WO2022135151A1 - 电池、电子设备、移动装置 - Google Patents

电池、电子设备、移动装置 Download PDF

Info

Publication number
WO2022135151A1
WO2022135151A1 PCT/CN2021/136374 CN2021136374W WO2022135151A1 WO 2022135151 A1 WO2022135151 A1 WO 2022135151A1 CN 2021136374 W CN2021136374 W CN 2021136374W WO 2022135151 A1 WO2022135151 A1 WO 2022135151A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
substrate
type
membrane
separator
Prior art date
Application number
PCT/CN2021/136374
Other languages
English (en)
French (fr)
Inventor
邓耀明
李政杰
阳东方
张新枝
高云雷
谢封超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023537949A priority Critical patent/JP2023554151A/ja
Priority to US18/258,767 priority patent/US20240047827A1/en
Priority to EP21909148.5A priority patent/EP4246701A1/en
Publication of WO2022135151A1 publication Critical patent/WO2022135151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0262Details of the structure or mounting of specific components for a battery compartment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery, an electronic device, and a mobile device.
  • the separator is a porous, electrochemically inert medium between the positive electrode and the negative electrode, which does not participate in the electrochemical reaction but is critical to the safety performance of the battery. If the battery is in a state of mechanical abuse or thermal abuse, the edge of the separator may shrink, increasing the possibility of a short circuit between the positive electrode and the negative electrode, which can easily lead to thermal runaway in severe cases.
  • the present application provides a battery, an electronic device, and a mobile device, with the purpose of reducing the possibility of short circuit between the positive pole piece and the negative pole piece.
  • a battery comprising:
  • a first diaphragm substrate and a second diaphragm substrate, the first diaphragm substrate and the second diaphragm substrate are two diaphragm substrates adjacent to the first pole piece, and the first diaphragm substrate
  • the material and the second diaphragm base material are respectively located on both sides of the first pole piece;
  • a first type of membrane coating is attached to the first edge region of the first membrane substrate, and is attached to the second edge region of the second membrane substrate, the The first edge region and the second edge region are located on the same side of the battery, and the first edge region and the second edge region are disposed opposite to each other.
  • the first type of membrane coating is adhesive, high temperature meltable.
  • the side of the pole piece close to the diaphragm coating and the diaphragm coating can be coated with the diaphragm substrate and the first type of diaphragm. layer, membrane substrate surrounded. That is, one end of the pole piece can be closed by the diaphragm. This is beneficial to reduce the possibility of short circuit between the positive pole piece and the negative pole piece.
  • the first type of separator coating on the edge region of the separator substrate, it is beneficial to improve the tightness of the bonding between the separator and the pole piece, thereby reducing the risk of lithium ion precipitation.
  • the diaphragm is relatively difficult to shrink, which is beneficial to reduce the deformation of the cell.
  • the first type of membrane coating is further attached to the side of the first pole piece.
  • the first type of separator coating is attached to the side of the pole piece, it is beneficial to improve the adhesion between the separator coating and the pole piece, thereby reducing the risk of lithium ion precipitation.
  • the first type of separator coating is not attached to the side of the pole piece, it is beneficial to provide a margin for the shrinkage of the separator substrate.
  • the battery further includes a second pole piece and a third separator substrate, and both the second separator substrate and the third separator substrate are related to the The second pole pieces are adjacent to each other, the second diaphragm substrate is located between the first diaphragm substrate and the third diaphragm substrate, and the first type diaphragm coating is also attached to the second diaphragm
  • a third edge region of the membrane substrate, a side edge of the second membrane substrate, and a fourth edge region of the third membrane substrate, the side edge of the second membrane substrate connecting the second edge region and the third edge region, the third edge region and the fourth edge region are disposed opposite to and located on the same side of the battery.
  • the battery further includes a third pole piece, a fourth separator substrate, and a fifth separator substrate, the fourth separator substrate, the fifth separator
  • the diaphragm substrates are all adjacent to the third pole piece, the second diaphragm substrate is located between the first diaphragm substrate and the fourth diaphragm substrate, and the fourth diaphragm substrate is located in the second diaphragm substrate Between the diaphragm substrate and the fifth diaphragm substrate, the first type diaphragm coating is also attached to the side of the second diaphragm substrate, the side of the fourth diaphragm substrate, the The fifth edge region of the fourth membrane substrate, the sixth edge region of the fifth membrane substrate, the second edge region, the side edge of the second membrane substrate, the edge of the fourth membrane substrate The side edge, the fifth edge region, and the sixth edge region are all located on the same side of the battery, and the fifth edge region and the sixth edge region are disposed opposite to each
  • the first type of separator coating spans a plurality of separator substrates and is integrated at the edges of the plurality of separator substrates, which is beneficial to improve the sealing property of the pole piece and is beneficial to significantly reduce the positive electrode pole piece. Possibility of short circuit with negative pole piece.
  • the battery further includes a second type of separator coating, and the second type of separator coating is attached to the middle region of the first separator substrate,
  • the first type of membrane coating is connected to the second type of membrane coating,
  • the second type of membrane coating includes a first mass content of a binder polymer, and
  • the first type of membrane coating includes a second type of membrane coating The mass content of the binder polymer, the second mass content is greater than the first mass content.
  • the third type of separator coating has more binder polymers
  • the third type of separator coating can be filled between the second type of separator coating and the pole piece to further improve the distance between the separator and the pole piece. The degree of close contact between the sheets, thereby reducing the risk of lithium ion precipitation.
  • the binder polymer in the edge region of the diaphragm substrate can have a relatively higher thickness, which is beneficial to improve the overall hot-pressing uniformity of the electrode.
  • the second mass content is 0.4 ⁇ 5 g/m 2 .
  • the difference between the second mass content and the first mass content is 0.05 ⁇ 4.5 g/m 2 .
  • the binder polymer includes at least one of the following: polyvinylidene fluoride, polyhexafluoropropylene, vinylidene fluoride-hexafluoropropylene copolymer, Vinylidene fluoride-trichloroethylene copolymer, polyethylene-vinyl acetate copolymer, sodium carboxymethyl cellulose, styrene-butadiene rubber, polyacrylic acid, polyacrylate, polyacrylate, polyacrylonitrile, polyamide, polyacrylate Imide, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene .
  • the battery further includes an electrolyte
  • the dissolution parameter of the first type of diaphragm coating is the first solubility parameter
  • the solubility parameter of the electrolyte is the third Two solubility parameters
  • the first solubility parameter is less than or equal to the second solubility parameter
  • the difference between the second solubility parameter and the first solubility parameter is less than a preset solubility parameter.
  • the solubility of the diaphragm coating and the electrolyte by reasonably setting the solubility of the diaphragm coating and the electrolyte, it is beneficial to control the compatibility of the diaphragm coating in the electrolyte, so as to control the morphology of the diaphragm coating in the electrolyte, which is beneficial to make the face-to-face arrangement
  • the membrane coating of the 1st type can be melted to form the first type of membrane coating.
  • the preset solubility parameter is less than or equal to 5(J/cm 3 ) 0.5 .
  • the width of the first type of separator coating is 0.1% to 45% of the width of the first pole piece.
  • a battery comprising:
  • a second type of membrane coating is attached to the middle region of the first membrane substrate, and the second type of membrane coating includes a first mass content of a binder polymer;
  • the third type of membrane coating is attached to the edge region of the first membrane substrate, the third type of membrane coating is connected with the second type of membrane coating, the A third type of membrane coating includes a second mass content of binder polymer that is greater than the first mass content.
  • the third type of separator coating has more binder polymers
  • the third type of separator coating can be filled between the second type of separator coating and the pole piece to further improve the distance between the separator and the pole piece. The degree of close contact between the sheets, thereby reducing the risk of lithium ion precipitation.
  • the binder polymer in the edge region of the diaphragm substrate can have a relatively higher thickness, which is beneficial to improve the overall hot-pressing uniformity of the electrode.
  • the thickness of the second type of membrane coating is less than or equal to the minimum thickness of the third type of membrane coating.
  • the second mass content is 0.4 ⁇ 5 g/m 2 .
  • the difference between the second mass content and the first mass content is 0.05 ⁇ 4.5 g/m 2 .
  • the battery further includes an electrolyte
  • the dissolution parameter of the third type of diaphragm coating is the first solubility parameter
  • the solubility parameter of the electrolyte is the first solubility parameter.
  • Two solubility parameters, the first solubility parameter is less than or equal to the second solubility parameter, and the difference between the second solubility parameter and the first solubility parameter is less than a preset solubility parameter.
  • the solubility of the diaphragm coating and the electrolyte by reasonably setting the solubility of the diaphragm coating and the electrolyte, it is beneficial to control the compatibility of the diaphragm coating in the electrolyte, so as to control the morphology of the diaphragm coating in the electrolyte, which is beneficial to make the face-to-face arrangement
  • the membrane coating of the 1st type can be melted to form the first type of membrane coating.
  • the preset solubility parameter is less than or equal to 5(J/cm 3 ) 0.5 .
  • the battery further includes a pole piece, and the width of the third type of separator coating is 0.1% to 45% of the width of the pole piece.
  • the binder polymer includes at least one of the following: polyvinylidene fluoride, polyhexafluoropropylene, vinylidene fluoride-hexafluoropropylene copolymer, Vinylidene fluoride-trichloroethylene copolymer, polyethylene-vinyl acetate copolymer, sodium carboxymethyl cellulose, styrene-butadiene rubber, polyacrylic acid, polyacrylate, polyacrylate, polyacrylonitrile, polyamide, polyacrylate Imide, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene .
  • an electronic device including the battery according to any one of the implementation manners of the first aspect to the second aspect.
  • a mobile device including the battery according to any one of the implementation manners of the first aspect to the second aspect.
  • FIG. 1 is a schematic structural diagram of an electronic device.
  • Figure 2 is a working principle diagram of a battery.
  • FIG. 3 is a schematic structural diagram of a battery.
  • FIG. 4 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a middle area and an edge area.
  • FIG. 6 is a schematic structural diagram of a battery processed by a hot pressing process according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another battery processed by a hot pressing process provided in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another battery processed by a hot pressing process provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a battery processed by a hot pressing process according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • Primary Cell refer to a device that converts chemical energy into electrical energy, using the potential difference between the positive and negative electrodes to allow electrons to flow between the positive and negative electrodes.
  • Cathode Can refer to the pole with the higher electrode potential in a galvanic cell.
  • current can flow out from the positive electrode, and the positive electrode can obtain electrons and play a reducing role.
  • current can flow to the positive electrode, and the positive electrode can lose electrons and act as oxidation.
  • Anode Can refer to the lower electrode potential in a galvanic cell.
  • current can flow to the negative electrode, and the negative electrode can lose electrons and act as oxidation.
  • current can flow out from the negative electrode, and the negative electrode can obtain electrons and play a reducing role.
  • Electrolyte may refer to the medium used to provide ion exchange between the positive and negative electrodes of a battery.
  • Separator It can refer to the medium used to separate the positive pole piece and the negative pole piece, and prevent the positive pole piece and the negative pole piece from being directly contacted and short-circuited.
  • the essential properties of separators are their porosity (which provides channels for ion transport) and insulation (which prevents electrical leakage).
  • the membrane may include a membrane substrate and a membrane coating.
  • Base separator can refer to the part of the microporous membrane in the separator.
  • the separator substrate can be used alone in the cell.
  • the separator substrate can provide the aforementioned porosity and the aforementioned insulating properties.
  • Separator coating layer may refer to a thin layer attached to at least one surface of a separator substrate.
  • the membrane coating can be attached to the membrane substrate by sticking.
  • the separator coating can be used to enhance the performance of the separator, such as improving the heat resistance, adhesion, etc. of the separator.
  • the core or cell can refer to the part of the battery that has the function of storing electricity.
  • the battery cell may include a positive pole piece and a negative pole piece.
  • Heat abuse It can refer to the abuse of cells in terms of heat (or high temperature). Cells can be tested for thermal abuse using a hot box (such as using high temperature ( ⁇ 130°C) to bake cells).
  • Mechanical abuse It can refer to the mechanical abuse of batteries. Cells can be tested for mechanical abuse using nail penetration (or needle stick) testing, impact testing, etc.
  • Heat shrinkage It can refer to the dimensional change of the separator in the longitudinal/horizontal direction (longitudinal MD, that is, along the long side of the separator; transverse TD, perpendicular to MD, that is, along the short side of the separator) before and after heating Rate.
  • the test method for thermal shrinkage may include: measuring the dimension of the separator in the longitudinal/transverse (MD/TD) direction; placing the diaphragm with a certain size in the longitudinal/transverse (MD/TD) direction in a constant temperature box; heating at a constant temperature oven to a specific temperature; measure the dimensions of the membrane in the longitudinal/transverse (MD/TD) direction after heating.
  • Mass content It can refer to the mass of a substance per unit area.
  • the electronic device can be, for example, a terminal consumer product or a 3C electronic product (computer, communication, consumer electronic product), such as a mobile phone, a power bank, a portable computer, a tablet computer, an e-reader, Notebook computers, digital cameras, wearable devices, vehicle terminals, headphones and other equipment.
  • a terminal consumer product or a 3C electronic product (computer, communication, consumer electronic product)
  • a 3C electronic product computer, communication, consumer electronic product
  • a mobile phone such as a power bank, a portable computer, a tablet computer, an e-reader, notebook computers, digital cameras, wearable devices, vehicle terminals, headphones and other equipment.
  • the mobile device may be, for example, a vehicle, an electric skateboard, an electric bicycle, or the like.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application. The embodiment shown in FIG. 1 is described by taking the electronic device 100 as a mobile phone as an example.
  • Electronic device 100 includes housing 10 , display screen 20 and circuit board assembly 30 .
  • the casing 10 includes a frame and a back cover.
  • the frame surrounds the periphery of the display screen 20 and the periphery of the back cover.
  • the cavity formed between the display screen 20, the frame, and the back cover can be used to place the circuit board assembly 30.
  • both the display screen 20 and the circuit board assembly 30 may be disposed on the housing 10 .
  • the electronic device 100 may also include a battery 40 for powering the circuit board assembly 30 .
  • the battery 40 may be, for example, a lithium electron secondary battery, a sodium ion secondary battery, a potassium ion secondary battery, a magnesium ion secondary battery, a zinc ion secondary battery, an aluminum ion secondary battery, or the like.
  • FIG. 2 is a working principle diagram of a battery 40 .
  • the core components of the battery 40 may include a positive pole piece 101 , a negative pole piece 102 , an electrolyte 103 and a separator 104 (corresponding communication accessories and circuits are not shown).
  • the positive pole piece 101 and the negative pole piece 102 can deintercalate lithium ions to realize the storage and release of energy. As shown in FIG. 2 , the movement of Li+ to the left (positive pole) is the energy release process, and the movement of Li+ to the right (negative pole) is energy. stored procedure.
  • the electrolyte 103 may be a transport carrier for lithium ions between the positive electrode 101 and the negative electrode 102 .
  • the positive pole piece 101 and the negative pole piece 102 are the main energy storage parts of the battery 40 and can reflect the energy density, cycle performance and safety performance of the battery cell.
  • the separator 104 can permeate lithium ions, but the separator 104 itself is not conductive, so the separator 104 can separate the positive electrode 101 and the negative electrode 102 to prevent short circuit between the positive electrode 101 and the negative electrode 102 .
  • the essential properties of the membrane 104 are that it is porous (which can provide channels for ion transport) and insulating (which prevents electrical leakage).
  • FIG. 3 is a schematic structural diagram of a battery 40 .
  • the battery 40 may include a multi-layer positive electrode plate 101 , a multi-layer negative electrode plate 102 , and a multi-layer separator 104 .
  • the positive pole piece 101 and the negative pole piece 102 are stacked and arranged at intervals.
  • a layer of negative pole pieces 102 is arranged between two adjacent positive pole pieces 101
  • a layer of positive pole pieces 101 is arranged between two adjacent negative pole pieces 102 .
  • a separator 104 is provided between adjacent positive electrode pieces 101 and negative electrode pieces 102 to prevent short circuit between the positive electrode pieces 101 and the negative electrode pieces 102 .
  • the multi-layer positive pole piece 101 , the multi-layer negative pole piece 102 , and the multi-layer separator 104 can be soaked in the electrolyte 103 shown in FIG. 2 .
  • the positive electrode sheet 101 may include a positive electrode current collector and a positive electrode active material disposed on the positive electrode current collector.
  • Positive active materials include but are not limited to lithium composite metal oxides (such as lithium cobalt oxide (LCO), nickel cobalt lithium manganate (NMC), etc.), polyanion lithium compound LiMx(PO4)y (M is Ni, Co, Mn) , Fe, Ti, V, 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 5) etc.
  • the method for fabricating the positive pole piece may include: first dissolving a binder (such as polyvinylidene difluoride (PVDF)) in N-methylpyrrolidone (N-methyl-2-pyrrolidone, NMP), A 7.0% PVDF glue solution is obtained; then carbon nanotubes (CNTs) conductive solution is added to uniformly disperse; then the active material lithium cobaltate (LCO) is added and stirred to form a positive electrode slurry; then, the positive electrode slurry is uniformly coated with a coating equipment.
  • PVDF polyvinylidene difluoride
  • NMP N-methylpyrrolidone
  • CNTs carbon nanotubes
  • LCO active material lithium cobaltate
  • the positive electrode ratio can be, for example, LCO:CNTs:PVDF, 98.8%:0.02%:1.0%.
  • the method for fabricating the positive electrode sheet may include: first dissolving a binder (such as polyvinylidene difluoride (PVDF)) in N-methyl-2-pyrrolidone (NMP) , to obtain a 7.0% PVDF glue solution; then add carbon nanotubes (CNTs) conductive solution to uniformly disperse; then add active material nickel cobalt lithium manganate (NMC) to stir and mix to form a positive electrode slurry; then, use coating equipment to coat the positive electrode slurry The material is evenly coated on both sides of the aluminum foil, and the NMP solvent is removed by drying in an oven; finally, the coated pole piece is subjected to cold pressing, slitting, and pole lug welding to obtain a finished positive pole piece.
  • the positive electrode ratio can be, for example, NMC:CNTs:SP:PVDF, 97.5%:0.5%:1.0%:1.0%.
  • the negative pole piece 102 may include a negative electrode current collector and a negative electrode active material disposed on the negative electrode current collector.
  • Negative active materials include but are not limited to at least one of the following: lithium metal, lithium alloy, lithium titanate, natural graphite, artificial graphite, MCMB, amorphous carbon, carbon fiber, carbon nanotube, hard carbon, soft carbon, graphene, oxide Graphene, silicon, silicon carbon compounds, silicon oxide compounds and silicon metal compounds.
  • the method for manufacturing a negative electrode sheet may include: first, by kneading, dry-mixing artificial graphite and conductive carbon black (SP) uniformly; then, adding 25% pre-stirred sodium alginate (CMC) glue Knead and stir; after that, add remaining CMC and deionized water for high-speed dispersion to form mixed negative electrode slurry; then, use coating equipment to evenly coat the sieved mixed negative electrode slurry on both sides of copper foil, Oven drying; finally, the coated pole piece is subjected to cold pressing, slitting and pole ear welding processes to obtain a finished negative pole piece.
  • the negative electrode ratio can be, for example, graphite: SP: CMC: styrene-butadiene rubber (SBR), 96.8%: 0.6%: 1.2%: 1.2%.
  • the membrane 104 may include, for example, a membrane substrate and a membrane coating.
  • the membrane substrate may be a porous insulating material.
  • the pores on the separator substrate can permeate lithium ions (the pores on the separator substrate can be transport channels for lithium ions).
  • the diaphragm substrate needs to have properties such as chemical inertness, electrochemical inertness, porosity, electronic insulation, high ductility, high film breaking temperature, and low closed cell temperature.
  • the separator substrate may include, for example, at least one of the following: polyethylene (PE), polyethylene (PP), polyalphaolefin, polyethylene terephthalate, polymethylpentene, polybutene , polyimide, polyamide, polyester, polyurethane, polycarbonate, cycloolefin copolymer, polybenzimidazole, polybenzobisoxazole, aramid, etc.
  • the polymeric form of the membrane substrate may include, for example, one or more of copolymers, blends, mixtures, and compositions.
  • the membrane coating can be attached to at least one surface of the membrane substrate, so that the membrane 104 has properties such as high ductility, high membrane breaking temperature, low closed cell temperature, and the like.
  • the separator coating may also have other properties, such as relatively high adhesion and the like.
  • Separator coatings may include organic coatings, inorganic coatings, and/or organic-inorganic composite coatings.
  • Inorganic coatings may include ceramic coatings.
  • the ceramic coating may include at least one of the following: aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, zinc oxide, barium oxide, magnesium oxide, beryllium oxide, calcium oxide, thorium oxide, aluminum nitride, titanium nitride, oxyhydroxide Aluminum, Boehmite, Apatite, Aluminum Hydroxide, Magnesium Hydroxide, Barium Sulfate, Boron Nitride, Silicon Carbide, Silicon Nitride, Cubic Boron Nitride, Hexagonal Boron Nitride, Graphite, Graphene, Mesoporous Molecular Sieve (MCM-41, SBA-15) etc.
  • the organic coating may include at least one of the following: polyvinylidene fluoride, polyhexafluoropropylene, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trichloroethylene copolymer, polyethylene-vinyl acetate copolymer, carboxylate Sodium methylcellulose, styrene butadiene rubber, polyacrylic acid, polyacrylate, polyacrylate, polyacrylonitrile, polyamide, polyimide, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, acetic acid Cellulose propionate, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene, etc.
  • the organic-inorganic composite coating can be prepared by mixing the above-mentioned inorganic coating and organic coating.
  • the edge portion of the diaphragm tends to shrink toward the middle region of the diaphragm.
  • One way to improve the shrinkage tendency is to apply an adhesive membrane coating to the surface of the membrane substrate (such as the edge region and/or the middle region of the membrane substrate), the membrane coating at relatively high temperature
  • the underside can melt, cross-link, and adhere to the pole pieces (eg, the positive pole piece and/or the negative pole piece). This is beneficial to counteract the shrinkage force of the separator substrate, thereby reducing the possibility of short circuit between the positive electrode and the negative electrode.
  • the market is increasingly demanding battery energy density.
  • One way to help increase the energy density of the battery is to compress the thickness of the separator.
  • the thickness of the separator is relatively thin, which makes the separator easier to shrink, and the adhesive force of the separator is worse, which cannot effectively reduce the possibility of short circuit between the positive electrode and the negative electrode.
  • FIG. 4 is a schematic structural diagram of a battery 40 provided by an embodiment of the present application.
  • the battery 40 may include a plurality of positive electrode plates 101, a plurality of negative electrode plates 102, and a plurality of separator substrates 1041, which are stacked and arranged at intervals.
  • the white rectangle in FIG. 4 can be used to represent the positive pole piece 101
  • the black rectangle in FIG. 4 can be used to represent the negative pole piece 102
  • the rectangle filled with slashes in FIG. 4 can be used to represent the separator substrate 1041 .
  • a negative pole piece 102 is arranged between any two adjacent positive pole pieces 101
  • a positive pole piece 101 is arranged between any two adjacent negative pole pieces 102
  • any two adjacent positive pole pieces 101 A diaphragm base material 1041 is disposed between the sheet 101 and the negative electrode sheet 102 .
  • the separator substrate 1041 may be attached between the positive electrode sheet 101 and the negative electrode sheet 102 .
  • the battery 40 may also include a first type of separator coating 1042, which may be viscous, meltable and cross-linked at high temperatures (in the field of batteries, a temperature greater than 40-60° C. can be understood as high temperature). That is, the first type of membrane coating 1042 may include a binder polymer. The black pattern filled with white dots in FIG. 4 is used to represent the first type of membrane coating 1042 .
  • the first type of membrane coating 1042 may be attached to the edge area of the membrane substrate 1041 (ie, part or all of the first type of membrane coating may be attached to the edge area of the membrane substrate 1041).
  • first type diaphragm coating 1042 may be adhered between the first diaphragm substrate 10411 and the second diaphragm substrate 10412, and the first diaphragm substrate 10411 and the second diaphragm substrate 10412 are adjacent to the same pole piece. That is, the first type of membrane coating 1042 adheres to the first edge region of the first membrane substrate 10411, and adheres to the second edge region of the second membrane substrate 10412, wherein the first edge region and the second edge region The edge regions are arranged oppositely, that is, the first edge region and the second edge region are located on the same side of the pole piece.
  • the first diaphragm substrate 10411 , the first type diaphragm coating 1042 , and the second diaphragm substrate 10412 may surround the edge of the pole piece, and the pole piece is located between the first diaphragm substrate 10411 and the second diaphragm substrate 10412 .
  • the pattern filled with squares in Figure 5 is used to represent the edge region.
  • the pattern filled with diamonds in Figure 5 is used to represent the intermediate region.
  • the transverse direction TD can be understood as the width direction of the battery 40
  • the longitudinal TD can be understood as the length direction of the battery 40
  • the size of the battery 40 in the length direction is generally larger than that of the battery 40 (dimension in the width direction) of the central axis is the first central axis.
  • the intermediate region may refer to a region whose distance to the first central axis is smaller than a first predetermined distance.
  • the edge region may refer to a region whose distance to the first central axis is greater than a first predetermined distance.
  • the distance from the interface between the intermediate region and the edge region to the first central axis may be the first preset distance.
  • the first predetermined distance may be, for example, about 1/2 of the lateral width of the pole piece.
  • the central axis of the battery 40 (or the pole piece, the separator substrate 1041 , etc.) in the longitudinal direction is the second central axis.
  • the intermediate region may refer to a region whose distance to the second central axis is smaller than a second predetermined distance.
  • the edge region may refer to a region whose distance to the second central axis is greater than a second predetermined distance.
  • the distance from the interface between the intermediate region and the edge region to the second central axis may be the second preset distance.
  • the second predetermined distance may be, for example, about 1/2 of the longitudinal width of the pole piece.
  • the separator substrate 1041 in order to effectively prevent a short circuit between the positive pole piece 101 and the negative pole piece 102 , the separator substrate 1041 usually covers the entire area of the pole piece, and the edge of the separator substrate 1041 may exceed the edge contour of the pole piece.
  • the first type of membrane coating 1042 is attached to the edge area of the membrane substrate 1041, which may refer to that the first type of membrane coating 1042 is attached to the membrane substrate 1041, and the first type of membrane coating 1042 Including the portion located outside the perimeter of the pole piece, the first type of membrane coating 1042 includes the portion that does not cover the perimeter of the pole piece.
  • the first type of membrane coating 1042 is attached to the edge region of the membrane substrate 1041, which may mean that the first type of membrane coating 1042 is attached to the membrane substrate 1041, and the first type of membrane coating 1042 1042 may include a first portion covering the perimeter of the pole piece and a second portion located outside the perimeter of the pole piece.
  • the width of the first type separator coating 1042 may be 0.1% to 45% of the width of the pole piece.
  • the width of the first type separator coating 1042 may be 0.5% ⁇ 5.0% of the width of the pole piece.
  • the first type of membrane coating 1042 includes a binder polymer with a mass content of 0.4 ⁇ 5 g/m 2 .
  • the first type of membrane coating 1042 may include a binder polymer in a mass content of 0.5 g/m 2 .
  • the slurry configuration method of the first type of diaphragm coating 1042 may include: obtaining coating raw materials according to mass ratio, wherein the copolymer of polytetrafluoroethylene is 47.5 parts, deionized water 50 parts, water-based wetting agent 1.0 parts, water-based dispersion Add 1.5 parts of PTFE; then add the copolymer of polytetrafluoroethylene into deionized water, and disperse at high speed in a high-speed disperser to obtain a slurry dispersion.
  • the dissolved aqueous dispersant and aqueous wetting agent are fully stirred and ground, for example, the duration of stirring and grinding can be 3 hours; finally, vacuuming and defoaming are performed to obtain a uniformly mixed slurry of the first type of diaphragm coating 1042 .
  • the first type of membrane coating 1042 may include a binder polymer at a mass content of 0.62 g/m 2 .
  • the slurry configuration method of the first type of diaphragm coating 1042 may include: obtaining coating raw materials according to the mass ratio, including 30 parts of boehmite, 46 parts of deionized water, 13.5 parts of binder, 1.0 parts of water-based wetting agent, and 1.0 parts of water-based wetting agent.
  • dispersant 1.5 parts of dispersant; then add boehmite into deionized water, and disperse at high speed in a high-speed disperser to obtain a slurry dispersion, the specific rotational speed can be, for example, 15000r/min, and the dispersion time can be, for example, 2h; then add completely dissolved water-based The dispersant and the water-based wetting agent are fully stirred and ground, and the stirring and grinding time can be, for example, 3 hours; finally, vacuuming and defoaming are performed to obtain a uniformly mixed slurry of the first type of diaphragm coating 1042 .
  • the first type of membrane coating 1042 may include a binder polymer in a mass content of 0.62 g/m 2 .
  • the slurry configuration method of the first type of diaphragm coating 1042 may include: obtaining coating raw materials according to the mass ratio, including 51.5 parts of polyvinylidene fluoride-hexafluoropropylene, 46 parts of deionized water, 1.0 parts of water-based wetting agent, and 1.0 parts of water-based wetting agent. 1.5 parts of dispersant; then add polyvinylidene fluoride-hexafluoropropylene into deionized water, and disperse at high speed in a high-speed disperser to obtain a slurry dispersion.
  • the specific rotational speed can be, for example, 15000r/min, and the dispersion time can be, for example, 2h; Then add the completely dissolved aqueous dispersant and aqueous wetting agent and fully stir and grind, for example, the duration of stirring and grinding can be 3 hours; finally vacuuming and defoaming, a uniformly mixed slurry of the first type diaphragm coating 1042 is obtained.
  • the slurry ratio of the first type of separator coating 1042 may include, for example: 47.5 parts of polyvinylidene fluoride-hexafluoropropylene, 50 parts of deionized water part, 1.0 part of aqueous wetting agent, and 1.5 part of aqueous dispersant.
  • the first type of membrane coating 1042 may include a binder polymer in a mass content of 0.45 g/m 2 .
  • the slurry configuration method of the first type of diaphragm coating 1042 may include: obtaining coating raw materials according to mass ratio, wherein 52.0 parts of polyhexafluoropropylene copolymer, 45.5 parts of deionized water, 1.0 part of water-based wetting agent, and water-based dispersant 1.5 parts; then add the polyhexafluoropropylene copolymer into deionized water, and disperse it at a high speed in a high-speed disperser to obtain a slurry dispersion.
  • the water-based dispersant and the water-based wetting agent are fully stirred and ground, and the stirring and grinding time can be, for example, 3 hours; finally, vacuum and defoaming are performed to obtain a uniformly mixed slurry of the first type of diaphragm coating 1042 .
  • the first type of membrane coating 1042 includes a binder polymer with a mass content of 0.8 ⁇ 2.5 g/m 2 .
  • the crystallinity of the first type of membrane coating 1042 is less than 80%.
  • the crystallinity of the first type membrane coating 1042 may be 50.0% ⁇ 80.0%.
  • the solubility parameter of the first type of diaphragm coating 1042 is the first solubility parameter
  • the solubility parameter of the electrolyte in the battery is the second solubility parameter
  • the first solubility parameter is less than or equal to the second solubility parameter
  • the second solubility parameter The difference between the parameter and the first solubility parameter is smaller than the preset solubility parameter.
  • the first solubility parameter is 20-26 ⁇ 1(J/cm 3 ) 0.5
  • the solubility parameter of the second solubility parameter is 26 ⁇ 1(J/cm 3 ) 0.5 .
  • the preset solubility parameter is less than or equal to 5(J/cm 3 ) 0.5 .
  • the first type of separator coating 1042 Since the dissolution parameter of the first type of separator coating 1042 is less than the solubility parameter of the electrolyte, the first type of separator coating 1042 will not completely dissolve in the electrolyte. If the solubility parameter of the first type of separator coating 1042 is much larger than the solubility parameter of the electrolyte, the first type of separator coating 1042 is excessively fused with the electrolyte, and it is difficult for the first type of separator coating 1042 to completely wrap the side of the pole piece 10414.
  • the width of the pole piece in the lateral and longitudinal directions is relatively large
  • the thickness direction of the pole piece is perpendicular to the lateral and longitudinal directions
  • the surface of the pole piece in the thickness direction can be Referred to as the side 10414 of the pole piece.
  • the difference between the dissolution parameters of the first type of diaphragm coating 1042 and the solubility parameter of the electrolyte is small, which makes the diaphragm coatings arranged face-to-face melt together to form the first type of diaphragm coating 1042, which is also conducive to improving the relationship between the pole piece and the pole piece.
  • the adhesion between the cells is beneficial to improve the dynamic performance of the battery and reduce the polarization between the cells.
  • the binder polymer may include, for example, at least one of the following: polyvinylidene fluoride, polyhexafluoropropylene, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trichloroethylene copolymer, polyethylene-vinyl acetate Copolymer, Sodium Carboxymethyl Cellulose, SBR, Polyacrylic Acid, Polyacrylate, Polyacrylate, Polyacrylonitrile, Polyamide, Polyimide, Polyethylene Oxide, Cellulose Acetate, Butyl Acetate Cellulose acid, cellulose acetate propionate, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene.
  • FIG. 6 is a schematic structural diagram of a battery 40 processed by a hot pressing process according to an embodiment of the present application.
  • the upper diagram in FIG. 6 ie, the diagram above the arrow in FIG. 6
  • the lower diagram in FIG. 6 ie, the diagram under the arrow in FIG. 6
  • the hot pressing process may refer to, for example, a process of shaping and activating the raw materials of the battery 40 by means of pressure, heating, or the like.
  • the hot pressing process can be performed after the stacking, winding, etc. processes, for example.
  • the hot pressing process parameters may include hot pressing pressure, hot pressing temperature, and hot pressing time.
  • the hot-pressing pressure may be 0.1-2.0 Mpa
  • the hot-pressing temperature may be 25-100° C.
  • the hot-pressing time may be 20-300 min.
  • the hot pressing pressure may be 0.5 ⁇ 1.0 Mpa
  • the hot pressing temperature may be 60 ⁇ 90° C.
  • the hot pressing time may be 60 ⁇ 150 min.
  • the battery 40 may include a positive pole piece 1011 , a positive pole piece 1012 , a negative pole piece 1021 , and a negative pole piece 1022 that are stacked in sequence.
  • the positive pole piece 1011 and the positive pole piece 1012 may be two adjacent positive pole pieces.
  • the negative pole piece 1021 and the negative pole piece 1022 may be two adjacent negative pole pieces.
  • the negative pole piece 1021 is located between the positive pole piece 1011 and the positive pole piece 1012
  • the positive pole piece 1012 is located between the negative pole piece 1021 and the negative pole piece 1022 .
  • the battery 40 may further include a separator substrate 10411 , a separator substrate 10412 , and a separator substrate 10413 .
  • the membrane substrate 10412 may be located between the membrane substrate 10411 and the membrane substrate 10413 .
  • the separator base material 10411 may be located between the positive electrode pole piece 1011 and the negative electrode pole piece 1021 , and the separator base material 10411 and the positive electrode pole piece 1011 may be attached together. Optionally, there may be a certain gap between the separator substrate 10411 and the negative pole piece 1021 .
  • the separator base material 10412 can be located between the negative electrode pole piece 1021 and the positive electrode pole piece 1012 , and the separator base material 10412 and the negative electrode pole piece 1021 can be attached together.
  • a certain gap may exist between the separator substrate 10412 and the positive electrode sheet 1012 .
  • the separator base material 10413 can be located between the positive electrode piece 1012 and the negative electrode piece 1022, and the separator base material 10413 and the positive electrode piece 1012 can be attached together.
  • the membrane substrate 10411 is covered with a membrane coating 10451 at the edge area, and the membrane coating 10451 is located on the surface of the membrane substrate 10411 close to the membrane substrate 10412 .
  • a membrane coating 10452 is attached to the edge region of the membrane substrate 10412 , and the membrane coating 10452 is located on the surface of the membrane substrate 10412 close to the membrane substrate 10411 .
  • the separator coating 10451 and the separator coating 10452 are both adhesive and high temperature meltable separator coatings.
  • the separator coating 10451 and the separator coating 10452 may be located on the same side of the negative pole piece 1021 .
  • the width of the separator coating 10451 and the separator coating 10452 may be 0.1% to 45% of the width of the negative electrode pole piece 1021 .
  • the width of the separator coating 10451 and the separator coating 10452 may be 0.5% to 5.0% of the width of the negative electrode pole piece 1021 .
  • the membrane substrate 10412 is covered with a membrane coating 10453 at the edge region, and the membrane coating 10453 is located on the surface of the membrane substrate 10412 close to the membrane substrate 10413 .
  • a membrane coating 10454 is attached to the edge region of the membrane substrate 10413 , and the membrane coating 10454 is located on the surface of the membrane substrate 10413 close to the membrane substrate 10412 .
  • the separator coating 10453 and the separator coating 10454 are both adhesive and high temperature meltable separator coatings.
  • the separator coating 10453 and the separator coating 10454 may be located on the same side of the positive electrode plate 1012 .
  • the width of the separator coating 10453 and the separator coating 10454 may be 0.1% to 45% of the width of the positive electrode sheet 1012 .
  • the width of the separator coating 10453 and the separator coating 10454 may be 0.5% to 5.0% of the width of the positive electrode sheet 1012 .
  • the hot pressing process can facilitate the close bonding between the diaphragm substrate and the pole piece.
  • the diaphragm substrate 10411 can be attached to both the positive electrode and the negative electrode 1021; the diaphragm substrate 10412 can be attached to both
  • the negative pole piece 1021 is also pasted on the positive pole piece 1012 ; the diaphragm substrate 10413 can be pasted on both the positive pole piece 1012 and the negative pole piece 1022 .
  • the hot pressing process can facilitate the integration of two first-type diaphragm coatings 1042 that are relatively close together. As shown in the lower figure in FIG. 6 , during the hot pressing process, the membrane coating 10451 and the membrane coating 10452 can be melted under the action of high temperature and pressure, and melt on the membrane substrate 10411 and the membrane substrate 10412 The flow spreads out and then merges into one, forming the first type of membrane coating 10421 .
  • the first type of separator coating 10421 can be connected between the separator substrate 10411 and the separator substrate 10412, so that the side of the negative electrode piece 1021 close to the separator coating 10451 and the separator coating 10452 can be covered by the separator substrate 10411 , the first type of membrane coating 10421, and the membrane substrate 10412 are surrounded. That is, one end of the pole piece can be closed by the diaphragm. This is beneficial to reduce the possibility of short circuit between the negative pole piece 1021 and the adjacent positive pole piece (eg, the positive pole piece 1011 , the positive pole piece 1012 ).
  • the membrane coating 10453 and the membrane coating 10454 can be integrated and form the first type of membrane coating 10422.
  • the first type of separator coating 10422 can be connected between the separator substrate 10412 and the separator substrate 10413, so that the side of the positive electrode sheet 1012 close to the separator coating 10453 and the separator coating 10454 can be covered by the separator substrate 10412 , the first type of membrane coating 10422, and the membrane substrate 10413 surrounded. This is beneficial to reduce the possibility of short circuit between the positive pole piece 1012 and adjacent negative pole pieces (eg, the negative pole piece 1021 , the negative pole piece 1022 ).
  • the edge region of the separator substrate by providing a high temperature meltable separator coating on the edge region of the separator substrate, it is beneficial to improve the tightness between the separator and the pole piece, thereby reducing the risk of lithium ion precipitation.
  • a high-temperature meltable diaphragm coating on the edge area of the diaphragm substrate in addition to improving the overall hot-pressing uniformity of the electrode, it is also beneficial to improve the bonding force between the pole piece and the diaphragm, which is conducive to improving the Cycling performance of the battery.
  • the diaphragm is relatively difficult to shrink, which is beneficial to reduce the deformation of the cell.
  • the first type of separator coating 10421 may also be attached to the side of the negative pole piece 1021 .
  • the first type of separator coating 10422 can also be attached to the side of the positive pole piece 1012 .
  • there may be a gap between the first type of separator coating 10421 and the side of the negative pole piece 1021 that is, the first type of separator coating 10421 may not be attached to the negative pole piece 1021 on the side.
  • a gap may exist between the first type of separator coating 10422 and the side of the positive electrode sheet 1012 , that is, the first type of separator coating 10422 may not be attached to the side of the positive electrode sheet 1012 . This advantageously provides margin for shrinkage of the diaphragm substrate.
  • the first type of membrane coating 10421 may be located within the space formed by the membrane substrate 10411 and the membrane substrate 10412 .
  • the first type of membrane coating 10422 may be located within the space formed by the membrane substrate 10412 and the membrane substrate 10413.
  • a plurality of first type membrane coatings 10423 can span a plurality of membrane substrates (eg, membrane substrate 10411, membrane substrate 10412, membrane substrate 10413), and The edges of the two diaphragm substrates blend together.
  • the separator coating 10451 , the separator coating 10452 , the separator coating 10453 , and the separator coating 10454 located on the same side of the battery 40 can be integrated into one body to form the one shown in FIG. 8 .
  • the first type of diaphragm coating 10423 wherein the first type of diaphragm coating 10423 can be connected with the diaphragm substrate 10411, the diaphragm substrate 10412, and the diaphragm substrate 10413, and the first type of diaphragm coating 10423 can wrap the diaphragm substrate side 10415 of the material 10412.
  • the first type of membrane coating 10423 can be applied to the first edge region of the membrane substrate 10411 and the second edge region of the membrane substrate 10412 .
  • the first type of membrane coating 10423 can also be applied to the third edge region of the membrane substrate 10412 , the side edges 10415 of the membrane substrate 10412 and the fourth edge region of the membrane substrate 10413 .
  • the side edge 10415 is connected between the second edge region of the diaphragm substrate 10412 and the third edge region of the diaphragm substrate 10412, the third edge region and the fourth edge region are disposed opposite to each other, and the first edge region, the second edge region The area, the third edge area, the fourth edge area, and the side 10415 are all located on the same side of the battery 40 .
  • the first type of separator coating 10423 may be attached to the side of the negative electrode 1021 and the side of the positive electrode 1012 .
  • the first type of diaphragm coating 10423 shown in FIG. 8 may not be attached to the side of the pole piece.
  • the first type of separator coating 10423 may not be attached to the side of the negative pole piece 1021 or the side of the positive pole piece 1012 .
  • the first type of separator coating 10423 may be attached to the side of at least one target pole piece among the plurality of positive pole pieces 101 and the plurality of negative pole pieces 102 shown in FIG. 4 . , and are not attached to the sides of other pole pieces except the at least one target pole piece among the plurality of positive pole pieces 101 and the plurality of negative pole pieces 102 . This advantageously provides margin for shrinkage of the diaphragm substrate.
  • FIG. 10 is a schematic structural diagram of another battery 40 processed by a hot pressing process provided in an embodiment of the present application.
  • the upper diagram in FIG. 10 ie, the diagram above the arrow in FIG. 10
  • the lower diagram in FIG. 10 ie, the diagram under the arrow in FIG. 10
  • 10 may include a positive pole piece 1011 , a positive pole piece 1012 , a negative pole piece 1021 , a negative pole piece 1022 , a separator substrate 10411 , a separator substrate 10412 , a separator base Material 10413.
  • the membrane substrate 10411 is covered with a membrane coating 10451 at the edge region, and the membrane coating 10451 is located on the surface of the membrane substrate 10411 close to the membrane substrate 10412 .
  • a membrane coating 10452 is attached to the edge region of the membrane substrate 10412 , and the membrane coating 10452 is located on the surface of the membrane substrate 10412 close to the membrane substrate 10411 .
  • the separator coating 10451 and the separator coating 10452 are both adhesive and high temperature meltable separator coatings.
  • the separator coating 10451 and the separator coating 10452 may be located on the same side of the negative pole piece 1021 .
  • the surface of the diaphragm substrate 10412 close to the diaphragm substrate 10413 may not be covered with the diaphragm coating 10453 shown in FIG.
  • the surface of the substrate 10413 close to the membrane substrate 10412 may not be covered with the membrane coating 10454 as shown in FIG. 6 .
  • the hot-pressing process facilitates a tight fit between the diaphragm substrate and the pole piece.
  • the membrane coating 10451 and the membrane coating 10452 can be integrated into one body to form the first type membrane coating 10421, and both the membrane coating 10451 and the membrane coating 10452 are located on the membrane substrate 10411 between the diaphragm substrate 10412.
  • the first type of separator coating 10421 can be connected between the separator substrate 10411 and the separator substrate 10412, so that the side of the negative electrode piece 1021 close to the separator coating 10451 and the separator coating 10452 can be covered by the separator substrate 10411 , the first type of membrane coating 10421, and the membrane substrate 10412 are surrounded.
  • diaphragm coating 10453 and the diaphragm coating 10454 shown in FIG. 6 are not provided between the diaphragm substrate 10412 and the diaphragm substrate 10413, the example shown in FIG. Diaphragm-like coating 10422.
  • the separator coating and the separator substrate surrounding the negative electrode piece are beneficial to reduce the possibility of short circuit between the negative electrode piece and the adjacent positive electrode piece.
  • the embodiment shown in FIG. 10 uses relatively less separator coating material to prevent short circuit between the positive electrode and the negative electrode.
  • FIG. 10 is a schematic structural diagram of another method of processing the battery 40 through a hot pressing process provided by the embodiment of the present application.
  • the upper diagram in FIG. 11 ie, the diagram above the arrow in FIG. 11
  • the lower diagram in FIG. 11 shows a schematic structural diagram of yet another battery 40 after the hot pressing process. Similar to the example shown in FIG. 6 , the battery 40 shown in FIG.
  • 11 may include a positive pole piece 1011 , a positive pole piece 1012 , a negative pole piece 1021 , a negative pole piece 1022 , a separator base 10411 , a separator base 10412 , a separator base Material 10413.
  • the surface of the diaphragm substrate 10411 close to the diaphragm substrate 10412 may not be coated with the diaphragm coating 10451 shown in FIG. 6 .
  • the surface of the membrane substrate 10412 close to the membrane substrate 10411 may not be coated with the membrane coating 10452 as shown in FIG. 6 .
  • the membrane substrate 10412 is covered with a membrane coating 10453 at the edge region, and the membrane coating 10453 is located on the surface of the membrane substrate 10412 close to the membrane substrate 10413 .
  • a membrane coating 10454 is attached to the edge region of the membrane substrate 10413 , and the membrane coating 10454 is located on the surface of the membrane substrate 10413 close to the membrane substrate 10412 .
  • the separator coating 10453 and the separator coating 10454 are both adhesive and high temperature meltable separator coatings.
  • the separator coating 10453 and the separator coating 10454 may be located on the same side of the positive electrode plate 1012 .
  • the hot pressing process facilitates tight bonding between the diaphragm substrate and the pole piece.
  • the membrane coating 10453 and the membrane coating 10454 can be integrated into one body to form the first type membrane coating 10422 , and the membrane coating 10453 and the membrane coating 10454 are both located on the membrane substrate 10412 between the diaphragm substrate 10413.
  • the first type of separator coating 10422 can be connected between the separator substrate 10412 and the separator substrate 10413, so that the side of the positive electrode sheet 1012 close to the separator coating 10453 and the separator coating 10454 can be covered by the separator substrate 10412 , the first type of membrane coating 10422, and the membrane substrate 10413 surrounded. Since the membrane coating 10451 and the membrane coating 10452 shown in FIG. 6 are not provided between the membrane base 10411 and the membrane base 10412, the example shown in FIG. 11 may not have the membrane shown in FIG. 6 .
  • the first type of membrane coating 10421 since the membrane coating 10451 and the membrane coating 10452 shown in FIG. 6 are not provided between the membrane base
  • the separator coating and the separator substrate surrounding the positive electrode piece are beneficial to reduce the possibility of short circuit between the positive electrode piece and the adjacent negative electrode piece.
  • the embodiment shown in FIG. 11 uses relatively less separator coating material to prevent short circuit between the positive and negative electrodes.
  • the first type of membrane coating 10423 may be located within the space formed by the membrane substrate 10411 and the membrane substrate 10412 .
  • the first type of membrane coating 10423 can span across multiple membrane substrates (eg, membrane substrate 10411, membrane substrate 10412, membrane substrate 10413) and fuse at the edges of the multiple membrane substrates as one.
  • the first type of membrane coating 10423 may be connected to the membrane substrate 10411 , the membrane substrate 10412 , the membrane substrate 10413 , and the membrane substrate 10416 .
  • the diaphragm substrate 10413 is located between the diaphragm substrate 10412 and the diaphragm substrate 10416 .
  • the diaphragm substrate 10413 and the diaphragm substrate 10416 may be adjacent to the same pole piece.
  • the separator base material 10411 and the separator base material 10412 are attached to both sides of the negative electrode pole piece 1021
  • the membrane base material 10413 and the membrane base material 10416 are attached to both sides of the negative electrode pole piece 1022 .
  • the first type of membrane coating 10423 can be adhered not only to the first edge region of the membrane substrate 10411 and the second edge region of the membrane substrate 10412, but also to the fifth edge region of the membrane substrate 10413, the membrane The sixth edge region of the substrate 10416.
  • the fifth edge region is disposed opposite to the sixth edge region.
  • the first type of membrane coating 10423 can also wrap the side edge 10415 of the membrane base material 10412 and the side edge 10417 of the membrane base material 10413 .
  • the first edge region, the second edge region, the fifth edge region, the sixth edge region, the side 10415 , and the side 10417 are located on the same side of the battery 40 .
  • the first type of diaphragm coating 10423 may not adhere to the side of the pole piece. This advantageously provides margin for shrinkage of the diaphragm substrate.
  • the diaphragm substrate 10411 and the diaphragm substrate 10412 can be attached to both sides of one positive electrode piece, and the diaphragm substrate 10413 and the diaphragm substrate 10416 can be attached to another Both sides of a positive pole piece.
  • the edge area of the pole piece tends to shrink towards the middle area of the pole piece, so that the thickness of the pole piece in the edge area is slightly smaller than that in the middle area of the pole piece. That is to say, it is relatively easier for the diaphragm to stick to the middle area of the pole piece, and it is relatively difficult to stick to the edge area of the pole piece.
  • the edge of the pole piece may not be in close contact with the separator, that is, there may be a gap between the pole piece and the separator.
  • lithium ions may accumulate and deposit in the gap between the pole piece and the separator to form solid lithium. Since the thickness of the separator is relatively thin, solid lithium is relatively easier to penetrate the separator, which increases the possibility of short circuit between the positive electrode piece 101 and the negative electrode piece 102 .
  • FIG. 13 is a schematic structural diagram of a battery 40 provided by an embodiment of the present application.
  • the battery 40 may include a plurality of positive electrode pieces 101 , a plurality of negative electrode pieces 102 , and a plurality of separator substrates 1041 , which are stacked and arranged at intervals.
  • the white rectangle in FIG. 4 can be used to represent the positive pole piece 101
  • the black rectangle in FIG. 4 can be used to represent the negative pole piece 102
  • the rectangle filled with slashes in FIG. 4 can be used to represent the separator substrate 1041 .
  • a negative pole piece 102 is arranged between any two adjacent positive pole pieces 101
  • a positive pole piece 101 is arranged between any two adjacent negative pole pieces 102
  • any two adjacent positive pole pieces 101 A diaphragm base material 1041 is disposed between the sheet 101 and the negative electrode sheet 102 .
  • the separator substrate 1041 can be attached between the positive electrode piece 101 and the negative electrode piece 102 .
  • the battery 40 may also include a second type of separator coating 1043 and a third type of separator coating 1044 .
  • the white pattern filled with black dots in FIG. 13 is used to represent the second type of membrane coating 1043 .
  • the black pattern filled with white dots in FIG. 13 is used to represent this third type of membrane coating 1044 .
  • At least one surface of the membrane substrate 1041 may be covered with a second type membrane coating 1043 and a third type membrane coating 1044 .
  • the second type of membrane coating 1043 can be attached to the middle area of the membrane substrate 1041, and the third type of membrane coating 1044 can be attached to the edge area of the membrane substrate 1041 (for the definition of the intermediate area and the edge area, please refer to the above and the example shown in FIG. 5 , which will not be described in detail here).
  • the second type of membrane coating 1043 may be connected to the third type of membrane coating 1044 .
  • the boundary between the second type of membrane coating 1043 and the third type of membrane coating 1044 may correspond to the boundary between the middle region and the edge region of the membrane substrate 1041 . There may be no voids between the second type of separator coating 1043 and the third type of separator coating 1044 to minimize the possibility of voids between the pole piece and the separator.
  • the second type of membrane coating 1043 is attached to the membrane substrate 1041 and completely covers the outer circumference of the pole piece; the third type of membrane coating 1044 is attached to the membrane substrate 1041 and is located at the edge of the pole piece outside the periphery.
  • the second type of membrane coating 1043 is attached to the membrane substrate 1041 and covers a part of the pole piece; the third type of membrane coating 1044 is attached to the membrane substrate 1041 and includes covering the pole piece The first part of the remaining part and the second part outside the outer circumference of the pole piece.
  • the width of the third type of separator coating 1044 may be 0.1% to 45% of the width of the pole piece.
  • the width of the third type of separator coating 1044 may be 0.5% to 5.0% of the width of the pole piece.
  • the crystallinity of the second type of membrane coating 1043 is less than 80%.
  • the crystallinity of the second type separator coating 1043 may be 50.0% ⁇ 80.0%.
  • the crystallinity of the third type of membrane coating 1044 is less than 80%.
  • the crystallinity of the second type separator coating 1043 may be 50.0% ⁇ 80.0%.
  • the solubility parameter of the third type of diaphragm coating 1043 is the first solubility parameter
  • the solubility parameter of the electrolyte in the battery is the second solubility parameter
  • the first solubility parameter is less than or equal to the second solubility parameter
  • the second solubility parameter The difference between the parameter and the first solubility parameter is smaller than the preset solubility parameter.
  • the first solubility parameter is 20-26 ⁇ 1(J/cm 3 ) 0.5
  • the solubility parameter of the second solubility parameter is 26 ⁇ 1(J/cm 3 ) 0.5 .
  • the preset solubility parameter is less than or equal to 5(J/cm 3 ) 0.5 .
  • the third type of membrane coating 1043 can be compatible with the electrolyte; the dissolution parameter of the third type of membrane coating 1043 is different from the solubility parameter of the electrolyte Smaller, so the third type of separator coating 1043 will not completely dissolve in the electrolyte, which facilitates the spreading of the third type of separator coating 1043 on the separator substrate.
  • Both the second type of separator coating 1043 and the third type of separator coating 1044 may be viscous and meltable at high temperature (in the battery field, a temperature greater than 40-60° C. can be understood as a high temperature). That is, both the second type of membrane coating 1043 and the third type of membrane coating 1044 may include a binder polymer. Wherein, the second type of membrane coating 1043 includes a first mass content of binder polymer, and the third type of membrane coating 1044 includes a second mass content of binder polymer, and the first mass content is less than the second mass content.
  • FIG. 13 shows a schematic structural diagram of the first mass content and the second mass content, respectively. That is, the membrane coating covering the middle region of the membrane substrate 1041 includes a relatively lower content of the binder polymer, and the membrane coating covering the edge region of the membrane substrate 1041 includes a relatively higher content of the binder polymer thing.
  • the second mass content may be, for example, 0.4 ⁇ 5 g/m 2 .
  • the third type of membrane coating 1044 may include a binder polymer at a mass content of 0.5 g/m 2 .
  • the slurry configuration method of the third type of diaphragm coating 1044 may include: obtaining coating raw materials according to the mass ratio, including 47.5 parts of polytetrafluoroethylene copolymer, 50 parts of deionized water, 1.0 part of aqueous wetting agent, and aqueous dispersant. 1.5 parts; then add the copolymer of polytetrafluoroethylene into deionized water, and disperse it at high speed in a high-speed disperser to obtain a slurry dispersion.
  • the water-based dispersant and water-based wetting agent are fully stirred and ground. The stirring and grinding time can be, for example, 3 hours.
  • vacuum and defoaming are performed to obtain a uniformly mixed slurry of the third type of diaphragm coating 1044.
  • the third type of membrane coating 1044 may include a binder polymer at a mass content of 0.62 g/m 2 .
  • the slurry configuration method of the third type of diaphragm coating 1044 may include: obtaining coating raw materials according to the mass ratio, including 30 parts of boehmite, 46 parts of deionized water, 13.5 parts of binder, 1.0 parts of water-based wetting agent, and 1.0 parts of water-based wetting agent.
  • dispersant 1.5 parts of dispersant; then add boehmite into deionized water, and disperse at high speed in a high-speed disperser to obtain a slurry dispersion, the specific rotational speed can be, for example, 15000r/min, and the dispersion time can be, for example, 2h; then add completely dissolved water-based The dispersant and the water-based wetting agent are fully stirred and ground, and the stirring and grinding time can be, for example, 3 hours; finally, vacuuming and defoaming are performed to obtain a uniformly mixed slurry of the third type of diaphragm coating 1044 .
  • the third type of membrane coating 1044 may include a binder polymer in a mass content of 0.62 g/m 2 .
  • the slurry configuration method of the third type of diaphragm coating 1044 may include: obtaining coating raw materials according to the mass ratio, including 51.5 parts of polyvinylidene fluoride-hexafluoropropylene, 46 parts of deionized water, 1.0 parts of water-based wetting agent, and water-based wetting agent. 1.5 parts of dispersant; then add polyvinylidene fluoride-hexafluoropropylene into deionized water, and disperse at high speed in a high-speed disperser to obtain a slurry dispersion.
  • the specific rotational speed can be, for example, 15000r/min, and the dispersion time can be, for example, 2h; Then add the completely dissolved aqueous dispersant and aqueous wetting agent and fully stir and grind, for example, the duration of stirring and grinding can be 3 hours; finally vacuuming and defoaming, a uniformly mixed slurry of the third type of diaphragm coating 1044 is obtained.
  • the third type of membrane coating 1044 may include a binder polymer at a mass content of 0.45 g/m 2 .
  • the slurry configuration method of the third type of diaphragm coating 1044 may include: obtaining coating raw materials according to the mass ratio, wherein 52.0 parts of polyhexafluoropropylene copolymer, 45.5 parts of deionized water, 1.0 parts of aqueous wetting agent, and 1.5 parts of aqueous dispersant Then add the polyhexafluoropropylene copolymer into deionized water, and disperse it at high speed in a high-speed disperser to obtain a slurry dispersion.
  • the dispersant and the water-based wetting agent are fully stirred and ground, and the stirring and grinding time can be, for example, 3 hours; finally, vacuuming and defoaming are performed to obtain a uniformly mixed slurry of the third type of diaphragm coating 1044 .
  • the second mass content may be, for example, 0.8 ⁇ 2.5 g/m 2 .
  • the difference between the second mass content and the first mass content may be, for example, 0.05 ⁇ 4.5 g/m 2 .
  • the difference between the second mass content and the first mass content may be, for example, 0.1 ⁇ 2.0 g/m 2 .
  • the binder polymer may include, for example, at least one of the following: polyvinylidene fluoride, polyhexafluoropropylene, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trichloroethylene copolymer, polyethylene-vinyl acetate Copolymer, Sodium Carboxymethyl Cellulose, SBR, Polyacrylic Acid, Polyacrylate, Polyacrylate, Polyacrylonitrile, Polyamide, Polyimide, Polyethylene Oxide, Cellulose Acetate, Butyl Acetate Cellulose acid, cellulose acetate propionate, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene.
  • the thickness of the third type of membrane coating 1044 can be slightly higher than the thickness of the second type of membrane coating 1043. That is to say, at the position where the third type membrane coating 1044 and the second type membrane coating 1043 meet, the third type membrane coating 1044 may have a first thickness, and the first thickness may be the thickness of the second type membrane coating 1043 . The same; other locations of the third type of membrane coating 1044 may have a second thickness, which may be greater than the first thickness. This is beneficial to improve the close fit between the separator and the pole piece.
  • part of the edge of the pole piece may not be in close contact with the second type of separator coating 1043 .
  • the third type of separator coating 1044 has more binder polymers, the third type of separator coating 1044 can be filled between the second type of separator coating 1043 and the pole piece to further improve the bond between the separator and the pole piece. degree of tight fit.
  • FIG. 14 is a schematic structural diagram of a battery 40 processed by a hot pressing process according to an embodiment of the present application.
  • the upper diagram in FIG. 14 ie, the diagram above the arrow in FIG. 14
  • the lower diagram in FIG. 14 shows a schematic structural diagram of a battery 40 after the hot pressing process.
  • the battery 40 may include a positive pole piece 1011 , a positive pole piece 1012 , a negative pole piece 1021 , and a negative pole piece 1022 that are stacked in sequence.
  • the positive pole piece 1011 and the positive pole piece 1012 may be two adjacent positive pole pieces.
  • the negative pole piece 1021 and the negative pole piece 1022 may be two adjacent negative pole pieces.
  • the negative pole piece 1021 is located between the positive pole piece 1011 and the positive pole piece 1012
  • the positive pole piece 1012 is located between the negative pole piece 1021 and the negative pole piece 1022 .
  • the battery 40 may further include a separator substrate 10411 , a separator substrate 10412 , and a separator substrate 10413 .
  • the separator base material 10411 may be located between the positive pole piece 1011 and the negative pole piece 1021 .
  • the separator base material 10412 may be located between the negative pole piece 1021 and the positive pole piece 1012 .
  • the separator base material 10413 may be located between the positive pole piece 1012 and the negative pole piece 1022 . That is, the membrane substrate 10412 may be located between the membrane substrate 10411 and the membrane substrate 10413 .
  • the battery 40 may also include a second type of separator coating 10431 , a second type of separator coating 10432 , a third type of separator coating 10441 , and a third type of separator coating 10442 .
  • the second type of membrane coating 10431 is attached to the side of the membrane substrate 10411 away from the membrane substrate 10412 , and is attached to the middle area of the membrane substrate 10411 .
  • the third type of membrane coating 10441 is attached to the side of the membrane substrate 10411 away from the membrane substrate 10412 , and is attached to the edge region of the membrane substrate 10411 .
  • the second type of membrane coating 10432 is attached to the side of the membrane substrate 10411 close to the membrane substrate 10412 , and is attached to the middle area of the membrane substrate 10411 .
  • the third type of membrane coating 10442 is attached to the side of the membrane substrate 10411 close to the membrane substrate 10412 , and is attached to the edge area of the membrane substrate 10411 .
  • the third type of membrane coating 10441 and the third type of membrane coating 10442 may be located on the same side of the membrane substrate 10411 .
  • the third type of separator coating 10441 may be attached to the positive electrode piece 1011 , and there may exist between the second type of separator coating 10431 and the positive electrode piece 1011 a certain gap.
  • the third type of membrane coating 10441 can be melted under the action of high temperature and pressure, and flow and spread on the membrane substrate 1041 .
  • the third-type separator coating 10441 and the second-type separator coating 10431 can both be attached to the positive electrode plate 1011 .
  • the third type of separator coating 10442 may be attached to the negative electrode pole piece 1021 , and there may exist between the second type of separator coating 10432 and the negative electrode pole piece 1021 a certain gap.
  • the third type of membrane coating 10442 may be melted under the action of high temperature and pressure, and flow and spread on the membrane substrate 1041 .
  • both the third type of diaphragm coating 10442 and the second type of diaphragm coating 10432 can be pasted on the negative pole piece 1021 .
  • the battery 40 may also include a second type of separator coating 10433 , a second type of separator coating 10434 , a third type of separator coating 10443 , and a third type of separator coating 10444 .
  • the second type of membrane coating 10433 is attached to the side of the membrane substrate 10412 close to the membrane substrate 10411 , and is attached to the middle area of the membrane substrate 10412 .
  • the third type of membrane coating 10443 is attached to the side of the membrane substrate 10412 close to the membrane substrate 10411 , and is attached to the edge area of the membrane substrate 10412 .
  • the second type of membrane coating 10434 is attached to the side of the membrane substrate 10412 close to the membrane substrate 10413 , and is attached to the middle area of the membrane substrate 10412 .
  • the third type of membrane coating 10444 is attached to the side of the membrane substrate 10412 close to the membrane substrate 10413 , and is attached to the edge area of the membrane substrate 10412 .
  • the third type of membrane coating 10443, the third type of membrane coating 10444 may be located on the same side of the membrane substrate 10412.
  • the third type of separator coating 10443 can be attached to the negative electrode piece 1021 , and there may exist between the second type of separator coating 10433 and the negative electrode piece 1021 a certain gap.
  • the third type of membrane coating 10443 may be melted under the action of high temperature and pressure, and flow and spread on the membrane substrate 1041 .
  • both the third type of separator coating 10443 and the second type of separator coating 10433 can be attached to the negative pole piece 1021 .
  • the third type of separator coating 10444 may be attached to the positive electrode piece 1012 , and there may exist between the second type of separator coating 10434 and the positive electrode piece 1012 a certain gap.
  • the third type of membrane coating 10444 may be melted under the action of high temperature and pressure, and flow and spread on the membrane substrate 1041 .
  • both the third type of separator coating 10444 and the second type of separator coating 10434 can be attached to the positive electrode sheet 1012 .
  • the battery 40 may also include a second type of separator coating 10435 , a second type of separator coating 10436 , a third type of separator coating 10445 , and a third type of separator coating 10446 .
  • the second type of membrane coating 10435 is attached to the side of the membrane substrate 10413 close to the membrane substrate 10412 , and is attached to the middle area of the membrane substrate 10413 .
  • the third type of membrane coating 10445 is attached to the side of the membrane substrate 10413 close to the membrane substrate 10412 , and is attached to the edge area of the membrane substrate 10413 .
  • the second type of membrane coating 10436 is attached to the side of the membrane substrate 10413 away from the membrane substrate 10412 , and is attached to the middle area of the membrane substrate 10413 .
  • the third type of membrane coating 10446 is attached to the side of the membrane substrate 10413 away from the membrane substrate 10412 , and is attached to the edge region of the membrane substrate 10413 .
  • the third type of membrane coating 10445, the third type of membrane coating 10446 may be located on the same side of the membrane substrate 10412.
  • the third type of separator coating 10445 may be attached to the positive electrode piece 1012 , and there may exist between the second type of separator coating 10435 and the positive electrode piece 1012 a certain gap.
  • the third type of membrane coating 10445 may be melted under the action of high temperature and pressure, and flow and spread on the membrane substrate 1041 .
  • both the third type of separator coating 10445 and the second type of separator coating 10435 can be attached to the positive electrode sheet 1012 .
  • the third type of separator coating 10446 may be attached to the negative electrode pole piece 1022 , and there may exist between the second type of separator coating 10436 and the negative electrode pole piece 1022 a certain gap.
  • the third type of membrane coating 10446 may be melted under the action of high temperature and pressure, and flow and spread on the membrane substrate 1041 .
  • both the third type of separator coating 10446 and the second type of separator coating 10436 can be attached to the negative pole piece 1022 .
  • the width of 10445 may be 0.1% to 45% of the width of the pole piece.
  • the width of 10445 may be 0.5% to 5.0% of the width of the pole piece.
  • the separator corresponding to the middle region of the pole piece may comprise a separator substrate and the second type of separator coating
  • the separator corresponding to the edge region of the pole piece may comprise the separator substrate and the third type of separator coating . Since the thickness of the second type of separator coating can be less than the (minimum) thickness of the third type of separator coating, the thickness of the separator corresponding to the middle region of the pole piece can be smaller than the thickness of the separator corresponding to the edge region of the pole piece.
  • the binder polymer can undergo physical changes such as thermal melting and cross-linking, and the binder polymer can be fully filled between the separator substrate and the pole piece, thereby reducing the risk of lithium ion precipitation.
  • the binder polymer in the edge region of the diaphragm substrate can have a relatively higher thickness, which is beneficial to improve the overall hot-pressing uniformity of the electrode.
  • FIG. 15 is a schematic structural diagram of another battery 40 provided in an embodiment of the present application.
  • the third type of diaphragm coatings 1044 that are adjacent and face to face can be fused together to form the first type of diaphragm coating as shown in FIG. 15 .
  • the mass content of the binder polymer contained in the first type of membrane coating 1042 may be greater than the mass content of the binder polymer contained in the second type of membrane coating 1043 ,
  • the first type of diaphragm coating 1042 can be connected between two adjacent diaphragm substrates 1041 to surround the pole pieces located between the two adjacent substrates. This is beneficial to reduce the possibility of short circuit between the adjacent positive pole pieces 101 and negative pole pieces 102 .
  • the first embodiment can be applied to a 50110227 (50mm high, 110mm wide, 227mm long) laminated soft pack battery with a capacity of 10.8Ah and an operating voltage range of 2.75-4.30V.
  • the battery includes a conventional separator substrate, and the separator coating is uniformly coated on two planes of the separator substrate, and the separator coating has adhesiveness. That is, the binder polymer content in the middle region of the membrane coating is approximately equal to the binder polymer content in the region between the edges of the membrane coating.
  • the mass content of the binder polymer was 0.1 g/m 2 .
  • the second embodiment can be applied to 506390 (height 50mm, width 63mm, length 90mm) wound soft pack battery, the capacity is 5Ah (only the edge is coated), and the working voltage range is 3.0-4.48V.
  • the battery includes a separator substrate with a thickness of 5.5 ⁇ m and a polyethylene material, and the porosity of the separator substrate is 39.0%.
  • the battery further includes a separator coating applied to the edge region of the separator substrate (the separator coating having adhesiveness is not applied to the middle region of the separator substrate).
  • the separator coating includes a binder polymer in a mass content of 0.5 g/m 2 .
  • the membrane coating can be applied to both surfaces of the membrane substrate in the machine direction TD.
  • the width of the membrane coating can be 3mm.
  • the membrane coating may correspond to the first type of membrane coating described in FIGS. 4 to 12 .
  • the third embodiment can be applied to a 50110227 (50mm high, 110mm wide, 227mm long) laminated soft pack battery with a capacity of 10.8Ah and an operating voltage range of 2.75-4.30V.
  • the battery includes a separator substrate with a thickness of 7.0 ⁇ m and a polyethylene material, and the porosity of the separator substrate is 38.6%.
  • the battery also includes a separator coating attached to the edge region of the separator substrate (the separator coating with adhesiveness is not attached to the middle region of the separator substrate), and the separator coating can be coated along the longitudinal direction TD and the transverse direction MD. Spread on both surfaces of the diaphragm substrate. The width of the membrane coating can be 2mm.
  • the separator coating includes a binder polymer and a ceramic coating, and the ratio of the binder polymer and the ceramic coating is 5:5.
  • the separator coating includes a binder polymer in a mass content of 0.62 g/m 2 .
  • the separator coating includes a ceramic coating with a mass content of 0.62 g/m 2 .
  • the membrane coating may correspond to the first type of membrane coating described in FIGS. 4 to 12 .
  • the fourth embodiment can be applied to a 506390 (50mm high, 63mm wide, and 90mm long) wound soft pack battery with a capacity of 5Ah and a working voltage range of 3.0-4.48V.
  • the battery includes a separator substrate with a thickness of 5.5 ⁇ m and a polyethylene material, and the porosity of the separator substrate is 39.0%.
  • the battery also includes a separator coating 1 attached to the edge region of the membrane substrate, and a membrane coating 2 attached to the middle region of the membrane substrate. Both the membrane coating 1 and the membrane coating 2 may be coated on both surfaces of the membrane substrate along the longitudinal direction TD. The width of the membrane coating 1 may be 3 mm.
  • Both Membrane Coating 1, Membrane Coating 2 include a binder polymer. In the separator coating 1, the mass content of the binder polymer was 0.6 g/m 2 . In the separator coating 2, the mass content of the binder polymer was 0.1 g/m 2 .
  • the membrane coating 1 may correspond to the third type of membrane coating described in FIGS. 13 to 14 , and the first type of membrane coating described in FIG. 15 .
  • the membrane coating 2 may correspond to the second type of membrane coating described in FIGS. 13 to 15
  • the fifth embodiment can be applied to a 50110227 (50mm high, 110mm wide, 227mm long) wound soft pack battery with a capacity of 10.8Ah and an operating voltage range of 2.75-4.30V.
  • the battery includes a separator substrate with a thickness of 7.0 ⁇ m and a polyethylene material, and the porosity of the separator substrate is 38.6%.
  • the battery also includes a separator coating 1 attached to the edge region of the membrane substrate, and a membrane coating 2 attached to the middle region of the membrane substrate. Both the membrane coating 1 and the membrane coating 2 may be coated on both surfaces of the membrane substrate along the longitudinal direction TD. The width of the membrane coating 1 may be 2 mm.
  • Both Membrane Coating 1, Membrane Coating 2 include a binder polymer. In the separator coating 1, the mass content of the binder polymer was 0.62 g/m 2 .
  • the diaphragm coating 2 also includes a ceramic coating, and the ratio of the ceramic coating to the binder polymer is 5:5. In the diaphragm coating 2, the total mass content of the ceramic coating and the binding polymer is 0.62g/ m 2 .
  • the membrane coating 1 may correspond to the third type of membrane coating described in FIGS. 13 to 14 , and the first type of membrane coating described in FIG. 15 .
  • the membrane coating 2 may correspond to the second type of membrane coating described in FIGS. 13 to 15 .
  • the raw materials of the diaphragm coating 2 can include, for example, 25 parts of boehmite, 25 parts of polyvinylidene fluoride-hexafluoropropylene powder, 46 parts of deionized water, 3.5 parts of a binder, 1.0 parts of an aqueous wetting agent, and an aqueous dispersant.
  • the sixth embodiment can be applied to a 454378 (45mm high, 43mm wide, and 78mm long) wound soft pack battery with a capacity of 2.8Ah and an operating voltage range of 3.0-4.48V.
  • the battery includes a polypropylene separator substrate with a thickness of 7.0 ⁇ m, and the separator substrate has a porosity of 37.7%.
  • the battery also includes a ceramic coating attached to one side, a separator coating 1 attached to the edge region of the membrane substrate, and a membrane coating 2 attached to the middle region of the membrane substrate. Both the membrane coating 1 and the membrane coating 2 may be coated on both surfaces of the membrane substrate along the longitudinal direction TD. The width of the membrane coating 1 may be 2 mm. Both Membrane Coating 1, Membrane Coating 2 include a binder polymer. In the separator coating 1, the mass content of the binder polymer was 0.95 g/m 2 . In the separator coating 2, the mass content of the binder polymer was 0.5 g/m 2 .
  • the membrane coating 1 may correspond to the third type of membrane coating described in FIGS. 13 to 14 , and the first type of membrane coating described in FIG. 15 .
  • the membrane coating 2 may correspond to the second type of membrane coating described in FIGS. 13 to 15 .
  • the raw materials of the ceramic coating can include, for example, 50 parts of boehmite, 45.5 parts of deionized water, 1.0 part of carboxymethyl cellulose, and 3.5 parts of styrene-butadiene rubber; then add the boehmite to the deionized water, and put it in a high-speed disperser.
  • the specific rotational speed can be, for example, 15000r/min, and the dispersion time can be, for example, 2h; then add fully dissolved carboxymethyl cellulose and styrene-butadiene rubber and fully stir and grind, and the time of stirring and grinding is, for example, It can be 3h; finally, vacuuming and defoaming are carried out to obtain a slurry of the third type of diaphragm coating that is evenly mixed.
  • the seventh embodiment can be applied to a 455382 (45mm high, 53mm wide, 82mm long) wound soft-pack battery with a capacity of 3.6Ah and an operating voltage range of 3.0-4.48V.
  • the battery includes a separator substrate with a thickness of 4.5 ⁇ m and a polyethylene material, and the porosity of the separator substrate is 38.5%.
  • the battery also includes a separator coating 1 attached to the edge region of the membrane substrate, and a membrane coating 2 attached to the middle region of the membrane substrate. Both the membrane coating 1 and the membrane coating 2 may be coated on both surfaces of the membrane substrate along the longitudinal direction TD. The width of the membrane coating 1 may be 1.5 mm.
  • Both Membrane Coating 1 and Membrane Coating 2 include a binder polymer and a ceramic coating. In Diaphragm Coating 1, the ratio of binder polymer and ceramic coating was 7:3; in Diaphragm Coating 2, the ratio of binder polymer and ceramic coating was 5:5.
  • the mass content of the single-sided separator coating was 0.43 g/m 2 .
  • the membrane coating 1 may correspond to the third type of membrane coating described in FIGS. 13 to 14 , and the first type of membrane coating described in FIG. 15 .
  • the membrane coating 2 may correspond to the second type of membrane coating described in FIGS. 13 to 15 .
  • the slurry configuration method of the diaphragm coating 1 may include: obtaining coating raw materials according to the mass ratio, wherein 13.5 parts of boehmite, 46 parts of deionized water, 32.5 parts of binder, 5 parts of binder, and aqueous wetting agent 1.0 part, 1.5 part of water-based dispersant; then add boehmite into deionized water, and disperse at high speed in a high-speed disperser to obtain a slurry dispersion.
  • the specific rotational speed can be, for example, 15000r/min, and the dispersion time can be, for example, 2h; then add The fully dissolved water-based dispersant, water-based wetting agent, and PVDF powder should be fully stirred and ground.
  • the stirring and grinding time can be, for example, 3 hours.
  • vacuum defoaming to obtain a uniformly mixed slurry of the third type of diaphragm coating. .
  • the slurry configuration method of the diaphragm coating 2 may include: obtaining coating raw materials according to the mass ratio, wherein 23.5 parts of boehmite, 23.5 parts of binder, 46 parts of deionized water, 1.0 part of aqueous wetting agent, and 1.5 parts of aqueous dispersant Then add boehmite into deionized water, and disperse at high speed in a high-speed disperser to obtain a slurry dispersion, the specific rotational speed can be, for example, 15000r/min, and the dispersion time can be, for example, 2h; then add a completely dissolved aqueous dispersant, The water-based wetting agent and PVDF powder are fully stirred and ground.
  • the stirring and grinding time can be, for example, 3 hours.
  • vacuum and defoaming are performed to obtain a uniformly mixed slurry of the third type of diaphragm coating.
  • the membrane coating 1 may correspond to the third type of membrane coating described in FIGS. 13 to 14 , and the first type of membrane coating described in FIG. 15 .
  • the membrane coating 2 may correspond to the second type of membrane coating described in FIGS. 13 to 15 .
  • the eighth embodiment can be applied to a 466082 (46mm high, 60mm wide, and 82mm long) wound soft pack battery with a capacity of 4.2Ah and an operating voltage range of 3.0-4.48V.
  • the battery includes a separator substrate with a thickness of 4.5 ⁇ m and a polyethylene material, and the porosity of the separator substrate is 40.0%.
  • the battery also includes a separator coating 1 attached to the edge region of the membrane substrate, and a membrane coating 2 attached to the middle region of the membrane substrate. Both the membrane coating 1 and the membrane coating 2 may be coated on both surfaces of the membrane substrate along the longitudinal direction TD. The width of the membrane coating 1 may be 1.5 mm.
  • Both the membrane coating 1 and the membrane coating 2 include a binder polymer, and the membrane coating 2 also includes a ceramic coating. In Separator Coating 2, the ratio of binder polymer to ceramic coating was 6:4. The mass content of the single-sided separator coating was 0.54 g/m 2 .
  • the membrane coating 1 may correspond to the third type of membrane coating described in FIGS. 13 to 14 , and the first type of membrane coating described in FIG. 15 .
  • the membrane coating 2 may correspond to the second type of membrane coating described in FIGS. 13 to 15
  • the slurry configuration method of the diaphragm coating 1 can include: obtaining the coating raw materials according to the mass ratio, wherein 30.9 parts of boehmite, 46 parts of deionized water, 20.6 parts of binder, 1.0 parts of aqueous wetting agent, and aqueous dispersion Then add the boehmite into deionized water, and disperse it at a high speed in a high-speed disperser to obtain a slurry dispersion. agent, water-based wetting agent, and PVDF powder, and fully stir and grind, for example, the duration of stirring and grinding can be 3 hours; finally, vacuum defoaming to obtain a uniformly mixed slurry of the third type of diaphragm coating.
  • the slurry configuration method of the diaphragm coating 2 may include: obtaining coating raw materials according to the mass ratio, wherein 51.5 parts of polyvinylidene fluoride-octafluoropropylene, 46 parts of deionized water, 1.0 parts of aqueous wetting agent, and 1.5 parts of aqueous dispersant Then add boehmite into deionized water, and disperse at high speed in a high-speed disperser to obtain a slurry dispersion, the specific rotational speed can be, for example, 15000r/min, and the dispersion time can be, for example, 2h; then add a completely dissolved aqueous dispersant, The water-based wetting agent and PVDF powder are fully stirred and ground. The stirring and grinding time can be, for example, 3 hours. Finally, vacuum and defoaming are performed to obtain a uniformly mixed slurry of the third type of diaphragm coating.
  • the battery was placed in a 25°C incubator for 30 minutes, and the battery was charged in the standard charging mode. After the battery is fully charged, discharge the battery to the lower limit voltage with 0.2C discharge specification, and record the discharge energy of the battery.
  • the nail penetration test is carried out within 12 to 24 hours. For example, place the battery in a 25°C explosion-proof box, pierce the steel nail into the central part of the battery at a speed of 150mm/s until it penetrates, keep the needle retracted for 10 minutes, and record the test pass rate.
  • the nail penetration test method can reflect the performance of the battery under mechanical abuse scenarios.
  • the hot box test is performed within 12 to 24 hours. For example, by a convection hot air box or a circulating hot air box, heating is started from an initial temperature of 25 ⁇ 3 °C, and the temperature is raised to 135 ⁇ 2 or 150 ⁇ 2 °C, with a temperature change rate of 5 ⁇ 2 °C/min. After the temperature reaches 135 ⁇ 2 or 150 ⁇ 2°C, keep it for 30min, and record the test pass rate.
  • the hot box test can reflect the performance of the battery under thermal abuse scenarios.
  • test result of above-mentioned embodiment is as shown in table 1, table 2:
  • the solutions provided in the embodiments of the present application are beneficial to improve the pass rate of the 100% SOC acupuncture test and the 150°C/30min hot box test.
  • the separator coating containing the binder polymer is provided in both the edge region and the middle region, which is beneficial to improve the bonding performance of the middle region, improve the dynamic performance of the battery, and reduce the deformation of the battery cell.
  • the binder polymer is also conducive to the formation of pores, which increases the liquid retention of the electrolyte, which is conducive to improving the cycle performance of the battery and reducing the growth rate of the battery thickness. For example, after 300 cycles, the growth rate of the cell thickness is 4.8% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Signal Processing (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

本申请提供了一种电池,包括:位于极片两侧且相邻的第一隔膜基材、第二隔膜基材,以及贴覆在第一隔膜基材的边缘区域和第二隔膜基材的边缘区域的第一类隔膜涂层。本申请还提供一种电池,包括贴覆在隔膜基材中间区域的第二类隔膜涂层,以及包括贴覆在第一隔膜基材的边缘区域的第三类隔膜涂层,第二类隔膜涂层包括第一质量含量的粘结剂聚合物,第三类隔膜涂层包括第二质量含量的粘结剂聚合物,第二质量含量大于第一质量含量。本申请提供一种电池、电子设备、移动装置,目的在于降低正极极片与负极极片之间短路的可能性。

Description

电池、电子设备、移动装置
本申请要求于2020年12月22日提交中国专利局、申请号为202011530559.7、申请名称为“电池、电子设备、移动装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池、电子设备、移动装置。
背景技术
电池是目前商业化且广泛使用的二次电源。在电池中,隔膜是介于正极极片和负极极片之间的多孔、电化学惰性介质,其不参与电化学反应,但对电池的安全性能至关重要。如果电池处于机械滥用或者热滥用状态,隔膜边缘可能会发生收缩,增加了正极极片与负极极片短路的可能性,严重时极易引发热失控。
发明内容
本申请提供一种电池、电子设备、移动装置,目的在于降低正极极片与负极极片之间短路的可能性。
第一方面,提供了一种电池,包括:
第一极片;
第一隔膜基材、第二隔膜基材,所述第一隔膜基材、所述第二隔膜基材为与所述第一极片相邻的两个隔膜基材,所述第一隔膜基材、所述第二隔膜基材分别位于所述第一极片的两侧;
第一类隔膜涂层,所述第一类隔膜涂层贴覆在所述第一隔膜基材的第一边缘区域,且贴覆在所述第二隔膜基材的第二边缘区域,所述第一边缘区域与所述第二边缘区域位于所述电池的同侧,第一边缘区域和第二边缘区域相对设置。
可选的,第一类隔膜涂层具有粘结性、高温可熔融性。
应理解,相对设置可以理解为面对面设置。
在本申请中,通过在相邻两个隔膜基材之间设置第一类隔膜涂层,使得极片的靠近隔膜涂层与隔膜涂层的一侧可以被隔膜基材、第一类隔膜涂层、隔膜基材包围。也就是说,极片的一端可以被隔膜封闭。这有利于降低正极极片与负极极片之间短路的可能性。
除此以外,通过在隔膜基材的边缘区域设置第一类隔膜涂层,有利于提升隔膜与极片之间贴合的紧密程度,进而减小锂离子析出的风险。不仅如此,通过在隔膜基材的边缘区域设置第一类隔膜涂层,除了有利于提高电极整体的热压均匀性,还有利于提升极片与隔膜之间的结合力,进而有利于提升电池的循环性能。并且,在热滥用等场景下,由于粘结力的作用,隔膜相对更难收缩,有利于减小电芯的变形量。
结合第一方面,在第一方面的某些实现方式中,所述第一类隔膜涂层还贴覆在所述第一极片的侧边。
在本申请中,第一类隔膜涂层如果贴覆在极片的侧边,有利于提升隔膜涂层与极片之间的贴合紧密程度,进而减小锂离子析出的风险。
第一类隔膜涂层如果不贴覆在极片的侧边,有利于为隔膜基材的收缩提供余量。
结合第一方面,在第一方面的某些实现方式中,所述电池还包括第二极片、第三隔膜基材,所述第二隔膜基材、所述第三隔膜基材均与所述第二极片相邻,所述第二隔膜基材位于所述第一隔膜基材与所述第三隔膜基材之间,所述第一类隔膜涂层还贴覆在所述第二隔膜基材的第三边缘区域、所述第二隔膜基材的侧边,以及所述第三隔膜基材的第四边缘区域,所述第二隔膜基材的侧边连接所述第二边缘区域与所述第三边缘区域,所述第三边缘区域与所述第四边缘区域相对设置且位于所述电池的同侧。
结合第一方面,在第一方面的某些实现方式中,所述电池还包括第三极片、第四隔膜基材、第五隔膜基材,所述第四隔膜基材、所述第五隔膜基材均与所述第三极片相邻,所述第二隔膜基材位于所述第一隔膜基材与第四隔膜基材之间,所述第四隔膜基材位于所述第二隔膜基材与所述第五隔膜基材之间,所述第一类隔膜涂层还贴覆在所述第二隔膜基材的侧边、所述第四隔膜基材的侧边、所述第四隔膜基材的第五边缘区域、所述第五隔膜基材的第六边缘区域,所述第二边缘区域、所述第二隔膜基材的侧边、所述第四隔膜基材的侧边、所述第五边缘区域、所述第六边缘区域均位于所述电池的同侧,所述第五边缘区域与所述第六边缘区域相对设置。
在本申请中,第一类隔膜涂层横跨多个隔膜基材,并在该多个隔膜基材的边缘相融为一体,有利于提升极片的封闭性,有利于显著降低正极极片与负极极片之间短路的可能性。
结合第一方面,在第一方面的某些实现方式中,所述电池还包括第二类隔膜涂层,所述第二类隔膜涂层贴覆在所述第一隔膜基材的中间区域,所述第一类隔膜涂层与所述第二类隔膜涂层相连,所述第二类隔膜涂层包括第一质量含量的粘结剂聚合物,所述第一类隔膜涂层包括第二质量含量的粘结剂聚合物,所述第二质量含量大于所述第一质量含量。
在本申请中,由于第三类隔膜涂层具有更多的粘结剂聚合物,因此第三类隔膜涂层可以填充在第二类隔膜涂层与极片之间,以进一步提高隔膜与极片之间紧密贴合的程度,进而减小锂离子析出的风险。
除此以外,通过在隔膜基材的边缘区域设置相对更高质量含量的粘结剂聚合物,有利于提升隔膜基材在边缘区域的粘结能力,有利于提升极片与隔膜之间的结合力,进而有利于提升电池的循环性能、改善电芯变形。不仅如此,由于含量不同使得边缘区域的粘结剂聚合物可以具有相对更高的厚度,这有利于提高电极整体的热压均匀性。
结合第一方面,在第一方面的某些实现方式中,所述第二质量含量为0.4~5g/m 2
结合第一方面,在第一方面的某些实现方式中,述第二质量含量与所述第一质量含量的差值为0.05~4.5g/m 2
结合第一方面,在第一方面的某些实现方式中,所述粘结剂聚合物包括以下至少一种:聚偏氟乙烯、聚六氟丙烯、偏氟乙烯-六氟丙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、聚乙烯-乙酸乙烯的共聚物、羧甲基纤维素钠、丁苯橡胶、聚丙烯酸、聚丙烯酸盐、聚丙烯酸酯、聚丙烯腈、聚酰胺、聚酰亚胺、聚环氧乙烷、乙酸纤维素、乙酸丁酸纤维素、乙 酸丙酸纤维素、聚乙烯吡咯烷酮、聚乙酸乙烯酯、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯。
结合第一方面,在第一方面的某些实现方式中,所述电池还包括电解液,所述第一类隔膜涂层的溶解参数为第一溶解度参数,所述电解液的溶解度参数为第二溶解度参数,所述第一溶解度参数小于或等于所述第二溶解度参数,且所述第二溶解度参数与所述第一溶解度参数的差值小于预设溶解度参数。
在本申请中,通过合理设置隔膜涂层和电解液的溶解度,有利于控制隔膜涂层在电解液中的相容性,以控制隔膜涂层在电解液中的形态,进而有利于使面对面设置的隔膜涂层可以相融形成第一类隔膜涂层。另外,通过合理设置隔膜涂层和电解液的溶解度,还有利于提高极片与极片之间的粘结性,进而有利于提高电池的动力学性能、降低电池间极化。
结合第一方面,在第一方面的某些实现方式中,所述预设溶解度参数小于或等于5(J/cm 3) 0.5
结合第一方面,在第一方面的某些实现方式中,所述第一类隔膜涂层的宽度为所述第一极片的宽度的0.1%~45%。
第二方面,提供了一种电池,包括:
第一隔膜基材;
第二类隔膜涂层,所述第二类隔膜涂层贴覆在所述第一隔膜基材的中间区域,所述第二类隔膜涂层包括第一质量含量的粘结剂聚合物;
第三类隔膜涂层,所述第三类隔膜涂层贴覆在所述第一隔膜基材的边缘区域,所述第三类隔膜涂层与所述第二类隔膜涂层相连,所述第三类隔膜涂层包括第二质量含量的粘结剂聚合物,所述第二质量含量大于所述第一质量含量。
在本申请中,由于第三类隔膜涂层具有更多的粘结剂聚合物,因此第三类隔膜涂层可以填充在第二类隔膜涂层与极片之间,以进一步提高隔膜与极片之间紧密贴合的程度,进而减小锂离子析出的风险。
除此以外,通过在隔膜基材的边缘区域设置相对更高质量含量的粘结剂聚合物,有利于提升隔膜基材在边缘区域的粘结能力,有利于提升极片与隔膜之间的结合力,进而有利于提升电池的循环性能、改善电芯变形。不仅如此,由于含量不同使得边缘区域的粘结剂聚合物可以具有相对更高的厚度,这有利于提高电极整体的热压均匀性。
结合第二方面,在第二方面的某些实现方式中,所述第二类隔膜涂层的厚度小于或等于所述第三类隔膜涂层的最小厚度。
结合第二方面,在第二方面的某些实现方式中,所述第二质量含量为0.4~5g/m 2
结合第二方面,在第二方面的某些实现方式中,所述第二质量含量与所述第一质量含量的差值为0.05~4.5g/m 2
结合第二方面,在第二方面的某些实现方式中,所述电池还包括电解液,所述第三类隔膜涂层的溶解参数为第一溶解度参数,所述电解液的溶解度参数为第二溶解度参数,所述第一溶解度参数小于或等于所述第二溶解度参数,且所述第二溶解度参数与所述第一溶解度参数的差值小于预设溶解度参数。
在本申请中,通过合理设置隔膜涂层和电解液的溶解度,有利于控制隔膜涂层在电解液中的相容性,以控制隔膜涂层在电解液中的形态,进而有利于使面对面设置的隔膜涂层 可以相融形成第一类隔膜涂层。另外,通过合理设置隔膜涂层和电解液的溶解度,还有利于提高极片与极片之间的粘结性,进而有利于提高电池的动力学性能、降低电池间极化。
结合第二方面,在第二方面的某些实现方式中,所述预设溶解度参数小于或等于5(J/cm 3) 0.5
结合第二方面,在第二方面的某些实现方式中,所述电池还包括极片,所述第三类隔膜涂层的宽度为所述极片的宽度的0.1%~45%。
结合第二方面,在第二方面的某些实现方式中,所述粘结剂聚合物包括以下至少一种:聚偏氟乙烯、聚六氟丙烯、偏氟乙烯-六氟丙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、聚乙烯-乙酸乙烯的共聚物、羧甲基纤维素钠、丁苯橡胶、聚丙烯酸、聚丙烯酸盐、聚丙烯酸酯、聚丙烯腈、聚酰胺、聚酰亚胺、聚环氧乙烷、乙酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、聚乙烯吡咯烷酮、聚乙酸乙烯酯、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯。
第三方面,提供了一种电子设备,包括如上述第一方面至第二方面中的任意一种实现方式中所述的电池。
第四方面,提供了一种移动装置,包括如上述第一方面至第二方面中的任意一种实现方式中所述的电池。
附图说明
图1是一种电子设备的示意性结构图。
图2是一种电池的工作原理图。
图3是一种电池的示意性结构图。
图4是本申请实施例提供一种电池的示意性结构图。
图5是一种中间区域和边缘区域的示意性结构图。
图6是本申请实施例提供的一种通过热压工艺加工电池的示意性结构图。
图7是本申请实施例提供一种电池的示意性结构图。
图8是本申请实施例提供一种电池的示意性结构图。
图9是本申请实施例提供一种电池的示意性结构图。
图10是本申请实施例提供的另一种通过热压工艺加工电池的示意性结构图。
图11是本申请实施例提供的又一种通过热压工艺加工电池的示意性结构图。
图12是本申请实施例提供一种电池的示意性结构图。
图13是本申请实施例提供一种电池的示意性结构图。
图14是本申请实施例提供的一种通过热压工艺加工电池的示意性结构图。
图15是本申请实施例提供一种电池的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在介绍本申请实施例之前,先阐述本申请中出现的技术术语。
原电池(primary Cell):可以指将化学能转变成电能的装置,其利用正极和负极的电势差,使电子在正极和负极之间流动。
正极(cathode):可以指原电池中电极电势较高的一极。在放电过程中,电流可以从正极流出,正极可以得到电子、起还原作用。在充电过程中,电流可以流向正极,正极可以失去电子、起氧化作用。
负极(anode):可以指原电池中电极电势较低的一极。在放电过程中,电流可以流向负极,负极可以失去电子、起氧化作用。在充电过程中,电流可以从负极流出,负极可以得到电子、起还原作用。
电解质(electrolyte):可以指用于在电池正极和负极之间提供离子交换的媒介。
隔膜(separator):可以指用于分隔正极极片和负极极片、防止正极极片和负极极片直接接触而短路的介质。隔膜的基本特性是具有多孔性(可提供离子传输的通道)和绝缘性(防止漏电)。隔膜可以包括隔膜基材和隔膜涂层。
隔膜基材(base separator):可以指隔膜中的微孔膜部分。隔膜基材可以被单独使用在电芯中。隔膜基材可以提供上述多孔性和上述绝缘性。
隔膜涂层(separator coating layer):可以指附着于隔膜基材的至少一个表面上的薄层。隔膜涂层可以通过贴覆的方式附着在隔膜基材上。隔膜涂层可以用于增强隔膜的性能,例如提高隔膜的耐热性、粘接性等。
电芯(core或cell),可以指电池中具有蓄电功能的部分。电芯可以包括正极极片和负极极片。
热滥用(heat abuse):可以指电芯在热(或高温)方面的滥用。可以使用热箱对电芯进行有关热滥用的测试(如使用高温(≥130℃)烘烤电芯)。
机械滥用(machenical abuse):可以指电芯在机械方面的滥用。可以使用穿钉(或针刺)测试、撞击测试等对电芯进行有关机械滥用的测试。
热收缩率(heat shrinkage):可以指加热前后隔膜在纵/横(纵向MD,即沿隔膜的长边方向;横向TD,相对于MD垂直,即沿隔膜的短边方向)方向上的尺寸变化率。热收缩率的测试方法可以包括:测量隔膜在纵/横(MD/TD)方向上的尺寸;将在纵/横(MD/TD)方向上具有一定尺寸的隔膜放置在恒温箱中;加热恒温箱至特定温度;测量加热后隔膜在纵/横(MD/TD)方向上的尺寸。
质量含量:可以指单位面积内某种物质的质量。
溶解度参数(solubility parameter,SP):可以指液体材料相溶性的一项物理常数,可以通过以下公式计算得到:SP=(E/V) 1/2,其中,E是内聚能,V是体积,E/V是内聚能密度。
本申请实施例提供的方案还可以应用于电子设备或移动装置。
电子设备例如可以是终端消费产品或3C电子产品(计算机类(computer)、通信类(communication)、消费类(consumer)电子产品),如手机、移动电源、便携机、平板电脑、电子阅读器、笔记本电脑、数码相机、可穿戴设备、车载终端、耳机等设备。
移动装置例如可以是车辆、电动滑板、电动自行车等。
图1是本申请实施例提供的一种电子设备100的示意性结构图。图1所示实施例以电子设备100是手机为例进行说明。
电子设备100包括壳体10、显示屏20和电路板组件30。具体的,壳体10包括边框和后盖。边框环绕在显示屏20的外周且环绕在后盖的外周。显示屏20、边框、后盖之间 形成的空腔可以用于放置电路板组件30。在一个示例中,显示屏20和电路板组件30均可以被设置在壳体10上。电子设备100还可以包括用于为电路板组件30供电的电池40。电池40例如可以是锂电子二次电池、钠离子二次电池、钾离子二次电池、镁离子二次电池、锌离子二次电池、铝离子二次电池等。
图2是一种电池40的工作原理图。电池40的核心部件可以包括正极极片101、负极极片102、电解液103和隔膜104(相应的连通辅件和回路等未示出)。正极极片101、负极极片102可以脱嵌锂离子,以实现能量的存储和释放,如图2所示,Li+向左(正极)移动为能量释放过程,Li+向右(负极)移动为能量存储过程。电解液103可以是锂离子在正极极片101、负极极片102之间的传输载体。正极极片101、负极极片102是电池40的主体储能部分,可以体现电芯的能量密度、循环性能及安全性能。隔膜104可透过锂离子,但隔膜104本身不导电,从而隔膜104可以将正极极片101和负极极片102隔开,以防止正极极片101与负极极片102之间短路。隔膜104的基本特性是具有多孔性(可提供离子传输的通道)和绝缘性(防止漏电)。
图3是一种电池40的示意性结构图。电池40可以包括多层正极极片101、多层负极极片102、多层隔膜104。正极极片101与负极极片102层叠间隔设置。相邻的两个正极极片101之间设置有一层负极极片102,且相邻的两个负极极片102之间设置有一层正极极片101。另外,在相邻的正极极片101与负极极片102之间设置有隔膜104,以防止正极极片101与负极极片102之间短路。多层正极极片101、多层负极极片102、多层隔膜104可以浸泡在图2所示的电解液103中。
正极极片101可以包括正极集流体和设置在正极集流体上的正极活性材料。正极活性材料包括但不限于锂的复合金属氧化物(如钴酸锂(LCO)、镍钴锰酸锂(NMC)等)、聚阴离子锂化合物LiMx(PO4)y(M为Ni、Co、Mn、Fe、Ti、V,0≤x≤5,0≤y≤5)等。
在一个示例中,正极极片制作方法可以包括:首先将粘接剂(如聚偏氟乙烯(polyvinylidene difluoride,PVDF))溶于N-甲基吡咯烷酮(N-methyl-2-pyrrolidone,NMP),得到7.0%PVDF胶液;而后加入碳纳米管(CNTs)导电液均匀分散;之后加入活性材料钴酸锂(LCO)搅拌均匀混合成正极浆料;然后,采用涂布设备将正极浆料均匀涂布在铝箔的两面,并经烘箱烘干去除NMP溶剂;最后将涂布后的极片经过冷压、分条、极耳焊接等工序,得到正极极片成品。其中正极配比例如可以为,LCO:CNTs:PVDF,98.8%:0.02%:1.0%。
在另一个示例中,正极极片制作方法可以包括:首先将粘接剂(如聚偏氟乙烯(polyvinylidene difluoride,PVDF))溶于N-甲基吡咯烷酮(N-methyl-2-pyrrolidone,NMP),得到7.0%PVDF胶液;而后加入碳纳米管(CNTs)导电液均匀分散;之后加入活性材料镍钴锰酸锂(NMC)搅拌均匀混合成正极浆料;然后,采用涂布设备将正极浆料均匀涂布在铝箔的两面,并经烘箱烘干去除NMP溶剂;最后将涂布后的极片经过冷压、分条、极耳焊接等工序,得到正极极片成品。其中正极配比例如可以为,NMC:CNTs:SP:PVDF,97.5%:0.5%:1.0%:1.0%。
负极极片102可以包括负极集流体和设置在负极集流体上的负极活性材料。负极活性材料包括但不限于以下至少一种:金属锂、锂合金、钛酸锂、天然石墨、人造石墨、MCMB、无定型碳、碳纤维、碳纳米管、硬碳、软碳、石墨烯、氧化石墨烯、硅、硅碳化合物、硅 氧化合物和硅金属化合物。
在一个示例中,负极极片制作方法可以包括:首先采用捏合方式,将人造石墨、导电炭黑(SP)进行干混均匀;而后,加入25%预搅拌好的海藻酸钠(CMC)胶液进行捏合搅拌;之后,加入剩余CMC及去离子水进行高速分散,形成混合负极浆料;然后,采用涂布设备,将过筛后的混合负极浆料均匀涂布在铜箔的两面,并经烘箱烘干;最后将涂布后的极片经过冷压、分条、极耳焊接工序,得到负极极片成品。其中负极配比例如可以为,石墨:SP:CMC:丁苯橡胶(SBR),96.8%:0.6%:1.2%:1.2%。
隔膜104例如可以包括隔膜基材和隔膜涂层。
隔膜基材可以是一种多孔绝缘材料。隔膜基材上的孔隙可以透过锂离子(隔膜基材上的孔隙可以是锂离子的传输通道)。隔膜基材作为隔膜104的主要组成部分,需要具备化学惰性、电化学惰性、多孔性、电子绝缘性、高延展性、高破膜温度、低闭孔温度等性能。
隔膜基材例如可以包括以下至少一种:聚乙烯(polyethylene,PE)、聚乙烯(polypropylene,PP)、聚α烯烃、聚对苯二甲酸乙二醇酯、聚甲基戊烯、聚丁烯、聚酰亚胺、聚酰胺、聚酯、聚氨酯、聚碳酸酯、环烯烃共聚物、聚苯并咪唑、聚苯并双恶唑、芳纶等。隔膜基材的聚合物形式例如可以包括共聚物、共混物、混合物、组合物中的一种或几种。
隔膜涂层可以附着于隔膜基材的至少一个表面上,以使隔膜104具有高延展性、高破膜温度、低闭孔温度等性能。另外,隔膜涂层还可以具有其他性能,例如具有相对高的粘结性等。隔膜涂层可以包括有机涂层、无机涂层和/或有机无机复合涂层。
无机涂层可以包括陶瓷涂层。陶瓷涂层可以包括以下至少一种:氧化铝,氧化硅,氧化钛,氧化锆,氧化锌,氧化钡,氧化镁,氧化铍,氧化钙,氧化钍,氮化铝,氮化钛,羟基氧化铝,勃母石,磷灰石,氢氧化铝,氢氧化镁,硫酸钡,氮化硼,碳化硅,氮化硅,立方氮化硼,六方氮化硼,石墨,石墨烯,介孔分子筛(MCM-41,SBA-15)等。
有机涂层可以包括以下至少一种:聚偏氟乙烯、聚六氟丙烯、偏二氟乙烯-六氟丙烯共聚物、偏氟乙烯-三氯乙烯共聚物、聚乙烯-乙酸乙烯共聚物、羧甲基纤维素钠、丁苯橡胶、聚丙烯酸、聚丙烯酸盐、聚丙烯酸酯、聚丙烯腈、聚酰胺、聚酰亚胺、聚环氧乙烷、乙酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、聚乙烯吡咯烷酮、聚乙酸乙烯酯、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯等。
有机无机复合涂层可以通过上述无机涂层与有机涂层混合制备得到。
在热滥用场景中,隔膜的边缘部分有向隔膜中间区域收缩的趋势。一种改善收缩趋势的方式是,在隔膜基材的表面(如隔膜基材的边缘区域和/或中间区域)贴覆具有粘结性的隔膜涂层,该隔膜涂层在相对较高的温度下可以发生熔融、交联,并粘附在极片上(例如正极极片和/或负极极片)。这有利于抵消隔膜基材的收缩力,进而有利于降低正极极片和负极极片短路的可能性。
市场对电池能量密度的要求越来越高。一种有利于提升电池能量密度的方式是,压缩隔膜的厚度。然而,隔膜的厚度相对较薄,使得隔膜更容易收缩,且隔膜的粘结力更差,无法有效降低正极极片和负极极片之间短路的可能性。
图4是本申请实施例提供一种电池40的示意性结构图。
电池40可以包括层叠、间隔设置的多个正极极片101、多个负极极片102、多个隔膜 基材1041。图4中的白色矩形可以用于表示正极极片101,图4中的黑色矩形可以用于表示负极极片102,图4中填充有斜线的矩形可以用于表示隔膜基材1041。其中,任意两个相邻的正极极片101之间设置有一个负极极片102,任意两个相邻的负极极片102之间设置有一个正极极片101,任意两个相邻的正极极片101和负极极片102之间设置有一个隔膜基材1041。可选的,在图4所示的示例中,隔膜基材1041可以贴覆在正极极片101和负极极片102之间。
电池40还可以包括第一类隔膜涂层1042,该第一类隔膜涂层1042可以具有粘性,且在高温下可熔融、交联(在电池领域中,大于40~60℃的温度可以理解为高温)。也就是说,第一类隔膜涂层1042可以包括粘结剂聚合物。图4中填充有白色点阵的黑色图案用于表示该第一类隔膜涂层1042。在隔膜基材1041的边缘区域可以贴覆有第一类隔膜涂层1042(即第一类隔膜涂层的部分或全部可以贴覆在隔膜基材1041的边缘区域)。并且,第一类隔膜涂层1042可以粘附在第一隔膜基材10411、第二隔膜基材10412之间,第一隔膜基材10411、第二隔膜基材10412与同一极片相邻。也就是说,第一类隔膜涂层1042粘附在第一隔膜基材10411的第一边缘区域,且粘附在第二隔膜基材10412的第二边缘区域,其中第一边缘区域与第二边缘区域相对设置,即第一边缘区域与第二边缘区域位于该极片的同侧。第一隔膜基材10411、第一类隔膜涂层1042、第二隔膜基材10412可以包围极片的边缘,该极片位于该第一隔膜基材10411、第二隔膜基材10412之间。
下面结合图5阐述中间区域和边缘区域的一种可能的定义。图5中填充有方形的图案用于表示边缘区域。图5中填充有菱形的图案用于表示中间区域。假设电池40(或极片、隔膜基材1041等)在横向(横向TD可以理解为电池40的宽度方向,纵向TD可以理解为电池40的长度方向,电池40在长度方向上的尺寸通常大于电池40在宽度方向上的尺寸)上的中轴线为第一中轴线。该中间区域可以指,到该第一中轴线的距离小于第一预设距离的区域。该边缘区域可以指,到该第一中轴线的距离大于第一预设距离的区域。中间区域与该边缘区域的分界面到该第一中轴线的距离可以为该第一预设距离。该第一预设距离例如可以约为极片横向宽度的1/2。
在其他示例中,假设电池40(或极片、隔膜基材1041等)在纵向上的中轴线为第二中轴线。该中间区域可以指,到该第二中轴线的距离小于第二预设距离的区域。该边缘区域可以指,到该第二中轴线的距离大于第二预设距离的区域。中间区域与该边缘区域的分界面到该第二中轴线的距离可以为该第二预设距离。该第二预设距离例如可以约为极片纵向宽度的1/2。
应理解,为有效阻挡正极极片101与负极极片102之间发生短路,隔膜基材1041通常覆盖极片的全部区域,且隔膜基材1041的边缘可以超出极片的边缘轮廓。
在一个示例中,在隔膜基材1041的边缘区域贴覆有第一类隔膜涂层1042,可以指第一类隔膜涂层1042贴覆在隔膜基材1041上,且第一类隔膜涂层1042包括位于极片的外周以外的部分,即第一类隔膜涂层1042包括未覆盖极片的外周的部分。
在另一个示例中,在隔膜基材1041的边缘区域贴覆有第一类隔膜涂层1042,可以指第一类隔膜涂层1042贴覆在隔膜基材1041上,且第一类隔膜涂层1042可以包括覆盖极片外周的第一部分和位于极片外周以外的第二部分。
可选的,在第一类隔膜涂层1042的宽度可以为极片宽度的0.1%~45%。
可选的,在第一类隔膜涂层1042的宽度可以为极片宽度的0.5%~5.0%。
可选的,第一类隔膜涂层1042包括质量含量为0.4~5g/m 2的粘结剂聚合物。
在一个示例中,第一类隔膜涂层1042可以包括质量含量为0.5g/m 2的粘结剂聚合物。第一类隔膜涂层1042的浆料配置方法可以包括:按照质量比例得到涂层原料,其中聚四氟乙烯的共聚物为47.5份,去离子水50份,水性润湿剂1.0份,水性分散剂1.5份;然后将聚四氟乙烯的共聚物加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂和水性润湿剂并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第一类隔膜涂层1042的浆料。
在另一个示例中,第一类隔膜涂层1042可以包括质量含量为0.62g/m 2的粘结剂聚合物。第一类隔膜涂层1042的浆料配置方法可以包括:按照质量比例得到涂层原料,其中勃母石30份,去离子水46份,粘结剂13.5份,水性润湿剂1.0份,水性分散剂1.5份;然后将勃母石加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂和水性润湿剂并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第一类隔膜涂层1042的浆料。
在又一个示例中,第一类隔膜涂层1042可以包括质量含量为0.62g/m 2的粘结剂聚合物。第一类隔膜涂层1042的浆料配置方法可以包括:按照质量比例得到涂层原料,其中聚偏二氟乙烯-六氟丙烯51.5份,去离子水46份,水性润湿剂1.0份,水性分散剂1.5份;然后将聚偏二氟乙烯-六氟丙烯加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂和水性润湿剂并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第一类隔膜涂层1042的浆料。
如果粘结剂聚合物的质量含量为0.6g/m 2,则第一类隔膜涂层1042的浆料配比例如可以包括:聚偏二氟乙烯-六氟丙烯为47.5份,去离子水50份,水性润湿剂1.0份,水性分散剂1.5份。
在再一个示例中,第一类隔膜涂层1042可以包括质量含量为0.45g/m 2的粘结剂聚合物。第一类隔膜涂层1042的浆料配置方法可以包括:按照质量比例得到涂层原料,其中聚六氟丙烯共聚物为52.0份,去离子水45.5份,水性润湿剂1.0份,水性分散剂1.5份;然后将聚六氟丙烯共聚物加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂和水性润湿剂并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第一类隔膜涂层1042的浆料。
可选的,第一类隔膜涂层1042包括质量含量为0.8~2.5g/m 2的粘结剂聚合物。
可选的,第一类隔膜涂层1042的结晶度小于80%。
可选的,第一类隔膜涂层1042的结晶度可以为50.0%~80.0%。
可选的,第一类隔膜涂层1042的溶解参数为第一溶解度参数,电池中电解液的溶解度参数为第二溶解度参数,该第一溶解度参数小于或等于第二溶解度参数,且第二溶解度参数与第一溶解度参数的差值小于预设溶解度参数。
在一个示例中,第一溶解度参数为20~26±1(J/cm 3) 0.5,第二溶解度参数的溶解度参数为26±1(J/cm 3) 0.5
在一个示例中,预设溶解度参数小于或等于5(J/cm 3) 0.5
由于第一类隔膜涂层1042的溶解参数小于电解液的溶解度参数,因此第一类隔膜涂层1042不会完全溶解在电解液中。如果第一类隔膜涂层1042的溶解参数远大于电解液的溶解度参数,第一类隔膜涂层1042与电解液过度相融,第一类隔膜涂层1042很难完整地包裹极片的侧边10414。结合图4、图5,在本申请实施例中,极片在横向、纵向上的宽度相对较大,极片的厚度方向相对于横向、纵向均垂直,极片在厚度方向上的表面可以被称为极片的侧边10414。第一类隔膜涂层1042的溶解参数与电解液的溶解度参数相差较小,这使得面对面设置的隔膜涂层可以相融形成第一类隔膜涂层1042,还有利于提高极片与极片之间的粘结性,进而有利于提高电池的动力学性能、降低电池间极化。
粘结剂聚合物例如可以包括以下至少一种:聚偏氟乙烯、聚六氟丙烯、偏氟乙烯-六氟丙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、聚乙烯-乙酸乙烯的共聚物、羧甲基纤维素钠、丁苯橡胶、聚丙烯酸、聚丙烯酸盐、聚丙烯酸酯、聚丙烯腈、聚酰胺、聚酰亚胺、聚环氧乙烷、乙酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、聚乙烯吡咯烷酮、聚乙酸乙烯酯、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯。
图6是本申请实施例提供的一种通过热压工艺加工电池40的示意性结构图。图6中的上图(即图6中位于箭头上方的图)示出了在热压工艺之前的一种电池40的示意性结构图。图6中的下图(即图6中位于箭头下方的图)示出了在热压工艺之后的一种电池40的示意性结构图。
热压工艺例如可以指通过加压、加热等方式,对电池40的原材料进行整形、活化的工艺。热压工艺例如可以在堆叠、卷绕等工艺之后进行。在图6所示的示例中,热压工艺参数可以包括热压压强、热压温度、热压时间。在一个示例中,热压压强可以为0.1~2.0Mpa,热压温度可以为25~100℃,热压时间可以为20~300min。在另一个示例中,热压压强可以为0.5~1.0Mpa,热压温度可以为60~90℃,热压时间可以为60~150min。
电池40可以包括按顺序层叠设置的正极极片1011、正极极片1012、负极极片1021、负极极片1022。正极极片1011与正极极片1012可以为相邻的两个正极极片。负极极片1021与负极极片1022可以为相邻的两个负极极片。负极极片1021位于正极极片1011与正极极片1012之间,正极极片1012位于负极极片1021、负极极片1022之间。
电池40还可以包括隔膜基材10411、隔膜基材10412、隔膜基材10413。隔膜基材10412可以位于隔膜基材10411与隔膜基材10413之间。
隔膜基材10411可以位于正极极片1011与负极极片1021之间,且隔膜基材10411与正极极片1011可以贴覆在一起。可选的,隔膜基材10411与负极极片1021之间可能存在一定间隙。
隔膜基材10412可以位于负极极片1021与正极极片1012之间,且隔膜基材10412与负极极片1021可以贴覆在一起。可选的,隔膜基材10412与正极极片1012之间可能存在一定间隙。
隔膜基材10413可以位于正极极片1012与负极极片1022之间,且隔膜基材10413与正极极片1012可以贴覆在一起。可选的,隔膜基材10413与负极极片1022之间可能存在 一定间隙。
如图6中的上图所示,在隔膜基材10411的边缘区域贴覆有隔膜涂层10451,且隔膜涂层10451位于隔膜基材10411的靠近隔膜基材10412的表面上。在隔膜基材10412的边缘区域贴覆有隔膜涂层10452,且隔膜涂层10452位于隔膜基材10412的靠近隔膜基材10411的表面上。该隔膜涂层10451、该隔膜涂层10452均属于具有粘结性、且高温可熔融的隔膜涂层。该隔膜涂层10451、该隔膜涂层10452可以位于负极极片1021的同侧。
可选的,隔膜涂层10451、隔膜涂层10452的宽度可以为负极极片1021的宽度的0.1%~45%。
可选的,隔膜涂层10451、隔膜涂层10452的宽度可以为负极极片1021的宽度的0.5%~5.0%。
类似地,如图6中的上图所示,在隔膜基材10412的边缘区域贴覆有隔膜涂层10453,且隔膜涂层10453位于隔膜基材10412的靠近隔膜基材10413的表面上。在隔膜基材10413的边缘区域贴覆有隔膜涂层10454,且隔膜涂层10454位于隔膜基材10413的靠近隔膜基材10412的表面上。该隔膜涂层10453、该隔膜涂层10454均属于具有粘结性、且高温可熔融的隔膜涂层。该隔膜涂层10453、该隔膜涂层10454可以位于正极极片1012的同侧。
可选的,隔膜涂层10453、隔膜涂层10454的宽度可以为正极极片1012的宽度的0.1%~45%。
可选的,隔膜涂层10453、隔膜涂层10454的宽度可以为正极极片1012的宽度的0.5%~5.0%。
热压工艺可以有利于隔膜基材与极片之间的紧密贴合。如图6中的下图所示,在热压工艺之后,隔膜基材10411可以既贴覆在正极极片1011上,也贴覆在负极极片1021上;隔膜基材10412可以既贴覆在负极极片1021上,也贴覆在正极极片1012上;隔膜基材10413可以既贴覆在正极极片1012上,也贴覆在负极极片1022上。
另外,热压工艺可以有利于距离较近的两个第一类隔膜涂层1042相融为一体。如图6中的下图所示,在热压工艺过程中,隔膜涂层10451与隔膜涂层10452可以在高温、加压的作用下发生熔融,并在隔膜基材10411与隔膜基材10412上流动铺开,进而相融为一体,形成第一类隔膜涂层10421。由此,第一类隔膜涂层10421可以连接在隔膜基材10411与隔膜基材10412之间,使得负极极片1021的靠近隔膜涂层10451与隔膜涂层10452的一侧可以被隔膜基材10411、第一类隔膜涂层10421、隔膜基材10412包围。也就是说,极片的一端可以被隔膜封闭。这有利于降低负极极片1021与相邻正极极片(如正极极片1011、正极极片1012)短路的可能性。
类似地,在热压工艺过程中,隔膜涂层10453与隔膜涂层10454可以相融为一体,并形成第一类隔膜涂层10422。由此,第一类隔膜涂层10422可以连接在隔膜基材10412与隔膜基材10413之间,使得正极极片1012的靠近隔膜涂层10453与隔膜涂层10454的一侧可以被隔膜基材10412、第一类隔膜涂层10422、隔膜基材10413包围。这有利于降低正极极片1012与相邻负极极片(如负极极片1021、负极极片1022)短路的可能性。
除此以外,通过在隔膜基材的边缘区域设置高温可熔融的隔膜涂层,有利于提升隔膜与极片之间贴合的紧密程度,进而减小锂离子析出的风险。不仅如此,通过在隔膜基材的边缘区域设置高温可熔融的隔膜涂层,除了有利于提高电极整体的热压均匀性,还有利于 提升极片与隔膜之间的结合力,进而有利于提升电池的循环性能。并且,在热滥用等场景下,由于粘结力的作用,隔膜相对更难收缩,有利于减小电芯的变形量。
在图6的示例中,该第一类隔膜涂层10421还可以贴覆在负极极片1021的侧边上。类似地,该第一类隔膜涂层10422还可以贴覆在正极极片1012的侧边上。在其他示例中,如图7所示,该第一类隔膜涂层10421与负极极片1021的侧边之间可能存在间隙,即该第一类隔膜涂层10421可以不贴覆在负极极片1021的侧边上。类似地,该第一类隔膜涂层10422与正极极片1012的侧边之间可能存在间隙,即该第一类隔膜涂层10422可以不贴覆在正极极片1012的侧边上。这有利于为隔膜基材的收缩提供余量。
在图6所示的示例中,该第一类隔膜涂层10421可以位于隔膜基材10411与隔膜基材10412形成的间隔空间内。类似地,该第一类隔膜涂层10422可以位于隔膜基材10412与隔膜基材10413形成的间隔空间内。在其他示例中,如图8所示,多个第一类隔膜涂层10423可以横跨多个隔膜基材(如隔膜基材10411、隔膜基材10412、隔膜基材10413),并在该多个隔膜基材的边缘相融为一体。例如,在热压之后,位于电池40同侧的隔膜涂层10451、隔膜涂层10452、隔膜涂层10453、隔膜涂层10454(如图6所示)可以相融为一体,形成图8所示的第一类隔膜涂层10423,其中该第一类隔膜涂层10423可以与隔膜基材10411、隔膜基材10412、隔膜基材10413均相连,且该第一类隔膜涂层10423可以包裹隔膜基材10412的侧边10415。如上所述,第一类隔膜涂层10423可以贴覆在隔膜基材10411的第一边缘区域、隔膜基材10412的第二边缘区域。另外,第一类隔膜涂层10423还可以贴覆隔膜基材10412的第三边缘区域、隔膜基材10412的侧边10415以及隔膜基材10413的第四边缘区域。其中,侧边10415连接在隔膜基材10412的第二边缘区域与隔膜基材10412的第三边缘区域之间,第三边缘区域与第四边缘区域相对设置,且第一边缘区域、第二边缘区域、第三边缘区域、第四边缘区域、侧边10415均位于电池40的同侧。
在图8所示的示例中,第一类隔膜涂层10423可以贴覆在负极极片1021的侧边以及正极极片1012的侧边上。结合图7可知,图8所示的第一类隔膜涂层10423可以不贴覆极片的侧边上。如图9所示,第一类隔膜涂层10423可以既不贴覆在负极极片1021的侧边上,也不贴覆在正极极片1012的侧边上。应理解,在其他可能的示例中,第一类隔膜涂层10423可以贴覆在图4所示的多个正极极片101和多个负极极片102中的至少一个目标极片的侧边上,且不贴覆在该多个正极极片101和多个负极极片102中除该至少一个目标极片以外的其他极片的侧边上。这有利于为隔膜基材的收缩提供余量。
图10是本申请实施例提供的另一种通过热压工艺加工电池40的示意性结构图。图10中的上图(即图10中位于箭头上方的图)示出了在热压工艺之前的另一种电池40的示意性结构图。图10中的下图(即图10中位于箭头下方的图)示出了在热压工艺之后的另一种电池40的示意性结构图。与图6所示的示例类似,图10所示的电池40可以包括正极极片1011、正极极片1012、负极极片1021、负极极片1022、隔膜基材10411、隔膜基材10412、隔膜基材10413。
如图10中的上图所示,在隔膜基材10411的边缘区域贴覆有隔膜涂层10451,且隔膜涂层10451位于隔膜基材10411的靠近隔膜基材10412的表面上。在隔膜基材10412的边缘区域贴覆有隔膜涂层10452,且隔膜涂层10452位于隔膜基材10412的靠近隔膜基材10411的表面上。该隔膜涂层10451、该隔膜涂层10452均属于具有粘结性、且高温可熔 融的隔膜涂层。该隔膜涂层10451、该隔膜涂层10452可以位于负极极片1021的同侧。
与图6所示的示例不同,在图10所示的示例中,在隔膜基材10412的靠近隔膜基材10413的表面上可以不贴覆有如图6所示的隔膜涂层10453,且在隔膜基材10413的靠近隔膜基材10412的表面上可以不贴覆有如图6所示的隔膜涂层10454。
与图6所示的示例类似,如图10中的下图所示,热压工艺有利于隔膜基材与极片之间的紧密贴合。
如图10中的下图所示,隔膜涂层10451与隔膜涂层10452可以相融为一体,并形成第一类隔膜涂层10421,隔膜涂层10451与隔膜涂层10452均位于隔膜基材10411与隔膜基材10412之间。由此,第一类隔膜涂层10421可以连接在隔膜基材10411与隔膜基材10412之间,使得负极极片1021的靠近隔膜涂层10451与隔膜涂层10452的一侧可以被隔膜基材10411、第一类隔膜涂层10421、隔膜基材10412包围。由于在隔膜基材10412与隔膜基材10413之间没有设置如图6所示的隔膜涂层10453、隔膜涂层10454,因此,图10所示的示例可以不具有如图6所示的第一类隔膜涂层10422。
在图10所示的示例中,通过包围在负极极片周围的隔膜涂层和隔膜基材,有利于降低负极极片与相邻正极极片短路的可能性。与图3、图6所示的示例相比,图10所示的实施例通过相对较少的隔膜涂层材料,以阻碍正极极片与负极极片之间发生短路。
图10是本申请实施例提供的又一种通过热压工艺加工电池40的示意性结构图。图11中的上图(即图11中位于箭头上方的图)示出了在热压工艺之前的又一种电池40的示意性结构图。图11中的下图(即图11中位于箭头下方的图)示出了在热压工艺之后的又一种电池40的示意性结构图。与图6所示的示例类似,图11所示的电池40可以包括正极极片1011、正极极片1012、负极极片1021、负极极片1022、隔膜基材10411、隔膜基材10412、隔膜基材10413。
与图6所示的示例不同,如图11中的上图所示,在隔膜基材10411的靠近隔膜基材10412的表面上可以不贴覆有如图6所示的隔膜涂层10451。在隔膜基材10412的靠近隔膜基材10411的表面上可以不贴覆有如图6所示的隔膜涂层10452。
如图11中的上图所示,在隔膜基材10412的边缘区域贴覆有隔膜涂层10453,且隔膜涂层10453位于隔膜基材10412的靠近隔膜基材10413的表面上。在隔膜基材10413的边缘区域贴覆有隔膜涂层10454,且隔膜涂层10454位于隔膜基材10413的靠近隔膜基材10412的表面上。该隔膜涂层10453、该隔膜涂层10454均属于具有粘结性、且高温可熔融的隔膜涂层。该隔膜涂层10453、该隔膜涂层10454可以位于正极极片1012的同侧。
与图6所示的示例类似,如图11中的下图所示,热压工艺有利于隔膜基材与极片之间的紧密贴合。
如图11中的下图所示,隔膜涂层10453与隔膜涂层10454可以相融为一体,并形成第一类隔膜涂层10422,隔膜涂层10453与隔膜涂层10454均位于隔膜基材10412与隔膜基材10413之间。由此,第一类隔膜涂层10422可以连接在隔膜基材10412与隔膜基材10413之间,使得正极极片1012的靠近隔膜涂层10453与隔膜涂层10454的一侧可以被隔膜基材10412、第一类隔膜涂层10422、隔膜基材10413包围。由于在隔膜基材10411与隔膜基材10412之间没有设置如图6所示的隔膜涂层10451、隔膜涂层10452,因此,在图11所示的示例中可以不具有如图6所示的第一类隔膜涂层10421。
在图11所示的示例中,通过包围在正极极片周围的隔膜涂层和隔膜基材,有利于降低正极极片与相邻负极极片短路的可能性。与图3、图6所示的示例相比,图11所示的实施例通过相对较少的隔膜涂层材料,以阻碍正负极之间发生短路。
在图10所示的示例中,该第一类隔膜涂层10423可以位于隔膜基材10411与隔膜基材10412形成的间隔空间内。在其他示例中,第一类隔膜涂层10423可以横跨多个隔膜基材(如隔膜基材10411、隔膜基材10412、隔膜基材10413),并在该多个隔膜基材的边缘相融为一体。
如图12所示,第一类隔膜涂层10423可以与隔膜基材10411、隔膜基材10412、隔膜基材10413、隔膜基材10416均相连。其中,隔膜基材10413位于隔膜基材10412与隔膜基材10416之间。隔膜基材10413、隔膜基材10416可以与同一极片相邻。隔膜基材10411、隔膜基材10412贴覆在负极极片1021的两侧,隔膜基材10413、隔膜基材10416贴覆在负极极片1022的两侧。该第一类隔膜涂层10423除了可以粘附在隔膜基材10411的第一边缘区域,以及隔膜基材10412的第二边缘区域,还可以粘附在隔膜基材10413的第五边缘区域、隔膜基材10416的第六边缘区域。第五边缘区域与第六边缘区域相对设置。另外,该第一类隔膜涂层10423还可以包裹隔膜基材10412的侧边10415,以及隔膜基材10413的侧边10417。第一边缘区域、第二边缘区域、第五边缘区域、第六边缘区域、侧边10415、侧边10417位于电池40的同侧。
结合图9、图12可知,第一类隔膜涂层10423还可以不粘附在极片的侧边。这有利于为隔膜基材的收缩提供余量。
结合图11、图12可知,在其他的示例中,隔膜基材10411、隔膜基材10412可以贴覆在一个正极极片的两侧,且隔膜基材10413、隔膜基材10416可以贴覆在另一个正极极片的两侧。在表面张力或极性的作用下,极片的边缘区域有向极片的中间区域收缩的趋势,使得极片在边缘区域的厚度略小于极片在中间区域的厚度。也就是说,隔膜相对更容易贴覆在极片的中间区域,且相对更难贴覆在极片的边缘区域。因此,极片的边缘可能无法和隔膜紧密贴合在一起,即极片与隔膜之间可能存在空隙。在电池40经过多次充放电后,锂离子可能会在极片与隔膜之间的空隙处聚集、沉积形成固态锂。由于隔膜的厚度相对较薄,固态锂相对更容易穿透隔膜,增大了正极极片101和负极极片102之间短路的可能性。
图13是本申请实施例提供的一种电池40的示意性结构图。
电池40可以包括层叠、间隔设置的多个正极极片101、多个负极极片102、多个隔膜基材1041。图4中的白色矩形可以用于表示正极极片101,图4中的黑色矩形可以用于表示负极极片102,图4中填充有斜线的矩形可以用于表示隔膜基材1041。其中,任意两个相邻的正极极片101之间设置有一个负极极片102,任意两个相邻的负极极片102之间设置有一个正极极片101,任意两个相邻的正极极片101和负极极片102之间设置有一个隔膜基材1041。隔膜基材1041可以贴覆在正极极片101和负极极片102之间。
电池40还可以包括第二类隔膜涂层1043和第三类隔膜涂层1044。图13中填充有黑色点阵的白色图案用于表示该第二类隔膜涂层1043。图13中填充有白色点阵的黑色图案用于表示该第三类隔膜涂层1044。隔膜基材1041的至少一个表面上可以贴覆有第二类隔膜涂层1043和第三类隔膜涂层1044。
第二类隔膜涂层1043可以贴覆在隔膜基材1041的中间区域,第三类隔膜涂层1044 可以贴覆在隔膜基材1041的边缘区域(有关中间区域和边缘区域的定义可以参照上文及图5所示的示例,在此就不详细再赘述)。第二类隔膜涂层1043可以与第三类隔膜涂层1044相连。第二类隔膜涂层1043与第三类隔膜涂层1044的交界可以对应隔膜基材1041的中间区域与边缘区域的交界。第二类隔膜涂层1043与第三类隔膜涂层1044之间可以不具有空隙,以尽可能减小极片与隔膜之间存在空隙的可能性。
在一个示例中,第二类隔膜涂层1043贴覆在隔膜基材1041上,且完整覆盖极片的外周;第三类隔膜涂层1044贴覆在隔膜基材1041上,且位于极片的外周以外。
在另一个示例中,第二类隔膜涂层1043贴覆在隔膜基材1041上,且覆盖极片的一部分;第三类隔膜涂层1044贴覆在隔膜基材1041上,且包括覆盖极片剩余部分的第一部分和位于极片外周以外的第二部分。
可选的,第三类隔膜涂层1044的宽度可以为极片宽度的0.1%~45%。
可选的,第三类隔膜涂层1044的宽度可以为极片宽度的0.5%~5.0%。
可选的,第二类隔膜涂层1043的结晶度小于80%。
可选的,第二类隔膜涂层1043的结晶度可以为50.0%~80.0%。
可选的,第三类隔膜涂层1044的结晶度小于80%。
可选的,第二类隔膜涂层1043的结晶度可以为50.0%~80.0%。
可选的,第三类隔膜涂层1043的溶解参数为第一溶解度参数,电池中电解液的溶解度参数为第二溶解度参数,该第一溶解度参数小于或等于第二溶解度参数,且第二溶解度参数与第一溶解度参数的差值小于预设溶解度参数。
在一个示例中,第一溶解度参数为20~26±1(J/cm 3) 0.5,第二溶解度参数的溶解度参数为26±1(J/cm 3) 0.5
在一个示例中,预设溶解度参数小于或等于5(J/cm 3) 0.5
由于第三类隔膜涂层1043的溶解参数小于电解液的溶解度参数,因此第三类隔膜涂层1043可以与电解液相容;第三类隔膜涂层1043的溶解参数与电解液的溶解度参数相差较小,因此第三类隔膜涂层1043不会完全溶解在电解液中,这有利于第三类隔膜涂层1043在隔膜基材上铺开。
该第二类隔膜涂层1043和第三类隔膜涂层1044均可以具有粘性,且在高温下可熔融(在电池领域中,大于40~60℃的温度可以理解为高温)。也就是说,第二类隔膜涂层1043和第三类隔膜涂层1044均可以包括粘结剂聚合物。其中,第二类隔膜涂层1043包括第一质量含量的粘结剂聚合物,第三类隔膜涂层1044包括第二质量含量的粘结剂聚合物,第一质量含量小于第二质量含量。图13分别示出了第一质量含量、第二质量含量的结构性示意图。也就是说,覆盖在隔膜基材1041中间区域的隔膜涂层包括含量相对更低的粘结剂聚合物,覆盖在隔膜基材1041边缘区域的隔膜涂层包括含量相对更高的粘结剂聚合物。
可选的,第二质量含量例如可以为0.4~5g/m 2
在一个示例中,第三类隔膜涂层1044可以包括质量含量为0.5g/m 2的粘结剂聚合物。第三类隔膜涂层1044的浆料配置方法可以包括:按照质量比例得到涂层原料,其中聚四氟乙烯的共聚物47.5份,去离子水50份,水性润湿剂1.0份,水性分散剂1.5份;然后将聚四氟乙烯的共聚物加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂和 水性润湿剂并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层1044的浆料。
在另一个示例中,第三类隔膜涂层1044可以包括质量含量为0.62g/m 2的粘结剂聚合物。第三类隔膜涂层1044的浆料配置方法可以包括:按照质量比例得到涂层原料,其中勃母石30份,去离子水46份,粘结剂13.5份,水性润湿剂1.0份,水性分散剂1.5份;然后将勃母石加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂和水性润湿剂并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层1044的浆料。
在又一个示例中,第三类隔膜涂层1044可以包括质量含量为0.62g/m 2的粘结剂聚合物。第三类隔膜涂层1044的浆料配置方法可以包括:按照质量比例得到涂层原料,其中聚偏二氟乙烯-六氟丙烯51.5份,去离子水46份,水性润湿剂1.0份,水性分散剂1.5份;然后将聚偏二氟乙烯-六氟丙烯加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂和水性润湿剂并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层1044的浆料。
在再一个示例中,第三类隔膜涂层1044可以包括质量含量为0.45g/m 2的粘结剂聚合物。第三类隔膜涂层1044的浆料配置方法可以包括:按照质量比例得到涂层原料,其中聚六氟丙烯共聚物52.0份,去离子水45.5份,水性润湿剂1.0份,水性分散剂1.5份;然后将聚六氟丙烯共聚物加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂和水性润湿剂并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层1044的浆料。
可选的,第二质量含量例如可以为0.8~2.5g/m 2
可选的,第二质量含量与第一质量含量的差值例如可以为0.05~4.5g/m 2
可选的,第二质量含量与第一质量含量的差值例如可以为0.1~2.0g/m 2
粘结剂聚合物例如可以包括以下至少一种:聚偏氟乙烯、聚六氟丙烯、偏氟乙烯-六氟丙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、聚乙烯-乙酸乙烯的共聚物、羧甲基纤维素钠、丁苯橡胶、聚丙烯酸、聚丙烯酸盐、聚丙烯酸酯、聚丙烯腈、聚酰胺、聚酰亚胺、聚环氧乙烷、乙酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、聚乙烯吡咯烷酮、聚乙酸乙烯酯、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯。
如图13中的局部放大图所示,由于第二类隔膜涂层1043、第三类隔膜涂层1044含有不同质量含量的粘结剂聚合物,因此第三类隔膜涂层1044的厚度可以略高于第二类隔膜涂层1043的厚度。也就是说,第三类隔膜涂层1044与第二类隔膜涂层1043交界的位置,第三类隔膜涂层1044可以具有第一厚度,该第一厚度可以第二类隔膜涂层1043的厚度相同;在第三类隔膜涂层1044的其他位置可以具有第二厚度,该第二厚度可以大于该第一厚度。这有利于提高隔膜与极片之间紧密贴合的程度。
在一些特殊的场景下,在极片的部分边缘可能与第二类隔膜涂层1043无法贴合紧密。由于第三类隔膜涂层1044具有更多的粘结剂聚合物,因此第三类隔膜涂层1044可以填充 在第二类隔膜涂层1043与极片之间,以进一步提高隔膜与极片之间紧密贴合的程度。
图14是本申请实施例提供的一种通过热压工艺加工电池40的示意性结构图。图14中的上图(即图14中位于箭头上方的图)示出了在热压工艺之前的一种电池40的示意性结构图。图14中的下图(即图14中位于箭头下方的图)示出了在热压工艺之后的一种电池40的示意性结构图。
电池40可以包括按顺序层叠设置的正极极片1011、正极极片1012、负极极片1021、负极极片1022。正极极片1011与正极极片1012可以为相邻的两个正极极片。负极极片1021与负极极片1022可以为相邻的两个负极极片。负极极片1021位于正极极片1011与正极极片1012之间,正极极片1012位于负极极片1021、负极极片1022之间。
电池40还可以包括隔膜基材10411、隔膜基材10412、隔膜基材10413。隔膜基材10411可以位于正极极片1011与负极极片1021之间。隔膜基材10412可以位于负极极片1021与正极极片1012之间。隔膜基材10413可以位于正极极片1012与负极极片1022之间。也就是说,隔膜基材10412可以位于隔膜基材10411与隔膜基材10413之间。
电池40还可以包括第二类隔膜涂层10431、第二类隔膜涂层10432、第三类隔膜涂层10441、第三类隔膜涂层10442。
第二类隔膜涂层10431贴覆在隔膜基材10411的远离隔膜基材10412的一侧,且贴覆在隔膜基材10411的中间区域。第三类隔膜涂层10441贴覆在隔膜基材10411的远离隔膜基材10412的一侧,且贴覆在隔膜基材10411的边缘区域。第二类隔膜涂层10432贴覆在隔膜基材10411的靠近隔膜基材10412的一侧,且贴覆在隔膜基材10411的中间区域。第三类隔膜涂层10442贴覆在隔膜基材10411的靠近隔膜基材10412的一侧,且贴覆在隔膜基材10411的边缘区域。第三类隔膜涂层10441、第三类隔膜涂层10442可以位于隔膜基材10411的同侧。
如图14中的上图所示,在热压工艺之前,第三类隔膜涂层10441可以贴覆在正极极片1011上,第二类隔膜涂层10431与正极极片1011之间可以可能存在一定间隙。在热压工艺过程中,第三类隔膜涂层10441可以在高温、加压的作用下发生熔融,并在隔膜基材1041上流动铺开。在热压工艺之后,第三类隔膜涂层10441、均第二类隔膜涂层10431均可以贴覆在正极极片1011上。
如图14中的上图所示,在热压工艺之前,第三类隔膜涂层10442可以贴覆在负极极片1021上,第二类隔膜涂层10432与负极极片1021之间可以可能存在一定间隙。在热压工艺过程中,第三类隔膜涂层10442可以在高温、加压的作用下发生熔融,并在隔膜基材1041上流动铺开。在热压工艺之后,第三类隔膜涂层10442、第二类隔膜涂层10432均可以贴覆在负极极片1021上。
电池40还可以包括第二类隔膜涂层10433、第二类隔膜涂层10434、第三类隔膜涂层10443、第三类隔膜涂层10444。第二类隔膜涂层10433贴覆在隔膜基材10412的靠近隔膜基材10411的一侧,且贴覆在隔膜基材10412的中间区域。第三类隔膜涂层10443贴覆在隔膜基材10412的靠近隔膜基材10411的一侧,且贴覆在隔膜基材10412的边缘区域。第二类隔膜涂层10434贴覆在隔膜基材10412的靠近隔膜基材10413的一侧,且贴覆在隔膜基材10412的中间区域。第三类隔膜涂层10444贴覆在隔膜基材10412的靠近隔膜基材10413的一侧,且贴覆在隔膜基材10412的边缘区域。第三类隔膜涂层10443、第三类隔 膜涂层10444可以位于隔膜基材10412的同侧。
如图14中的上图所示,在热压工艺之前,第三类隔膜涂层10443可以贴覆在负极极片1021上,第二类隔膜涂层10433与负极极片1021之间可以可能存在一定间隙。在热压工艺过程中,第三类隔膜涂层10443可以在高温、加压的作用下发生熔融,并在隔膜基材1041上流动铺开。在热压工艺之后,第三类隔膜涂层10443、第二类隔膜涂层10433均可以贴覆在负极极片1021上。
如图14中的上图所示,在热压工艺之前,第三类隔膜涂层10444可以贴覆在正极极片1012上,第二类隔膜涂层10434与正极极片1012之间可以可能存在一定间隙。在热压工艺过程中,第三类隔膜涂层10444可以在高温、加压的作用下发生熔融,并在隔膜基材1041上流动铺开。在热压工艺之后,第三类隔膜涂层10444、第二类隔膜涂层10434均可以贴覆在正极极片1012上。
电池40还可以包括第二类隔膜涂层10435、第二类隔膜涂层10436、第三类隔膜涂层10445、第三类隔膜涂层10446。第二类隔膜涂层10435贴覆在隔膜基材10413的靠近隔膜基材10412的一侧,且贴覆在隔膜基材10413的中间区域。第三类隔膜涂层10445贴覆在隔膜基材10413的靠近隔膜基材10412的一侧,且贴覆在隔膜基材10413的边缘区域。第二类隔膜涂层10436贴覆在隔膜基材10413的远离隔膜基材10412的一侧,且贴覆在隔膜基材10413的中间区域。第三类隔膜涂层10446贴覆在隔膜基材10413的远离隔膜基材10412的一侧,且贴覆在隔膜基材10413的边缘区域。第三类隔膜涂层10445、第三类隔膜涂层10446可以位于隔膜基材10412的同侧。
如图14中的上图所示,在热压工艺之前,第三类隔膜涂层10445可以贴覆在正极极片1012上,第二类隔膜涂层10435与正极极片1012之间可以可能存在一定间隙。在热压工艺过程中,第三类隔膜涂层10445可以在高温、加压的作用下发生熔融,并在隔膜基材1041上流动铺开。在热压工艺之后,第三类隔膜涂层10445、第二类隔膜涂层10435均可以贴覆在正极极片1012上。
如图14中的上图所示,在热压工艺之前,第三类隔膜涂层10446可以贴覆在负极极片1022上,第二类隔膜涂层10436与负极极片1022之间可以可能存在一定间隙。在热压工艺过程中,第三类隔膜涂层10446可以在高温、加压的作用下发生熔融,并在隔膜基材1041上流动铺开。在热压工艺之后,第三类隔膜涂层10446、第二类隔膜涂层10436均可以贴覆在负极极片1022上。
可选的,第三类隔膜涂层10441、第三类隔膜涂层10442、第三类隔膜涂层10443、第三类隔膜涂层10444、第三类隔膜涂层10445、第三类隔膜涂层10445的宽度可以为极片宽度的0.1%~45%。
可选的,第三类隔膜涂层10441、第三类隔膜涂层10442、第三类隔膜涂层10443、第三类隔膜涂层10444、第三类隔膜涂层10445、第三类隔膜涂层10445的宽度可以为极片宽度的0.5%~5.0%。
综上所述,在热压工艺之前,对应极片中间区域的隔膜可以包括隔膜基材和第二类隔膜涂层,对应极片边缘区域的隔膜可以包括隔膜基材和第三类隔膜涂层。由于第二类隔膜涂层的厚度可以小于第三类隔膜涂层的(最小)厚度,因此对应极片中间区域的隔膜厚度可以小于对应极片边缘区域的隔膜厚度。在热压工艺之后,粘结剂聚合物可以发生热熔融、 交联等物理变化,粘结剂聚合物可以充分填充在隔膜基材和极片之间,进而减小锂离子析出的风险。
除此以外,通过在隔膜基材的边缘区域设置相对更高质量含量的粘结剂聚合物,有利于提升隔膜基材在边缘区域的粘结能力,有利于提升极片与隔膜之间的结合力,进而有利于提升电池的循环性能、改善电芯变形。不仅如此,由于含量不同使得边缘区域的粘结剂聚合物可以具有相对更高的厚度,这有利于提高电极整体的热压均匀性。
图15是本申请实施例提供的另一种电池40的示意性结构图。结合图6、图13、图15所示的示例可知,在热压工艺后,相邻且面对面设置的第三类隔膜涂层1044之间可以相融在一起,形成如图15所示的第一类隔膜涂层1042。结合图13、图15所示的示例,第一类隔膜涂层1042所包含的粘结剂聚合物的质量含量可以大于第二类隔膜涂层1043所包含的粘结剂聚合物的质量含量,且第一类隔膜涂层1042可以连接在相邻两个隔膜基材1041之间,以包围位于该相邻两个基材之间的极片。这有利于降低相邻的正极极片101和负极极片102之间发生短路的可能性。
下面通过对比以下多个实施例,阐述本申请提供的方案的技术效果。
实施例一
实施例一可以应用于50110227(高50mm、宽110mm、长227mm)叠片软包电池,容量为10.8Ah,工作电压范围为2.75~4.30V。
该电池包括常规隔膜基材,且隔膜基材的两个平面上均匀涂布隔膜涂层,该隔膜涂层具有粘结性。也就是说,隔膜涂层中间区域的粘结剂聚合物含量近似等于隔膜涂层边缘间区域的粘结剂聚合物含量。粘结剂聚合物的质量含量为0.1g/m 2
实施例二
实施例二可以应用于506390(高50mm、宽63mm、长90mm)卷绕软包电池,容量为5Ah(只涂边缘),工作电压范围为3.0-4.48V。
电池包括厚度为5.5μm、材料为聚乙烯的隔膜基材,该隔膜基材的孔隙率为39.0%。该电池还包括贴覆在隔膜基材边缘区域的隔膜涂层(在隔膜基材的中间区域未贴覆具有粘结性的隔膜涂层)。该隔膜涂层包括质量含量为0.5g/m 2的粘结剂聚合物。该隔膜涂层可以沿纵向TD被涂布在隔膜基材的两个表面上。隔膜涂层的宽度可以为3mm。该隔膜涂层可以对应图4至图12所述的第一类隔膜涂层。
实施例三
实施例三可以应用于50110227(高50mm、宽110mm、长227mm)叠片软包电池,容量为10.8Ah,工作电压范围为2.75~4.30V。
电池包括厚度为7.0μm、材料为聚乙烯的隔膜基材,该隔膜基材的孔隙率为38.6%。该电池还包括贴覆在隔膜基材边缘区域的隔膜涂层(在隔膜基材的中间区域未贴覆具有粘结性的隔膜涂层),该隔膜涂层可以沿纵向TD、横向MD被涂布在隔膜基材的两个表面上。隔膜涂层的宽度可以为2mm。该隔膜涂层包括粘结剂聚合物和陶瓷涂层,粘结剂聚合物和陶瓷涂层的比例为5:5。该隔膜涂层包括质量含量为0.62g/m 2的粘结剂聚合物。该隔膜涂层包括质量含量为0.62g/m 2的陶瓷涂层。该隔膜涂层可以对应图4至图12所述的第一类隔膜涂层。
实施例四
实施例四可以应用于506390(高50mm、宽63mm、长90mm)卷绕软包电池,容量为5Ah,工作电压范围为3.0~4.48V。
电池包括厚度为5.5μm、材料为聚乙烯的隔膜基材,该隔膜基材的孔隙率为39.0%。该电池还包括贴覆在隔膜基材边缘区域的隔膜涂层1,以及贴覆在隔膜基材的中间区域的隔膜涂层2。隔膜涂层1、隔膜涂层2均可以沿纵向TD被涂布在隔膜基材的两个表面上。隔膜涂层1的宽度可以为3mm。隔膜涂层1、隔膜涂层2均包括粘结剂聚合物。在隔膜涂层1中,粘结剂聚合物的质量含量为0.6g/m 2。在隔膜涂层2中,粘结剂聚合物的质量含量为0.1g/m 2。隔膜涂层1可以对应图13至图14所述的第三类隔膜涂层,以及图15所述的第一类隔膜涂层。隔膜涂层2可以对应图13至图15所述的第二类隔膜涂层。
实施例五
实施例五可以应用于50110227(高50mm、宽110mm、长227mm)卷绕软包电池,容量为10.8Ah,工作电压范围为2.75~4.30V。
电池包括厚度为7.0μm、材料为聚乙烯的隔膜基材,该隔膜基材的孔隙率为38.6%。该电池还包括贴覆在隔膜基材边缘区域的隔膜涂层1,以及贴覆在隔膜基材的中间区域的隔膜涂层2。隔膜涂层1、隔膜涂层2均可以沿纵向TD被涂布在隔膜基材的两个表面上。隔膜涂层1的宽度可以为2mm。隔膜涂层1、隔膜涂层2均包括粘结剂聚合物。在隔膜涂层1中,粘结剂聚合物的质量含量为0.62g/m 2。隔膜涂层2还包括陶瓷涂层,陶瓷涂层与粘结剂聚合物的比例为5:5,在隔膜涂层2中,陶瓷涂层和粘结剂聚合物的总质量含量为0.62g/m 2。隔膜涂层1可以对应图13至图14所述的第三类隔膜涂层,以及图15所述的第一类隔膜涂层。隔膜涂层2可以对应图13至图15所述的第二类隔膜涂层。
隔膜涂层2的原料例如可以包括勃母石25份,聚偏二氟乙烯-六氟丙烯粉25份,去离子水46份,粘结剂3.5份,水性润湿剂1.0份,水性分散剂1.5份;然后将勃母石加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的聚偏二氟乙烯-六氟丙烯、去离子水、粘结剂、水性润湿剂、水性分散剂并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层的浆料。
实施例六
实施例六可以应用于454378(高45mm、宽43mm、长78mm)卷绕软包电池,容量为2.8Ah,工作电压范围为3.0~4.48V。
电池包括厚度为7.0μm、材料为聚丙烯的隔膜基材,该隔膜基材的孔隙率为37.7%。
该电池还包括单面贴覆的陶瓷涂层,以及贴覆在隔膜基材边缘区域的隔膜涂层1,以及贴覆在隔膜基材的中间区域的隔膜涂层2。隔膜涂层1、隔膜涂层2均可以沿纵向TD被涂布在隔膜基材的两个表面上。隔膜涂层1的宽度可以为2mm。隔膜涂层1、隔膜涂层2均包括粘结剂聚合物。在隔膜涂层1中,粘结剂聚合物的质量含量为0.95g/m 2。在隔膜涂层2中,粘结剂聚合物的质量含量为0.5g/m 2。隔膜涂层1可以对应图13至图14所述的第三类隔膜涂层,以及图15所述的第一类隔膜涂层。隔膜涂层2可以对应图13至图15所述的第二类隔膜涂层。
陶瓷涂层的原料例如可以包括勃母石50份,去离子水45.5份,羧甲基纤维素1.0份,丁苯橡胶为3.5份;然后将勃母石加入去离子水中,在高速分散机内高速分散得到浆料分 散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的羧甲基纤维素、丁苯橡胶并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层的浆料。
实施例七
实施例七可以应用于455382(高45mm、宽53mm、长82mm)卷绕软包电池,容量为3.6Ah,工作电压范围为3.0~4.48V。
电池包括厚度为4.5μm、材料为聚乙烯的隔膜基材,该隔膜基材的孔隙率为38.5%。该电池还包括贴覆在隔膜基材边缘区域的隔膜涂层1,以及贴覆在隔膜基材的中间区域的隔膜涂层2。隔膜涂层1、隔膜涂层2均可以沿纵向TD被涂布在隔膜基材的两个表面上。隔膜涂层1的宽度可以为1.5mm。隔膜涂层1、隔膜涂层2均包括粘结剂聚合物和陶瓷涂层。在隔膜涂层1中,粘结剂聚合物和陶瓷涂层的比例为7:3;在隔膜涂层2中,粘结剂聚合物和陶瓷涂层的比例为5:5。单侧隔膜涂层的质量含量为0.43g/m 2。隔膜涂层1可以对应图13至图14所述的第三类隔膜涂层,以及图15所述的第一类隔膜涂层。隔膜涂层2可以对应图13至图15所述的第二类隔膜涂层。
隔膜涂层1的浆料配置方法例如可以包括:按照质量比例得到涂层原料,其中勃母石13.5份,去离子水46份,粘结剂32.5份,粘结剂5份,水性润湿剂1.0份,水性分散剂1.5份;然后将勃母石加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂、水性润湿剂、PVDF粉体并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层的浆料。
隔膜涂层2的浆料配置方法可以包括:按照质量比例得到涂层原料,其中勃母石23.5份,粘结剂23.5份,去离子水46份,水性润湿剂1.0份,水性分散剂1.5份;然后将勃母石加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂、水性润湿剂、PVDF粉体并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层的浆料。隔膜涂层1可以对应图13至图14所述的第三类隔膜涂层,以及图15所述的第一类隔膜涂层。隔膜涂层2可以对应图13至图15所述的第二类隔膜涂层。
实施例八
实施例八可以应用于466082(高46mm、宽60mm、长82mm)卷绕软包电池,容量为4.2Ah,工作电压范围为3.0~4.48V。
电池包括厚度为4.5μm、材料为聚乙烯的隔膜基材,该隔膜基材的孔隙率为40.0%。该电池还包括贴覆在隔膜基材边缘区域的隔膜涂层1,以及贴覆在隔膜基材的中间区域的隔膜涂层2。隔膜涂层1、隔膜涂层2均可以沿纵向TD被涂布在隔膜基材的两个表面上。隔膜涂层1的宽度可以为1.5mm。隔膜涂层1、隔膜涂层2均包括粘结剂聚合物,隔膜涂层2还包括陶瓷涂层。在隔膜涂层2中,粘结剂聚合物和陶瓷涂层的比例为6:4。单侧隔膜涂层的质量含量为0.54g/m 2。隔膜涂层1可以对应图13至图14所述的第三类隔膜涂层,以及图15所述的第一类隔膜涂层。隔膜涂层2可以对应图13至图15所述的第二类隔膜涂层。
隔膜涂层1的浆料配置方法例如可以包括:按照质量比例得到涂层原料,其中勃母石30.9份,去离子水46份,粘结剂20.6份,水性润湿剂1.0,份,水性分散剂1.5份;然后将勃母石加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂、水性润湿剂、PVDF粉体并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层的浆料。
隔膜涂层2的浆料配置方法可以包括:按照质量比例得到涂层原料,其中聚偏二氟乙烯-八氟丙烯51.5份,去离子水46份,水性润湿剂1.0份,水性分散剂1.5份;然后将勃母石加入去离子水中,在高速分散机内高速分散得到浆料分散液,具体转速例如可以为15000r/min,分散时长例如可以为2h;之后加入完全溶解的水性分散剂、水性润湿剂、PVDF粉体并充分搅拌、研磨,搅拌、研磨的时长例如可以为3h;最后抽真空消泡,得到混合均匀的第三类隔膜涂层的浆料。
为对比上述实施例的技术效果,下面提供几种电池性能的测试方法。
能量密度测试方法
将电池置于25℃恒温箱中静置30分钟,并以标准充电模式对电池充电。待电池充满电后,以0.2C放电规格将电池放电至下限电压,并记录电池的放电能量。根据下述公式可以计算电池的能量密度:能量密度=放电能量/(电池长度*电池宽度*电池厚度)。
穿钉测试方法:
按照标准充电模式将电池充满电后,在12~24h内进行穿钉测试。例如,将电池置于25℃防爆箱中,以150mm/s的速度将钢钉刺入电芯中央部分,直至贯穿为止,保持10min后退针,并记录测试通过率。穿钉测试方法可以反映电池在机械滥用场景下的性能。
热箱测试方法:
按照标准充电模式将电池充满电后,在12~24h内进行热箱测试。例如,通过对流热空气箱或循环热空气箱,从起始温度25±3℃开始加热,并升温至135±2或150±2℃,其中温变率为5±2℃/min。在温度达到135±2或150±2℃后保持30min,并记录测试通过率。热箱测试可以反映电℃池在热滥用场景下的性能。
测试结束后,在干燥房拆解电池,测试隔膜的宽度和长度,并与初始值作对比,给出。
上述实施例的测试结果如表1、表2所示:
表1
Figure PCTCN2021136374-appb-000001
表2
Figure PCTCN2021136374-appb-000002
根据测试结果可知,本申请实施例提供的方案有利于提高100%SOC针刺测试、150℃/30min热箱测试的通过率。
另外,相比于实施例二,在边缘区域和中间区域均设置包含粘结剂聚合物的隔膜涂层,有利于提高中间区域的粘结性能,提高电池的动力学性能,降低电芯变形的可能性;同时,粘结剂聚合物还有利于形成孔隙,增大了电解液的保液,有利于提升电池的循环性能,降低电池厚度的增长率。例如,在300次循环后,电池厚度的增长率为4.8%或者更低。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种电池,其特征在于,包括:
    第一极片;
    第一隔膜基材、第二隔膜基材,所述第一隔膜基材、所述第二隔膜基材为与所述第一极片相邻的两个隔膜基材,所述第一隔膜基材、所述第二隔膜基材分别位于所述第一极片的两侧;
    第一类隔膜涂层,所述第一类隔膜涂层贴覆在所述第一隔膜基材的第一边缘区域,且贴覆在所述第二隔膜基材的第二边缘区域,所述第一边缘区域与所述第二边缘区域位于所述电池的同侧,第一边缘区域和第二边缘区域相对设置。
  2. 根据权利要求1所述的电池,其特征在于,所述第一类隔膜涂层还贴覆在所述第一极片的侧边。
  3. 根据权利要求1或2所述的电池,其特征在于,所述电池还包括第二极片、第三隔膜基材,所述第二隔膜基材、所述第三隔膜基材均与所述第二极片相邻,所述第二隔膜基材位于所述第一隔膜基材与所述第三隔膜基材之间,所述第一类隔膜涂层还贴覆在所述第二隔膜基材的第三边缘区域、所述第二隔膜基材的侧边,以及所述第三隔膜基材的第四边缘区域,所述第二隔膜基材的侧边连接所述第二边缘区域与所述第三边缘区域,所述第三边缘区域与所述第四边缘区域相对设置且位于所述电池的同侧。
  4. 根据权利要求1或2所述的电池,其特征在于,所述电池还包括第三极片、第四隔膜基材、第五隔膜基材,所述第四隔膜基材、所述第五隔膜基材均与所述第三极片相邻,所述第二隔膜基材位于所述第一隔膜基材与第四隔膜基材之间,所述第四隔膜基材位于所述第二隔膜基材与所述第五隔膜基材之间,所述第一类隔膜涂层还贴覆在所述第二隔膜基材的侧边、所述第四隔膜基材的侧边、所述第四隔膜基材的第五边缘区域、所述第五隔膜基材的第六边缘区域,所述第二边缘区域、所述第二隔膜基材的侧边、所述第四隔膜基材的侧边、所述第五边缘区域、所述第六边缘区域均位于所述电池的同侧,所述第五边缘区域与所述第六边缘区域相对设置。
  5. 根据权利要求1至4中任一项所述的电池,其特征在于,所述电池还包括第二类隔膜涂层,所述第二类隔膜涂层贴覆在所述第一隔膜基材的中间区域,所述第一类隔膜涂层与所述第二类隔膜涂层相连,所述第二类隔膜涂层包括第一质量含量的粘结剂聚合物,所述第一类隔膜涂层包括第二质量含量的粘结剂聚合物,所述第二质量含量大于所述第一质量含量。
  6. 根据权利要求5所述的电池,其特征在于,所述第二质量含量为0.4~5g/m 2
  7. 根据权利要求5或6所述的电池,其特征在于,所述第二质量含量与所述第一质量含量的差值为0.05~4.5g/m 2
  8. 根据权利要求5至7中任一项所述的电池,其特征在于,所述粘结剂聚合物包括以下至少一种:聚偏氟乙烯、聚六氟丙烯、偏氟乙烯-六氟丙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、聚乙烯-乙酸乙烯的共聚物、羧甲基纤维素钠、丁苯橡胶、聚丙烯酸、聚丙烯酸盐、聚丙烯酸酯、聚丙烯腈、聚酰胺、聚酰亚胺、聚环氧乙烷、乙酸纤维素、乙酸 丁酸纤维素、乙酸丙酸纤维素、聚乙烯吡咯烷酮、聚乙酸乙烯酯、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯。
  9. 根据权利要求1至8中任一项所述的电池,其特征在于,所述电池还包括电解液,所述第一类隔膜涂层的溶解参数为第一溶解度参数,所述电解液的溶解度参数为第二溶解度参数,所述第一溶解度参数小于或等于所述第二溶解度参数,且所述第二溶解度参数与所述第一溶解度参数的差值小于预设溶解度参数。
  10. 根据权利要求9所述的电池,其特征在于,所述预设溶解度参数小于或等于5(J/cm 3) 0.5
  11. 根据权利要求1至10中任一项所述的电池,其特征在于,所述第一类隔膜涂层的宽度为所述第一极片的宽度的0.1%~45%。
  12. 一种电池,其特征在于,包括:
    第一隔膜基材;
    第二类隔膜涂层,所述第二类隔膜涂层贴覆在所述第一隔膜基材的中间区域,所述第二类隔膜涂层包括第一质量含量的粘结剂聚合物;
    第三类隔膜涂层,所述第三类隔膜涂层贴覆在所述第一隔膜基材的边缘区域,所述第三类隔膜涂层与所述第二类隔膜涂层相连,所述第三类隔膜涂层包括第二质量含量的粘结剂聚合物,所述第二质量含量大于所述第一质量含量。
  13. 根据权利要求12所述的电池,其特征在于,所述第二类隔膜涂层的厚度小于或等于所述第三类隔膜涂层的最小厚度。
  14. 根据权利要求12或13所述的电池,其特征在于,所述第二质量含量为0.4~5g/m 2
  15. 根据权利要求12至14中任一项所述的电池,其特征在于,所述第二质量含量与所述第一质量含量的差值为0.05~4.5g/m 2
  16. 根据权利要求12至15中任一项所述的电池,其特征在于,所述电池还包括电解液,所述第三类隔膜涂层的溶解参数为第一溶解度参数,所述电解液的溶解度参数为第二溶解度参数,所述第一溶解度参数小于或等于所述第二溶解度参数,且所述第二溶解度参数与所述第一溶解度参数的差值小于预设溶解度参数。
  17. 根据权利要求16所述的电池,其特征在于,所述预设溶解度参数小于或等于5(J/cm 3) 0.5
  18. 根据权利要求12至17中任一项所述的电池,其特征在于,所述电池还包括极片,所述第三类隔膜涂层的宽度为所述极片的宽度的0.1%~45%。
  19. 根据权利要求12至18中任一项所述的电池,其特征在于,所述粘结剂聚合物包括以下至少一种:聚偏氟乙烯、聚六氟丙烯、偏氟乙烯-六氟丙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、聚乙烯-乙酸乙烯的共聚物、羧甲基纤维素钠、丁苯橡胶、聚丙烯酸、聚丙烯酸盐、聚丙烯酸酯、聚丙烯腈、聚酰胺、聚酰亚胺、聚环氧乙烷、乙酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、聚乙烯吡咯烷酮、聚乙酸乙烯酯、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯。
  20. 一种电子设备,其特征在于,包括如权利要求1至19中任一项所述的电池。
  21. 一种移动装置,其特征在于,包括如权利要求1至19中任一项所述的电池。
PCT/CN2021/136374 2020-12-22 2021-12-08 电池、电子设备、移动装置 WO2022135151A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023537949A JP2023554151A (ja) 2020-12-22 2021-12-08 バッテリー、電子デバイス、及びモバイル装置
US18/258,767 US20240047827A1 (en) 2020-12-22 2021-12-08 Battery, Electronic Device, and Mobile Apparatus
EP21909148.5A EP4246701A1 (en) 2020-12-22 2021-12-08 Battery, electronic device, and mobile apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011530559.7 2020-12-22
CN202011530559.7A CN114725623A (zh) 2020-12-22 2020-12-22 电池、电子设备、移动装置

Publications (1)

Publication Number Publication Date
WO2022135151A1 true WO2022135151A1 (zh) 2022-06-30

Family

ID=82157389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136374 WO2022135151A1 (zh) 2020-12-22 2021-12-08 电池、电子设备、移动装置

Country Status (5)

Country Link
US (1) US20240047827A1 (zh)
EP (1) EP4246701A1 (zh)
JP (1) JP2023554151A (zh)
CN (1) CN114725623A (zh)
WO (1) WO2022135151A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438743A (zh) * 2022-07-14 2024-01-23 华为技术有限公司 电池隔膜及其制备方法、电池和电子装置
CN217589312U (zh) * 2022-07-19 2022-10-14 宁德时代新能源科技股份有限公司 隔膜、电池单体、热压模具、电池和用电装置
CN115411455A (zh) * 2022-09-26 2022-11-29 惠州亿纬锂能股份有限公司 一种复合隔膜及其制备方法和钠离子电池
CN116130850B (zh) * 2023-04-13 2024-01-16 宁德新能源科技有限公司 二次电池及用电设备
CN116565458B (zh) * 2023-07-05 2023-10-13 宁德新能源科技有限公司 一种隔膜、电化学装置和电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420312A (zh) * 2011-11-04 2012-04-18 北京好风光储能技术有限公司 一种高电压锂离子电池、复合电极对及制备方法
US20150004461A1 (en) * 2013-06-27 2015-01-01 QingHong Technology Co., Ltd. Electric core for thin film battery
JP2015118875A (ja) * 2013-12-19 2015-06-25 トヨタ自動車株式会社 非水電解液二次電池
CN105703015A (zh) * 2016-04-01 2016-06-22 庄新国 一种叠片式锂离子电池
CN109950454A (zh) * 2019-03-29 2019-06-28 中山大学 一种锂硫电池功能隔膜及其制备方法
CN111564593A (zh) * 2020-06-04 2020-08-21 江苏星源新材料科技有限公司 隔膜、隔膜卷、电芯以及动力锂电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210040366U (zh) * 2018-09-29 2020-02-07 浙江遨优动力系统有限公司 一种叠片式锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420312A (zh) * 2011-11-04 2012-04-18 北京好风光储能技术有限公司 一种高电压锂离子电池、复合电极对及制备方法
US20150004461A1 (en) * 2013-06-27 2015-01-01 QingHong Technology Co., Ltd. Electric core for thin film battery
JP2015118875A (ja) * 2013-12-19 2015-06-25 トヨタ自動車株式会社 非水電解液二次電池
CN105703015A (zh) * 2016-04-01 2016-06-22 庄新国 一种叠片式锂离子电池
CN109950454A (zh) * 2019-03-29 2019-06-28 中山大学 一种锂硫电池功能隔膜及其制备方法
CN111564593A (zh) * 2020-06-04 2020-08-21 江苏星源新材料科技有限公司 隔膜、隔膜卷、电芯以及动力锂电池

Also Published As

Publication number Publication date
US20240047827A1 (en) 2024-02-08
CN114725623A (zh) 2022-07-08
EP4246701A1 (en) 2023-09-20
JP2023554151A (ja) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2022135151A1 (zh) 电池、电子设备、移动装置
US8343388B2 (en) Electrode having porous active coating layer, manufacturing method thereof and electrochemical device containing the same
EP2696393B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR101027120B1 (ko) 방사선 조사를 이용한 유/무기 복합막의 제조방법 및 이에 따라 제조되는 유/무기 복합막
CN102569701A (zh) 一种锂离子电池及其隔膜
TW201733186A (zh) 非水系二次電池用隔板及非水系二次電池
KR20180094779A (ko) 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
KR20190049692A (ko) 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
WO2022057189A1 (zh) 一种固态电池、电池模组、电池包及其相关的装置
WO2022141508A1 (zh) 一种电化学装置和电子装置
WO2023155604A1 (zh) 复合隔膜及电化学装置
EP4318777A1 (en) Separator, and electrochemical device and electronic device comprising same
CN112670450A (zh) 一种固态电池用负极极片及其制备方法和用途
JP2014026946A (ja) 非水電解質電池用セパレータ及び非水電解質電池
CN114361714A (zh) 一种涂覆浆料、其制备方法和应用涂覆浆料制成的复合多孔性隔膜、锂离子电池
JP2018113220A (ja) リチウムイオン二次電池の製造方法
JP2014116136A (ja) 全固体二次電池
JP2005019157A (ja) 電子部品用セパレータおよび電子部品
EP4207427A1 (en) Electrode assembly and battery cell including same
CN114430018A (zh) 一种电化学装置及包含该电化学装置的电子装置
KR100749626B1 (ko) 이차전지
JP2019029315A (ja) 非水系二次電池用セパレータ、非水系二次電池
JP4222761B2 (ja) 非水電解質電池
KR20150115538A (ko) 리튬 이차전지용 집전체 및 이를 포함하는 전극
JP2014135272A (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18258767

Country of ref document: US

Ref document number: 2023537949

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021909148

Country of ref document: EP

Effective date: 20230613

NENP Non-entry into the national phase

Ref country code: DE