curable resin composition of the present invention 2 may contain a reactive diluent as long as the object of the present invention is not impaired.
  • a reactive diluent a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesion reliability.
  • a reactive functional group which the said reactive diluent has the thing similar to the reactive functional group which the high molecular compound mentioned above has is mentioned.
  • the curable resin composition of the present invention 2 may further contain additives such as a solvent, a coupling agent, a dispersant, a storage stabilizer, a bleed inhibitor, a flux agent, a leveling agent, and a flame retardant.
  • additives such as a solvent, a coupling agent, a dispersant, a storage stabilizer, a bleed inhibitor, a flux agent, a leveling agent, and a flame retardant.
  • the curable resin composition of the present invention 2 As a method for producing the curable resin composition of the present invention 2, for example, using a mixer such as a homodisper, a universal mixer, a Banbury mixer, a kneader, the curable resin and the imide oligomer according to the present invention 2, Examples thereof include a method of mixing a curing accelerator with other curing agents and inorganic fillers (flow modifiers) added as necessary.
  • the film which consists of curable resin composition of this invention 2 can be obtained by apply
  • a cured product can be obtained by curing.
  • a cured product of the curable resin composition of the present invention 2 (hereinafter also referred to as “cured product of the present invention 2”) is also one aspect of the present invention.
  • the average linear expansion coefficient in the temperature range of 40 ° C. to 80 ° C. is preferably 60 ppm or less, and more preferably 55 ppm or less, from the viewpoint of reducing warpage or improving the adhesion reliability.
  • the average linear expansion coefficient is preferably as small as possible.
  • the average linear expansion coefficient can be measured for a cured product having a thickness of about 400 ⁇ m using a thermomechanical analyzer. Specifically, after heating the cured product having a sample length of 1 cm from 0 ° C. to 300 ° C. under the conditions of a load of 5 g and a temperature increase rate of 10 ° C./min, it is once cooled and then again from 0 ° C. to 300 ° C.
  • the average linear expansion coefficient in the temperature range from 40 ° C. to 80 ° C. can be determined based on the temperature and dimensional change data obtained in the second measurement after the temperature is raised.
  • the cured product for measuring the average linear expansion coefficient can be obtained by heating the curable resin composition film at 190 ° C. for 30 minutes or more.
  • the thermomechanical analyzer include TMA / SS-6000 (manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the curable resin composition of the present invention 2 can be used for a wide range of applications, it can be suitably used for an electronic material application that requires particularly high heat resistance.
  • it can be used for die attach agents in aviation, in-vehicle electric control unit (ECU) applications, power device applications using SiC, and GaN.
  • power overlay package adhesive, printed wiring board adhesive, flexible printed circuit board coverlay adhesive, copper-clad laminate, semiconductor bonding adhesive, interlayer insulation film, prepreg, LED sealing It can also be used for adhesives and adhesives for structural materials.
  • the adhesive agent which consists of curable resin composition of this invention 2 is also one of this invention.
  • the adhesive film using the curable resin composition of this invention 2 is also one of this invention.
  • Invention 3 is a curable resin composition containing a curable resin and an imide oligomer, and the curable resin is liquid at 25 ° C., and the imide oligomer is dispersed in solid particles at 25 ° C.
  • the curable resin composition The present invention 3 will be described in detail below.
  • the present inventors use a liquid resin at 25 ° C. as the curable resin, and form the imide oligomer into solid particles at 25 ° C. We considered to disperse. As a result, it was found that a curable resin composition excellent in flexibility and workability before curing and excellent in adhesiveness and heat resistance after curing could be obtained, and the present invention 3 was completed.
  • the curable resin composition of the present invention 3 contains a curable resin.
  • the curable resin is liquid at 25 ° C.
  • the curable resin composition of the present invention 3 is excellent in fluidity and workability.
  • the curable resin one in which the imide oligomer is insoluble at 25 ° C. is used.
  • An epoxy resin is preferably used as the curable resin.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin.
  • Propylene oxide-added bisphenol A type epoxy resin resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether Type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolak type epoxy resin, biffe Examples thereof include nil novolac type epoxy resins, naphthalene phenol novolac type epoxy resins, glycidyl amine type epoxy resins, alkyl polyol type epoxy resins, rubber-modified epoxy resins, fluorene type epoxy resins, and glycidyl ester compounds.
  • the curable resin composition of the present invention 3 contains an imide oligomer.
  • the imide oligomer is dispersed in solid particles at 25 ° C.
  • the curable resin composition of the present invention 3 is excellent in flexibility while maintaining excellent fluidity and workability, and has adhesiveness and heat resistance. It becomes what can obtain the hardened
  • the term “dispersed in the form of solid particles” means that the particles are present without being dissolved, and that most of the particles are aggregated and dispersed without being unevenly distributed. This can be confirmed by direct observation using a microscope or an electron microscope.
  • the imide oligomer preferably has a reactive functional group that can react with the curable resin.
  • the said reactive functional group is based also on the kind of curable resin to be used, when using an epoxy resin as curable resin, it is preferable that they are an acid anhydride group and / or a phenolic hydroxyl group.
  • the imide oligomer preferably has the reactive functional group at the ends of the main chain, and more preferably at both ends.
  • an acid dianhydride represented by the following formula (11) and a diamine represented by the following formula (12) are reacted. And the like.
  • the following methods etc. are mentioned, for example.
  • A is a tetravalent group represented by the following formula (14-1) or the following formula (14-2).
  • B is a divalent group represented by the following formula (15-1) or the following formula (15-2), and R 19 to R 22 are each independently a hydrogen atom or 1 Valent hydrocarbon group.
  • Ar is an optionally substituted divalent aromatic group
  • R 23 and R 24 are each independently a hydrogen atom or a monovalent hydrocarbon group.
  • Y represents a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a bond A linear or branched divalent hydrocarbon group which may have an oxygen atom at a position, or a divalent group having an aromatic ring which may have an oxygen atom at a bonding position.
  • some or all of the hydrogen atoms may be substituted with hydroxyl groups or monovalent hydrocarbon groups.
  • the method of reacting the acid dianhydride represented by the above formula (11) and the diamine represented by the above formula (12) are shown below.
  • the diamine represented by the above formula (12) is previously dissolved in a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.), and the resulting solution
  • the acid dianhydride represented by the above formula (11) is added and reacted to obtain an amic acid oligomer solution.
  • the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like.
  • the imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer.
  • the desired number average molecular weight is obtained.
  • An imide oligomer having an acid anhydride group as a reactive functional group at the terminal can be obtained.
  • the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like.
  • the imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer.
  • a desired number average molecular weight is obtained. It is possible to obtain an imide oligomer having a phenolic hydroxyl group as a reactive functional group at both ends.
  • the diamine represented by the above formula (12) is previously dissolved in a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.), and the resulting solution
  • the acid dianhydride represented by the above formula (11) is added and reacted to obtain a solution of an amic acid oligomer (A) having an acid anhydride group at both ends.
  • the solvent is removed from the solution of the obtained amic acid oligomer (A) by heating, reduced pressure, or the like, or it is poured into a poor solvent such as water, methanol, hexane, etc. to cause reprecipitation, so that the amic acid oligomer (A) Is further heated at about 200 ° C. or higher for 1 hour or longer to allow the imidization reaction to proceed.
  • a poor solvent such as water, methanol, hexane, etc.
  • the thus obtained imide oligomer having an acid anhydride group as a reactive functional group at both ends is dissolved again in a soluble solvent (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.)
  • a phenolic hydroxyl group-containing monoamine represented by the above formula (13) is added and reacted to obtain a solution of the amic acid oligomer (B).
  • the solvent is removed from the resulting solution of the amic acid oligomer (B) by heating, decompression, or the like, or it is poured into a poor solvent such as water, methanol, hexane, etc. to recover the amic acid oligomer (B).
  • the imidization reaction is advanced by heating at about 200 ° C. or higher for 1 hour or longer.
  • the molar ratio of the acid dianhydride represented by the above formula (11), the diamine represented by the above formula (12) and the phenolic hydroxyl group-containing monoamine represented by the above formula (13), and imidation conditions By adjusting, an imide oligomer having a desired number average molecular weight and having a phenolic hydroxyl group as a reactive functional group at both ends can be obtained.
  • Examples of the acid dianhydride represented by the above formula (11) include pyromellitic dianhydride, 3,3′-oxydiphthalic dianhydride, 3,4′-oxydiphthalic dianhydride, 4,4 '-Oxydiphthalic dianhydride, 4,4'-(4,4'-isopropylidenediphenoxy) diphthalic anhydride, 4,4'-bis (3,4-dicarboxylphenoxy) diphenyl ether, p-phenylenebis (Trimellitate anhydride), 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-carbonyldiphthalate An acid dianhydride etc.
  • Examples of the diamine represented by the above formula (12) include 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenyl ether, 3,4 '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4 -Aminophenoxy) benzene
  • imide oligomers are excellent in softening point and solubility control, heat resistance, and availability, and therefore, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 1,2-phenylenediamine, 1 , 3-phenylenediamine, 1,4-phenylenediamine, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 1,3-bis (2- ( 4-aminophenyl) -2-propyl) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene, 3,3 ′ -Dihydroxybenzidine is preferred.
  • Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, and 4-amino-2. , 3-xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -Amino-2,6-diphenylphenol and the like. Among them, a cured product having excellent availability and storage stability and a high glass transition temperature can be obtained, so that 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o- Cresol is preferred.
  • the minimum with the preferable imidation ratio of the said imide oligomer is 70%.
  • the imidation ratio is 70% or more, a cured product having excellent mechanical strength at high temperatures and long-term heat resistance can be obtained.
  • a more preferable lower limit of the imidization ratio is 75%, and a more preferable lower limit is 80%.
  • there is no particular upper limit for the imidation ratio of the imide oligomer but the substantial upper limit is 98%.
  • the “imidation ratio” can be determined by Fourier transform infrared spectroscopy (FT-IR).
  • measurement is performed by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (for example, “UMA600” manufactured by Agilent Technologies), and is derived from a carbonyl group of an amic acid. It can be derived from the peak absorbance area around 1660 cm ⁇ 1 by the following equation.
  • the said imide oligomer may be used independently and 2 or more types may be used together.
  • the minimum with a preferable average particle diameter of the said imide oligomer in the curable resin composition of this invention 3 is 0.5 micrometer, and a preferable upper limit is 20 micrometers.
  • the average particle diameter of the imide oligomer is 0.5 ⁇ m or more, the resulting curable resin composition is excellent in flexibility and workability in a state before curing.
  • the average particle diameter of the imide oligomer is 20 ⁇ m or less, the resulting curable resin composition is excellent in uniformity, and a cured product excellent in adhesiveness and heat resistance is obtained.
  • the minimum with a more preferable average particle diameter of the said imide oligomer is 1 micrometer, and a more preferable upper limit is 10 micrometers.
  • the preferable lower limit of the number average molecular weight of the imide oligomer is 400, and the preferable upper limit is 5000. When the number average molecular weight is within this range, the obtained cured product is superior in long-term heat resistance.
  • the more preferable lower limit of the number average molecular weight of the imide oligomer is 500, and the more preferable upper limit is 4000.
  • the “number average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industrial Co., Ltd.).
  • a preferable upper limit of the softening point of the imide oligomer is 250 ° C.
  • the softening point of the imide oligomer is 250 ° C. or less, the obtained cured product is excellent in adhesiveness and long-term heat resistance.
  • a more preferable upper limit of the softening point of the imide oligomer is 200 ° C.
  • the softening point of the imide oligomer can be determined by the ring and ball method according to JIS K 2207.
  • fusing point of the said imide oligomer is 300 degreeC.
  • the melting point of the imide oligomer is 300 ° C. or lower, the resulting curable resin composition is superior in adhesion and long-term heat resistance.
  • a more preferable upper limit of the melting point of the imide oligomer is 250 ° C.
  • the melting point of the imide oligomer can be determined by differential scanning calorimetry or a commercially available melting point measuring device.
  • a preferable lower limit of the content of the imide oligomer is 30 parts by weight and a preferable upper limit is 500 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the imide oligomer is within this range, the cured product of the resulting curable resin composition is superior in mechanical strength, adhesiveness, and long-term heat resistance at high temperatures.
  • the minimum with more preferable content of the said imide oligomer is 50 weight part, and a more preferable upper limit is 400 weight part.
  • the curable resin composition of the present invention 3 may contain only the imide oligomer that is insoluble in the curable resin composition at 25 ° C as the imide oligomer, or insoluble in the curable resin composition at 25 ° C. You may contain a certain imide oligomer and the imide oligomer which can melt
  • an imide oligomer that is insoluble in the curable resin composition at 25 ° C. is also referred to as an “insoluble imide oligomer”
  • an imide oligomer that can be dissolved in the curable resin composition at 25 ° C. is also referred to as a “soluble imide oligomer”.
  • a part of the imide oligomer (soluble imide oligomer) may be dissolved and a part (insoluble imide oligomer) may be dispersed in solid particles.
  • strong adhesive force is expressed by the wettability by the soluble imide oligomer, and fluidity, workability, and flexibility can be imparted by the insoluble imide oligomer.
  • insoluble in the curable resin composition means insoluble in the curable resin when a solvent described later is not used, and the solvent and the curing when a solvent described later is used. It is insoluble in the conductive resin.
  • the above-mentioned “can be dissolved in the curable resin composition” means that it can be dissolved in the curable resin when a solvent described later is not used, and when the solvent described later is used, the solvent and the curing are used. It can be dissolved in a functional resin.
  • the content rate of the said soluble imide oligomer is 80 weight part or less in 100 weight part of the whole imide oligomer.
  • the content ratio of the soluble imide oligomer is 80 parts by weight or less, the obtained curable resin composition is excellent in adhesiveness while maintaining excellent flexibility.
  • the content rate of the said soluble imide oligomer is 20 weight part or more.
  • the curable resin composition of the present invention 3 may contain another curing agent in addition to the imide oligomer as long as the object of the present invention is not impaired.
  • the other curing agents include phenolic curing agents, thiol curing agents, amine curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents. Of these, phenolic curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents are preferred.
  • curing agent is 70. Part by weight, more preferred upper limit is 50 parts by weight, and still more preferred upper limit is 30 parts by weight.
  • the curable resin composition of this invention 3 contains a hardening accelerator.
  • a hardening accelerator By containing the said hardening accelerator, hardening time can be shortened and productivity can be improved.
  • the curing accelerator examples include imidazole-based curing accelerators, tertiary amine-based curing accelerators, phosphine-based curing accelerators, phosphorus-based curing accelerators, photobase generators, and sulfonium salt-based curing accelerators. . Especially, since it is excellent in storage stability, an imidazole type hardening accelerator is preferable.
  • the content of the curing accelerator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the curing accelerator is within this range, the effect of shortening the curing time is maintained while maintaining excellent adhesiveness and the like.
  • the minimum with more preferable content of the said hardening accelerator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
  • the curable resin composition of the present invention 3 may contain an inorganic filler for the purpose of reducing warpage by reducing the coefficient of linear expansion after curing, improving adhesion reliability, and the like.
  • the said inorganic filler can be used suitably also as a flow regulator.
  • examples of the inorganic filler include silica such as fumed silica and colloidal silica, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, inorganic ion exchanger, and the like. .
  • the content of the inorganic filler is preferably 500 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the inorganic filler is 500 parts by weight or less, the adhesive reliability is improved or the flow is adjusted while maintaining excellent processability and the like.
  • the upper limit with more preferable content of the said inorganic filler is 400 weight part.
  • the curable resin composition of the present invention 3 may contain an organic filler for the purpose of stress relaxation, imparting toughness and the like.
  • organic filler examples include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamideimide particles, and polyimide particles are preferable.
  • the preferable upper limit of the content of the organic filler is 500 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the organic filler is 500 parts by weight or less, the obtained cured product is excellent in toughness and the like while maintaining excellent adhesiveness and the like.
  • the upper limit with more preferable content of the said organic filler is 400 weight part.
  • the curable resin composition of the present invention 3 may contain a polymer compound as long as the object of the present invention is not impaired.
  • the polymer compound serves as a film forming component.
  • the polymer compound may have a reactive functional group.
  • examples of the reactive functional group that the polymer compound has include an amino group, a urethane group, an imide group, a hydroxyl group, a carboxyl group, and an epoxy group.
  • the curable resin composition of the present invention 3 may contain a reactive diluent as long as the object of the present invention is not impaired.
  • a reactive diluent a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesion reliability.
  • a reactive functional group which the said reactive diluent has the thing similar to the reactive functional group which the high molecular compound mentioned above has is mentioned.
  • the curable resin composition of the present invention 3 may further contain additives such as a solvent, a coupling agent, a dispersant, a storage stabilizer, a bleed inhibitor, a flux agent, a leveling agent, and a flame retardant.
  • additives such as a solvent, a coupling agent, a dispersant, a storage stabilizer, a bleed inhibitor, a flux agent, a leveling agent, and a flame retardant.
  • Examples of the method for producing the curable resin composition of the present invention 3 include the following methods.
  • a solid block imide oligomer is pulverized in advance using a pulverizer such as a jet mill, a ball mill, or a bead mill, and then dispersed in a dispersion medium in which the imide oligomer is not dissolved to obtain an imide oligomer dispersion.
  • a mixer such as a homodisper, a universal mixer, a Banbury mixer, or a kneader, the curable resin, the imide oligomer dispersion, and other curing agents, curing accelerators, and inorganic fillers that are added as necessary ( And a method of mixing with a flow modifier) and the like.
  • the curable resin composition of the present invention 3 can be used for a wide range of applications, it can be suitably used for an electronic material application that requires particularly high heat resistance.
  • it can be used for die attach agents in aviation, in-vehicle electric control unit (ECU) applications, power device applications using SiC, and GaN.
  • ECU electric control unit
  • power overlay package adhesive, printed wiring board adhesive, flexible printed circuit board coverlay adhesive, copper-clad laminate, semiconductor bonding adhesive, interlayer insulation film, prepreg, LED sealing It can also be used for adhesives and adhesives for structural materials. Especially, it is used suitably for an adhesive agent use.
  • An adhesive comprising the curable resin composition of the present invention 3 (hereinafter also referred to as “adhesive of the present invention 3”) is also one aspect of the present invention.
  • An adhesive film (curable resin composition film) can be obtained by a method such as drying after applying the adhesive of the present invention 3 on the film, and curing the adhesive film by curing the adhesive film. Obtainable.
  • the cured product of the curable resin composition of the present invention 3 is also one aspect of the present invention.
  • An adhesive film using the adhesive of the third invention is also one of the present invention.
  • the present invention it is possible to provide a curable resin composition that is excellent in flow characteristics before curing and excellent in adhesiveness, heat resistance, and flex resistance after curing.
  • cured material of this curable resin composition, and the adhesive agent, adhesive film, coverlay film, and printed wiring board which use this curable resin composition are provided. it can.
  • cured material which is excellent in storage stability and excellent in low linear expansion property, adhesiveness, and long-term heat resistance can be provided.
  • cured material of this curable resin composition, and this curable resin composition can be provided.
  • the present invention it is possible to provide a curable resin composition that is excellent in flexibility and processability before curing and excellent in adhesion and heat resistance after curing. Moreover, according to this invention, the adhesive agent and adhesive film which use the hardened
  • the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 1-A (imidation rate: 97%). It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 1-A was mainly composed of an imide oligomer represented by the following formula (16). The softening point of imide oligomer 1-A was 155 ° C.
  • Examples 1 to 9, Comparative Examples 1 and 2 The respective materials were stirred and mixed so that the blending ratios described in Tables 1 and 2 were obtained, and the curable resin compositions of Examples 1 to 9 and Comparative Examples 1 and 2 were produced.
  • Each obtained curable resin composition was coated on a release PET film so as to have a thickness of 20 ⁇ m, and dried to obtain an adhesive film.
  • each curable resin composition obtained was applied onto a 25 ⁇ m-thick polyimide film (“Kapton 100H” manufactured by Toray DuPont Co., Ltd.) so as to have a thickness of 20 ⁇ m, and a polyimide film (cover) having an adhesive layer Lay film).
  • the release PET film was peeled off from the obtained adhesive film, laminated with a laminator so as to have a thickness of 500 ⁇ m, and the temperature rising rate was 10 ° C./min.
  • a rotary rheometer (“VAR-100” manufactured by Rheologicala). Tables 1 and 2 show the minimum melt viscosities measured under the conditions of min, frequency 1 Hz, strain 1%, and measurement temperature range of 60 ° C to 300 ° C.
  • the PET film was peeled from the adhesive films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, and a polyimide substrate (manufactured by Toray DuPont) was used on both sides of the adhesive layer while heating to 70 ° C. using a laminator. , “Kapton 200H”, 50 ⁇ mt).
  • a hot press was performed under the conditions of 190 ° C., 3 MPa, and 1 hour to cure the adhesive layer, and then cut into a 1 cm width to obtain a test piece.
  • ORITEC tensile tester
  • UCT-500 tensile tester
  • the PET film was peeled from the adhesive films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, and laminated to a thickness of 500 ⁇ m using a laminator.
  • the obtained laminated film was cured by heating at 190 ° C. for 30 minutes to produce a cured product.
  • a thermomechanical analyzer manufactured by Hitachi High-Tech Science Co., “TMA / SS-6000”
  • the load is 5 g
  • the heating rate is 10 ° C./min
  • the sample length is 1 cm from 0 ° C. to 300 ° C.
  • the inflection point of the SS curve obtained when the temperature was raised was determined as the glass transition temperature.
  • the PET film was peeled from the adhesive films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, and laminated to a thickness of 500 ⁇ m using a laminator.
  • the obtained laminated film was cured by heating at 190 ° C. for 30 minutes to produce a cured product.
  • the thermogravimetric measuring device manufactured by Hitachi High-Tech Science Co., “TG / DTA6200”
  • the cured product obtained was reduced by 5% in the temperature range of 30 ° C. to 500 ° C. under the temperature rising condition of 10 ° C./min. The temperature was measured.
  • a pattern of a bending resistance test sample disclosed in JIS C 6471 was prepared on a polyimide flexible copper-clad substrate, and the coverlay films obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were applied at 190 ° C., 3 MPa, A test piece was obtained by thermocompression bonding under conditions of 1 hour.
  • an FPC high-speed bending tester manufactured by Shin-Etsu Engineering Co., Ltd.
  • the change in resistance value was measured under conditions of a frequency of 1500 cpm, a stroke of 20 mm, a curvature of 2.5 mmR, and the outside of the coverlay.
  • Bending characteristics were evaluated by utilizing the fact that when cracks such as cracks occur in the copper foil due to bending, the volume decreases and the resistance increases. The number of times required for the resistance value to rise by 20% or more is measured. If it is 300,000 times or more, “ ⁇ ”, if it is 50,000 times to less than 300,000 times, “ ⁇ ”, 50,000 times The bending resistance was evaluated as “x” when the ratio was less than.
  • the imide oligomer 2-A is an imide oligomer represented by the formula (6) (X is a tetravalent compound represented by the formula (7-2)). It was confirmed that the main group Y was a divalent group represented by the formula (8-2) (Z was a divalent group having an aromatic ring represented by the following formula (18)). The softening point of imide oligomer 2-A was 138 ° C.
  • the imide oligomer 2-B is an imide oligomer represented by the formula (6) (X is a tetravalent compound represented by the formula (7-3)). It was confirmed that the group Y was mainly composed of a divalent group represented by the formula (8-4) (R 11 to R 14 are hydrogen atoms). The softening point of imide oligomer 2-B was 146 ° C.
  • main group Y was a divalent group represented by the formula (8-2) (Z was a divalent group having an aromatic ring represented by the following formula (19)).
  • the softening point of imide oligomer 2-E was 147 ° C.
  • group Y is a divalent group represented by the formula (8-1) (Z is a divalent group having an aromatic ring represented by the formula (18)) as a main component.
  • the softening point of imide oligomer 2-F was 137 ° C.
  • Y is a divalent group represented by formula (8-4) (one of R 11 and R 12 is a methyl group, the other is an ethyl group, R 13 is a hydrogen atom, and R 14 is an ethyl group)) It was confirmed to be the main component.
  • the softening point of imide oligomer 2-G was 150 ° C.
  • Y is a divalent group represented by formula (8-4) (one of R 11 and R 12 is a methyl group, the other is an ethyl group, R 13 is a hydrogen atom, and R 14 is an ethyl group)) It was confirmed to be the main component.
  • the softening point of imide oligomer 2-H was 183 ° C.
  • the portion corresponding to X in formula (6) is a biphenyl skeleton, and the portion corresponding to Y is represented by formula (8- It was confirmed that the main component was an imide oligomer which is a divalent group represented by 1) (Z is a methylene group). Further, the softening point of imide oligomer 2-J exceeded 300 ° C.
  • Examples 10 to 20, Comparative Examples 3 to 7 According to the blending ratios described in Tables 3 and 4, each material was stirred and mixed to prepare curable resin compositions of Examples 10 to 20 and Comparative Examples 3 to 7.
  • the temperature was raised to 0 ° C., it was once cooled, and again heated from 0 ° C. to 300 ° C. under the same conditions.
  • the average linear expansion coefficient in the temperature range of 40 ° C. to 80 ° C. was obtained and used as the linear expansion coefficient of the sample. Further, the inflection point of the graph showing the relationship between the temperature and the dimensional change obtained in the second measurement was determined as the glass transition temperature.
  • the curable resin compositions obtained in Examples 10 to 20 and Comparative Examples 3 to 7 were coated on a release PET film and dried to obtain an adhesive film.
  • the PET film was peeled from the obtained adhesive film and cured by heating at 190 ° C. for 1 hour to prepare a cured product.
  • the thermogravimetric measuring device manufactured by Hitachi High-Tech Science Co., “TG / DTA6200”
  • the cured product obtained was reduced by 5% in the temperature range of 30 ° C. to 500 ° C. under the temperature rising condition of 10 ° C./min. The temperature was measured.
  • Each curable resin composition obtained in Examples 10 to 20 and Comparative Examples 3 to 7 was coated on a release PET film so as to have a thickness of about 20 ⁇ m, and dried to obtain an adhesive film. .
  • the PET film was peeled off from the adhesive film, and a polyimide substrate (manufactured by Toray DuPont, “Kapton 200H”, 50 ⁇ mt) was bonded to both surfaces of the adhesive layer using a laminator while heating to 70 ° C.
  • a hot press was performed under the conditions of 190 ° C., 3 MPa, and 1 hour to cure the adhesive layer, and then cut into a 1 cm width to obtain a test piece.
  • T-peeling was performed at a peeling rate of 20 mm / min, and the adhesive strength was measured.
  • the case where the adhesive force is 3.4 N / cm or more is “ ⁇ ”
  • the case where it is 2.0 N / cm or more and less than 3.4 N / cm is “ ⁇ ”
  • the case where it is less than 2.0 N / cm Initial adhesiveness was evaluated as “ ⁇ ”.
  • the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 3-A (imidization rate: 92%). It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-A was mainly composed of an imide oligomer represented by the following formula (21). The softening point of imide oligomer 3-A was 147 ° C., and the melting point was 168 ° C.
  • the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 3-C (imidation rate: 98%). It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-C was mainly composed of an imide oligomer represented by the following formula (23). The softening point of imide oligomer 3-C was 166 ° C., and the melting point was 181 ° C.
  • imide oligomer 3-D was mainly composed of an imide oligomer represented by the following formula (24).
  • the softening point of imide oligomer 3-D was 228 ° C., and the melting point was 273 ° C.
  • the mixture was heated at 300 ° C. for 2 hours to obtain an imide oligomer having an acid anhydride group at the terminal (imidation rate 95%). Further, 61.6 parts by weight of the obtained imide oligomer was weighed and dissolved in 200 parts by weight of N-methylpyrrolidone, and then 10.9 parts by weight of 3-aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. The solution was stirred at 2 ° C. for 2 hours to obtain an amic acid oligomer (B) solution.
  • N-methylpyrrolidone was removed under reduced pressure from the solution of the obtained amic acid oligomer (B), and then heated at 300 ° C. for 2 hours to obtain imide oligomer 3-E (imidation ratio 93%). It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-E was mainly composed of an imide oligomer represented by the following formula (25). The softening point of imide oligomer 3-E was 198 ° C., and the melting point was 223 ° C.
  • the imide oligomer 3-G was mainly composed of an imide oligomer represented by the following formula (27).
  • the softening point of imide oligomer 3-G was 137 ° C., and the melting point was 155 ° C.
  • Examples 21 to 31, Comparative Examples 8 and 9 The imide oligomers 3-A to 3-H obtained in Synthesis Examples 3-1 to 3-8 were pulverized using a jet mill and then mixed with methyl ethyl ketone to obtain a mixed solution (average particles of each imide oligomer). Diameter 4-10 ⁇ m).
  • the imide oligomers 3-A to 3-E and 3-H were insoluble in methyl ethyl ketone, but the imide oligomers 3-F and 3-G were dissolved in methyl ethyl ketone.
  • the obtained mixed liquid and other materials were stirred and mixed so that each material had a blending ratio described in Table 5, and the curable resin compositions of Examples 21 to 31 and Comparative Examples 8 and 9 were mixed.
  • a product was made.
  • the dispersion state of the imide oligomer in 25 degreeC was confirmed by optical microscope observation.
  • the imide oligomer was dispersed in solid particles.
  • the curable resin compositions of Comparative Examples 8 and 9 using only the imide oligomer 3-F or 3-G it was confirmed that the imide oligomer was dissolved.
  • Each curable resin composition obtained in Examples 21 to 31 and Comparative Examples 8 and 9 was coated on a release PET film so as to have a thickness of about 20 ⁇ m, and dried to obtain an adhesive film. .
  • the PET film was peeled off from the adhesive film, and a polyimide substrate (manufactured by Toray DuPont, “Kapton 200H”, 50 ⁇ mt) was bonded to both surfaces of the adhesive layer using a laminator while heating to 70 ° C.
  • a hot press was performed under the conditions of 190 ° C., 3 MPa, and 1 hour to cure the adhesive layer, and then cut into a 1 cm width to obtain a test piece.
  • T-peeling was performed at a peeling rate of 20 mm / min, and the adhesive strength was measured.
  • the adhesive strength is 6.0 N or more
  • the adhesiveness was evaluated as “ ⁇ ” when it was present and “ ⁇ ” when it was less than 2.0 N / cm.
  • the curable resin compositions obtained in Examples 21 to 31 and Comparative Examples 8 and 9 were coated on a release PET film and dried to obtain curable resin composition films.
  • the PET film was peeled from the obtained curable resin composition film, laminated using a laminator, and then cured by heating at 190 ° C. for 1 hour to prepare a cured product having a thickness of 500 ⁇ m.
  • a thermomechanical analyzer manufactured by Hitachi High-Tech Science Co., “TMA / SS-6000”
  • the load is 5 g
  • the heating rate is 10 ° C./min
  • the sample length is 1 cm from 0 ° C. to 300 ° C.
  • the inflection point of the SS curve obtained when the temperature was raised was determined as the glass transition temperature.
  • thermogravimetric measuring device manufactured by Hitachi High-Tech Science Co., “TG / DTA6200”
  • TG / DTA6200 the thermogravimetric measuring device
  • the present invention it is possible to provide a curable resin composition that is excellent in flow characteristics before curing and excellent in adhesiveness, heat resistance, and flex resistance after curing.
  • cured material of this curable resin composition, and the adhesive agent, adhesive film, coverlay film, and printed wiring board which use this curable resin composition are provided. it can.
  • cured material which is excellent in storage stability and excellent in low linear expansion property, adhesiveness, and long-term heat resistance can be provided.
  • cured material of this curable resin composition, and this curable resin composition can be provided.
  • the present invention it is possible to provide a curable resin composition that is excellent in flexibility and processability before curing and excellent in adhesion and heat resistance after curing. Moreover, according to this invention, the adhesive agent and adhesive film which use the hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The purpose of the present invention is to provide a curable resin composition which exhibits excellent fluidity prior to curing, and excellent adhesive properties, heat resistance and flexing resistance following curing. In addition, the purpose of the present invention is to provide a cured product of said curable resin composition and an adhesive agent, adhesive film, coverlay film and printed wiring board that are obtained using said curable resin composition. The present invention is a curable resin composition which contains a thermosetting resin, a thermoplastic resin and an imide oligomer. The imide oligomer has a reactive functional group capable of reacting with the thermosetting resin.

