WO2022137871A1 - 皮膜形成方法 - Google Patents

皮膜形成方法 Download PDF

Info

Publication number
WO2022137871A1
WO2022137871A1 PCT/JP2021/041588 JP2021041588W WO2022137871A1 WO 2022137871 A1 WO2022137871 A1 WO 2022137871A1 JP 2021041588 W JP2021041588 W JP 2021041588W WO 2022137871 A1 WO2022137871 A1 WO 2022137871A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
solution
silica
polysilazane
temperature
Prior art date
Application number
PCT/JP2021/041588
Other languages
English (en)
French (fr)
Inventor
崇臣 田辺
誠一朗 河内
耕作 檜山
Original Assignee
トーカロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トーカロ株式会社 filed Critical トーカロ株式会社
Priority to US18/269,077 priority Critical patent/US20240044009A1/en
Priority to CN202180086183.1A priority patent/CN116669864A/zh
Priority to JP2022571950A priority patent/JPWO2022137871A1/ja
Publication of WO2022137871A1 publication Critical patent/WO2022137871A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/77Controlling or regulating of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent

Definitions

  • the present invention relates to a method for forming a film having corrosion resistance.
  • Some of the components of manufacturing equipment such as semiconductors and flat panel displays, or similar equipment, are exposed to corrosive gas or plasma of corrosive gas.
  • These components are usually formed by using a metal material such as an aluminum alloy or stainless steel, but the metal material such as an aluminum alloy or stainless steel has low corrosion resistance to halogen-based corrosive gas or plasma thereof. Therefore, in order to impart corrosion resistance to these members, for example, coating with a silica-based film using perhydropolysilazane may be performed.
  • the silica-based film is extremely dense and has high corrosion resistance to halogen-based corrosive gases and plasma. Therefore, by forming the silica-based film on the surface of the constituent member, the surface of the constituent member can be shielded from the external environment and corrosion of the constituent member can be suppressed.
  • the silica-based film formed using perhydropolysilazane is dense, it is fragile and its coefficient of linear expansion is extremely small compared to metal materials. For this reason, cracks occur in the film in the process of forming the film, and by forming a thin film to suppress the occurrence of the cracks, the constituent members cannot be sufficiently covered, and the effect of blocking the constituent members from the external environment is obtained. There is a problem that the anticorrosion effect of the constituent members is lowered due to the reduction.
  • Patent Document 1 discloses that a silica-based film is formed by using a solution containing perhydropolysilazane and polyorganosilazane.
  • Patent Document 1 by including polyorganosilazane in the solution, a film having more flexibility than the silica-based film formed using only perhydropolysilazane is formed, and cracks are prevented from occurring in the film. (For example, see Patent Document 1).
  • the film since the heat treatment temperature after applying the solution is set to a relatively low temperature (around 300 ° C.), the film contains silica obtained by silica conversion and unconverted material. There is. The inclusion of unconverted material in the film contributes to the flexibility of the film, but it reduces the density of the film, so it is not possible to obtain a sufficiently dense silica-based film. Further, since the heat treatment temperature is 300 ° C., it is difficult to obtain a film having sufficient corrosion resistance with a material having a large coefficient of linear expansion, particularly an aluminum alloy.
  • the silica-based film thus formed may have pores, and even if the pores communicate with each other between the surface side and the component side for some reason, the anticorrosion effect may be reduced. ..
  • the present invention has been made in view of such circumstances, and it is possible to obtain a sufficiently dense film while preventing deterioration of the anticorrosion effect due to opening defects such as cracks and pores, and to obtain high corrosion resistance. It is an object of the present invention to provide a technique capable of forming a film having a film.
  • the film forming method according to the present invention is A first solution containing polysilazane is applied to the surface of the metal substrate, and the first solution is heated to convert silica to form a first film having an opening defect on the surface of the metal substrate.
  • the first step to do and A second solution containing polysilazane is applied to the surface of the first film to fill the opening defect portion, and the second solution is heated at a temperature lower than the heating temperature of the first step to convert silica.
  • a second step of forming a second film on the surface of the first film is included.
  • the first film has an opening defect portion
  • the second solution is applied to the surface of the first film to fill the opening defect portion with the second solution.
  • a second film can be formed on the opening defect portion.
  • at least the opening portion of the opening defect portion can be sealed by the second film, and the deterioration of the corrosion resistance due to the opening defect portion can be prevented. Therefore, it is possible to form a dense first film by converting polysilazane in the first solution to silica at a sufficiently high temperature without worrying about cracks in the film in the first step.
  • the silica-based film formed by using the solution containing polyorganosilazan contains organic silica having an organic component such as a methyl group.
  • the polysilazane contained in the second solution is preferably perhydroxypolysilazane. More preferably, both the polysilazane contained in the first solution and the polysilazane contained in the second solution are perhydroxypolysilazane. In this case, a dense film can be obtained and a film having higher corrosion resistance can be formed.
  • the concentration ratio of the polysilazane content in the second solution to the polysilazane content in the first solution is preferably 0.001 or more and less than 1.
  • the concentration ratio is 1 or more, the viscosity of the second solution becomes relatively high, and when the second solution is applied to the surface of the first film in the second step, the second solution may not be able to fill the opening defect portion. There is. If the concentration ratio is less than 0.001, even if the second solution is filled in the opening defect, a film may not be sufficiently formed in the opening defect and the hole may not be sealed.
  • concentration ratio By setting the concentration ratio to 0.001 or more and less than 1, it is possible to obtain a second solution having a viscosity sufficient to fill the opening defect and having a concentration at which a film is sufficiently formed in the opening defect. ..
  • concentration ratio of the content concentration of polysilazane in the second solution to the concentration of polysilazane in the first solution is more preferably 0.01 or more and less than 0.6.
  • the second solution contains at least one of an organic metal, a metal compound, and an amine compound.
  • the weight ratio of the total amount of the organic metal, the metal compound, and the amine compound to the polysilazane is preferably 0.0001 or more and 1 or less.
  • Organic metals, metal compounds, and amine compounds are catalysts for lowering the silica conversion temperature of polysilazane, and by containing them in the second solution, the silica conversion temperature of polysilazane can be lowered, and the heating temperature can be reduced. Can be made colder. Further, if the weight ratio is less than 0.0001, the effect as a catalyst may not be sufficiently obtained.
  • the weight ratio exceeds 1
  • the thickening (gelation) of the second solution becomes remarkable, and there is a possibility that the opening defect portion of the first film cannot be filled.
  • the second solution can be filled in the opening defect portion of the first film and can function appropriately as a catalyst. If the weight ratio exceeds 0.2, the second solution tends to be thickened (gelled). Therefore, the total weight of the organic metal, the metal compound, and the amine compound with respect to the polysilazane is observed.
  • the ratio is more preferably 0.001 or more and 0.2 or less.
  • the total film thickness of the first film and the second film is preferably 0.01 ⁇ m or more and 10.0 ⁇ m or less. If the film thickness is less than 0.01 ⁇ m, the surface of the metal substrate may not be sufficiently shielded from the external environment. When the film thickness exceeds 10.0 ⁇ m, the stress acting on the first film becomes large due to the difference in the linear expansion coefficient between the metal substrate and the first film, and the first film may be peeled off. , The internal stress of the first film may cause film peeling, film breakage, etc.
  • the total film thickness of the first film and the second film is more preferably 0.05 ⁇ m or more and 3.0 ⁇ m or less.
  • the step of applying the first solution to the metal substrate and the step of converting the first solution to silica by heating are repeated a predetermined number of times. It may form the first film.
  • the first film can be thickened, and the surface of the metal base material can be sufficiently covered.
  • the second step is a step of applying the second solution to the first film and heating the second solution at a temperature lower than the heating temperature of the first step. Therefore, the second film may be formed by repeating the step of converting silica a predetermined number of times. In this case, it is possible to more effectively seal the opening portion in the opening defect portion.
  • a film having high corrosion resistance can be formed.
  • FIG. 1 is a partial cross-sectional view of a metal base material and a film after forming the first film by the first step.
  • FIG. 2 is a partial cross-sectional view of the metal substrate and the film after the second solution is applied to the surface of the first film by the second step.
  • FIG. 3 is a partial cross-sectional view of the metal substrate and the film after the second film is formed by the second step.
  • FIG. 4 is an electron micrograph of a cross section of the film according to a comparative example.
  • FIG. 5 is an electron micrograph of the film surface according to a comparative example.
  • FIG. 6 is an electron micrograph of a cross section of the film according to Example 1.
  • FIG. 7 is an electron micrograph of the surface of the film according to Example 1.
  • FIG. 8 is an electron micrograph of a cross section of the film according to Example 2.
  • FIG. 9 is an electron micrograph of the surface of the film according to Example 2.
  • the film forming method according to the present embodiment is a method for forming a silica-based film using polysilazane.
  • the silica-based film obtained by this embodiment is exposed to halogen-based corrosive gas or plasma of corrosive gas in an etching apparatus used for manufacturing semiconductors and flat panel displays, and a film forming apparatus such as CVD and PVD. It is formed on constituent members such as chambers and pipes.
  • a first solution containing polysilazane is applied to the surface of a metal substrate, and the first solution is heated to convert silica to a first solution having an opening defect on the surface.
  • the first step of forming the film on the surface of the metal substrate, the second solution containing polysilazane is applied to the surface of the first film to fill the opening defect portion, and the second solution is applied to the first. It includes a second step of converting silica by heating at a temperature lower than the heating temperature of the first step to form a second film on the surface of the first film.
  • the first solution is applied to the surface of the metal substrate.
  • the first solution is a polysilazane-containing solution obtained by dissolving polysilazane in an organic solvent.
  • polysilazane perhydropolysilazane, polymethylhydrosilazane, polyN-methylsilazane, polyN- (triethylsilyl) allylsilazane, polyN- (dimethylamino) cyclohexylsilazane, phenylpolysilazane and the like are used as chain polysilazane. be able to.
  • perhydropolysilazane having an average molecular weight of 300 to 5000 is particularly preferable.
  • organic solvent examples include ethers (ethyl ether, isopropyl ether, ethylbutyl ether, dibutyl ether, 1,2-dioxyethane, dioxane, dimethyldioxane, tetrahydrofuran, tetrahydropyran, etc.) or hydrocarbons (pentanehexane, isohexane, methylpentane, etc.).
  • ethers ethyl ether, isopropyl ether, ethylbutyl ether, dibutyl ether, 1,2-dioxyethane, dioxane, dimethyldioxane, tetrahydrofuran, tetrahydropyran, etc.
  • hydrocarbons penentanehexane, isohexane, methylpentane, etc.
  • Heptane, isoheptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene, etc. can be mentioned.
  • One kind or a mixture of two or more kinds of these ethers and hydrocarbons may be used as an organic solvent.
  • the concentration of polysilazane in the first solution is preferably 0.05% by mass or more and 40% by mass or less. If the concentration of polysilazane is less than 0.05% by mass, a first film having a sufficient film thickness may not be obtained. If the concentration of polysilazane exceeds 40% by mass, the viscosity of the first solution becomes high, and the film thickness of the first film may become non-uniform.
  • the content concentration of polysilazane is more preferably 1% by mass or more and 25% by mass or less.
  • the first solution may contain a catalyst other than polysilazane.
  • This catalyst has the effect of relatively lowering the temperature at which polysilazane is converted to silica and increasing the rate of silica conversion.
