US20110005549A1 - Method for the thermochemical cleaning and/or stripping of turbine components - Google Patents

Method for the thermochemical cleaning and/or stripping of turbine components Download PDF

Info

Publication number
US20110005549A1
US20110005549A1 US12/920,108 US92010809A US2011005549A1 US 20110005549 A1 US20110005549 A1 US 20110005549A1 US 92010809 A US92010809 A US 92010809A US 2011005549 A1 US2011005549 A1 US 2011005549A1
Authority
US
United States
Prior art keywords
gaseous
volume
component
substance
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/920,108
Inventor
Horst Pillhöfer
Jörn Kohlscheen
Paul Heilmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Assigned to MTU AERO ENGINES GMBH reassignment MTU AERO ENGINES GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOHLSCHEEN, JORN, PILLHOFER, HORST, HEILMANN, PAUL
Publication of US20110005549A1 publication Critical patent/US20110005549A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a process for the thermochemical cleaning and/or stripping of turbine components, in particular of engine components.
  • U.S. Pat. No. 5,898,994 teaches using a mixture of HF gas and hydrogen in which the HF gas is in the range of 10-15% by weight, in particular in the range of 13% by weight and the remainder is hydrogen, in particular 87% by weight hydrogen for the removal of products produced by hot gas corrosion, such as metallic sulfides.
  • U.S. Pat. No. 5,728,227 teaches a process for stripping gas turbine components in which a section of the gas turbine component is exposed to a reduction gas containing more that 6% by weight halogen gas at a temperature above 1600° F.
  • U.S. Pat. No. 5,373,986 teaches a process for cleaning fissures in turbine components in which a tape is adhered over the fissure.
  • the process in accordance with one aspect provides for the thermochemical cleaning and/or stripping of turbine components, in particular engine components, that at first a first gaseous mixture is produced containing HF and H 2 .
  • this first gaseous mixture consists of HF and H 2 .
  • the first gaseous mixture is such that the part by volume of HF in the mixture of HF and H 2 is in the range of 2.5 to 45% by volume.
  • the first gaseous mixture, that comprises HF and H 2 is applied on and/or in a turbine component for cleaning or stripping this turbine component.
  • the part by volume of HF in the mixture of HF and H 2 is in the range of 5 to 25% by volume, preferably between 10 and 20% by volume.
  • the turbine component is washed after the production and application of the first gaseous mixture on this turbine component. Such a washing can take place, e.g., by a second gaseous mixture or by a second gaseous substance.
  • the term second gaseous mixture is used but it should be noted that a second gaseous substance can also be used instead of it.
  • the second gaseous mixture can be, for example, H 2 .
  • the second gaseous mixture is a mixture of HF and H 2 in which the part by volume of HF in the mixture of HF and H 2 is in the range of 0.5 to 5% by volume, preferably in the range of 0.5 to 4% by volume, preferably in the range of 1 to 3% by volume.
  • the second gaseous mixture is preferably produced and applied on the turbine component. It can be provided that a first gaseous mixture is repeatedly produced and applied on the turbine component and then a second gaseous mixture is subsequently produced and applied on the turbine component.
  • This producing and applying of a first and the second gaseous mixture can be multiply repeated in an alternating manner for cleaning and/or stripping the turbine component. It can be provided that the pressure of the first gaseous mixture is varied over time. It can also be provided that the pressure of the second gaseous mixture is varied over time.
  • the first gaseous mixture is applied with a different pressure than the second gaseous mixture.
  • the pressure of the second gaseous mixture can be lower than that of the first gaseous mixture. It can also be provided that the pressure of the second gaseous mixture is greater than that of the first gaseous mixture.
  • An advantageous embodiment provides that the pressure is varied in such a manner that it is present partially in the range of a subpressure and partially in the range of an overpressure. It can be provided that pressure changes take place in steps or that pressure changes take place continuously. It can also be provided that pressure changes take place solely in the overpressure range or that pressure changes take place solely in the subpressure range.
  • the pressure permanently changes during the entire process. However, it can also be provided that the pressure is constant at least at times.
