WO2022135422A1 - 一种协同增效热稳定剂及其在提高pvc热稳定性中的应用 - Google Patents

一种协同增效热稳定剂及其在提高pvc热稳定性中的应用 Download PDF

Info

Publication number
WO2022135422A1
WO2022135422A1 PCT/CN2021/140226 CN2021140226W WO2022135422A1 WO 2022135422 A1 WO2022135422 A1 WO 2022135422A1 CN 2021140226 W CN2021140226 W CN 2021140226W WO 2022135422 A1 WO2022135422 A1 WO 2022135422A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
mass
pvc
heat stabilizer
butyl titanate
Prior art date
Application number
PCT/CN2021/140226
Other languages
English (en)
French (fr)
Inventor
鲁伊恒
王兵
马龙娟
陈岩
陈宗霖
张翔
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Publication of WO2022135422A1 publication Critical patent/WO2022135422A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • C08K5/57Organo-tin compounds
    • C08K5/58Organo-tin compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the invention belongs to the field of macromolecular material processing aids, in particular to a synergistic heat stabilizer and its application in improving the heat stability of PVC.
  • Microwave is widely used in the fields of chemistry, chemical industry and materials, and generally has three functions: 1) Different from the heat conduction of traditional heating, microwave heats up rapidly; 2) The specificity of microwave is to promote the reaction conversion rate and selectivity; 3) Microwave thermal degradation ; while 1) and 3) are more common; 2) Although it has high selectivity and efficacy, it is closely related to the composition of the reactants. Microwave-assisted preparation of cerium metal soap and butyl titanate composite stabilizer for PVC has not been reported in the literature.
  • the present invention provides a synergistic heat stabilizer and its application in improving the heat stability of PVC.
  • the invention uses organotin, cerium metal soap and butyl titanate as active components, and through the cross-linking effect between butyl titanate coupling agent and tin, cerium metal and PVC, it is enhanced after microwave irradiation, and can be It is used to prepare a new type of PVC composite film material with excellent thermal stability and potential microwave radiation resistance.
  • Tetrabutyl titanate is colorless to light yellow oily liquid, relative density: 0.966, freezing point: -55°C, flash point: 76.7°C, boiling point: 310 ⁇ 314°C, it is an organic titanium compound used for polycondensation reaction and Cross-linking reaction catalyst, mainly used for esterification and lipid exchange reaction, such as synthesis of polyester polyol, and also used as tackifier for metal-plastic, modifier for high-strength polyester paint, cross-linking agent, etc.
  • the synergistic heat stabilizer involved in the present invention uses organotin as the main heat stabilizer and butyl titanate modified cerium metal soap complex as the auxiliary stabilizer.
  • organotin as the main heat stabilizer
  • butyl titanate modified cerium metal soap complex as the auxiliary stabilizer.
  • butyl titanate has a significant synergistic stabilization effect on organotin and cerium metal soaps, and can effectively improve the thermal stability of PVC.
  • each component is constituted as follows by mass fraction:
  • 1.0-5.0 parts by mass of butyl titanate More preferably: 1.0-5.0 parts by mass of butyl titanate, 1.0-5.0 parts by mass of cerium metal soap, and 0.5 part by mass of organotin heat stabilizer.
  • the cerium metal soap is cerium stearate.
  • the organotin includes methyl tin mercaptide, octyl tin mercaptide, butyl tin mercaptide, dioctyl tin laurate and the like.
  • the preparation method of the synergistic heat stabilizer of the present invention comprises the following steps:
  • microwave radiation technology uses microwave radiation technology to take 50 parts by mass of DOTP, 1.0-5.0 parts by mass of butyl titanate, 1.0-5.0 parts by mass of cerium metal soap, and 0.1-1.0 parts by mass of organotin heat stabilizer, mixed and dissolved, and then placed in a glass container , start the microwave (17% power output) radiation mixing for 15min in a microwave oven to obtain a uniform precursor, and the microwave oven power is 700w.