  • the catalyst include a metal catalyst (organic metal or metal compound) and an amine-based catalyst (amine compound).
  • the metal catalyst include organic metals or metal compounds containing at least one metal selected from nickel, titanium, platinum, rhodium, cobalt, iron, ruthenium, osmium, palladium, iridium and aluminum.
  • a metal carboxylate is preferable from the viewpoint of solubility, stability, and reactivity in a polysilazane-containing solution.
  • amine-based catalyst examples include amine compounds such as monoamines, diamines, triamines, tetraamines, chain amine residue-containing hydroxyl compounds, and cyclic amine residue-containing hydroxyl compounds.
  • the amine residue-containing hydroxyl compound reacts with polysilazane and is modified to the amine residue-containing polysilazane.
  • the weight ratio of the catalyst (total amount) to polysilazane shall be 0.0001 or more and 1 or less. Is preferable. If the weight ratio of the catalyst to polysilazane is less than 0.0001, the effect as a catalyst may not be sufficiently obtained. If the weight ratio of the catalyst to polysilazane exceeds 1, the thickening (gelation) of the first solution becomes remarkable, and the film thickness of the first film may become non-uniform.
  • the weight ratio of the catalyst to polysilazane is more preferably 0.001 or more and 0.2 or less. By setting the weight ratio of the catalyst to polysilazane to 0.2 or less, the thickening of the first solution can be effectively suppressed.
  • the conditions for converting polysilazane contained in the first solution and the second solution to silica include parameters such as heating temperature, heating time, heating atmosphere, presence / absence of the catalyst, and type of the catalyst. Is done.
  • the heating temperature is determined according to the presence or absence of the catalyst, the type of the catalyst, the heating time, and the heating atmosphere, which are other parameters included in the silica conversion conditions.
  • the silica conversion condition of polysilazane in the first solution is also referred to as a first silica conversion condition
  • the silica conversion temperature of polysilazane in the first solution is also referred to as a first silica conversion temperature.
  • silica conversion condition of polysilazane in the second solution is also referred to as a second silica conversion condition
  • silica conversion temperature of polysilazane in the second solution is also referred to as a second silica conversion temperature
  • the conversion of polysilazane to silica means that the film density of the film obtained by heating a solution containing polysilazane is 2.0 g / cm 3 or more. Therefore, the silica conversion condition is a heating condition in which the film density of the first film or the second film is 2.0 g / cm 3 or more.
  • the first silica conversion temperature is, for example, 300 ° C to 550 ° C.
  • the first silica conversion temperature is, for example, 120 ° C to 350 ° C.
  • the first silica conversion temperature is, for example, room temperature to 250 ° C.
  • the first silica conversion conditions including the first silica conversion temperature can be obtained by measuring the first solution by the following method.
  • the measurement of the first silica conversion condition is performed by forming a film using the first solution on the silicon wafer.
  • the weight of the silicon wafer is measured with an electronic balance or the like.
  • the first solution on this silicon wafer is heated in the air at a predetermined heating temperature and a predetermined heating time to form a silica-based film, and the silica-based film is formed on the silicon wafer. Weigh in.
  • the difference in weight before and after the formation of the silica-based film on the silicon wafer is obtained, and this value is taken as the film weight.
  • the film thickness is measured by a known method, and more accurate film thickness can be obtained by measuring from the cross section of the film with a FE-SEM device or the like.
  • the film density is calculated according to the following formula.
  • a plurality of combinations of heating temperature and heating time are set, and the film density is obtained for each combination.
  • the combination having a film density of 2.0 g / cm 3 or more is set as the first silica conversion condition.
  • Film density [g / cm3] Film weight [g] / (Film thickness [ ⁇ m] ⁇ Silicon wafer surface area [cm 2 ] ⁇ 0.0001)
  • the silica-based film obtained by heating polysilazane under conditions that do not satisfy the silica conversion conditions contains unconverted products, and is therefore a dense silica film. is not.
  • the unconverted material is an intermediate substance from polysilazane to silica conversion.
  • the silica-based film obtained by heating the first solution under the first silica conversion conditions does not contain unconverted products. That is, the first silica conversion condition indicates a heating condition in which the polysilazane containing the first solution is completely converted to silica to obtain a sufficiently dense siliceous film.
  • examples of the metal substrate to which the first solution is applied include an etching apparatus, a chamber and piping of a film forming apparatus, and the like. These chambers and pipes are made of stainless steel or aluminum alloy.
  • the surface of the metal substrate formed of stainless steel or aluminum alloy is cleaned and degreased. Then, the first solution is applied to the surface of the metal substrate.
  • the surface of the metal substrate may be modified by a known method such as UV lamp, excimer lamp, or plasma irradiation.
  • the first solution is applied by using a known application method such as a spin coating method, a roll coating method, a flow coating method, a spray coating method, and a dip coating method.
  • the first solution coated on the metal substrate is heated in the air or in an atmosphere containing water vapor to remove polysilazane contained in the first solution.
  • Silica conversion is performed to form the first film.
  • the first film is a silica-based film (inorganic silica film) obtained by converting polysilazane contained in the first solution to silica.
  • the first solution applied on the metal substrate is heated based on predetermined first silica conversion conditions.
  • the heating temperature in the first step is set to be equal to or higher than the first silica conversion temperature under the predetermined first silica conversion conditions.
  • the predetermined first silica conversion conditions are a heating time of 1 hour and a first silica conversion temperature T (T is a certain value)
  • T is a certain value
  • the heating temperature is set to be equal to or higher than the first silica conversion temperature T.
  • the heating temperature in the first step may be higher than the first silica conversion temperature, but is preferably 10 ° C. or higher, more preferably 30 ° C. or higher than the first silica conversion temperature. When the heating temperature is less than the value obtained by adding 30 ° C.
  • the entire applied first solution may not exceed the first silica conversion temperature.
  • the entire first solution can be set to the first silica conversion temperature or higher, and polysilazane in the first solution can be appropriately converted to silica.
  • a sufficiently dense first film containing no unconverted material can be obtained, and a silica-based film having excellent corrosion resistance can be obtained.
  • the heating time in the first step may be such that the first solution on the metal substrate is sufficiently heated and the polysilazane in the first solution is converted to silica, and is preferably 0.5 hours or more and 10 hours or less, for example. If it is shorter than 0.5 hours, the silica conversion of polysilazane in the first solution may be insufficient. If it exceeds 10 hours, the time will be wasted unnecessarily and the cost will increase.
  • the first film may be formed by repeating the above-mentioned step of applying the first solution and the step of converting the first solution to silica a predetermined number of times.
  • the first film can be thickened, and the surface of the metal base material can be sufficiently covered.
  • FIG. 1 is a partial cross-sectional view of a metal base material and a film after forming the first film by the first step.
  • the first film 1 is formed on the surface 2a of the metal base material 2.
  • the surface 1a of the first film 1 has a non-defect portion 6 and a plurality of opening defect portions 3.
  • the opening defect portion 3 is a defect that opens to the surface 2a.
  • the opening defect portion 3 includes a crack 3a and an opening pore portion 3b.
  • the crack 3a is mainly caused by the difference between the linear expansion coefficient of the first film 1 and the linear expansion coefficient of the metal substrate 2.
  • the cracks 3a include those that stay in the first film 1 and those that reach the surface 2a of the metal substrate 2.
  • the open pore portion 3b is generated due to bubbles or the like contained in the first solution in the film forming process of the first film 1.
  • the first film 1 is obtained by converting polysilazane in the first solution to silica, and is mainly formed of silica. Therefore, the coefficient of linear expansion of the first film is an intermediate value between the inorganic silica glass and quartz, and is about 0.6 to 6 ( ⁇ 10 ⁇ 6 / ° C.).
  • the metal base material 2 is a stainless steel or an aluminum alloy.
  • the stainless steel JIS SUS316L is 16.0 ( ⁇ 10 -6 / ° C)
  • the aluminum alloy JIS A6061 is 23.6. ( ⁇ 10 -6 / ° C.).
  • the metal substrate 2 coated with the first solution is heated to a temperature equal to or higher than the silica conversion temperature of polysilazane in the first solution to form the first film 1. Therefore, when cooled to room temperature after heating, the first film 1 is formed. Stress acts on the first film 1 due to the difference in the linear expansion coefficient between the film 1 and the metal substrate 2. Due to this stress, cracks 3a are generated in the first film 1.
  • FIG. 2 is a partial cross-sectional view of the metal substrate and the film after the second solution is applied to the surface of the first film by the second step. As shown in FIG. 2, by applying the second solution 4 to the surface 1a of the first film 1, the opening defect portion 3 is filled with the second solution 4.
  • the second solution is a polysilazane-containing solution obtained by dissolving polysilazane in an organic solvent.
  • polysilazane perhydropolysilazane, polymethylhydrosilazane, polyN-methylsilazane, polyN- (triethylsilyl) allylsilazane, polyN- (dimethylamino) cyclohexylsilazane, phenylpolysilazane and the like are used as chain polysilazane. be able to.
  • perhydropolysilazane having an average molecular weight of 300 to 5000 is particularly preferable.
  • the organic solvent the same type as the first solution can be adopted, and specific examples thereof include ethers (ethyl ether, isopropyl ether, ethyl butyl ether, dibutyl ether, 1,2-dioxyethane, dioxane, dimethyldioxane, tetrahydrofuran, and the like.
  • ethers ethyl ether, isopropyl ether, ethyl butyl ether, dibutyl ether, 1,2-dioxyethane, dioxane, dimethyldioxane, tetrahydrofuran, and the like.
  • the content concentration of polysilazane in the second solution is preferably 0.05% by mass or more and 40% by mass or less. If the concentration of polysilazane is less than 0.05% by mass, a second film having the minimum required film thickness may not be obtained. If the concentration of polysilazane exceeds 40% by mass, the viscosity of the second solution becomes high, and the film thickness of the second film may become non-uniform.
  • the content concentration of polysilazane is more preferably 1% by mass or more and 25% by mass or less.
  • the concentration ratio of the content concentration of polysilazane in the second solution to the concentration of polysilazane in the first solution is preferably 0.001 or more and less than 1.
  • concentration ratio is 1 or more, the viscosity of the second solution becomes relatively high, and when the second solution is applied to the surface of the first film in the second step, the second solution is not filled in the opening defect portion 3. There is a risk.
  • concentration ratio is smaller than 0.001, even if the second solution is filled in the opening defect portion 3, a film may not be sufficiently formed in the opening defect portion 3 and the hole may not be sealed.
  • concentration ratio By setting the concentration ratio to 0.001 or more and less than 1, it is possible to obtain a second solution having a viscosity that can be filled in the opening defect portion 3 and having a concentration that sufficiently forms a film in the opening defect portion 3. ..
  • the concentration ratio of the content concentration of polysilazane in the second solution to the concentration of polysilazane in the first solution is more preferably 0.01 or more and less than 0.6.
  • the concentration ratio of the content concentration of polysilazane in the second solution to the concentration of polysilazane in the first solution may be 1 or more and 200 or less. If the concentration ratio is larger than 200, the viscosity of the second solution becomes high, the second solution cannot be applied uniformly, and the film thickness of the second film may become non-uniform. Further, when the concentration ratio is smaller than 1, there is a possibility that a second film having a sufficient thickness cannot be obtained. By setting the concentration ratio to 1 or more and 200 or less, even if the first film is an extremely thin film (for example, less than 0.01 ⁇ m), it complements the first film and sufficiently covers the metal substrate. A possible second film can be obtained.
