WO2022135421A1 - 一种作为rock蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法 - Google Patents

一种作为rock蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法 Download PDF

Info

Publication number
WO2022135421A1
WO2022135421A1 PCT/CN2021/140206 CN2021140206W WO2022135421A1 WO 2022135421 A1 WO2022135421 A1 WO 2022135421A1 CN 2021140206 W CN2021140206 W CN 2021140206W WO 2022135421 A1 WO2022135421 A1 WO 2022135421A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
ray powder
formula
powder diffraction
Prior art date
Application number
PCT/CN2021/140206
Other languages
English (en)
French (fr)
Inventor
葛坚
王延东
刘奕志
吴凌云
尤旭
肖哲明
陈曙辉
Original Assignee
广州润尔眼科生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州润尔眼科生物科技有限公司 filed Critical 广州润尔眼科生物科技有限公司
Priority to CA3202841A priority Critical patent/CA3202841A1/en
Priority to EP21909417.4A priority patent/EP4265606A4/en
Priority to KR1020237025004A priority patent/KR20230124046A/ko
Priority to JP2023561419A priority patent/JP2024501081A/ja
Priority to CN202180085680.XA priority patent/CN116917277A/zh
Priority to AU2021408195A priority patent/AU2021408195B2/en
Publication of WO2022135421A1 publication Critical patent/WO2022135421A1/zh
Priority to US18/338,355 priority patent/US20230331696A1/en
Priority to ZA2023/07013A priority patent/ZA202307013B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a salt form of an isoquinolinone-type compound as a ROCK protein kinase inhibitor and a preparation method thereof, and also includes the application of the salt form in the preparation of a medicine for treating glaucoma or ocular hypertension.
  • RHO-associated kinase a serine/threonine protein kinase
  • ROCK RHO-associated kinase
  • MLC myosin light chain
  • ROCK kinase can also act on trabecular outflow tract cells, relax trabecular cells, and reduce the outflow resistance of aqueous humor.
  • ROCK kinase inhibitors can also promote the damage and repair of corneal endothelial cells and prevent fibrosis, which has great application prospects.
  • Isoquinoline sulfonamide compounds are an important class of ROCK kinase inhibitors. Fasudil and K-115 (patent WO2006057397A1), which have been listed at present, are isoquinoline sulfonamide compounds. Among them, fasudil is a new type of drug with a wide range of pharmacological effects. It is an RHO kinase inhibitor. It expands blood vessels by increasing the activity of myosin light chain phosphatase, reduces the tension of endothelial cells, and improves brain tissue microcirculation.
  • K-115 K-115
  • glaucoma high intraocular pressure
  • diabetic retinal damage complications age-related macular degeneration
  • corneal damage recovery after cataract and glaucoma surgery, etc.
  • system sex drugs may be further expanded to system sex drugs.
  • Patent WO2007026664A1 reports a series of compounds with ROCK kinase inhibitory effect, such as control compound 2, which have good enzymatic activity, but they need to be improved in terms of membrane permeability, pharmacokinetics, and druggability.
  • the present invention reports a class of similar compounds that have been structurally modified to significantly improve properties in this regard.
  • the present invention provides compounds of formula (II),
  • the present invention also provides Form A of the compound of formula (II), whose X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.33 ⁇ 0.20°, 10.62 ⁇ 0.20°, 13.11 ⁇ 0.20°;
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 3.30 ⁇ 0.20°, 6.33 ⁇ 0.20°, 6.55° ⁇ 0.20°, 10.62 ⁇ 0.20°, 12.57 ⁇ 0.20°, 13.11 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 3.30 ⁇ 0.20°, 6.33 ⁇ 0.20°, 10.62 ⁇ 0.20°, 12.57 ⁇ 0.20°, 13.11 ⁇ 0.20°, 17.85 ⁇ 0.20°, 18.51 ⁇ 0.20°, 20.99 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 3.30 ⁇ 0.20°, 6.33 ⁇ 0.20°, 6.55 ⁇ 0.20°, 10.62 ⁇ 0.20°, 12.57 ⁇ 0.20°, 13.11 ⁇ 0.20°, 14.20 ⁇ 0.20°, 16.37 ⁇ 0.20°, 17.85 ⁇ 0.20°, 18.51 ⁇ 0.20°, 19.56 ⁇ 0.20°, 20.99 ⁇ 0.20°, 25.53 ⁇ 0.20°, 26.35 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A is substantially as shown in FIG. 1 .
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form is detected under the condition of a Cu-K ⁇ radiation source.
  • the differential scanning calorimetry curve of the above-mentioned A crystal form has an onset point of an endothermic peak at 235.9 ⁇ 3.0°C.
  • the differential scanning calorimetry curve of the above-mentioned Form A is substantially as shown in FIG. 2 .
  • thermogravimetric analysis curve of the above-mentioned crystal form A has a weight loss of 7.70% at 160.0 ⁇ 3.0°C.
  • thermogravimetric analysis curve of the above-mentioned Form A is substantially as shown in FIG. 3 .
  • the present invention also provides the B crystal form of the compound of formula (II), whose X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 16.48 ⁇ 0.20°, 16.95 ⁇ 0.20°, 21.87 ⁇ 0.20°;
  • the present invention also provides the B crystal form of the compound of formula (II), whose X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 9.69 ⁇ 0.20°, 12.12 ⁇ 0.20°, 21.87 ⁇ 0.20°;
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 12.12 ⁇ 0.20°, 16.48 ⁇ 0.20°, 16.95 ⁇ 0.20°, 17.94 ⁇ 0.20°, 21.87 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 9.69 ⁇ 0.20°, 12.12 ⁇ 0.20°, 16.48 ⁇ 0.20°, 16.95 ⁇ 0.20°, 21.87 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 9.69 ⁇ 0.20°, 12.12 ⁇ 0.20°, 16.48 ⁇ 0.20°, 16.95 ⁇ 0.20°, 17.94 ⁇ 0.20°, 19.23 ⁇ 0.20°, 20.37 ⁇ 0.20°, 21.87 ⁇ 0.20°.
  • the present invention provides Form B of the compound of formula (II), the X-ray powder diffraction pattern of which has characteristic diffraction peaks at the following 2 ⁇ angles: 16.48 ⁇ 0.20°, 16.95 ⁇ 0.20°, and/or 21.87 ⁇ 0.20°, and/or or 12.12 ⁇ 0.20°, and/or 17.94 ⁇ 0.20°, and/or 9.69 ⁇ 0.20°, and/or 20.37 ⁇ 0.20°, and/or 21.87 ⁇ 0.20°, and/or 4.80 ⁇ 0.20°, and/or 14.61 ⁇ 0.20°, and/or 19.23 ⁇ 0.20°, and/or 27.53 ⁇ 0.20°, and/or 28.72 ⁇ 0.20°, and/or 33.61 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 4.80 ⁇ 0.20°, 9.69 ⁇ 0.20°, 12.12 ⁇ 0.20°, 14.61 ⁇ 0.20°, 16.48 ⁇ 0.20°, 16.95 ⁇ 0.20°, 17.94 ⁇ 0.20°, 19.23 ⁇ 0.20°, 20.37 ⁇ 0.20°, 21.87 ⁇ 0.20°, 27.53 ⁇ 0.20°, 28.72 ⁇ 0.20°, 33.61 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 4.80 ⁇ 0.20°, 9.69 ⁇ 0.20°, 12.12 ⁇ 0.20°, 16.48 ⁇ 0.20°, 16.95 ⁇ 0.20°, 17.94 ⁇ 0.20°, 19.23 ⁇ 0.20°, 20.37 ⁇ 0.20°, 21.87 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B is substantially as shown in FIG. 4 .
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form is detected under the condition of a Cu-K ⁇ radiation source.
  • the differential scanning calorimetry curve of the above-mentioned crystal form B has an onset point of an endothermic peak at 239.5 ⁇ 3.0°C.
  • the differential scanning calorimetry curve of the above-mentioned Form B is substantially as shown in FIG. 5 .
  • thermogravimetric analysis curve of the above-mentioned crystal form B loses weight up to 1.30% at 200.0 ⁇ 3.0°C.
  • thermogravimetric analysis curve of the above-mentioned crystal form B is substantially as shown in FIG. 6 .
  • the present invention also provides a method for preparing the crystal form of compound B of formula (II), comprising:
  • the solvent is selected from isopropanol, tetrahydrofuran, acetonitrile, 2-butanone and ethyl acetate.
  • the above-mentioned compounds of formula (II), crystal form A and crystal form B are used in the preparation of drugs related to ROCK protein kinase inhibitors.
  • the compound of formula (I) significantly increased the exposure of the active drug, and at the same time, the peak plasma concentration and action time were significantly increased; in the acute intraocular hypertension model, the compound of formula (I) showed good performance at different test doses
  • the antihypertensive effect of K-115 has a certain dose correlation, and the antihypertensive amplitude and duration of action are better than K-115; the compound of formula (I) has excellent efficacy (highest antihypertensive effect and duration of action); formula (I) ) compounds with high systemic safety.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by their combination with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, single crystal X-ray diffraction method (SXRD), the cultured single crystal is collected by Bruker D8 venture diffractometer, the light source is CuK ⁇ radiation, and the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • SXRD single crystal X-ray diffraction method
  • the cultured single crystal is collected by Bruker D8 venture diffractometer
  • the light source is CuK ⁇ radiation
  • the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • rt stands for room temperature
  • THF stands for tetrahydrofuran
  • NMP stands for N-methylpyrrolidone
  • MeSO 3 H stands for methanesulfonic acid
  • DME stands for ethylene glycol dimethyl ether
  • DCM stands for dichloromethane
  • Xphos stands for 2-Dicyclohexylphosphine-2'4'6'-triisopropylbiphenyl
  • EtOAc for ethyl acetate
  • MeOH for methanol
  • acetone for acetone
  • 2-Me-THF 2-methyltetrahydrofuran
  • IPA isopropyl alcohol.
  • Test Method Approximately 10 mg of sample was used for XRPD detection.
  • Light tube voltage 40kV
  • light tube current 40mA
  • Test method Take the sample ( ⁇ 1-5mg ) and put it in the DSC aluminum pan for testing. °C (room temperature) until the sample decomposes.
  • Thermogravimetric Analysis (Thermal Gravimetric Analyzer, TGA) method of the present invention
  • Test method Take the sample ( ⁇ 1-5mg) and place it in the TGA aluminum pan for testing. Under the condition of 10-25mL/min N2, heat the sample from room temperature to 350°C at a heating rate of 10°C/min.