Description

硬化性樹脂組成物、硬化物、接着剤、接着フィルム、カバーレイフィルム、及び、プリント配線板Curable resin composition, cured product, adhesive, adhesive film, coverlay film, and printed wiring board
本発明は、硬化前は流動特性に優れ、硬化後は接着性、耐熱性、及び、耐屈曲性に優れる硬化性樹脂組成物に関する。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤、接着フィルム、カバーレイフィルム、及び、プリント配線板に関する。
また、本発明は、保存安定性に優れ、かつ、低線膨張性、接着性、及び、長期耐熱性に優れる硬化物を得ることができる硬化性樹脂組成物に関する。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムに関する。
更に、本発明は、硬化前は可撓性及び加工性に優れ、硬化後は接着性及び耐熱性に優れる硬化性樹脂組成物に関する。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物用いてなる接着剤及び接着フィルムに関する。
The present invention relates to a curable resin composition having excellent flow characteristics before curing and excellent adhesiveness, heat resistance, and flex resistance after curing. Moreover, this invention relates to the hardened | cured material of this curable resin composition, and the adhesive agent, adhesive film, coverlay film, and printed wiring board which use this curable resin composition.
Moreover, this invention relates to the curable resin composition which can obtain the hardened | cured material which is excellent in storage stability and is excellent in low linear expansion property, adhesiveness, and long-term heat resistance. Moreover, this invention relates to the adhesive agent and adhesive film which use the hardened | cured material of this curable resin composition, and this curable resin composition.
Furthermore, this invention relates to the curable resin composition which is excellent in flexibility and workability before hardening, and is excellent in adhesiveness and heat resistance after hardening. Moreover, this invention relates to the adhesive agent and adhesive film which use the hardened | cured material of this curable resin composition, and this curable resin composition.
フレキシブルプリント配線板(FPC)は、通常、ポリイミドフィルム等の絶縁フィルムの片面又は両面に、接着剤層を介して銅箔等を貼り合わせた構造を有する。フレキシブルプリント配線板の接着剤層に用いられる接着剤には、熱圧着時に充分な充填性(凹凸埋め込み性)と浸出防止性とを両立することのできる優れた流動特性が求められる。このような接着剤として、例えば、特許文献1~3には、エポキシ樹脂等の熱硬化性成分と、アクリル樹脂、ポリアミド、ポリエステル等の熱可塑性樹脂やアクリロニトリルブタジエンゴム等の可撓性成分とを含有する硬化性樹脂組成物が開示されている。 A flexible printed wiring board (FPC) usually has a structure in which a copper foil or the like is bonded to one side or both sides of an insulating film such as a polyimide film via an adhesive layer. The adhesive used for the adhesive layer of the flexible printed wiring board is required to have excellent flow characteristics capable of satisfying both sufficient fillability (unevenness embedding property) and leaching prevention during thermocompression bonding. As such an adhesive, for example, Patent Documents 1 to 3 include a thermosetting component such as an epoxy resin, a thermoplastic resin such as acrylic resin, polyamide, and polyester, and a flexible component such as acrylonitrile butadiene rubber. A curable resin composition is disclosed.
一方、近年の車載用等への用途拡大に伴い、接着剤には長期耐熱性が求められている。しかしながら、特許文献1~3に開示されている硬化性樹脂組成物を用いた接着剤は、耐熱性が不充分であった。
耐熱性に優れる接着剤として、特許文献4には、可溶性ポリエステル、フェノキシ樹脂、及び、イミドシロキサンオリゴマーを含有する接着剤が開示されている。しかしながら、特許文献4に開示されている接着剤は、流動特性に劣り、充填性と浸出防止性とを両立することが困難であった。
On the other hand, long-term heat resistance is required for adhesives with the recent expansion of applications for in-vehicle use. However, the adhesives using the curable resin compositions disclosed in Patent Documents 1 to 3 have insufficient heat resistance.
As an adhesive having excellent heat resistance, Patent Document 4 discloses an adhesive containing a soluble polyester, a phenoxy resin, and an imidosiloxane oligomer. However, the adhesive disclosed in Patent Document 4 is inferior in flow characteristics, and it is difficult to achieve both filling properties and leaching prevention properties.
低収縮であり、接着性、絶縁性、及び、耐薬品性に優れるエポキシ樹脂等の硬化性樹脂は、多くの工業製品に使用されている。特に電子機器用途では、短時間の耐熱性に関するはんだリフロー試験や繰り返しの耐熱性に関する冷熱サイクル試験において良好な結果が得られる硬化性樹脂組成物が多く用いられている。 Curable resins such as epoxy resins that have low shrinkage and are excellent in adhesion, insulation, and chemical resistance are used in many industrial products. In particular, in electronic equipment applications, many curable resin compositions are used that can give good results in a solder reflow test for short-term heat resistance and a thermal cycle test for repeated heat resistance.
近年、車載用電気制御ユニット(ECU)や、SiC、GaNを用いたパワーデバイス等が注目されているが、これらの用途において用いられる硬化性樹脂組成物には、短時間や繰り返しの耐熱性のみならず、連続して長期間高温に曝された際の耐熱性(長期耐熱性)が求められる。 In recent years, electric control units (ECUs) for vehicles, power devices using SiC, GaN, etc. have attracted attention, but curable resin compositions used in these applications have only a short time and repeated heat resistance. In addition, heat resistance (long-term heat resistance) when continuously exposed to high temperature for a long time is required.
特許文献5には、末端にフェノール性水酸基又はアミノ基を有する特定のイミドオリゴマーを硬化剤として用いることにより、硬化性樹脂組成物の低熱膨張性や耐熱性等を向上させることが開示されている。しかしながら、特許文献5に開示されている硬化性樹脂組成物は、保存安定性に劣るものであったり、硬化物が耐熱分解性には優れるものの長期耐熱性に劣るものであったりするという問題があった。
また、特許文献6には、両末端に酸無水物構造を有するイミドオリゴマー硬化剤を用いた硬化性樹脂組成物が開示されている。しかしながら、特許文献6に開示されている硬化性樹脂組成物は、接着性に劣るものであったり、硬化物が長期耐熱性や低線膨張性に劣るものであったりするという問題があった。
Patent Document 5 discloses improving the low thermal expansion property, heat resistance, and the like of a curable resin composition by using a specific imide oligomer having a phenolic hydroxyl group or an amino group at a terminal as a curing agent. . However, the curable resin composition disclosed in Patent Document 5 has a problem that the storage stability is inferior, or the cured product is inferior in long-term heat resistance, although it is excellent in heat decomposition resistance. there were.
Patent Document 6 discloses a curable resin composition using an imide oligomer curing agent having an acid anhydride structure at both ends. However, the curable resin composition disclosed in Patent Document 6 has a problem that the adhesiveness is inferior, or the cured product is inferior in long-term heat resistance and low linear expansion.
また、例えば、上述した特許文献6や特許文献7には、エポキシ樹脂と硬化剤としてイミドオリゴマーとを含有する硬化性樹脂組成物が開示されている。しかしながら、一般的にイミドオリゴマーは常温で硬くて脆い性質があるため、特許文献6、7に開示された硬化性樹脂組成物は、常温での可撓性、加工性、流動性等に問題があった。
加工性や流動性等を向上させた硬化性樹脂組成物として、上述した特許文献5には、液状エポキシ樹脂と、特定の反応性官能基を有するイミドオリゴマーとを含有する硬化性樹脂組成物が開示されている。しかしながら、特許文献5に開示された硬化性樹脂組成物でも流動性が充分とはいえず、流動性を更に向上させるために液状エポキシ樹脂の含有割合を増やした場合、耐熱性や接着性が低下するという問題があった。
また、特許文献8には、特定の反応性官能基を有するイミドオリゴマー、エポキシ樹脂、及び、ビスマレイミド-トリアジン樹脂を含有する樹脂混合物にニトリルゴム成分を分散させることにより、硬化前の硬化性樹脂組成物の可撓性を向上させる方法が開示されている。しかしながら、特許文献8に開示された方法では、ニトリルゴム成分により硬化物の耐熱性が悪化するという問題があった。
Further, for example, Patent Document 6 and Patent Document 7 described above disclose curable resin compositions containing an epoxy resin and an imide oligomer as a curing agent. However, since imide oligomers are generally hard and brittle at room temperature, the curable resin compositions disclosed in Patent Documents 6 and 7 have problems in flexibility, workability, fluidity, etc. at room temperature. there were.
As a curable resin composition with improved processability and fluidity, Patent Document 5 described above includes a curable resin composition containing a liquid epoxy resin and an imide oligomer having a specific reactive functional group. It is disclosed. However, even the curable resin composition disclosed in Patent Document 5 cannot be said to have sufficient fluidity, and when the content ratio of the liquid epoxy resin is increased in order to further improve the fluidity, heat resistance and adhesiveness are lowered. There was a problem to do.
Patent Document 8 discloses a curable resin before curing by dispersing a nitrile rubber component in a resin mixture containing an imide oligomer having a specific reactive functional group, an epoxy resin, and a bismaleimide-triazine resin. A method for improving the flexibility of the composition is disclosed. However, the method disclosed in Patent Document 8 has a problem that the heat resistance of the cured product deteriorates due to the nitrile rubber component.
特開2006-232984号公報JP 2006-232984 A 特開2009-167396号公報JP 2009-167396 A 特開2008-308686号公報JP 2008-308686 A 特開平5-306386号公報Japanese Patent Laid-Open No. 5-306386 特開2007-91799号公報JP 2007-91799 A 特開昭61-270852号公報Japanese Patent Laid-Open No. 61-270852 特表2004-502859号公報JP-T-2004-502859 特開平7-224269号公報JP-A-7-224269
本発明は、硬化前は流動特性に優れ、硬化後は接着性、耐熱性、及び、耐屈曲性に優れる硬化性樹脂組成物を提供することを目的とする。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤、接着フィルム、カバーレイフィルム、及び、プリント配線板を提供することを目的とする。
また、本発明は、保存安定性に優れ、かつ、低線膨張性、接着性、及び、長期耐熱性に優れる硬化物を得ることができる硬化性樹脂組成物を提供することを目的とする。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することを目的とする。
更に、本発明は、硬化前は可撓性及び加工性に優れ、硬化後は接着性及び耐熱性に優れる硬化性樹脂組成物を提供することを目的とする。また、本発明は、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することを目的とする。
An object of this invention is to provide the curable resin composition which is excellent in a fluid characteristic before hardening, and is excellent in adhesiveness, heat resistance, and bending resistance after hardening. Another object of the present invention is to provide a cured product of the curable resin composition, and an adhesive, an adhesive film, a cover lay film, and a printed wiring board using the curable resin composition. To do.
Another object of the present invention is to provide a curable resin composition capable of obtaining a cured product having excellent storage stability and low linear expansion, adhesion, and long-term heat resistance. Another object of the present invention is to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
Furthermore, an object of this invention is to provide the curable resin composition which is excellent in flexibility and workability before hardening, and is excellent in adhesiveness and heat resistance after hardening. Another object of the present invention is to provide a cured product of the curable resin composition, and an adhesive and an adhesive film using the curable resin composition.
本発明1は、熱硬化性樹脂と熱可塑性樹脂とイミドオリゴマーとを含有し、上記イミドオリゴマーは、上記熱硬化性樹脂と反応し得る反応性官能基を有する硬化性樹脂組成物である。
以下に本発明1を詳述する。
Invention 1 contains a thermosetting resin, a thermoplastic resin, and an imide oligomer, and the imide oligomer is a curable resin composition having a reactive functional group capable of reacting with the thermosetting resin.
The present invention 1 will be described in detail below.
本発明者らは、熱硬化性樹脂と熱可塑性樹脂とイミドオリゴマーとを含有する硬化性樹脂組成物において、該イミドオリゴマーとして熱硬化性樹脂と反応し得る反応性官能基を有するイミドオリゴマーを用いることを検討した。その結果、硬化前は流動特性に優れ、硬化後は接着性、耐熱性、及び、耐屈曲性に優れる硬化性樹脂組成物を得ることができることを見出し、本発明1を完成させるに至った。 In the curable resin composition containing a thermosetting resin, a thermoplastic resin, and an imide oligomer, the present inventors use an imide oligomer having a reactive functional group capable of reacting with a thermosetting resin as the imide oligomer. I examined that. As a result, it was found that a curable resin composition having excellent flow characteristics before curing and having excellent adhesiveness, heat resistance, and bending resistance after curing was obtained, and the present invention 1 was completed.
本発明1の硬化性樹脂組成物は、熱硬化性樹脂を含有する。
上記熱硬化性樹脂としては、エポキシ樹脂が好適に用いられる。
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。なかでも、粘度が低く、得られる硬化性樹脂組成物の室温における加工性を調整しやすいことから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、レゾルシノール型エポキシ樹脂等、常温で液状のエポキシ樹脂が好ましい。上記エポキシ樹脂は、単独で用いられてもよいし、2種類以上が併用されてもよい。
The curable resin composition of the present invention 1 contains a thermosetting resin.
As the thermosetting resin, an epoxy resin is preferably used.
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , Propylene oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether Type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolak type epoxy resin, biffe Examples thereof include nil novolac type epoxy resins, naphthalene phenol novolac type epoxy resins, glycidyl amine type epoxy resins, alkyl polyol type epoxy resins, rubber-modified epoxy resins, fluorene type epoxy resins, and glycidyl ester compounds. Among them, since the viscosity is low and the processability at room temperature of the resulting curable resin composition is easy to adjust, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, resorcinol type epoxy resin, etc. Epoxy resins that are liquid at room temperature are preferred. The said epoxy resin may be used independently and 2 or more types may be used together.
上記熱硬化性樹脂の数平均分子量の好ましい下限は90、好ましい上限は3000である。上記熱硬化性樹脂の上記数平均分子量がこの範囲であることにより、得られる硬化性樹脂組成物が接着性や耐熱性により優れるものとなる。上記熱硬化性樹脂の数平均分子量のより好ましい下限は100、より好ましい上限は2500である。
なお、本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
The minimum with a preferable number average molecular weight of the said thermosetting resin is 90, and a preferable upper limit is 3000. When the number average molecular weight of the thermosetting resin is within this range, the resulting curable resin composition is more excellent in adhesion and heat resistance. The more preferable lower limit of the number average molecular weight of the thermosetting resin is 100, and the more preferable upper limit is 2500.
In the present specification, the “number average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industrial Co., Ltd.).
熱硬化性樹脂と熱可塑性樹脂とイミドオリゴマーとの合計100重量部中における上記熱硬化性樹脂の含有量の好ましい下限は10重量部、好ましい上限は90重量部である。上記熱硬化性樹脂の含有量が10重量部以上であることにより、得られる硬化性樹脂組成物が接着性や耐熱性により優れるものとなる。上記熱硬化性樹脂の含有量が90重量部以下であることにより、得られる硬化性樹脂組成物が流動特性により優れるものとなる。上記熱硬化性樹脂の含有量のより好ましい下限は20重量部、より好ましい上限は80重量部である。 The minimum with preferable content of the said thermosetting resin in the total 100 weight part of a thermosetting resin, a thermoplastic resin, and an imide oligomer is 10 weight part, and a preferable upper limit is 90 weight part. When the content of the thermosetting resin is 10 parts by weight or more, the resulting curable resin composition is more excellent in adhesiveness and heat resistance. When the content of the thermosetting resin is 90 parts by weight or less, the resulting curable resin composition has superior flow characteristics. The minimum with more preferable content of the said thermosetting resin is 20 weight part, and a more preferable upper limit is 80 weight part.
本発明1の硬化性樹脂組成物は、熱可塑性樹脂を含有する。
上記熱可塑性樹脂を用いることにより、本発明1の硬化性樹脂組成物は、流動特性に優れ、熱圧着時の充填性及び浸出防止性を両立することが容易であり、かつ、硬化後の耐屈曲性に優れるものとなる。
The curable resin composition of the present invention 1 contains a thermoplastic resin.
By using the thermoplastic resin, the curable resin composition of the first aspect of the present invention has excellent flow characteristics, is easy to achieve both filling property and leaching prevention property at the time of thermocompression bonding, and resistance after curing. Excellent flexibility.
上記熱可塑性樹脂としては、フェノキシ樹脂、ポリアミド、アクリル樹脂、ポリエステル等が挙げられる。なかでも、耐熱性の観点から、フェノキシ樹脂、ポリアミドが好ましく、熱圧着時の浸出防止性や取扱い性の点からフェノキシ樹脂がより好ましい。 Examples of the thermoplastic resin include phenoxy resin, polyamide, acrylic resin, and polyester. Among these, phenoxy resins and polyamides are preferable from the viewpoint of heat resistance, and phenoxy resins are more preferable from the viewpoints of leaching prevention and handleability during thermocompression bonding.
上記フェノキシ樹脂としては、例えば、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールE型フェノキシ樹脂、ビスフェノールA-ビスフェノールF型フェノキシ樹脂、アセトフェノン-ビフェニル型フェノキシ樹脂、ビスフェノールS型フェノキシ樹脂、リン含有フェノキシ樹脂、トリメチルシクロヘキサン骨格フェノキシ樹脂、ビスフェノールフルオレン骨格フェノキシ樹脂等が挙げられる。なかでも、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA-ビスフェノールF型フェノキシ樹脂が好ましい。 Examples of the phenoxy resin include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol E type phenoxy resin, bisphenol A-bisphenol F type phenoxy resin, acetophenone-biphenyl type phenoxy resin, bisphenol S type phenoxy resin, phosphorus-containing Examples include phenoxy resin, trimethylcyclohexane skeleton phenoxy resin, bisphenolfluorene skeleton phenoxy resin, and the like. Of these, bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, and bisphenol A-bisphenol F type phenoxy resin are preferred.
上記熱可塑性樹脂の重量平均分子量の好ましい下限は3000、好ましい上限は20万である。上記熱可塑性樹脂の上記重量平均分子量がこの範囲であることにより、得られる硬化性樹脂組成物が流動特性や硬化後の耐屈曲性により優れるものとなる。上記熱可塑性樹脂の重量平均分子量のより好ましい下限は5000、より好ましい上限は15万、更に好ましい上限は10万である。
なお、耐屈曲性として要求される水準がより高い用途に用いる場合は、上記熱可塑性樹脂の重量平均分子量の好ましい下限は1万である。
なお、本明細書において上記「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
The minimum with a preferable weight average molecular weight of the said thermoplastic resin is 3000, and a preferable upper limit is 200,000. When the weight average molecular weight of the thermoplastic resin is within this range, the resulting curable resin composition is excellent in flow characteristics and bending resistance after curing. A more preferable lower limit of the weight average molecular weight of the thermoplastic resin is 5000, a more preferable upper limit is 150,000, and a further preferable upper limit is 100,000.
In addition, when using for the use where the level requested | required as a bending resistance is higher, the minimum with the preferable weight average molecular weight of the said thermoplastic resin is 10,000.
In the present specification, the above “weight average molecular weight” is a value determined by gel conversion chromatography (GPC) using tetrahydrofuran as a solvent and calculated in terms of polystyrene. Examples of the column used when measuring the weight average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industrial Co., Ltd.).
熱硬化性樹脂と熱可塑性樹脂とイミドオリゴマーとの合計100重量部中における上記熱可塑性樹脂の含有量の好ましい下限は1重量部、好ましい上限は60重量部である。上記熱可塑性樹脂の含有量が1重量部以上であることにより、得られる硬化性樹脂組成物が流動特性や硬化後の耐屈曲性により優れるものとなる。上記熱可塑性樹脂の含有量が60重量部以下であることにより、得られる硬化性樹脂組成物が接着性や耐熱性により優れるものとなる。上記熱硬化性樹脂の含有量のより好ましい下限は3重量部、より好ましい上限は50重量部である。 The minimum with preferable content of the said thermoplastic resin in 100 weight part in total of a thermosetting resin, a thermoplastic resin, and an imide oligomer is 1 weight part, and a preferable upper limit is 60 weight part. When the content of the thermoplastic resin is 1 part by weight or more, the resulting curable resin composition is superior in flow characteristics and bending resistance after curing. When the content of the thermoplastic resin is 60 parts by weight or less, the resulting curable resin composition is more excellent in adhesiveness and heat resistance. The minimum with more preferable content of the said thermosetting resin is 3 weight part, and a more preferable upper limit is 50 weight part.
本発明1の硬化性樹脂組成物は、イミドオリゴマーを含有する。
上記イミドオリゴマーは、上記熱硬化性樹脂と反応し得る反応性官能基を有する。上記熱硬化性樹脂と反応し得る反応性官能基を有するイミドオリゴマーを用いることにより、本発明1の硬化性樹脂組成物は、熱圧着時の充填性及び浸出防止性を両立する効果、及び、硬化後の耐屈曲性を維持したまま、硬化後の接着性及び耐熱性に優れるものとなる。
The curable resin composition of the present invention 1 contains an imide oligomer.
The imide oligomer has a reactive functional group that can react with the thermosetting resin. By using an imide oligomer having a reactive functional group capable of reacting with the thermosetting resin, the curable resin composition of the present invention 1 has the effect of achieving both filling properties and anti-leaching properties during thermocompression bonding, and The adhesiveness and heat resistance after curing are excellent while maintaining the bending resistance after curing.
上記イミドオリゴマーの有する反応性官能基は、用いる熱硬化性樹脂の種類にもよるが、熱硬化性樹脂としてエポキシ樹脂を用いる場合、酸無水物基及び/又はフェノール性水酸基であることが好ましい。
上記イミドオリゴマーは、上記反応性官能基を主鎖の末端に有することが好ましく、両末端に有することがより好ましい。
Although the reactive functional group which the said imide oligomer has depends on the kind of thermosetting resin to be used, when using an epoxy resin as a thermosetting resin, it is preferable that they are an acid anhydride group and / or a phenolic hydroxyl group.
The imide oligomer preferably has the reactive functional group at the ends of the main chain, and more preferably at both ends.
上記反応性官能基として酸無水物基を有するイミドオリゴマーを製造する方法としては、例えば、下記式(1)で表される酸二無水物と下記式(2)で表されるジアミンとを反応させる方法等が挙げられる。
また、上記反応性官能基としてフェノール性水酸基を有するイミドオリゴマーを製造する方法としては、例えば、下記式(1)で表される酸二無水物と下記式(3)で表されるフェノール性水酸基含有モノアミンとを反応させる方法等も挙げられる。更に、下記式(1)で表される酸二無水物と下記式(2)で表されるジアミンとを反応させた後、更に下記式(3)で表されるフェノール性水酸基含有モノアミンを反応させる方法等も挙げられる。
As a method for producing an imide oligomer having an acid anhydride group as the reactive functional group, for example, an acid dianhydride represented by the following formula (1) and a diamine represented by the following formula (2) are reacted. And the like.
Moreover, as a method for producing an imide oligomer having a phenolic hydroxyl group as the reactive functional group, for example, an acid dianhydride represented by the following formula (1) and a phenolic hydroxyl group represented by the following formula (3): Examples include a method of reacting the contained monoamine. Furthermore, after reacting the acid dianhydride represented by the following formula (1) and the diamine represented by the following formula (2), the phenolic hydroxyl group-containing monoamine represented by the following formula (3) is further reacted. The method etc. to make are also mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(1)中、Aは、下記式(4-1)又は下記式(4-2)で表される4価の基である。 In the formula (1), A is a tetravalent group represented by the following formula (4-1) or the following formula (4-2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(2)中、Bは、下記式(5-1)又は下記式(5-2)で表される2価の基であり、R~Rは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In the formula (2), B is a divalent group represented by the following formula (5-1) or the following formula (5-2), and R 1 to R 4 are each independently a hydrogen atom or 1 Valent hydrocarbon group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(3)中、Arは、置換されていてもよい2価の芳香族基であり、R及びRは、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (3), Ar is an optionally substituted divalent aromatic group, and R 5 and R 6 are each independently a hydrogen atom or a monovalent hydrocarbon group.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(4-1)及び式(4-2)中、*は、結合位置であり、式(4-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、結合位置に酸素原子を有してもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有してもよい芳香環を有する2価の基である。式(4-1)及び式(4-2)中における芳香環の水素原子は置換されていてもよい。 In formula (4-1) and formula (4-2), * is a bond position, and in formula (4-1), Z is a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a bond A linear or branched divalent hydrocarbon group which may have an oxygen atom at a position, or a divalent group having an aromatic ring which may have an oxygen atom at a bonding position. The hydrogen atom of the aromatic ring in formula (4-1) and formula (4-2) may be substituted.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(5-1)及び式(5-2)中、*は、結合位置であり、式(5-1)中、Yは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、結合位置に酸素原子を有してもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有してもよい芳香環を有する2価の基である。式(5-1)及び式(5-2)中のフェニレン基は、一部又は全部の水素原子が水酸基又は1価の炭化水素基で置換されていてもよい。 In formula (5-1) and formula (5-2), * is a bond position, and in formula (5-1), Y is a bond, oxygen atom, carbonyl group, sulfur atom, sulfonyl group, bond A linear or branched divalent hydrocarbon group which may have an oxygen atom at a position, or a divalent group having an aromatic ring which may have an oxygen atom at a bonding position. In the phenylene groups in the formulas (5-1) and (5-2), some or all of the hydrogen atoms may be substituted with hydroxyl groups or monovalent hydrocarbon groups.
上記式(1)で表される酸二無水物と上記式(2)で表されるジアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(2)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等)に溶解させ、得られた溶液に上記式(1)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、得られたアミック酸オリゴマー溶液から加熱や減圧等により溶媒を除去、又は、水、メタノール、ヘキサン等の貧溶媒中に投入して再沈殿させることによりアミック酸オリゴマーを回収し、更に、約200℃以上で1時間以上加熱してイミド化反応を進行させる。上記式(1)で表される酸二無水物と上記式(2)で表されるジアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に反応性官能基として酸無水物基を有するイミドオリゴマーを得ることができる。
Specific examples of the method of reacting the acid dianhydride represented by the above formula (1) and the diamine represented by the above formula (2) are shown below.
First, the diamine represented by the above formula (2) is previously dissolved in a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.), and the resulting solution An acid dianhydride represented by the above formula (1) is added to and reacted to obtain an amic acid oligomer solution. Next, the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like. The imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer. By adjusting the molar ratio between the acid dianhydride represented by the above formula (1) and the diamine represented by the above formula (2), and the imidization conditions, both have a desired number average molecular weight, An imide oligomer having an acid anhydride group as a reactive functional group at the terminal can be obtained.
上記式(1)で表される酸二無水物と上記式(3)で表されるフェノール性水酸基含有モノアミンとを反応させる方法の具体例を以下に示す。
まず、予め式(3)で表されるフェノール性水酸基含有モノアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(1)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、得られたアミック酸オリゴマー溶液から加熱や減圧等により溶媒を除去、又は、水、メタノール、ヘキサン等の貧溶媒中に投入して再沈殿させることによりアミック酸オリゴマーを回収し、更に、約200℃以上で1時間以上加熱してイミド化反応を進行させる。上記式(1)で表される酸二無水物と上記式(3)で表されるフェノール性水酸基含有モノアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に反応性官能基としてフェノール性水酸基を有するイミドオリゴマーを得ることができる。
Specific examples of the method of reacting the acid dianhydride represented by the above formula (1) with the phenolic hydroxyl group-containing monoamine represented by the above formula (3) are shown below.
First, the phenolic hydroxyl group-containing monoamine represented by the formula (3) is dissolved in a solvent (for example, N-methylpyrrolidone, etc.) in which the amic acid oligomer obtained by the reaction is soluble, and the above formula is added to the obtained solution. The acid dianhydride represented by (1) is added and reacted to obtain an amic acid oligomer solution. Next, the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like. The imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer. By adjusting the molar ratio between the acid dianhydride represented by the above formula (1) and the phenolic hydroxyl group-containing monoamine represented by the above formula (3) and imidization conditions, a desired number average molecular weight is obtained. It is possible to obtain an imide oligomer having a phenolic hydroxyl group as a reactive functional group at both ends.
上記式(1)で表される酸二無水物と上記式(2)で表されるジアミンとを反応させた後、更に上記式(3)で表されるフェノール性水酸基含有モノアミンを反応させる方法の具体例を以下に示す。
まず、予め上記式(2)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等)に溶解させ、得られた溶液に上記式(1)で表される酸二無水物を添加して反応させて、両末端に酸無水物基を有するアミック酸オリゴマー(A)の溶液を得る。次いで、得られたアミック酸オリゴマー(A)の溶液から加熱や減圧等により溶媒を除去、又は、水、メタノール、ヘキサン等の貧溶媒中に投入して再沈殿させることによりアミック酸オリゴマー(A)を回収し、更に、約200℃以上で1時間以上加熱してイミド化反応を進行させる。
このようにして得られた、両末端に反応性官能基として酸無水物基を有するイミドオリゴマーを、再度可溶な溶媒(例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等)に溶解させ、上記式(3)で表されるフェノール性水酸基含有モノアミンを添加して反応させてアミック酸オリゴマー(B)の溶液を得る。得られたアミック酸オリゴマー(B)の溶液から加熱や減圧等により溶媒を除去、又は、水、メタノール、ヘキサン等の貧溶媒中に投入して再沈殿させることによりアミック酸オリゴマー(B)を回収し、更に、約200℃以上で1時間以上加熱してイミド化反応を進行させる。上記式(1)で表される酸二無水物と上記式(2)で表されるジアミンと上記式(3)で表されるフェノール性水酸基含有モノアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に反応性官能基としてフェノール性水酸基を有するイミドオリゴマーを得ることができる。
A method in which an acid dianhydride represented by the above formula (1) and a diamine represented by the above formula (2) are reacted, and then a phenolic hydroxyl group-containing monoamine represented by the above formula (3) is further reacted. Specific examples of these are shown below.
First, the diamine represented by the above formula (2) is previously dissolved in a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.), and the resulting solution The acid dianhydride represented by the above formula (1) is added and reacted to obtain a solution of an amic acid oligomer (A) having acid anhydride groups at both ends. Next, the solvent is removed from the solution of the obtained amic acid oligomer (A) by heating, reduced pressure, or the like, or it is poured into a poor solvent such as water, methanol, hexane, etc. to cause reprecipitation, so that the amic acid oligomer (A) Is further heated at about 200 ° C. or higher for 1 hour or longer to allow the imidization reaction to proceed.
The thus obtained imide oligomer having an acid anhydride group as a reactive functional group at both ends is dissolved again in a soluble solvent (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.) The phenolic hydroxyl group-containing monoamine represented by the above formula (3) is added and reacted to obtain a solution of the amic acid oligomer (B). The solvent is removed from the resulting solution of the amic acid oligomer (B) by heating, decompression, or the like, or it is poured into a poor solvent such as water, methanol, hexane, etc. to recover the amic acid oligomer (B). Further, the imidization reaction is advanced by heating at about 200 ° C. or higher for 1 hour or longer. The molar ratio of the acid dianhydride represented by the above formula (1), the diamine represented by the above formula (2) and the phenolic hydroxyl group-containing monoamine represented by the above formula (3), and imidation conditions By adjusting, an imide oligomer having a desired number average molecular weight and having a phenolic hydroxyl group as a reactive functional group at both ends can be obtained.
上記式(1)で表される酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’-オキシジフタル酸二無水物、3,4’-オキシジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、4,4’-ビス(3,4-ジカルボキシルフェノキシ)ジフェニルエーテル、p-フェニレンビス(トリメリテート無水物)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-カルボニルジフタル酸二無水物等が挙げられる。なかでも、溶解性、耐熱性、及び、入手性に優れることから、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、3,4’-オキシジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、4,4’-カルボニルジフタル酸二無水物が好ましい。 Examples of the acid dianhydride represented by the above formula (1) include pyromellitic dianhydride, 3,3′-oxydiphthalic dianhydride, 3,4′-oxydiphthalic dianhydride, 4,4 '-Oxydiphthalic dianhydride, 4,4'-(4,4'-isopropylidenediphenoxy) diphthalic anhydride, 4,4'-bis (3,4-dicarboxylphenoxy) diphenyl ether, p-phenylenebis (Trimellitate anhydride), 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-carbonyldiphthalate An acid dianhydride etc. are mentioned. Among these, 4,4 ′-(4,4′-isopropylidenediphenoxy) diphthalic anhydride, 3,4′-oxydiphthalic dianhydride, because of its excellent solubility, heat resistance, and availability, 4,4′-oxydiphthalic dianhydride and 4,4′-carbonyldiphthalic dianhydride are preferred.
上記式(2)で表されるジアミンとしては、例えば、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,2-フェニレンジアミン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン、ビス(4-(4-アミノフェノキシ)フェニル)スルフォン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-(4-アミノフェノキシ)フェニル)メタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルメタン、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルメタン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルエーテル、ビスアミノフェニルフルオレン、ビストルイジンフルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-2,2’-ジヒドロキシビフェニル等が挙げられる。なかでも、溶解性、耐熱性、及び、入手性に優れることからに優れることから、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,2-フェニレンジアミン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン、ビス(4-(4-アミノフェノキシ)フェニル)スルフォン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、3,3’-ジヒドロキシベンジジンが好ましい。 Examples of the diamine represented by the above formula (2) include 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenyl ether, 3,4 '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4 -Aminophenoxy) benzene, 1,4-bis (4-aminophen) Xyl) benzene, bis (4- (4-aminophenoxy) phenyl) methane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene, 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene, 3,3′-diamino-4,4′-dihydroxyphenylmethane, 4,4′-diamino -3,3'-dihydroxyphenylmethane, 3,3'-diamino-4,4'-dihydroxyphenyl ether, bisaminophenylfluorene, bistoluidine fluorene, 4,4'-bis (4-aminophenoxy) biphenyl, 4 , 4'-diamino-3,3'-dihydroxyphenyl ether, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4 - diamino-2,2'-dihydroxybiphenyl, and the like. Among them, 3,4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,2-phenylenediamine, 1,3-phenylene is superior because of its excellent solubility, heat resistance, and availability. Diamine, 1,4-phenylenediamine, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 1,3-bis (2- (4-aminophenyl) ) -2-propyl) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene, 3,3′-dihydroxybenzidine preferable.