  • DOTP added in the above preparation process is dioctyl terephthalate, which is a plasticizer for PVC materials.
  • DOTP is pre-added to use it as a solvent, avoiding the use of other solvents. There is no need to add plasticizers, and there is no need to add plasticizers in the subsequent preparation of PVC materials.
  • the application of the synergistic heat stabilizer of the present invention is to add it to the PVC base material to improve the heat stability of the PVC material.
  • the proportion of each component is: 100 parts by mass of PVC resin, 1.0-5.0 parts by mass of butyl titanate, 1.0-5.0 parts by mass of cerium metal soap, and 0.1-1.0 parts by mass of organotin heat stabilizer.
  • the preferred proportions are as follows: 100 parts by mass of PVC resin, 1.0-5.0 parts by mass of butyl titanate, 1.0-5.0 parts by mass of cerium metal soap, and 0.5 part by mass of organotin heat stabilizer.
  • the application of the synergistic heat stabilizer of the present invention is to mix the synergistic heat stabilizer precursor with the PVC matrix material, stir at a high speed to obtain a premix, and then place it in an internal mixer for internal mixing, and the melt temperature 170-175°C, screw speed 40r/min, mixing time 2-3min, after the torque rises sharply first and then decreases, and remains unchanged, take out the mixed material, and use a flat vulcanizer to press at 100°C for 40 seconds , then a PVC sheet with a thickness of 1mm is obtained for subsequent performance testing.
  • PVC is used as the matrix material
  • the butyl titanate modified cerium metal soap complex is used as the auxiliary stabilizer
  • the organic tin is used as the heat stabilizer
  • Butyl titanate has a significant synergistic stabilization effect on organotin and cerium metal soaps, and can effectively improve the thermal stability of PVC.
  • the invention uses butyl titanate for surface modification, adopts microwave radiation technology as a green and fast preparation method, and prepares PVC composite films of butyl titanate modified cerium metal soap and organotin with different addition amounts, and adopts The hydrogen chloride release rate of different composite membranes was measured by 195 °C conductivity method.
  • Butyl titanate has strong synergistic effect with cerium metal soap and organotin, significantly improved thermal stability, non-toxic and good environmental compatibility.
  • the method for evaluating the thermal stability of PVC in the present invention is electrical conductivity or hydrogen chloride release rate, and the test device refers to the ENIS0182-3:2000 standard; that is, high-purity nitrogen gas is introduced into the PVC powder, heated to a constant temperature of 195 ° C, and deionized water is observed. Changes in conductivity or concentration of hydrogen chloride over time in the hydrogen chloride released by absorption. When the temperature of PVC is 180-195 °C, it will rapidly decompose and release hydrogen chloride gas, and the platinum electrode in the conductivity meter will quickly sense the conductivity changes of hydrogen protons and chloride ions in deionized water. Adding a composite stabilizer inhibits its decomposition, and measuring the induction period and stabilization time through the conductivity curve can judge the effectiveness of the composite thermal stabilizer.
  • the modifier used in the present invention is butyl titanate, which is environmentally compatible and easy to degrade; using it to modify the cerium metal soap as a potential photodecomposition accelerator can promote the photolysis of polyvinyl chloride in the environment when its life is terminated. degradation;
  • Butyl titanate can promote the formation of electrostatic attraction and chemical bond force between tin, cerium metal soap and polyvinyl chloride molecules;