  • Dynamic moisture adsorption experiments consist of adsorption and desorption. It is generally considered that under a set relative humidity, when the weight of the sample dm/dt ⁇ 0.01%, it is considered that the adsorption or desorption of water by the sample under the relative humidity has reached equilibrium.
  • Relative humidity variation range 0% ⁇ 95% ⁇ 0%; RH(%)
  • the hygroscopicity evaluation is classified as follows:
  • ⁇ W% represents the hygroscopic weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • Fig. 1 is the XRPD spectrum of the Cu-K ⁇ radiation of compound A of formula (II);
  • Fig. 2 is the DSC spectrogram of the crystal form of compound A of formula (II);
  • Fig. 3 is the TGA spectrum of formula (II) compound A crystal form
  • Fig. 4 is the XRPD spectrum of the Cu-K ⁇ radiation of compound B of formula (II);
  • Fig. 5 is the DSC spectrogram of the crystal form of compound B of formula (II);
  • Fig. 6 is the TGA spectrum of formula (II) compound B crystal form
  • Figure 7 is the DVS spectrum of the crystalline form of compound B of formula (II).
  • Ethyl acetate (10 L) was added to the reaction solution, followed by stirring for 10 minutes.
  • the reaction solution was filtered, and the filter cake was washed with ethyl acetate (12.5 L).
  • the aqueous phase was extracted with ethyl acetate (10 L ⁇ 3), and the combined organic phases were concentrated under reduced pressure at 45°C.
  • N-heptane (10L) was added to the concentrated residue for beating, and suction filtration was performed to obtain a brown-red solid.
  • the solid was dried in a vacuum drying oven (40° C.) to obtain 1-4c.
  • the temperature of the reactor was adjusted to 50°C, the temperature of the reaction solution was lowered to 40-50°C, the reaction solution was filtered through celite and washed with ethyl acetate (10L), water (10L) was added to the filtrate, and ethyl acetate was used for washing. (5L ⁇ 2) to extract the aqueous phase.
  • the pH of the aqueous phase was adjusted to 7 with concentrated hydrochloric acid, the aqueous phase was extracted with ethyl acetate (5L ⁇ 2), the organic phases were combined, the organic phases were washed with water (10L ⁇ 3), and the organic phase was concentrated under reduced pressure until there was no change in weight to obtain 1 -4d.
  • Dichloromethane (10L) was added to the 50L reaction kettle, stirring was started, the internal temperature was controlled to 0-10°C, and 1-4e (1462.35g) was weighed into the reaction kettle. Control the internal temperature to 0 ⁇ 10°C, take N,N-diisopropylethylamine (934.63g) slowly dropwise into the reaction solution, control the internal temperature to 0 ⁇ 10°C, weigh 1-4f (1230.24g) The batch was slowly added to the reaction solution. After the addition was completed, the temperature was raised to 10-20° C., and stirring was continued for 0.5 hour.
  • the organic phase was washed with saturated aqueous ammonium chloride (3 L x 3), and the combined saturated aqueous ammonium chloride was extracted with dichloromethane (3 L). The organic phase was separated and concentrated under reduced pressure until the weight did not change, and then dried in a vacuum drying oven to obtain 1-4 g.
  • Solid sodium hydroxide 600 g was added at an internal temperature of 40 to 50° C., followed by stirring for 0.5 hour, and a large amount of solid was precipitated, 1.5 L of methyl tert-butyl ether was added, and the mixture was stirred for 0.5 hour.
  • the reaction liquid was separated, and the upper organic phase was filtered to obtain a solid.
  • the solid was slurried with methyl tert-butyl ether/ethyl acetate (4.4 L, 10:1), and the slurried solution was filtered to obtain a white solid.
  • the white solid was dried in an oven to obtain crude product 1-4 (371.52 g).
  • Control the temperature in the reactor to be 10-15°C add sodium bicarbonate (1289.36g), tetrabutylammonium hydrogen sulfate (133.87g) and starting material 1-2 (760.25g) to the reactor successively, control the internal temperature to 10-15°C and stirred for 2 hours.
  • the reaction solution was allowed to stand for layers, and the organic phase was concentrated under reduced pressure until no fractions flowed out.
  • the concentrated solution was transferred to a three-necked flask and the internal temperature was controlled to be 60-70°C and stirred for 12 hours, then cooled to room temperature naturally.
  • Control the internal temperature to be 20-30°C add 1-5 (1062.15g) and tetrahydrofuran (4.24L) successively to the reaction kettle, and after stirring evenly, add the preconfigured tetrahydrofuran sulfate solution dropwise to the system, and then control the internal temperature of the reaction. After stirring at 35-45°C for 4 hours, a large amount of white precipitates gradually precipitated in the system.
  • methyl tert-butyl ether (21.2L) were successively beaten for 0.5 hours, and then beaten with water for five times (21.2L ⁇ 5) successively until the pH of the filtrate was about 7.
  • the content of sulfate radicals was 9.17% as detected by ion chromatography, from which it can be deduced that there is still 0.5 sulfate salts in the compound of formula (II).
  • the hygroscopic weight gain of the crystal form of compound B of formula (II) at 25° C. and 80% RH is 0.736%, and it is slightly hygroscopic.
  • the crystalline form B of the compound of formula (II) was placed for 6 months under the condition of 40°C/75%RH (the double-layer LDPE bag was sealed and then heat-sealed with an aluminum foil bag) for 6 months.
  • the LDPE bag is sealed and then heat-sealed with an aluminum foil bag) for 12 months.
  • the crystal forms were tested separately at each sampling point to determine the crystal form stability of the samples.
  • the compound is a prodrug molecule containing an ester functional group, which can be hydrolyzed into an active drug molecule (parent drug) by the action of abundant ester hydrolase in the eye tissue during eye drop administration.
  • This assay measures the rate at which a compound produces the active pharmaceutical ingredient in vivo and the exposure to the active pharmaceutical ingredient.
  • the vehicle used was 1.2% hydroxypropyl methylcellulose E5/20.5% Poloxamer P407/1.6% Poloxamer P188.
  • the dosage of eye drops is 0.5mg/eye, and the eye drops are administered in both eyes.
  • Aqueous humor was collected at 0.25h, 0.5h, 2h, 4h, 8h, and 24h after administration to prepare aqueous humor samples. All samples were quantitatively detected by liquid chromatography coupled with mass spectrometry and mass spectrometry in the aqueous humor of experimental animals. The measured concentration values were calculated using the WinNonlin non-compartmental model. Parameters such as the peak concentration of water medicine, the peak time of aqueous medicine, and the unit exposure.
  • test compound prodrug molecule
  • active metabolite parent drug molecule
  • compound of formula (I) significantly improves the active drug
  • Evaluation of eye irritation response The maximum scores of cornea, iris, conjunctiva, edema and secretions were added to obtain a total score of eye irritation symptoms at each time point in each animal eye. For the score of eye irritation symptoms, calculate the mean score of each observation time point and each group of animals, and determine the eye irritation degree of each time point and each group of animals according to the following table.
  • Fluorescein sodium examination After each eye irritation reaction examination, a hand-held slit lamp is used for fluorescein sodium examination.
  • the scoring criteria are as follows:
  • the total score of eye irritation reaction in each group at each time point was less than 3, and the classification was non-irritating according to the standard.
  • the fluorescein sodium examination scores of the eyes treated with normal saline, vehicle, K-115 and the compound of formula (I) were all lower than 1 in each group of animals.
  • each group of animals had corneal fluorescence staining score of 1, which was considered as physiological staining.
  • K-115 at a concentration of 4 mg/mL was instilled in eyes for 14 consecutive days, 50 microliters/eye/day, without irritation.
  • the compound of formula (I) is in the concentration range of 0.25-4 mg/mL for 14 consecutive days with eye drops, 50 microliters/eye/day, without irritation.
  • the compound of formula (I) (8.0 mg/mL) administration group was selected according to the collection of 0 hours (before administration) and 0.5, 1, 2, 4, 8 after administration , and a 24-hour blood sample.
  • About 0.8 mL of whole blood was collected from the middle ear artery, or saphenous vein of hind limb (or other suitable site) of toxicological experimental animals, and placed in a labeled label containing dipotassium ethylenediaminetetraacetate (K 2 EDTA) as an anticoagulant. in the blood collection tube.
  • Plasma was obtained by centrifugation at 3000 rpm and 2°C to 8°C for 10 minutes within 60 minutes after blood collection. All samples were quantitatively detected by liquid chromatography coupled with mass spectrometry in the plasma of experimental animals.
  • the metabolite concentration of the compound of formula (I) was 0.934 ng/mL after 4 hours of administration; after 8 hours of administration, the metabolite concentration was lower than the detection limit, and the system was safe high.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本发明公开了一种作为ROCK蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法,还包括所述盐型在制备治疗青光眼或高眼压症疾病的药物中的应用。

Description

一种作为ROCK蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法
本申请主张如下优先权
CN202011521011.6,申请日:2020年12月21日。
技术领域
本发明涉及一种作为ROCK蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法,还包括所述盐型在制备治疗青光眼或高眼压症疾病的药物中的应用。
背景技术
RHO相关蛋白激酶(Rho associated kinase,简称ROCK),属于丝氨酸/苏氨酸蛋白激酶,是RHO的下游靶效应分子,在人体内广泛表达。RHO相关蛋白激酶(ROCK)参与肌球蛋白轻链(MLC)的调节,适用于血管舒张的治疗,ROCK激酶还可以作用于小梁流出道细胞,舒张小梁细胞,降低房水外流阻力。最新的研究显示ROCK激酶抑制剂还可以促进角膜内皮细胞的损伤修复,防止纤维化,有巨大的应用前景。
异喹啉磺酰胺类化合物是一类重要的ROCK激酶抑制剂,目前已经上市的法舒地尔和K-115(专利WO2006057397A1)均是异喹啉磺酰胺类化合物。其中法舒地尔是一种具有广泛药理作用的新型药物,为RHO激酶抑制物,通过增加肌球蛋白轻链磷酸酶的活性扩张血管,降低内皮细胞的张力,改善脑组织微循环,不产生和加重脑的盗血,同时可拮抗炎性因子,保护神经抗凋亡,促进神经再生。而K-115的获批和潜在的应用非常广泛,包括青光眼,高眼压,糖尿病视网膜损伤并发症,老年黄斑变性,角膜损伤,白内障和青光眼手术后的恢复等等,同时可能进一步拓展至系统性药物。
专利WO2007026664A1报道了一系列具有ROCK激酶抑制作用的化合物,比如对照化合物2,该系列化合物具有较好的酶活性,但是它们在透膜性、药代动力学、成药性等方面有待改进。本发明报道了一类通过结构修饰的类似化合物,显著地改善了这方面的性质。
Figure PCTCN2021140206-appb-000001
发明内容
本发明提供了式(II)化合物,
Figure PCTCN2021140206-appb-000002
本发明还提供式(II)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.33±0.20°,10.62±0.20°,13.11±0.20°;
Figure PCTCN2021140206-appb-000003
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.30±0.20°,6.33±0.20°,6.55°±0.20°,10.62±0.20°,12.57±0.20°,13.11±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.30±0.20°,6.33±0.20°,10.62±0.20°,12.57±0.20°,13.11±0.20°,17.85±0.20°,18.51±0.20°,20.99±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.30±0.20°,6.33±0.20°,6.55±0.20°,10.62±0.20°,12.57±0.20°,13.11±0.20°,14.20±0.20°,16.37±0.20°,17.85±0.20°,18.51±0.20°,19.56±0.20°,20.99±0.20°,25.53±0.20°,26.35±0.20°。
在本发明的一些方案中,上述A晶型,其X射线粉末衍射图谱基本上如图1所示。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱解析数据如表1所示:
表1式(II)化合物A晶型的X射线粉末衍射图谱解析数据
Figure PCTCN2021140206-appb-000004
Figure PCTCN2021140206-appb-000005
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱是在Cu-Kα射线源的条件下检测得到。
在本发明的一些方案中,上述A晶型的差示扫描量热曲线在235.9±3.0℃处具有一个吸热峰的起始点。
在本发明的一些方案中,上述A晶型的差示扫描量热曲线基本上如图2所示。
在本发明的一些方案中,上述A晶型的热重分析曲线在160.0±3.0℃时失重达7.70%。
在本发明的一些方案中,上述A晶型的热重分析曲线基本上如图3所示。
本发明还提供式(II)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:16.48±0.20°,16.95±0.20°,21.87±0.20°;
Figure PCTCN2021140206-appb-000006
本发明还提供式(II)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.69±0.20°,12.12±0.20°,21.87±0.20°;
Figure PCTCN2021140206-appb-000007
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:12.12±0.20°,16.48±0.20°,16.95±0.20°,17.94±0.20°,21.87±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.69±0.20°,12.12±0.20°,16.48±0.20°,16.95±0.20°,21.87±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.69±0.20°,12.12±0.20°,16.48±0.20°,16.95±0.20°,17.94±0.20°,19.23±0.20°,20.37±0.20°,21.87±0.20°。
本发明提供了式(II)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:16.48±0.20°,16.95±0.20°,和/或21.87±0.20°,和/或12.12±0.20°,和/或17.94±0.20°,和/或9.69±0.20°,和/或20.37±0.20°,和/或21.87±0.20°,和/或4.80±0.20°,和/或14.61±0.20°,和/或19.23±0.20°,和/或27.53±0.20°,和/或28.72±0.20°,和/或33.61±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.80±0.20°,9.69±0.20°,12.12±0.20°,14.61±0.20°,16.48±0.20°,16.95±0.20°,17.94±0.20°,19.23±0.20°,20.37±0.20°,21.87±0.20°,27.53±0.20°,28.72±0.20°,33.61±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.80±0.20°,9.69±0.20°,12.12±0.20°,16.48±0.20°,16.95±0.20°,17.94±0.20°,19.23±0.20°,20.37±0.20°,21.87±0.20°。
在本发明的一些方案中,上述B晶型,其X射线粉末衍射图谱基本上如图4所示。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱解析数据如表2所示:
表2式(II)化合物B晶型的X射线粉末衍射图谱解析数据
Figure PCTCN2021140206-appb-000008
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱是在Cu-Kα射线源的条件下检测得到。
在本发明的一些方案中,上述B晶型的差示扫描量热曲线在239.5±3.0℃处具有一个吸热峰的起始点。
在本发明的一些方案中,上述B晶型的差示扫描量热曲线基本上如图5所示。
在本发明的一些方案中,上述B晶型的热重分析曲线在200.0±3.0℃时失重达1.30%。
在本发明的一些方案中,上述B晶型的热重分析曲线基本上如图6所示。
本发明还提供式(II)化合物B晶型的制备方法,包括:
(a)将式(II)化合物A晶型加入溶剂中形成混悬液;
(b)将上述混悬液在50℃下搅拌3小时,过滤,干燥。
其中,所述溶剂选自异丙醇、四氢呋喃、乙腈、2-丁酮和乙酸乙酯。
在本发明的一些方案中,上述式(II)化合物、A晶型和B晶型在制备ROCK蛋白激酶抑制剂相关药物上的应用。
在本发明的一些方案中,上述式(II)化合物、A晶型和B晶型在制备治疗青光眼或高眼压症疾病的药物中的应用。
技术效果
式(I)化合物显著提高了活性药物的暴露量,同时,血药峰值浓度和作用时间均显著提高;在急性高眼压模型中,式(I)化合物在不同的测试剂量下都展示了良好的降压效果,同时具有一定的剂量相关性,降压幅度和持续作用时间均优于K-115;式(I)化合物具有优异的药效(最高降压效果和作用时间);式(I)化合物具有高系统安全性。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物 的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021140206-appb-000009
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:r.t.代表室温;THF代表四氢呋喃;NMP代表N-甲基吡咯烷酮;MeSO 3H代表甲烷磺酸;DME代表乙二醇二甲醚;DCM代表二氯甲烷;Xphos代表2-双环己基膦-2’4’6’-三异丙基联苯;EtOAc代表乙酸乙酯;MeOH代表甲醇;acetone代表丙酮;2-Me-THF代表2-甲基四氢呋喃;IPA代表异丙醇。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021140206-appb-000010
软件命名,市售化合物采用供应商目录名称。
本发明X射线粉末衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:PANalytical X’pert 3 X射线粉末衍射仪
测试方法:大约10mg样品用于XRPD检测。
详细的XRPD参数如下:
射线源:Cu,
Figure PCTCN2021140206-appb-000011
Cu,
Figure PCTCN2021140206-appb-000012
光管电压:40kV,光管电流:40mA
扫描范围:3-40deg
步宽角度:0.0263deg
步长:46.665秒
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA2500差示扫描量热仪
测试方法:取样品(~1-5mg)置于DSC铝盘内进行测试,铝盘压盖不扎孔,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从25℃(室温)到样品分解前。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TAQ5000热重分析仪
测试方法:取样品(~1-5mg)置于TGA铝盘内敞口进行测试,在10~25mL/min N2条件下,以10℃/min的升温速率,加热样品从室温到350℃。
本发明动态气体吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS intrinsic动态气体吸附仪
动态水分吸附实验由吸附和解吸附组成。通常认为在一个设定的相对湿度下,当样品重量dm/dt≤0.01%时,便认为样品在该相对湿度下对水分的吸附或解吸附已达到平衡。
样品测试温度:T=25℃
平衡时间:dm/dt:0.01%/min
相对湿度变化范围:0%~95%~0%;RH(%)
测试每步湿度变化:5%
引湿性评价分类如下:
吸湿性分类 ΔW%
易潮解的 吸附足够多的水份成液体状
非常吸湿的 ΔW%≥15%
吸湿的 15%>ΔW%≥2%
轻微吸湿的 2%>ΔW%≥0.2%
不吸湿的 ΔW%<0.2%
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
附图说明
图1为式(II)化合物A晶型的Cu-Kα辐射的XRPD谱图;
图2为式(II)化合物A晶型的DSC谱图;
图3为式(II)化合物A晶型的TGA谱图;
图4为式(II)化合物B晶型的Cu-Kα辐射的XRPD谱图;
图5为式(II)化合物B晶型的DSC谱图;
图6为式(II)化合物B晶型的TGA谱图;
图7为式(II)化合物B晶型的DVS谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
中间体1-4
Figure PCTCN2021140206-appb-000013
第一步
控制内温25~35℃,向反应釜中加入甲苯(24L),搅拌下向反应釜中依次加入1-4a(4000g),碳酸钠(6120g),甲基硼酸(3465g),2-二环己基膦-2′,6′-二甲氧基联苯(98.66g)和三二亚苄基丙酮二钯(88.03g),将反应釜进行氮气置换三次,反应釜内温升至90℃,并在90~100℃下搅拌13小时。向反应釜中加水(4L)使固体溶解,反应液冷却至室温,将反应液通过硅藻土过滤,并用甲基叔丁基醚(4L)洗涤滤饼,洗涤液与滤液合并后用浓盐酸(8L)调节pH=3,静止分液。下层水相用甲基叔丁基醚(5L)萃取,用氢氧化钠水溶液将水相调节pH=9,用乙酸乙酯(12L)萃取水相两次,将合并的有机相真空浓缩至重量不再减少即得到1-4b。
MS-ESI计算值[M+H] +144,实测值144。
第二步
控制反应釜内温低于30℃,向50L反应釜中缓慢加入浓硫酸(13.36L)。控制内温低于50℃,用恒压滴液漏斗向反应釜中缓慢加入1-4b(2500g)。控制反应釜内温-10~0℃向反应釜中缓慢分批加入N-溴代丁二酰亚胺(3070.25g),反应液在-10~8℃范围下搅拌13小时。控制内温低于50℃,将反应液缓慢倒入冰水(8L)中。控制内温低于50℃,向反应液中缓慢滴加氢氧化钠水溶液,调节pH=9。向反应液中加入乙酸乙酯(10L),搅拌10分钟。将反应液过滤,用乙酸乙酯(12.5L)洗涤滤饼。用乙酸乙酯(10L×3)萃取水相,合并的有机相在45℃下减压浓缩。向浓缩剩余物中加入正庚烷(10L)进行打浆,进行抽滤得到棕红色固体,固体放入真空干燥箱(40℃)干燥,得到1-4c。
MS-ESI计算值[M+H] +222,224实测值222,224。
第三步
向反应釜(50L)中加入溶剂N,N-二甲基乙酰胺(10L),在搅拌下加入1-4c(1003.65g),控制内温低于55℃向反应釜(50L)缓慢分批加入甲硫醇钠(1276.97g),反应混合物在50℃搅拌30分 钟。将反应釜温度升至120℃,此时内温为109℃,在此条件下搅拌12小时。将反应釜温度调至50℃,使反应液温度降至40~50℃,将反应液通过硅藻土过滤并用乙酸乙酯(10L)洗涤,向滤液中加入水(10L),用乙酸乙酯(5L×2)萃取水相。用浓盐酸将水相pH调至7,用乙酸乙酯(5L×2)萃取水相,合并有机相,有机相用水(10L×3)洗涤,将有机相减压浓缩至重量无变化得到1-4d。
MS-ESI计算值[M+H] +176,实测值176。
第四步
将二氯甲烷(8L)加入到清洗干净的50L的高低温反应釜中,开启搅拌。将1-4d(1474.02g)加入到反应釜中,调节油浴温度使反应釜内温度控制在0~10℃。将浓盐酸(4.38L)分批缓慢加到反应釜中,控制内温在5~15℃。浓盐酸滴加完毕后,将反应釜的内温降至-5℃。将次氯酸钠水溶液(21.35L)分批缓慢的滴加到反应釜中,整个过程控制温度在0~10℃。将反应液过滤,滤饼用甲基叔丁基醚(2L×2)洗涤,收集滤饼。将收集的滤饼放入烘箱中烘干得到1-4e。
MS-ESI计算值[M+H] +242,实测值242。
第五步
将二氯甲烷(10L)加入50L反应釜中,开启搅拌,控制内温0~10℃,称取1-4e(1462.35g)加入反应釜中。控制内温0~10℃,称取N,N-二异丙基乙基胺(934.63g)缓慢滴加入反应液中,控制内温0~10℃,称取1-4f(1230.24g)分批缓慢加入反应液中。加入完毕,升温至10~20℃,继续搅拌0.5小时。将有机相用饱和氯化铵水溶液(3L×3)洗涤,合并的饱和氯化铵水溶液用二氯甲烷(3L)萃取。将有机相分开减压浓缩直至重量无变化后用真空干燥箱烘干得到1-4g。
MS-ESI计算值[M+H] +392,实测值392。
第六步
将3.1L的无水二氯甲烷加入到清洗干净的5L三口瓶中,开启搅拌。将称量好的1-4g(451.34g)加入到反应瓶中,待固体溶解后,将反应瓶放入冰水浴中,使反应体系的内温降至0℃。将称量好的间氯过氧苯甲酸(429.81g)分批缓慢加入到5L反应瓶中,整个过程保持温度在0~10℃。待间氯过氧苯甲酸加完后,将反应瓶的冰水浴撤掉,换上油浴,使其内温稳定在20~25℃,搅拌12小时。将反应瓶放入冰水浴中搅拌1小时,过滤,滤饼用二氯甲烷(400mL×2)漂洗,将滤液在25~30℃下滴加10%的硫代硫酸钠水溶液至淀粉碘化钾试纸不变蓝,向体系中滴加饱和碳酸氢钠水溶液至pH=7。静止分层,保留有机相,水相用3L的二氯甲烷再萃取一次,合并有机相。有机相用1%碳酸氢钠水溶液(4L×10)洗涤,用无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩得到的固体用烘箱烘干得到1-4h。
MS-ESI计算值[M+H] +408,实测值408。
第七步
向5L三口瓶中加入1-4h(301.42g),加入四氢呋喃(1.5L),搅拌均匀,在内温为10~20℃下滴加三乙胺(206mL),搅拌均匀。在内温为20~30℃下滴加三氟乙酸酐(206mL)并在20~30℃下反应0.5小时。向反应液中加水(1.5L),搅拌均匀,反应液变浑浊。在内温为40~50℃下加入固体氢氧化钠(600g)并搅拌0.5小时,大量固体析出,加入甲基叔丁基醚1.5L,搅拌0.5小时。反应液分液,上层有机相过滤,得到固体。固体用甲基叔丁基醚/乙酸乙酯(4.4L,10∶1)打浆,打浆液过滤得白色固体。白色固体放于烘箱中烘干得到1-4粗品(371.52g)。向50L反应釜中加入四氢呋喃(7L),控制内温为20~25℃,加入1-4粗品(1713.19g,合并其他批次),并在内温为20~25℃搅拌0.5小时。加入水8.6L,20~25℃搅拌0.5小时,加入固体氢氧化钠(800g),并在内温为20~25℃搅拌0.5小时。加入甲基叔丁基醚(8.6L)并在内温为20~25℃搅拌0.5小时。分液,上层有机相过滤,保留过滤中得到的固体,固体置于烘箱中烘干至恒重得到1-4。
MS-ESI计算值[M+H] +408,实测值408。
实施例1:式(II)化合物A晶型的制备
Figure PCTCN2021140206-appb-000014
第一步
开启搅拌和氮气保护,依次将二氯甲烷(8.6L),水(8.6L),起始原料1-1(575.34g)加入到反应釜中。控制反应釜内温为10-15℃,依次向反应釜中加入碳酸氢钠(1289.36g),四丁基硫酸氢铵(133.87g)和起始原料1-2(760.25g),控制内温为10-15℃并搅拌2小时。将反应液静置分层,将有机相减压浓缩至无馏分流出为止。将浓缩液转移至三口瓶中并控制内温为60-70℃搅拌12小时后,自然冷至室温,粗产品用硅胶快速过滤后并用二氯甲烷冲洗至无产品残留。将洗脱液减压浓缩至约1.2 L后,用1%的碳酸氢钠水溶液(3L)洗涤,有机相用无水硫酸钠(500g)干燥,过滤后在将有机相减压浓缩至无馏分流出为止,得到中间体1-3不经纯化直接用于下一步。
MS-ESI计算值[M+H] +199,实测值199。
1H NMR(400MHz,CD 3Cl)δ7.81-7.79(d,J=8Hz,1H),7.01-6.95(m,2H),5.84(s,2H),2.52(s,3H),2.27(s,3H)。
第二步
将2-甲基四氢呋喃(9702mL)加入反应釜,开启搅拌并控制内温为10-20℃,再依次加入1-4(1078.26g),碳酸铯(1017.63g)和中间体1-3(631.71g)。将反应釜内温升至57-63℃搅拌2小时40分钟后停止反应。将反应釜内温降至15-25℃后向反应液中加入水(10.78L),搅拌后静置分层,所得水相用2-甲基四氢呋喃萃取两次(5390mL×2),将合并的有机相减压浓缩至约2.2L。向浓缩液中加入丙酮(1078mL)和正庚烷(2156mL)并继续浓缩至无馏分流出后至无馏分流出,即可得到松散固体。控制内温为10-30℃,将该固体用混合溶剂(11.0495L,丙酮∶正庚烷=1∶40)打浆搅拌三次,过滤并用正庚烷(1078mL)漂洗。滤饼真空减压干燥至恒重,得中间体1-5。
MS-ESI计算值[M+H] +570,实测值570。
1H NMR(400MHz,CD 3Cl)δ8.86-8.78(m,1H),8.13-8.04(m,1H),7.93-7.86(m,1H),7.58-7.49(m,1H),7.39-7.32(m,1H),7.09-6.99(m,2H),6.14(s,2H),4.86-4.76(m,1H),4.42-4.30(m,1H),3.73-3.61(m,2H),3.57-3.47(m,1H),3.46-3.37(m,1H),2.76-2.67(m,3H),2.59(s,3H),2.39-2.29(m,4H),2.09-1.97(m,1H),1.46(s,9H)。
第三步
控制内温为20-30℃向5L三口瓶中依次加入无水四氢呋喃(4.24L)和浓硫酸(712.43g),搅拌均匀后备用。控制内温为20-30℃向反应釜中依次加入1-5(1062.15g)和四氢呋喃(4.24L),搅拌均匀后向体系中滴加预先配置好的硫酸四氢呋喃溶液,随后将反应内温控制在35-45℃搅拌4小时,体系中逐渐析出大量白色沉淀。向反应釜中缓慢加入甲基叔丁基醚(8.48L)内温控制在20-30℃并搅拌0.5小时,过滤后的固体在20-30℃下用混合溶剂(甲基叔丁基醚/四氢呋喃=10.6L/10.6L)及甲基叔丁基醚(21.2L)依次打浆0.5小时后,再依次用水打浆五次(21.2L×5),至滤液pH为7左右。控制内温为20-30℃,将该固体依次在甲基叔丁基醚(15.9L)和混合溶剂(甲基叔丁基醚/四氢呋喃=10.6L/5.3L)中打浆后,经过滤、漂洗及在45℃以下真空干燥得到式(II)化合物A晶型。经离子色谱检测,硫酸根的含量为9.17%,由此可以推断出式(II)化合物中还有0.5个硫酸盐。
MS-ESI计算值[M+H] +470,实测值470。 1H NMR(400MHz,DMSO-d 6)δ8.64-8.58(m,1H),8.26 (d,J=8Hz,1H),7.74-7.62(m,3H),7.16-7.11(m,1H),7.11-7.05(m,1H),6.08(s,2H),3.94-3.89(m,1H),3.70-3.55(m,2H),3.55-3.44(m,1H),3.43-3.27(m,1H),2.59(s,3H),2.48-2.45(m,3H),2.35-2.29(m,1H),2.29-2.24(m,3H),2.16-1.90(m,1H)。
式(II)化合物A晶型的表征:
(1)X射线粉末衍射分析:测试结果如图1和表1所示;
(2)差热分析:测试结果如图2所示;
(3)热重分析:测试结果如图3所示。
实施例2:式(I)化合物的制备
Figure PCTCN2021140206-appb-000015
将化合物1-5(2.2g,3.84mmol)溶于乙酸乙酯(35mL)中,向反应液中加入盐酸乙酸乙酯溶液(4M,20mL)并且在15℃下搅拌12小时。向反应液中加入饱和碳酸氢钠水溶液调节pH值为8,用乙酸乙酯(60mL×2)萃取,有机相用无水硫酸钠(5g)干燥,过滤,减压浓缩得到的粗品经过高效液相色谱法(中性体系)纯化得到式(I)化合物。MS-ESI计算值[M+H] +470,实测值470。 1H NMR(400MHz,CD 3OD)δ=8.71(dd,J=1.4,8.0Hz,1H),8.24(dd,J=1.5,7.8Hz,1H),7.81(d,J=7.9Hz,1H),7.64(t,J=7.9Hz,1H),7.54(d,J=0.9Hz,1H),7.09(s,1H),7.05(d,J=7.9Hz,1H),6.14(s,2H),3.77-3.62(m,3H),3.59-3.50(m,1H),3.20(dd,J=4.9,9.5Hz,1H),2.70(d,J=0.9Hz,3H),2.53(s,3H),2.32(s,3H),2.30-2.23(m,1H),1.96-1.86(m,1H)。
实施例3:式(II)化合物B晶型的制备
称适量(II)化合物A晶型于样品瓶中,加入一定体积表3中的溶剂,制备不同单一溶剂的悬浊液或溶液。混悬液在50℃条件下持续搅拌3小时后,样品过滤并将滤出的固体放入真空干燥箱,在45℃条件下真空干燥去除残留溶剂。
表3式(II)化合物B晶型制备
编号 溶剂 样品量 溶剂体积 状态 晶型
1 异丙醇 100 2.0 混悬液 B晶型
2 四氢呋喃 100 2.0 混悬液 B晶型
3 乙腈 101 2.0 混悬液 B晶型
4 2-丁酮 100 2.0 混悬液 B晶型
5 乙酸乙酯 101 2.0 混悬液 B晶型
式(II)化合物B晶型的表征:
(1)X射线粉末衍射分析:测试结果如图4和表2所示;
(2)差热分析:测试结果如图5所示;
(3)热重分析:测试结果如图6所示。
实施例4:式(II)化合物B晶型的吸湿性研究
实验材料:
SMS DVS intrinsic动态气体吸附仪
实验方法:
取式(II)化合物B晶型10~15mg置于DVS样品盘内进行测试。
实验结果:
式(II)化合物B晶型的DVS谱图如图7所示,ΔW=0.736%。
实验结论:
式(II)化合物B晶型在25℃和80%RH下的吸湿增重为0.736%,有轻微吸湿性。
实施例5:式(II)化合物B晶型的固体稳定性研究
将式(II)化合物晶型B分别在40℃/75%RH条件下(双层LDPE袋密封后再用铝箔袋热封)放置6个月,在25℃/60%RH条件下(双层LDPE袋密封后再用铝箔袋热封)放置12个月。在每个取样点分别测试晶型,以确定样品的晶型稳定性。
表4式(II)化合物B晶型的固体稳定性研究实验结果
Figure PCTCN2021140206-appb-000016
结论:式(II)化合物晶型B在加速、长期试验下均具有良好的稳定性。
生物测试实验
实验例1:房水中药代动力学测试
实验目的:
化合物为含有酯基官能团的前药分子,滴眼给药时经眼组织中丰富的酯水解酶作用可水解为活性药物分子(母药)。本实验检测化合物在体内产生活性药物成分的速度和活性药物成分暴露量。
实验材料:
雄性新西兰大白兔,月龄3-6月,体重2.0-5.0kg,购自邳州东方养殖有限公司。
滴眼样品配置:
使用溶媒为1.2%羟丙基甲基纤维素E5/20.5%泊洛沙姆P407/1.6%泊洛沙姆P188。
实验操作:
滴眼给药剂量为0.5mg/眼,双眼滴眼给药。给药后0.25h,0.5h,2h,4h,8h,24h采集房水,制备房水样品。所有样品运用液相色谱偶联质谱质谱联用技术对给药化合物在实验动物房水中含量进行定量检测,所测浓度值运用WinNonlin非房室模型,根据房水浓度-时间数据,计算半衰期,房水药峰值浓度,房水药峰值时间,单位暴露量等参数。
表5新西兰兔房水中药代动力学测试结果
Figure PCTCN2021140206-appb-000017
“--”:未检测。
结论:实验结果显示,房水中未检测到供试品化合物(前药分子),而主要检测到其酯水解后的活性代谢产物(母药分子),式(I)化合物显著提高了活性药物的暴露量,同时,血药峰值浓度和作用时间均显著提高。
实验例2:急性高眼压新西兰兔的降眼压试验
实验目的:
采用前房注射粘弹剂诱导兔子急性高眼压,通过滴眼给药来探究式(I)化合物在不同浓度下的降眼压作用。
实验材料:
雄性新西兰大白兔,日龄97-127天,体重2.5-3.4kg,购自邳州东方养殖有限公司。
实验操作:
50只雄性新西兰大白兔,根据体重进行随机分组,共5组,10只/组。1-5组动物右眼前房一次性注射医用透明质酸钠凝胶,100μL/眼,诱导动物产生高眼压。造模后5~15分钟,右眼分别滴眼给予溶媒、K-115和供试品(不同浓度的式(I)化合物),左眼滴眼给予溶媒,给药体积均为50μL/眼,给药前,给药后2,4,6,8和10小时分别测定动物双眼眼压。实验结果见表6:
表6各组动物造模及给药前后双眼眼压(Mean±SEM)的变化结果
Figure PCTCN2021140206-appb-000018
结论:在急性高眼压模型中,式(I)化合物在不同的测试剂量下都展示了良好的降压效果,同时具有一定的剂量相关性,降压幅度和持续作用时间均优于K-115。
实验例3:14天重复滴眼给药在正常眼压新西兰兔的降眼压和眼部毒性试验
实验目的:
采用正常眼压的兔子,通过14天重复滴眼给药探索式(I)化合物的降眼压作用和潜在的眼部毒性。
实验材料:
雄性新西兰大白兔,日龄97-127天,体重2.63.5kg,购自邳州东方养殖有限公司。
实验操作一:
雄性新西兰大白兔,随机分成7组,每组6只。将依据动物体重进行随机分组。1-7组动物双眼滴眼给予溶媒/对照品/供试品,给药体积均为50μL/眼,每天1次,连续14天,给药当天记为第1天。第1天给药前,给药后1,2,4,6,8和10小时分别测定动物眼压,第2-14天,K-115给药组在每天给药后1小时测定眼压,其余各组在每天给药后4小时测定动物眼压。实验结果见表7、8和9:
表7各组动物第一天给药前后双眼眼压(Mean±SEM)的变化
Figure PCTCN2021140206-appb-000019
表8各组动物第2-7天重复给药前后双眼眼压(Mean±SEM)的变化
Figure PCTCN2021140206-appb-000020
Figure PCTCN2021140206-appb-000021
表9各组动物第8-14天重复给药前后双眼眼压(Mean±SEM)的变化
Figure PCTCN2021140206-appb-000022
结论:式(I)化合物单次给药在所有的测试剂量(0.5-8.0mg/mL)下都展示了更加优异的药效(最高 降压效果和作用时间),显著优于K-115。在14天连续给药的情况下,式(I)化合物在0.5mg/mL剂量下可以持续的维持显著的降压效果,在峰值(Cmax)降压效果的评价中依然显著优于K-115。
实验操作二:
42只雄性新西兰大白兔,随机分成7组,每组6只。依据动物体重进行随机分组。1-7组动物左眼滴眼给生理盐水,右眼分别滴眼给予溶媒/对照品/供试品,给药体积均为50μL/眼,每天1次,连续14天,给药当天记为第1天。第1天给药前,第1天给药后1,2,4,6,8和10小时分别测定动物眼压(表10)。
试验开始前(第2天/第1天)、给药期间每天给药前(第1-14天)、末次(第14天)给药后1、2、4、24、48和72小时,用手持裂隙灯对动物双眼进行眼刺激反应检查和荧光素钠检查(参考评分标准进行评分)。
表10各组动物第一天给药前后双眼眼压(Mean±SEM)的变化
Figure PCTCN2021140206-appb-000023
结论:式(I)化合物单次给药在所有的测试剂量(0.25-4.0mg/mL)下都展示了更加优异的药效(最 高降压效果和作用时间),显著优于K-115。
试验开始前Day-2至Day-1(第2天/第1天)、给药期间Day1-14每天第一次给药前(第1-14天)以及末次药后1、2、4、24、48和72小时,用手持裂隙灯对动物双眼进行眼刺激反应检查,评分分值标准如下:
眼刺激反应 分值
角膜  
无混浊 0
散在或弥漫性混浊,虹膜清晰可见 1
半透明区易分辨,虹膜模糊不清 2
出现灰白色半透明区,虹膜细节不清,瞳孔大小勉强可见 3
角膜不透明,虹膜无法辨认 4
虹膜  
正常 0
皱褶明显加深、充血、肿胀,角膜周围轻度充血,瞳孔对光仍有反应 1
出血/肉眼可见坏死/对光无反应(或其中一种) 2
结膜  
充血(指睑结膜和球结膜)  
血管正常 0
血管充血呈鲜红色 1
血管充血呈深红色,血管不易分辨 2
弥漫性充血呈紫红色 3
水肿  
无水肿 0
轻微水肿(含眼睑) 1
明显水肿伴部分眼睑外翻 2
水肿至眼睑近半闭合 3
水肿至眼睑超过半闭合 4
分泌物  
眼刺激反应 分值
无分泌物 0
少量分泌物 1
分泌物使眼睑和睫毛潮湿或粘着 2
分泌物使整个眼区潮湿或粘着 3
最大总积分 16
眼刺激反应评价:将角膜、虹膜、结膜、水肿和分泌物的最大积分相加,得到每只动物眼每个时间点眼刺激症状的总积分。对于眼刺激症状评分分值,计算每个观察时间点、每组动物的积分均值,按下表判定每个时间点、每组动物眼刺激程度。
眼刺激性评价标准:
分值 评价
0-3 无刺激性
4-8 轻度刺激性
9-12 中度刺激性
13-16 重度刺激性
荧光素钠检查:每次眼刺激反应检查结束后,用手持裂隙灯进行荧光素钠检查,评分分值标准如下:
Figure PCTCN2021140206-appb-000024
实验结果如下:
根据眼刺激性评价标准进行评价,各组各时间点眼刺激反应总评分小于3,按标准分类均为无刺激性。
试验期间,各组动物生理盐水处理眼别、溶媒、K-115和式(I)化合物处理眼的荧光素钠检查评分均低于1。每组动物在各个处理和个体时间点,均出现有角膜荧光染色评分为1的染色,考虑为生理性染色。各组各时间点均未出现角膜上皮损伤。
结论:在本试验条件下,K-115在4mg/mL浓度下,连续14天滴眼,50微升/眼/天,无刺激性。式(I)化合物在0.25~4mg/mL浓度范围内,连续14天滴眼,50微升/眼/天,无刺激性。
实验例4:毒代动力学实验
实验目的:
检测连续14天给药后化合物在血浆中产生活性药物成分的速度和活性药物成分暴露量。
实验材料:
雄性新西兰大白兔,月龄3-6月,体重2.0-5.0kg,购自邳州东方养殖有限公司。
实验操作:
连续给药14天后,在第14-15天,选择式(I)化合物(8.0mg/mL)给药组按采集0小时(给药前)和给药后0.5,1,2,4,8,和24小时血样。从毒代实验动物耳中动脉,或后肢隐静脉(或其它合适位点)采集大约0.8mL全血,置于以乙二胺四乙酸二钾(K 2EDTA)作为抗凝剂的贴有标签的采血管中。采血后60分钟内在3000转/分和2℃至8℃条件下离心10分钟获得血浆。所有样品运用液相色谱偶联质谱质谱联用技术对给药化合物在实验动物血浆中含量进行定量检测。
表11连续给药14天后新西兰兔血浆中活性化合物的测试结果
Figure PCTCN2021140206-appb-000025
注:BQL表示低于检测限。
结论:式(I)化合物在8mg/mL的高剂量下,给药4小时后,其代谢产物浓度为0.934ng/mL;给药8小时后,其代谢产物浓度低于检测限,系统安全性高。

Claims (24)

  1. 式(II)化合物,
    Figure PCTCN2021140206-appb-100001
  2. 式(II)化合物的A晶型,其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.33±0.20°,10.62±0.20°,13.11±0.20°;
    Figure PCTCN2021140206-appb-100002
  3. 根据权利要求2所述的A晶型,其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.30±0.20°,6.33±0.20°,6.55±0.20°,10.62±0.20°,12.57±0.20°,13.11±0.20°。
  4. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.30±0.20°,6.33±0.20°,10.62±0.20°,12.57±0.20°,13.11±0.20°,17.85±0.20°,18.51±0.20°,20.99±0.20°。
  5. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.30±0.20°,6.33±0.20°,6.55±0.20°,10.62±0.20°,12.57±0.20°,13.11±0.20°,14.20±0.20°,16.37±0.20°,17.85±0.20°,18.51±0.20°,19.56±0.20°,20.99±0.20°,25.53±0.20°,26.35±0.20°。
  6. 根据权利要求4所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.30°,6.33°,6.55°,10.62°,12.57°,13.11°,14.20°,16.37°,17.85°,18.51°,19.56°,20.99°,25.53°,26.35°。
  7. 根据权利要求6所述的A晶型,其X射线粉末衍射图谱基本上如图1所示。
  8. 根据权利要求2~7任意一项所述的A晶型,其差示扫描量热曲线在235.9℃±3.0℃处具有一个吸热峰的起始点。
  9. 根据权利要求8所述的A晶型,其差示扫描量热曲线基本上如图2所示。
  10. 根据权利要求2~7任意一项所述的A晶型,其热重分析曲线在160.0±3.0℃时失重达7.70%。
  11. 根据权利要求10所述的A晶型,其热重分析曲线基本上如图3所示。
  12. 式(II)化合物的B晶型,其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:16.48±0.20°,16.95±0.20°,21.87±0.20°;
    Figure PCTCN2021140206-appb-100003
  13. 式(II)化合物的B晶型,其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.69±0.20°,12.12±0.20°,21.87±0.20°;
    Figure PCTCN2021140206-appb-100004
  14. 根据权利要求12所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:12.12±0.20°,16.48±0.20°,16.95±0.20°,17.94±0.20°,21.87±0.20°。
  15. 根据权利要求12或13所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.69±0.20°,12.12±0.20°,16.48±0.20°,16.95±0.20°,21.87±0.20°。
  16. 根据权利要求15所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.69±0.20°,12.12±0.20°,16.48±0.20°,16.95±0.20°,17.94±0.20°,19.23±0.20°,20.37±0.20°,21.87±0.20°。
  17. 根据权利要求16所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.80±0.20°,9.69±0.20°,12.12±0.20°,14.61±0.20°,16.48±0.20°,16.95±0.20°,17.94±0.20°,19.23±0.20°,20.37±0.20°,21.87±0.20°,27.53±0.20°,28.72±0.20°,33.61±0.20°。
  18. 根据权利要求17所述的B晶型,其X射线粉末衍射图谱基本上如图4所示。
  19. 根据权利要求12~18任意一项所述的B晶型,其差示扫描量热曲线在239.5±3.0℃处具有一个吸热峰的起始点。
  20. 根据权利要求19所述的B晶型,其差示扫描量热曲线基本上如图5所示。
  21. 根据权利要求12~18任意一项所述的B晶型,其热重分析曲线在200.0±3.0℃时失重达1.30%。
  22. 根据权利要求21所述的B晶型,其热重分析曲线基本上如图6所示。
  23. 式(II)化合物B晶型的制备方法,包括:
    (a)将式(II)化合物A晶型加入溶剂中形成混悬液;
    (b)将上述混悬液在50℃下搅拌3小时,过滤,干燥。
    其中,所述溶剂选自异丙醇、四氢呋喃、乙腈、2-丁酮和乙酸乙酯。
  24. 根据权利要求1所述的化合物或权利要求2~11任意一项所述的A晶型或权利要求12~22任意一项所述的B晶型或根据权利要求23所述的方法制备得到的B晶型在制备治疗青光眼或高眼压症疾病的药物中的应用。
PCT/CN2021/140206 2020-12-21 2021-12-21 一种作为rock蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法 WO2022135421A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3202841A CA3202841A1 (en) 2020-12-21 2021-12-21 Salt form of isoquinolinone type compound as rock inhibit and preparation method therefor
EP21909417.4A EP4265606A4 (en) 2020-12-21 2021-12-21 SALT FORM OF AN ISOQUINOLINONE-TYPE COMPOUND AS A ROCK PROTEIN KINASE INHIBITOR AND METHOD FOR PREPARING SAME
KR1020237025004A KR20230124046A (ko) 2020-12-21 2021-12-21 Rock 단백질 키나아제 억제제인 이소퀴놀리논계 화합물의염형 및 이의 제조 방법
JP2023561419A JP2024501081A (ja) 2020-12-21 2021-12-21 Rockプロテアーゼインヒビターであるイソキノリノン型化合物の塩型及びその調製方法
CN202180085680.XA CN116917277A (zh) 2020-12-21 2021-12-21 一种作为rock蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法
AU2021408195A AU2021408195B2 (en) 2020-12-21 2021-12-21 Salt form of isoquinolinone type compound as rock protein kinase inhibitor and preparation method therefor
US18/338,355 US20230331696A1 (en) 2020-12-21 2023-06-21 Salt form of isoquinolinone type compound as rock inhibitor and preparation method therefor
ZA2023/07013A ZA202307013B (en) 2020-12-21 2023-07-11 Salt form of isoquinolinone type compound as rock inhibitor and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011521011.6A CN114644618A (zh) 2020-12-21 2020-12-21 一种作为rock蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法
CN202011521011.6 2020-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/338,355 Continuation US20230331696A1 (en) 2020-12-21 2023-06-21 Salt form of isoquinolinone type compound as rock inhibitor and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2022135421A1 true WO2022135421A1 (zh) 2022-06-30

Family

ID=81991675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140206 WO2022135421A1 (zh) 2020-12-21 2021-12-21 一种作为rock蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法

Country Status (9)

Country Link
US (1) US20230331696A1 (zh)
EP (1) EP4265606A4 (zh)
JP (1) JP2024501081A (zh)
KR (1) KR20230124046A (zh)
CN (2) CN114644618A (zh)
AU (1) AU2021408195B2 (zh)
CA (1) CA3202841A1 (zh)
WO (1) WO2022135421A1 (zh)
ZA (1) ZA202307013B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988544A4 (en) * 2019-06-21 2023-08-09 Guangzhou Ocusun Ophthalmic Biotechnology Co., Ltd. ISOQUINOLINONE DERIVATIVES AS ROCK PROTEIN KINASE INHIBITORS AND THEIR USE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241652A1 (zh) * 2022-06-16 2023-12-21 广州润尔眼科生物科技有限公司 一种药物组合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057397A1 (ja) 2004-11-29 2006-06-01 Kowa Co., Ltd. (s)-(-)-1-(4-フルオロイソキノリン-5-イル)スルホニル-2-メチル-1,4-ホモピペラジン塩酸塩・二水和物
WO2007026664A1 (ja) 2005-08-30 2007-03-08 Asahi Kasei Pharma Corporation スルホンアミド化合物
CN101622243A (zh) * 2007-02-28 2010-01-06 旭化成制药株式会社 磺酰胺衍生物
CN105085478A (zh) * 2014-04-28 2015-11-25 南京明德新药研发股份有限公司 异喹啉磺胺衍生物及其药物组合物和制药用途
WO2020253882A1 (zh) * 2019-06-21 2020-12-24 中山大学中山眼科中心 作为rock蛋白激酶抑制剂的异喹啉酮的衍生物及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057397A1 (ja) 2004-11-29 2006-06-01 Kowa Co., Ltd. (s)-(-)-1-(4-フルオロイソキノリン-5-イル)スルホニル-2-メチル-1,4-ホモピペラジン塩酸塩・二水和物
CN101068806A (zh) * 2004-11-29 2007-11-07 兴和株式会社 (s)-(-)-1-(4-氟代异喹啉-5-基)磺酰基-2-甲基-1,4-高哌嗪盐酸盐-二水合物
WO2007026664A1 (ja) 2005-08-30 2007-03-08 Asahi Kasei Pharma Corporation スルホンアミド化合物
CN101622243A (zh) * 2007-02-28 2010-01-06 旭化成制药株式会社 磺酰胺衍生物
CN105085478A (zh) * 2014-04-28 2015-11-25 南京明德新药研发股份有限公司 异喹啉磺胺衍生物及其药物组合物和制药用途
WO2020253882A1 (zh) * 2019-06-21 2020-12-24 中山大学中山眼科中心 作为rock蛋白激酶抑制剂的异喹啉酮的衍生物及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4265606A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988544A4 (en) * 2019-06-21 2023-08-09 Guangzhou Ocusun Ophthalmic Biotechnology Co., Ltd. ISOQUINOLINONE DERIVATIVES AS ROCK PROTEIN KINASE INHIBITORS AND THEIR USE

Also Published As

Publication number Publication date
KR20230124046A (ko) 2023-08-24
CA3202841A1 (en) 2022-06-30
ZA202307013B (en) 2024-03-27
EP4265606A4 (en) 2024-06-26
AU2021408195A1 (en) 2023-07-27
CN114644618A (zh) 2022-06-21
US20230331696A1 (en) 2023-10-19
CN116917277A (zh) 2023-10-20
AU2021408195B2 (en) 2024-05-02
EP4265606A1 (en) 2023-10-25
JP2024501081A (ja) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2022135421A1 (zh) 一种作为rock蛋白激酶抑制剂的异喹啉酮型化合物的盐型及其制备方法
CN101583361B (zh) 细胞骨架活性rho激酶抑制剂化合物、组合物和用途
CN106995439B (zh) 氘取代3-(甲磺酰基)-l-苯丙氨酸衍生物及其药物组合物、药物制剂和用途
EA016227B1 (ru) Способ лечения офтальмологических неоваскулярных расстройств
CN103249305A (zh) 使用前药形式的激酶抑制剂化合物治疗眼科疾病的方法
CN103052406A (zh) 双官能rho激酶抑制剂化合物、组合物及应用
EA027782B1 (ru) Ингибитор киназ
KR20180043329A (ko) [4-(1,3,3-트리메틸-2-옥소-3,4-디히드로-1h-퀴녹살린-7-일)페녹시]에틸옥시 화합물 또는 그의 염
EP2985283B1 (en) Anti-angiogenesis compound, intermediate and use thereof
CN109641836A (zh) 氟化的2-氨基-4-(取代的氨基)苯基氨基甲酸酯衍生物
WO2019129249A1 (zh) 含三萜类化合物的药物组合物及其用途
CN103249400A (zh) 用于治疗青光眼和高眼压症的腺苷a1激动剂
CN102307621B (zh) 氰基嘧啶衍生物
AU2020296050B2 (en) Isoquinolinone derivatives serving as ROCK protein kinase inhibitors and use thereof
RU2821792C1 (ru) Солевая форма соединения изохинолинонового типа в качестве ингибитора rock и способ ее получения
AU2021348707A9 (en) Crystal form of pyridinylphenyl compound and preparation method therefor
CA2477720C (en) Quinoline derivatives
JP2021113185A (ja) βアミノ酸誘導体、これを含むキナーゼ阻害剤および医薬組成物ならびにその使用
WO2023241652A1 (zh) 一种药物组合物及其制备方法和应用
WO2023246924A1 (zh) 苯并噻唑化合物及其应用
WO2023077977A1 (zh) 秋水仙碱衍生物的制备方法及其用途
WO2024109905A1 (zh) 一种含有吡啶苯基类化合物的眼用制剂及其制备方法和应用
CN106995448B (zh) 一种dha-丝裂霉素c衍生物及其制备方法和应用
CN118271305A (zh) 苯并氮杂䓬酮类衍生物及其用途
JP2021500346A (ja) Ret9及びvegfr2阻害剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3202841

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202180085680.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023561419

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237025004

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021408195

Country of ref document: AU

Date of ref document: 20211221

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021909417

Country of ref document: EP

Effective date: 20230719