WO2022138047A1 - 液晶性樹脂ペレット及びそれからなる溶融押出フィルム - Google Patents

液晶性樹脂ペレット及びそれからなる溶融押出フィルム Download PDF

Info

Publication number
WO2022138047A1
WO2022138047A1 PCT/JP2021/044264 JP2021044264W WO2022138047A1 WO 2022138047 A1 WO2022138047 A1 WO 2022138047A1 JP 2021044264 W JP2021044264 W JP 2021044264W WO 2022138047 A1 WO2022138047 A1 WO 2022138047A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal resin
mol
melt
content
Prior art date
Application number
PCT/JP2021/044264
Other languages
English (en)
French (fr)
Inventor
敏雄 中根
広宣 青島
俊紀 川原
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2022572047A priority Critical patent/JPWO2022138047A1/ja
Priority to CN202180085991.6A priority patent/CN116615321A/zh
Publication of WO2022138047A1 publication Critical patent/WO2022138047A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a liquid crystal resin pellet and a melt extruded film comprising the same.
  • Liquid crystal resin represented by liquid crystal polyester resin has excellent mechanical strength, heat resistance, chemical resistance, electrical properties, etc. in a well-balanced manner, and also has excellent dimensional stability, so it is widely used as a high-performance engineering plastic. It's being used. Further, for example, a melt extrusion film made of a liquid crystal resin is also manufactured by a melt extrusion method such as a T-die method or an inflation method (for example, Patent Documents 1 and 2).
  • a conventional liquid crystal resin pellet is used when producing a melt extruded film containing a large amount of constituent units derived from 6-hydroxy-2-naphthoic acid by the T-die method or the inflation method. It was found that lumps (that is, particles mixed in the melt-extruded film) are likely to occur, and the thickness is likely to fluctuate in the MD direction (that is, the flow direction of the melt-extruded film).
  • the present invention has been made to solve the above problems, and an object thereof is to generate lumps and change the thickness in the MD direction while containing many structural units derived from 6-hydroxy-2-naphthoic acid. It is an object of the present invention to provide a liquid crystal resin pellet for a melt extruded film capable of giving a reduced melt extruded film.
  • the present inventors have conducted extensive research to solve the above problems.
  • the above-mentioned problems are solved by the liquid crystal resin pellets for melt extrusion film, which contain a large amount of structural units derived from 6-hydroxy-2-naphthoic acid but have a melt enthalpy ⁇ H within a predetermined range measured by DSC.
  • the present invention provides the following.
  • a liquid crystal resin pellet for a melt extruded film containing a liquid crystal resin contains the following structural unit (I).
  • the content of the constituent unit (I) is 40 to 85 mol% with respect to all the constituent units.
  • the melting enthalpy ⁇ H measured by DSC is 0.0 to 4.5 J / g. Liquid crystal resin pellets for melt extruded films.
  • the liquid crystal resin (A) is composed of the following structural units (I), (II), (III), and (IV).
  • the content of the structural unit (I) is 40 to 75 mol%, and the content is 40 to 75 mol%.
  • the content of the structural unit (II) is 0.1 to 8 mol%.
  • the content of the structural unit (III) is 8.5 to 30 mol%.
  • the content of the structural unit (IV) is 8.5 to 30 mol%.
  • the total content of the structural units (I), (II), (III), and (IV) is 100 mol%.
  • the (A) liquid crystal resin contains the following structural units (I) and (II), and contains or does not contain each of the following structural units (III) and (IV).
  • the content of the structural unit (I) is 60 to 85 mol%, and the content is 60 to 85 mol%.
  • the content of the structural unit (II) is 12-40 mol%.
  • the total content of building blocks (III) and (IV) is 0.1-3 mol%.
  • the total content of the structural units (I), (II), (III), and (IV) is 100 mol%.
  • Liquid crystal resin pellets can be provided.
  • the liquid crystal resin pellet for a melt-extruded film according to the present invention contains (A) a liquid crystal resin and has a melt enthalpy ⁇ H measured by DSC of 0.0 to 4.5 J / g.
  • the melting enthalpy ⁇ H is preferably 0.5 to 4.2 J / g, more preferably 1.0 to 4.0 J / g, because the generation of lumps and the variation in thickness in the MD direction are more likely to be reduced.
  • the liquid crystal resin pellet for a melt-extruded film contains (A) a liquid crystal resin.
  • the liquid crystal resin can be used alone or in combination of two or more.
  • the liquid crystal resin (A) in the present invention contains the following structural unit (I).
  • the structural unit (I) is derived from 6-hydroxy-2-naphthoic acid (hereinafter, also referred to as “HNA”).
  • the liquid crystal resin (A) in the present invention contains 40 to 85 mol% of the constituent unit (II) with respect to all the constituent units.
  • the content of the structural unit (I) is less than 40 mol%, the dielectric properties and heat resistance of the melt-extruded film tend to be insufficient. If the content of the structural unit (I) is more than 85 mol%, solidification is likely to occur during polymerization, and a polymer may not be obtained.
  • the content of the structural unit (I) is preferably 40 to 83 mol%, more preferably 45 to 80 mol%.
  • the (A) liquid crystal resin comprises the following structural units (I), (II), (III), and (IV).
  • the content of the structural unit (I) is 40 to 75 mol%, and the content is 40 to 75 mol%.
  • the content of the structural unit (II) is 0.1 to 8 mol%.
  • the content of the structural unit (III) is 8.5 to 30 mol%.
  • the content of the structural unit (IV) is 8.5 to 30 mol%.
  • the total content of the structural units (I), (II), (III), and (IV) is 100 mol% (hereinafter, also referred to as “liquid crystal resin 1”).
  • Ar 1 and Ar 2 each independently represent an arylene group
  • the structural unit (I) is derived from HNA in the same manner as above.
  • the liquid crystal resin 1 contains 40 to 75 mol% of the structural unit (I) with respect to all the structural units.
  • the content of the structural unit (I) is within this range, the dielectric properties, heat resistance, and manufacturability of the melt-extruded film tend to be good.
  • the content of the structural unit (I) is preferably 40 to 60 mol%, more preferably 45 to 60 mol% with respect to all the structural units.
  • the structural unit (II) is derived from 4-hydroxybenzoic acid (hereinafter, also referred to as “HBA”).
  • the liquid crystal resin 1 contains 0.1 to 8 mol% of the structural unit (II) with respect to all the structural units.
  • the content of the structural unit (II) is preferably 1 to 6 mol% with respect to all the structural units.
  • the structural unit (III) is a structural unit derived from a dicarboxylic acid.
  • Ar 1 include a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-phenylene group and the like.
  • the structural unit (III) is preferably derived from 1,4-phenylenedicarboxylic acid (hereinafter, also referred to as “TA”) in terms of heat resistance.
  • TA 1,4-phenylenedicarboxylic acid
  • the content of the structural unit (III) is 8.5 to 30 mol%, preferably 17.5 to 30 mol%, based on the total structural units.
  • the structural unit (IV) is a structural unit derived from diol.
  • diol hydroquinone, dihydroxybiphenyl and the like are used, and dihydroxybiphenyl, particularly 4,4'-dihydroxybiphenyl (hereinafter, also referred to as "BP") is preferable in terms of heat resistance.
  • BP 4,4'-dihydroxybiphenyl
  • the content of the structural unit (IV) is 8.5 to 30 mol%, preferably 17.5 to 30 mol%, based on all the structural units.
  • the liquid crystal resin 1 contains (I) to (IV), which are specific structural units, in a specific amount with respect to all the structural units, it is excellent in all of dielectric properties, heat resistance, and manufacturability.
  • the liquid crystal resin 1 contains 100 mol% of the constituent units (I) to (IV) in total with respect to all the constituent units.
  • the (A) liquid crystal resin comprises the following structural units (I) and (II) and contains or does not contain each of the following structural units (III) and (IV).
  • the content of the structural unit (I) is 60 to 85 mol%, and the content is 60 to 85 mol%.
  • the content of the structural unit (II) is 12-40 mol%.
  • the total content of building blocks (III) and (IV) is 0.1-3 mol%.
  • the total content of the structural units (I), (II), (III), and (IV) is 100 mol% (hereinafter, also referred to as “liquid crystal resin 2”).
  • Ar 1 and Ar 2 each independently represent an arylene group
  • the liquid crystal resin 2 contains 60 to 85 mol% of the constituent unit (I) with respect to all the constituent units.
  • the content of the structural unit (I) is preferably 63 to 85 mol%, more preferably 63 to 83 mol%, and even more preferably 65 to 83 mol%. Even more preferably 65 to 80 mol%, particularly preferably 68 to 80 mol%.
  • the liquid crystal resin 2 contains 12 to 40 mol% of the constituent unit (II) with respect to all the constituent units.
  • the content of the structural unit (II) is preferably 15 to 40 mol%, more preferably 15 to 35 mol%, still more preferably 18 to 35 mol%, and even more preferably.
  • the liquid crystal resin 2 contains 0.1 to 3 mol% of the total of the constituent units (III) and the constituent units (IV) with respect to all the constituent units.
  • the total content of the structural unit (III) and the structural unit (IV) is within this range, the thermal stability is unlikely to decrease, but the molecular weight (melt viscosity) tends to increase.
  • the total content of the structural unit (III) and the structural unit (IV) is preferably 0.2 to 2.5 mol%, more preferably 0.2 to 2 mol%. It is even more preferably 0.3 to 2 mol%, even more preferably 0.3 to 1.5 mol%, and particularly preferably 0.4 to 1.5 mol%.
  • the liquid crystal resin 2 contains (I) to (IV), which are specific structural units, in a specific amount with respect to all the structural units, it has any of dielectric properties, heat resistance, and manufacturability. Is also excellent.
  • the liquid crystal resin 2 contains 100 mol% of the constituent units (I) to (IV) in total with respect to all the constituent units.
  • the liquid crystal resin in the present invention is polymerized by using a direct polymerization method, a transesterification method, or the like.
  • a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method, etc., or a combination of two or more of these is used, and a melt polymerization method or a combination of the melt polymerization method and the solid phase polymerization method is used. Is preferably used.
  • an acylating agent for a polymerization monomer or a monomer having an activated terminal can be used as an acid chloride derivative during polymerization.
  • the acylating agent include fatty acid anhydrides such as acetic anhydride.
  • Various catalysts can be used in these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2).
  • 4-Pentandionato) Metal salt-based catalysts such as cobalt (III) and organic compound-based catalysts such as 1-methylimidazole and 4-dimethylaminopyridine can be mentioned.
  • the reaction conditions are, for example, a reaction temperature of 200 to 380 ° C. and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to 101,080 Pa).