上記式(3)で表されるフェノール性水酸基含有モノアミンとしては、例えば、3-アミノフェノール、4-アミノフェノール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾール、4-アミノ-2,3-キシレノール、4-アミノ-2,5-キシレノール、4-アミノ-2,6-キシレノール、4-アミノ-1-ナフトール、5-アミノ-2-ナフトール、6-アミノ-1-ナフトール、4-アミノ-2,6-ジフェニルフェノール等が挙げられる。なかでも、入手性及び保存安定性に優れ、高いガラス転移温度を有する硬化物が得られることから、3-アミノフェノール、4-アミノフェノール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾールが好ましい。 Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (3) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, 4-amino-2. , 3-xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -Amino-2,6-diphenylphenol and the like. Among them, a cured product having excellent availability and storage stability and a high glass transition temperature can be obtained, so that 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o- Cresol is preferred.
上記イミドオリゴマーのイミド化率の好ましい下限は70%である。上記イミド化率が70%以上であることにより、高温での機械的強度及び長期耐熱性により優れる硬化物を得ることができる。上記イミド化率のより好ましい下限は75%、更に好ましい下限は80%である。また、上記イミドオリゴマーのイミド化率の好ましい上限は特にないが、実質的な上限は98%である。
なお、上記「イミド化率」は、フーリエ変換赤外分光法(FT-IR)により求めることができる。具体的には、フーリエ変換赤外分光光度計(例えば、Agilent Technologies社製、「UMA600」等)を用いて全反射測定法(ATR法)にて測定を行い、アミック酸のカルボニル基に由来する1660cm-1付近のピーク吸光度面積から下記式にて導出することができる。なお、下記式中における「アミック酸オリゴマーのピーク吸光度面積」は、上述した製造方法においてイミド化工程を行わずに溶媒をエバポレーションにより除去することで得られるアミック酸オリゴマーの吸光度面積である。
イミド化率(%)=100×(1-(イミド化後のピーク吸光度面積)/(アミック酸オリゴマーのピーク吸光度面積))
The minimum with the preferable imidation ratio of the said imide oligomer is 70%. When the imidation ratio is 70% or more, a cured product having excellent mechanical strength at high temperatures and long-term heat resistance can be obtained. A more preferable lower limit of the imidization ratio is 75%, and a more preferable lower limit is 80%. Further, there is no particular upper limit for the imidation ratio of the imide oligomer, but the substantial upper limit is 98%.
The “imidation ratio” can be determined by Fourier transform infrared spectroscopy (FT-IR). Specifically, measurement is performed by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (for example, “UMA600” manufactured by Agilent Technologies), and is derived from a carbonyl group of an amic acid. It can be derived from the peak absorbance area around 1660 cm −1 by the following equation. The “peak absorbance area of the amic acid oligomer” in the following formula is the absorbance area of the amic acid oligomer obtained by removing the solvent by evaporation without performing the imidization step in the above-described production method.
Imidation ratio (%) = 100 × (1- (peak absorbance area after imidization) / (peak absorbance area of amic acid oligomer))
上記イミドオリゴマーは、単独で用いられてもよいし、2種類以上が併用されてもよい。 The said imide oligomer may be used independently and 2 or more types may be used together.
上記イミドオリゴマーの数平均分子量の好ましい下限は400、好ましい上限は5000である。上記数平均分子量がこの範囲であることにより、得られる硬化物が長期耐熱性により優れるものとなる。上記イミドオリゴマーの数平均分子量のより好ましい下限は500、より好ましい上限は4000である。 The preferable lower limit of the number average molecular weight of the imide oligomer is 400, and the preferable upper limit is 5000. When the number average molecular weight is within this range, the obtained cured product is superior in long-term heat resistance. The more preferable lower limit of the number average molecular weight of the imide oligomer is 500, and the more preferable upper limit is 4000.
上記イミドオリゴマーの軟化点の好ましい上限は250℃である。上記イミドオリゴマーの軟化点が250℃以下であることにより、得られる硬化物が、接着性や長期耐熱性により優れるものとなる。上記イミドオリゴマーの軟化点のより好ましい上限は200℃である。
上記イミドオリゴマーの軟化点の好ましい下限は特にないが、実質的な下限は60℃である。
なお、上記イミドオリゴマーの軟化点は、JIS K 2207に従い、環球法により求めることができる。
A preferable upper limit of the softening point of the imide oligomer is 250 ° C. When the softening point of the imide oligomer is 250 ° C. or less, the obtained cured product is excellent in adhesiveness and long-term heat resistance. A more preferable upper limit of the softening point of the imide oligomer is 200 ° C.
There is no particular lower limit for the softening point of the imide oligomer, but the substantial lower limit is 60 ° C.
The softening point of the imide oligomer can be determined by the ring and ball method according to JIS K 2207.
熱硬化性樹脂と熱可塑性樹脂とイミドオリゴマーとの合計100重量部中における上記イミドオリゴマーの含有量の好ましい下限は10重量部、好ましい上限は90重量部である。上記イミドオリゴマーの含有量がこの範囲であることにより、得られる硬化性樹脂組成物の硬化物が高温での機械的強度、接着性、及び、長期耐熱性により優れるものとなる。上記イミドオリゴマーの含有量のより好ましい下限は20重量部、より好ましい上限は80重量部である。 The minimum with preferable content of the said imide oligomer in the total 100 weight part of a thermosetting resin, a thermoplastic resin, and an imide oligomer is 10 weight part, and a preferable upper limit is 90 weight part. When the content of the imide oligomer is within this range, the cured product of the resulting curable resin composition is superior in mechanical strength, adhesiveness, and long-term heat resistance at high temperatures. The minimum with more preferable content of the said imide oligomer is 20 weight part, and a more preferable upper limit is 80 weight part.
本発明1の硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、上記イミドオリゴマーに加えて他の硬化剤を含有してもよい。
上記他の硬化剤としては、例えば、フェノール系硬化剤、チオール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤等が挙げられる。なかでも、フェノール系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤が好ましい。
In the range which does not inhibit the objective of this invention, the curable resin composition of this invention 1 may contain another hardening | curing agent in addition to the said imide oligomer.
Examples of the other curing agents include phenolic curing agents, thiol curing agents, amine curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents. Of these, phenolic curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents are preferred.
本発明1の硬化性樹脂組成物が上記他の硬化剤を含有する場合、上記イミドオリゴマーと上記他の硬化剤との合計100重量部中における上記他の硬化剤の含有割合の好ましい上限は70重量部、より好ましい上限は50重量部、更に好ましい上限は30重量部である。 When the curable resin composition of this invention 1 contains the said other hardening | curing agent, the preferable upper limit of the content rate of the said other hardening | curing agent in a total of 100 weight part of the said imide oligomer and said other hardening | curing agent is 70. Part by weight, more preferred upper limit is 50 parts by weight, and still more preferred upper limit is 30 parts by weight.
本発明1の硬化性樹脂組成物は、硬化促進剤を含有することが好ましい。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができる。 It is preferable that the curable resin composition of this invention 1 contains a hardening accelerator. By containing the said hardening accelerator, hardening time can be shortened and productivity can be improved.
上記硬化促進剤としては、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤、ホスフィン系硬化促進剤、リン系硬化促進剤、光塩基発生剤、スルホニウム塩系硬化促進剤等が挙げられる。なかでも、保存安定性に優れることから、イミダゾール系硬化促進剤が好ましい。 Examples of the curing accelerator include imidazole-based curing accelerators, tertiary amine-based curing accelerators, phosphine-based curing accelerators, phosphorus-based curing accelerators, photobase generators, and sulfonium salt-based curing accelerators. . Especially, since it is excellent in storage stability, an imidazole type hardening accelerator is preferable.
上記硬化促進剤の含有量は、上記熱硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記硬化促進剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、硬化時間を短縮させる効果により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。 The content of the curing accelerator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the thermosetting resin. When the content of the curing accelerator is within this range, the effect of shortening the curing time is maintained while maintaining excellent adhesiveness and the like. The minimum with more preferable content of the said hardening accelerator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
本発明1の硬化性樹脂組成物は、硬化後の線膨張率を低下させてそりを低減させたり、接着信頼性を向上させたりする等を目的として無機充填剤を含有してもよい。また、上記無機充填剤は、流動調整剤としても好適に用いることができる。 The curable resin composition of the present invention 1 may contain an inorganic filler for the purpose of reducing warpage by reducing the linear expansion coefficient after curing, improving adhesion reliability, and the like. Moreover, the said inorganic filler can be used suitably also as a flow regulator.
上記無機充填剤としては、例えば、ヒュームドシリカ、コロイダルシリカ等のシリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体等が挙げられる。 Examples of the inorganic filler include silica such as fumed silica and colloidal silica, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, inorganic ion exchanger, and the like. .
上記無機充填剤の含有量は、上記熱硬化性樹脂100重量部に対して、好ましい上限が500重量部である。上記無機充填剤の含有量が500重量部以下であることにより、優れた加工性等を維持したまま、接着信頼性を向上させたり、流動調整をしたりする等の効果により優れるものとなる。上記無機充填剤の含有量のより好ましい上限は400重量部である。 The content of the inorganic filler is preferably 500 parts by weight with respect to 100 parts by weight of the thermosetting resin. When the content of the inorganic filler is 500 parts by weight or less, the adhesive reliability is improved or the flow is adjusted while maintaining excellent processability and the like. The upper limit with more preferable content of the said inorganic filler is 400 weight part.
本発明1の硬化性樹脂組成物は、応力緩和、靭性付与等を目的として有機充填剤を含有してもよい。 The curable resin composition of the present invention 1 may contain an organic filler for the purpose of relaxing stress, imparting toughness, and the like.
上記有機充填剤としては、例えば、シリコーンゴム粒子、アクリルゴム粒子、ウレタンゴム粒子、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子、ベンゾグアナミン粒子、及び、これらのコアシェル粒子等が挙げられる。なかでも、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子が好ましい。 Examples of the organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamideimide particles, and polyimide particles are preferable.
上記有機充填剤の含有量は、上記熱硬化性樹脂100重量部に対して、好ましい上限が500重量部である。上記有機充填剤の含有量が500重量部以下であることにより、優れた接着性等を維持したまま、得られる硬化物が靭性等により優れるものとなる。上記有機充填剤の含有量のより好ましい上限は400重量部である。 The content of the organic filler is preferably 500 parts by weight with respect to 100 parts by weight of the thermosetting resin. When the content of the organic filler is 500 parts by weight or less, the obtained cured product is excellent in toughness and the like while maintaining excellent adhesiveness and the like. The upper limit with more preferable content of the said organic filler is 400 weight part.
本発明1の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で反応性希釈剤を含有してもよい。
上記反応性希釈剤としては、接着信頼性の観点から、1分子中に2つ以上の反応性官能基を有する反応性希釈剤が好ましい。
上記反応性希釈剤の有する反応性官能基としては、上述した高分子化合物が有する反応性官能基と同様のものが挙げられる。
The curable resin composition of the present invention 1 may contain a reactive diluent as long as the object of the present invention is not impaired.
As the reactive diluent, a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesion reliability.
As a reactive functional group which the said reactive diluent has, the thing similar to the reactive functional group which the high molecular compound mentioned above has is mentioned.
本発明1の硬化性樹脂組成物は、更に、溶剤、カップリング剤、分散剤、貯蔵安定化剤、ブリード防止剤、フラックス剤等の添加剤を含有してもよい。 The curable resin composition of the present invention 1 may further contain additives such as a solvent, a coupling agent, a dispersant, a storage stabilizer, a bleed inhibitor, and a flux agent.
本発明1の硬化性樹脂組成物を製造する方法としては、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等の混合機を用いて、熱硬化性樹脂と、熱可塑性樹脂と、硬化剤と、必要に応じて添加する他の硬化剤や硬化促進剤や無機充填剤(流動調整剤)等とを混合する方法等が挙げられる。 As a method for producing the curable resin composition of the present invention 1, for example, using a mixer such as a homodisper, a universal mixer, a Banbury mixer, a kneader, a thermosetting resin, a thermoplastic resin, and a curing agent And other curing agents, curing accelerators, inorganic fillers (flow control agents) and the like that are added as necessary.
本発明1の硬化性樹脂組成物の最低溶融粘度の好ましい下限は5kPa・s、好ましい上限は300kPa・sである。上記最低溶融粘度がこの範囲であることにより、本発明1の硬化性樹脂組成物は、より優れた流動特性を有するものとなる。上記最低溶融粘度のより好ましい下限は10kPa・s、より好ましい上限は200kPa・s、更に好ましい上限は150kPa・sである。
なお、上記最低溶融粘度は、回転式レオメーター装置(例えば、レオロジカ社製、「VAR-100」等)を用いて、昇温速度10℃/min、周波数1Hz、歪1%の条件で、測定温度範囲60℃から300℃まで測定したときの複素粘度の最低値より求めることができる。
The minimum with the minimum melt viscosity of the curable resin composition of this invention 1 is 5 kPa * s, and a preferable upper limit is 300 kPa * s. When the minimum melt viscosity is within this range, the curable resin composition of the present invention 1 has more excellent flow characteristics. A more preferable lower limit of the minimum melt viscosity is 10 kPa · s, a more preferable upper limit is 200 kPa · s, and a still more preferable upper limit is 150 kPa · s.
The minimum melt viscosity is measured using a rotary rheometer (for example, “VAR-100” manufactured by Rheology Corporation) under the conditions of a heating rate of 10 ° C./min, a frequency of 1 Hz, and a strain of 1%. It can be determined from the lowest value of the complex viscosity when measured from a temperature range of 60 ° C to 300 ° C.
本発明1の硬化性樹脂組成物は、広い用途に用いることができるが、特に高い耐熱性が求められている電子材料用途に好適に用いることができる。例えば、航空、車載用電気制御ユニット(ECU)用途や、SiC、GaNを用いたパワーデバイス用途におけるダイアタッチ剤等に用いることができる。また、例えば、パワーオーバーレイパッケージ用接着剤、プリント配線基板用接着剤、フレキシブルプリント配線板のカバーレイフィルム用接着剤、銅張積層板、半導体接合用接着剤、層間絶縁膜、プリプレグ、LED用封止剤、構造材料用接着剤等にも用いることができる。なかでも、接着剤用途に好適に用いられ、フレキシブルプリント配線板のカバーレイフィルム用接着剤に特に好適に用いられる。
本発明1の硬化性樹脂組成物からなる接着剤(以下、「本発明1の接着剤」ともいう)もまた、本発明の1つである。本発明1の接着剤は、離型フィルム上に塗工した後、乾燥させる等の方法により、接着フィルム(硬化性樹脂組成物フィルム)を形成することができ、該接着フィルムを硬化させることにより、硬化物を得ることができる。本発明1の硬化性樹脂組成物の硬化物もまた、本発明の1つである。
本発明1の接着剤を用いてなる接着フィルムもまた、本発明の1つである。
また、本発明1の硬化性樹脂組成物の硬化物からなる接着層と、絶縁フィルムとを有するカバーレイフィルム(以下、「本発明1のカバーレイフィルム」ともいう)もまた、本発明の1つである。更に、本発明1のカバーレイフィルムを有するフレキシブルプリント配線板もまた、本発明の1つである。
Although the curable resin composition of the present invention 1 can be used for a wide range of applications, it can be suitably used for an electronic material application that requires particularly high heat resistance. For example, it can be used for die attach agents in aviation, in-vehicle electric control unit (ECU) applications, power device applications using SiC, and GaN. Also, for example, adhesives for power overlay packages, adhesives for printed wiring boards, adhesives for cover lay films of flexible printed wiring boards, copper-clad laminates, adhesives for semiconductor bonding, interlayer insulating films, prepregs, and LED sealing It can also be used for a stopper, an adhesive for structural materials, and the like. Especially, it is used suitably for an adhesive agent use, and it is used especially suitably for the adhesive agent for cover-lay films of a flexible printed wiring board.
An adhesive comprising the curable resin composition of the present invention 1 (hereinafter also referred to as “adhesive of the present invention 1”) is also one aspect of the present invention. The adhesive of the present invention 1 can form an adhesive film (curable resin composition film) by a method such as drying after coating on a release film, and by curing the adhesive film. A cured product can be obtained. The cured product of the curable resin composition of the present invention 1 is also one aspect of the present invention.
An adhesive film using the adhesive of the present invention 1 is also one aspect of the present invention.
Further, a cover lay film (hereinafter also referred to as “cover lay film of the present invention 1”) having an adhesive layer made of a cured product of the curable resin composition of the present invention 1 and an insulating film is also 1 of the present invention. One. Furthermore, the flexible printed wiring board which has the coverlay film of this invention 1 is also one of this invention.
本発明2は、硬化性樹脂とイミドオリゴマーと硬化促進剤とを含有する硬化性樹脂組成物であって、上記イミドオリゴマーは、下記式(6)で表される硬化性樹脂組成物である。 The present invention 2 is a curable resin composition containing a curable resin, an imide oligomer, and a curing accelerator, and the imide oligomer is a curable resin composition represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(6)中、Xは、下記式(7-1)、(7-2)、又は、(7-3)で表される4価の基であり、Yは、下記式(8-1)、(8-2)、(8-3)、又は、(8-4)で表される2価の基である。 In the formula (6), X is a tetravalent group represented by the following formula (7-1), (7-2), or (7-3), and Y is a formula (8-1) ), (8-2), (8-3), or (8-4).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(7-1)~(7-3)中、*は結合位置である。式(7-1)~(7-3)中における芳香環の水素原子は置換されていてもよい。 In the formulas (7-1) to (7-3), * is a bonding position. The hydrogen atom of the aromatic ring in formulas (7-1) to (7-3) may be substituted.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(8-1)及び(8-2)中、Zは、結合手、酸素原子、スルホニル基、結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有していてもよい芳香環を有する2価の基である。式(8-1)及び(8-2)中における芳香環の水素原子は置換されていてもよい。式(8-3)及び(8-4)中、R~R14は、水素原子又は1価の炭化水素基を表し、それぞれ同一であってもよいし、異なっていてもよい。式(8-1)~(8-4)中、*は結合位置である。
以下に本発明2を詳述する。
In formulas (8-1) and (8-2), Z represents a bond, an oxygen atom, a sulfonyl group, or a linear or branched divalent carbon atom which may have an oxygen atom at the bonding position. It is a hydrogen group or a divalent group having an aromatic ring which may have an oxygen atom at the bonding position. The hydrogen atom of the aromatic ring in formulas (8-1) and (8-2) may be substituted. In formulas (8-3) and (8-4), R 7 to R 14 each represents a hydrogen atom or a monovalent hydrocarbon group, and may be the same or different. In formulas (8-1) to (8-4), * represents a bonding position.
The present invention 2 will be described in detail below.
本発明者らは、硬化性樹脂とイミドオリゴマーと硬化促進剤とを含有する硬化性樹脂組成物において、該イミドオリゴマーとして特定の構造を有するものを用いることにより、保存安定性に優れ、かつ、低線膨張性、接着性、及び、長期耐熱性に優れる硬化物を得ることができることを見出し、本発明2を完成させるに至った。 In the curable resin composition containing a curable resin, an imide oligomer, and a curing accelerator, the present inventors have excellent storage stability by using the imide oligomer having a specific structure, and The inventors found that a cured product excellent in low linear expansion property, adhesiveness, and long-term heat resistance can be obtained, and completed the present invention 2.
本発明2の硬化性樹脂組成物は、イミドオリゴマーを含有する。
上記イミドオリゴマーは、上記式(6)で表される。以下、上記式(6)で表されるイミドオリゴマーを、本発明2にかかるイミドオリゴマーともいう。本発明2にかかるイミドオリゴマーを含有することにより、本発明2の硬化性樹脂組成物は、保存安定性に優れ、かつ、低線膨張性、接着性、及び、長期耐熱性に優れる硬化物を得ることができるものとなる。
The curable resin composition of the present invention 2 contains an imide oligomer.
The imide oligomer is represented by the above formula (6). Hereinafter, the imide oligomer represented by the above formula (6) is also referred to as an imide oligomer according to the present invention 2. By containing the imide oligomer according to the present invention 2, the curable resin composition of the present invention 2 is a cured product having excellent storage stability and low linear expansion, adhesion, and long-term heat resistance. It can be obtained.
本発明2にかかるイミドオリゴマーの数平均分子量の好ましい下限は400、好ましい上限は5000である。上記数平均分子量がこの範囲であることにより、得られる硬化物が接着性や長期耐熱性により優れるものとなる。本発明2にかかるイミドオリゴマーの数平均分子量のより好ましい下限は500、より好ましい上限は4000である。
なお、本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
The minimum with a preferable number average molecular weight of the imide oligomer concerning this invention 2 is 400, and a preferable upper limit is 5000. When the number average molecular weight is within this range, the obtained cured product is excellent in adhesiveness and long-term heat resistance. The more preferable lower limit of the number average molecular weight of the imide oligomer according to the present invention 2 is 500, and the more preferable upper limit is 4000.
In the present specification, the “number average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industrial Co., Ltd.).
本発明2にかかるイミドオリゴマーの軟化点の好ましい上限は250℃である。本発明2にかかるイミドオリゴマーの軟化点が250℃以下であることにより、得られる硬化物が、接着性や長期耐熱性により優れるものとなる。本発明2にかかるイミドオリゴマーの軟化点のより好ましい上限は200℃である。
本発明2にかかるイミドオリゴマーの軟化点の好ましい下限は特にないが、実質的な下限は60℃である。
なお、上記軟化点は、JIS K 2207に従い、環球法により求めることができる。
The upper limit with the softening point of the imide oligomer concerning this invention 2 is 250 degreeC. When the softening point of the imide oligomer according to the second aspect of the invention is 250 ° C. or less, the obtained cured product is excellent in adhesiveness and long-term heat resistance. The upper limit with a more preferable softening point of the imide oligomer concerning this invention 2 is 200 degreeC.
There is no particular lower limit for the softening point of the imide oligomer according to the present invention 2, but the substantial lower limit is 60 ° C.
The softening point can be determined by the ring and ball method according to JIS K 2207.
本発明2にかかるイミドオリゴマーを製造する方法としては、例えば、下記式(9)で表される酸二無水物と下記式(10)で表されるジアミンとを反応させる方法等が挙げられる。 Examples of the method for producing the imide oligomer according to the present invention 2 include a method of reacting an acid dianhydride represented by the following formula (9) and a diamine represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(9)中、Xは、上記式(6)中のXと同じ4価の基である。 In formula (9), X is the same tetravalent group as X in formula (6).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
式(10)中、Yは、上記式(6)中のYと同じ2価の基であり、R15~R18は、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (10), Y is the same divalent group as Y in formula (6), and R 15 to R 18 are each independently a hydrogen atom or a monovalent hydrocarbon group.
上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(10)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等)に溶解させ、得られた溶液に上記式(9)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、得られたアミック酸オリゴマー溶液から加熱や減圧等により溶媒を除去、又は、水、メタノール、ヘキサン等の貧溶媒中に投入して再沈殿させることによりアミック酸オリゴマーを回収し、更に、約200℃以上で1時間以上加熱してイミド化反応を進行させる。上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンとのモル比、及び、イミド化条件を調整することにより、上記式(6)で表され、所望の数平均分子量を有するイミドオリゴマーを得ることができる。
Specific examples of the method of reacting the acid dianhydride represented by the above formula (9) and the diamine represented by the above formula (10) are shown below.
First, the diamine represented by the above formula (10) is previously dissolved in a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.), and the resulting solution The acid dianhydride represented by the above formula (9) is added to and reacted to obtain an amic acid oligomer solution. Next, the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like. The imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer. By adjusting the molar ratio of the acid dianhydride represented by the above formula (9) and the diamine represented by the above formula (10) and the imidization conditions, it is represented by the above formula (6) and desired. An imide oligomer having a number average molecular weight of
上記式(9)で表される酸二無水物としては、具体的には、3,4’-オキシジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物を用いることができる。 Specific examples of the acid dianhydride represented by the above formula (9) include 3,4′-oxydiphthalic dianhydride, 4,4′-oxydiphthalic dianhydride, 4,4 ′-(4 , 4'-isopropylidenediphenoxy) diphthalic anhydride can be used.
上記式(10)で表されるジアミンとしては、例えば、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,3-フェニレンジアミン、1,4-フェニレンジアミン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン、ビス(4-(4-アミノフェノキシ)フェニル)スルフォン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-(4-アミノフェノキシ)フェニル)メタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、ビスアミノフェニルフルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ジエチルトルエンジアミン等が挙げられる。なかでも、溶解性、耐熱性、及び、入手性に優れることから、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン、ビス(4-(4-アミノフェノキシ)フェニル)スルフォン、ジエチルトルエンジアミン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタンが好ましい。また、低線膨張性に優れることから、1,3-ビス(4-アミノフェノキシ)ベンゼンが特に好ましい。 Examples of the diamine represented by the above formula (10) include 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 1,3 -Phenylenediamine, 1,4-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4- Aminophenoxy) phenyl) sulfone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, bis (4- (4-Aminophenoxy) phenyl) methane, 2,2-bis (4- (4-amino) Enoxy) phenyl) propane, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene, 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene, bisamino Examples thereof include phenylfluorene, 4,4′-bis (4-aminophenoxy) biphenyl, diethyltoluenediamine and the like. Among them, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (1, because of excellent solubility, heat resistance and availability. 4-aminophenoxy) benzene, 1,3-phenylenediamine, 1,4-phenylenediamine, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone, bis (4- (3-aminophenoxy) phenyl ) Sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, diethyltoluenediamine, 3,3′-diaminodiphenylmethane, and 4,4′-diaminodiphenylmethane are preferred. In addition, 1,3-bis (4-aminophenoxy) benzene is particularly preferred because of its excellent low linear expansion.
本発明2にかかるイミドオリゴマーのイミド化率の好ましい下限は70%である。上記イミド化率が70%以上であることにより、高温での機械的強度及び長期耐熱性により優れる硬化物を得ることができる。上記イミド化率のより好ましい下限は75%、更に好ましい下限は80%である。また、本発明2にかかるイミドオリゴマーのイミド化率の好ましい上限は特にないが、実質的な上限は98%である。
なお、上記「イミド化率」は、フーリエ変換赤外分光法(FT-IR)により求めることができる。具体的には、フーリエ変換赤外分光光度計(例えば、Agilent Technologies社製、「UMA600」等)を用いて全反射測定法(ATR法)にて測定を行い、アミック酸のカルボニル基に由来する1660cm-1付近のピーク吸光度面積から下記式にて導出することができる。なお、下記式中における「アミック酸オリゴマーのピーク吸光度面積」は、上記式(9)で表される酸二無水物と上記式(10)で表されるジアミンとを反応させた後、イミド化工程を行わずに溶媒をエバポレーションにより除去することで得られるアミック酸オリゴマーの吸光度面積である。
イミド化率(%)=100×(1-(イミド化後のピーク吸光度面積)/(アミック酸オリゴマーのピーク吸光度面積))
The minimum with the preferable imidation ratio of the imide oligomer concerning this invention 2 is 70%. When the imidation ratio is 70% or more, a cured product having excellent mechanical strength at high temperatures and long-term heat resistance can be obtained. A more preferable lower limit of the imidization ratio is 75%, and a more preferable lower limit is 80%. Moreover, although there is no preferable upper limit in particular of the imidation ratio of the imide oligomer concerning this invention 2, a substantial upper limit is 98%.
The “imidation ratio” can be determined by Fourier transform infrared spectroscopy (FT-IR). Specifically, measurement is performed by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (for example, “UMA600” manufactured by Agilent Technologies), and is derived from a carbonyl group of an amic acid. It can be derived from the peak absorbance area around 1660 cm −1 by the following equation. In addition, the “peak absorbance area of the amic acid oligomer” in the following formula is obtained by reacting the acid dianhydride represented by the above formula (9) with the diamine represented by the above formula (10), and then imidizing. This is the absorbance area of the amic acid oligomer obtained by removing the solvent by evaporation without performing the step.
Imidation ratio (%) = 100 × (1- (peak absorbance area after imidization) / (peak absorbance area of amic acid oligomer))
硬化性樹脂とイミドオリゴマーと硬化促進剤との合計100重量部中における本発明2にかかるイミドオリゴマーの含有量の好ましい下限は20重量部、好ましい上限は90重量部である。本発明2にかかるイミドオリゴマーの含有量がこの範囲であることにより、得られる硬化性樹脂組成物の硬化物が高温での機械的強度、接着性、及び、長期耐熱性により優れるものとなる。本発明2にかかるイミドオリゴマーの含有量のより好ましい下限は30重量部、より好ましい上限は80重量部である。 The minimum with preferable content of the imide oligomer concerning this invention 2 in a total of 100 weight part of curable resin, an imide oligomer, and a hardening accelerator is 20 weight part, and a preferable upper limit is 90 weight part. When the content of the imide oligomer according to the present invention 2 is within this range, the resulting cured product of the curable resin composition is superior in mechanical strength at high temperature, adhesiveness, and long-term heat resistance. The minimum with more preferable content of the imide oligomer concerning this invention 2 is 30 weight part, and a more preferable upper limit is 80 weight part.
本発明2の硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、本発明2にかかるイミドオリゴマーに加えて他のイミドオリゴマーや他の硬化剤を含有してもよい。
上記他のイミドオリゴマーとしては、例えば、本発明2にかかるイミドオリゴマー以外の、分子内にイミド基と反応性官能基とを有するイミドオリゴマー等が挙げられる。
上記他の硬化剤としては、例えば、フェノール系硬化剤、チオール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤等が挙げられる。なかでも、フェノール系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤が好ましい。
The curable resin composition of the present invention 2 may contain other imide oligomers and other curing agents in addition to the imide oligomer according to the present invention 2 as long as the object of the present invention is not impaired.
As said other imide oligomer, the imide oligomer etc. which have an imide group and a reactive functional group in a molecule | numerator other than the imide oligomer concerning this invention 2 are mentioned, for example.
Examples of the other curing agents include phenolic curing agents, thiol curing agents, amine curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents. Of these, phenolic curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents are preferred.
本発明2の硬化性樹脂組成物が上記他のイミドオリゴマー又は上記他の硬化剤を含有する場合、硬化剤全体中における上記他のイミドオリゴマー又は上記他の硬化剤の含有割合の好ましい上限は70重量%、より好ましい上限は50重量%、更に好ましい上限は30重量%である。 When the curable resin composition of this invention 2 contains the said other imide oligomer or the said other hardening | curing agent, the preferable upper limit of the content rate of the said other imide oligomer or the said other hardening | curing agent in the whole hardening | curing agent is 70. The upper limit is 50% by weight, and a more preferable upper limit is 30% by weight.
本発明2の硬化性樹脂組成物は、硬化性樹脂を含有する。
上記硬化性樹脂としては、エポキシ樹脂が好適に用いられる。
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。なかでも、粘度が低く、得られる硬化性樹脂組成物の室温における加工性を調整しやすいことから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、レゾルシノール型エポキシ樹脂等、常温で液状のエポキシ樹脂が好ましい。上記エポキシ樹脂は、単独で用いられてもよいし、2種類以上が併用されてもよい。
The curable resin composition of the present invention 2 contains a curable resin.
An epoxy resin is preferably used as the curable resin.
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , Propylene oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether Type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolak type epoxy resin, biffe Examples thereof include nil novolac type epoxy resins, naphthalene phenol novolac type epoxy resins, glycidyl amine type epoxy resins, alkyl polyol type epoxy resins, rubber-modified epoxy resins, fluorene type epoxy resins, and glycidyl ester compounds. Among them, since the viscosity is low and the processability at room temperature of the resulting curable resin composition is easy to adjust, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, resorcinol type epoxy resin, etc. Epoxy resins that are liquid at room temperature are preferred. The said epoxy resin may be used independently and 2 or more types may be used together.
本発明2の硬化性樹脂組成物は、硬化促進剤を含有する。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができるだけでなく、硬化物の長期耐熱性を向上させることができる。 The curable resin composition of the present invention 2 contains a curing accelerator. By containing the curing accelerator, not only the curing time can be shortened and the productivity can be improved, but also the long-term heat resistance of the cured product can be improved.
上記硬化促進剤は、塩基性触媒であることが好ましく、例えば、イミダゾール骨格を有する硬化促進剤(イミダゾール系硬化促進剤)、3級アミン系硬化促進剤、リン系硬化促進剤、光塩基発生剤等が挙げられる。なかでも、保存安定性に優れることから、イミダゾール骨格を有する硬化促進剤がより好ましい。
上記イミダゾール骨格を有する硬化促進剤としては、例えば、2―メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-ウンデシルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-エチル-4’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられる。
The curing accelerator is preferably a basic catalyst. For example, a curing accelerator having an imidazole skeleton (imidazole curing accelerator), a tertiary amine curing accelerator, a phosphorus curing accelerator, a photobase generator. Etc. Among these, a curing accelerator having an imidazole skeleton is more preferable because of excellent storage stability.
Examples of the curing accelerator having an imidazole skeleton include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4- Methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-s-triazine, 2,4-diamino-6- (2′-un Decylimidazolyl- (1 ′))-ethyl-s-triazine, 2 , 4-Diamino-6- (2'-ethyl-4'-methylimidazolyl- (1 '))-ethyl-s-triazine, 2,4-diamino-6- (2'-methylimidazolyl- (1') ) -Ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl- And 5-hydroxymethylimidazole.
上記イミダゾール骨格を有する硬化促進剤以外の他の硬化促進剤としては、例えば、3級アミン系硬化促進剤、ホスフィン系硬化促進剤、光塩基発生剤、スルホニウム塩系硬化促進剤等が挙げられる。 Examples of the curing accelerator other than the curing accelerator having the imidazole skeleton include a tertiary amine-based curing accelerator, a phosphine-based curing accelerator, a photobase generator, and a sulfonium salt-based curing accelerator.
硬化性樹脂とイミドオリゴマーと硬化促進剤との合計100重量部中における上記硬化促進剤の含有量の好ましい下限は0.8重量部、好ましい上限は10重量部である。上記硬化促進剤の含有量が0.8重量部以上であることにより、得られる硬化性樹脂組成物が硬化物の接着性や長期耐熱性により優れるものとなる。上記硬化促進剤の含有量が10重量部以下であることにより、得られる硬化性樹脂組成物が保存安定性により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は1重量部、より好ましい上限は9重量部である。 The minimum with preferable content of the said hardening accelerator in 100 weight part in total of curable resin, an imide oligomer, and a hardening accelerator is 0.8 weight part, and a preferable upper limit is 10 weight part. When the content of the curing accelerator is 0.8 parts by weight or more, the resulting curable resin composition is more excellent in the adhesiveness and long-term heat resistance of the cured product. When the content of the curing accelerator is 10 parts by weight or less, the resulting curable resin composition is more excellent in storage stability. A more preferable lower limit of the content of the curing accelerator is 1 part by weight, and a more preferable upper limit is 9 parts by weight.