  • the process is carried out in an advantageous embodiment in a closed system or in a closed container.
  • An especially preferred embodiment provides that the first or the second gaseous mixture is supplied and that a chemical reaction is brought about by this first and/or second gaseous mixture in the container that brings about a cleaning and/or stripping of the turbine component, and that the reaction products are subsequently removed partially or completely from the container.
  • the turbine component is a hollow component. It can be provided, for example, that the inside surface of such a hollow component is cleaned and/or stripped by the process of the invention.
  • the component can be, for example, a blade, in particular a compressor blade or turbine blade.
  • the component is preferably a hollow blade, in particular a hollow turbine blade.
  • thermochemical process in accordance with the invention for cleaning inside surfaces of hollow turbine components or service-conditioned damage by hot gas corrosion is carried out by a controlled thermochemical gas phase process at high temperatures.
  • the process has different periods or time sections in which time sections or periods can be present with high parts by volume of hydrogen fluoride (HF) of 2.5 to 45% in hydrogen-containing reaction atmosphere, followed by process sections with substantially hydrogen-containing reaction atmosphere.
  • HF hydrogen fluoride
  • the process of the invention is used especially preferably to remove metal oxides from the casting- and production process of the components before the coating with Pt, Pd, Zr, HF, Y, Al, Cr, Si and to remove metal oxide compounds and/or metal sulfur compounds and/or cover layers, in particular ceramics/oxide cover layers, and/or thermal insulation layers, in particular ZrO 2 thermal insulation layers in the case of coated components.
  • the turbine components on which the process of the invention is used consist of nickel-based alloys and/or cobalt-based alloys that are used or can be used, e.g., in the hot areas of airplane turbines and gas turbines.
  • Such components and turbines often have small wall thicknesses and have, especially when they are cooled with air during use, inside cooling surfaces and cooling fits.
  • Ni/Co super alloys for gas turbines are frequently optimized for the best possible combination of temperature resistance, creeping strength and expansion change capacitance.
  • Such a component can be used, for example, in the process of the invention.
  • Such measures for increasing the strength such as, e.g., Cr reduction in the base material and limitation of the Al- and/or Ti content can, however, result in a limited service life as regards oxidation and corrosion.
  • the components can be diffusion-coated with Al, PtAl, Cr, or Si or be coated with MeCrAlY support layers. This can take place, for example, in the framework of the manufacturing of new parts but also in the framework of the overhauling of already coated parts.
  • inside surfaces and/or outside surfaces of turbine components in particular turbine blades, can be cleaned with the process in accordance with the invention for being prepared for the coating in the thermochemical process.
  • a pressure fluctuation of ⁇ p>5 mbar and ⁇ p ⁇ 200 mbar is given.
  • a pressure fluctuation can be present during the process that is in the range between 20 and 60 mbar. It can also be provided that a pressure fluctuation is present that corresponds substantially to 30 mbar.
  • the process can take pace with a high flow of >5 volume elements exchange rate per hour.
  • the HF components vary in time. This can be controlled, for example, by the addition of H 2 . It can also be provided in particular that fissures are cleaned by the process of the invention.
  • the container in which the process can be carried out can have a volume, for example, that >0.3 m 3 and ⁇ 10 m 3 .
  • the container volume is in the range of 0.5 to 5 m 3 , preferably between 0.5 and 3 m 3 , especially preferably between 1 and 2 m 3 , especially preferably substantially 1.5 m 3 .
  • a thorough washing always takes place during the process of the invention, i.e., a gaseous mixture is supplied and reaction points are removed.
  • a thorough washing always takes place during the process of the invention, i.e., a gaseous mixture is supplied and reaction points are removed.
  • the following reaction is carried out during the process of the invention:
  • the cycle time ⁇ T can be, for example, in the range of 10 sec. to 10 min. It can be provided that the pressures and/or the mixing ratio of the gaseous mixture is/are changed during the process.