  • the second solution preferably contains a catalyst in addition to polysilazane. Since the second solution contains a catalyst, it becomes easy to set the heating temperature of the silica conversion condition in the second step to a temperature lower than the heating temperature of the silica conversion condition in the first step.
  • the catalyst the same type as the first solution can be adopted, and examples thereof include a metal catalyst (organic metal or metal compound) and an amine-based catalyst (amine compound).
  • the metal catalyst include organic metals or metal compounds containing at least one metal selected from nickel, titanium, platinum, rhodium, cobalt, iron, ruthenium, osmium, palladium, iridium and aluminum.
  • a metal carboxylate is preferable from the viewpoint of solubility, stability, and reactivity in a polysilazane-containing solution.
  • the amine-based catalyst include amine compounds such as monoamines, diamines, triamines, tetraamines, chain amine residue-containing hydroxyl compounds, and cyclic amine residue-containing hydroxyl compounds.
  • the weight ratio of the catalyst (total amount) to polysilazane shall be 0.0001 or more and 1 or less. Is preferable. If the weight ratio of the catalyst to polysilazane is less than 0.0001, the effect as a catalyst may not be sufficiently obtained. When the weight ratio of the catalyst to polysilazane exceeds 1, the thickening (gelation) of the second solution becomes remarkable, and not only the film thickness becomes non-uniform, but also the opening defect portion 3 on the surface of the first film may be filled. It may not be possible.
  • the weight ratio of the catalyst to polysilazane is more preferably 0.001 or more and 0.2 or less. By setting the weight ratio of the catalyst to polysilazane to 0.2 or less, the thickening of the second solution can be effectively suppressed.
  • the second silica conversion temperature is, for example, 300 ° C to 550 ° C.
  • the second silica conversion temperature is, for example, 120 ° C to 350 ° C.
  • the second silica conversion temperature is, for example, room temperature to 250 ° C.
  • the first silica conversion temperature is 300 ° C to 550 ° C, and the second solution has a condition that the heating temperature of the second step is lower than the heating temperature of the first step. As long as it is satisfied, the catalyst may or may not be contained.
  • the first silica conversion temperature is 120 ° C to 350 ° C.
  • the second solution contains a catalyst.
  • the second silica conversion temperature is 300 ° C. to 550 ° C., and it becomes difficult to satisfy the condition that the heating temperature of the second step is lower than the heating temperature of the first step.
  • the second silica conversion condition including the second silica conversion temperature can be obtained by measuring the second solution by the same method as the measuring method of the first silica conversion condition.
  • the second silica conversion condition is a condition including the second silica conversion temperature having a value equal to or lower than the first silica conversion temperature included in the predetermined first silica conversion condition.
  • the second solution is applied by using a known application method such as a spin coating method, a roll coating method, a flow coating method, a spray coating method, and a dip coating method.
  • a known application method such as a spin coating method, a roll coating method, a flow coating method, a spray coating method, and a dip coating method.
  • the second solution applied to the surface of the first film is heated in the air or in an atmosphere containing water vapor, and polysilazane contained in the second solution is used. Is converted to silica to form a second film.
  • the second film is a silica-based film (inorganic silica film) obtained by converting polysilazane contained in the second solution to silica.
  • the heating temperature in the second step is set to a temperature lower than the heating temperature in the first step and equal to or higher than the second silica conversion temperature.
  • the heating temperature is equal to or higher than the heating temperature of the first step, the first film is heated to a temperature higher than that when the first film is formed, and then when the first film is cooled to room temperature, the metal substrate and the first film are formed. The difference in the coefficient of linear expansion between the two may cause new cracks in the first film. If the heating temperature is lower than the second silica conversion temperature, the silica conversion of polysilazane contained in the second solution may not be sufficiently performed.
  • the heating temperature in the second step may be such that the second solution on the first film is sufficiently heated and the polysilazane in the second solution is converted to silica, and is preferably 0.5 hours or more and 10 hours or less, for example. If it is shorter than 0.5 hours, the silica conversion of polysilazane in the second solution may be insufficient. If it exceeds 10 hours, the time will be wasted unnecessarily and the cost will increase.
  • the step of applying the above-mentioned second solution and the step of converting the second solution to silica by heating at a temperature lower than the heating temperature of the first step are repeated a predetermined number of times. It may form a film.
  • FIG. 3 is a partial cross-sectional view of the metal base material and the film after the second film is formed by the second step.
  • the metal substrate coated with the second solution is heated in the second step, the polysilazane contained in the second solution filled in the opening defect portion 3 is converted to silica. Therefore, as shown in FIG. 3, a second film 5 is formed on the opening defect portion 3.
  • the opening defect portion 3 on the surface 1a of the first film 1 is sealed by the second film.
  • the second film 5 may be formed on at least the opening defect portion 3 of the surface 1a and the opening defect portion 3 may be sealed, but the second film 5 may be formed on a portion other than the opening defect portion 3 (for example, on the non-defect portion 6). It may be formed.
  • the first film has the opening defect portion 3, but by applying the second solution to the surface of the first film in the second step, the opening defect portion 3 is subjected to the second solution. 2 Fill the solution. Then, by converting the polysilazane contained in the second solution to silica, a second film can be formed on the opening defect portion 3. As a result, the opening defect portion 3 can be sealed by the second film, and the deterioration of the corrosion resistance caused by the opening defect portion 3 can be prevented. Therefore, it is possible to form a dense first film by converting polysilazane in the first solution to silica at a sufficiently high temperature without worrying about cracks in the film in the first step.
  • the second film is formed by repeating the step of applying the second solution in the second step and the step of converting the second solution to silica by heating the second solution at a temperature lower than the heating temperature of the first step a predetermined number of times. If so, the hole in the opening defect portion 3 can be sealed more effectively.
  • perhydropolysilazane is particularly preferable as described above. If the polysilazane contained in the second solution is perhydropolysilazane, a dense second film can be obtained and a film having higher corrosion resistance can be formed.
  • the total film thickness of the first film and the second film is preferably 0.01 ⁇ m or more and 10.0 ⁇ m or less. If the film thickness is less than 0.01 ⁇ m, the surface of the metal substrate may not be sufficiently shielded from the external environment. When the film thickness exceeds 10.0 ⁇ m, the stress acting on the first film becomes large due to the difference in the linear expansion coefficient between the metal substrate and the first film, and the first film may be peeled off. , The internal stress of the first film may cause film peeling, film breakage, etc.
  • the total film thickness of the first film and the second film is more preferably 0.05 ⁇ m or more and 3.0 ⁇ m or less.
  • Example 1 As the first solution, a dibutyl ether solution (manufactured by Merck Performance Materials, trade name: Durazane 2400) containing a metal catalyst (palladium) and having a perhydropolysilazane content of 20% by mass was used.
  • the first silica conversion condition in the first solution the value obtained by the above-mentioned measuring method was used, and the first silica conversion temperature was set to 150 ° C. with a heating time of 1 hour.
  • a dibutyl ether solution manufactured by Merck Performance Materials, trade name: Durazane2400 containing a metal catalyst (palladium) and a perhydropolysilazane concentration of 20% by mass is contained in the perhydropolysilazane.
  • a solution prepared to have a concentration of 10% by mass was used. Therefore, the concentration ratio of the content concentration of perhydropolysilazane in the second solution to the concentration of perhydropolysilazane in the first solution is 0.5.
  • the second silica conversion condition in the second solution the value obtained by the above-mentioned measuring method was used, and the second silica conversion temperature was set to 150 ° C. with a heating time of 1 hour.
  • a stainless steel (JIS SUS316L) plate having a thickness of 50 mm ⁇ 50 mm and a thickness of 5 mm was prepared.
  • the surface of this metal substrate was degreased and washed, the first solution was applied by a spin coating method, heated at 250 ° C. for 1 hour, and after 1 hour, taken out of the heating furnace and cooled in the atmosphere.
  • a first film having an opening defect was formed on the surface of the metal base material.
  • the second solution was applied to the surface of the first film by a spin coating method, and heated at 150 ° C., which is the second silica conversion temperature, for 1 hour.
  • a test piece was obtained in which the second film was formed on the surface of the first film and the first film and the second film (total film thickness 1.7 to 1.8 ⁇ m) were formed on the metal substrate.
  • the density of the first film is 2.31 g / cm 3
  • the density of the second film is 2.14 g / cm 3 . Therefore, both the first film and the second film are converted to silica.
  • the densities of these films were obtained by measuring the densities of the films heated under the same conditions by the above-mentioned measuring method.
  • Example 2 As the first solution, a dibutyl ether solution (manufactured by Merck Performance Materials, trade name: Durazane 2400) containing a metal catalyst (palladium) and having a perhydropolysilazane content of 20% by mass was used.
  • the first silica conversion condition in the first solution the value obtained by the above-mentioned measuring method was used, and the first silica conversion temperature was set to 150 ° C. with a heating time of 1 hour.
  • a dibutyl ether solution manufactured by Merck Performance Materials, trade name: Durazane2400 containing a metal catalyst (palladium) and a perhydropolysilazane concentration of 20% by mass is contained in the perhydropolysilazane.
  • a solution prepared to have a concentration of 5% by mass was used. Therefore, the concentration ratio of the content concentration of perhydropolysilazane in the second solution to the concentration of perhydropolysilazane in the first solution is 0.25.
  • the second silica conversion condition in the second solution the value obtained by the above-mentioned measuring method was used, and the second silica conversion temperature was set to 130 ° C. with a heating time of 2 hours.
  • a plate material of an aluminum alloy (JIS A6061) having a thickness of 50 mm ⁇ 50 mm and a thickness of 5 mm was prepared.
  • the surface of this metal substrate was degreased and washed, the first solution was applied by a spin coating method, heated at 250 ° C. for 1 hour, and after 1 hour, taken out of the heating furnace and cooled in the atmosphere.
  • a first film having an opening defect was formed on the surface of the metal base material.
  • the second solution was applied to the surface of the first film by a spin coating method, and heated at 130 ° C., which is the second silica conversion temperature, for 2 hours.
  • a dibutyl ether solution manufactured by Merck Performance Materials, trade name: Durazane 2400
  • a metal catalyst palladium
  • the first silica conversion temperature was set to 250 ° C. with a heating time of 1 hour based on the data disclosed by the manufacturer.
  • a stainless steel (JIS SUS316L) plate having a thickness of 50 mm ⁇ 50 mm and a thickness of 5 mm was prepared.
  • the surface of this metal substrate was degreased and washed, the first solution was applied by a spin coating method, and the mixture was heated at 250 ° C., which is the first silica conversion temperature, for 1 hour.
  • a test piece having a first film (thickness 1.2 to 1.3 ⁇ m) formed on the surface of the metal substrate was obtained.
  • FIG. 4 is an electron micrograph of a cross section of the film according to the comparative example
  • FIG. 5 is an electron micrograph of the surface of the film according to the comparative example. As shown in FIGS. 4 and 5, it can be seen that a large number of cracks are present on the surface of the first film.
  • FIG. 6 is an electron micrograph of a cross section of the film according to Example 1
  • FIG. 7 is an electron micrograph of the surface of the film according to Example 1.
  • FIG. 8 is an electron micrograph of a cross section of the film according to Example 2
  • FIG. 9 is an electron micrograph of the surface of the film according to Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本発明の皮膜形成方法は、ポリシラザンを含有する第1溶液を、金属基材2の表面2aに塗布し、前記第1溶液を加熱することでシリカ転化させ、開口欠陥部3を有する第1皮膜1を前記金属基材2の表面2aに形成する第1工程と、ポリシラザンを含有する第2溶液を、前記第1皮膜1の表面1aに塗布して開口欠陥部3に充填させ、前記第2溶液を前記第1工程の加熱温度よりも低い温度で加熱することでシリカ転化させ、前記第1皮膜1の表面1aに第2皮膜5を形成する第2工程と、を含む。