本発明2の硬化性樹脂組成物は、硬化後の線膨張率を低下させてそりを低減させたり、接着信頼性を向上させたりする等を目的として無機充填剤を含有してもよい。また、上記無機充填剤は、流動調整剤としても好適に用いることができる。 The curable resin composition of the present invention 2 may contain an inorganic filler for the purpose of reducing warpage by reducing the linear expansion coefficient after curing, improving adhesion reliability, or the like. Moreover, the said inorganic filler can be used suitably also as a flow regulator.
上記無機充填剤としては、例えば、ヒュームドシリカ、コロイダルシリカ等のシリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体等が挙げられる。 Examples of the inorganic filler include silica such as fumed silica and colloidal silica, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, inorganic ion exchanger, and the like. .
上記無機充填剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい上限が300重量部である。上記無機充填剤の含有量が300重量部以下であることにより、優れた加工性等を維持したまま、接着信頼性を向上させたり、流動調整をしたりする等の効果により優れるものとなる。上記無機充填剤の含有量のより好ましい上限は200重量部である。 The content of the inorganic filler is preferably 300 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the inorganic filler is 300 parts by weight or less, the adhesive reliability is improved or the flow is adjusted while maintaining excellent processability and the like. The upper limit with more preferable content of the said inorganic filler is 200 weight part.
本発明2の硬化性樹脂組成物は、応力緩和、靭性付与等を目的として有機充填剤を含有してもよい。 The curable resin composition of the present invention 2 may contain an organic filler for the purpose of stress relaxation, imparting toughness and the like.
上記有機充填剤としては、例えば、シリコーンゴム粒子、アクリルゴム粒子、ウレタンゴム粒子、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子、ベンゾグアナミン粒子、及び、これらのコアシェル粒子等が挙げられる。なかでも、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子が好ましい。 Examples of the organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamideimide particles, and polyimide particles are preferable.
上記有機充填剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい上限が300重量部である。上記有機充填剤の含有量が300重量部以下であることにより、優れた接着性等を維持したまま、得られる硬化物が靭性等により優れるものとなる。上記有機充填剤の含有量のより好ましい上限は200重量部である。 The upper limit of the content of the organic filler is preferably 300 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the organic filler is 300 parts by weight or less, the obtained cured product is excellent in toughness and the like while maintaining excellent adhesiveness and the like. The upper limit with more preferable content of the said organic filler is 200 weight part.
本発明2の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で高分子化合物を含有してもよい。上記高分子化合物は、造膜成分としての役割を果たす。 The curable resin composition of the present invention 2 may contain a polymer compound as long as the object of the present invention is not impaired. The polymer compound serves as a film forming component.
上記高分子化合物は、反応性官能基を有していてもよい。
上記反応性官能基としては、例えば、アミノ基、ウレタン基、イミド基、水酸基、カルボキシル基、エポキシ基等が挙げられる。
The polymer compound may have a reactive functional group.
Examples of the reactive functional group include an amino group, a urethane group, an imide group, a hydroxyl group, a carboxyl group, and an epoxy group.
本発明2の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で反応性希釈剤を含有してもよい。
上記反応性希釈剤としては、接着信頼性の観点から、1分子中に2つ以上の反応性官能基を有する反応性希釈剤が好ましい。
上記反応性希釈剤の有する反応性官能基としては、上述した高分子化合物が有する反応性官能基と同様のものが挙げられる。
The curable resin composition of the present invention 2 may contain a reactive diluent as long as the object of the present invention is not impaired.
As the reactive diluent, a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesion reliability.
As a reactive functional group which the said reactive diluent has, the thing similar to the reactive functional group which the high molecular compound mentioned above has is mentioned.
本発明2の硬化性樹脂組成物は、更に、溶剤、カップリング剤、分散剤、貯蔵安定化剤、ブリード防止剤、フラックス剤、レベリング剤、難燃剤等の添加剤を含有してもよい。 The curable resin composition of the present invention 2 may further contain additives such as a solvent, a coupling agent, a dispersant, a storage stabilizer, a bleed inhibitor, a flux agent, a leveling agent, and a flame retardant.
本発明2の硬化性樹脂組成物を製造する方法としては、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等の混合機を用いて、硬化性樹脂と、本発明2にかかるイミドオリゴマーと、硬化促進剤と、必要に応じて添加する他の硬化剤や無機充填剤(流動調整剤)等とを混合する方法等が挙げられる。
また、本発明2の硬化性樹脂組成物をフィルム上に塗工し、乾燥させることにより、本発明2の硬化性樹脂組成物からなるフィルムを得ることができ、該硬化性樹脂組成物フィルムを硬化させることにより、硬化物を得ることができる。本発明2の硬化性樹脂組成物の硬化物(以下、「本発明2の硬化物」ともいう)もまた、本発明の1つである。
As a method for producing the curable resin composition of the present invention 2, for example, using a mixer such as a homodisper, a universal mixer, a Banbury mixer, a kneader, the curable resin and the imide oligomer according to the present invention 2, Examples thereof include a method of mixing a curing accelerator with other curing agents and inorganic fillers (flow modifiers) added as necessary.
Moreover, the film which consists of curable resin composition of this invention 2 can be obtained by apply | coating the curable resin composition of this invention 2 on a film, and making it dry, this curable resin composition film can be obtained. A cured product can be obtained by curing. A cured product of the curable resin composition of the present invention 2 (hereinafter also referred to as “cured product of the present invention 2”) is also one aspect of the present invention.
本発明2の硬化物は、そり低減や接着信頼性向上の観点から、40℃から80℃の温度範囲における平均線膨張係数が60ppm以下であることが好ましく、55ppm以下であることがより好ましい。上記平均線膨張係数は、小さいほど好ましい。
なお、上記平均線膨張係数は、厚さ約400μmの硬化物について、熱機械分析装置を用いて測定することができる。具体的には、荷重5g、昇温速度10℃/分の条件でサンプル長1cmの硬化物を0℃から300℃まで昇温した後、一旦冷却し、再度同じ条件で0℃から300℃まで昇温し、2回目の測定において得られた温度と寸法変化のデータを基に、40℃から80℃の温度範囲における平均線膨張係数を求めることができる。
上記平均線膨張係数を測定する硬化物は、上記硬化性樹脂組成物フィルムを190℃で30分以上加熱することにより得ることができる。
上記熱機械分析装置としては、例えば、TMA/SS-6000(日立ハイテクサイエンス社製)等が挙げられる。
In the cured product of Invention 2, the average linear expansion coefficient in the temperature range of 40 ° C. to 80 ° C. is preferably 60 ppm or less, and more preferably 55 ppm or less, from the viewpoint of reducing warpage or improving the adhesion reliability. The average linear expansion coefficient is preferably as small as possible.
The average linear expansion coefficient can be measured for a cured product having a thickness of about 400 μm using a thermomechanical analyzer. Specifically, after heating the cured product having a sample length of 1 cm from 0 ° C. to 300 ° C. under the conditions of a load of 5 g and a temperature increase rate of 10 ° C./min, it is once cooled and then again from 0 ° C. to 300 ° C. The average linear expansion coefficient in the temperature range from 40 ° C. to 80 ° C. can be determined based on the temperature and dimensional change data obtained in the second measurement after the temperature is raised.
The cured product for measuring the average linear expansion coefficient can be obtained by heating the curable resin composition film at 190 ° C. for 30 minutes or more.
Examples of the thermomechanical analyzer include TMA / SS-6000 (manufactured by Hitachi High-Tech Science Co., Ltd.).
本発明2の硬化性樹脂組成物は、広い用途に用いることができるが、特に高い耐熱性が求められている電子材料用途に好適に用いることができる。例えば、航空、車載用電気制御ユニット(ECU)用途や、SiC、GaNを用いたパワーデバイス用途におけるダイアタッチ剤等に用いることができる。また、例えば、パワーオーバーレイパッケージ用接着剤、プリント配線基板用接着剤、フレキシブルプリント回路基板のカバーレイ用接着剤、銅張積層板、半導体接合用接着剤、層間絶縁膜、プリプレグ、LED用封止剤、構造材料用接着剤等にも用いることができる。なかでも、接着剤用途に好適に用いられる。
本発明2の硬化性樹脂組成物からなる接着剤もまた、本発明の1つである。また、本発明2の硬化性樹脂組成物を用いてなる接着フィルムもまた、本発明の1つである。
Although the curable resin composition of the present invention 2 can be used for a wide range of applications, it can be suitably used for an electronic material application that requires particularly high heat resistance. For example, it can be used for die attach agents in aviation, in-vehicle electric control unit (ECU) applications, power device applications using SiC, and GaN. Also, for example, power overlay package adhesive, printed wiring board adhesive, flexible printed circuit board coverlay adhesive, copper-clad laminate, semiconductor bonding adhesive, interlayer insulation film, prepreg, LED sealing It can also be used for adhesives and adhesives for structural materials. Especially, it is used suitably for an adhesive agent use.
The adhesive agent which consists of curable resin composition of this invention 2 is also one of this invention. Moreover, the adhesive film using the curable resin composition of this invention 2 is also one of this invention.
本発明3は、硬化性樹脂とイミドオリゴマーとを含有する硬化性樹脂組成物であって、上記硬化性樹脂は、25℃において液状であり、25℃において上記イミドオリゴマーが固体粒子状に分散している硬化性樹脂組成物である。
以下に本発明3を詳述する。
Invention 3 is a curable resin composition containing a curable resin and an imide oligomer, and the curable resin is liquid at 25 ° C., and the imide oligomer is dispersed in solid particles at 25 ° C. The curable resin composition.
The present invention 3 will be described in detail below.
本発明者らは、硬化性樹脂とイミドオリゴマーとを含有する硬化性樹脂組成物において、該硬化性樹脂として25℃において液状のものを用い、かつ、該イミドオリゴマーを25℃において固体粒子状に分散させることを検討した。その結果、硬化前は可撓性及び加工性に優れ、硬化後は接着性及び耐熱性に優れる硬化性樹脂組成物を得ることができることを見出し、本発明3を完成させるに至った。 In the curable resin composition containing a curable resin and an imide oligomer, the present inventors use a liquid resin at 25 ° C. as the curable resin, and form the imide oligomer into solid particles at 25 ° C. We considered to disperse. As a result, it was found that a curable resin composition excellent in flexibility and workability before curing and excellent in adhesiveness and heat resistance after curing could be obtained, and the present invention 3 was completed.
本発明3の硬化性樹脂組成物は、硬化性樹脂を含有する。
上記硬化性樹脂は、25℃で液状である。上記硬化性樹脂が25℃で液状であることにより、本発明3の硬化性樹脂組成物は、流動性や加工性に優れるものとなる。また、後述するイミドオリゴマーを固体粒子状に分散させるため、上記硬化性樹脂としては、25℃において該イミドオリゴマーが不溶であるものが用いられる。
The curable resin composition of the present invention 3 contains a curable resin.
The curable resin is liquid at 25 ° C. When the curable resin is liquid at 25 ° C., the curable resin composition of the present invention 3 is excellent in fluidity and workability. Moreover, in order to disperse the imide oligomer described later in the form of solid particles, as the curable resin, one in which the imide oligomer is insoluble at 25 ° C. is used.
上記硬化性樹脂としては、エポキシ樹脂が好適に用いられる。
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。なかでも、粘度が低く、得られる硬化性樹脂組成物の室温における加工性を調整しやすいことから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、レゾルシノール型エポキシ樹脂等、常温で液状のエポキシ樹脂が好ましい。上記エポキシ樹脂は、単独で用いられてもよいし、2種類以上が併用されてもよい。
An epoxy resin is preferably used as the curable resin.
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, and hydrogenated bisphenol type epoxy resin. , Propylene oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether Type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolak type epoxy resin, biffe Examples thereof include nil novolac type epoxy resins, naphthalene phenol novolac type epoxy resins, glycidyl amine type epoxy resins, alkyl polyol type epoxy resins, rubber-modified epoxy resins, fluorene type epoxy resins, and glycidyl ester compounds. Among them, since the viscosity is low and the processability at room temperature of the resulting curable resin composition is easy to adjust, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, resorcinol type epoxy resin, etc. Epoxy resins that are liquid at room temperature are preferred. The said epoxy resin may be used independently and 2 or more types may be used together.
本発明3の硬化性樹脂組成物は、イミドオリゴマーを含有する。本発明3の硬化性樹脂組成物において、上記イミドオリゴマーは、25℃において固体粒子状に分散している。上記イミドオリゴマーが固体粒子状に分散していることにより、本発明3の硬化性樹脂組成物は、優れた流動性や加工性を維持したまま可撓性に優れ、かつ、接着性及び耐熱性に優れる硬化物を得ることができるものとなる。
なお、上記「固体粒子状に分散している」とは、溶解することなく粒子状に存在し、かつ大部分の粒子同士が凝集して偏在することなく分散していることを意味し、光学顕微鏡や電子顕微鏡を用いた直接観察により確認することができる。
The curable resin composition of the present invention 3 contains an imide oligomer. In the curable resin composition of the present invention 3, the imide oligomer is dispersed in solid particles at 25 ° C. When the imide oligomer is dispersed in the form of solid particles, the curable resin composition of the present invention 3 is excellent in flexibility while maintaining excellent fluidity and workability, and has adhesiveness and heat resistance. It becomes what can obtain the hardened | cured material which is excellent in.
The term “dispersed in the form of solid particles” means that the particles are present without being dissolved, and that most of the particles are aggregated and dispersed without being unevenly distributed. This can be confirmed by direct observation using a microscope or an electron microscope.
上記イミドオリゴマーは、上記硬化性樹脂と反応し得る反応性官能基を有することが好ましい。
上記反応性官能基は、用いる硬化性樹脂の種類にもよるが、硬化性樹脂としてエポキシ樹脂を用いる場合、酸無水物基及び/又はフェノール性水酸基であることが好ましい。
上記イミドオリゴマーは、上記反応性官能基を主鎖の末端に有することが好ましく、両末端に有することがより好ましい。
The imide oligomer preferably has a reactive functional group that can react with the curable resin.
Although the said reactive functional group is based also on the kind of curable resin to be used, when using an epoxy resin as curable resin, it is preferable that they are an acid anhydride group and / or a phenolic hydroxyl group.
The imide oligomer preferably has the reactive functional group at the ends of the main chain, and more preferably at both ends.
上記反応性官能基として酸無水物基を有するイミドオリゴマーを製造する方法としては、例えば、下記式(11)で表される酸二無水物と下記式(12)で表されるジアミンとを反応させる方法等が挙げられる。
また、上記反応性官能基としてフェノール性水酸基を有するイミドオリゴマーを製造する方法としては、例えば、以下の方法等が挙げられる。
即ち、下記式(11)で表される酸二無水物と下記式(13)で表されるフェノール性水酸基含有モノアミンとを反応させる方法や、下記式(11)で表される酸二無水物と下記式(12)で表されるジアミンとを反応させた後、更に下記式(13)で表されるフェノール性水酸基含有モノアミンを反応させる方法等が挙げられる。
As a method for producing an imide oligomer having an acid anhydride group as the reactive functional group, for example, an acid dianhydride represented by the following formula (11) and a diamine represented by the following formula (12) are reacted. And the like.
Moreover, as a method of manufacturing the imide oligomer which has a phenolic hydroxyl group as said reactive functional group, the following methods etc. are mentioned, for example.
That is, a method of reacting an acid dianhydride represented by the following formula (11) with a phenolic hydroxyl group-containing monoamine represented by the following formula (13), or an acid dianhydride represented by the following formula (11) And a diamine represented by the following formula (12), and a method of reacting a phenolic hydroxyl group-containing monoamine represented by the following formula (13).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
式(11)中、Aは、下記式(14-1)又は下記式(14-2)で表される4価の基である。 In the formula (11), A is a tetravalent group represented by the following formula (14-1) or the following formula (14-2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
式(12)中、Bは、下記式(15-1)又は下記式(15-2)で表される2価の基であり、R19~R22は、それぞれ独立に、水素原子又は1価の炭化水素基である。 In the formula (12), B is a divalent group represented by the following formula (15-1) or the following formula (15-2), and R 19 to R 22 are each independently a hydrogen atom or 1 Valent hydrocarbon group.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
式(13)中、Arは、置換されていてもよい2価の芳香族基であり、R23及びR24は、それぞれ独立に、水素原子又は1価の炭化水素基である。 In formula (13), Ar is an optionally substituted divalent aromatic group, and R 23 and R 24 are each independently a hydrogen atom or a monovalent hydrocarbon group.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
式(14-1)及び式(14-2)中、*は、結合位置であり、式(14-1)中、Zは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、結合位置に酸素原子を有してもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有してもよい芳香環を有する2価の基である。式(14-1)及び式(14-2)中における芳香環の水素原子は置換されていてもよい。 In formula (14-1) and formula (14-2), * represents a bonding position, and in formula (14-1), Z represents a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a bond A linear or branched divalent hydrocarbon group which may have an oxygen atom at a position, or a divalent group having an aromatic ring which may have an oxygen atom at a bonding position. The hydrogen atom of the aromatic ring in formula (14-1) and formula (14-2) may be substituted.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
式(15-1)及び式(15-2)中、*は、結合位置であり、式(15-1)中、Yは、結合手、酸素原子、カルボニル基、硫黄原子、スルホニル基、結合位置に酸素原子を有してもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有してもよい芳香環を有する2価の基である。式(15-1)及び式(15-2)中のフェニレン基は、一部又は全部の水素原子が水酸基又は1価の炭化水素基で置換されていてもよい。 In formula (15-1) and formula (15-2), * represents a bonding position, and in formula (15-1), Y represents a bond, an oxygen atom, a carbonyl group, a sulfur atom, a sulfonyl group, a bond A linear or branched divalent hydrocarbon group which may have an oxygen atom at a position, or a divalent group having an aromatic ring which may have an oxygen atom at a bonding position. In the phenylene groups in the formulas (15-1) and (15-2), some or all of the hydrogen atoms may be substituted with hydroxyl groups or monovalent hydrocarbon groups.
上記式(11)で表される酸二無水物と上記式(12)で表されるジアミンとを反応させる方法の具体例を以下に示す。
まず、予め上記式(12)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等)に溶解させ、得られた溶液に上記式(11)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、得られたアミック酸オリゴマー溶液から加熱や減圧等により溶媒を除去、又は、水、メタノール、ヘキサン等の貧溶媒中に投入して再沈殿させることによりアミック酸オリゴマーを回収し、更に、約200℃以上で1時間以上加熱してイミド化反応を進行させる。上記式(11)で表される酸二無水物と上記式(12)で表されるジアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に反応性官能基として酸無水物基を有するイミドオリゴマーを得ることができる。
Specific examples of the method of reacting the acid dianhydride represented by the above formula (11) and the diamine represented by the above formula (12) are shown below.
First, the diamine represented by the above formula (12) is previously dissolved in a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.), and the resulting solution The acid dianhydride represented by the above formula (11) is added and reacted to obtain an amic acid oligomer solution. Next, the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like. The imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer. By adjusting the molar ratio of the acid dianhydride represented by the above formula (11) and the diamine represented by the above formula (12) and the imidization conditions, the desired number average molecular weight is obtained. An imide oligomer having an acid anhydride group as a reactive functional group at the terminal can be obtained.
上記式(11)で表される酸二無水物と上記式(13)で表されるフェノール性水酸基含有モノアミンとを反応させる方法の具体例を以下に示す。
まず、予め式(13)で表されるフェノール性水酸基含有モノアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン等)に溶解させ、得られた溶液に上記式(11)で表される酸二無水物を添加して反応させてアミック酸オリゴマー溶液を得る。次いで、得られたアミック酸オリゴマー溶液から加熱や減圧等により溶媒を除去、又は、水、メタノール、ヘキサン等の貧溶媒中に投入して再沈殿させることによりアミック酸オリゴマーを回収し、更に、約200℃以上で1時間以上加熱してイミド化反応を進行させる。上記式(11)で表される酸二無水物と上記式(13)で表されるフェノール性水酸基含有モノアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に反応性官能基としてフェノール性水酸基を有するイミドオリゴマーを得ることができる。
Specific examples of the method of reacting the acid dianhydride represented by the above formula (11) with the phenolic hydroxyl group-containing monoamine represented by the above formula (13) are shown below.
First, the phenolic hydroxyl group-containing monoamine represented by the formula (13) is dissolved in a solvent (for example, N-methylpyrrolidone etc.) in which the amic acid oligomer obtained by the reaction is soluble, and the above formula is added to the obtained solution. The acid dianhydride represented by (11) is added and reacted to obtain an amic acid oligomer solution. Next, the solvent is removed from the obtained amic acid oligomer solution by heating, reduced pressure, or the like, or the amic acid oligomer is recovered by reprecipitation by throwing it into a poor solvent such as water, methanol, hexane, and the like. The imidization reaction proceeds by heating at 200 ° C. or higher for 1 hour or longer. By adjusting the molar ratio between the acid dianhydride represented by the above formula (11) and the phenolic hydroxyl group-containing monoamine represented by the above formula (13) and imidization conditions, a desired number average molecular weight is obtained. It is possible to obtain an imide oligomer having a phenolic hydroxyl group as a reactive functional group at both ends.
上記式(11)で表される酸二無水物と上記式(12)で表されるジアミンとを反応させた後、更に上記式(13)で表されるフェノール性水酸基含有モノアミンを反応させる方法の具体例を以下に示す。
まず、予め上記式(12)で表されるジアミンを、反応により得られるアミック酸オリゴマーが可溶な溶媒(例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等)に溶解させ、得られた溶液に上記式(11)で表される酸二無水物を添加して反応させて、両末端に酸無水物基を有するアミック酸オリゴマー(A)の溶液を得る。次いで、得られたアミック酸オリゴマー(A)の溶液から加熱や減圧等により溶媒を除去、又は、水、メタノール、ヘキサン等の貧溶媒中に投入して再沈殿させることによりアミック酸オリゴマー(A)を回収し、更に、約200℃以上で1時間以上加熱してイミド化反応を進行させる。
このようにして得られた、両末端に反応性官能基として酸無水物基を有するイミドオリゴマーを、再度可溶な溶媒(例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等)に溶解させ、上記式(13)で表されるフェノール性水酸基含有モノアミンを添加して反応させてアミック酸オリゴマー(B)の溶液を得る。得られたアミック酸オリゴマー(B)の溶液から加熱や減圧等により溶媒を除去、又は、水、メタノール、ヘキサン等の貧溶媒中に投入して再沈殿させることによりアミック酸オリゴマー(B)を回収し、更に、約200℃以上で1時間以上加熱してイミド化反応を進行させる。上記式(11)で表される酸二無水物と上記式(12)で表されるジアミンと上記式(13)で表されるフェノール性水酸基含有モノアミンとのモル比、及び、イミド化条件を調整することにより、所望の数平均分子量を有し、両末端に反応性官能基としてフェノール性水酸基を有するイミドオリゴマーを得ることができる。
A method of reacting a phenolic hydroxyl group-containing monoamine represented by the above formula (13) after reacting the acid dianhydride represented by the above formula (11) with the diamine represented by the above formula (12). Specific examples of these are shown below.
First, the diamine represented by the above formula (12) is previously dissolved in a solvent in which the amic acid oligomer obtained by the reaction is soluble (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.), and the resulting solution The acid dianhydride represented by the above formula (11) is added and reacted to obtain a solution of an amic acid oligomer (A) having an acid anhydride group at both ends. Next, the solvent is removed from the solution of the obtained amic acid oligomer (A) by heating, reduced pressure, or the like, or it is poured into a poor solvent such as water, methanol, hexane, etc. to cause reprecipitation, so that the amic acid oligomer (A) Is further heated at about 200 ° C. or higher for 1 hour or longer to allow the imidization reaction to proceed.
The thus obtained imide oligomer having an acid anhydride group as a reactive functional group at both ends is dissolved again in a soluble solvent (for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, etc.) A phenolic hydroxyl group-containing monoamine represented by the above formula (13) is added and reacted to obtain a solution of the amic acid oligomer (B). The solvent is removed from the resulting solution of the amic acid oligomer (B) by heating, decompression, or the like, or it is poured into a poor solvent such as water, methanol, hexane, etc. to recover the amic acid oligomer (B). Further, the imidization reaction is advanced by heating at about 200 ° C. or higher for 1 hour or longer. The molar ratio of the acid dianhydride represented by the above formula (11), the diamine represented by the above formula (12) and the phenolic hydroxyl group-containing monoamine represented by the above formula (13), and imidation conditions By adjusting, an imide oligomer having a desired number average molecular weight and having a phenolic hydroxyl group as a reactive functional group at both ends can be obtained.
上記式(11)で表される酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’-オキシジフタル酸二無水物、3,4’-オキシジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、4,4’-ビス(3,4-ジカルボキシルフェノキシ)ジフェニルエーテル、p-フェニレンビス(トリメリテート無水物)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-カルボニルジフタル酸二無水物等が挙げられる。なかでも、イミドオリゴマーの軟化点や溶解性の制御、耐熱性、及び、入手性に優れることから、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、3,4’-オキシジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、4,4’-カルボニルジフタル酸二無水物が好ましい。 Examples of the acid dianhydride represented by the above formula (11) include pyromellitic dianhydride, 3,3′-oxydiphthalic dianhydride, 3,4′-oxydiphthalic dianhydride, 4,4 '-Oxydiphthalic dianhydride, 4,4'-(4,4'-isopropylidenediphenoxy) diphthalic anhydride, 4,4'-bis (3,4-dicarboxylphenoxy) diphenyl ether, p-phenylenebis (Trimellitate anhydride), 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-carbonyldiphthalate An acid dianhydride etc. are mentioned. Among them, 4,4 ′-(4,4′-isopropylidenediphenoxy) diphthalic anhydride, 3,4, because of its excellent softening point and solubility control, heat resistance, and availability of imide oligomers. '-Oxydiphthalic dianhydride, 4,4'-oxydiphthalic dianhydride, and 4,4'-carbonyldiphthalic dianhydride are preferred.
上記式(12)で表されるジアミンとしては、例えば、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,2-フェニレンジアミン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン、ビス(4-(4-アミノフェノキシ)フェニル)スルフォン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-(4-アミノフェノキシ)フェニル)メタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルメタン、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルメタン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルエーテル、ビスアミノフェニルフルオレン、ビストルイジンフルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-2,2’-ジヒドロキシビフェニル等が挙げられる。なかでも、イミドオリゴマーの軟化点や溶解性の制御、耐熱性、及び、入手性に優れることから、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,2-フェニレンジアミン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン、ビス(4-(4-アミノフェノキシ)フェニル)スルフォン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、3,3’-ジヒドロキシベンジジンが好ましい。 Examples of the diamine represented by the above formula (12) include 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenyl ether, 3,4 '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4 -Aminophenoxy) benzene, 1,4-bis (4-aminophenyl) Noxy) benzene, bis (4- (4-aminophenoxy) phenyl) methane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene, 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene, 3,3′-diamino-4,4′-dihydroxyphenylmethane, 4,4′-diamino -3,3'-dihydroxyphenylmethane, 3,3'-diamino-4,4'-dihydroxyphenyl ether, bisaminophenylfluorene, bistoluidine fluorene, 4,4'-bis (4-aminophenoxy) biphenyl, 4 , 4′-diamino-3,3′-dihydroxyphenyl ether, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4, '- diamino-2,2'-dihydroxybiphenyl, and the like. Among them, imide oligomers are excellent in softening point and solubility control, heat resistance, and availability, and therefore, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 1,2-phenylenediamine, 1 , 3-phenylenediamine, 1,4-phenylenediamine, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 1,3-bis (2- ( 4-aminophenyl) -2-propyl) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene, 3,3 ′ -Dihydroxybenzidine is preferred.
上記式(13)で表されるフェノール性水酸基含有モノアミンとしては、例えば、3-アミノフェノール、4-アミノフェノール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾール、4-アミノ-2,3-キシレノール、4-アミノ-2,5-キシレノール、4-アミノ-2,6-キシレノール、4-アミノ-1-ナフトール、5-アミノ-2-ナフトール、6-アミノ-1-ナフトール、4-アミノ-2,6-ジフェニルフェノール等が挙げられる。なかでも、入手性及び保存安定性に優れ、高いガラス転移温度を有する硬化物が得られることから、3-アミノフェノール、4-アミノフェノール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾールが好ましい。 Examples of the phenolic hydroxyl group-containing monoamine represented by the above formula (13) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, and 4-amino-2. , 3-xylenol, 4-amino-2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4 -Amino-2,6-diphenylphenol and the like. Among them, a cured product having excellent availability and storage stability and a high glass transition temperature can be obtained, so that 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o- Cresol is preferred.
上記イミドオリゴマーのイミド化率の好ましい下限は70%である。上記イミド化率が70%以上であることにより、高温での機械的強度及び長期耐熱性により優れる硬化物を得ることができる。上記イミド化率のより好ましい下限は75%、更に好ましい下限は80%である。また、上記イミドオリゴマーのイミド化率の好ましい上限は特にないが、実質的な上限は98%である。
なお、上記「イミド化率」は、フーリエ変換赤外分光法(FT-IR)により求めることができる。具体的には、フーリエ変換赤外分光光度計(例えば、Agilent Technologies社製、「UMA600」等)を用いて全反射測定法(ATR法)にて測定を行い、アミック酸のカルボニル基に由来する1660cm-1付近のピーク吸光度面積から下記式にて導出することができる。なお、下記式中における「アミック酸オリゴマーのピーク吸光度面積」は、上記式(11)で表される酸二無水物と各アミン化合物とを反応させた後、イミド化工程を行わずに溶媒を除去することで得られるアミック酸オリゴマーの吸光度面積である。上記溶媒は、エバポレーションにより除去することができる。
イミド化率(%)=100×(1-(イミド化後のピーク吸光度面積)/(アミック酸オリゴマーのピーク吸光度面積))
The minimum with the preferable imidation ratio of the said imide oligomer is 70%. When the imidation ratio is 70% or more, a cured product having excellent mechanical strength at high temperatures and long-term heat resistance can be obtained. A more preferable lower limit of the imidization ratio is 75%, and a more preferable lower limit is 80%. Further, there is no particular upper limit for the imidation ratio of the imide oligomer, but the substantial upper limit is 98%.
The “imidation ratio” can be determined by Fourier transform infrared spectroscopy (FT-IR). Specifically, measurement is performed by a total reflection measurement method (ATR method) using a Fourier transform infrared spectrophotometer (for example, “UMA600” manufactured by Agilent Technologies), and is derived from a carbonyl group of an amic acid. It can be derived from the peak absorbance area around 1660 cm −1 by the following equation. The “peak absorbance area of the amic acid oligomer” in the following formula is determined by reacting the acid dianhydride represented by the formula (11) with each amine compound, and then performing the imidization step without performing the solvent. It is the absorbance area of the amic acid oligomer obtained by removing. The solvent can be removed by evaporation.
Imidation ratio (%) = 100 × (1- (peak absorbance area after imidization) / (peak absorbance area of amic acid oligomer))
上記イミドオリゴマーは、単独で用いられてもよいし、2種類以上が併用されてもよい。 The said imide oligomer may be used independently and 2 or more types may be used together.
本発明3の硬化性樹脂組成物中における上記イミドオリゴマーの平均粒子径の好ましい下限は0.5μm、好ましい上限は20μmである。上記イミドオリゴマーの平均粒子径が0.5μm以上であることにより、得られる硬化性樹脂組成物が硬化前の状態において可撓性や加工性に優れたものとなる。上記イミドオリゴマーの平均粒子径が20μm以下であることにより、得られる硬化性樹脂組成物が均一性に優れ、接着性や耐熱性に優れた硬化物が得られる。上記イミドオリゴマーの平均粒子径のより好ましい下限は1μm、より好ましい上限は10μmである。 The minimum with a preferable average particle diameter of the said imide oligomer in the curable resin composition of this invention 3 is 0.5 micrometer, and a preferable upper limit is 20 micrometers. When the average particle diameter of the imide oligomer is 0.5 μm or more, the resulting curable resin composition is excellent in flexibility and workability in a state before curing. When the average particle diameter of the imide oligomer is 20 μm or less, the resulting curable resin composition is excellent in uniformity, and a cured product excellent in adhesiveness and heat resistance is obtained. The minimum with a more preferable average particle diameter of the said imide oligomer is 1 micrometer, and a more preferable upper limit is 10 micrometers.
上記イミドオリゴマーの数平均分子量の好ましい下限は400、好ましい上限は5000である。上記数平均分子量がこの範囲であることにより、得られる硬化物が長期耐熱性により優れるものとなる。上記イミドオリゴマーの数平均分子量のより好ましい下限は500、より好ましい上限は4000である。
なお、本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the imide oligomer is 400, and the preferable upper limit is 5000. When the number average molecular weight is within this range, the obtained cured product is superior in long-term heat resistance. The more preferable lower limit of the number average molecular weight of the imide oligomer is 500, and the more preferable upper limit is 4000.
In the present specification, the “number average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Nippon Analytical Industrial Co., Ltd.).
上記イミドオリゴマーの軟化点の好ましい上限は250℃である。上記イミドオリゴマーの軟化点が250℃以下であることにより、得られる硬化物が、接着性や長期耐熱性により優れるものとなる。上記イミドオリゴマーの軟化点のより好ましい上限は200℃である。
上記イミドオリゴマーの軟化点の好ましい下限は特にないが、実質的な下限は60℃である。
なお、上記イミドオリゴマーの軟化点は、JIS K 2207に従い、環球法により求めることができる。
A preferable upper limit of the softening point of the imide oligomer is 250 ° C. When the softening point of the imide oligomer is 250 ° C. or less, the obtained cured product is excellent in adhesiveness and long-term heat resistance. A more preferable upper limit of the softening point of the imide oligomer is 200 ° C.
There is no particular lower limit for the softening point of the imide oligomer, but the substantial lower limit is 60 ° C.
The softening point of the imide oligomer can be determined by the ring and ball method according to JIS K 2207.
上記イミドオリゴマーの融点の好ましい上限は300℃である。上記イミドオリゴマーの融点が300℃以下であることにより、得られる硬化性樹脂組成物が、接着性や長期耐熱性により優れるものとなる。上記イミドオリゴマーの融点のより好ましい上限は250℃である。
なお、上記イミドオリゴマーの融点は、示差走査熱量測定又は市販の融点測定器により求めることができる。
The upper limit with preferable melting | fusing point of the said imide oligomer is 300 degreeC. When the melting point of the imide oligomer is 300 ° C. or lower, the resulting curable resin composition is superior in adhesion and long-term heat resistance. A more preferable upper limit of the melting point of the imide oligomer is 250 ° C.