  • the reaction temperature is 260 to 380 ° C., preferably 300 to 360 ° C.
  • the final ultimate pressure is 1 to 100 Torr (that is, 133 to 13,300 Pa), preferably 1 to 50 Torr (that is, 133 to 6,670 Pa). ).
  • melt polymerization is carried out by starting depressurization to a predetermined depressurization degree.
  • an inert gas is introduced, the pressure is reduced to a normal pressure, the pressure is changed to a predetermined pressure, and the liquid crystal resin is discharged from the reaction system.
  • the liquid crystal resin produced by the above polymerization method can further increase its molecular weight by solid-phase polymerization in which it is heated under normal pressure, reduced pressure, or in an inert gas.
  • Preferred conditions for the solid phase polymerization reaction are a reaction temperature of 230 to 350 ° C., preferably 260 to 330 ° C., and a final ultimate pressure of 10 to 760 Torr (that is, 1,330 to 101,080 Pa).
  • the liquid crystal resin in the present invention exhibits optical anisotropy when melted.
  • a resin exhibits optical anisotropy when melted, it means that the resin is a liquid crystal resin.
  • the liquid crystal resin in the present invention has both thermal stability and easy workability.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the confirmation of melt anisotropy can be carried out by melting a sample placed on a hot stage manufactured by Rinkamu using a polarizing microscope manufactured by Olympus and observing it at a magnification of 150 times in a nitrogen atmosphere.
  • the liquid crystal resin is optically anisotropic and transmits light when inserted between orthogonal modulators. If the sample is optically anisotropic, polarized light is transmitted even in a molten static liquid state, for example.
  • a nematic liquid crystal resin causes a significant decrease in viscosity above the melting point, generally, showing liquid crystallinity at a temperature above the melting point is an index of processability. It is preferable that the melting point is as high as possible from the viewpoint of heat resistance, but it is preferable that the melting point is 360 ° C. or lower in consideration of thermal deterioration during melt processing of the liquid crystal resin and the heating capacity of the extruder. .. It is more preferably 300 to 360 ° C, and even more preferably 320 to 358 ° C.
  • the film-forming temperature in the present invention and the melt viscosity of the liquid crystal resin at a shear rate of 1000 / sec are preferably 500 Pa ⁇ s or less, more preferably 50 to 400 Pa ⁇ s, and even more preferably 100 to 100. It is 300 Pa ⁇ s.
  • the melt viscosity is within the above range, the liquid crystal resin itself or the composition containing the liquid crystal resin can easily secure the film-forming property at the time of extrusion.
  • the melt viscosity a value obtained by measuring in accordance with ISO11443 is adopted.
  • the liquid crystal resin pellet may be composed of only the liquid crystal resin (A), or other polymers and fillers (granular filler, plate-like filler, etc., as long as the effects of the present invention are not impaired.
  • Fibrous fillers, etc. known substances that are generally added to synthetic resins, that is, stabilizers such as antioxidants and UV absorbers, antistatic agents, flame retardants, colorants such as dyes and pigments, lubricants, etc.
  • Other components such as a crystallization accelerator, a crystal nucleating agent, and a mold release agent can also be appropriately added depending on the required performance. Other components may be used alone or in combination of two or more.
  • the method for preparing liquid crystal resin pellets is important for adjusting the melting enthalpy ⁇ H measured by DSC for liquid crystal resin pellets to 0.0 to 4.5 J / g.
  • the present inventors have found that the higher the crystallinity of the liquid crystal resin in the liquid crystal resin pellets, the higher the value of the molten enthalpy ⁇ H tends to be.
  • the liquid crystal resin produced by the solid phase polymerization method has high crystallinity, and the liquid crystal resin pellets containing the liquid crystal resin have a high melting enthalpy ⁇ H. Therefore, for the liquid crystal resin pellets containing the liquid crystal resin produced by the solid phase polymerization method, the melting enthalpy ⁇ H is 0.0 to 4.5 J / g by undergoing an operation of reducing the crystallinity of the liquid crystal resin. Therefore, it can be suitably used as the liquid crystal resin pellet according to the present invention.
  • liquid crystal resin pellets containing a liquid crystal resin produced by a solid phase polymerization method are pre-kneaded, extruded, rapidly cooled, and then made into pellets to form the above-mentioned melting enthalpy ⁇ H.
  • a liquid crystal resin pellet having a concentration of 0.0 to 4.5 J / g can be prepared.
  • the process of pre-kneading a liquid crystal resin pellet containing a liquid crystal resin produced by a solid phase polymerization method, extruding it, and quenching it to form a pellet is also referred to as “repellet”.
  • the extruder used for the above-mentioned pre-kneading is not particularly limited, and may be a single-screw extruder or a twin-screw extruder. However, since the crystallinity of the liquid crystal resin is more likely to be reduced, the twin-screw extruder is used. preferable.
  • the conditions for quenching are not particularly limited as long as the temperature of the liquid crystal resin can be lowered without improving the crystallinity of the liquid crystal resin.
  • the cooling water temperature is 30 to 90 ° C. and the cooling time is 30 to 90 ° C. Conditions such as quenching in 0.3 to 3 seconds can be mentioned.
  • the liquid crystal resin produced by the melt polymerization method is unlikely to have high crystallinity, and the liquid crystal resin pellets containing the liquid crystal resin have the above-mentioned melt enthalpy ⁇ H of 0.0 to 4 without any special operation. It tends to be .5 J / g, and can be suitably used as the liquid crystal resin pellet according to the present invention. If a high molecular weight liquid crystal resin is to be obtained by the melt polymerization method, it requires a longer time of polymerization than a case where a liquid crystal resin having the same high molecular weight is obtained by the solid phase polymerization method. Bonding etc. may occur.
  • the liquid crystal resin pellet containing the liquid crystal resin produced by the solid phase polymerization method is used rather than the liquid crystal resin pellet containing the liquid crystal resin produced by the melt polymerization method as it is.
  • the liquid crystal resin pellets obtained by repelling can be more preferably used.
  • the bulk density of the liquid crystal resin pellet is preferably 0.65 to 1.00 g / mL, more preferably 0.68 to 0.95 g / mL, and even more preferably 0. It is .70 to 0.90 g / mL.
  • the bulk density of the liquid crystal resin pellets can be set to a desired value by appropriately adjusting the shape, dimensions, etc.
  • the bulk density of the liquid crystal resin pellets is defined as the bulk density of the liquid crystal resin pellets after the liquid crystal resin pellets are placed in a 50 mL graduated cylinder and the graduated cylinder is vibrated so that the liquid crystal resin pellets are densely filled. The bulk density of the measured liquid crystal resin pellets.
  • the melting point Tm of the liquid crystal resin pellet is not particularly limited, and is preferably 250 ° C. or higher from the viewpoint of heat resistance, prevention of thermal deterioration during melt processing of the liquid crystal resin, heating capacity of the extruder, and the like. , More preferably 260 to 370 ° C, and even more preferably 270 to 360 ° C.
  • the shape of the liquid crystal resin pellet is not particularly limited, and examples of the liquid crystal resin pellet include a columnar liquid crystal resin pellet and a spherical liquid crystal resin pellet.
  • the columnar liquid crystal resin pellet means a substantially columnar liquid crystal resin pellet.
  • the substantially cylindrical shape includes not only a cylinder but also a shape that can be approximated to a cylinder (for example, a cylinder having an uneven surface, a flat elliptical pillar, etc.).
  • the spherical liquid crystal resin pellet means a liquid crystal resin pellet having a substantially spherical shape or a substantially elliptical spherical shape.
  • the substantially spherical shape means that it is a true sphere, but it may be a shape that can be approximated to a true sphere even if it is not a perfect sphere (for example, a sphere having an uneven surface). Further, the substantially elliptical sphere means a sphere that is not a true sphere. That is, the substantially elliptical sphere includes all shapes that can be approximated to an elliptical sphere (for example, an elliptical sphere having an uneven surface).
  • the liquid crystal resin pellet is a columnar liquid crystal resin pellet and the case where the liquid crystal resin pellet is a spherical liquid crystal resin pellet will be described separately.
  • the height of the columnar liquid crystal resin pellet is preferably 2.0 to 4.5 mm, and the height of the columnar liquid crystal resin pellet is preferably 2.0 to 4.5 mm.
  • the diameter of the circle on the bottom surface is preferably 1.5 to 3.0 mm, and the screw groove depth in the supply section of the extruder is 1.1 times or more the height of the columnar liquid crystal resin pellets. Is preferable.
  • the height of the columnar liquid crystal resin pellets is more preferably 2.5 to 4.2 mm, still more preferably 3.0 to 4.0 mm, because the generation of lumps and the thickness variation in the MD direction are more likely to be reduced. Is.
  • the diameter of the circle on the bottom surface of the columnar liquid crystal resin pellet is more preferably 2.0 to 3.0 mm, still more preferably 2.4 to, because the generation of lumps and the thickness variation in the MD direction are more likely to be reduced. It is 2.9 mm.
  • the screw groove depth in the supply section of the extruder is more preferably 1.2 to the height of the columnar liquid crystal resin pellets because the generation of lumps and the thickness variation in the MD direction are more likely to be reduced. It is 2.0 times, and even more preferably 1.3 to 1.7 times.
  • the diameter of the spherical liquid crystal resin pellet is preferably 2.0 to 4.5 mm, and the extruder is supplied.
  • the screw groove depth in the portion is preferably 1.1 times or more the diameter of the spherical liquid crystal resin pellets.
  • the diameter of the spherical liquid crystal resin pellet is more preferably 3.0 to 4.3 mm, still more preferably 4.0 to 4.2 mm, because the generation of lumps and the thickness variation in the MD direction are more likely to be reduced. ..
  • the screw groove depth in the supply section of the extruder is more preferably 1.15 to 2. It is 0 times, more preferably 1.2 to 1.3 times.
  • melt extruded film In the method for producing a melt-extruded film in the present invention, liquid crystal resin pellets are melted by a single-screw extruder, the molten resin is discharged from the extruder and supplied to a die, and the molten resin is extruded from the die into a sheet.