  • Butyl titanate has a significant synergistic stabilizing effect on methyl tin mercaptide and cerium metal soap, and can reduce the amount of methyl tin mercaptide used. The effect is better than that of methyl tin mercaptide stabilizer alone. Improve the heat resistance of PVC;
  • Butyl titanate, methyl tin mercaptide, and cerium metal soap are all non-toxic or low-toxic environmental protection substances, which fully meet the development requirements for environmental protection at home and abroad, and have broad application prospects.
  • Fig. 1 is the electric conductivity-time curve of the hydrogen chloride released by the different PVC films of Example 1 and 2.
  • the abscissa in the figure is the heating time/min
  • the ordinate is the conductivity/ ⁇ Scm -1
  • the dotted line is conventional heating
  • the solid line is microwave heating
  • the composition is 0.5 part of methyl tin mercaptide, 1 part of butyl titanate, hard Cerium fatty acid 5 parts, DOTP 50 parts, PVC 100 parts.
  • the present invention adopts butyl titanate as the coupling agent, and the usage amount is 1-5 parts of butyl titanate per 100 parts of PVC.
  • Cerium stearate is used as the auxiliary stabilizer, and the usage amount is 1-10 parts per 100 parts of PVC, preferably 5 parts.
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 part of methyl tin mercaptide, 5 parts of lanthanum stearate;
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 parts of methyl tin mercaptide, and 5 parts of calcium stearate;
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 part of methyl tin mercaptide, 5 parts of magnesium stearate;
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 part of methyl tin mercaptide, 5 parts of zinc stearate;
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 part of methyl tin mercaptide, and 5 parts of calcium-zinc.
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 part of methyl tin mercaptide, 5 parts of lanthanum stearate;
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 parts of methyl tin mercaptide, and 5 parts of calcium stearate;
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 part of methyl tin mercaptide, 5 parts of magnesium stearate;
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 part of methyl tin mercaptide, 5 parts of zinc stearate;
  • PVC resin 100 parts of PVC resin, 50 parts of DOTP, 1 part of butyl titanate, 0.5 part of methyl tin mercaptide, and 5 parts of calcium-zinc.
  • Comparative Examples 1-5 adopt microwave radiation technology:
  • the method for evaluating the thermal stability of PVC in the present invention is as follows: measure the electrical conductivity of the released hydrogen chloride aqueous solution with reference to ENIS0182-3:2000 standard; pass high-purity nitrogen into the heating test tube of PVC powder, the oil bath is silicone oil, and the heating temperature is 195 °C, observe the change curve of the conductivity of deionized water absorbed and released hydrogen chloride with time.
  • the PVC sample When the PVC sample is at 180-195 °C, it will decompose and release hydrogen chloride gas, and the platinum electrode in the conductivity meter will quickly sense the conductivity changes of hydrogen protons and chloride ions in deionized water. Adding a composite stabilizer inhibits its decomposition, and measuring the induction period and stabilization time through the conductivity curve can judge the quality of the thermal stabilizer effect.
  • Table 3 shows the conductivity of hydrogen chloride released by PVC film at different irradiation times.
  • the microwave radiation increased from 5min in Example 3 to 15min in Example 1
  • the induction period of PVC film releasing hydrogen chloride was increased from 50min to 70min, and it can be seen that prolonged radiation Time, will improve the heat resistance of PVC film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种协同增效热稳定剂及其在提高PVC热稳定性中的应用,所述协同增效热稳定剂是以以有机锡、铈金属皂和钛酸丁酯作为活性组分,通过钛酸丁酯偶联剂与锡、铈金属与PVC之间的交联作用,在微波辐射后得到了增强,可以用于制备热稳定效果优良、具备潜在的耐微波辐射的新型PVC复合薄膜材料。