The melting point of the imide oligomer can be determined by differential scanning calorimetry or a commercially available melting point measuring device.
上記イミドオリゴマーの含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が30重量部、好ましい上限が500重量部である。上記イミドオリゴマーの含有量がこの範囲であることにより、得られる硬化性樹脂組成物の硬化物が高温での機械的強度、接着性、及び、長期耐熱性により優れるものとなる。上記イミドオリゴマーの含有量のより好ましい下限は50重量部、より好ましい上限は400重量部である。 A preferable lower limit of the content of the imide oligomer is 30 parts by weight and a preferable upper limit is 500 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the imide oligomer is within this range, the cured product of the resulting curable resin composition is superior in mechanical strength, adhesiveness, and long-term heat resistance at high temperatures. The minimum with more preferable content of the said imide oligomer is 50 weight part, and a more preferable upper limit is 400 weight part.
本発明3の硬化性樹脂組成物は、上記イミドオリゴマーとして、25℃において硬化性樹脂組成物に不溶であるイミドオリゴマーのみを含有してもよいし、25℃において硬化性樹脂組成物に不溶であるイミドオリゴマーと、25℃において硬化性樹脂組成物に溶解し得るイミドオリゴマーとを含有してもよい。以下、25℃において硬化性樹脂組成物に不溶であるイミドオリゴマーを「不溶型イミドオリゴマー」ともいい、25℃において硬化性樹脂組成物に溶解し得るイミドオリゴマーを「可溶型イミドオリゴマー」ともいう。即ち、本発明3の硬化性樹脂組成物中においてイミドオリゴマーの一部(可溶型イミドオリゴマー)が溶解し、一部(不溶型イミドオリゴマー)が固体粒子状に分散していてもよい。このような場合においては、上記可溶型イミドオリゴマーによる濡れ性によって強い接着力を発現するとともに、上記不溶型イミドオリゴマーによって流動性、加工性、及び、可撓性を付与することができる。
なお、上記「硬化性樹脂組成物に不溶である」とは、後述する溶剤を用いない場合は前記硬化性樹脂に不溶であることを意味し、後述する溶剤を用いる場合は該溶剤及び前記硬化性樹脂に不溶であることを意味する。また、上記「硬化性樹脂組成物に溶解し得る」とは、後述する溶剤を用いない場合は前記硬化性樹脂に溶解し得ることを意味し、後述する溶剤を用いる場合は該溶剤及び前記硬化性樹脂に溶解し得ることを意味する。
The curable resin composition of the present invention 3 may contain only the imide oligomer that is insoluble in the curable resin composition at 25 ° C as the imide oligomer, or insoluble in the curable resin composition at 25 ° C. You may contain a certain imide oligomer and the imide oligomer which can melt | dissolve in curable resin composition at 25 degreeC. Hereinafter, an imide oligomer that is insoluble in the curable resin composition at 25 ° C. is also referred to as an “insoluble imide oligomer”, and an imide oligomer that can be dissolved in the curable resin composition at 25 ° C. is also referred to as a “soluble imide oligomer”. . That is, in the curable resin composition of the present invention 3, a part of the imide oligomer (soluble imide oligomer) may be dissolved and a part (insoluble imide oligomer) may be dispersed in solid particles. In such a case, strong adhesive force is expressed by the wettability by the soluble imide oligomer, and fluidity, workability, and flexibility can be imparted by the insoluble imide oligomer.
The above-mentioned “insoluble in the curable resin composition” means insoluble in the curable resin when a solvent described later is not used, and the solvent and the curing when a solvent described later is used. It is insoluble in the conductive resin. Further, the above-mentioned “can be dissolved in the curable resin composition” means that it can be dissolved in the curable resin when a solvent described later is not used, and when the solvent described later is used, the solvent and the curing are used. It can be dissolved in a functional resin.
上記可溶型イミドオリゴマーを用いる場合、上記可溶型イミドオリゴマーの含有割合は、イミドオリゴマー全体100重量部中において、80重量部以下であることが好ましい。上記可溶型イミドオリゴマーの含有割合が80重量部以下であることにより、得られる硬化性樹脂組成物が優れた可撓性を維持しつつ、接着性により優れるものとなる。
また、上記可溶型イミドオリゴマーを用いる場合、上記可溶型イミドオリゴマーの含有割合は、20重量部以上であることが好ましい。
When using the said soluble imide oligomer, it is preferable that the content rate of the said soluble imide oligomer is 80 weight part or less in 100 weight part of the whole imide oligomer. When the content ratio of the soluble imide oligomer is 80 parts by weight or less, the obtained curable resin composition is excellent in adhesiveness while maintaining excellent flexibility.
Moreover, when using the said soluble imide oligomer, it is preferable that the content rate of the said soluble imide oligomer is 20 weight part or more.
本発明3の硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、上記イミドオリゴマーに加えて他の硬化剤を含有してもよい。
上記他の硬化剤としては、例えば、フェノール系硬化剤、チオール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤等が挙げられる。なかでも、フェノール系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤が好ましい。
The curable resin composition of the present invention 3 may contain another curing agent in addition to the imide oligomer as long as the object of the present invention is not impaired.
Examples of the other curing agents include phenolic curing agents, thiol curing agents, amine curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents. Of these, phenolic curing agents, acid anhydride curing agents, cyanate curing agents, and active ester curing agents are preferred.
本発明3の硬化性樹脂組成物が上記他の硬化剤を含有する場合、上記イミドオリゴマーと上記他の硬化剤との合計100重量部中における上記他の硬化剤の含有割合の好ましい上限は70重量部、より好ましい上限は50重量部、更に好ましい上限は30重量部である。 When the curable resin composition of this invention 3 contains the said other hardening | curing agent, the preferable upper limit of the content rate of the said other hardening | curing agent in a total of 100 weight part of the said imide oligomer and said other hardening | curing agent is 70. Part by weight, more preferred upper limit is 50 parts by weight, and still more preferred upper limit is 30 parts by weight.
本発明3の硬化性樹脂組成物は、硬化促進剤を含有することが好ましい。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができる。 It is preferable that the curable resin composition of this invention 3 contains a hardening accelerator. By containing the said hardening accelerator, hardening time can be shortened and productivity can be improved.
上記硬化促進剤としては、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤、ホスフィン系硬化促進剤、リン系硬化促進剤、光塩基発生剤、スルホニウム塩系硬化促進剤等が挙げられる。なかでも、保存安定性に優れることから、イミダゾール系硬化促進剤が好ましい。 Examples of the curing accelerator include imidazole-based curing accelerators, tertiary amine-based curing accelerators, phosphine-based curing accelerators, phosphorus-based curing accelerators, photobase generators, and sulfonium salt-based curing accelerators. . Especially, since it is excellent in storage stability, an imidazole type hardening accelerator is preferable.
上記硬化促進剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記硬化促進剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、硬化時間を短縮させる効果により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。 The content of the curing accelerator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the curing accelerator is within this range, the effect of shortening the curing time is maintained while maintaining excellent adhesiveness and the like. The minimum with more preferable content of the said hardening accelerator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
本発明3の硬化性樹脂組成物は、硬化後の線膨張率を低下させてそりを低減させたり、接着信頼性を向上させたりする等を目的として無機充填剤を含有してもよい。また、上記無機充填剤は、流動調整剤としても好適に用いることができる。 The curable resin composition of the present invention 3 may contain an inorganic filler for the purpose of reducing warpage by reducing the coefficient of linear expansion after curing, improving adhesion reliability, and the like. Moreover, the said inorganic filler can be used suitably also as a flow regulator.
上記無機充填剤としては、例えば、ヒュームドシリカ、コロイダルシリカ等のシリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体等が挙げられる。 Examples of the inorganic filler include silica such as fumed silica and colloidal silica, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, inorganic ion exchanger, and the like. .
上記無機充填剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい上限が500重量部である。上記無機充填剤の含有量が500重量部以下であることにより、優れた加工性等を維持したまま、接着信頼性を向上させたり、流動調整をしたりする等の効果により優れるものとなる。上記無機充填剤の含有量のより好ましい上限は400重量部である。 The content of the inorganic filler is preferably 500 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the inorganic filler is 500 parts by weight or less, the adhesive reliability is improved or the flow is adjusted while maintaining excellent processability and the like. The upper limit with more preferable content of the said inorganic filler is 400 weight part.
本発明3の硬化性樹脂組成物は、応力緩和、靭性付与等を目的として有機充填剤を含有してもよい。 The curable resin composition of the present invention 3 may contain an organic filler for the purpose of stress relaxation, imparting toughness and the like.
上記有機充填剤としては、例えば、シリコーンゴム粒子、アクリルゴム粒子、ウレタンゴム粒子、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子、ベンゾグアナミン粒子、及び、これらのコアシェル粒子等が挙げられる。なかでも、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子が好ましい。 Examples of the organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamideimide particles, and polyimide particles are preferable.
上記有機充填剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい上限が500重量部である。上記有機充填剤の含有量が500重量部以下であることにより、優れた接着性等を維持したまま、得られる硬化物が靭性等により優れるものとなる。上記有機充填剤の含有量のより好ましい上限は400重量部である。 The preferable upper limit of the content of the organic filler is 500 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the organic filler is 500 parts by weight or less, the obtained cured product is excellent in toughness and the like while maintaining excellent adhesiveness and the like. The upper limit with more preferable content of the said organic filler is 400 weight part.
本発明3の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で高分子化合物を含有してもよい。上記高分子化合物は、造膜成分としての役割を果たす。 The curable resin composition of the present invention 3 may contain a polymer compound as long as the object of the present invention is not impaired. The polymer compound serves as a film forming component.
上記高分子化合物は、反応性官能基を有していてもよい。
上記高分子化合物が反応性官能基を有する場合、該高分子化合物が有する反応性官能基としては、例えば、アミノ基、ウレタン基、イミド基、水酸基、カルボキシル基、エポキシ基等が挙げられる。
The polymer compound may have a reactive functional group.
When the polymer compound has a reactive functional group, examples of the reactive functional group that the polymer compound has include an amino group, a urethane group, an imide group, a hydroxyl group, a carboxyl group, and an epoxy group.
本発明3の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で反応性希釈剤を含有してもよい。
上記反応性希釈剤としては、接着信頼性の観点から、1分子中に2つ以上の反応性官能基を有する反応性希釈剤が好ましい。
上記反応性希釈剤の有する反応性官能基としては、上述した高分子化合物が有する反応性官能基と同様のものが挙げられる。
The curable resin composition of the present invention 3 may contain a reactive diluent as long as the object of the present invention is not impaired.
As the reactive diluent, a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesion reliability.
As a reactive functional group which the said reactive diluent has, the thing similar to the reactive functional group which the high molecular compound mentioned above has is mentioned.
本発明3の硬化性樹脂組成物は、更に、溶剤、カップリング剤、分散剤、貯蔵安定化剤、ブリード防止剤、フラックス剤、レベリング剤、難燃剤等の添加剤を含有してもよい。 The curable resin composition of the present invention 3 may further contain additives such as a solvent, a coupling agent, a dispersant, a storage stabilizer, a bleed inhibitor, a flux agent, a leveling agent, and a flame retardant.
本発明3の硬化性樹脂組成物を製造する方法としては、例えば、以下の方法等が挙げられる。
予め固体ブロック状のイミドオリゴマーを、ジェットミル、ボールミル、ビーズミル等の粉砕機を用いて粉砕した後、該イミドオリゴマーを溶解させない分散媒中に分散させ、イミドオリゴマー分散液を得る。次いで、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等の混合機を用いて、硬化性樹脂と、イミドオリゴマー分散液と、必要に応じて添加する他の硬化剤や硬化促進剤や無機充填剤(流動調整剤)等とを混合する方法等が挙げられる。
Examples of the method for producing the curable resin composition of the present invention 3 include the following methods.
A solid block imide oligomer is pulverized in advance using a pulverizer such as a jet mill, a ball mill, or a bead mill, and then dispersed in a dispersion medium in which the imide oligomer is not dissolved to obtain an imide oligomer dispersion. Next, using a mixer such as a homodisper, a universal mixer, a Banbury mixer, or a kneader, the curable resin, the imide oligomer dispersion, and other curing agents, curing accelerators, and inorganic fillers that are added as necessary ( And a method of mixing with a flow modifier) and the like.
本発明3の硬化性樹脂組成物は、広い用途に用いることができるが、特に高い耐熱性が求められている電子材料用途に好適に用いることができる。例えば、航空、車載用電気制御ユニット(ECU)用途や、SiC、GaNを用いたパワーデバイス用途におけるダイアタッチ剤等に用いることができる。また、例えば、パワーオーバーレイパッケージ用接着剤、プリント配線基板用接着剤、フレキシブルプリント回路基板のカバーレイ用接着剤、銅張積層板、半導体接合用接着剤、層間絶縁膜、プリプレグ、LED用封止剤、構造材料用接着剤等にも用いることができる。なかでも、接着剤用途に好適に用いられる。
本発明3の硬化性樹脂組成物からなる接着剤(以下、「本発明3の接着剤」ともいう)もまた、本発明の1つである。本発明3の接着剤をフィルム上に塗工した後、乾燥させる等の方法により、接着フィルム(硬化性樹脂組成物フィルム)を得ることができ、該接着フィルムを硬化させることにより、硬化物を得ることができる。本発明3の硬化性樹脂組成物の硬化物もまた、本発明の1つである。また、本発明3の接着剤を用いてなる接着フィルムもまた、本発明の1つである。
Although the curable resin composition of the present invention 3 can be used for a wide range of applications, it can be suitably used for an electronic material application that requires particularly high heat resistance. For example, it can be used for die attach agents in aviation, in-vehicle electric control unit (ECU) applications, power device applications using SiC, and GaN. Also, for example, power overlay package adhesive, printed wiring board adhesive, flexible printed circuit board coverlay adhesive, copper-clad laminate, semiconductor bonding adhesive, interlayer insulation film, prepreg, LED sealing It can also be used for adhesives and adhesives for structural materials. Especially, it is used suitably for an adhesive agent use.
An adhesive comprising the curable resin composition of the present invention 3 (hereinafter also referred to as “adhesive of the present invention 3”) is also one aspect of the present invention. An adhesive film (curable resin composition film) can be obtained by a method such as drying after applying the adhesive of the present invention 3 on the film, and curing the adhesive film by curing the adhesive film. Obtainable. The cured product of the curable resin composition of the present invention 3 is also one aspect of the present invention. An adhesive film using the adhesive of the third invention is also one of the present invention.
本発明によれば、硬化前は流動特性に優れ、硬化後は接着性、耐熱性、及び、耐屈曲性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤、接着フィルム、カバーレイフィルム、及び、プリント配線板を提供することができる。
また、本発明によれば、保存安定性に優れ、かつ、低線膨張性、接着性、及び、長期耐熱性に優れる硬化物を得ることができる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することができる。
更に、本発明によれば、硬化前は可撓性及び加工性に優れ、硬化後は接着性及び耐熱性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物用いてなる接着剤及び接着フィルムを提供することができる。
According to the present invention, it is possible to provide a curable resin composition that is excellent in flow characteristics before curing and excellent in adhesiveness, heat resistance, and flex resistance after curing. Moreover, according to this invention, the hardened | cured material of this curable resin composition, and the adhesive agent, adhesive film, coverlay film, and printed wiring board which use this curable resin composition are provided. it can.
Moreover, according to this invention, the curable resin composition which can obtain the hardened | cured material which is excellent in storage stability and excellent in low linear expansion property, adhesiveness, and long-term heat resistance can be provided. Moreover, according to this invention, the adhesive agent and adhesive film which use the hardened | cured material of this curable resin composition, and this curable resin composition can be provided.
Furthermore, according to the present invention, it is possible to provide a curable resin composition that is excellent in flexibility and processability before curing and excellent in adhesion and heat resistance after curing. Moreover, according to this invention, the adhesive agent and adhesive film which use the hardened | cured material of this curable resin composition, and this curable resin composition can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(合成例1-1(イミドオリゴマー1-Aの作製))
1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン(三井化学ファイン社製、「ビスアニリンP」)17.2重量部をN-メチルピロリドン(富士フイルム和光純薬社製)200重量部に溶解させた。得られた溶液に4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)52.0重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー1-A(イミド化率97%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー1-Aは、下記式(16)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー1-Aの軟化点は155℃であった。
(Synthesis Example 1-1 (Production of Imide Oligomer 1-A))
17.4 parts by weight of 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene (Mitsui Chemicals Fine, “Bisaniline P”) was added to N-methylpyrrolidone (Fuji Film Wako Pure Chemical Industries, Ltd.) ) It was dissolved in 200 parts by weight. To the resulting solution, 52.0 parts by weight of 4,4 ′-(4,4′-isopropylidenediphenoxy) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and the reaction was stirred at 25 ° C. for 2 hours. To obtain an amic acid oligomer solution. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 1-A (imidation rate: 97%).
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 1-A was mainly composed of an imide oligomer represented by the following formula (16). The softening point of imide oligomer 1-A was 155 ° C.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(合成例1-2(イミドオリゴマー1-Bの作製))
1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン17.2 重量部を3-アミノフェノール(東京化成工業社製)21.8重量部に変更したこと以外は合成例1-1と同様にして、イミドオリゴマー1-B(イミド化率96%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー1-Bは、下記式(17)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー1-Bの軟化点は134℃であった。
(Synthesis Example 1-2 (Production of Imide Oligomer 1-B))
Synthesis Example except that 17.2 parts by weight of 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene was changed to 21.8 parts by weight of 3-aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) In the same manner as in 1-1, an imide oligomer 1-B (imidation ratio: 96%) was obtained.
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 1-B was mainly composed of an imide oligomer represented by the following formula (17). The softening point of imide oligomer 1-B was 134 ° C.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(実施例1~9、比較例1、2)
表1、2に記載された配合比となるように、各材料を撹拌混合し、実施例1~9、比較例1、2の各硬化性樹脂組成物を作製した。
得られた各硬化性樹脂組成物を厚みが20μmとなるよう離型PETフィルム上に塗工し、乾燥させることにより、接着フィルムを得た。
また、得られた各硬化性樹脂組成物を厚みが20μmとなるよう厚み25μmのポリイミドフィルム(東レ・デュポン社製、「カプトン100H」)上に塗工し、接着剤層を有するポリイミドフィルム(カバーレイフィルム)を作製した。得られた接着フィルムから離型PETフィルムを剥離し、厚み500μmになるようラミネーターにより積層し、回転式レオメーター装置(レオロジカ社製、「VAR-100」)を用いて、昇温速度10℃/min、周波数1Hz、歪1%、測定温度範囲60℃から300℃までの条件で測定した最低溶融粘度を表1、2に示した。
(Examples 1 to 9, Comparative Examples 1 and 2)
The respective materials were stirred and mixed so that the blending ratios described in Tables 1 and 2 were obtained, and the curable resin compositions of Examples 1 to 9 and Comparative Examples 1 and 2 were produced.
Each obtained curable resin composition was coated on a release PET film so as to have a thickness of 20 μm, and dried to obtain an adhesive film.
In addition, each curable resin composition obtained was applied onto a 25 μm-thick polyimide film (“Kapton 100H” manufactured by Toray DuPont Co., Ltd.) so as to have a thickness of 20 μm, and a polyimide film (cover) having an adhesive layer Lay film). The release PET film was peeled off from the obtained adhesive film, laminated with a laminator so as to have a thickness of 500 μm, and the temperature rising rate was 10 ° C./min. Using a rotary rheometer (“VAR-100” manufactured by Rheologicala). Tables 1 and 2 show the minimum melt viscosities measured under the conditions of min, frequency 1 Hz, strain 1%, and measurement temperature range of 60 ° C to 300 ° C.
<評価>
実施例1~9及び比較例1、2で得られた各硬化性樹脂組成物、接着フィルム又はカバーレイフィルムについて以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluation was performed on each curable resin composition, adhesive film, or coverlay film obtained in Examples 1 to 9 and Comparative Examples 1 and 2. The results are shown in Tables 1 and 2.
(浸出防止性)
実施例1~9及び比較例1、2で得られたカバーレイフィルムに、5mmφの穴を開けたのち、L/S=100μm/100μmの銅配線パターンを有するフレキシブル銅張り積層板に190℃、3MPa、1時間の条件で加熱圧着し、穴の内側に染み出した樹脂長を浸出量として測定した。浸出がなかった(浸出量が0.2mm未満であった)場合を「○」、浸出量が0.2mm以上0.5mm以下であった場合を「△」、浸出量が0.5mmを超えた場合を「×」として浸出防止性を評価した。
(Leaching prevention)
After making holes of 5 mmφ in the coverlay films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, 190 ° C. on a flexible copper-clad laminate having a copper wiring pattern of L / S = 100 μm / 100 μm, Heat press-bonding was performed under conditions of 3 MPa for 1 hour, and the resin length that had oozed out inside the hole was measured as the amount of leaching. “○” indicates no leaching (leaching amount is less than 0.2 mm), “△” indicates leaching amount is 0.2 mm or more and 0.5 mm or less, and leaching amount exceeds 0.5 mm. In the case of “x”, the leaching prevention property was evaluated.
(充填性)
実施例1~9及び比較例1、2で得られたカバーレイフィルムを、L/S=100μm/100μmの銅配線パターンを有するフレキシブル銅張り積層板に190℃、3MPa、1時間の条件で加熱圧着し、銅配線パターン間のボイドの有無を光学顕微鏡により観察した。
配線間にボイドがなく、充填性が良好であった場合を「○」、配線間に僅かにボイドが観察されたものの概ね充填性が良好であった場合を「△」、配線間に多数ボイドが観察され、充填性が不充分であった場合を「×」として充填性を評価した。
(Fillability)
The coverlay films obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were heated on a flexible copper-clad laminate having a copper wiring pattern of L / S = 100 μm / 100 μm at 190 ° C., 3 MPa for 1 hour. Crimping was performed, and the presence or absence of voids between the copper wiring patterns was observed with an optical microscope.
“Good” when there is no void between the wires and the filling property is good, “△” when a little void is observed between the wires but the filling property is generally good, and many voids between the wires Was observed, and the case where the filling property was insufficient was evaluated as “×”.
(接着性)
実施例1~9及び比較例1、2で得られた接着フィルムからPETフィルムを剥離し、ラミネーターを用いて、70℃に加熱しながら接着剤層の両面にポリイミド基材(東レ・デュポン社製、「カプトン200H」、50μmt)を貼り合わせた。190℃、3MPa、1時間の条件で熱プレスを行い、接着層を硬化させた後、1cm幅に切り出して試験片を得た。
引張試験機(ORIENTEC社製、「UCT-500」)により、剥離速度20mm/minでT字剥離を行い、接着力を測定した。
接着力が3.4N/cm以上であった場合を「○」、2.0N/cm以上3.4N/cm未満であった場合を「△」、2.0N/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
The PET film was peeled from the adhesive films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, and a polyimide substrate (manufactured by Toray DuPont) was used on both sides of the adhesive layer while heating to 70 ° C. using a laminator. , “Kapton 200H”, 50 μmt). A hot press was performed under the conditions of 190 ° C., 3 MPa, and 1 hour to cure the adhesive layer, and then cut into a 1 cm width to obtain a test piece.
Using a tensile tester ("ORITEC", "UCT-500"), T-peeling was performed at a peeling rate of 20 mm / min, and the adhesive strength was measured.
The case where the adhesive force is 3.4 N / cm or more is “◯”, the case where it is 2.0 N / cm or more and less than 3.4 N / cm is “Δ”, the case where it is less than 2.0 N / cm Adhesiveness was evaluated as “×”.
(耐熱性(ガラス転移温度))
実施例1~9及び比較例1、2で得られた接着フィルムからPETフィルムを剥離し、ラミネーターを用いて、厚み500μmまで積層した。得られた積層フィルムを190℃で30分加熱することにより硬化させ、硬化物を作製した。得られた硬化物について、熱機械分析装置(日立ハイテクサイエンス社製、「TMA/SS-6000」)を用い、荷重5g、昇温速度10℃/分、サンプル長1cmで0℃から300℃まで昇温した際に得られたSSカーブの変曲点をガラス転移温度として求めた。
(Heat resistance (glass transition temperature))
The PET film was peeled from the adhesive films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, and laminated to a thickness of 500 μm using a laminator. The obtained laminated film was cured by heating at 190 ° C. for 30 minutes to produce a cured product. About the obtained cured product, using a thermomechanical analyzer (manufactured by Hitachi High-Tech Science Co., “TMA / SS-6000”), the load is 5 g, the heating rate is 10 ° C./min, and the sample length is 1 cm from 0 ° C. to 300 ° C. The inflection point of the SS curve obtained when the temperature was raised was determined as the glass transition temperature.
(耐熱性(5%重量減少温度))
実施例1~9及び比較例1、2で得られた接着フィルムからPETフィルムを剥離し、ラミネーターを用いて、厚み500μmまで積層した。得られた積層フィルムを190℃で30分加熱することにより硬化させ、硬化物を作製した。
得られた硬化物について、熱重量測定装置(日立ハイテクサイエンス社製、「TG/DTA6200」)を用いて、30℃~500℃の温度範囲、10℃/minの昇温条件で5%重量減少温度を測定した。
(Heat resistance (5% weight loss temperature))
The PET film was peeled from the adhesive films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, and laminated to a thickness of 500 μm using a laminator. The obtained laminated film was cured by heating at 190 ° C. for 30 minutes to produce a cured product.
Using the thermogravimetric measuring device (manufactured by Hitachi High-Tech Science Co., “TG / DTA6200”), the cured product obtained was reduced by 5% in the temperature range of 30 ° C. to 500 ° C. under the temperature rising condition of 10 ° C./min. The temperature was measured.
(耐熱性(長期耐熱性))
上記「(接着性)」と同様にして得られた試験片について、175℃で1000時間熱処理を行った。熱処理後の試験片について、上記「(接着性)」と同様の測定方法にて接着力を測定した。
接着力が3.4N/cm以上であった場合を「○」、2.0N/cm以上3.4N/cm未満であった場合を「△」、2.0N/cm未満であった場合を「×」として耐熱性(長期耐熱性)を評価した。
(Heat resistance (long-term heat resistance))
The test piece obtained in the same manner as in the above “(Adhesiveness)” was heat-treated at 175 ° C. for 1000 hours. About the test piece after heat processing, the adhesive force was measured with the measuring method similar to said "(adhesiveness)".
The case where the adhesive force is 3.4 N / cm or more is “◯”, the case where it is 2.0 N / cm or more and less than 3.4 N / cm is “Δ”, the case where it is less than 2.0 N / cm The heat resistance (long-term heat resistance) was evaluated as “×”.
(耐屈曲性)
ポリイミドフレキシブル銅張基板にJIS C 6471で開示される耐屈曲性試験試料のパターンを作製し、これに実施例1~9及び比較例1、2で得られたカバーレイフィルムを190℃、3MPa、1時間の条件で加熱圧着し、試験片を得た。FPC高速屈曲試験器(信越エンジニアリング社製)にて、振動数1500cpm、ストローク20mm、曲率2.5mmR、カバーレイ外側の条件で抵抗値の変化を測定した。屈曲により銅箔にヒビ等の亀裂が生じると、体積減少が生じ抵抗が上がることを利用し、屈曲特性を評価した。抵抗値が20%以上上昇するのに要した回数を測定し、30万回以上であった場合を「○」、5万回以上30万回未満であった場合を「△」、5万回未満であった場合を「×」として耐屈曲性を評価した。
(Flexibility)
A pattern of a bending resistance test sample disclosed in JIS C 6471 was prepared on a polyimide flexible copper-clad substrate, and the coverlay films obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were applied at 190 ° C., 3 MPa, A test piece was obtained by thermocompression bonding under conditions of 1 hour. With an FPC high-speed bending tester (manufactured by Shin-Etsu Engineering Co., Ltd.), the change in resistance value was measured under conditions of a frequency of 1500 cpm, a stroke of 20 mm, a curvature of 2.5 mmR, and the outside of the coverlay. Bending characteristics were evaluated by utilizing the fact that when cracks such as cracks occur in the copper foil due to bending, the volume decreases and the resistance increases. The number of times required for the resistance value to rise by 20% or more is measured. If it is 300,000 times or more, “○”, if it is 50,000 times to less than 300,000 times, “△”, 50,000 times The bending resistance was evaluated as “x” when the ratio was less than.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
(合成例2-1(イミドオリゴマー2-Aの作製))
1,3-ビス(3-アミノフェノキシ)ベンゼン(三井化学ファイン社製、「APB-N」)29.2重量部をN-メチルピロリドン(富士フイルム和光純薬社製)200重量部に溶解させた。得られた溶液に4,4’-オキシジフタル酸二無水物(東京化成工業社製)62.0重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー2-A(イミド化率95.0%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Aは、式(6)で表されるイミドオリゴマー(Xが式(7-2)で表される4価の基、Yが式(8-2)で表される2価の基(Zが下記式(18)で表される芳香環を有する2価の基))を主成分とすることを確認した。また、イミドオリゴマー2-Aの軟化点は138℃であった。
(Synthesis Example 2-1 (Production of Imide Oligomer 2-A))
19.2 parts by weight of 1,3-bis (3-aminophenoxy) benzene (manufactured by Mitsui Chemicals Fine, “APB-N”) is dissolved in 200 parts by weight of N-methylpyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries). It was. 62.0 parts by weight of 4,4′-oxydiphthalic dianhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the resulting solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain an amic acid oligomer solution. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 2-A (imidization rate: 95.0%).
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-A is an imide oligomer represented by the formula (6) (X is a tetravalent compound represented by the formula (7-2)). It was confirmed that the main group Y was a divalent group represented by the formula (8-2) (Z was a divalent group having an aromatic ring represented by the following formula (18)). The softening point of imide oligomer 2-A was 138 ° C.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
式(18)中、*は、結合位置である。 In formula (18), * is a bonding position.
(合成例2-2(イミドオリゴマー2-Bの作製))
1,3-フェニレンジアミン(東京化成工業社製、「1,3-PDA」)5.4重量部をN-メチルピロリドン200重量部に溶解させた。得られた溶液に4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)52.0重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー2-B(イミド化率93%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Bは、式(6)で表されるイミドオリゴマー(Xが式(7-3)で表される4価の基、Yが式(8-4)で表される2価の基(R11~R14が水素原子))を主成分とすることを確認した。また、イミドオリゴマー2-Bの軟化点は146℃であった。
(Synthesis Example 2-2 (Preparation of Imide Oligomer 2-B))
5.4 parts by weight of 1,3-phenylenediamine (“1,3-PDA” manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 200 parts by weight of N-methylpyrrolidone. To the resulting solution, 52.0 parts by weight of 4,4 ′-(4,4′-isopropylidenediphenoxy) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and the reaction was stirred at 25 ° C. for 2 hours. To obtain an amic acid oligomer solution. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 2-B (imidization ratio: 93%).
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-B is an imide oligomer represented by the formula (6) (X is a tetravalent compound represented by the formula (7-3)). It was confirmed that the group Y was mainly composed of a divalent group represented by the formula (8-4) (R 11 to R 14 are hydrogen atoms). The softening point of imide oligomer 2-B was 146 ° C.
(合成例2-3(イミドオリゴマー2-Cの作製))
1,3-フェニレンジアミン5.4重量部を、1,4-フェニレンジアミン(東京化成工業社製、「1,4-PDA」)5.4重量部に変更したこと以外は合成例2-2と同様にして、イミドオリゴマー2-C(イミド化率94%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Cは、式(6)で表されるイミドオリゴマー(Xが式(7-3)で表される4価の基、Yが式(8-3)で表される2価の基(R~R10が水素原子))を主成分とすることを確認した。また、イミドオリゴマー2-Cの軟化点は151℃であった。
(Synthesis Example 2-3 (Production of Imide Oligomer 2-C))
Synthesis Example 2-2 except that 5.4 parts by weight of 1,3-phenylenediamine was changed to 5.4 parts by weight of 1,4-phenylenediamine (“1,4-PDA” manufactured by Tokyo Chemical Industry Co., Ltd.). In the same manner as above, an imide oligomer 2-C (imidation rate: 94%) was obtained.
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-C is an imide oligomer represented by the formula (6) (X is a tetravalent compound represented by the formula (7-3)). It was confirmed that the group Y is a divalent group represented by the formula (8-3) (R 7 to R 10 are hydrogen atoms)) as a main component. The softening point of imide oligomer 2-C was 151 ° C.
(合成例2-4(イミドオリゴマー2-Dの作製))
1,3-フェニレンジアミン5.4重量部を、4,4’-ジアミノジフェニルスルフォン(東京化成工業社製、「DDPS」)12.4重量部に変更したこと以外は合成例2-2と同様にして、イミドオリゴマー2-D(イミド化率95%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Dは、式(6)で表されるイミドオリゴマー(Xが式(7-3)で表される4価の基、Yが式(8-1)で表される2価の基(Zがスルホニル基))を主成分とすることを確認した。また、イミドオリゴマー2-Dの軟化点は147℃であった。
(Synthesis Example 2-4 (Production of Imide Oligomer 2-D))
The same as Synthesis Example 2-2 except that 5.4 parts by weight of 1,3-phenylenediamine was changed to 12.4 parts by weight of 4,4′-diaminodiphenylsulfone (manufactured by Tokyo Chemical Industry Co., Ltd., “DDPS”). As a result, an imide oligomer 2-D (imidization rate of 95%) was obtained.
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-D is a tetravalent imide oligomer represented by the formula (6) (X is represented by the formula (7-3)). It was confirmed that the group Y was mainly composed of a divalent group represented by the formula (8-1) (Z is a sulfonyl group). The softening point of imide oligomer 2-D was 147 ° C.
(合成例2-5(イミドオリゴマー2-Eの作製))
1,3-フェニレンジアミン5.4重量部を、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン(東京化成工業社製、「BAPS」)21.6重量部に変更したこと以外は合成例2-2と同様にして、イミドオリゴマー2-E(イミド化率97%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Eは、式(6)で表されるイミドオリゴマー(Xが式(7-3)で表される4価の基、Yが式(8-2)で表される2価の基(Zが下記式(19)で表される芳香環を有する2価の基))を主成分とすることを確認した。また、イミドオリゴマー2-Eの軟化点は147℃であった。
(Synthesis Example 2-5 (Production of Imide Oligomer 2-E))
Synthesis example except that 5.4 parts by weight of 1,3-phenylenediamine was changed to 21.6 parts by weight of bis (4- (3-aminophenoxy) phenyl) sulfone (manufactured by Tokyo Chemical Industry Co., Ltd., “BAPS”). In the same manner as in 2-2, imide oligomer 2-E (imidation rate: 97%) was obtained.
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-E is a tetravalent imide oligomer represented by the formula (6) (X is represented by the formula (7-3)). It was confirmed that the main group Y was a divalent group represented by the formula (8-2) (Z was a divalent group having an aromatic ring represented by the following formula (19)). The softening point of imide oligomer 2-E was 147 ° C.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
式(19)中、*は、結合位置である。 In formula (19), * is a bonding position.
(合成例2-6(イミドオリゴマー2-Fの作製))