  • the film is manufactured by cooling and solidifying.
  • the liquid crystal resin melted by the extruder is discharged from the die in the form of a sheet, cast on a rotating cooling drum, and rapidly cooled and solidified to obtain a melt extruded film.
  • the melt-extruded film may be subjected to longitudinal stretching and transverse stretching as appropriate, or may be finally wound into a roll.
  • the above extruder is a single-screw screw type extruder and has a single-screw screw in the cylinder.
  • the cylinder is provided with a supply port, and the liquid crystal resin pellets are supplied into the cylinder through the supply port.
  • a supply unit that quantitatively transports the liquid crystal resin supplied from the supply port, a compression unit that kneads and compresses the liquid crystal resin, and a kneaded and compressed liquid crystal resin as the discharge port. It is composed of a transport measuring unit that measures the discharge amount while transporting.
  • the screw compression ratio of the extruder is set to 2.5 to 5.0, and the L / D is set to 18 to 45.
  • the screw compression ratio refers to the degree to which the liquid crystal resin is compressed in a molten state for kneading by applying back pressure, and is the volume ratio between the supply unit and the transport measuring unit (that is, the unit length of the supply unit).
  • L / D is a ratio of the cylinder length (L) to the cylinder inner diameter (D).
  • the screw compression ratio is less than 2.5, it is not sufficiently kneaded, undissolved portions are generated, shear heat generation is small, and crystal melting is likely to be insufficient, and lumps are generated and / or in the MD direction. It is difficult to reduce the thickness fluctuation in.
  • the screw compression ratio is more than 5.0, the shear stress is excessively applied and the liquid crystal resin is deteriorated due to heat generation, or the liquid crystal resin molecules are easily cut and the molecular weight is easily lowered. As a result, the molten resin becomes non-uniform, and there is a risk that the discharge pressure of the extruder will fluctuate significantly.
  • the screw compression ratio is preferably in the range of 2.6 to 4.0, which is more preferable. Is in the range of 2.7 to 3.5, particularly preferably in the range of 2.8 to 3.0.
  • the L / D is less than 18, the melting and kneading will be insufficient, and fine crystals will easily remain as in the case where the screw compression ratio is small, and it will be difficult to reduce the generation of lumps and / or the thickness variation in the MD direction. ..
  • the L / D is more than 45, the residence time of the liquid crystal resin in the extruder becomes too long, and the resin is liable to deteriorate. Further, when the residence time is long, the liquid crystal resin molecules are cleaved and the molecular weight tends to decrease.
  • the L / D is preferably in the range of 21 to 40, preferably 25 to 35.
  • the range particularly preferably the range of 28-30.
  • the liquid crystal resin is melted by the extruder configured as described above, and the molten resin is continuously sent from the discharge port to the die, for example, with a discharge pressure fluctuation of 10% or less. Then, the molten resin sent to the die by the extruder is extruded from the die into a sheet, for example, cast on a cooling drum and cooled and solidified, and a melt extrusion film is formed.
  • the melting point Tm (° C.) of the liquid crystal resin pellet and the set temperature Td (° C.) of the die satisfy Tm-10 ⁇ Td ⁇ Tm + 15.
  • Td ⁇ Tm-10
  • Tm ° C.
  • Td ° C.
  • Td ° C.
  • the melt-extruded film according to the present invention comprises liquid crystal resin pellets according to the present invention.
  • the thickness variation is referred to as the thickness variation in the MD direction, and the average thickness is preferably 40% or less, more preferably 35% or less, still more preferably 30% or less.
  • the thickness variation means that after observing the center portion of the melt-extruded film with transmitted light and analyzing the light and dark information of the macro-photographed image, the thickness of a total of 10 bright and dark parts in the MD direction is constant pressure thickness. A value calculated as the ratio (%) of the difference between the maximum value and the minimum value with respect to the average thickness by graphing the thicknesses of the 10 measured points measured with a measuring instrument.
  • the number of particles having a particle diameter of 50 ⁇ m or more is preferably 5 or less, more preferably 3 or less, and even more preferably 1 or less per 1.0 cm 2 area.
  • the number of particles having a particle diameter of 50 ⁇ m or more means a value measured in the range of 5 cm ⁇ 5 cm by observing the melt-extruded film with a differential interference microscope.
  • the melt-extruded film according to the present invention is not particularly limited in its use, and is used in various fields, for example, as an industrial film such as an insulating film, a waterproof film, and a heat-resistant film, or as a film for a packaging material such as a gas barrier film. can do.
  • the melt-extruded film according to the present invention has a relative permittivity of preferably 3.3 or less, more preferably 3.2 or less, and even more preferably 3.1 or less at a measurement frequency of 3 GHz.
  • the low dielectric constant is also one of the features of the melt-extruded film according to the present invention.
  • the melt-extruded film according to the present invention has a dielectric loss tangent of preferably 0.002 or less, more preferably 0.0015 or less, and even more preferably 0.001 or less at a measurement frequency of 3 GHz.
  • the low dielectric loss tangent is also one of the features of the melt extruded film according to the present invention.
  • Liquid crystal resin pellet 1S After charging the following raw materials into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and the reaction was carried out at 140 ° C. for 1 hour. Then, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 5 Torr (that is, 667 Pa) over 30 minutes while distilling acetic acid, excess acetic anhydride, and other low boiling points. Melt polymerization was performed.
  • the stirring torque After the stirring torque reaches a predetermined value, nitrogen is introduced and the pressure is changed from the reduced pressure state to the normal pressure state, the polymer is discharged from the lower part of the polymerization vessel, and pelletized by the strand cut method to obtain pellets. rice field.
  • the obtained pellets were heat-treated (solid phase polymerization) at 300 ° C. for 8 hours under a nitrogen stream to obtain liquid crystal resin pellets 1S.
  • the melting point of the obtained pellet was 353 ° C.
  • HNA 6-Hydroxy-2-naphthoic acid
  • HBA 4-Hydroxybenzoic acid
  • TA 1,4-phenylenedicarboxylic acid
  • BP 4,4'-Dihydroxybiphenyl
  • Metal catalyst potassium acetate catalyst
  • 165 mg Acylating agent acetic anhydride
  • Liquid crystal resin pellet 1R After the liquid crystal resin pellet 1S was put into a twin-screw extruder (TEX-30 ⁇ manufactured by Japan Steel Works, Ltd.) and melt-kneaded under the conditions of a cylinder temperature of 370 ° C, a screw rotation speed of 250 rpm, and a discharge rate of 30 kg / h. The mixture was rapidly cooled under the conditions of a cooling water temperature of 45 ° C. and a cooling time of 1 second, pelletized by a strand cut method and repelleted to obtain a liquid crystal resin pellet 1R.
  • TEX-30 ⁇ manufactured by Japan Steel Works, Ltd.
  • the stirring torque After the stirring torque reaches a predetermined value, nitrogen is introduced to reduce the pressure to a pressurized state through normal pressure, the polymer is discharged from the lower part of the polymerization vessel, and the polymer is pelletized by a strand cut method to obtain a liquid crystal resin. Pellets 1M were obtained.
  • the stirring torque was set to a predetermined value when the melt viscosity was about the same as that of the liquid crystal resin pellet 1S.
  • HNA 6-Hydroxy-2-naphthoic acid
  • HBA 4-Hydroxybenzoic acid
  • TA 1,4-phenylenedicarboxylic acid
  • BP 4,4'-Dihydroxybiphenyl
  • Metal catalyst potassium acetate catalyst
  • 165 mg Acylating agent acetic anhydride
  • the obtained pellets were heat-treated (solid phase polymerization) at 300 ° C. for 10 hours under a nitrogen stream to obtain liquid crystal resin pellets 2S.
  • the melting point of the obtained pellet was 322 ° C.
  • Metal catalyst (potassium acetate catalyst); 22.5 mg Acylating agent (acetic anhydride); 1435 g
  • Liquid crystal resin pellet 2R After the liquid crystal resin pellet 2S was put into a twin-screw extruder (TEX-30 ⁇ manufactured by Japan Steel Works, Ltd.) and melt-kneaded under the conditions of a cylinder temperature of 340 ° C., a screw rotation speed of 250 rpm, and a discharge rate of 30 kg / h. The mixture was rapidly cooled under the conditions of a cooling water temperature of 45 ° C. and a cooling time of 1 second, pelletized by a strand cut method and repelleted to obtain a liquid crystal resin pellet 2R.
  • TEX-30 ⁇ manufactured by Japan Steel Works, Ltd.
  • the stirring torque After the stirring torque reaches a predetermined value, nitrogen is introduced to reduce the pressure to a pressurized state through normal pressure, the polymer is discharged from the lower part of the polymerization vessel, and the polymer is pelletized by a strand cut method to obtain a liquid crystal resin. Pellets 2M were obtained.
  • the stirring torque was set to a predetermined value when the melt viscosity was about the same as that of the liquid crystal resin pellet 2S.
  • HNA 6-Hydroxy-2-naphthoic acid
  • HBA 4-Hydroxybenzoic acid
  • TA 1,4-phenylenedicarboxylic acid
  • TA 16 g
  • Metal catalyst potassium acetate catalyst
  • 22.5 mg Acylating agent acetic anhydride
  • Liquid crystal resin pellets 4M After charging the following raw materials into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and the reaction was carried out at 140 ° C. for 1 hour. Then, the temperature is further raised to 330 ° C. over 3.5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 15 minutes while distilling acetic acid, excess acetic anhydride, and other low boiling points. Melt polymerization was performed. After the stirring torque reaches a predetermined value, nitrogen is introduced to reduce the pressure to a pressurized state through normal pressure, the polymer is discharged from the lower part of the polymerization vessel, the strands are pelletized, and the liquid crystal resin pellet 4M is used.
  • 10 Torr that is, 1330 Pa
  • ⁇ Melting enthalpy ⁇ H> Melting of the endothermic peak temperature observed when the obtained liquid crystal resin pellets are heated from room temperature at a heating rate of 20 ° C / min using a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Co., Ltd.). The enthalpy ⁇ H was measured.
  • the liquid crystal resin pellets of the examples contain a large amount of structural units derived from 6-hydroxy-2-naphthoic acid, but have lumps and thickness in the MD direction. It was confirmed that it was possible to give a melt-extruded film with reduced fluctuation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

6-ヒドロキシ-2-ナフトエ酸に由来する構成単位を多く含みつつも、ブツの発生及びMD方向における厚み変動が低減された溶融押出フィルムを与えることができる溶融押出フィルム用液晶性樹脂ペレットを提供する。 本発明に係る溶融押出フィルム用液晶性樹脂ペレットは、(A)液晶性樹脂を含有し、前記(A)液晶性樹脂は、下記構成単位(I)を含み、全構成単位に対し、構成単位(I)の含有量が40~85モル%であり、DSCにより測定した融解エンタルピーΔHが0.0~4.5J/gである。

Description

液晶性樹脂ペレット及びそれからなる溶融押出フィルム
 本発明は、液晶性樹脂ペレット及びそれからなる溶融押出フィルムに関する。
 液晶性ポリエステル樹脂に代表される液晶性樹脂は、優れた機械的強度、耐熱性、耐薬品性、電気的性質等をバランス良く有し、優れた寸法安定性も有するため高機能エンジニアリングプラスチックとして広く利用されている。また、例えば、Tダイ法やインフレーション法等の溶融押出法により、液晶性樹脂からなる溶融押出フィルムを製造することも行われている(例えば、特許文献1及び2)。
特開平05-043664号公報 特開昭63-168327号公報
 本発明者らの検討によれば、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位を多く含む溶融押出フィルムをTダイ法やインフレーション法によって製造する際に、従来の液晶性樹脂ペレットを用いると、ブツ(即ち、溶融押出フィルムに混在する粒子)が発生しやすく、MD方向(即ち、溶融押出フィルムの流れ方向)において厚みが変動しやすいことが判明した。本発明は、上記課題を解決するためになされたものであり、その目的は、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位を多く含みつつも、ブツの発生及びMD方向における厚み変動が低減された溶融押出フィルムを与えることができる溶融押出フィルム用液晶性樹脂ペレットを提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位を多く含みつつも、DSCにより測定した融解エンタルピーΔHが所定の範囲内である溶融押出フィルム用液晶性樹脂ペレットにより、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。
 (1) (A)液晶性樹脂を含有する溶融押出フィルム用液晶性樹脂ペレットであって、
 前記(A)液晶性樹脂は、下記構成単位(I)を含み、
 全構成単位に対し、構成単位(I)の含有量が40~85モル%であり、
 DSCにより測定した融解エンタルピーΔHが0.0~4.5J/gである、
溶融押出フィルム用液晶性樹脂ペレット。
Figure JPOXMLDOC01-appb-C000004
 (2) 前記(A)液晶性樹脂は、下記構成単位(I)、(II)、(III)、及び(IV)からなり、
 全構成単位に対し、
 構成単位(I)の含有量は、40~75モル%であり、
 構成単位(II)の含有量は、0.1~8モル%であり、
 構成単位(III)の含有量は、8.5~30モル%であり、
 構成単位(IV)の含有量は、8.5~30モル%であり、
 構成単位(I)、(II)、(III)、及び(IV)の合計の含有量は、100モル%である、
(1)に記載の液晶性樹脂ペレット。
Figure JPOXMLDOC01-appb-C000005
(式中、Ar及びArは、それぞれ独立して、アリーレン基を表す)
 (3) 前記(A)液晶性樹脂は、下記構成単位(I)及び(II)を含み、下記構成単位(III)及び(IV)の各々を含み又は含まず、
 全構成単位に対し、
 構成単位(I)の含有量は、60~85モル%であり、
 構成単位(II)の含有量は、12~40モル%であり、
 構成単位(III)及び(IV)の合計の含有量は、0.1~3モル%であり、
 構成単位(I)、(II)、(III)、及び(IV)の合計の含有量は、100モル%である、
(1)に記載の液晶性樹脂ペレット。
Figure JPOXMLDOC01-appb-C000006
(式中、Ar及びArは、それぞれ独立して、アリーレン基を表す)
 (4) (1)から(3)のいずれかに記載の液晶性樹脂ペレットからなる溶融押出フィルム。
 (5) 厚み変動は、平均厚みの40%以下である、(4)に記載の溶融押出フィルム。
 (6) 粒子径50μm以上のブツの数は、面積1.0cm当たり5個以下である、(4)又は(5)に記載の溶融押出フィルム。
 (7) 測定周波数3GHzにおける比誘電率は、3.3以下である、(4)から(6)のいずれかに記載の溶融押出フィルム。
 本発明によれば、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位を多く含みつつも、ブツの発生及びMD方向における厚み変動が低減された溶融押出フィルムを与えることができる溶融押出フィルム用液晶性樹脂ペレットを提供することができる。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
<溶融押出フィルム用液晶性樹脂ペレット>
 本発明に係る溶融押出フィルム用液晶性樹脂ペレットは、(A)液晶性樹脂を含有し、DSCにより測定した融解エンタルピーΔHが0.0~4.5J/gである。当該融解エンタルピーΔHが4.5J/gを超えると、ブツの発生及び/又はMD方向における厚み変動を低減しにくい。ブツの発生及びMD方向における厚み変動がより低減しやすいことから、融解エンタルピーΔHは、好ましくは0.5~4.2J/g、より好ましくは1.0~4.0J/gである。
[(A)液晶性樹脂]
 溶融押出フィルム用液晶性樹脂ペレットは、(A)液晶性樹脂を含有する。(A)液晶性樹脂は、1種単独で又は2種以上組み合わせて使用することができる。
 本発明における(A)液晶性樹脂は、下記構成単位(I)を含む。
Figure JPOXMLDOC01-appb-C000007
 構成単位(I)は、6-ヒドロキシ-2-ナフトエ酸(以下、「HNA」ともいう。)から誘導される。本発明における(A)液晶性樹脂は、全構成単位に対して構成単位(II)を40~85モル%含む。構成単位(I)の含有量が40モル%未満であると、溶融押出フィルムの誘電特性及び耐熱性が不足しやすい。構成単位(I)の含有量が85モル%超であると、重合時に固化が発生しやすく、ポリマーが得られない場合がある。誘電特性、耐熱性、及び製造性の観点から、構成単位(I)の含有量は、好ましくは40~83モル%、より好ましくは45~80モル%である。
 一実施形態において、(A)液晶性樹脂は、下記構成単位(I)、(II)、(III)、及び(IV)からなり、
 全構成単位に対し、
 構成単位(I)の含有量は、40~75モル%であり、
 構成単位(II)の含有量は、0.1~8モル%であり、
 構成単位(III)の含有量は、8.5~30モル%であり、
 構成単位(IV)の含有量は、8.5~30モル%であり、
 構成単位(I)、(II)、(III)、及び(IV)の合計の含有量は、100モル%である(以下、「液晶性樹脂1」ともいう。)。
Figure JPOXMLDOC01-appb-C000008
(式中、Ar及びArは、それぞれ独立して、アリーレン基を表す)
 構成単位(I)は、上記と同様、HNAから誘導される。液晶性樹脂1は、全構成単位に対して構成単位(I)を40~75モル%含む。構成単位(I)の含有量がこの範囲内であると、溶融押出フィルムの誘電特性、耐熱性、及び製造性が良好となりやすい。誘電特性、耐熱性、及び製造性の観点から、構成単位(I)の含有量は、全構成単位に対し、好ましくは40~60モル%、より好ましくは45~60モル%である。
 構成単位(II)は、4-ヒドロキシ安息香酸(以下、「HBA」ともいう。)から誘
導される。液晶性樹脂1は、全構成単位に対し、構成単位(II)を0.1~8モル%含む。構成単位(II)の含有量がこの範囲内であると、耐熱性及び製造性が良好となりやすい。耐熱性及び製造性の観点から、構成単位(II)の含有量は、全構成単位に対し、好ましくは1~6モル%である。
 構成単位(III)は、ジカルボン酸から誘導される構成単位である。Arとしては1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基等が挙げられる。構成単位(III)は、耐熱性の点で、1,4-フェニレンジカルボン酸(以下、「TA」ともいう。)から誘導されることが好ましい。構成単位(III)の含有量は、全構成単位に対し、8.5~30モル%であり、好ましくは17.5~30モル%である。
 構成単位(IV)は、ジオールから誘導される構成単位である。ジオールとしては、ハイドロキノン、ジヒドロキシビフェニル等が用いられ、ジヒドロキシビフェニル、特に、4,4’-ジヒドロキシビフェニル(以下、「BP」ともいう。)が耐熱性の点で好ましい。構成単位(IV)の含有量は、全構成単位に対し、8.5~30モル%であり、好ましくは17.5~30モル%である。
 液晶性樹脂1は、特定の構成単位である(I)~(IV)を、全構成単位に対し、特定の量含有するため、誘電特性、耐熱性、及び製造性のいずれにも優れる。なお、液晶性樹脂1は、全構成単位に対して構成単位(I)~(IV)を合計で100モル%含む。
 別の実施形態において、(A)液晶性樹脂は、下記構成単位(I)及び(II)を含み、下記構成単位(III)及び(IV)の各々を含み又は含まず、
 全構成単位に対し、
 構成単位(I)の含有量は、60~85モル%であり、
 構成単位(II)の含有量は、12~40モル%であり、
 構成単位(III)及び(IV)の合計の含有量は、0.1~3モル%であり、
 構成単位(I)、(II)、(III)、及び(IV)の合計の含有量は、100モル%である(以下、「液晶性樹脂2」ともいう。)。
Figure JPOXMLDOC01-appb-C000009
(式中、Ar及びArは、それぞれ独立して、アリーレン基を表す)
 液晶性樹脂2は、全構成単位に対して構成単位(I)を60~85モル%含む。構成単位(I)の含有量がこの範囲内であると、溶融押出フィルムの誘電特性、耐熱性、及び製造性が良好となりやすい。誘電特性、耐熱性、及び製造性の観点から、構成単位(I)の含有量は、好ましくは63~85モル%、より好ましくは63~83モル%、更により好ましくは65~83モル%、一層更により好ましくは65~80モル%、特に好ましくは68~80モル%である。
 液晶性樹脂2は、全構成単位に対して構成単位(II)を12~40モル%含む。構成単位(II)の含有量がこの範囲内であると、耐熱性及び製造性が良好となりやすい。耐熱性及び製造性の観点から、構成単位(II)の含有量は、好ましくは15~40モル%、より好ましくは15~35モル%、更により好ましくは18~35モル%、一層更により好ましくは18~30モル%、特に好ましくは20~30モル%である。
 液晶性樹脂2は、全構成単位に対して構成単位(III)及び構成単位(IV)の合計を0.1~3モル%含む。構成単位(III)及び構成単位(IV)の合計の含有量がこの範囲内であると、熱安定性が低下しにくい一方で、分子量(溶融粘度)が上昇しやすい。熱安定性と分子量の観点から、構成単位(III)及び構成単位(IV)の合計の含有量は、好ましくは0.2~2.5モル%、より好ましくは0.2~2モル%、更により好ましくは0.3~2モル%、一層更により好ましくは0.3~1.5モル%、特に好ましくは0.4~1.5モル%である。
 以上の通り、液晶性樹脂2は、特定の構成単位である(I)~(IV)を、全構成単位に対して特定の量含有するため、誘電特性、耐熱性、及び製造性のいずれにも優れる。なお、液晶性樹脂2は、全構成単位に対して構成単位(I)~(IV)を合計で100モル%含む。
 次いで、本発明における液晶性樹脂の製造方法について説明する。本発明における液晶性樹脂は、直接重合法やエステル交換法等を用いて重合される。重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。
 本発明では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の脂肪酸無水物等が挙げられる。
 これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、1-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒を挙げることができる。
 反応条件としては、例えば、反応温度200~380℃、最終到達圧力0.1~760Torr(即ち、13~101,080Pa)である。特に溶融反応では、例えば、反応温度260~380℃、好ましくは300~360℃、最終到達圧力1~100Torr(即ち、133~13,300Pa)、好ましくは1~50Torr(即ち、133~6,670Pa)である。
 反応は、全原料モノマー(HBA、HNA、TA、IA、及びBP)、アシル化剤、及び触媒を同一反応容器に仕込んで反応を開始させることもできるし(一段方式)、原料モノマーHBA、HNA、及びBPの水酸基をアシル化剤によりアシル化させた後、TA及びIAのカルボキシル基と反応させることもできる(二段方式)。
 溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にして行う。撹拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系から液晶性樹脂を排出する。
 上記重合方法により製造された液晶性樹脂は、更に常圧又は減圧、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。固相重合反応の好ましい条件は、反応温度230~350℃、好ましくは260~330℃、最終到達圧力10~760Torr(即ち、1,330~101,080Pa)である。
 次いで、液晶性樹脂の性質について説明する。本発明における液晶性樹脂は、溶融時に光学的異方性を示す。ある樹脂が溶融時に光学的異方性を示すことは、その樹脂が液晶性樹脂であることを意味する。本発明における液晶性樹脂は、熱安定性と易加工性を併せ持つ。
 溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認は、オリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。液晶性樹脂は光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。
 ネマチックな液晶性樹脂は融点以上で著しく粘性低下を生じるので、一般的に融点又はそれ以上の温度で液晶性を示すことが加工性の指標となる。融点は、でき得る限り高い方が耐熱性の観点からは好ましいが、液晶性樹脂の溶融加工時の熱劣化や押出機の加熱能力等を考慮すると、360℃以下であることが好ましい目安となる。なお、より好ましくは300~360℃であり、更により好ましくは320~358℃である。
 本発明における製膜温度、かつ、剪断速度1000/秒における前記液晶性樹脂の溶融粘度は、好ましくは500Pa・s以下であり、より好ましくは50~400Pa・sであり、更により好ましくは100~300Pa・sである。上記溶融粘度が上記範囲内であると、前記液晶性樹脂そのもの、又は、前記液晶性樹脂を含有する組成物は、その押出時において、製膜性が確保されやすい。なお、本明細書において、前記溶融粘度としては、ISO11443に準拠して測定して得られた値を採用する。
[その他の成分]
 液晶性樹脂ペレットは、(A)液晶性樹脂のみからなるものであってもよいし、本発明の効果を害さない範囲で、その他の重合体、充填剤(粒状充填剤、板状充填剤、繊維状充填剤等)、一般に合成樹脂に添加される公知の物質、即ち、酸化防止剤や紫外線吸収剤等の安定剤、帯電防止剤、難燃剤、染料や顔料等の着色剤、潤滑剤、結晶化促進剤、結晶核剤、離型剤等のその他の成分も要求性能に応じ適宜添加することもできる。その他の成分は1種単独で用いても2種以上を組み合わせて用いてもよい。
・液晶性樹脂ペレットの調製方法
 液晶性樹脂ペレットの調製方法は、液晶性樹脂ペレットについてDSCにより測定した融解エンタルピーΔHを0.0~4.5J/gに調整するために重要である。本発明者らは、液晶性樹脂ペレット中の液晶性樹脂の結晶性が高いと、上記融解エンタルピーΔHの値が高くなる傾向にあることを見出した。
 固相重合法により製造した液晶性樹脂は結晶性が高く、当該液晶性樹脂を含む液晶性樹脂ペレットは、上記融解エンタルピーΔHが高い。そこで、固相重合法により製造した液晶性樹脂を含む液晶性樹脂ペレットについては、液晶性樹脂の結晶性を低減させる操作を経ることで、上記融解エンタルピーΔHが0.0~4.5J/gとなり、本発明に係る液晶性樹脂ペレットとして、好適に用いることができるようになる。具体的には、例えば、押出機を用いて、固相重合法により製造した液晶性樹脂を含む液晶性樹脂ペレットを予備混練して押し出し、急冷した後、ペレットとすることで、上記融解エンタルピーΔHが0.0~4.5J/gの液晶性樹脂ペレットを調製することができる。以下、固相重合法により製造した液晶性樹脂を含む液晶性樹脂ペレットを予備混練して押し出し、急冷してペレットとすることを「リペレット」ともいう。
 上述の予備混練に用いられる押出機としては、特に限定されず、単軸スクリュー押出機でも二軸押出機でもよいが、液晶性樹脂の結晶性がより低減しやすいことから、二軸押出機が好ましい。
 急冷の条件は、液晶性樹脂の結晶性が向上せずに液晶性樹脂の温度を低下させることができるものであれば特に限定されず、例えば、冷却水温度が30~90℃、冷却時間が0.3~3秒で急冷させるような条件が挙げられる。
 一方、溶融重合法により製造した液晶性樹脂は、結晶性が高くなりにくく、当該液晶性樹脂を含む液晶性樹脂ペレットは、特段の操作を経ないでも、上記融解エンタルピーΔHが0.0~4.5J/gとなりやすく、本発明に係る液晶性樹脂ペレットとして、好適に用いることができるようになる。なお、溶融重合法により高分子量の液晶性樹脂を得ようとすれば、固相重合法により同程度の高分子量の液晶性樹脂を得る場合よりも、長時間の重合を必要とするため、異種結合等が生じる場合がある。よって、異種結合等を回避する観点からは、溶融重合法により製造した液晶性樹脂を含む液晶性樹脂ペレットをそのまま用いるよりも、固相重合法により製造した液晶性樹脂を含む液晶性樹脂ペレットをリペレットして得た液晶性樹脂ペレットをより好適に用いることができる。
・液晶性樹脂ペレットの物性
 液晶性樹脂ペレットの嵩密度は、好ましくは0.65~1.00g/mLであり、より好ましくは0.68~0.95g/mLであり、更により好ましくは0.70~0.90g/mLである。上記嵩密度が上記範囲内であると、ブツが発生しにくく、また、MD方向における厚み変動が多くなりにくく、更に、液晶性樹脂ペレットは、例えば、パウダー様にはならず、押出機のスクリューに過負荷がかかりにくく、結果として製膜性が悪化しにくい。液晶性樹脂ペレットの嵩密度は、例えば、液晶性樹脂ペレットの形状、寸法等を、適宜、調整することで、所望の値に設定することができる。なお、本明細書において、液晶性樹脂ペレットの嵩密度とは、液晶性樹脂ペレットを50mLのメスシリンダーに入れて、液晶性樹脂ペレットが密に充填されるようにメスシリンダーに振動を加えた後に測定した液晶性樹脂ペレットの嵩密度をいう。