Abstract

The invention relates to a process for the thermochemical cleaning and/or stripping of turbine components, in particular engine components, with the steps: Production of a first gaseous mixture containing HF and H2 in which the part by volume of HF in the mixture of HF and H2 is in the range of 2.5 to 45% by volume, and application of the first gaseous mixture containing HF and H2 on and/or in a turbine component for cleaning and/or stripping this turbine component.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a U.S. National Phase application submitted under 35 U.S.C. §371 of Patent Cooperation Treaty application serial no. PCT/DE2009/000228, filed 19 Feb. 2009, and entitled METHOD FOR THE THERMOCHEMICAL CLEANING AND/OR STRIPPING OF TURBINE COMPONENTS, which application claims priority to German patent application serial no. 10 2008 011 747.1, filed 28 Feb. 2008, and entitled VERFAHREN ZUM THERMOCHEMISCHEN REINIGEN UND/ODER STRIPPEN VON TURBINENBAUTEILEN.
  • Patent Cooperation Treaty application serial no. PCT/DE2009/000228, published as WO/2009/106044, and German patent application serial no. 10 2008 011 747.1, are incorporated herein by reference.
  • TECHNICAL FIELD
  • The invention relates to a process for the thermochemical cleaning and/or stripping of turbine components, in particular of engine components.
  • BACKGROUND
  • U.S. Pat. No. 5,898,994 teaches using a mixture of HF gas and hydrogen in which the HF gas is in the range of 10-15% by weight, in particular in the range of 13% by weight and the remainder is hydrogen, in particular 87% by weight hydrogen for the removal of products produced by hot gas corrosion, such as metallic sulfides.
  • U.S. Pat. No. 5,728,227 teaches a process for stripping gas turbine components in which a section of the gas turbine component is exposed to a reduction gas containing more that 6% by weight halogen gas at a temperature above 1600° F.
  • U.S. Pat. No. 5,373,986 teaches a process for cleaning fissures in turbine components in which a tape is adhered over the fissure.
  • It is the purpose of the invention to make a process available by means of which turbine components can be cleaned and/or stripped in a simple manner.
  • SUMMARY AND DETAILED DESCRIPTION
  • Processes according to the invention are described and claimed herein. Preferred further developments are subject matter of the subclaims.
  • The process in accordance with one aspect provides for the thermochemical cleaning and/or stripping of turbine components, in particular engine components, that at first a first gaseous mixture is produced containing HF and H2. It can be provided that this first gaseous mixture consists of HF and H2. The first gaseous mixture is such that the part by volume of HF in the mixture of HF and H2 is in the range of 2.5 to 45% by volume. Subsequently, the first gaseous mixture, that comprises HF and H2, is applied on and/or in a turbine component for cleaning or stripping this turbine component. In an advantageous embodiment the part by volume of HF in the mixture of HF and H2 is in the range of 5 to 25% by volume, preferably between 10 and 20% by volume. In an advantageous embodiment the turbine component is washed after the production and application of the first gaseous mixture on this turbine component. Such a washing can take place, e.g., by a second gaseous mixture or by a second gaseous substance.
  • For the sake of simplification the term second gaseous mixture is used but it should be noted that a second gaseous substance can also be used instead of it. The second gaseous mixture can be, for example, H2. It can also be provided that the second gaseous mixture is a mixture of HF and H2 in which the part by volume of HF in the mixture of HF and H2 is in the range of 0.5 to 5% by volume, preferably in the range of 0.5 to 4% by volume, preferably in the range of 1 to 3% by volume. The second gaseous mixture is preferably produced and applied on the turbine component. It can be provided that a first gaseous mixture is repeatedly produced and applied on the turbine component and then a second gaseous mixture is subsequently produced and applied on the turbine component. This producing and applying of a first and the second gaseous mixture can be multiply repeated in an alternating manner for cleaning and/or stripping the turbine component. It can be provided that the pressure of the first gaseous mixture is varied over time. It can also be provided that the pressure of the second gaseous mixture is varied over time.
  • Furthermore, it can be provided that the first gaseous mixture is applied with a different pressure than the second gaseous mixture. The pressure of the second gaseous mixture can be lower than that of the first gaseous mixture. It can also be provided that the pressure of the second gaseous mixture is greater than that of the first gaseous mixture.
  • An advantageous embodiment provides that the pressure is varied in such a manner that it is present partially in the range of a subpressure and partially in the range of an overpressure. It can be provided that pressure changes take place in steps or that pressure changes take place continuously. It can also be provided that pressure changes take place solely in the overpressure range or that pressure changes take place solely in the subpressure range.