Description

皮膜形成方法
 本発明は、耐食性を有する皮膜の形成方法に関する。
 半導体やフラットパネルディスプレイ等の製造装置、あるいはこれらに準じる装置の構成部材には、腐食性ガス又は腐食性ガスのプラズマに晒されるものがある。
 これら構成部材は、通常、アルミニウム合金やステンレス鋼等の金属材料を用いて形成されるが、アルミニウム合金やステンレス鋼等といった金属材料は、ハロゲン系の腐食性ガス又はこれらのプラズマに対する耐食性が低い。そこで、これら部材に対して耐食性を付与するために、例えば、ペルヒドロポリシラザンを用いたシリカ系皮膜によるコーティングが行われることがある。シリカ系皮膜は非常に緻密である上に、ハロゲン系の腐食性ガスやプラズマに対する耐食性が高い。このため、シリカ系皮膜を上記構成部材の表面に形成することで構成部材の表面を外部環境から遮断し、構成部材の腐食を抑制することができる。
 ところで、ペルヒドロポリシラザンを用いて形成されるシリカ系皮膜は緻密である反面、脆弱である上に線膨張係数が金属材料と比較して極めて小さい。このため、皮膜を形成する過程において皮膜にクラックが生じ、又、このクラックの発生を抑制するために薄膜とすることで十分に構成部材を被覆できず、構成部材を外部環境から遮断する効果が低下することで構成部材の防食効果が低下するという課題を有していた。
 このような課題に対して、特許文献1には、ペルヒドロポリシラザンとポリオルガノシラザンとを含む溶液を用いてシリカ系皮膜を形成することが開示されている。
 特許文献1では、溶液にポリオルガノシラザンを含ませることで、ペルヒドロポリシラザンのみを用いて形成されたシリカ系皮膜よりも柔軟性を有する皮膜を形成し、皮膜にクラックが発生するのを防止している(例えば、特許文献1参照)。
特開2002-105676号公報
 引用文献1では、溶液を塗布した後の熱処理温度が比較的低い温度(300℃前後)に設定されているため、皮膜には、シリカ転化によって得られるシリカの他、未転化物が含まれている。皮膜に未転化物が含まれていることは皮膜の柔軟性に寄与するが、皮膜の緻密度を低下させるため、十分に緻密なシリカ系皮膜を得ることができない。また、熱処理温度が300℃であるため、線膨張係数の大きな素材、特にアルミニウム合金では十分な耐食性を有する皮膜を得ることは難しい。
 このように、引用文献1に記載されたシリカ系皮膜では、皮膜に生じるクラックは防止できるが、十分に緻密な皮膜を得ることができず、耐食性が劣ることがある。
 さらに、このようにして形成されたシリカ系皮膜は、気孔を有することがあり、この気孔が何らかの原因で表面側と構成部材側との間を連通する場合も、防食効果が低下することがある。
 本発明は、このような事情を鑑みてなされたものであり、クラックや気孔といった開口欠陥部に起因する防食効果の低下を防止しつつ、十分に緻密な皮膜を得ることができ、高い耐食性を有する皮膜を形成することができる技術を提供することを目的とする。
(1)本発明に係る皮膜形成方法は、
 ポリシラザンを含有する第1溶液を、金属基材の表面に塗布し、前記第1溶液を加熱することでシリカ転化させ、表面に開口欠陥部を有する第1皮膜を前記金属基材の表面に形成する第1工程と、
 ポリシラザンを含有する第2溶液を、前記第1皮膜の表面に塗布して前記開口欠陥部に充填させ、前記第2溶液を前記第1工程の加熱温度よりも低い温度で加熱することでシリカ転化させ、前記第1皮膜の表面に第2皮膜を形成する第2工程と、を含む。
 上記構成の皮膜形成方法によれば、第1皮膜は開口欠陥部を有するが、第2工程において第1皮膜の表面に第2溶液を塗布することで開口欠陥部に第2溶液を充填させる。その後、第2溶液に含有されるポリシラザンをシリカ転化させることで、開口欠陥部に第2皮膜を形成することができる。この結果、第2皮膜によって、少なくとも開口欠陥部の開口部分を封孔することができ、開口欠陥部に起因する防食性の低下を防止できる。
 このため、第1工程において皮膜にクラックが入ることを気にせず、十分に高い温度で第1溶液のポリシラザンをシリカ転化させ、緻密な第1皮膜を形成することができる。
 また、第2工程において第1工程よりも低い温度で加熱することで、第1皮膜に新たなクラックを生じさせることなく、第1皮膜の開口欠陥部を覆う第2皮膜を形成することができる。
 このように、本発明によれば、開口欠陥部に起因する防食効果の低下を防止しつつ、十分に緻密な皮膜を得ることができ、高い耐食性を有する皮膜を形成することができる。
(2)ポリオルガノシラザンを含む溶液を用いて形成されるシリカ系皮膜には、メチル基等の有機成分を有する有機シリカが含まれる。このような有機シリカを含むシリカ系皮膜がハロゲン系ガスに晒されると、有機部分が選択的に腐食され、耐食性に劣る場合がある。
 このため、上記皮膜形成方法において、前記第2溶液が含有するポリシラザンは、ペルヒドロキシポリシラザンであることが好ましい。
 より好ましくは、前記第1溶液が含有するポリシラザン及び前記第2溶液が含有するポリシラザンのいずれもが、ペルヒドロキシポリシラザンである。
 この場合、緻密な皮膜を得ることができるとともに、より耐食性の高い皮膜を形成することができる。
(3)上記皮膜形成方法において、前記第1溶液におけるポリシラザンの含有濃度に対する、前記第2溶液におけるポリシラザンの含有濃度の濃度比が0.001以上、1未満であることが好ましい。
 濃度比が1以上である場合、第2溶液の粘性が比較的高くなり、第2工程において第1皮膜の表面に第2溶液を塗布したときに、第2溶液が開口欠陥部に充填できないおそれがある。
 濃度比が0.001より小さい場合、第2溶液が開口欠陥部に充填されたとしても開口欠陥部内において十分に皮膜が形成されず、封孔できないおそれがある。
 濃度比を0.001以上、1未満とすることで、開口欠陥部へ充填し得る程度の粘性を有しかつ開口欠陥部において十分に皮膜が形成される濃度の第2溶液を得ることができる。
 前記第1溶液におけるポリシラザンの含有濃度に対する、前記第2溶液におけるポリシラザンの含有濃度の濃度比は、より好ましくは0.01以上、0.6未満である。
(4)前記第2溶液は、有機金属、金属化合物、及びアミン化合物のうちの少なくとも1種を含有し、
 前記ポリシラザンに対する、前記有機金属、前記金属化合物、及び前記アミン化合物の合計量の重量比は、0.0001以上、1以下であることが好ましい。
 有機金属、金属化合物、及びアミン化合物は、ポリシラザンのシリカ転化温度を低下させるための触媒であり、第2溶液がこれらを含有することで、ポリシラザンのシリカ転化温度を低下させることができ、加熱温度をより低温とすることができる。
 また、重量比が0.0001未満の場合、触媒としての効果が十分に得られないおそれがある。
 また、重量比が1を超えると、第2溶液の増粘(ゲル化)が顕著となり、第1皮膜の開口欠陥部に充填させることができなくなるおそれがある。
 重量比を0.0001以上、1以内とすることで、第2溶液を第1皮膜の開口欠陥部に充填させることができるとともに触媒として適切に機能させることができる。
 なお、重量比が0.2を超えると、第2溶液の増粘(ゲル化)の傾向が見られるため、前記ポリシラザンに対する、前記有機金属、前記金属化合物、及び前記アミン化合物の合計量の重量比は、より好ましくは、0.001以上、0.2以下である。
(5)上記皮膜形成方法において、前記第1皮膜及び前記第2皮膜の総膜厚は、0.01μm以上、10.0μm以下であることが好ましい。
 上記膜厚が0.01μm未満である場合、金属基材の表面を外部環境に対して十分に遮蔽することができないおそれがある。
 上記膜厚が10.0μmを超える場合、金属基材と第1皮膜との間の線膨張係数の差異に起因して第1皮膜に作用する応力が大きくなり、第1皮膜に剥離が生じたり、第1皮膜の内部応力により皮膜剥離、皮膜破壊等が生じたりするおそれがある。
 第1皮膜及び前記第2皮膜の総膜厚を0.01μm以上、10.0μm以下とすることで、金属基材の表面を外部環境に対して適切に遮蔽することができる皮膜を得ることができる。
 前記第1皮膜及び前記第2皮膜の総膜厚は、より好ましくは、0.05μm以上、3.0μm以下である。
(6)上記皮膜形成方法において、前記第1工程は、前記金属基材に前記第1溶液を塗布する工程、及び、前記第1溶液を加熱することでシリカ転化させる工程を所定回数繰り返すことで前記第1皮膜を形成するものであってもよい。
 この場合、第1皮膜の厚膜化が可能となり、金属基材の表面を十分に被覆することができる。
(7)上記皮膜形成方法において、前記第2工程は、前記第1皮膜に前記第2溶液を塗布する工程、及び、前記第2溶液を前記第1工程の加熱温度よりも低い温度で加熱することでシリカ転化させる工程を所定回数繰り返すことで前記第2皮膜を形成するものであってもよい。
 この場合、開口欠陥部における開口部分の封孔をより効果的に行うことができる。
 本発明によれば、高い耐食性を有する皮膜を形成することができる。
図1は、第1工程によって第1皮膜を形成した後の金属基材及び皮膜の一部断面図である。 図2は、第2工程によって第1皮膜の表面に第2溶液を塗布した後の金属基材及び皮膜の一部断面図である。 図3は、第2工程によって第2皮膜を形成した後の金属基材及び皮膜の一部断面図である。 図4は、比較例に係る皮膜断面の電子顕微鏡写真である。 図5は、比較例に係る皮膜表面の電子顕微鏡写真である。 図6は、実施例1に係る皮膜断面の電子顕微鏡写真である。 図7は、実施例1に係る皮膜表面の電子顕微鏡写真である。 図8は、実施例2に係る皮膜断面の電子顕微鏡写真である。 図9は、実施例2に係る皮膜表面の電子顕微鏡写真である。
 以下、本発明の実施形態に係る皮膜形成方法について説明する。
 本実施形態に係る皮膜形成方法は、ポリシラザンを用いたシリカ系皮膜の形成方法である。