Description

一种协同增效热稳定剂及其在提高PVC热稳定性中的应用 技术领域
本发明属于高分子材料加工助剂领域,具体涉及一种协同增效热稳定剂及其在提高PVC热稳定性中的应用。
背景技术
随着人们环境保护意识的增强,聚氯乙烯薄膜或制品的热稳定剂已经朝着无毒、高效、多功能、性价比优良和可降解的方向发展。有机锡热稳定剂使用量持续增加,逐步取代铅盐类稳定剂,但是常用的有机锡稳定剂价格昂贵、有异味、热稳定效果不能满足需要。因此采用不同组分和不同方法提高PVC的热稳定性,降低有机锡使用量、应用成本、寻找增效作用和环境可降解性,成为当务之急。
微波在化学化工和材料领域具有广泛应用,一般具有三种功能:1)与传统加热的热传导不同,微波快速升温;2)微波的特异性即促进反应转化率和选择性;3)微波热降解;而1)和3)较为常见;2)虽然具有高选择性和功效,但是与反应物组成密切相关。微波辅助制备用于PVC的铈金属皂及钛酸丁酯复合稳定剂,未见文献报道。
发明内容
本发明为了解决目前硫醇甲基锡价格昂贵、耐热性较差的问题,提供了一种协同增效热稳定剂及其在提高PVC热稳定性中的应用。本发明以有机锡、铈金属皂和钛酸丁酯作为活性组分,通过钛酸丁酯偶联剂与锡、铈金属与PVC之间的交联作用,在微波辐射后得到了增强,可以用于制备热稳定效果优良、具备潜在的耐微波辐射的新型PVC复合薄膜材料。
钛酸四丁酯为无色至浅黄色油状液体,相对密度:0.966,凝固点:-55℃,闪点:76.7℃,沸点:310~314℃,是一种有机钛化合物,用于缩聚反应及交联反应催化剂,主要用于酯化和脂交换反应,如合成聚酯多元醇,还可用于金属-塑料的增黏剂、高强度聚酯漆改性剂、交联剂等。
本发明涉及的协同增效热稳定剂,是以有机锡作为主热稳定剂,以钛酸丁酯改性铈金属皂络合物作为辅助稳定剂。钛酸丁酯作为偶联剂对有机锡和铈金属皂具有显著的协同稳定作用,能够有效地提高PVC的热稳定性能。
本发明协同增效热稳定剂,各组分按质量份数构成如下:
钛酸丁酯1.0-5.0质量份,铈金属皂1.0-5.0质量份,有机锡热稳定剂0.1-1.0质量份。
进一步优选为:钛酸丁酯1.0-5.0质量份,铈金属皂1.0-5.0质量份,有机锡热稳定剂0.5质量份。
所述铈金属皂为硬脂酸铈。
所述有机锡包括硫醇甲基锡、硫醇辛基锡、硫醇丁基锡、月桂酸二辛基锡等。
本发明协同增效热稳定剂的制备方法,包括如下步骤:
采用微波辐射技术,取DOTP 50质量份、钛酸丁酯1.0-5.0质量份、铈金属皂1.0-5.0质量份、有机锡热稳定剂0.1-1.0质量份,混合溶解,然后置于玻璃容器中,在微波炉中启动微波(17%功率输出)辐射混合15min,获得均匀的前体,微波炉功率700w。
上述制备过程中添加的DOTP为对苯二甲酸二辛酯,是PVC材料的增塑剂,在协同增效热稳定剂制备的过程中预先添加DOTP是将其作为溶剂使用,避免了其它溶剂的不必要添加,后续PVC材料的制备过程中无需再添加增塑剂。
本发明协同增效热稳定剂的应用,是将其添加至PVC基材中以提高PVC材料的热稳定性。其中,各组分的配比为:PVC树脂100质量份,钛酸丁酯1.0-5.0质量份,铈金属皂1.0-5.0质量份,有机锡热稳定剂0.1-1.0质量份。
优选配比如下:PVC树脂100质量份,钛酸丁酯1.0-5.0质量份,铈金属皂1.0-5.0质量份,有机锡热稳定剂0.5质量份。
本发明协同增效热稳定剂的应用,具体是将所述协同增效热稳定剂前体与PVC基体材料混合,高速搅拌获得预混料,随后置于密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片,用于后续的性能检测。
以本发明协同增效热稳定剂提高PVC热稳定性,是以PVC为基体材料,以所述钛酸丁酯改性铈金属皂络合物作为辅助稳定剂,以有机锡作为热稳定剂,钛酸丁酯对有机锡和铈金属皂具有显著的协同稳定作用,能够有效地提高PVC的热稳定性能。
本发明使用钛酸丁酯进行表面改性,采用微波辐射工艺作为一种绿色快速的制备方法,制备了不同添加量的钛酸丁酯改性铈金属皂和有机锡的PVC复合薄膜,并采用195℃电导率法测定了不同复合膜的氯化氢释放速率。钛酸丁酯与铈金属皂、与有机锡产生了强烈的增效作用、热稳定性显著提高、且无毒、环境相容性好。
评价本发明中PVC热稳定性的方法为电导率或氯化氢释放速率,试验装置参考ENIS0182-3:2000标准;即在PVC粉料中通入高纯氮气,加热到195℃恒温,观察去离子水吸收释放的氯化氢的电导率或氯化氢浓度的随时间的变化。PVC在180-195℃时,会急剧分解释放氯化氢气体,电导率仪中的铂电极会快速感应去离子水中的氢质子和氯离子的电导率的变化。加入复合稳定剂,抑制了其分解,通过电导率曲线测量诱导期和稳定时间的长短,可判断复合热稳定剂效果的优劣。
与现有技术相比,本发明的有益效果体现在:
1、本发明采用的改性剂为钛酸丁酯,环境相容,易于降解;使用它改性铈金属皂作为潜在的光分解促进剂,可以促进聚氯乙烯寿命终止时在环境中的光降解;
2、钛酸丁酯可以促进锡、铈金属皂与聚氯乙烯分子之间的静电引力和化学键力的生成;
3、钛酸丁酯对于硫醇甲基锡和铈金属皂具有显著的协同稳定作用,并可以降低硫醇甲基锡的使用量,效果优于单独使用硫醇甲基锡稳定剂,有效地提高PVC的耐热性;
4、钛酸丁酯、硫醇甲基锡、铈金属皂均属于无毒或低毒环保类物质,完全符合国内外对于环境保护的发展要求,有着广阔的应用前景。
附图说明
图1是实施例1、2种不同PVC薄膜释放氯化氢的电导率-时间曲线。图中横坐标为加热时间/min,纵坐标为电导率/μScm -1,虚线为常规加热,实线为微波加热,组成均为0.5份硫醇甲基锡、钛酸丁酯1份、硬脂酸铈5份、DOTP50份、PVC100份。