  • It can be provided that the pressure permanently changes during the entire process. However, it can also be provided that the pressure is constant at least at times.
  • The process is carried out in an advantageous embodiment in a closed system or in a closed container.
  • An especially preferred embodiment provides that the first or the second gaseous mixture is supplied and that a chemical reaction is brought about by this first and/or second gaseous mixture in the container that brings about a cleaning and/or stripping of the turbine component, and that the reaction products are subsequently removed partially or completely from the container.
  • This can take place in such a manner that the cited chemical reaction is brought about in particular by the first gaseous mixture and that the reaction products are subsequently removed out of the container by the second gaseous mixture.
  • An especially preferred embodiment provides that the turbine component is a hollow component. It can be provided, for example, that the inside surface of such a hollow component is cleaned and/or stripped by the process of the invention. The component can be, for example, a blade, in particular a compressor blade or turbine blade. The component is preferably a hollow blade, in particular a hollow turbine blade.
  • It is provided in an especially preferred manner that the thermochemical process in accordance with the invention for cleaning inside surfaces of hollow turbine components or service-conditioned damage by hot gas corrosion is carried out by a controlled thermochemical gas phase process at high temperatures.
  • It can be provided that the process has different periods or time sections in which time sections or periods can be present with high parts by volume of hydrogen fluoride (HF) of 2.5 to 45% in hydrogen-containing reaction atmosphere, followed by process sections with substantially hydrogen-containing reaction atmosphere.
  • The process of the invention is used especially preferably to remove metal oxides from the casting- and production process of the components before the coating with Pt, Pd, Zr, HF, Y, Al, Cr, Si and to remove metal oxide compounds and/or metal sulfur compounds and/or cover layers, in particular ceramics/oxide cover layers, and/or thermal insulation layers, in particular ZrO2 thermal insulation layers in the case of coated components.
  • It can be provided that the turbine components on which the process of the invention is used consist of nickel-based alloys and/or cobalt-based alloys that are used or can be used, e.g., in the hot areas of airplane turbines and gas turbines. Such components and turbines often have small wall thicknesses and have, especially when they are cooled with air during use, inside cooling surfaces and cooling fits.
  • The Ni/Co super alloys for gas turbines are frequently optimized for the best possible combination of temperature resistance, creeping strength and expansion change capacitance. Such a component can be used, for example, in the process of the invention.
  • This can take place, for example, by the selection of suitable alloy elements or also by the use of high-quality castings that are solidified in a directed manner or solidified in a monocrystalline manner.
  • Such measures for increasing the strength such as, e.g., Cr reduction in the base material and limitation of the Al- and/or Ti content can, however, result in a limited service life as regards oxidation and corrosion. In order to improve the resistance to oxidation and corrosion, the components can be diffusion-coated with Al, PtAl, Cr, or Si or be coated with MeCrAlY support layers. This can take place, for example, in the framework of the manufacturing of new parts but also in the framework of the overhauling of already coated parts.
  • In an advantageous embodiment inside surfaces and/or outside surfaces of turbine components, in particular turbine blades, can be cleaned with the process in accordance with the invention for being prepared for the coating in the thermochemical process.
  • It is provided in an especially preferred manner that during the process in accordance with the invention a pressure fluctuation of Δp>5 mbar and Δp<200 mbar is given. For example, a pressure fluctuation can be present during the process that is in the range between 20 and 60 mbar. It can also be provided that a pressure fluctuation is present that corresponds substantially to 30 mbar.
  • The process can take pace with a high flow of >5 volume elements exchange rate per hour.
  • This means in particular that per hour at least five times the container volume is introduced into the container and removed from it.
  • It can be provided that the HF components vary in time. This can be controlled, for example, by the addition of H2. It can also be provided in particular that fissures are cleaned by the process of the invention.
  • The container in which the process can be carried out can have a volume, for example, that >0.3 m3 and <10 m3. For example, it can be provided that the container volume is in the range of 0.5 to 5 m3, preferably between 0.5 and 3 m3, especially preferably between 1 and 2 m3, especially preferably substantially 1.5 m3. In an especially preferred embodiment a thorough washing always takes place during the process of the invention, i.e., a gaseous mixture is supplied and reaction points are removed. For example, it can be provided that the following reaction is carried out during the process of the invention:

  • 6×HF+Al2O3→2 AlF3+3 H2 O.
  • The cycle time ΔT can be, for example, in the range of 10 sec. to 10 min. It can be provided that the pressures and/or the mixing ratio of the gaseous mixture is/are changed during the process.

Claims (21)

1-10. (canceled)
11. A method for the thermochemical cleaning and/or stripping of turbine components, in particular of engine components, the method comprising the following steps:
production of a first gaseous mixture containing HF and H2 in which the part by volume of HF in the mixture of HF and H2 is in the range of 2.5 to 45% by volume;
application of the first gaseous mixture containing HF and H2 on and/or in a turbine component for cleaning and/or stripping this turbine component; and
washing of the turbine component after the production and application of the first gaseous mixture on the turbine component by application of a second gaseous mixture or substance on and/or in the turbine component;
wherein the second gaseous mixture or substance contains HF and H2 and the amount of HF in the mixture or substance of HF and H2 measured in % by volume is less than in the first gaseous mixture.
12. The method according to claim 11, wherein the part by volume of HF in the first gaseous mixture of HF and H2 is in the range of 5 to 25% by volume.
13. The method according to claim 11, wherein the second gaseous mixture or substance contains HF and H2 and the amount of HF in the mixture or substance is in the range of 0.5 to 5% by volume.
14. The method according to claim 11, wherein the first gaseous mixture and the second gaseous mixture or substance are applied on and/or in the turbine component in a multiply alternating manner.
15. The method according to claim 11, wherein the pressure of at least one of the first gaseous mixture and the second gaseous mixture or substance is varied over time.
16. The method according to claim 11, wherein the method is carried out in one of a container and a closed system.
17. The method according to claim 16, wherein at least one of the first gaseous mixture and the second gaseous mixture or substance is supplied to the container and a chemical reaction is brought about by the first gaseous mixture and/or second gaseous mixture in the container that brings about a cleaning and/or stripping of the turbine component, and that the reaction products are subsequently removed partially or completely from the container.
18. A method for the thermochemical cleaning/stripping of a component having unwanted material thereon, the method comprising the following steps:
(a) applying a first gaseous substance containing HF and H2 to the component to be cleaned/stripped, the first gaseous substance including a % by volume of HF in the range of 2.5 to 45% by volume;
(b) facilitating a reaction between the HF in the first gaseous substance and at least a portion of the unwanted material on the component such that at least a portion of the unwanted material is converted to a reaction product;
(c) applying a second gaseous substance containing HF and H2 to the component to be cleaned/stripped, the second gaseous substance including a % by volume of HF that is less than the % by volume of HF in the first gaseous substance, whereby at least a portion of at least one of the first gaseous substance and the reaction product is washed from the component; and
(d) repeating steps (a)-(c) until a desired amount of the unwanted material is cleaned/stripped from the component.
19. The method according to claim 18, wherein the component is disposed within a container having a volume and the first and second gaseous substances are successively introduced and removed from within the container.
20. The method according to claim 19, wherein the step of applying a second gaseous substance (step (c)) further comprises removing the reaction products from the container with the second gaseous substance.