 本実施形態によって得られるシリカ系皮膜は、半導体やフラットパネルディスプレイの製造に用いられるエッチング装置や、CVD、PVD等の成膜装置において、ハロゲン系の腐食性ガス又は腐食性ガスのプラズマに晒されるチャンバーや配管等の構成部材に形成される。
 本実施形態に係る皮膜形成方法は、ポリシラザンを含有する第1溶液を、金属基材の表面に塗布し、前記第1溶液を加熱することでシリカ転化させ、表面に開口欠陥部を有する第1皮膜を前記金属基材の表面に形成する第1工程と、ポリシラザンを含有する第2溶液を、前記第1皮膜の表面に塗布して前記開口欠陥部に充填させ、前記第2溶液を前記第1工程の加熱温度よりも低い温度で加熱することでシリカ転化させ、前記第1皮膜の表面に第2皮膜を形成する第2工程と、を含む。
 以下、各工程について説明する。
(1)第1工程について
(1-1)第1溶液の塗布
 第1工程では、上述のように、金属基材の表面に第1溶液を塗布する。
 第1溶液は、ポリシラザンを有機溶媒に溶解することで得られるポリシラザン含有溶液である。
 ポリシラザンとしては、鎖状ポリシラザンとして、ペルヒドロポリシラザン、ポリメチルヒドロシラザン、ポリN-メチルシラザン、ポリN-(トリエチルシリル)アリルシラザン、ポリN-(ジメチルアミノ)シクロヘキシルシラザン、フェニルポリシラザン等を使用することができる。これらのうち、平均分子量が300~5000であるペルヒドロポリシラザンが特に好ましい。
 有機溶媒としては、エーテル類(エチルエーテル、イソプロピルエーテル、エチルブチルエーテル、ジブチルエーテル、1,2-ジオキシエタン、ジオキサン、ジメチルジオキサン、テトラヒドロフラン、テトラヒドロピラン等)あるいは、炭化水素(ペンタンヘキサン、イソヘキサン、メチルペンタン、ヘプタン、イソヘプタン、オクタン、イソオクタン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン等)が挙げられる。これらエーテル類及び炭化水素のうちの1種類又は2種類以上の混合物を有機溶媒としてもよい。
 第1溶液におけるポリシラザンの含有濃度は、0.05質量%以上、40質量%以下であることが好ましい。ポリシラザンの濃度が0.05質量%未満では、十分な膜厚の第1皮膜が得られないおそれがある。ポリシラザンの濃度が40質量%を超えると、第1溶液の粘性が高くなり、第1皮膜の膜厚が不均一になるおそれがある。ポリシラザンの含有濃度は、より好ましくは、1質量%以上、25質量%以下である。
 第1溶液は、ポリシラザン以外に触媒を含有していてもよい。この触媒は、ポリシラザンがシリカ転化する温度を相対的に下げたり、シリカ転化速度を速めたりする効果を有する。
 触媒としては、金属触媒(有機金属又は金属化合物)、アミン系触媒(アミン化合物)が挙げられる。
 金属触媒としては、ニッケル、チタン、白金、ロジウム、コバルト、鉄、ルテニウム、オスミウム、パラジウム、イリジウム、アルミニウムの中から選択される少なくとも一種類の金属を含む有機金属あるいは金属化合物が挙げられる。特に、ポリシラザン含有溶液への溶解性、安定性、反応性の点から金属カルボン酸塩が好ましい。
 アミン系触媒としては、モノアミン類、ジアミン類、トリアミン類、テトラアミン類、鎖状アミン残基含有ヒドロキシル化合物、及び、環状アミン残基含有ヒドロキシル化合物等のアミン化合物が挙げられる。
 なお、アミン残基含有ヒドロキシル化合物は、ポリシラザンと反応し、アミン残基含有ポリシラザンに変性する。
 第1溶液が触媒(有機金属、金属化合物、及びアミン化合物のうちの少なくとも1種)を含有する場合、ポリシラザンに対する触媒(の合計量)の重量比は、0.0001以上、1以下であることが好ましい。ポリシラザンに対する触媒の重量比が0.0001未満では、触媒としての効果が十分に得られないおそれがある。ポリシラザンに対する触媒の重量比が1を超えると、第1溶液の増粘(ゲル化)が顕著となり、第1皮膜の膜厚が不均一になるおそれがある。ポリシラザンに対する触媒の重量比は、より好ましくは、0.001以上、0.2以下である。ポリシラザンに対する触媒の重量比を0.2以下とすることで、第1溶液の増粘を効果的に抑制することができる。
 ここで、第1溶液及び第2溶液に含まれるポリシラザンがシリカ転化する条件(シリカ転化条件)には、加熱温度、加熱時間、加熱雰囲気、上記触媒の有無や、上記触媒の種類といったパラメータが含まれる。
 上記加熱温度(シリカ転化温度)は、前記シリカ転化条件に含まれる他のパラメータである、上記触媒の有無や、上記触媒の種類、加熱時間、加熱雰囲気に応じて定まる。
 なお、以下の説明では、第1溶液におけるポリシラザンのシリカ転化条件を、第1シリカ転化条件、第1溶液におけるポリシラザンのシリカ転化温度を第1シリカ転化温度ともいう。また、第2溶液におけるポリシラザンのシリカ転化条件を、第2シリカ転化条件、第2溶液におけるポリシラザンのシリカ転化温度を第2シリカ転化温度ともいう。
 また、本実施形態において、ポリシラザンがシリカ転化する、とは、ポリシラザンを含む溶液を加熱して得られる皮膜の皮膜密度が、2.0g/cm以上となることをいう。
 よって、シリカ転化条件とは、第1皮膜又は第2皮膜の皮膜密度が、2.0g/cm以上となる加熱条件である。
 第1溶液が触媒を含有しない場合、第1シリカ転化温度は、例えば、300℃~550℃である。
 第1溶液が金属触媒を含有する場合、第1シリカ転化温度は、例えば、120℃~350℃である。
 第1溶液がアミン系触媒を含有する場合、第1シリカ転化温度は、例えば、室温~250℃である。
 第1シリカ転化温度を含む第1シリカ転化条件は、第1溶液について以下の方法で測定することで求めることができる。
 第1シリカ転化条件の測定は、シリコンウエハ上に第1溶液を用いた皮膜を形成することで行われる。
 まず、シリコンウエハの重量を電子天秤等で測定する。このシリコンウエハ上に第1溶液をスピンコート法で塗布した後、大気中で所定の加熱温度、及び所定の加熱時間で加熱し、シリカ系皮膜を形成し、シリカ系皮膜が形成されたシリコンウエハの重量を測定する。次いで、シリコンウエハにおけるシリカ系皮膜形成前後の重量の差を求め、この値を皮膜重量とする。次に公知の方法を用いて膜厚を測定するが、好ましくはFE-SEM装置等で皮膜断面から測定することでより正確な膜厚が得られる。得られた皮膜重量及び膜厚を用いて、下式に従って皮膜密度を算出する。
 上記手法において、加熱温度及び加熱時間の組み合わせを複数設定し、各組み合わせごとに皮膜密度を求める。各組み合わせのうち、皮膜密度が2.0g/cm以上となる組み合わせを第1シリカ転化条件とする。
   皮膜密度[g/cm3] = 
     皮膜重量[g] /(膜厚[μm] ×シリコンウエハ表面積[cm2]×0.0001)
 シリカ転化条件を満たさない条件(シリカ転化温度未満、又はシリカ転化条件の加熱時間未満で加熱)によってポリシラザンを加熱して得られるシリカ系皮膜は、未転化物が含まれるため、緻密なシリカ質膜ではない。未転化物は、ポリシラザンからシリカに転化するまでの中間物質である。
 第1溶液を、第1シリカ転化条件で加熱して得られるシリカ系皮膜は、未転化物が含まれていない。つまり、第1シリカ転化条件は、第1溶液含有ポリシラザンを完全にシリカ転化し、十分に緻密なシリカ質膜が得られる加熱条件を示す。
 上記第1溶液が塗布される金属基材としては、上述のように、エッチング装置や、成膜装置のチャンバーや配管等が挙げられる。これらチャンバーや配管は、ステンレス鋼やアルミニウム合金によって形成される。
 ステンレス鋼やアルミニウム合金によって形成された金属基材の表面は、洗浄、脱脂される。その後、金属基材の表面に第1溶液が塗布される。
 なお、第1溶液を塗布する前処理として、UVランプ、エキシマランプ、プラズマの照射等、公知の方法で金属基材の表面を改質させてもよい。
 第1溶液の塗布は、スピンコート法、ロールコート法、フローコート法、スプレーコート法、ディップコート法等、公知の塗布方法を用いて行われる。
(1-2)第1皮膜の形成
 さらに、第1工程では、金属基材上に塗布された第1溶液を大気中又は水蒸気を含む雰囲気中で加熱し、第1溶液に含有されるポリシラザンをシリカ転化させ、第1皮膜を形成する。第1皮膜は、第1溶液に含有されるポリシラザンがシリカ転化することで得られるシリカ系皮膜(無機シリカ質膜)である。金属基材上に塗布された第1溶液は、所定の第1シリカ転化条件に基づいて加熱される。
 第1工程における加熱温度は、所定の第1シリカ転化条件における第1シリカ転化温度以上に設定される。例えば、所定の第1シリカ転化条件が、加熱時間1時間、第1シリカ転化温度T(Tはある値)である場合、第1工程の加熱時間を1時間としたときに、第1工程の加熱温度は、第1シリカ転化温度T以上に設定される。
 また、第1工程における加熱温度は、第1シリカ転化温度以上であればよいが、第1シリカ転化温度よりも10℃以上高いことが好ましく、30℃以上高いことがより好ましい。加熱温度が、第1シリカ転化温度に30℃を加えた値未満である場合、塗布された第1溶液全体が第1シリカ転化温度以上とならないおそれがある。加熱温度を第1シリカ転化温度よりも30℃以上高くすることで、第1溶液全体を第1シリカ転化温度以上とすることができ、第1溶液におけるポリシラザンを適切にシリカ転化することができる。
 この結果、未転化物を含まない、十分に緻密な第1皮膜を得ることができ、耐食性に優れたシリカ系皮膜を得ることができる。
 第1工程における加熱時間は、金属基材上の第1溶液が十分に加熱され第1溶液におけるポリシラザンがシリカ転化すればよく、例えば、0.5時間以上、10時間以内が好ましい。0.5時間よりも短いと、第1溶液におけるポリシラザンのシリカ転化が不十分となるおそれがある。10時間を超えると、不必要に時間を費やすことになりコスト増となる。
 なお、第1工程は、上述の第1溶液を塗布する工程、及び、第1溶液を加熱することでシリカ転化させる工程を所定回繰り返すことで第1皮膜を形成してもよい。