 液晶性樹脂ペレットの融点Tmは、特に限定されず、耐熱性の観点、液晶性樹脂の溶融加工時の熱劣化防止の観点、押出機の加熱能力の観点等から、好ましくは250℃以上であり、より好ましくは260~370℃であり、更により好ましくは270~360℃である。
・液晶性樹脂ペレットの形状
 液晶性樹脂ペレットの形状は、特に限定されず、液晶性樹脂ペレットとしては、例えば、円柱状液晶性樹脂ペレット、球状液晶性樹脂ペレット等が挙げられる。円柱状液晶性樹脂ペレットとは、略円柱状の液晶性樹脂ペレットをいう。略円柱状とは円柱状のみならず、円柱に近似可能な形状も含む(例えば、表面に凹凸のある円柱や、扁平楕円柱等)。球状液晶性樹脂ペレットとは、略球体状又は略楕円球体状の液晶性樹脂ペレットをいう。略球体状とは真球体であることを意味するが、完全に真球でなくても真球に近似できる形状であればよい(例えば、表面に凹凸のある球体等)。また、略楕円球体状とは真球でない球体状であることを意味する。つまり、略楕円球体状には楕円球体に近似できる全て形状が含まれる(例えば、表面に凹凸のある楕円球体等)。以下、液晶性樹脂ペレットが円柱状液晶性樹脂ペレットである場合と、液晶性樹脂ペレットが球状液晶性樹脂ペレットである場合とに分けて説明する。
 液晶性樹脂ペレットが略円柱状の円柱状液晶性樹脂ペレットである場合、円柱状液晶性樹脂ペレットの高さは、2.0~4.5mmであることが好ましく、円柱状液晶性樹脂ペレットの底面の円の直径は、1.5~3.0mmであることが好ましく、前記押出機の供給部におけるスクリュー溝深さは、円柱状液晶性樹脂ペレットの高さに対して1.1倍以上であることが好ましい。
 ブツの発生及びMD方向における厚み変動がより低減されやすいことから、円柱状液晶性樹脂ペレットの高さは、より好ましくは2.5~4.2mm、更により好ましくは3.0~4.0mmである。
 ブツの発生及びMD方向における厚み変動がより低減されやすいことから、円柱状液晶性樹脂ペレットの底面の円の直径は、より好ましくは2.0~3.0mm、更により好ましくは2.4~2.9mmである。
 ブツの発生及びMD方向における厚み変動がより低減されやすいことから、前記押出機の供給部におけるスクリュー溝深さは、円柱状液晶性樹脂ペレットの高さに対して、より好ましくは1.2~2.0倍、更により好ましくは1.3~1.7倍である。
 液晶性樹脂ペレットが略球体状又は略楕円球体状の球状液晶性樹脂ペレットである場合、球状液晶性樹脂ペレットの直径は、2.0~4.5mmであることが好ましく、前記押出機の供給部におけるスクリュー溝深さは、球状液晶性樹脂ペレットの直径に対して1.1倍以上であることが好ましい。
 ブツの発生及びMD方向における厚み変動がより低減されやすいことから、球状液晶性樹脂ペレットの直径は、より好ましくは3.0~4.3mm、更により好ましくは4.0~4.2mmである。
 ブツの発生及びMD方向における厚み変動がより低減されやすいことから、前記押出機の供給部におけるスクリュー溝深さは、球状液晶性樹脂ペレットの直径に対して、より好ましくは1.15~2.0倍、更により好ましくは1.2~1.3倍である。
<溶融押出フィルムの製造方法>
 本発明における溶融押出フィルムの製造方法では、液晶性樹脂ペレットを単軸の押出機で溶融し、溶融樹脂を前記押出機から吐出してダイに供給し、該ダイからシート状に溶融樹脂を押し出して冷却固化することによりフィルムを製造する。押出機で溶融された液晶性樹脂がダイからシート状に吐出され、例えば、回転する冷却ドラム上でキャストされて急速に冷却固化され、溶融押出フィルムが得られる。この溶融押出フィルムは、冷却固化後、適宜、縦延伸及び横延伸に順に供してもよく、最終的に、ロール状に巻き取ってもよい。
 上記押出機は、単軸スクリュー型の押出機であり、シリンダー内に単軸スクリューを備えている。シリンダーは供給口を備え、液晶性樹脂ペレットは供給口を介してシリンダー内に供給される。シリンダー内は供給口側から順に、供給口から供給された液晶性樹脂を定量輸送する供給部と、液晶性樹脂を混練・圧縮する圧縮部と、混練・圧縮された液晶性樹脂を吐出口に搬送しながら吐出量を計量する搬送計量部とで構成される。
 押出機のスクリュー圧縮比は、2.5~5.0に設定され、L/Dは、18~45に設定される。ここで、スクリュー圧縮比とは、背圧をかけて混練するために液晶性樹脂を溶融状態で圧縮する程度をいい、供給部と搬送計量部との容積比(即ち、供給部の単位長さ当たりの容積/搬送計量部の単位長さ当たりの容積)で表され、供給部のスクリュー軸の外径d1、搬送計量部のスクリュー軸の外径d2、供給部の溝部径a1、及び搬送計量部の溝部径a2を使用して算出される。また、L/Dとは、シリンダー内径(D)に対するシリンダー長さ(L)の比である。
 スクリュー圧縮比が2.5未満であると、十分に混練されず、未溶解部分が発生したり、剪断発熱が小さく結晶の融解が不十分となったりしやすく、ブツの発生及び/又はMD方向における厚み変動を低減しにくい。逆に、スクリュー圧縮比が5.0超であると、剪断応力がかかり過ぎて発熱により液晶性樹脂が劣化したり、液晶性樹脂分子の切断が起こり分子量が低下したりしやすい。これにより、溶融樹脂が不均一となってしまい、押出機の吐出圧の変動が大きくなってしまう恐れがある。したがって、ブツの発生を低減するとともに、押出機の吐出圧変動を小さくし、MD方向における厚み変動を小さくするためには、スクリュー圧縮比は2.6~4.0の範囲が良く、より好ましくは2.7~3.5の範囲、特に好ましくは2.8~3.0の範囲である。
 L/Dが18未満であると、溶融不足や混練不足となり、スクリュー圧縮比が小さい場合と同様に微細な結晶が残存し易くなり、ブツの発生及び/又はMD方向における厚み変動を低減しにくい。逆に、L/Dが45超であると、押出機内での液晶性樹脂の滞留時間が長くなり過ぎ、樹脂の劣化を起こし易くなる。また、滞留時間が長くなると液晶性樹脂分子の切断が起こり分子量が低下しやすい。したがって、ブツの発生を低減するとともに、押出機の吐出圧変動を小さくし、MD方向における厚み変動を小さくするためには、L/Dは21~40の範囲が良く、好ましくは25~35の範囲、特に好ましくは28~30の範囲である。
 上記の如く構成された押出機によって液晶性樹脂が溶融され、その溶融樹脂が吐出口からダイに、例えば、10%以内の吐出圧変動で連続的に送られる。そして、押出機によってダイに送られた溶融樹脂は、ダイからシート状に押し出され、例えば、冷却ドラム上にキャストされて冷却固化され、溶融押出フィルムが製膜される。ここで、液晶性樹脂ペレットの融点Tm(℃)及びダイの設定温度Td(℃)は、Tm-10≦Td≦Tm+15を満たす。Td<Tm-10であると、ダイの設定温度が低すぎて、ブツが発生しやすく、また、MD方向における厚み変動が多いくなりやすく、場合により、溶融押出フィルムの一部に穴が開くことがある。一方、Td>Tm+15であると、ダイの設定温度が高すぎて、MD方向における厚み変動が多くなりやすく、場合により、溶融押出フィルムの一部に穴が開くことがある。Tm(℃)及びTd(℃)は、好ましくはTm-9≦Td≦Tm+14、より好ましくはTm-8≦Td≦Tm+13を満たす。
<溶融押出フィルム>
 本発明に係る溶融押出フィルムは、本発明に係る液晶性樹脂ペレットからなる。本発明に係る溶融押出フィルムについて、厚み変動とは、MD方向における厚み変動といい、平均厚みの好ましくは40%以下、より好ましくは35%以下、更により好ましくは30%以下である。本明細書において、厚み変動とは、溶融押出フィルムのセンター部分を透過光観察し、マクロ撮影した画像の明暗情報を画像解析した後、MD方向に明部及び暗部計10箇所の厚みを定圧厚さ測定器で測定し、測定した10箇所の厚みをグラフ化して、平均厚みに対する最大値と最小値との差の比率(%)として算出される値をいう。
 本発明に係る溶融押出フィルムにおいて、粒子径50μm以上のブツの数は、面積1.0cm当たり好ましくは5個以下、より好ましくは3個以下、更により好ましくは1個以下である。本明細書において、粒子径50μm以上のブツの数とは、微分干渉顕微鏡により溶融押出フィルムを観察し、5cm×5cmの範囲において測定される値をいう。
 本発明に係る溶融押出フィルムは、用途が特に限定ざれず、例えば、絶縁フィルム、防水フィルム、耐熱フィルム等の工業用フィルムとして、又は、ガスバリアフィルム等の包装材料用フィルムとして、種々の分野で利用することができる。
 本発明に係る溶融押出フィルムは、測定周波数3GHzにおける比誘電率が好ましくは3.3以下、より好ましくは3.2以下、更により好ましくは3.1以下である。低誘電率である点も、本発明に係る溶融押出フィルムの特徴の一つである。
 本発明に係る溶融押出フィルムは、測定周波数3GHzにおける誘電正接が好ましくは0.002以下、より好ましくは0.0015以下、更により好ましくは0.001以下である。低誘電正接である点も、本発明に係る溶融押出フィルムの特徴の一つである。
 以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
<液晶性樹脂>
・液晶性樹脂ペレット1S