21. The method according to claim 19, wherein the volume of first and second gaseous substances introduced and subsequently removed from the container during each hour is greater than 5 times the volume of the container.
22. The method according to claim 18, wherein the component includes a hollow portion having a volume connected to a closed system and the first and second gaseous substances are successively introduced and removed from the closed system to the hollow portion of the component.
23. The method according to claim 22, wherein the step of applying a second gaseous substance (step (c)) further comprises removing the reaction products from the hollow portion of the component with the second gaseous substance.
24. The method according to claim 22, wherein the volume of first and second gaseous substances introduced and subsequently removed from the hollow portion of the component during each hour is greater than 5 times the volume of the hollow portion.
25. The method according to claim 18, wherein the step of facilitating a reaction (step (b)) further includes varying the pressure of the first gaseous substance over time.
26. The method according to claim 25, wherein the pressure fluctuations Δp of the first gaseous substance is within the range of Δp>5 mbar to Δp<200 mbar.
27. The method according to claim 25, wherein the step of applying a second gaseous substance (step (c)) further comprises varying the pressure of the second gaseous substance over time.
28. The method according to claim 27, wherein the pressure fluctuations Δp of the second gaseous susbstance is within the range of Δp>5 mbar to Δp<200 mbar.
29. A method for the thermochemical cleaning/stripping of a component having unwanted material thereon, the method comprising the following steps:
(a) providing a container having a volume;
(b) positioning the component within the container;
(c) introducing a first gaseous substance containing HF and H2 into the container surrounding the component, the first gaseous substance including a % by volume of HF in the range of 2.5 to 45% by volume;
(d) varying the pressure of the first gaseous substance in the container with pressure fluctuations Δp within the range of Δp>5 mbar to Δp<200 mbar until a reaction between the HF in the first gaseous substance and at least a portion of the unwanted material on the component such that at least a portion of the unwanted material is converted to a reaction product;
(e) introducing a second gaseous substance containing HF and H2 into the container surrounding the component, the second gaseous substance including a % by volume of HF that is less than the % by volume of HF in the first gaseous substance, whereby at least a portion of at least one of the first gaseous substance and the reaction product is washed from the component;
(f) removing at least a portion of the reaction products from the container; and
(g) repeating steps (a)-(f) until a desired amount of the unwanted material is cleaned/stripped from the component.
30. The method according to claim 29, wherein the step of introducing a second gaseous substance (step (e)) further comprises varying the pressure of the second gaseous substance in the container with pressure fluctuations Δp within the range of Δp>5 mbar to Δp<200 mbar.
US12/920,108 2008-02-28 2009-02-19 Method for the thermochemical cleaning and/or stripping of turbine components Abandoned US20110005549A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008011747.1 2008-02-28
DE102008011747A DE102008011747A1 (en) 2008-02-28 2008-02-28 Process for the thermochemical cleaning and / or stripping of turbine components
PCT/DE2009/000228 WO2009106044A1 (en) 2008-02-28 2009-02-19 Method for the thermochemical cleaning and/or stripping of turbine components

Publications (1)

Publication Number Publication Date
US20110005549A1 true US20110005549A1 (en) 2011-01-13

Family

ID=40793304

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/920,108 Abandoned US20110005549A1 (en) 2008-02-28 2009-02-19 Method for the thermochemical cleaning and/or stripping of turbine components