1,3-フェニレンジアミン5.4重量部を、1,3-ビス(4-アミノフェノキシ)ベンゼン(東京化成工業社製、「TPE-R」)14.6重量部に変更したこと以外は合成例2-2と同様にして、イミドオリゴマー2-F(イミド化率94%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Fは、式(6)で表されるイミドオリゴマー(Xが式(7-3)で表される4価の基、Yが式(8-1)で表される2価の基(Zが上記式(18)で表される芳香環を有する2価の基))を主成分とすることを確認した。また、イミドオリゴマー2-Fの軟化点は137℃であった。
(Synthesis Example 2-6 (Production of Imide Oligomer 2-F))
Synthesis was performed except that 5.4 parts by weight of 1,3-phenylenediamine was changed to 14.6 parts by weight of 1,3-bis (4-aminophenoxy) benzene (Tokyo Chemical Industry Co., Ltd., “TPE-R”). In the same manner as in Example 2-2, an imide oligomer 2-F (imidation ratio: 94%) was obtained.
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-F was converted into an imide oligomer represented by the formula (6) (X is a tetravalent group represented by the formula (7-3)). It was confirmed that the group Y is a divalent group represented by the formula (8-1) (Z is a divalent group having an aromatic ring represented by the formula (18)) as a main component. The softening point of imide oligomer 2-F was 137 ° C.
(合成例2-7(イミドオリゴマー2-Gの作製))
1,3-フェニレンジアミン5.4重量部を、ジエチルトルエンジアミン(アルベマール社製、「Ethacure 100」)8.9重量部に変更したこと以外は合成例2-2と同様にして、イミドオリゴマー2-G(イミド化率98%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Gは、式(6)で表されるイミドオリゴマー(Xが式(7-3)で表される4価の基、Yが式(8-4)で表される2価の基(R11及びR12の一方がメチル基であり他方がエチル基、R13が水素原子、R14がエチル基))を主成分とすることを確認した。また、イミドオリゴマー2-Gの軟化点は150℃であった。
(Synthesis Example 2-7 (Production of Imide Oligomer 2-G))
Imide oligomer 2 was prepared in the same manner as in Synthesis Example 2-2 except that 5.4 parts by weight of 1,3-phenylenediamine was changed to 8.9 parts by weight of diethyltoluenediamine (“Ethacure 100” manufactured by Albemarle). -G (imidation rate 98%) was obtained.
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-G was converted into an imide oligomer represented by the formula (6) (X is a tetravalent group represented by the formula (7-3)). Group, Y is a divalent group represented by formula (8-4) (one of R 11 and R 12 is a methyl group, the other is an ethyl group, R 13 is a hydrogen atom, and R 14 is an ethyl group)) It was confirmed to be the main component. The softening point of imide oligomer 2-G was 150 ° C.
(合成例2-8(イミドオリゴマー2-Hの作製))
1,3-ビス(3-アミノフェノキシ)ベンゼン29.2重量部を、ジエチルトルエンジアミン17.8重量部に変更したこと以外は合成例2-1と同様にして、イミドオリゴマー2-H(イミド化率95%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Hは、式(6)で表されるイミドオリゴマー(Xが式(7-2)で表される4価の基、Yが式(8-4)で表される2価の基(R11及びR12の一方がメチル基であり他方がエチル基、R13が水素原子、R14がエチル基))を主成分とすることを確認した。また、イミドオリゴマー2-Hの軟化点は183℃であった。
(Synthesis Example 2-8 (Production of Imide Oligomer 2-H))
An imide oligomer 2-H (imide) was prepared in the same manner as in Synthesis Example 2-1, except that 29.2 parts by weight of 1,3-bis (3-aminophenoxy) benzene was changed to 17.8 parts by weight of diethyltoluenediamine. Conversion rate 95%).
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-H is an imide oligomer represented by the formula (6) (X is a tetravalent compound represented by the formula (7-2)). Group, Y is a divalent group represented by formula (8-4) (one of R 11 and R 12 is a methyl group, the other is an ethyl group, R 13 is a hydrogen atom, and R 14 is an ethyl group)) It was confirmed to be the main component. The softening point of imide oligomer 2-H was 183 ° C.
(合成例2-9(イミドオリゴマー2-Iの作製))
1,3-フェニレンジアミン5.4重量部を、4,4’-ジアミノジフェニルメタン(東京化成工業社製、「DDM」)9.9重量部に変更したこと以外は合成例2-2と同様にして、イミドオリゴマー2-I(イミド化率95%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Iは、式(6)で表されるイミドオリゴマー(Xが式(7-3)で表される4価の基、Yが式(8-1)で表される2価の基(Zがメチレン基))を主成分とすることを確認した。また、イミドオリゴマー2-Iの軟化点は147℃であった。
(Synthesis Example 2-9 (Production of Imide Oligomer 2-I))
The same procedure as in Synthesis Example 2-2 except that 5.4 parts by weight of 1,3-phenylenediamine was changed to 9.9 parts by weight of 4,4′-diaminodiphenylmethane (Tokyo Chemical Industry Co., Ltd., “DDM”). As a result, an imide oligomer 2-I (imidization rate of 95%) was obtained.
By 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-I is a tetravalent imide oligomer represented by the formula (6) (X is represented by the formula (7-3)). It was confirmed that the group Y was mainly composed of a divalent group represented by the formula (8-1) (Z is a methylene group). The softening point of imide oligomer 2-I was 147 ° C.
(合成例2-10(イミドオリゴマー2-Jの作製))
1,3-ビス(3-アミノフェノキシ)ベンゼン29.2重量部を4,4’-ジアミノジフェニルメタン19.8重量部に変更し、4,4’-オキシジフタル酸二無水物62.0重量部を4,4’-ビフタル酸無水物58.8重量部に変更したこと以外は合成例2-1と同様にして、イミドオリゴマー2-J(イミド化率96%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Jは、式(6)におけるXに相当する部分がビフェニル骨格であり、Yに相当する部分が式(8-1)で表される2価の基(Zがメチレン基)であるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー2-Jの軟化点は300℃を超えていた。
(Synthesis Example 2-10 (Production of Imide Oligomer 2-J))
29.2 parts by weight of 1,3-bis (3-aminophenoxy) benzene was changed to 19.8 parts by weight of 4,4′-diaminodiphenylmethane, and 62.0 parts by weight of 4,4′-oxydiphthalic dianhydride was added. Imide oligomer 2-J (imidation rate: 96%) was obtained in the same manner as in Synthesis Example 2-1, except that the amount was changed to 58.8 parts by weight of 4,4′-biphthalic anhydride.
According to 1 H-NMR, GPC, and FT-IR analysis, in imide oligomer 2-J, the portion corresponding to X in formula (6) is a biphenyl skeleton, and the portion corresponding to Y is represented by formula (8- It was confirmed that the main component was an imide oligomer which is a divalent group represented by 1) (Z is a methylene group). Further, the softening point of imide oligomer 2-J exceeded 300 ° C.
(合成例2-11(イミドオリゴマー2-Kの作製))
1,3-フェニレンジアミン5.4重量部を、ノルボルナンジアミン(三井化学ファイン社製、「NBDA」)7.7重量部に変更したこと以外は合成例2-2と同様にして、イミドオリゴマー2-K(イミド化率97%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Kは、式(6)におけるXに相当する部分が式(7-3)で表される4価の基であり、Yに相当する部分がノルボルナン骨格であるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー2-Kの軟化点は137℃であった。
(Synthesis Example 2-11 (Production of Imide Oligomer 2-K))
Imide oligomer 2 was prepared in the same manner as in Synthesis Example 2-2, except that 5.4 parts by weight of 1,3-phenylenediamine was changed to 7.7 parts by weight of norbornane diamine (manufactured by Mitsui Chemicals Fine Co., Ltd., “NBDA”). -K (imidation rate 97%) was obtained.
According to 1 H-NMR, GPC, and FT-IR analysis, the imide oligomer 2-K is a tetravalent group in which the portion corresponding to X in the formula (6) is represented by the formula (7-3). Yes, it was confirmed that the portion corresponding to Y was mainly composed of an imide oligomer having a norbornane skeleton. The softening point of imide oligomer 2-K was 137 ° C.
(合成例2-12(イミドオリゴマー2-Lの作製))
4,4’-オキシジフタル酸二無水物62.0重量部を、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物26.0重量部に変更したこと以外は合成例2-1と同様にして、イミドオリゴマー2-L(イミド化率94%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー2-Lは、下記式(20)で表されるイミドオリゴマーを主成分とすることを確認した。イミドオリゴマー2-Lの軟化点は132℃であった。
(Synthesis Example 2-12 (Production of Imide Oligomer 2-L))
Synthesis Example except that 62.0 parts by weight of 4,4′-oxydiphthalic dianhydride was changed to 26.0 parts by weight of 4,4 ′-(4,4′-isopropylidenediphenoxy) diphthalic anhydride In the same manner as in 2-1, imide oligomer 2-L (imidation rate: 94%) was obtained.
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 2-L was mainly composed of an imide oligomer represented by the following formula (20). The softening point of the imide oligomer 2-L was 132 ° C.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(実施例10~20、比較例3~7)
表3、4に記載された配合比に従い、各材料を撹拌混合し、実施例10~20、比較例3~7の各硬化性樹脂組成物を作製した。
(Examples 10 to 20, Comparative Examples 3 to 7)
According to the blending ratios described in Tables 3 and 4, each material was stirred and mixed to prepare curable resin compositions of Examples 10 to 20 and Comparative Examples 3 to 7.
<評価>
実施例10~20及び比較例3~7で得られた各硬化性樹脂組成物について以下の評価を行った。結果を表3、4に示した。
<Evaluation>
The following evaluation was performed on each curable resin composition obtained in Examples 10 to 20 and Comparative Examples 3 to 7. The results are shown in Tables 3 and 4.
(保存安定性)
実施例10~20及び比較例3~7で得られた各硬化性樹脂組成物について、製造直後の初期粘度と、25℃で24時間保管した後の粘度とを測定した。(25℃で24時間保管した後の粘度)/(初期粘度)を粘度変化率とし、粘度変化率が1.5未満であった場合を「○」、1.5以上2.0未満であった場合を「△」、2.0以上であった場合を「×」として保存安定性を評価した。
なお、硬化性樹脂組成物の粘度は、E型粘度計(東機産業社製、「TPE-100」)を用いて、25℃において回転速度5rpmの条件で測定した。
(Storage stability)
For each of the curable resin compositions obtained in Examples 10 to 20 and Comparative Examples 3 to 7, the initial viscosity immediately after production and the viscosity after storage at 25 ° C. for 24 hours were measured. (Viscosity after storage for 24 hours at 25 ° C.) / (Initial viscosity) is the rate of change in viscosity. The storage stability was evaluated with “Δ” as the case of “た” and “×” as the case of 2.0 or more.
The viscosity of the curable resin composition was measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., “TPE-100”) at 25 ° C. and a rotational speed of 5 rpm.
(線膨張係数及びガラス転移温度)
実施例10~20及び比較例3~7で得られた各硬化性樹脂組成物を離型PETフィルム上に塗工し、乾燥させることにより、接着フィルムを得た。得られた接着フィルムからPETフィルムを剥離して積層し、190℃で1時間加熱することにより硬化させ、厚さ400μmの硬化物を作製した。
得られた硬化物について、熱機械分析装置(日立ハイテクサイエンス社製、「TMA/SS-6000」)を用いて、荷重5g、昇温速度10℃/分、サンプル長1cmで0℃から300℃まで昇温した後、一旦冷却し、再度同じ条件で0℃から300℃まで昇温した。2回目の測定において得られた温度と寸法変化のデータを基に、40℃から80℃の温度範囲における平均線膨張係数を求め、サンプルの線膨張係数とした。また、2回目の測定において得られた温度と寸法変化の関係を示すグラフの変曲点をガラス転移温度として求めた。
(Linear expansion coefficient and glass transition temperature)
The curable resin compositions obtained in Examples 10 to 20 and Comparative Examples 3 to 7 were coated on a release PET film and dried to obtain an adhesive film. The PET film was peeled off from the obtained adhesive film, laminated, and cured by heating at 190 ° C. for 1 hour to prepare a cured product having a thickness of 400 μm.
Using the thermomechanical analyzer (“TMA / SS-6000” manufactured by Hitachi High-Tech Science Co., Ltd.), the resulting cured product was subjected to a load of 5 g, a heating rate of 10 ° C./min, and a sample length of 1 cm to 0 ° C. to 300 ° C. After the temperature was raised to 0 ° C., it was once cooled, and again heated from 0 ° C. to 300 ° C. under the same conditions. Based on the temperature and dimensional change data obtained in the second measurement, the average linear expansion coefficient in the temperature range of 40 ° C. to 80 ° C. was obtained and used as the linear expansion coefficient of the sample. Further, the inflection point of the graph showing the relationship between the temperature and the dimensional change obtained in the second measurement was determined as the glass transition temperature.
(5%重量減少温度)
実施例10~20及び比較例3~7で得られた各硬化性樹脂組成物を離型PETフィルム上に塗工し、乾燥させることにより、接着フィルムを得た。得られた接着フィルムからPETフィルムを剥離し、190℃で1時間加熱することにより硬化させ、硬化物を作製した。
得られた硬化物について、熱重量測定装置(日立ハイテクサイエンス社製、「TG/DTA6200」)を用いて、30℃~500℃の温度範囲、10℃/minの昇温条件で5%重量減少温度を測定した。
(5% weight loss temperature)
The curable resin compositions obtained in Examples 10 to 20 and Comparative Examples 3 to 7 were coated on a release PET film and dried to obtain an adhesive film. The PET film was peeled from the obtained adhesive film and cured by heating at 190 ° C. for 1 hour to prepare a cured product.
Using the thermogravimetric measuring device (manufactured by Hitachi High-Tech Science Co., “TG / DTA6200”), the cured product obtained was reduced by 5% in the temperature range of 30 ° C. to 500 ° C. under the temperature rising condition of 10 ° C./min. The temperature was measured.
(初期接着性)
実施例10~20及び比較例3~7で得られた各硬化性樹脂組成物を厚みが約20μmとなるように離型PETフィルム上に塗工し、乾燥させることにより、接着フィルムを得た。接着フィルムからPETフィルムを剥離し、ラミネーターを用いて、70℃に加熱しながら接着剤層の両面にポリイミド基材(東レ・デュポン社製、「カプトン200H」、50μmt)を貼り合わせた。190℃、3MPa、1時間の条件で熱プレスを行い、接着層を硬化させた後、1cm幅に切り出して試験片を得た。
引張試験機(ORIENTEC社製、「UCT-500」)により、剥離速度20mm/minでT字剥離を行い、接着力を測定した。
接着力が3.4N/cm以上であった場合を「○」、2.0N/cm以上3.4N/cm未満であった場合を「△」、2.0N/cm未満であった場合を「×」として初期接着性を評価した。
(Initial adhesion)
Each curable resin composition obtained in Examples 10 to 20 and Comparative Examples 3 to 7 was coated on a release PET film so as to have a thickness of about 20 μm, and dried to obtain an adhesive film. . The PET film was peeled off from the adhesive film, and a polyimide substrate (manufactured by Toray DuPont, “Kapton 200H”, 50 μmt) was bonded to both surfaces of the adhesive layer using a laminator while heating to 70 ° C. A hot press was performed under the conditions of 190 ° C., 3 MPa, and 1 hour to cure the adhesive layer, and then cut into a 1 cm width to obtain a test piece.
Using a tensile tester ("ORITEC", "UCT-500"), T-peeling was performed at a peeling rate of 20 mm / min, and the adhesive strength was measured.
The case where the adhesive force is 3.4 N / cm or more is “◯”, the case where it is 2.0 N / cm or more and less than 3.4 N / cm is “Δ”, the case where it is less than 2.0 N / cm Initial adhesiveness was evaluated as “×”.
(長期耐熱性)
上記「(初期接着性)」と同様にして得られた試験片について、175℃で1000時間熱処理を行った。熱処理後の試験片について、引張試験機(ORIENTEC社製、「UCT-500」)を用いて、剥離速度20mm/minでT字剥離を行い、接着力を測定した。
接着力が3.4N/cm以上であった場合を「○」、2.0N/cm以上3.4N/cm未満であった場合を「△」、2.0N/cm未満であった場合を「×」として長期耐熱性を評価した。
(Long-term heat resistance)
The test piece obtained in the same manner as the above “(initial adhesiveness)” was heat-treated at 175 ° C. for 1000 hours. The test pieces after the heat treatment were subjected to T-peeling at a peeling rate of 20 mm / min using a tensile testing machine (“UCT-500” manufactured by ORIENTEC), and the adhesive strength was measured.
The case where the adhesive force is 3.4 N / cm or more is “◯”, the case where it is 2.0 N / cm or more and less than 3.4 N / cm is “Δ”, the case where it is less than 2.0 N / cm Long-term heat resistance was evaluated as “×”.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
(合成例3-1(イミドオリゴマー3-Aの作製))
4,4’-ジアミノジフェニルエーテル(東京化成工業社製、「DDPE」)10重量部をN-メチルピロリドン(富士フイルム和光純薬社製)200重量部に溶解させた。得られた溶液に4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)52.0重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー3-A(イミド化率92%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー3-Aは、下記式(21)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー3-Aの軟化点は147℃、融点は168℃であった。
(Synthesis Example 3-1 (Production of Imide Oligomer 3-A))
10 parts by weight of 4,4′-diaminodiphenyl ether (Tokyo Chemical Industry Co., Ltd., “DDPE”) was dissolved in 200 parts by weight of N-methylpyrrolidone (Fuji Film Wako Pure Chemical Industries, Ltd.). To the resulting solution, 52.0 parts by weight of 4,4 ′-(4,4′-isopropylidenediphenoxy) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and the reaction was stirred at 25 ° C. for 2 hours. To obtain an amic acid oligomer solution. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 3-A (imidization rate: 92%).
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-A was mainly composed of an imide oligomer represented by the following formula (21). The softening point of imide oligomer 3-A was 147 ° C., and the melting point was 168 ° C.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(合成例3-2(イミドオリゴマー3-Bの作製))
4,4’-ジアミノジフェニルエーテル10重量部を1,4-フェニレンジアミン(東京化成工業社製、「1,4-PDA」)5.4重量部に変更したこと以外は合成例3-1と同様にして、イミドオリゴマー3-B(イミド化率95%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー3-Bは、下記式(22)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー3-Bの軟化点は151℃、融点は168℃であった。
(Synthesis Example 3-2 (Production of Imide Oligomer 3-B))
The same as Synthesis Example 3-1 except that 10 parts by weight of 4,4′-diaminodiphenyl ether was changed to 5.4 parts by weight of 1,4-phenylenediamine (“1,4-PDA” manufactured by Tokyo Chemical Industry Co., Ltd.) In this way, an imide oligomer 3-B (imidization rate 95%) was obtained.
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-B was mainly composed of an imide oligomer represented by the following formula (22). The softening point of imide oligomer 3-B was 151 ° C., and the melting point was 168 ° C.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(合成例3-3(イミドオリゴマー3-Cの作製))
ビス(4-(3-アミノフェノキシ)フェニル)スルフォン(東京化成工業社製、「BAPS」)21.6重量部をN-メチルピロリドン200重量部に溶解させた。得られた溶液に4,4’-オキシジフタル酸二無水物(東京化成工業社製)31.0重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー3-C(イミド化率98%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー3-Cは、下記式(23)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー3-Cの軟化点は166℃、融点は181℃であった。
(Synthesis Example 3-3 (Production of Imide Oligomer 3-C))
21.6 parts by weight of bis (4- (3-aminophenoxy) phenyl) sulfone (manufactured by Tokyo Chemical Industry Co., Ltd., “BAPS”) was dissolved in 200 parts by weight of N-methylpyrrolidone. To the resulting solution, 31.0 parts by weight of 4,4′-oxydiphthalic dianhydride (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added and reacted by stirring at 25 ° C. for 2 hours to obtain an amic acid oligomer solution. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 3-C (imidation rate: 98%).
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-C was mainly composed of an imide oligomer represented by the following formula (23). The softening point of imide oligomer 3-C was 166 ° C., and the melting point was 181 ° C.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(合成例3-4(イミドオリゴマー3-Dの作製))
1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン(三井化学ファイン社製、「ビスアニリンP」)17.2重量部をN-メチルピロリドン200重量部に溶解させた。得られた溶液に4,4’-カルボニルジフタル酸二無水物(東京化成工業社製)32.2重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー3-D(イミド化率96%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー3-Dは、下記式(24)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー3-Dの軟化点は228℃、融点は273℃であった。
(Synthesis Example 3-4 (Production of Imide Oligomer 3-D))
17.2 parts by weight of 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene (“Bisaniline P” manufactured by Mitsui Chemical Fine Co., Ltd.) was dissolved in 200 parts by weight of N-methylpyrrolidone. To the resulting solution, 32.2 parts by weight of 4,4′-carbonyldiphthalic dianhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and reacted by stirring at 25 ° C. for 2 hours to obtain an amic acid oligomer solution. It was. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 3-D (imidation rate: 96%).
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that imide oligomer 3-D was mainly composed of an imide oligomer represented by the following formula (24). The softening point of imide oligomer 3-D was 228 ° C., and the melting point was 273 ° C.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(合成例3-5(イミドオリゴマー3-Eの作製))
4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル(東京化成工業社製)12.9重量部をN-メチルピロリドン(富士フイルム和光純薬社製)200重量部に溶解させた。得られた溶液に4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物52.0重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー(A)の溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、末端に酸無水基を有するイミドオリゴマー(イミド化率95%)を得た。
更に、得られたイミドオリゴマー61.6重量部を秤量し、N-メチルピロリドン200重量部に溶解させた後、3-アミノフェノール(東京化成工業社製)10.9重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー(B)の溶液を得た。得られたアミック酸オリゴマー(B)の溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー3-E(イミド化率93%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー3-Eは、下記式(25)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー3-Eの軟化点は198℃、融点は223℃であった。
(Synthesis Example 3-5 (Production of Imide Oligomer 3-E))
1,4 parts by weight of 4,4′-diamino-3,3′-dihydroxybiphenyl (Tokyo Chemical Industry Co., Ltd.) was dissolved in 200 parts by weight of N-methylpyrrolidone (Fuji Film Wako Pure Chemical Industries, Ltd.). To the resulting solution, 52.0 parts by weight of 4,4 ′-(4,4′-isopropylidenediphenoxy) diphthalic anhydride was added and stirred at 25 ° C. for 2 hours to react to give an amic acid oligomer (A ) Was obtained. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain an imide oligomer having an acid anhydride group at the terminal (imidation rate 95%).
Further, 61.6 parts by weight of the obtained imide oligomer was weighed and dissolved in 200 parts by weight of N-methylpyrrolidone, and then 10.9 parts by weight of 3-aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. The solution was stirred at 2 ° C. for 2 hours to obtain an amic acid oligomer (B) solution. N-methylpyrrolidone was removed under reduced pressure from the solution of the obtained amic acid oligomer (B), and then heated at 300 ° C. for 2 hours to obtain imide oligomer 3-E (imidation ratio 93%).
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-E was mainly composed of an imide oligomer represented by the following formula (25). The softening point of imide oligomer 3-E was 198 ° C., and the melting point was 223 ° C.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(合成例3-6(イミドオリゴマー3-Fの作製))
4,4’-ジアミノジフェニルエーテル10重量部を1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン(三井化学ファイン社製、「ビスアニリンM」)17.2重量部に変更したこと以外は合成例3-1と同様にして、イミドオリゴマー3-F(イミド化率94%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー3-Fは、下記式(26)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー3-Fの軟化点は145℃、融点は158℃であった。
(Synthesis Example 3-6 (Production of Imide Oligomer 3-F))
Changed 10 parts by weight of 4,4′-diaminodiphenyl ether to 17.2 parts by weight of 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene (“Bisaniline M” manufactured by Mitsui Chemical Fine Co., Ltd.) Except for this, in the same manner as in Synthesis Example 3-1, an imide oligomer 3-F (imidation ratio 94%) was obtained.
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-F was mainly composed of an imide oligomer represented by the following formula (26). The softening point of imide oligomer 3-F was 145 ° C. and the melting point was 158 ° C.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(合成例3-7(イミドオリゴマー3-Gの作製))
3-アミノフェノール10.9重量部をN-メチルピロリドン200重量部に溶解させた。得られた溶液に4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物26.0重量部を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、イミドオリゴマー3-G(イミド化率95%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー3-Gは、下記式(27)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー3-Gの軟化点は137℃、融点は155℃であった。
(Synthesis Example 3-7 (Production of Imide Oligomer 3-G))
10.9 parts by weight of 3-aminophenol was dissolved in 200 parts by weight of N-methylpyrrolidone. To the resulting solution was added 26.0 parts by weight of 4,4 ′-(4,4′-isopropylidenediphenoxy) diphthalic anhydride, and the mixture was stirred at 25 ° C. for 2 hours to react to give an amic acid oligomer solution. Obtained. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain imide oligomer 3-G (imidation rate 95%).
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-G was mainly composed of an imide oligomer represented by the following formula (27). The softening point of imide oligomer 3-G was 137 ° C., and the melting point was 155 ° C.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(合成例3-8(イミドオリゴマー3-Hの作製))
4,4’-ジアミノジフェニルエーテル10重量部を1,3-フェニレンジアミン(東京化成工業社製、「1,3-PDA」)5.4重量部に変更したこと以外は合成例3-1と同様にして、イミドオリゴマー3-H(イミド化率95%)を得た。
なお、H-NMR、GPC、及び、FT-IR分析により、イミドオリゴマー3-Hは、式(28)で表されるイミドオリゴマーを主成分とすることを確認した。また、イミドオリゴマー3-Hの軟化点は146℃、融点は163℃であった。
(Synthesis Example 3-8 (Production of Imide Oligomer 3-H))
Same as Synthesis Example 3-1, except that 10 parts by weight of 4,4′-diaminodiphenyl ether was changed to 5.4 parts by weight of 1,3-phenylenediamine (“1,3-PDA”, manufactured by Tokyo Chemical Industry Co., Ltd.) As a result, an imide oligomer 3-H (imidization rate of 95%) was obtained.
It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the imide oligomer 3-H was mainly composed of the imide oligomer represented by the formula (28). The softening point of imide oligomer 3-H was 146 ° C. and the melting point was 163 ° C.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(実施例21~31、比較例8、9)
合成例3-1~3-8で得られたイミドオリゴマー3-A~3-Hを、ジェットミルを用いて粉砕した後、メチルエチルケトンと混合し、混合液を得た(各イミドオリゴマーの平均粒子径4~10μm)。イミドオリゴマー3-A~3-E及び3-Hは、メチルエチルケトンに不溶であったが、イミドオリゴマー3-F及び3-Gはメチルエチルケトンに溶解した。次いで、各材料が表5に記載された配合比となるように、得られた混合液と他の材料とを撹拌混合し、実施例21~31、比較例8、9の各硬化性樹脂組成物を作製した。
得られた各硬化性樹脂組成物について、25℃におけるイミドオリゴマーの分散状態を光学顕微鏡観察により確認した。その結果、イミドオリゴマー3-A~3-E及び3-Hを用いた実施例21~31の各硬化性樹脂組成物は、イミドオリゴマーが固体粒子状に分散していることが確認された。一方、イミドオリゴマー3-F又は3-Gのみを用いた比較例8、9の各硬化性樹脂組成物は、イミドオリゴマーが溶解していることが確認された。
(Examples 21 to 31, Comparative Examples 8 and 9)
The imide oligomers 3-A to 3-H obtained in Synthesis Examples 3-1 to 3-8 were pulverized using a jet mill and then mixed with methyl ethyl ketone to obtain a mixed solution (average particles of each imide oligomer). Diameter 4-10 μm). The imide oligomers 3-A to 3-E and 3-H were insoluble in methyl ethyl ketone, but the imide oligomers 3-F and 3-G were dissolved in methyl ethyl ketone. Next, the obtained mixed liquid and other materials were stirred and mixed so that each material had a blending ratio described in Table 5, and the curable resin compositions of Examples 21 to 31 and Comparative Examples 8 and 9 were mixed. A product was made.
About each obtained curable resin composition, the dispersion state of the imide oligomer in 25 degreeC was confirmed by optical microscope observation. As a result, it was confirmed that in each of the curable resin compositions of Examples 21 to 31 using imide oligomers 3-A to 3-E and 3-H, the imide oligomer was dispersed in solid particles. On the other hand, in each of the curable resin compositions of Comparative Examples 8 and 9 using only the imide oligomer 3-F or 3-G, it was confirmed that the imide oligomer was dissolved.
<評価>
実施例21~31及び比較例8、9で得られた各硬化性樹脂組成物について以下の評価を行った。結果を表5に示した。
<Evaluation>
The following evaluation was performed on each curable resin composition obtained in Examples 21 to 31 and Comparative Examples 8 and 9. The results are shown in Table 5.
(可撓性)
実施例21~31及び比較例8、9で得られた各硬化性樹脂組成物を離型PETフィルム上に塗工し、乾燥させることにより、接着フィルムを得た。得られた接着フィルムを、25℃で5mm径の円柱に巻きつける5mm径の巻きつけ試験を行い、接着フィルムの割れや欠けを確認した。また、得られた接着フィルムを180度折り曲げる180度折り曲げ試験を行い、接着フィルムの割れや欠けを確認した。
5mm径の巻きつけ試験、及び、180度折り曲げ試験ともに割れや欠けが無かった場合を「○」、5mm径の巻きつけ試験では割れや欠けが無かったものの、180度折り曲げ試験では割れや欠けがあった場合を「△」、両試験において割れや欠けがあった場合を「×」として可撓性を評価した。
(Flexibility)
The curable resin compositions obtained in Examples 21 to 31 and Comparative Examples 8 and 9 were coated on a release PET film and dried to obtain an adhesive film. The obtained adhesive film was subjected to a 5 mm diameter winding test to be wound around a 5 mm diameter cylinder at 25 ° C., and cracking or chipping of the adhesive film was confirmed. Moreover, the 180 degree bending test which bends the obtained adhesive film 180 degree | times was done, and the crack and the chip | tip of the adhesive film were confirmed.
The case where there was no crack or chipping in both the 5 mm diameter winding test and the 180 degree bending test was “O”, and the 5 mm diameter winding test was free of cracking or chipping, but the 180 degree bending test was free of cracking or chipping. Flexibility was evaluated as “Δ” when there was a crack and “x” when there was a crack or chip in both tests.
(加工性)
実施例21~31及び比較例8、9で得られた各硬化性樹脂組成物を離型フィルム上に塗工し、乾燥させることにより、接着フィルムを得た。得られた接着フィルムを、トムソン刃を用いて打ち抜き加工を実施し、破断面の状態や粉落ちの有無を確認した。
した。破断面が平滑で粉落ちがなかった場合を「○」、破断面が平滑でなく、粉落ちがあった場合を「×」として加工性を評価した。
(Processability)
The curable resin compositions obtained in Examples 21 to 31 and Comparative Examples 8 and 9 were coated on a release film and dried to obtain an adhesive film. The obtained adhesive film was punched using a Thomson blade, and the state of the fracture surface and the presence or absence of powder fall were confirmed.
did. The processability was evaluated with “◯” when the fracture surface was smooth and no powder falling, and “X” when the fracture surface was not smooth and there was powder fall.
(接着性)
実施例21~31及び比較例8、9で得られた各硬化性樹脂組成物を厚みが約20μmとなるように離型PETフィルム上に塗工し、乾燥させることにより、接着フィルムを得た。接着フィルムからPETフィルムを剥離し、ラミネーターを用いて、70℃に加熱しながら接着剤層の両面にポリイミド基材(東レ・デュポン社製、「カプトン200H」、50μmt)を貼り合わせた。190℃、3MPa、1時間の条件で熱プレスを行い、接着層を硬化させた後、1cm幅に切り出して試験片を得た。
引張試験機(ORIENTEC社製、「UCT-500」)により、剥離速度20mm/minでT字剥離を行い、接着力を測定した。
接着力が6.0N以上であった場合を「◎」、3.4N/cm以上6.0N/cm未満であった場合を「○」、2.0N/cm以上3.4N/cm未満であった場合を「△」、2.0N/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
Each curable resin composition obtained in Examples 21 to 31 and Comparative Examples 8 and 9 was coated on a release PET film so as to have a thickness of about 20 μm, and dried to obtain an adhesive film. . The PET film was peeled off from the adhesive film, and a polyimide substrate (manufactured by Toray DuPont, “Kapton 200H”, 50 μmt) was bonded to both surfaces of the adhesive layer using a laminator while heating to 70 ° C. A hot press was performed under the conditions of 190 ° C., 3 MPa, and 1 hour to cure the adhesive layer, and then cut into a 1 cm width to obtain a test piece.
Using a tensile tester ("ORITEC", "UCT-500"), T-peeling was performed at a peeling rate of 20 mm / min, and the adhesive strength was measured.
When the adhesive strength is 6.0 N or more, “「 ”, when 3.4 N / cm or more and less than 6.0 N / cm,“ ◯ ”, when 2.0 N / cm or more and less than 3.4 N / cm The adhesiveness was evaluated as “Δ” when it was present and “×” when it was less than 2.0 N / cm.
(耐熱性(ガラス転移温度))
実施例21~31及び比較例8、9で得られた各硬化性樹脂組成物を離型PETフィルム上に塗工し、乾燥させることにより、硬化性樹脂組成物フィルムを得た。得られた硬化性樹脂組成物フィルムからPETフィルムを剥離し、ラミネーターを用いて積層した後、190℃で1時間加熱することにより硬化させ、厚さ500μmの硬化物を作製した。得られた硬化物について、熱機械分析装置(日立ハイテクサイエンス社製、「TMA/SS-6000」)を用い、荷重5g、昇温速度10℃/分、サンプル長1cmで0℃から300℃まで昇温した際に得られたSSカーブの変曲点をガラス転移温度として求めた。
(Heat resistance (glass transition temperature))
The curable resin compositions obtained in Examples 21 to 31 and Comparative Examples 8 and 9 were coated on a release PET film and dried to obtain curable resin composition films. The PET film was peeled from the obtained curable resin composition film, laminated using a laminator, and then cured by heating at 190 ° C. for 1 hour to prepare a cured product having a thickness of 500 μm. About the obtained cured product, using a thermomechanical analyzer (manufactured by Hitachi High-Tech Science Co., “TMA / SS-6000”), the load is 5 g, the heating rate is 10 ° C./min, and the sample length is 1 cm from 0 ° C. to 300 ° C. The inflection point of the SS curve obtained when the temperature was raised was determined as the glass transition temperature.
(耐熱性(5%重量減少温度))
実施例21~31及び比較例8、9で得られた各硬化性樹脂組成物を離型フィルム上に塗工し、乾燥させることにより、接着フィルムを得た。得られた接着フィルムを190℃で1時間加熱することにより硬化させ、硬化物を作製した。
得られた硬化物について、熱重量測定装置(日立ハイテクサイエンス社製、「TG/DTA6200」)を用いて、30℃~500℃の温度範囲、10℃/minの昇温条件で5%重量減少温度を測定した。
(Heat resistance (5% weight loss temperature))
The curable resin compositions obtained in Examples 21 to 31 and Comparative Examples 8 and 9 were coated on a release film and dried to obtain an adhesive film. The obtained adhesive film was cured by heating at 190 ° C. for 1 hour to produce a cured product.
Using the thermogravimetric measuring device (manufactured by Hitachi High-Tech Science Co., “TG / DTA6200”), the cured product obtained was reduced by 5% in the temperature range of 30 ° C. to 500 ° C. under the temperature rising condition of 10 ° C./min. The temperature was measured.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
本発明によれば、硬化前は流動特性に優れ、硬化後は接着性、耐熱性、及び、耐屈曲性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤、接着フィルム、カバーレイフィルム、及び、プリント配線板を提供することができる。
また、本発明によれば、保存安定性に優れ、かつ、低線膨張性、接着性、及び、長期耐熱性に優れる硬化物を得ることができる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物を用いてなる接着剤及び接着フィルムを提供することができる。
更に、本発明によれば、硬化前は可撓性及び加工性に優れ、硬化後は接着性及び耐熱性に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物の硬化物、並びに、該硬化性樹脂組成物用いてなる接着剤及び接着フィルムを提供することができる。
According to the present invention, it is possible to provide a curable resin composition that is excellent in flow characteristics before curing and excellent in adhesiveness, heat resistance, and flex resistance after curing. Moreover, according to this invention, the hardened | cured material of this curable resin composition, and the adhesive agent, adhesive film, coverlay film, and printed wiring board which use this curable resin composition are provided. it can.
Moreover, according to this invention, the curable resin composition which can obtain the hardened | cured material which is excellent in storage stability and excellent in low linear expansion property, adhesiveness, and long-term heat resistance can be provided. Moreover, according to this invention, the adhesive agent and adhesive film which use the hardened | cured material of this curable resin composition, and this curable resin composition can be provided.
Furthermore, according to the present invention, it is possible to provide a curable resin composition that is excellent in flexibility and processability before curing and excellent in adhesion and heat resistance after curing. Moreover, according to this invention, the adhesive agent and adhesive film which use the hardened | cured material of this curable resin composition, and this curable resin composition can be provided.