具体实施方式
本发明采用钛酸丁酯作为偶联剂,使用量为每100份PVC添加钛酸丁酯1~5份。
采用硬脂酸铈为助稳定剂、使用量为每100份PVC添加1~10份,以添加量为5份为佳。
(一)硬脂酸铈+微波加热
取PVC树脂型号S-65 100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸铈5份。
(二)硬脂酸铈+常规加热
取PVC树脂型号S-65 100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸铈5份。
对照样+常规加热
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸镧5份;
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸钙5份;
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸镁5份;
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸锌5份;
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,钙-锌5份。
对照样+微波加热
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸镧5份;
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸钙5份;
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸镁5份;
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,硬脂酸锌5份;
PVC树脂100份,DOTP 50份,钛酸丁酯1份,硫醇甲基锡0.5份,钙-锌5份。
实施例1:PVC/钛酸丁酯-铈金属皂-有机锡复合膜的制备
采用微波辐射技术,取DOTP 50质量份、钛酸丁酯1质量份、铈金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在微波炉中启动微波(17%功率输出)混合辐射15min,以获得均匀的前体;将所得前体入PVC 100质量份,高速搅拌,获得预混料,置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
实施例2:PVC/钛酸丁酯-铈金属皂-有机锡复合膜的制备
采用超声波辐射技术,取DOTP 50质量份、钛酸丁酯1质量份、铈金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在启动超声波震荡1小时,以获得均匀的前体;将所得前体加入PVC 100质量份,高速搅拌,获得预混料,置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
表1在微波辐射下不同PVC薄膜释放氯化氢的电导率
Figure PCTCN2021140226-appb-000001
(注:A-硫醇甲基锡;B 1-硬脂酸铈;B 2-硬脂酸钙;B 3-硬脂酸镁;B 4-硬脂酸锌;B 5-硬脂酸镧;B 6-(钙-锌)*市售商品;C-钛酸丁酯;所有样品均含PVC-100份,DOTP-50份;微波炉功率700W;加热强度:17%功率输出)
对比例1-5采用微波辐射技术:
对比例1:PVC/钛酸丁酯-钙金属皂-有机锡复合膜的制备
采用微波辐射技术,取DOTP 50质量份、钛酸丁酯1质量份、钙金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在微波炉中启动微波(17%功率输出)混合辐射15min,以获得均匀的前体;将所得前体加入PVC 100质量份,高速搅拌,获得预混料,置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
对比例2:PVC/钛酸丁酯-镁金属皂-有机锡复合膜的制备
采用微波辐射技术,取DOTP 50质量份、钛酸丁酯1质量份、镁金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在微波炉中启动微波(17%功率输出)混合辐射15min,以获得均匀的前体;将所得前体加入PVC 100质量份,高速搅拌,获得预混料,置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
对比例3:PVC/钛酸丁酯-锌金属皂-有机锡复合膜的制备
采用微波辐射技术,取DOTP 50质量份、钛酸丁酯1质量份、锌金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在微波炉中启动微波(17%功率输出)混合辐射15min,以获得均匀的前体;将所得前体加入PVC 100质量份,高速搅拌,获得预混料,置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
对比例4:PVC/钛酸丁酯-镧金属皂-有机锡复合膜的制备
采用微波辐射技术,取DOTP 50质量份、钛酸丁酯1质量份、镧金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在微波炉中启动微波(17%功率输出)混合辐射15min,以获得均匀的前体;将所得前体加入PVC 100质量份,高速搅拌,获得预混料,置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的 PVC薄片。