Country Status (6)

Country Link
US (1) US20110005549A1 (en)
EP (1) EP2250300B1 (en)
CA (1) CA2714778A1 (en)
DE (1) DE102008011747A1 (en)
PL (1) PL2250300T3 (en)
WO (1) WO2009106044A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3088346A1 (en) * 2018-11-14 2020-05-15 Safran Aircraft Engines PROCESS FOR STRIPPING A TURBOMACHINE PART

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144022A1 (en) 2012-03-28 2013-10-03 Alstom Technology Ltd Method for removing a ceramic
EP2831306B1 (en) * 2012-03-28 2017-06-28 Ansaldo Energia IP UK Limited Method for separating a metal part from a ceramic part
EP2762612A1 (en) * 2013-02-01 2014-08-06 Siemens Aktiengesellschaft FIC cleaning at subatmospheric pressure

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490958A (en) * 1966-04-13 1970-01-20 Du Pont Halocarbon-metal oxide combinations in heat treatment of metals
US4098450A (en) * 1977-03-17 1978-07-04 General Electric Company Superalloy article cleaning and repair method
US4188237A (en) * 1978-02-02 1980-02-12 University Of Dayton Method for cleaning metal parts with elemental fluorine
US4324594A (en) * 1978-02-02 1982-04-13 University Of Dayton Method for cleaning metal parts
US4405379A (en) * 1980-02-06 1983-09-20 University Of Dayton Method for cleaning metal parts
US4889589A (en) * 1986-06-26 1989-12-26 United Technologies Corporation Gaseous removal of ceramic coatings
US5373986A (en) * 1992-11-04 1994-12-20 Rafferty; Kevin Fluoride cleaning of metal surfaces and product
US5728227A (en) * 1996-06-17 1998-03-17 General Electric Company Method for removing a diffusion coating from a nickel base alloy
US5770263A (en) * 1995-11-08 1998-06-23 Micron Technology, Inc. Method for in situ removal of particulate residues resulting from hydrofluoric acid cleaning treatments
US5898994A (en) * 1996-06-17 1999-05-04 General Electric Company Method for repairing a nickel base superalloy article
EP1076114A1 (en) * 1999-08-11 2001-02-14 General Electric Company Method for removing a dense ceramic thermal barrier coating from a surface
US6367687B1 (en) * 2001-04-17 2002-04-09 General Electric Company Method for preparing a plate rim for brazing
EP1779955A1 (en) * 2005-10-26 2007-05-02 Siemens Aktiengesellschaft FIC-process for cleaning embedded oxides in cracks typically found in Nickel-based superalloy containing at least 10 % Chromium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0209307B1 (en) * 1985-07-15 1988-09-07 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Cleaning of metal articles

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490958A (en) * 1966-04-13 1970-01-20 Du Pont Halocarbon-metal oxide combinations in heat treatment of metals
US4098450A (en) * 1977-03-17 1978-07-04 General Electric Company Superalloy article cleaning and repair method
US4188237A (en) * 1978-02-02 1980-02-12 University Of Dayton Method for cleaning metal parts with elemental fluorine
US4324594A (en) * 1978-02-02 1982-04-13 University Of Dayton Method for cleaning metal parts
US4405379A (en) * 1980-02-06 1983-09-20 University Of Dayton Method for cleaning metal parts
US4889589A (en) * 1986-06-26 1989-12-26 United Technologies Corporation Gaseous removal of ceramic coatings
US5373986A (en) * 1992-11-04 1994-12-20 Rafferty; Kevin Fluoride cleaning of metal surfaces and product
US5770263A (en) * 1995-11-08 1998-06-23 Micron Technology, Inc. Method for in situ removal of particulate residues resulting from hydrofluoric acid cleaning treatments
US5728227A (en) * 1996-06-17 1998-03-17 General Electric Company Method for removing a diffusion coating from a nickel base alloy
US5898994A (en) * 1996-06-17 1999-05-04 General Electric Company Method for repairing a nickel base superalloy article
EP1076114A1 (en) * 1999-08-11 2001-02-14 General Electric Company Method for removing a dense ceramic thermal barrier coating from a surface
US6367687B1 (en) * 2001-04-17 2002-04-09 General Electric Company Method for preparing a plate rim for brazing
EP1779955A1 (en) * 2005-10-26 2007-05-02 Siemens Aktiengesellschaft FIC-process for cleaning embedded oxides in cracks typically found in Nickel-based superalloy containing at least 10 % Chromium
US20090107003A1 (en) * 2005-10-26 2009-04-30 Brigitte Heinecke Technology for Cleaning Thermal Fatigue Cracks in Nickel-Based Superalloys With a High Chromium Content