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから30分かけて5Torr(即ち、667Pa)まで減圧して、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドカット方式によってペレタイズして、ペレットを得た。得られたペレットについて、窒素気流下、300℃で8時間の熱処理(固相重合)を行って、液晶性樹脂ペレット1Sを得た。得られたペレットの融点は353℃であった。
 6-ヒドロキシ-2-ナフトエ酸(HNA);1218g(48モル%)
 4-ヒドロキシ安息香酸(HBA);37g(2モル%)
 1,4-フェニレンジカルボン酸:560g(TA);(25モル%)
 4,4’-ジヒドロキシビフェニル(BP);628g(25モル%)
 金属触媒(酢酸カリウム触媒);165mg
 アシル化剤(無水酢酸);1432g
・液晶性樹脂ペレット1R
 液晶性樹脂ペレット1Sを二軸押出機((株)日本製鋼所製TEX-30α)に投入し、シリンダー温度370℃、スクリュー回転数250rpm、及び吐出量30kg/hという条件で、溶融混練した後、冷却水温度45℃、冷却時間1秒の条件で急冷し、ストランドカット方式によってペレタイズしてリペレットを行い、液晶性樹脂ペレット1Rを得た。
・液晶性樹脂ペレット1M
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから30分かけて5Torr(即ち、667Pa)まで減圧して、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドカット方式によってペレタイズして、液晶性樹脂ペレット1Mを得た。なお、撹拌トルクは、液晶性樹脂ペレット1Sと同程度の溶融粘度となる際に示す値を所定の値とした。
 6-ヒドロキシ-2-ナフトエ酸(HNA);1218g(48モル%)
 4-ヒドロキシ安息香酸(HBA);37g(2モル%)
 1,4-フェニレンジカルボン酸:560g(TA);(25モル%)
 4,4’-ジヒドロキシビフェニル(BP);628g(25モル%)
 金属触媒(酢酸カリウム触媒);165mg
 アシル化剤(無水酢酸);1432g
・液晶性樹脂ペレット2S
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で2時間反応させた。その後、更に340℃まで4.1時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融縮合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドカット方式によってペレタイズして、ペレットを得た。得られたペレットについて、窒素気流下、300℃で10時間の熱処理(固相重合)を行って、液晶性樹脂ペレット2Sを得た。得られたペレットの融点は322℃であった。
 6-ヒドロキシ-2-ナフトエ酸(HNA);1985g(76モル%)
 4-ヒドロキシ安息香酸(HBA);447g(23.3モル%)
 1,4-フェニレンジカルボン酸(TA);16g(0.7モル%)
 金属触媒(酢酸カリウム触媒);22.5mg
 アシル化剤(無水酢酸);1435g
・液晶性樹脂ペレット2R
 液晶性樹脂ペレット2Sを二軸押出機((株)日本製鋼所製TEX-30α)に投入し、シリンダー温度340℃、スクリュー回転数250rpm、及び吐出量30kg/hという条件で、溶融混練した後、冷却水温度45℃、冷却時間1秒の条件で急冷し、ストランドカット方式によってペレタイズしてリペレットを行い、液晶性樹脂ペレット2Rを得た。
・液晶性樹脂ペレット2M
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で2時間反応させた。その後、更に340℃まで4.1時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融縮合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドカット方式によってペレタイズして、液晶性樹脂ペレット2Mを得た。なお、撹拌トルクは、液晶性樹脂ペレット2Sと同程度の溶融粘度となる際に示す値を所定の値とした。
 6-ヒドロキシ-2-ナフトエ酸(HNA);1985g(76モル%)
 4-ヒドロキシ安息香酸(HBA);447g(23.3モル%)
 1,4-フェニレンジカルボン酸(TA);16g(0.7モル%)
 金属触媒(酢酸カリウム触媒);22.5mg
 アシル化剤(無水酢酸);1435g
・液晶性樹脂ペレット3M
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に325℃まで3.5時間かけて昇温し、そこから20分かけて5Torr(即ち667Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドカット方式によってペレタイズして、液晶性樹脂ペレット3Mを得た。得られたペレットの融点は282℃であった。
 2-ヒドロキシ-6-ナフトエ酸(HNA);837g(27モル%)
 4-ヒドロキシ安息香酸(HBA);1660g(73モル%)
 金属触媒(酢酸カリウム触媒);165mg
 アシル化剤(無水酢酸);1714g
・液晶性樹脂ペレット3S
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に325℃まで3.5時間かけて昇温し、そこから20分かけて5Torr(即ち667Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドカット方式によってペレタイズして、ペレタイズしてペレットを得た。得られたペレットについて、窒素気流下、270℃で4時間の熱処理(固相重合)を行って、液晶性樹脂ペレット3Sを得た。
 2-ヒドロキシ-6-ナフトエ酸(HNA);837g(27モル%)
 4-ヒドロキシ安息香酸(HBA);1660g(73モル%)
 金属触媒(酢酸カリウム触媒);165mg
 アシル化剤(無水酢酸);1714g
・液晶性樹脂ペレット4M
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に330℃まで3.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズして、液晶性樹脂ペレット4Mを得た。得られたペレットの融点は323℃であった。
 6-ヒドロキシ-2-ナフトエ酸(HNA);867g(20モル%)
 4-ヒドロキシ安息香酸(HBA);2524g(79.3モル%)
 1,4-フェニレンジカルボン酸(TA);27g(0.7モル%)
 金属触媒(酢酸カリウム触媒);150mg
 アシル化剤(無水酢酸);2336g
<融点>
 示差走査熱量計(DSC、(株)日立ハイテクサイエンス製)を使用し、得られた液晶性樹脂ペレットを室温から20℃/分の昇温速度で加熱した際に観測される吸熱ピーク温度(Tm1)を測定した。次いで、(Tm1+40)℃の温度で2分間保持した。更に、20℃/分の降温速度で室温まで一旦冷却した後、再度、20℃/分の昇温速度で加熱した際に観測される吸熱ピーク温度(Tm2)を融点として測定した。
<融解エンタルピーΔH>
 示差走査熱量計(DSC、(株)日立ハイテクサイエンス製)を使用し、得られた液晶性樹脂ペレットを室温から20℃/分の昇温速度で加熱した際に観測される吸熱ピーク温度の融解エンタルピーΔHを測定した。
<溶融粘度>
 (株)東洋精機製作所製キャピログラフ1B型を使用し、下記温度で、内径1mm、長さ20mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、液晶性樹脂の溶融粘度を測定した。
 液晶性樹脂ペレット1R、1M、1S:350℃
 液晶性樹脂ペレット2R、2M、2S:320℃
 液晶性樹脂ペレット3M、3S:280℃
 液晶性樹脂ペレット4M:320℃
<溶融押出フィルムの製造>
 得られた液晶性樹脂ペレットを原料として用い、単軸スクリュー押出機((株)東洋精機製作所製20mmφ単軸押出機)にて、表1又は2記載のスクリュー圧縮比、L/D、押出機の供給部におけるスクリュー溝深さであるフルフライトスクリュー(スクリュー径D:19.8mm)を用いて、下記条件で溶融させ、押出機先端のTダイ(幅:150mm)から、ダイの設定温度を表1記載の通りに設定して、フィルム状に押し出して冷却し、巻き取り速度を調整して、100μmの厚みの溶融押出フィルムを作製した。
 シリンダー温度:ダイの温度設定と同一
 スクリュー回転数:30rpm
 吐出量:1.6kg/h
<厚み変動>
 得られた溶融押出フィルムのセンター部分を透過光観察し、マクロ撮影した画像の明暗情報を画像解析した後、MD方向に明部及び暗部計10箇所の厚みをTECLOCコーポレーション製定圧厚さ測定器で測定し、測定した10箇所の厚みをグラフ化して、平均厚みに対する最大値と最小値との差の比率(%)として、厚み変動を算出した。結果を表1及び2に示す。
<粒子径50μm以上のブツの数>
 オリンパス製システム顕微鏡BX60を用いて微分干渉モードにより溶融押出フィルムを観察し、5cm×5cmの範囲における粒子径50μm以上のブツの数を測定した。結果を表1及び2に示す。
<誘電特性>
 溶融押出フィルムについて、(株)関東電子応用開発製の以下の構成の空洞共振器摂動法複素誘電率評価装置を用いて、3GHzでの比誘電率及び誘電正接を測定した。結果を表1~3に示す。
 スカラーネットワークアナライザー:アジレントテクノロジー8757D
 周波数シンセサイザー:アジレントテクノロジー83650LスイープCWジェネレー