Claims (34)

  1. 熱硬化性樹脂と熱可塑性樹脂とイミドオリゴマーとを含有し、
    前記イミドオリゴマーは、前記熱硬化性樹脂と反応し得る反応性官能基を有することを特徴とする硬化性樹脂組成物。
    Containing a thermosetting resin, a thermoplastic resin and an imide oligomer,
    The said imide oligomer has the reactive functional group which can react with the said thermosetting resin, The curable resin composition characterized by the above-mentioned.
  2. 前記熱硬化性樹脂は、エポキシ樹脂を含有する請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the thermosetting resin contains an epoxy resin.
  3. 前記熱可塑性樹脂は、フェノキシ樹脂を含有する請求項1又は2記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the thermoplastic resin contains a phenoxy resin.
  4. 前記熱硬化性樹脂と前記熱可塑性樹脂と前記イミドオリゴマーとの合計100重量部中における前記熱可塑性樹脂の含有量が1重量部以上60重量部以下である請求項1、2又は3記載の硬化性樹脂組成物。 The curing according to claim 1, 2, or 3, wherein a content of the thermoplastic resin in a total of 100 parts by weight of the thermosetting resin, the thermoplastic resin, and the imide oligomer is 1 part by weight or more and 60 parts by weight or less. Resin composition.
  5. 前記反応性官能基は、酸無水物基及び/又はフェノール性水酸基である請求項1、2、3又は4記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the reactive functional group is an acid anhydride group and / or a phenolic hydroxyl group.
  6. 前記イミドオリゴマーのイミド化率が70%以上である請求項1、2、3、4又は5記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the imidization ratio of the imide oligomer is 70% or more.
  7. 最低溶融粘度が5kPa・s以上300kPa・s以下である請求項1、2、3、4、5又は6記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, which has a minimum melt viscosity of 5 kPa · s to 300 kPa · s.
  8. 請求項1、2、3、4、5、6又は7記載の硬化性樹脂組成物からなる接着剤。 An adhesive comprising the curable resin composition according to claim 1, 2, 3, 4, 5, 6 or 7.
  9. 請求項1、2、3、4、5、6又は7記載の硬化性樹脂組成物の硬化物。 Hardened | cured material of the curable resin composition of Claim 1, 2, 3, 4, 5, 6 or 7.
  10. 請求項8記載の接着剤を用いてなる接着フィルム。 An adhesive film using the adhesive according to claim 8.
  11. 請求項9記載の硬化物からなる接着層と、絶縁フィルムとを有するカバーレイフィルム。 The coverlay film which has the contact bonding layer which consists of hardened | cured material of Claim 9, and an insulating film.
  12. 請求項11記載のカバーレイフィルムを有するフレキシブルプリント配線板。 The flexible printed wiring board which has a coverlay film of Claim 11.
  13. 硬化性樹脂とイミドオリゴマーと硬化促進剤とを含有する硬化性樹脂組成物であって、
    前記イミドオリゴマーは、下記式(6)で表されることを特徴とする硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    式(6)中、Xは、下記式(7-1)、(7-2)、又は、(7-3)で表される4価の基であり、Yは、下記式(8-1)、(8-2)、(8-3)、又は、(8-4)で表される2価の基である。
    Figure JPOXMLDOC01-appb-C000002
    式(7-1)~(7-3)中、*は結合位置である。式(7-1)~(7-3)中における芳香環の水素原子は置換されていてもよい。
    Figure JPOXMLDOC01-appb-C000003
    式(8-1)及び(8-2)中、Zは、結合手、酸素原子、スルホニル基、結合位置に酸素原子を有していてもよい直鎖状若しくは分岐鎖状の2価の炭化水素基、又は、結合位置に酸素原子を有していてもよい芳香環を有する2価の基である。式(8-1)及び(8-2)中における芳香環の水素原子は置換されていてもよい。式(8-3)及び(8-4)中、R~R14は、水素原子又は1価の炭化水素基を表し、それぞれ同一であってもよいし、異なっていてもよい。式(8-1)~(8-4)中、*は結合位置である。
    A curable resin composition containing a curable resin, an imide oligomer, and a curing accelerator,
    The said imide oligomer is represented by following formula (6), The curable resin composition characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (6), X is a tetravalent group represented by the following formula (7-1), (7-2), or (7-3), and Y is a formula (8-1) ), (8-2), (8-3), or (8-4).
    Figure JPOXMLDOC01-appb-C000002
    In the formulas (7-1) to (7-3), * is a bonding position. The hydrogen atom of the aromatic ring in formulas (7-1) to (7-3) may be substituted.
    Figure JPOXMLDOC01-appb-C000003
    In formulas (8-1) and (8-2), Z represents a bond, an oxygen atom, a sulfonyl group, or a linear or branched divalent carbon atom which may have an oxygen atom at the bonding position. It is a hydrogen group or a divalent group having an aromatic ring which may have an oxygen atom at the bonding position. The hydrogen atom of the aromatic ring in formulas (8-1) and (8-2) may be substituted. In formulas (8-3) and (8-4), R 7 to R 14 each represents a hydrogen atom or a monovalent hydrocarbon group, and may be the same or different. In formulas (8-1) to (8-4), * represents a bonding position.
  14. 前記硬化性樹脂は、エポキシ樹脂を含有する請求項13記載の硬化性樹脂組成物。 The curable resin composition according to claim 13, wherein the curable resin contains an epoxy resin.
  15. 前記イミドオリゴマーは、軟化点が250℃以下である請求項13又は14記載の硬化性樹脂組成物。 The curable oligomer composition according to claim 13 or 14, wherein the imide oligomer has a softening point of 250 ° C or lower.
  16. 前記イミドオリゴマーのイミド化率が70%以上である請求項13、14又は15記載の硬化性樹脂組成物。 The curable resin composition according to claim 13, 14 or 15, wherein the imidization ratio of the imide oligomer is 70% or more.
  17. 前記硬化促進剤は、塩基性触媒である請求項13、14、15又は16記載の硬化性樹脂組成物。 The curable resin composition according to claim 13, 14, 15, or 16, wherein the curing accelerator is a basic catalyst.
  18. 前記硬化促進剤は、イミダゾール骨格を有する請求項13、14、15、16又は17記載の硬化性樹脂組成物。 The curable resin composition according to claim 13, 14, 15, 16, or 17, wherein the curing accelerator has an imidazole skeleton.
  19. 前記硬化性樹脂と前記イミドオリゴマーと前記硬化促進剤との合計100重量部中における前記硬化促進剤の含有量が0.8重量部以上10重量部以下である請求項13、14、15、16、17又は18記載の硬化性樹脂組成物。 The content of the curing accelerator in a total of 100 parts by weight of the curable resin, the imide oligomer, and the curing accelerator is 0.8 part by weight or more and 10 parts by weight or less. The curable resin composition according to 17, 17 or 18.
  20. 請求項13、14、15、16、17、18又は19記載の硬化性樹脂組成物の硬化物。 A cured product of the curable resin composition according to claim 13, 14, 15, 16, 17, 18 or 19.
  21. 40℃から80℃の温度範囲における平均線膨張係数が60ppm以下である請求項20記載の硬化物。 The hardened | cured material of Claim 20 whose average linear expansion coefficient in the temperature range of 40 to 80 degreeC is 60 ppm or less.
  22. 請求項13、14、15、16、17、18又は19記載の硬化性樹脂組成物からなる接着剤。 An adhesive comprising the curable resin composition according to claim 13, 14, 15, 16, 17, 18 or 19.
  23. 請求項13、14、15、16、17、18又は19記載の硬化性樹脂組成物を用いてなる接着フィルム。 An adhesive film comprising the curable resin composition according to claim 13, 14, 15, 16, 17, 18 or 19.
  24. 硬化性樹脂とイミドオリゴマーとを含有する硬化性樹脂組成物であって、
    前記硬化性樹脂は、25℃において液状であり、
    25℃において前記イミドオリゴマーが固体粒子状に分散していることを特徴とする硬化性樹脂組成物。
    A curable resin composition containing a curable resin and an imide oligomer,
    The curable resin is liquid at 25 ° C.
    A curable resin composition, wherein the imide oligomer is dispersed in solid particles at 25 ° C.
  25. 前記硬化性樹脂は、エポキシ樹脂を含有する請求項24記載の硬化性樹脂組成物。 The curable resin composition according to claim 24, wherein the curable resin contains an epoxy resin.
  26. 前記イミドオリゴマーは、前記硬化性樹脂と反応し得る反応性官能基を有する請求項24又は25記載の硬化性樹脂組成物。 26. The curable resin composition according to claim 24 or 25, wherein the imide oligomer has a reactive functional group capable of reacting with the curable resin.
  27. 前記反応性官能基は、酸無水物基及び/又はフェノール性水酸基である請求項26記載の硬化性樹脂組成物。 27. The curable resin composition according to claim 26, wherein the reactive functional group is an acid anhydride group and / or a phenolic hydroxyl group.
  28. 前記イミドオリゴマーは、軟化点が250℃以下である請求項24、25、26又は27記載の硬化性樹脂組成物。 28. The curable resin composition according to claim 24, 25, 26 or 27, wherein the imide oligomer has a softening point of 250 ° C. or lower.
  29. 前記イミドオリゴマーのイミド化率が70%以上である請求項24、25、26、27又は28記載の硬化性樹脂組成物。 29. The curable resin composition according to claim 24, 25, 26, 27 or 28, wherein the imidization ratio of the imide oligomer is 70% or more.
  30. 前記イミドオリゴマーとして、25℃において硬化性樹脂組成物に不溶であるイミドオリゴマーと、25℃において硬化性樹脂組成物に溶解し得るイミドオリゴマーとを含有する請求項24、25、26、27、28又は29記載の硬化性樹脂組成物。 The said imide oligomer contains the imide oligomer which is insoluble in a curable resin composition at 25 degreeC, and the imide oligomer which can be melt | dissolved in a curable resin composition at 25 degreeC, 25, 26, 27, 28 Or the curable resin composition of 29.
  31. 前記25℃において硬化性樹脂組成物に溶解し得るイミドオリゴマーの含有割合は、イミドオリゴマー全体100重量部中において、80重量部以下である請求項30記載の硬化性樹脂組成物。 31. The curable resin composition according to claim 30, wherein a content ratio of the imide oligomer that can be dissolved in the curable resin composition at 25 ° C. is 80 parts by weight or less in 100 parts by weight of the whole imide oligomer.
  32. 請求項24、25、26、27、28、29、30又は31記載の硬化性樹脂組成物の硬化物。 A cured product of the curable resin composition according to claim 24, 25, 26, 27, 28, 29, 30 or 31.
  33. 請求項24、25、26、27、28、29、30又は31記載の硬化性樹脂組成物からなる接着剤。 An adhesive comprising the curable resin composition according to claim 24, 25, 26, 27, 28, 29, 30 or 31.
  34. 請求項33記載の接着剤を用いてなる接着フィルム。 An adhesive film using the adhesive according to claim 33.
PCT/JP2018/018892 2017-05-31 2018-05-16 Curable resin composition, cured product, adhesive agent, adhesive film, coverlay film and printed wiring board WO2018221217A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880036020.0A CN110691805A (en) 2017-05-31 2018-05-16 Curable resin composition, cured product, adhesive film, cover lay film, and printed wiring board
KR1020197033879A KR102671097B1 (en) 2017-05-31 2018-05-16 Curable resin composition, cured product, adhesive, adhesive film, coverlay film, and printed wiring board