 この場合、第1皮膜の厚膜化が可能となり、金属基材の表面を十分に被覆することができる。
 図1は、第1工程によって第1皮膜を形成した後の金属基材及び皮膜の一部断面図である。
 図1中、第1皮膜1は、金属基材2の表面2aに形成されている。第1皮膜1の表面1aは、非欠陥部6と、複数の開口欠陥部3とを有する。開口欠陥部3は、表面2aに開口する欠陥である。開口欠陥部3には、クラック3aと、開口気孔部3bとが含まれる。
 クラック3aは、主に第1皮膜1の線膨張係数と、金属基材2の線膨張係数との差に起因して生じる。クラック3aには、第1皮膜1内で留まるものや、金属基材2の表面2aに至るものが含まれる。
 開口気孔部3bは、第1皮膜1の成膜過程において、第1溶液に含まれる気泡等に起因して生じる。
 第1皮膜1は、第1溶液におけるポリシラザンがシリカ転化したものであり、主としてシリカによって形成されている。よって、第1皮膜の線膨張係数は、無機シリカガラスと石英の中間の値であり、0.6~6(×10-6/℃)程度である。
 一方、金属基材2は、ステンレス鋼やアルミニウム合金であり、一例として、ステンレス鋼であるJIS SUS316Lは、16.0(×10-6/℃)、アルミニウム合金であるJIS A6061は、23.6(×10-6/℃)である。
 第1工程では、第1溶液を塗布した金属基材2を第1溶液におけるポリシラザンのシリカ転化温度以上に加熱して第1皮膜1を形成するので、加熱後、常温に冷却されると、第1皮膜1と金属基材2との間の線膨張係数の差異によって第1皮膜1に応力が作用する。この応力によって、第1皮膜1にはクラック3aが生じる。
(2)第2工程について
(2-1)第2溶液の塗布
 第2工程では、第1皮膜の表面に第2溶液を塗布する。
 図2は、第2工程によって第1皮膜の表面に第2溶液を塗布した後の金属基材及び皮膜の一部断面図である。
 図2に示すように、第1皮膜1の表面1aに第2溶液4を塗布することで、開口欠陥部3に第2溶液4を充填する。
 第2溶液は、ポリシラザンを有機溶媒に溶解することで得られるポリシラザン含有溶液である。
 ポリシラザンとしては、鎖状ポリシラザンとして、ペルヒドロポリシラザン、ポリメチルヒドロシラザン、ポリN-メチルシラザン、ポリN-(トリエチルシリル)アリルシラザン、ポリN-(ジメチルアミノ)シクロヘキシルシラザン、フェニルポリシラザン等を使用することができる。これらのうち、平均分子量が300~5000であるペルヒドロポリシラザンが特に好ましい。
 有機溶媒としては、第1溶液と同種のものを採用でき、その具体例としては、エーテル類(エチルエーテル、イソプロピルエーテル、エチルブチルエーテル、ジブチルエーテル、1,2-ジオキシエタン、ジオキサン、ジメチルジオキサン、テトラヒドロフラン、テトラヒドロピラン等)あるいは、炭化水素(ペンタンヘキサン、イソヘキサン、メチルペンタン、ヘプタン、イソヘプタン、オクタン、イソオクタン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン等)が挙げられる。これらエーテル類及び炭化水素のうちの1種類又は2種類以上の混合物を有機溶媒としてもよい。
 第2溶液におけるポリシラザンの含有濃度は、0.05質量%以上、40質量%以下であることが好ましい。ポリシラザンの濃度が0.05質量%未満では、必要最低限の膜厚の第2皮膜が得られないおそれがある。ポリシラザンの濃度が40質量%を超えると、第2溶液の粘性が高くなり、第2皮膜の膜厚が不均一になるおそれがある。
 ポリシラザンの含有濃度は、より好ましくは、1質量%以上、25質量%以下である。
 また、第1溶液におけるポリシラザンの含有濃度に対する、第2溶液におけるポリシラザンの含有濃度の濃度比は、0.001以上、1未満であることが好ましい。
 濃度比が1以上である場合、第2溶液の粘性が比較的高くなり、第2工程において第1皮膜の表面に第2溶液を塗布したときに、第2溶液が開口欠陥部3に充填されないおそれがある。
 また、濃度比が0.001より小さい場合、第2溶液が開口欠陥部3に充填されたとしても開口欠陥部3において十分に皮膜が形成されず、封孔できないおそれがある。
 濃度比を0.001以上、1未満とすることで、開口欠陥部3へ充填し得る粘性を有しかつ開口欠陥部3において十分に皮膜が形成される濃度の第2溶液を得ることができる。
 前記第1溶液におけるポリシラザンの含有濃度に対する、前記第2溶液におけるポリシラザンの含有濃度の濃度比は、より好ましくは0.01以上、0.6未満 である。
 また、第1溶液におけるポリシラザンの含有濃度に対する、第2溶液におけるポリシラザンの含有濃度の濃度比は、1以上、200以下であってもよい。
 濃度比が200より大きい場合、第2溶液の粘性が高くなり、第2溶液を均一に塗布できず、第2皮膜の膜厚が不均一になるおそれがある。
 また、濃度比が1より小さい場合、十分な厚みの第2皮膜が得られないおそれがある。
 濃度比を1以上、200以内とすることで、仮に第1皮膜が極端に薄い膜(例えば、0.01μm未満 )であったとしても、第1皮膜を補完して金属基材を十分に被覆しうる第2皮膜を得ることができる。
 第2溶液は、ポリシラザン以外に触媒を含有していることが好ましい。第2溶液が触媒を含有していることで、第2工程におけるシリカ転化条件の加熱温度を、第1工程におけるシリカ転化条件の加熱温度よりも低い温度に設定しやすくなる。
 触媒としては、第1溶液と同種のものを採用でき、金属触媒(有機金属又は金属化合物)、アミン系触媒(アミン化合物)が挙げられる。
 金属触媒としては、ニッケル、チタン、白金、ロジウム、コバルト、鉄、ルテニウム、オスミウム、パラジウム、イリジウム、アルミニウムの中から選択される少なくとも一種類の金属を含む有機金属あるいは金属化合物が挙げられる。特に、ポリシラザン含有溶液への溶解性、安定性、反応性の点から金属カルボン酸塩が好ましい。
 アミン系触媒としては、モノアミン類、ジアミン類、トリアミン類、テトラアミン類、鎖状アミン残基含有ヒドロキシル化合物、及び、環状アミン残基含有ヒドロキシル化合物等のアミン化合物が挙げられる。
 第2溶液が触媒(有機金属、金属化合物、及びアミン化合物のうちの少なくとも1種)を含有する場合、ポリシラザンに対する触媒(の合計量)の重量比は、0.0001以上、1以下であることが好ましい。ポリシラザンに対する触媒の重量比が0.0001未満では、触媒としての効果が十分に得られないおそれがある。ポリシラザンに対する触媒の重量比が1を超えると、第2溶液の増粘(ゲル化)が顕著となり、膜厚が不均一になるばかりか第1皮膜の表面の開口欠陥部3に充填させることができなくなるおそれがある。ポリシラザンに対する触媒の重量比は、より好ましくは、0.001以上、0.2以下である。ポリシラザンに対する触媒の重量比を0.2以下とすることで、第2溶液の増粘を効果的に抑制することができる。
 第2溶液が触媒を含有しない場合、第2シリカ転化温度は、例えば、300℃~550℃である。
 第2溶液が金属触媒を含有する場合、第2シリカ転化温度は、例えば、120℃~350℃である。
 第2溶液がアミン系触媒を含有する場合、第2シリカ転化温度は、例えば、室温~250℃である。
 例えば、第1溶液が触媒を含有しない場合、第1シリカ転化温度は300℃~550℃であり、第2溶液は、第2工程の加熱温度が第1工程の加熱温度よりも低いという条件を満たす限り、触媒が含有されていてもよいし含有されていなくてもよい。
 第1溶液が金属触媒であるパラジウムを含有する場合、第1シリカ転化温度は、120℃~350℃である。この場合、第2溶液には、触媒を含有させることが好ましい。触媒を含有しない場合、第2シリカ転化温度は、300℃~550℃となり、第2工程の加熱温度が第1工程の加熱温度よりも低いという条件を満たすことが難しくなる。
 第2シリカ転化温度を含む第2のシリカ転化条件は、第2溶液について第1シリカ転化条件の測定方法と同じ方法で測定することで求めることができる。
 本実施形態において、第2シリカ転化条件は、所定の第1シリカ転化条件に含まれる第1シリカ転化温度以下の値の第2シリカ転化温度を含む条件とされている。
 第2溶液の塗布は、スピンコート法、ロールコート法、フローコート法、スプレーコート法、ディップコート法等、公知の塗布方法を用いて行われる。
 (2-2)第2皮膜の形成
 さらに、第2工程では、第1皮膜の表面に塗布された第2溶液を大気中又は水蒸気を含む雰囲気中で加熱し、第2溶液に含有されるポリシラザンをシリカ転化させ、第2皮膜を形成する。第2皮膜は、第2溶液に含有されるポリシラザンがシリカ転化することで得られるシリカ系皮膜(無機シリカ質膜)である。
 第2工程における加熱温度は、第1工程の加熱温度よりも低くかつ第2シリカ転化温度以上の温度に設定される。
 加熱温度が第1工程の加熱温度以上であると、第1皮膜を形成したとき以上の温度に第1皮膜を加熱することになり、その後常温に冷却するときに金属基材と第1皮膜との間の線膨張係数の差異によって第1皮膜に新たなクラックを生じさせるおそれがある。
 加熱温度が第2シリカ転化温度未満であると、第2溶液に含有されるポリシラザンのシリカ転化が十分に行われないおそれがある。
 加熱温度を、第1工程の加熱温度よりも低くかつ第2シリカ転化温度以上の温度とすることで、第1皮膜にストレスを与えることなく、第2溶液におけるポリシラザンを適切にシリカ転化することができる。
 第2工程における加熱時間は、第1皮膜上の第2溶液が十分に加熱され第2溶液におけるポリシラザンがシリカ転化すればよく、例えば、0.5時間以上、10時間以内が好ましい。0.5時間よりも短いと、第2溶液におけるポリシラザンのシリカ転化が不十分となるおそれがある。10時間を超えると、不必要に時間を費やすことになりコスト増となる。