对比例5:PVC/钛酸丁酯-(钙-锌) *-有机锡复合膜的制备
采用微波辐射技术,取DOTP 50质量份、钛酸丁酯1质量份、(钙-锌) *5质量份、有机锡稳定剂0.5质量份混合溶解,在微波炉中启动微波(17%功率输出)混合辐射15min,以获得均匀的前体;将所得前体加入PVC 100质量份,高速搅拌,获得预混料,置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
对比例6-10采用超声波辐射:
对比例6:PVC/钛酸丁酯-钙金属皂-有机锡复合膜的制备
采用超声波辐射技术,取PVC 100质量份、DOTP 50质量份、钛酸丁酯1质量份、钙金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在40℃下超声波搅拌1小时,以获得均匀的预混物;将所得预混物置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
对比例7:PVC/钛酸丁酯-镁金属皂-有机锡复合膜的制备
采用超声波辐射技术,取PVC 100质量份、DOTP 50质量份、钛酸丁酯1质量份、镁金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在40℃下超声波搅拌1小时,以获得均匀的预混物;将所得预混物置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
对比例8:PVC/钛酸丁酯-锌金属皂-有机锡复合膜的制备
采用超声波辐射技术,取PVC 100质量份、DOTP 50质量份、钛酸丁酯1质量份、锌金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在40℃下超声波搅拌1小时,以获得均匀的预混物;将所得预混物置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
对比例9:PVC/钛酸丁酯-镧金属皂-有机锡复合膜的制备
采用超声波辐射技术,取PVC 100质量份、DOTP 50质量份、钛酸丁酯1质量份、镧金属皂5质量份、有机锡稳定剂0.5质量份混合溶解,在40℃下超声波搅拌1小时,以获得均匀的预混物;将所得预混物置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
对比例10:PVC/钛酸丁酯-(钙-锌)*-有机锡复合膜的制备
采用超声波辐射技术,取PVC 100质量份、DOTP 50质量份、钛酸丁酯1质量份、(钙-锌) *5质量份、有机锡稳定剂0.5质量份混合溶解,在40℃下超声波搅拌1小时,以获得均匀的预混物;将所得预混物置于小型密炼机中密炼,融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min,待扭矩先急剧升高再下降,保持不变后,完毕,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
表2在常规加热下不同PVC薄膜释放氯化氢的电导率
Figure PCTCN2021140226-appb-000002
(注:A-硫醇甲基锡;B 1-硬脂酸铈;B 2-硬脂酸钙;B 3-硬脂酸镁;B 4-硬脂酸锌;B 5-硬脂酸镧;B 6-(钙-锌) *市售商品;C-钛酸丁酯;所有样品均含PVC-100份,DOTP-50份)
本发明对PVC热稳定性的评价方法为:测定释放氯化氢水溶液的电导率,参考ENIS0182-3:2000标准;在PVC粉料加热试管中通入高纯氮气,油浴为硅油,加热温度为195℃,观察去离子水吸收释放氯化氢的电导率随时间的变化曲线。
PVC样品在180-195℃时,会分解释放氯化氢气体,电导率仪中的铂电极会快速感应去离子水中的氢质子和氯离子的电导率的变化。加入复合稳定剂,抑制了其分解,通过电导率曲线测量诱导期和稳定时间的长短,即可判断热稳定剂效果的优劣。
由表1、表2和图1可以看出,当常规加热时,由钙、镁、锌、镧、铈金属皂、(钙-锌) *、 有机锡和钛酸丁酯偶联剂组成的增塑PVC薄膜,在195℃和氮气气氛中,PVC热降解释放氯化氢的诱导期分别为60、88、45、57、60和36min,而在相同条件下,采用微波(17%功率输出)辐射15min,相应的PVC热降解释放氯化氢的诱导期分别为70、75、42、45、53和33min,可见仅仅含铈金属皂的PVC热降解的诱导期延长了10min,其余钙、镁、锌、镧和(钙-锌) *分别下降13、3、12、7和3min。因此除了实施例1和实施例2的铈金属皂之外,微波加热较常规加热,仅铈金属皂可以增强PVC薄膜的热稳定性;而对于钙、镁、锌、镧金属皂和(钙-锌) *,采用微波加热较常规加热,均降低了PVC薄膜的耐热稳定性,即稳定性呈下降趋势。如对比例1-10所示。
表3不同辐射时间PVC薄膜释放氯化氢的电导率
Figure PCTCN2021140226-appb-000003
(注:A-硫醇甲基锡;B 1-硬脂酸铈;C-钛酸丁酯;样品均含PVC-100份,DOTP-50份;微波炉功率700W;加热强度:17%功率输出)
表3为不同辐射时间PVC薄膜释放氯化氢的电导率,当微波辐射从实施例3的5min增大到实施例1的15min时,PVC薄膜释放氯化氢的诱导期从50min增大至70min,可见延长辐射时间,将提高PVC薄膜的耐热性。