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2017-108126 2017-05-31
JP2017-108127 2017-05-31
JP2017108126 2017-05-31
JP2017108127 2017-05-31
JP2017108125 2017-05-31
JP2017-108125 2017-05-31
JP2017-191709 2017-09-29
JP2017191709 2017-09-29
JP2018087192A JP7207863B2 (en) 2017-05-31 2018-04-27 Curable resin composition, cured product, adhesive and adhesive film
JP2018-087192 2018-04-27
JP2018087191A JP7144182B2 (en) 2017-05-31 2018-04-27 Curable resin composition, cured product, adhesive and adhesive film
JP2018-087191 2018-04-27
JP2018087193A JP7211715B2 (en) 2017-05-31 2018-04-27 Curable resin composition, cured product, adhesive, adhesive film, coverlay film, and printed wiring board
JP2018-087193 2018-04-27

Publications (1)

Publication Number Publication Date
WO2018221217A1 true WO2018221217A1 (en) 2018-12-06

Family

ID=64454628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018892 WO2018221217A1 (en) 2017-05-31 2018-05-16 Curable resin composition, cured product, adhesive agent, adhesive film, coverlay film and printed wiring board

Country Status (1)

Country Link
WO (1) WO2018221217A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181721A1 (en) * 2018-03-20 2019-09-26 積水化学工業株式会社 Curable resin composition, adhesive, adhesive film, cover lay film, and flexible copper-clad laminate
WO2021241548A1 (en) * 2020-05-28 2021-12-02 積水化学工業株式会社 Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object
WO2023090347A1 (en) * 2021-11-16 2023-05-25 積水化学工業株式会社 Curable resin composition, cured product, adhesive agent, and adhesive film
EP4099090A4 (en) * 2020-06-26 2023-09-06 Resonac Corporation Photosensitive resin composition, method for producing patterned cured film, patterned cured film and semiconductor element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125345A (en) * 1991-11-08 1993-05-21 Ube Ind Ltd Adhesive composition
JP2004502859A (en) * 2000-07-06 2004-01-29 スリーエム イノベイティブ プロパティズ カンパニー Polyimide hybrid adhesive
JP2007091799A (en) * 2005-09-27 2007-04-12 Kaneka Corp Thermosetting resin composition and its application
JP2010100803A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy resin composition, sheet-like form, prepreg, cured product, laminated board, and multilayered laminated board
JP2010132793A (en) * 2008-12-05 2010-06-17 Toray Ind Inc Thermosetting resin composition, underfill agent using the same, and semiconductor device
JP2014101491A (en) * 2012-11-16 2014-06-05 Samsung Electro-Mechanics Co Ltd Resin composition for insulation, insulation film, prepreg and printed circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125345A (en) * 1991-11-08 1993-05-21 Ube Ind Ltd Adhesive composition
JP2004502859A (en) * 2000-07-06 2004-01-29 スリーエム イノベイティブ プロパティズ カンパニー Polyimide hybrid adhesive
JP2007091799A (en) * 2005-09-27 2007-04-12 Kaneka Corp Thermosetting resin composition and its application
JP2010100803A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy resin composition, sheet-like form, prepreg, cured product, laminated board, and multilayered laminated board
JP2010132793A (en) * 2008-12-05 2010-06-17 Toray Ind Inc Thermosetting resin composition, underfill agent using the same, and semiconductor device
JP2014101491A (en) * 2012-11-16 2014-06-05 Samsung Electro-Mechanics Co Ltd Resin composition for insulation, insulation film, prepreg and printed circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181721A1 (en) * 2018-03-20 2019-09-26 積水化学工業株式会社 Curable resin composition, adhesive, adhesive film, cover lay film, and flexible copper-clad laminate
WO2021241548A1 (en) * 2020-05-28 2021-12-02 積水化学工業株式会社 Curable resin composition, adhesive, adhesive varnish, adhesive film, and cured object
EP4099090A4 (en) * 2020-06-26 2023-09-06 Resonac Corporation Photosensitive resin composition, method for producing patterned cured film, patterned cured film and semiconductor element
WO2023090347A1 (en) * 2021-11-16 2023-05-25 積水化学工業株式会社 Curable resin composition, cured product, adhesive agent, and adhesive film

Similar Documents

Publication Publication Date Title
TWI814907B (en) Resin compositions, films, laminates and semiconductor devices
KR102467955B1 (en) Curable resin composition, adhesive, imide oligomer, imide oligomer composition, and curing agent
TW202219124A (en) Polyimide, adhesive, film-like adhesive, adhesion layer, adhesive sheet, copper foil with resin, copper-clad laminate, printed wiring board, and multilayer wiring board and method for producing the same
WO2018221217A1 (en) Curable resin composition, cured product, adhesive agent, adhesive film, coverlay film and printed wiring board
TW201839047A (en) Curable resin composition, cured product, adhesive, bonding film, coverlay film, flexible copper-clad laminate and circuit board
JP2020007397A (en) Curable resin composition, imide compound, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
JP7171365B2 (en) Curable resin composition, cured product, adhesive and adhesive film
KR102556129B1 (en) Imide oligomers, curing agents, adhesives, and methods for preparing imide oligomers
JP2008277768A (en) Insulative heat conductive sheet
JP2005314562A (en) Thermosetting resin composition and its application
JP7211715B2 (en) Curable resin composition, cured product, adhesive, adhesive film, coverlay film, and printed wiring board
JP7132084B2 (en) Curable resin composition, cured product, adhesive and adhesive film
JP7144182B2 (en) Curable resin composition, cured product, adhesive and adhesive film
WO2015107990A1 (en) Adhesive composition and adhesive film having same, substrate provided with adhesive composition, and semiconductor device and method for manufacturing same
KR102671097B1 (en) Curable resin composition, cured product, adhesive, adhesive film, coverlay film, and printed wiring board
TWI770178B (en) Curable resin composition, cured product, adhesive, adhesive film, coverlay, and printed wiring board
WO2021065704A1 (en) Thermosetting resin composition, thermosetting resin sheet, electronic component, and electronic device
TWI826633B (en) Ester compounds, resin compositions, hardened materials and build-up films
JP7265474B2 (en) Curable resin composition, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
WO2019083006A1 (en) Curable resin composition, cured product, adhesive agent, and adhesive film
JP7207863B2 (en) Curable resin composition, cured product, adhesive and adhesive film
TWI781239B (en) Curable resin composition, cured product, adhesive, and adhesive film
JP2020125380A (en) Resin composition, cured product, and build-up film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197033879

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810319

Country of ref document: EP

Kind code of ref document: A1