 なお、第2工程は、上述の第2溶液を塗布する工程、及び、第2溶液を第1工程の加熱温度よりも低い温度で加熱することでシリカ転化させる工程を所定回数繰り返すことで第2皮膜を形成するものであってもよい。
 図3は、第2工程によって第2皮膜を形成した後の金属基材及び皮膜の一部断面図である。
 第2溶液を塗布した金属基材を第2工程にて加熱すると、開口欠陥部3に充填された第2溶液に含まれるポリシラザンはシリカ転化される。よって、図3に示すように、開口欠陥部3には第2皮膜5が形成される。
 この結果、第1皮膜1の表面1aの開口欠陥部3は第2皮膜によって封孔される。
 第2皮膜5は、表面1aのうち、少なくとも開口欠陥部3に形成され開口欠陥部3が封孔されていればよいが、開口欠陥部3以外の部分(例えば、非欠陥部6上)に形成されていてもよい。
 このように、上記構成の皮膜形成方法によれば、第1皮膜は開口欠陥部3を有するが、第2工程において第1皮膜の表面に第2溶液を塗布することで開口欠陥部3に第2溶液を充填させる。その後、第2溶液に含有されるポリシラザンをシリカ転化させることで、開口欠陥部3に第2皮膜を形成することができる。この結果、第2皮膜によって、開口欠陥部3を封孔することができ、開口欠陥部3に起因する防食性の低下を防止できる。
 このため、第1工程において皮膜にクラックが入ることを気にせず、十分に高い温度で第1溶液のポリシラザンをシリカ転化させ、緻密な第1皮膜を形成することができる。
 また、第2工程において第1工程よりも低い温度で加熱することで、第1皮膜に新たなクラックを生じさせることなく、第1皮膜の開口欠陥部を覆う第2皮膜を形成することができる。
 このように、本実施形態によれば、開口欠陥部3に起因する防食効果の低下を防止しつつ、十分に緻密な皮膜を得ることができ、高い耐食性を有する皮膜を形成することができる。
 さらに、第2工程が第2溶液を塗布する工程、及び、第2溶液を第1工程の加熱温度よりも低い温度で加熱することでシリカ転化させる工程を所定回数繰り返すことで第2皮膜を形成するものであれば、開口欠陥部3の封孔をより効果的に行うことができる。
 なお、第2溶液が含有するポリシラザンとしては、上述したように、ペルヒドロポリシラザンが特に好ましい。
 第2溶液に含有されるポリシラザンがペルヒドロポリシラザンであれば、緻密な第2皮膜を得ることができ、より耐食性の高い皮膜を形成することができる。
 また、上記実施形態において、第1皮膜及び第2皮膜の総膜厚は、0.01μm以上、10.0μm以下であることが好ましい。
 上記膜厚が0.01μm未満である場合、金属基材の表面を外部環境に対して十分に遮蔽することができないおそれがある。
 上記膜厚が10.0μmを超える場合、金属基材と第1皮膜との間の線膨張係数の差異に起因して第1皮膜に作用する応力が大きくなり、第1皮膜に剥離が生じたり、第1皮膜の内部応力により皮膜剥離、皮膜破壊等が生じたりするおそれがある。
 第1皮膜及び第2皮膜の総膜厚を0.01μm以上、10.0μm以下とすることで、金属基材の表面を外部環境に対して適切に遮蔽することができる皮膜を得ることができる。
 第1皮膜及び第2皮膜の総膜厚は、より好ましくは、0.05μm以上、3.0μm以下である。
 以下、実施例によって本発明についてさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 第1溶液としては、金属触媒(パラジウム)を含有するとともに、ペルヒドロポリシラザンの含有濃度が20質量%であるジブチルエーテル溶液(メルクパフォーマンスマテリアルズ社製、商品名Durazane2400)を用いた。第1溶液における第1シリカ転化条件は、上述の測定方法により求めた値を用い、加熱時間1時間で第1シリカ転化温度を150℃と定めた。
 第2溶液としては、金属触媒(パラジウム)を含有するとともに、ペルヒドロポリシラザンの含有濃度が20質量%であるジブチルエーテル溶液(メルクパフォーマンスマテリアルズ社製、商品名Durazane2400)を、ペルヒドロポリシラザンの含有濃度が10質量%溶液となるように調製したものを用いた。よって、第1溶液におけるペルヒドロポリシラザンの含有濃度に対する、第2溶液におけるペルヒドロポリシラザンの含有濃度の濃度比は0.5である。
 第2溶液における第2シリカ転化条件は、上述の測定方法により求めた値を用い、加熱時間1時間で第2シリカ転化温度を150℃と定めた。
 金属基材として、50mm×50mm、厚さ5mmのステンレス鋼(JIS SUS316L)の板材を用意した。
 この金属基材の表面を脱脂、洗浄し、第1溶液をスピンコート法で塗布し、250℃で1時間加熱し、1時間後、加熱炉から取出して大気中で冷却した。これにより、金属基材の表面に開口欠陥部を有する第1皮膜を形成した。
 その後、第1皮膜の表面に第2溶液をスピンコート法で塗布し、第2シリカ転化温度である150℃で1時間加熱した。これにより、第1皮膜の表面に第2皮膜を形成し、金属基材上に第1皮膜及び第2皮膜(総膜厚1.7~1.8μm)が形成された試験片を得た。
 なお、このときの第1皮膜の密度は、2.31g/cm、第2皮膜の密度は、2.14g/cmである。よって、第1皮膜及び第2皮膜は、ともにシリカ転化されている。これら皮膜の密度は、同一条件で加熱した皮膜の密度を上述の測定方法により測定することで得た。
(実施例2)
 第1溶液としては、金属触媒(パラジウム)を含有するとともに、ペルヒドロポリシラザンの含有濃度が20質量%であるジブチルエーテル溶液(メルクパフォーマンスマテリアルズ社製、商品名Durazane2400)を用いた。第1溶液における第1シリカ転化条件は、上述の測定方法により求めた値を用い、加熱時間1時間で第1シリカ転化温度を150℃と定めた。
 第2溶液としては、金属触媒(パラジウム)を含有するとともに、ペルヒドロポリシラザンの含有濃度が20質量%であるジブチルエーテル溶液(メルクパフォーマンスマテリアルズ社製、商品名Durazane2400)を、ペルヒドロポリシラザンの含有濃度が5質量%溶液となるように調製したものを用いた。よって、第1溶液におけるペルヒドロポリシラザンの含有濃度に対する、第2溶液におけるペルヒドロポリシラザンの含有濃度の濃度比は0.25である。
 第2溶液における第2シリカ転化条件は、上述の測定方法により求めた値を用い、加熱時間2時間で第2シリカ転化温度を130℃と定めた。
 金属基材として、50mm×50mm、厚さ5mmのアルミニウム合金(JIS A6061)の板材を用意した。
 この金属基材の表面を脱脂、洗浄し、第1溶液をスピンコート法で塗布し、250℃で1時間加熱し、1時間後、加熱炉から取出して大気中で冷却した。これにより、金属基材の表面に開口欠陥部を有する第1皮膜を形成した。
 その後、第1皮膜の表面に第2溶液をスピンコート法で塗布し、第2シリカ転化温度である130℃で2時間加熱した。これにより、第1皮膜の表面に第2皮膜を形成し、金属基材上に第1皮膜及び第2皮膜(総膜厚1.4~1.5μm)が形成された試験片を得た。
 なお、このときの第1皮膜の密度は、2.31g/cm、第2皮膜の密度は、2.21g/cmである。よって、第1皮膜及び第2皮膜は、ともにシリカ転化されている。
(比較例)
 第1溶液としては、金属触媒(パラジウム)を含有するとともに、ペルヒドロポリシラザンの含有濃度が20質量%であるジブチルエーテル溶液(メルクパフォーマンスマテリアルズ社製、商品名Durazane2400)を用いた。第1溶液における第1シリカ転化条件は、メーカの開示データに基づき、加熱時間1時間で第1シリカ転化温度を250℃と定めた。
 金属基材として、50mm×50mm、厚さ5mmのステンレス鋼(JIS SUS316L)の板材を用意した。
 この金属基材の表面を脱脂、洗浄し、第1溶液をスピンコート法で塗布し、第1シリカ転化温度である250℃で1時間加熱した。これにより、金属基材の表面に第1皮膜(膜厚1.2~1.3μm)が形成された試験片を得た。
〔皮膜断面及び表面の観察〕
 上記実施例1,2及び比較例で得た各試験片を高速カッタで切断し、得られた切断片を樹脂に埋包した上でイオンミリング(日立ハイテク社製 IM400)し、FE-SEM装置(日立ハイテク社製 SU8020)を用いて皮膜断面を観察した。また、FE-SEM装置を用いて、実施例1,2及び比較例で得た各試験片の皮膜表面を観察した。
 図4は、比較例に係る皮膜断面の電子顕微鏡写真であり、図5は、比較例に係る皮膜表面の電子顕微鏡写真である。
 図4及び図5に示すように、第1皮膜の表面には多数のクラックが存在していることが判る。
 図6は、実施例1に係る皮膜断面の電子顕微鏡写真であり、図7は、実施例1に係る皮膜表面の電子顕微鏡写真である。
 図8は、実施例2に係る皮膜断面の電子顕微鏡写真であり、図9は、実施例2に係る皮膜表面の電子顕微鏡写真である。
 図6~9に示すように、実施例1及び実施例2では、比較例において見られるクラックが封孔されていることが判る。
〔耐塩酸腐食性試験〕
 皮膜が形成されている面のみが露出するように、上記実施例1,2及び比較例で得た各試験片をマスキングし、マスキングした各試験片を常温の10%塩酸溶液に24時間浸漬し、皮膜が形成されている面の腐食状態を観察した。
 その結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第2皮膜が形成されていない第1皮膜を有する比較例では、腐食が見られ一部剥離が起こったが、第2皮膜が形成されている実施例1及び実施例2では、腐食が見られなかった。
 このことから、第1皮膜のクラックが封孔され、クラックに起因する防食効果の低下が防止できていることが判る。
 また、第1皮膜及び第2皮膜が塩酸溶液中において、高い耐食性を有することが判る。
1 第1皮膜
1a 表面
2 金属基材
2a 表面
3 開口欠陥部
3a クラック
3b 開口気孔部
4 第2溶液
5 第2皮膜
6 非欠陥部