Claims (9)

  1. 一种协同增效热稳定剂,其特征在于:
    所述协同增效热稳定剂是以有机锡作为主热稳定剂,以钛酸丁酯改性铈金属皂络合物作为辅助稳定剂,钛酸丁酯作为偶联剂对有机锡和铈金属皂具有显著的协同稳定作用,能够有效地提高PVC的热稳定性能。
  2. 根据权利要求1所述的协同增效热稳定剂,其特征在于:
    所述铈金属皂为硬脂酸铈。
  3. 根据权利要求1或2所述的协同增效热稳定剂,其特征在于各组分按质量份数构成如下:
    钛酸丁酯1.0-5.0质量份,铈金属皂1.0-5.0质量份,有机锡热稳定剂0.1-1.0质量份。
  4. 根据权利要求3所述的协同增效热稳定剂,其特征在于各组分按质量份数构成如下:
    钛酸丁酯1.0-5.0质量份,铈金属皂1.0-5.0质量份,有机锡热稳定剂0.5质量份。
  5. 根据权利要求1所述的协同增效热稳定剂,其特征在于是通过包括如下步骤的方法制备获得:
    采用微波辐射技术,取DOTP 50质量份、钛酸丁酯1.0-5.0质量份、铈金属皂1.0-5.0质量份、有机锡热稳定剂0.1-1.0质量份,混合溶解,然后置于玻璃容器中,在微波炉中启动微波辐射混合15min,获得均匀的协同增效热稳定剂前体。
  6. 根据权利要求5所述的协同增效热稳定剂,其特征在于:
    微波炉功率700w。
  7. 一种权利要求1、2或5所述的协同增效热稳定剂的应用,其特征在于:
    将所述协同增效热稳定剂添加至PVC基材中以提高PVC材料的热稳定性;其中,各组分的配比为:PVC树脂100质量份,钛酸丁酯1.0-5.0质量份,铈金属皂1.0-5.0质量份,有机锡热稳定剂0.1-1.0质量份。
  8. 根据权利要求7所述的应用,其特征在于:
    将协同增效热稳定剂前体与PVC基体材料混合,高速搅拌获得预混料,随后置于密炼机中密炼,待扭矩先急剧升高再下降,保持不变后密炼结束,取出混炼料,采用平板硫化机于100℃压片40秒,则得厚度为1mm的PVC薄片。
  9. 根据权利要求8所述的应用,其特征在于:
    密炼时控制融体温度170-175℃,螺杆转速40r/min,密炼时间2-3min。
PCT/CN2021/140226 2020-12-25 2021-12-21 一种协同增效热稳定剂及其在提高pvc热稳定性中的应用 WO2022135422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011559261.9A CN112646232B (zh) 2020-12-25 2020-12-25 一种协同增效热稳定剂及其在提高pvc热稳定性中的应用
CN202011559261.9 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022135422A1 true WO2022135422A1 (zh) 2022-06-30

Family

ID=75363299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140226 WO2022135422A1 (zh) 2020-12-25 2021-12-21 一种协同增效热稳定剂及其在提高pvc热稳定性中的应用

Country Status (2)