 固定減衰器:アジレントテクノロジー85025Dディテクター
 空洞共振器:関東電子応用開発CP431
 測定プログラム:関東電子応用開発CPMA-S2/V2
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表1及び2に記載の結果から明らかなように、実施例の液晶性樹脂ペレットは、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位を多く含みつつも、ブツの発生及びMD方向における厚み変動が低減された溶融押出フィルムを与えることができることが確認された。

Claims (7)

  1.  (A)液晶性樹脂を含有する溶融押出フィルム用液晶性樹脂ペレットであって、
     前記(A)液晶性樹脂は、下記構成単位(I)を含み、
     全構成単位に対し、構成単位(I)の含有量が40~85モル%であり、
     DSCにより測定した融解エンタルピーΔHが0.0~4.5J/gである、
    溶融押出フィルム用液晶性樹脂ペレット。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記(A)液晶性樹脂は、下記構成単位(I)、(II)、(III)、及び(IV)からなり、
     全構成単位に対し、
     構成単位(I)の含有量は、40~75モル%であり、
     構成単位(II)の含有量は、0.1~8モル%であり、
     構成単位(III)の含有量は、8.5~30モル%であり、
     構成単位(IV)の含有量は、8.5~30モル%であり、
     構成単位(I)、(II)、(III)、及び(IV)の合計の含有量は、100モル%である、
    請求項1に記載の液晶性樹脂ペレット。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Ar及びArは、それぞれ独立して、アリーレン基を表す)
  3.  前記(A)液晶性樹脂は、下記構成単位(I)及び(II)を含み、下記構成単位(III)及び(IV)の各々を含み又は含まず、
     全構成単位に対し、
     構成単位(I)の含有量は、60~85モル%であり、
     構成単位(II)の含有量は、12~40モル%であり、
     構成単位(III)及び(IV)の合計の含有量は、0.1~3モル%であり、
     構成単位(I)、(II)、(III)、及び(IV)の合計の含有量は、100モル%である、
    請求項1に記載の液晶性樹脂ペレット。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Ar及びArは、それぞれ独立して、アリーレン基を表す)
  4.  請求項1から3のいずれか一項に記載の液晶性樹脂ペレットからなる溶融押出フィルム。
  5.  厚み変動は、平均厚みの40%以下である、請求項4に記載の溶融押出フィルム。
  6.  粒子径50μm以上のブツの数は、面積1.0cm当たり5個以下である、請求項4又は5に記載の溶融押出フィルム。
  7.  測定周波数3GHzにおける比誘電率は、3.3以下である、請求項4から6のいずれか一項に記載の溶融押出フィルム。
PCT/JP2021/044264 2020-12-24 2021-12-02 液晶性樹脂ペレット及びそれからなる溶融押出フィルム WO2022138047A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022572047A JPWO2022138047A1 (ja) 2020-12-24 2021-12-02
CN202180085991.6A CN116615321A (zh) 2020-12-24 2021-12-02 液晶性树脂粒料及由其构成的熔融挤出膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-215498 2020-12-24
JP2020215498 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138047A1 true WO2022138047A1 (ja) 2022-06-30

Family

ID=82159468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044264 WO2022138047A1 (ja) 2020-12-24 2021-12-02 液晶性樹脂ペレット及びそれからなる溶融押出フィルム

Country Status (4)

Country Link
JP (1) JPWO2022138047A1 (ja)
CN (1) CN116615321A (ja)
TW (1) TW202231711A (ja)
WO (1) WO2022138047A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177797A (ja) * 1991-12-27 1993-07-20 Kuraray Co Ltd 容器および包装体
JPH08509020A (ja) * 1993-05-14 1996-09-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 液晶ポリマー組成物
JP2001072750A (ja) * 1999-09-03 2001-03-21 Sumitomo Chem Co Ltd 芳香族液晶性ポリエステルおよびその製造方法
JP2004323663A (ja) * 2003-04-24 2004-11-18 Polyplastics Co 非晶質全芳香族ポリエステルアミド及びその組成物
JP2006152120A (ja) * 2004-11-29 2006-06-15 Polyplastics Co 信号読取装置用樹脂成形部品及びその成形方法
JP2018109090A (ja) * 2016-12-28 2018-07-12 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板
WO2019240153A1 (ja) * 2018-06-14 2019-12-19 ポリプラスチックス株式会社 液晶性樹脂微粒子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177797A (ja) * 1991-12-27 1993-07-20 Kuraray Co Ltd 容器および包装体
JPH08509020A (ja) * 1993-05-14 1996-09-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 液晶ポリマー組成物
JP2001072750A (ja) * 1999-09-03 2001-03-21 Sumitomo Chem Co Ltd 芳香族液晶性ポリエステルおよびその製造方法
JP2004323663A (ja) * 2003-04-24 2004-11-18 Polyplastics Co 非晶質全芳香族ポリエステルアミド及びその組成物
JP2006152120A (ja) * 2004-11-29 2006-06-15 Polyplastics Co 信号読取装置用樹脂成形部品及びその成形方法
JP2018109090A (ja) * 2016-12-28 2018-07-12 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板
WO2019240153A1 (ja) * 2018-06-14 2019-12-19 ポリプラスチックス株式会社 液晶性樹脂微粒子の製造方法

Also Published As

Publication number Publication date
JPWO2022138047A1 (ja) 2022-06-30
CN116615321A (zh) 2023-08-18
TW202231711A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN108884329B (zh) 液晶性树脂组合物
EP3480240A1 (en) Wholly aromatic liquid crystal polyester resin, molded article, and electrical/electronic component
EP1081173B1 (en) Process for producing aromatic liquid crystalline polyester and film thereof
KR20190127766A (ko) 전방향족 액정 폴리에스테르 수지, 성형품, 및 전기전자부품
US8071711B2 (en) Polyester for producing fiber, and fiber and non-woven fabric using the same
JP2004027021A (ja) 全芳香族液晶ポリエステル樹脂成形体
JP7441844B2 (ja) 液晶ポリマー粒子、熱硬化性樹脂組成物、および成形体
WO2019142692A1 (ja) 液晶ポリエステル繊維
WO2019151184A1 (ja) 樹脂組成物
JPH08192421A (ja) 液晶性ポリマーペレットおよびその製造方法
JP2004143270A (ja) 液晶ポリエステル樹脂組成物
WO2022138047A1 (ja) 液晶性樹脂ペレット及びそれからなる溶融押出フィルム
TWI808176B (zh) 熱壓成形品用粉狀液晶性樹脂及熱壓成形品
US11426903B2 (en) Powdery liquid-crystal resin for press-molded article, press-molded article, and production method therefor
JP5132899B2 (ja) 液晶性樹脂組成物
JP2022101107A (ja) 液晶性樹脂フィルムの製造方法
JP2004352862A (ja) 液晶性ポリエステル、その製造方法、組成物およびその用途
JP2013193437A (ja) 液晶ポリエステルフィルムの製造方法
JP2020084185A (ja) 高熱伝導性樹脂組成物の製造方法
WO2022113942A1 (ja) 液晶ポリマー粒子、熱硬化性樹脂組成物、および成形体
JP7373080B2 (ja) 導電性液晶性樹脂組成物
JP2013194225A (ja) 液晶ポリエステルフィルムの製造方法及び液晶ポリエステルフィルム
JP2013108190A (ja) 繊維製造用材料および繊維
JP7393589B1 (ja) 平面状コネクター用液晶性樹脂組成物及びそれを用いた平面状コネクター
JP2022079336A (ja) 成形体および電子回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572047

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180085991.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910199

Country of ref document: EP

Kind code of ref document: A1