Claims (7)

  1.  ポリシラザンを含有する第1溶液を、金属基材の表面に塗布し、前記第1溶液を加熱することでシリカ転化させ、表面に開口欠陥部を有する第1皮膜を前記金属基材の表面に形成する第1工程と、
     ポリシラザンを含有する第2溶液を、前記第1皮膜の表面に塗布して前記開口欠陥部に充填させ、前記第2溶液を前記第1工程の加熱温度よりも低い温度で加熱することでシリカ転化させ、前記第1皮膜の表面に第2皮膜を形成する第2工程と、を含む
    皮膜形成方法。
  2.  前記第2溶液が含有するポリシラザンは、ペルヒドロキシポリシラザンである
    請求項1に記載の皮膜形成方法。
  3.  前記第1溶液におけるポリシラザンの含有濃度に対する、前記第2溶液におけるポリシラザンの含有濃度の濃度比が0.001以上、1未満である
    請求項1又は請求項2に記載の皮膜形成方法。
  4.  前記第2溶液は、有機金属、金属化合物、及びアミン化合物のうちの少なくとも1種を含有し、
     前記ポリシラザンに対する、前記有機金属、前記金属化合物、及び前記アミン化合物の合計量の重量比は、0.0001以上、1以下である
    請求項1から請求項3のいずれか一項に記載の皮膜形成方法。
  5.  前記第1皮膜及び前記第2皮膜の総膜厚は、0.01μm以上、10.0μm以下である
    請求項1から請求項4のいずれか一項に記載の皮膜形成方法。
  6.  前記第1工程は、前記金属基材に前記第1溶液を塗布する工程、及び、前記第1溶液を加熱することでシリカ転化させる工程を所定回数繰り返すことで前記第1皮膜を形成する
    請求項1から請求項5のいずれか一項に記載の皮膜形成方法。
  7.  前記第2工程は、前記第1皮膜に前記第2溶液を塗布する工程、及び、前記第2溶液を前記第1工程の加熱温度よりも低い温度で加熱することでシリカ転化させる工程を所定回数繰り返すことで前記第2皮膜を形成する
    請求項1から請求項6のいずれか一項に記載の皮膜形成方法。
     
PCT/JP2021/041588 2020-12-23 2021-11-11 皮膜形成方法 WO2022137871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/269,077 US20240044009A1 (en) 2020-12-23 2021-11-11 Coating film formation method
CN202180086183.1A CN116669864A (zh) 2020-12-23 2021-11-11 皮膜形成方法
JP2022571950A JPWO2022137871A1 (ja) 2020-12-23 2021-11-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-213377 2020-12-23
JP2020213377 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022137871A1 true WO2022137871A1 (ja) 2022-06-30

Family

ID=82158994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041588 WO2022137871A1 (ja) 2020-12-23 2021-11-11 皮膜形成方法

Country Status (5)

Country Link
US (1) US20240044009A1 (ja)
JP (1) JPWO2022137871A1 (ja)
CN (1) CN116669864A (ja)
TW (1) TW202225480A (ja)
WO (1) WO2022137871A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181861A (ja) * 1999-12-28 2001-07-03 Central Glass Co Ltd アニロックスロールの表面構造
JP2002105676A (ja) * 2000-07-27 2002-04-10 Contamination Control Service:Kk コーティング膜とそれが施された部材及びコーティング膜の製造方法
JP2006347827A (ja) * 2005-06-17 2006-12-28 Tocalo Co Ltd アモルファスSiO2膜被覆部材および、その形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100317569B1 (ko) * 1995-07-13 2001-12-24 다마호리 다메히코 세라믹스질 물질 형성용 조성물 및 세라믹스질 물질의제조 방법
JP4053105B2 (ja) * 1996-12-30 2008-02-27 Azエレクトロニックマテリアルズ株式会社 シリカ質セラミックス被膜の形成方法及び同方法で形成されたセラミックス被膜
JP4230623B2 (ja) * 1999-09-21 2009-02-25 グンゼ株式会社 厚膜二酸化ケイ素の被覆方法
JP2003118030A (ja) * 2001-10-16 2003-04-23 Asahi Glass Co Ltd ガスバリヤ性有機基材およびそれを用いたエレクトロルミネッセンス素子
US7521378B2 (en) * 2004-07-01 2009-04-21 Micron Technology, Inc. Low temperature process for polysilazane oxidation/densification
DE102004054661A1 (de) * 2004-11-12 2006-05-18 Clariant International Limited Verwendung von Polysilazanen zur Beschichtung von Metallbändern
DE102005034817A1 (de) * 2005-07-26 2007-02-01 Clariant International Limited Verfahren zur Herstellung einer dünnen glasartigen Beschichtung auf Substraten zur Verringerung der Gaspermeation
JP2009255040A (ja) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd フレキシブルガスバリアフィルムおよびその製造方法
JP2012116960A (ja) * 2010-12-01 2012-06-21 Konica Minolta Holdings Inc ガスバリア性フィルム、その製造方法及び有機電子デバイス
JP5130408B1 (ja) * 2011-12-27 2013-01-30 株式会社ジュエリー・ミウラ 貴金属保護膜の形成方法
JP6104785B2 (ja) * 2013-12-09 2017-03-29 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ ペルヒドロポリシラザン、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法
US20150209826A1 (en) * 2014-01-29 2015-07-30 University Of Washington Silicon oxynitride materials having particular surface energies and articles including the same, and methods for making and using them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181861A (ja) * 1999-12-28 2001-07-03 Central Glass Co Ltd アニロックスロールの表面構造
JP2002105676A (ja) * 2000-07-27 2002-04-10 Contamination Control Service:Kk コーティング膜とそれが施された部材及びコーティング膜の製造方法
JP2006347827A (ja) * 2005-06-17 2006-12-28 Tocalo Co Ltd アモルファスSiO2膜被覆部材および、その形成方法

Also Published As

Publication number Publication date
CN116669864A (zh) 2023-08-29
JPWO2022137871A1 (ja) 2022-06-30
TW202225480A (zh) 2022-07-01
US20240044009A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
CN104592893B (zh) 一种耐原子氧涂层用溶液组合物和含有该涂层的材料及其制备方法
KR101152694B1 (ko) 폴리실라잔 처리용 용매 및 당해 용매를 사용하는폴리실라잔의 처리방법
JP4796464B2 (ja) 耐食性に優れたアルミニウム合金部材
US10781318B2 (en) Graphene based corrosion-resistant coating
JP5014656B2 (ja) プラズマ処理装置用部材およびその製造方法
JP6839206B2 (ja) 金属ウィスカの軽減のためのaldによる被覆
WO2022137871A1 (ja) 皮膜形成方法
US10323321B1 (en) Thermal chemical vapor deposition process and coated article
US5776550A (en) Oxidation inhibitor coating
TW202231899A (zh) 塗佈抗腐蝕金屬氟化物的製品、其製備方法及使用方法
WO2022137873A1 (ja) 皮膜形成方法
JP3871544B2 (ja) 皮膜形成処理用アルミニウム合金、ならびに耐食性に優れたアルミニウム合金材およびその製造方法
JP3871560B2 (ja) 皮膜形成処理用アルミニウム合金、ならびに耐食性に優れたアルミニウム合金材およびその製造方法
US6805968B2 (en) Members for semiconductor manufacturing apparatus and method for producing the same
KR101617677B1 (ko) 금속계 박막층과 세라믹 코팅층을 포함하는 고온 내식성이 향상된 복합 강판 및 이의 제조방법
US20110005549A1 (en) Method for the thermochemical cleaning and/or stripping of turbine components
KR102435161B1 (ko) 플라즈마 처리 챔버 내부 부품 및 이의 제조 방법
JP2005298945A (ja) 耐食表面処理品及びその製造方法
EP3590611A1 (en) Corrosion resistant coating for a high temperature heat exchanger
CN102341892B (zh) 将非金属沉积物从含铝基板移除的非破坏性及选择性沉积移除方法
CN111172489A (zh) 一种开架式海水汽化器金属涂层的防腐蚀方法
JPH08238712A (ja) ゴム被覆ステンレス鋼板
CN117511319A (zh) 一种高温长时渗铝用防护涂料及涂覆方法
CN117165181A (zh) 一种提高有机硅树脂涂层耐高温耐腐蚀性能的涂层制备方法
JP2006241304A (ja) 膜形成用組成物、絶縁膜およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571950

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086183.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18269077

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910025

Country of ref document: EP

Kind code of ref document: A1