Country Link
CN (1) CN112646232B (zh)
WO (1) WO2022135422A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646232B (zh) * 2020-12-25 2022-10-21 安徽理工大学 一种协同增效热稳定剂及其在提高pvc热稳定性中的应用
CN114196135B (zh) * 2021-12-24 2023-09-29 安徽理工大学 一种超声波辐射钙、镧基聚氯乙烯高分子热稳定剂的制备及其在软制品中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074640A (en) * 1990-12-14 1991-12-24 At&T Bell Laboratories Cables which include non-halogenated plastic materials
CN101831120A (zh) * 2010-03-18 2010-09-15 江南大学 一种聚氯乙烯塑料加工中掺杂轻稀土无毒热稳定剂的复配方法
CN102417676A (zh) * 2011-11-16 2012-04-18 山东瑞丰高分子材料股份有限公司 一种透明pvc用复合稳定剂及其制备方法
CN107778720A (zh) * 2017-11-09 2018-03-09 新沂市星辰新材料科技有限公司 一种环保无毒pvc用硬脂酸锌复合稳定剂
CN109810290A (zh) * 2018-12-14 2019-05-28 安徽理工大学 一种含有机锡、铈和钛的复合热稳定剂及其应用
CN112646232A (zh) * 2020-12-25 2021-04-13 安徽理工大学 一种协同增效热稳定剂及其在提高pvc热稳定性中的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3030610B1 (en) * 2013-08-08 2017-05-17 Galata Chemicals LLC Heat stabilizer for halogen-containing polymers
CN110922640B (zh) * 2019-12-16 2021-08-20 安徽理工大学 一种超声波辅助合成pvc用改性二氧化钛和稀土复合稳定剂及其应用
CN110885514B (zh) * 2019-12-16 2021-08-20 安徽理工大学 一种微波辅助合成的pvc用改性纳米二氧化钛及钙镁锌复合稳定剂及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074640A (en) * 1990-12-14 1991-12-24 At&T Bell Laboratories Cables which include non-halogenated plastic materials
CN101831120A (zh) * 2010-03-18 2010-09-15 江南大学 一种聚氯乙烯塑料加工中掺杂轻稀土无毒热稳定剂的复配方法
CN102417676A (zh) * 2011-11-16 2012-04-18 山东瑞丰高分子材料股份有限公司 一种透明pvc用复合稳定剂及其制备方法
CN107778720A (zh) * 2017-11-09 2018-03-09 新沂市星辰新材料科技有限公司 一种环保无毒pvc用硬脂酸锌复合稳定剂
CN109810290A (zh) * 2018-12-14 2019-05-28 安徽理工大学 一种含有机锡、铈和钛的复合热稳定剂及其应用
CN112646232A (zh) * 2020-12-25 2021-04-13 安徽理工大学 一种协同增效热稳定剂及其在提高pvc热稳定性中的应用

Also Published As

Publication number Publication date
CN112646232B (zh) 2022-10-21
CN112646232A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2022135422A1 (zh) 一种协同增效热稳定剂及其在提高pvc热稳定性中的应用
WO2023116870A1 (zh) 聚氯乙烯高分子热稳定剂及其制备方法和应用、复合稳定剂、聚氯乙烯薄片的制备方法
Nelson et al. Bonding of teflon
CN105618734B (zh) 一种表面改性片状银粉的方法
CN102716716B (zh) 一种活性炭和氧化铝复合材料的制备方法
CN108580796A (zh) 一种铸造用无机粘结剂及其制备方法
CN107799204B (zh) 一种触摸屏用石墨烯导电薄膜及其制备方法
CN110922640B (zh) 一种超声波辅助合成pvc用改性二氧化钛和稀土复合稳定剂及其应用
CN110885514B (zh) 一种微波辅助合成的pvc用改性纳米二氧化钛及钙镁锌复合稳定剂及其应用
CN103554921B (zh) 一种具有导热及电磁屏蔽功能弹性材料的制备方法
NL2029765B1 (en) Synergistic heat stabilizer and use thereof in improving thermal stability of pvc
CN107267020A (zh) 一种电容器外壳用涂料及制备方法
CN104229769B (zh) 一种多孔碳材料的制备方法
CN108341934A (zh) 一种纤维复合聚噻吩电池添加剂及其制备方法
CN105440525A (zh) 一种防火阻燃塑料板材及其制备方法
CN105417591B (zh) 一种溶剂热法制备钴酸镍纳米材料的方法
CN102718966B (zh) 一种电化学合成氧化钴/聚苯胺复合材料的制备方法
CN110144098B (zh) 一种抗静电聚醚醚酮复合材料的制备方法
CN107325466B (zh) 一种可热塑性加工的聚乙烯醇/石墨烯疏水复合材料及其制备方法和用途
US2311656A (en) Rubber derivative and method of making same
WO2020248382A1 (zh) 一种常压下干法合成乙酰丙酮锌的方法
CN110894362A (zh) 一种填充型导热硅橡胶的制备工艺
CN108822542B (zh) 一种导电高分子复合材料的制备方法
CN108485260A (zh) 一种耐热聚苯胺导电薄膜
CN109082048A (zh) 一种基于石墨烯的高导热复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909418

Country of ref document: EP

Kind code of ref document: A1