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3088346A1 (en) * 2018-11-14 2020-05-15 Safran Aircraft Engines PROCESS FOR STRIPPING A TURBOMACHINE PART
WO2020099794A1 (en) * 2018-11-14 2020-05-22 Safran Aircraft Engines Method for pickling a turbomachine component
US20210404340A1 (en) * 2018-11-14 2021-12-30 Safran Aircraft Engines Method for pickling a turbomachine component
US11549371B2 (en) * 2018-11-14 2023-01-10 Safran Aircraft Engines Method for pickling a turbomachine component

Also Published As

Publication number Publication date
EP2250300A1 (en) 2010-11-17
CA2714778A1 (en) 2009-09-03
DE102008011747A1 (en) 2009-09-03
EP2250300B1 (en) 2014-04-09
PL2250300T3 (en) 2014-09-30
WO2009106044A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
EP1795629A2 (en) Oxide cleaning and coating of metallic components
US10156007B2 (en) Methods of applying chromium diffusion coatings onto selective regions of a component
EP0209307B1 (en) Cleaning of metal articles
US6890587B2 (en) Method of repairing a ceramic coating
EP1629930A1 (en) Method of repairing cracks in a turbine component using cathodic arc and/or low pressure plasma spraying and high isostatic pressure (HIP)
US20110005549A1 (en) Method for the thermochemical cleaning and/or stripping of turbine components
EP1956116B1 (en) Removal of thermal barrier coatings
EP2022868A2 (en) Method for forming platinum aluminide diffusion coatings
US4889589A (en) Gaseous removal of ceramic coatings
EP2172579B1 (en) Mixture and technique for coating an internal surface of an article
JP2005199419A (en) Method for mending parts using environment-resistant bond membrane, and resulting mended parts
CA2370256A1 (en) Method for refurbishing a coating including a thermally grown oxide
EP1076114B1 (en) Method for removing a dense ceramic thermal barrier coating from a surface
EP1788109A1 (en) Selective aluminide coating process
CN101821430A (en) FIC installation and method for operating Fic installation in the pressure range above atmospheric pressure
DE69905498T2 (en) METHOD FOR PRODUCING A METAL ALLOY POWDER OF THE MCrAlY TYPE AND COATINGS OBTAINED BY THIS METHOD
EP1123987A1 (en) Repairable diffusion aluminide coatings
EP2739760B1 (en) Method for forming an improved thermal barrier coating (tbc) and a thermal-barrier-coated article
EP2808418B1 (en) Method for manufacturing gas turbine blade
EP2020452A2 (en) Method for forming aluminide diffusion coatings
IES980638A2 (en) Method of cleaning metal components
IE990654A1 (en) Method of Cleaning Metal Components

Legal Events

Date Code Title Description
AS Assignment

Owner name: MTU AERO ENGINES GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PILLHOFER, HORST;KOHLSCHEEN, JORN;HEILMANN, PAUL;SIGNING DATES FROM 20100720 TO 20100730;REEL/FRAME:024904/0149

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION