WO2022134889A1 - 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 - Google Patents

可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 Download PDF

Info

Publication number
WO2022134889A1
WO2022134889A1 PCT/CN2021/128935 CN2021128935W WO2022134889A1 WO 2022134889 A1 WO2022134889 A1 WO 2022134889A1 CN 2021128935 W CN2021128935 W CN 2021128935W WO 2022134889 A1 WO2022134889 A1 WO 2022134889A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
heating
powder
porous ceramic
graphene porous
Prior art date
Application number
PCT/CN2021/128935
Other languages
English (en)
French (fr)
Inventor
林光榕
秦飞
刘卫丽
Original Assignee
惠州市新泓威科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市新泓威科技有限公司 filed Critical 惠州市新泓威科技有限公司
Publication of WO2022134889A1 publication Critical patent/WO2022134889A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture

Definitions

  • the invention belongs to the technical field of heat-generating ceramics and atomizing cores made of heat-generating ceramics, and particularly relates to a heat-generating graphene porous ceramics, an atomizing core and a preparation method thereof.
  • the electronic atomizer includes an atomizing core.
  • the atomizing core is used to heat and atomize the liquid to be atomized into aerosol, steam, and vapor, so that the user can take it and use it for health and medical purposes.
  • the liquid to be atomized can be smoke. liquid or solutions containing drugs.
  • the atomization core is the key component of the electronic atomizer, and its performance directly determines the atomization effect, heating efficiency and user experience of the electronic atomizer.
  • the atomizing core on the market is usually composed of liquid-conducting cotton plus heating resistance wire, or ceramic liquid-conducting and heating resistance wire.
  • the combination method brings a certain degree of improvement in heat transfer efficiency.
  • Invention patent CN111671163 discloses a preparation method of a graphene thermally conductive ceramic heating element for an electronic cigarette atomizer. Using the fast thermal reaction efficiency, good thermal stability and thermal conductivity of graphene materials, the graphene modified thermally conductive coating is The coating on the ceramic is shaped, that is, printing or spraying on the surface of the ceramic heating element.
  • the graphene modified thermal conductive coating Compared with the resistance wire, the graphene modified thermal conductive coating further increases the heating surface and improves the heat transfer efficiency, but the graphene modified thermal conductive coating still belongs to the ceramics.
  • the heating components on the surface are essentially the process of transferring heat from the heating components to the ceramic heating body. It is inevitable that a large temperature gradient will occur during the heating process, and fatigue will occur due to the difference in thermal stress during the repeated heating and cooling process. , resulting in a decrease in the reliability of the porous ceramic structure. In the case of unstable structure, impurities and heavy metals in the ceramic are easily separated and mixed into the liquid to be atomized. Excessive heavy metals will bring potential harm to the human body.
  • the technical problem to be solved by the present invention is to overcome the problem of poor structural stability caused by the large temperature gradient and thermal fatigue of the existing heating method during the heating process, and to solve the problem that impurities and heavy metals in the ceramic are easily separated under the condition of structural instability.
  • the problem of exceeding the standard caused by being mixed into the liquid to be atomized is provided, and a heat-generating graphene porous ceramic, an atomizing core and a preparation method thereof are provided.
  • a heatable graphene porous ceramic is made of a base material, and the base material includes the following raw material components by weight: 1-60 parts of graphene oxide powder, ceramic powder 10-80 parts, pore-forming agent 1-50 parts, sintering aid 1-40 parts.
  • the base material includes the following raw material components by weight: 10-40 parts of graphene oxide powder, 20-80 parts of ceramic powder, 1-30 parts of pore-forming agent, and 1-20 parts of sintering aid.
  • the graphene oxide powder is obtained by chemical oxidation, ultrasonication, spraying and drying of graphite through bismuthate under strong acid conditions.
  • the ceramic powder includes at least one of kaolin, diatomite, alumina, silicon nitride, silicon carbide, quartz sand, glass sand, clay, and feldspar powder;
  • the pore-forming agent is at least one of graphite, starch, flour, soybean flour, polystyrene microspheres, polymethyl methacrylate microspheres, carbonates, ammonium salts, sucrose, and fibers.
  • the particle size of the pore-forming agent is 1-200 microns;
  • the sintering aid is at least one of boron oxide, boric acid, oleic acid, stearic acid, sodium silicate, calcium oxide, iron oxide, and titanium oxide.
  • the base material further includes the following raw material components in parts by weight: 1-40 parts of nano-silicon oxide.
  • the nano-silica is nano-silica, and the nano-silica is colloidal nano-silica or powdery nano-silica.
  • the porosity of the exothermic graphene porous ceramic is 35-70%.
  • an atomizing core which includes a heating body for conducting and heating the liquid to be atomized, and positive and negative electrodes arranged at both ends of the heating body, the heating body is made of heat-generating graphite Made of ene porous ceramics.
  • it also includes a liquid-conducting layer connected to the heating element, and the liquid-conducting layer is made of a porous ceramic material.
  • Another technical solution of the present invention is a method for preparing a heat-generating graphene porous ceramic, characterized in that it comprises the following steps:
  • Another technical solution of the present invention is a method for preparing a heat-generating graphene porous ceramic, characterized in that it comprises the following steps:
  • the graphene oxide powder is prepared by the following steps: taking graphite, using a strong oxidant under the condition of concentrated sulfuric acid, and carrying out chemical oxidation at a temperature of 10-50 ° C, washing with water until the pH value is weakly acidic, ultrasonically
  • the graphene oxide dispersion is obtained by processing, and the graphene oxide dispersion is spray-dried to obtain graphene oxide powder.
  • the graphite is flake graphite with a particle size of 500-5000 mesh
  • the strong oxidant includes one or more of sodium bismuthate, potassium bismuthate, bismuth chlorate, bismuth nitrate and bismuth oxynitrate, washed with water The pH value after it is 5-7, and the temperature of spray drying is 80-200 degreeC.
  • the rotational speed of the ball milling device is set to 150-350 rpm, the ball-milling time is 1-10 h, and the diameter of the abrasive is 1-20 mm.
  • the baking-drying temperature is 60-120° C.
  • the baking-drying time is 2-12 hours.
  • the melting point of the paraffin wax is 60-110° C.
  • the weight of the paraffin wax is 10-60% of the weight of the mixed powder.
  • the temperature for removing wax is 400-800° C.
  • the time for removing wax is 2-12 hours.
  • the sintering temperature is 700-1500°C, the heating rate is 1-5°C/min, and the sintering holding time is 2-12h;
  • the sintering protective atmosphere is a reducing atmosphere, and the reducing atmosphere includes Hydrogen or a mixture of hydrogen and inert gases.
  • the present invention utilizes the excellent electrothermal properties of graphene materials, and adds graphene thermally conductive materials in the process of preparing porous ceramics, so that the ceramic heating element and the heating resistance material are integrally formed, and the large temperature gradient in the heating process is solved. And the problem of poor structural stability caused by thermal fatigue;
  • the graphene porous ceramic of the present invention becomes a ceramic resistor as a whole, which can not only conduct the atomized liquid, but also generate heat internally, with high electrothermal conversion efficiency, uniform heat generation, and wide temperature tolerance range, up to -50°C ⁇ 500°C, the atomization effect of the liquid to be atomized is good;
  • the present invention has reliable structural stability due to the integrated sintering of graphene oxide and ceramic materials, and solves the problem that ceramics are easily broken during use, and impurities and heavy metals are easily separated, resulting in the potential harm to the human body caused by excessive heavy metals. .
  • Fig. 1 is the structural representation of the atomizing core of the present invention
  • Fig. 2 is a bottom view of the atomizing core of the present invention.
  • a heatable graphene porous ceramic of the invention is made of a base material, and the base material includes the following raw material components in parts by weight: 1-60 parts of graphene oxide powder, 10-80 parts of ceramic powder, pore-forming agent 1 to 50 parts, 1 to 40 parts of sintering aid.
  • the base material includes the following raw material components by weight: 10-40 parts of graphene oxide powder, 20-80 parts of ceramic powder, 1-30 parts of pore-forming agent, and 1-20 parts of sintering aid.
  • Graphene oxide powder is obtained by chemical oxidation, ultrasonic, spraying and drying of graphite by bismuthate under strong acid conditions.
  • the ceramic powder includes at least one of kaolin, diatomaceous earth, alumina, silicon nitride, silicon carbide, quartz sand, glass sand, clay, and feldspar powder.
  • the pore-forming agent is at least one of graphite, starch, flour, soybean flour, polystyrene microspheres, polymethyl methacrylate microspheres, carbonate, ammonium salt, sucrose, and fibers, and the particle size of the pore-forming agent is 1 to 200 microns.
  • the sintering aid is at least one of boron oxide, boric acid, oleic acid, stearic acid, sodium silicate, calcium oxide, iron oxide, and titanium oxide.
  • graphene oxide is added to the porous ceramic matrix material as a heating material
  • the surface of graphene oxide includes functional groups such as hydroxyl and carboxyl groups, the oxygen-containing functional groups on the surface of ceramic particles, and the functional groups such as hydroxyl and carboxyl groups on the surface of graphene.
  • the ceramic powder material and the graphene form a stable combination to obtain a graphene porous ceramic that can heat, and the graphene has electrical conductivity, so that the graphene porous ceramic can be a resistor as a whole. Can get hot.
  • the resistance value can be adjusted by the ratio of graphene and ceramic powder. It has high electrothermal conversion efficiency and good thermal conductivity.
  • the temperature range can be as high as -50°C ⁇ 500°C.
  • Well due to the integrated sintering of the graphene material, its structural stability is excellent, it will not be broken during use, and the problem of excessive heavy metals caused by the separation of impurities and heavy metals is avoided.
  • the matrix material further includes the following raw material components in parts by weight: 1-40 parts of nano-silicon oxide.
  • Nano-silica is nano-silica
  • nano-silica is colloidal nano-silica or powdery nano-silica.
  • a micro-nano composite structure is formed through the curing reaction during the calcination process. Due to its ultra-high specific surface area and a large number of hydroxyl groups on the surface, nano-silica can effectively react with ceramic powder in solid phase.
  • nano-silica can enable the product to maintain high porosity and achieve high strength at the same time. Under the conditions of high strength and stable internal structure, the graphene porous ceramic is less likely to be broken, and it is more difficult to separate out impurities and precipitate heavy metals during use, which can minimize heavy metals exceeding the standard.
  • the porosity of the exothermic graphene porous ceramic is 35-70%.
  • An atomizing core of the present invention includes a heating element for conducting and heating the liquid to be atomized, and positive and negative electrodes arranged at both ends of the heating element.
  • the heating element is made of graphene porous ceramics that can generate heat.
  • the liquid-conducting layer connected to the heating element is composed of a porous ceramic material.
  • the preparation method of a kind of exothermic graphene porous ceramics of the present invention comprises the following steps:
  • the sintering process includes heating, heat preservation, and cooling to obtain graphene porous ceramics; wherein, the sintering temperature is 700-1500°C, the heating rate is 1-5°C/min, and the sintering is performed.
  • the holding time is 2 to 12 hours;
  • the sintering protective atmosphere is a reducing atmosphere, and the reducing atmosphere includes hydrogen or a mixed gas of hydrogen and an inert gas.
  • Another preparation method of the exothermic graphene porous ceramic of the present invention comprises the following steps:
  • the sintering process includes heating, heat preservation, and cooling to obtain graphene porous ceramics; wherein, the sintering temperature is 700-1500°C, the heating rate is 1-5°C/min, and the sintering is performed.
  • the holding time is 2 to 12 hours;
  • the sintering protective atmosphere is a reducing atmosphere, and the reducing atmosphere includes hydrogen or a mixed gas of hydrogen and an inert gas.
  • the above-mentioned graphene oxide powder is prepared by the following steps:
  • graphite use a strong oxidant under the condition of concentrated sulfuric acid, and carry out chemical oxidation at a temperature of 10 to 50 ° C, wash with water until the pH value is weakly acidic, obtain graphene oxide dispersion by ultrasonic treatment, and spray the graphene oxide dispersion Dry to obtain graphene oxide powder.
  • the graphite is flake graphite
  • the particle size is 500-5000 mesh
  • the strong oxidant includes one or more of sodium bismuth, potassium bismuthate, bismuth chlorate, bismuth nitrate, bismuth oxynitrate
  • the pH value after washing is 5 ⁇ 7
  • the temperature of spray drying is 80 ⁇ 200 °C.
  • the exothermic graphene porous ceramic of the embodiment of the present invention is made of a base material, and the base material includes the following raw material components in percentage by weight: 20% graphene oxide powder, 60% feldspar powder, 15% pore-forming agent, 4% calcium oxide, 1% boric acid.
  • the mesh number of the feldspar powder is 400 meshes
  • the pore-forming agent is starch with a particle size of 1 micron.
  • Graphene oxide powder is obtained from graphite by chemical oxidation of bismuthate under strong acid conditions, followed by ultrasonic treatment and spray drying.
  • the exothermic graphene porous ceramic of the embodiment of the present invention is made of a base material, and the base material includes the following raw material components in percentage by weight: 20% graphene oxide powder, 20% nano-silica, 40% Feldspar powder, 15% pore former, 4% calcium oxide, 1% boric acid.
  • the mesh number of the feldspar powder is 400 meshes
  • the pore-forming agent is starch with a particle size of 1 micron.
  • Graphene oxide powder is obtained from graphite by chemical oxidation of bismuthate under strong acid conditions, followed by ultrasonic treatment and spray drying.
  • Nano-silica is silica sol with a particle size of 150 nm, and the amount of nano-silica in the silica sol is calculated as the solid content of silica.
  • the atomizing core of the embodiment of the present invention includes a heating element 1 and positive and negative electrodes 3 arranged at both ends of the heating element 1.
  • the heating element 1 is used to conduct and heat the atomization to be atomized.
  • the heating body is made of the heatable graphene porous ceramics described in the previous embodiments, and the heating body is also connected with a liquid-conducting layer 2 made of porous ceramic materials, and the atomized liquid flows from top to bottom to the conductive layer.
  • the liquid layer 2 and the liquid conducting layer 2 can conduct downwards and penetrate the liquid to be atomized, and the liquid to be atomized continues to penetrate into the heating element 1.
  • the heating element 1 is made of graphene porous ceramics that can generate heat, so the heating element 1 can be integrated as a whole. Heat, even heat, good atomization effect.
  • the electrode 3 shown in FIG. 1 is an electrode with electrode leads, and the electrode 3 shown in FIG. 2 is a circular electrode sheet, which can be sintered together with the heating element 1 .
  • the electrode sheet can be energized by interference connection with the spring electrode.
  • step (2) Weigh the paraffin wax calculated according to 40% of the total weight of the raw materials in step (2), the melting point of the paraffin wax is 60°C, heat the paraffin wax to 65°C, and in the melted state, add the above mixed powder while stirring, and the addition is completed. Then continue to stir for 6h to obtain paraffin slurry;
  • step (2) Weigh the paraffin wax calculated according to 40% of the total weight of the raw materials in step (2), the melting point of the paraffin wax is 60°C, heat the paraffin wax to 65°C, and in the melted state, add the above mixed powder while stirring, and the addition is completed. Then continue to stir for 6h to obtain paraffin slurry;

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

可发热的石墨烯多孔陶瓷、雾化芯及其制备方法,陶瓷由基体材料制成,按重量份包括组分:氧化石墨烯粉体1~60份,陶瓷粉体10~80份,造孔剂1~50份,烧结助剂1~40份。雾化芯包括发热体(1)和设于发热体(1)两端的正负电极(3),发热体(1)由可发热的石墨烯多孔陶瓷制成。制备方法:(1)称取氧化石墨烯粉体、陶瓷粉体、造孔剂、烧结助剂原料,混合球磨;(2)烘烤干燥,得混合粉料;(3)将石蜡加热至融化状态,边搅拌边加入混合粉料,继续搅拌1~8h,得石蜡浆料;(4)将石蜡浆料注入预先准备的模具中,冷却成型,脱模后得蜡模;(5)将蜡模放入炉中预加热进行除蜡,得除蜡样;(6)将除蜡样放入炉中进行烧结,升温、保温、降温,得到石墨烯多孔陶瓷。

Description

可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 技术领域
本发明属于可发热陶瓷、可发热陶瓷制造的雾化芯技术领域,特别涉及一种可发热的石墨烯多孔陶瓷、雾化芯及其制备方法。
背景技术
电子雾化器包括雾化芯,雾化芯用于将待雾化液体进行加热雾化成气溶胶或蒸汽、汽雾,以便用户吸食,用于健康医疗之用途,待雾化的液体可以是烟液或含有药物的溶液。雾化芯是电子雾化器的关键部件,其性能优劣直接决定了电子雾化器的雾化效果,加热效率及使用体验。
目前市场上的雾化芯通常由导液棉加发热电阻丝、或陶瓷导液体和加热电阻丝组成,电阻丝与陶瓷导液体的结合方式有植入式、印刷式、贴片式等,不同的结合方式在传热效率上带来了一定程度的提升。发明专利CN111671163公开了一种电子烟雾化器石墨烯热导陶瓷发热体的制备方法,利用石墨烯材料的快速热反应效率,良好的热稳定性与热传导性,将石墨烯改性热导涂料在陶瓷上的涂附定型,即印刷或喷涂在陶瓷发热体表面,石墨烯改性热导涂料相比电阻丝进一步增大受热面提高了传热效率,但石墨烯改性热导涂料还是属于陶瓷表面的加热元器件,实质上来说都是由加热元器件向陶瓷发热体传热的过程,不可避免在升温过程产生较大的温度梯度,同时在反复升降温的过程由于热应力的差异产生疲劳,导致多孔陶瓷结构可靠性降低,在结构不稳定的情况下,陶瓷内部的杂质和重金属容易分离出来混入待雾化的液体中,重金属超标将给人体带来潜在的危害。
技术问题
本发明所要解决的技术问题是克服现有加热方式在加热过程中较大的温度梯度以及热疲劳导致结构稳定性差的问题,以及解决在结构不稳定的情况下,陶瓷内部的杂质和重金属容易分离出来混入待雾化的液体导致超标的问题,提供一种可发热的石墨烯多孔陶瓷、雾化芯及其制备方法。
技术解决方案
本发明的技术解决方案是,一种可发热的石墨烯多孔陶瓷,由基体材料制成,所述基体材料按重量份包括如下原料组分:氧化石墨烯粉体1~60份,陶瓷粉体10~80份,造孔剂1~50份,烧结助剂1~40份。
优选地,所述基体材料按重量份包括如下原料组分:氧化石墨烯粉体10~40份,陶瓷粉体20~80份,造孔剂1~30份,烧结助剂1~20份。
优选地,所述氧化石墨烯粉体是由石墨经铋酸盐在强酸条件下化学氧化、超声、喷雾及干燥处理得到。
优选地,所述陶瓷粉体包括高岭土、硅藻土、氧化铝、氮化硅、碳化硅、石英砂、玻璃砂,黏土,长石粉中的至少一种;
优选地,所述造孔剂为石墨、淀粉、面粉、豆粉、聚苯乙烯微球、聚甲基丙烯酸甲酯微球、碳酸盐、铵盐、蔗糖、纤维中的至少一种,所述造孔剂粒径为1~200微米;
优选地,所述烧结助剂为氧化硼、硼酸、油酸、硬脂酸、硅酸钠、氧化钙、氧化铁、氧化钛中的至少一种。
优选地,所述基体材料按重量份还包括如下原料组分:纳米氧化硅1~40份。
优选地,所述纳米氧化硅为纳米二氧化硅,所述纳米二氧化硅为胶体状的纳米二氧化硅或粉体状的纳米二氧化硅。
优选地,所述可发热的石墨烯多孔陶瓷的孔隙率是35~70%。
本发明的另一种技术解决方案是,一种雾化芯,包括用于传导并加热待雾化液的发热体和设于发热体两端的正负电极,所述发热体由可发热的石墨烯多孔陶瓷制成。
优选地,还包括与所述发热体连接的导液层,所述导液层由多孔陶瓷材料构成。
本发明的又一种技术解决方案是,一种可发热的石墨烯多孔陶瓷的制备方法,其特征在于,包括以下步骤:
(1)按照配方称取氧化石墨烯粉体、陶瓷粉体、造孔剂、烧结助剂原料,置于球磨装置中混合球磨;
(2)将球磨后的混合料烘烤干燥,得到混合粉料;
(3)将石蜡加热至融化状态,边搅拌边加入所述混合粉料,加入完毕后继续搅拌1~8h,得到石蜡浆料;
(4)将所述石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;
(5)将所述蜡模放入炉中进行预加热进行除蜡,得到除蜡样;
(6)将所述除蜡样放入炉中进行烧结,烧结过程包括升温、保温、降温,得到石墨烯多孔陶瓷。
本发明的又一种技术解决方案是,一种可发热的石墨烯多孔陶瓷的制备方法,其特征在于,包括以下步骤:
(1)按照配方称取氧化石墨烯粉体、纳米氧化硅、陶瓷粉体、造孔剂、烧结助剂原料,置于球磨装置中混合球磨;
(2)将球磨后的混合料烘烤干燥,得到混合粉料;
(3)将石蜡加热至融化状态,边搅拌边加入所述混合粉料,加入完毕后继续搅拌1~8h,得到石蜡浆料;
(4)将所述石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;
(5)将所述蜡模放入炉中进行预加热进行除蜡,得到除蜡样;
(6)将所述除蜡样放入炉中进行烧结,烧结过程包括升温、保温、降温,得到石墨烯多孔陶瓷。
优选地,所述氧化石墨烯粉体通过以下步骤进行制备:取石墨,利用强氧化剂在浓硫酸条件下,并在温度10~50℃下进行化学氧化,水洗至pH值为弱酸性,通过超声处理得到氧化石墨烯分散液,将氧化石墨烯分散液进行喷雾干燥得到氧化石墨烯粉体。
优选地,所述石墨为鳞片状石墨,颗粒度500~5000目,所述强氧化剂包括铋酸钠、铋酸钾、氯酸铋、硝酸铋、硝酸氧铋中的一种或多种,水洗后的pH值为5~7,喷雾干燥的温度为80~200℃。
优选地,所述步骤(1)中,球磨装置的转速设为150~350rpm,球磨时间为1~10h,磨料直径为1~20mm。
优选地,所述步骤(2)中,所述烘烤干燥的温度为60~120℃,所述烘烤干燥的时间为2~12h。
优选地,所述步骤(3)中,所述石蜡的熔点为60~110℃,所述石蜡的重量为所述混合粉料重量的10~60%。
优选地,所述步骤(5)中,除蜡的温度为400~800℃,除蜡的时间为2~12h。
优选地,所述步骤(6)中,烧结的温度为700~1500℃,升温速度1~5℃/min,烧结的保温时间为2~12h;烧结保护气氛为还原性气氛,还原性气氛包括氢气或者氢气与惰性气体的混合气体。
有益效果
(1)本发明利用石墨烯材料的优良电热学性能,在制备多孔陶瓷的过程中加入石墨烯热导材料,使陶瓷发热体与加热电阻材料一体成型,解决了加热过程中较大的温度梯度以及热疲劳导致结构稳定性差的问题;
(2)本发明石墨烯多孔陶瓷整体成为一个陶瓷电阻,既可以传导雾化液,又可在内部整体发热,具有电热转化效率高,发热均匀,耐受温度范围广,可达-50℃~500℃,使待雾化液的雾化效果好;
(3)本发明由于氧化石墨烯和陶瓷材料一体烧结,具有可靠的结构稳定性,解决了使用过程中陶瓷容易碎裂、容易分离出杂质和重金属,导致重金属超标给人体带来潜在危害的问题。
附图说明
图1是本发明的雾化芯的结构示意图;
图2是本发明的雾化芯的仰视图。
本发明的最佳实施方式
发明的一种可发热的石墨烯多孔陶瓷,由基体材料制成,基体材料按重量份包括如下原料组分:氧化石墨烯粉体1~60份,陶瓷粉体10~80份,造孔剂1~50份,烧结助剂1~40份。优选的是,基体材料按重量份包括如下原料组分:氧化石墨烯粉体10~40份,陶瓷粉体20~80份,造孔剂1~30份,烧结助剂1~20份。
氧化石墨烯粉体是由石墨经铋酸盐在强酸条件下化学氧化、超声、喷雾及干燥处理得到。陶瓷粉体包括高岭土、硅藻土、氧化铝、氮化硅、碳化硅、石英砂、玻璃砂,黏土,长石粉中的至少一种。造孔剂为石墨、淀粉、面粉、豆粉、聚苯乙烯微球、聚甲基丙烯酸甲酯微球、碳酸盐、铵盐、蔗糖、纤维中的至少一种,造孔剂粒径为1~200微米。烧结助剂为氧化硼、硼酸、油酸、硬脂酸、硅酸钠、氧化钙、氧化铁、氧化钛中的至少一种。
本发明通过在多孔陶瓷基体材料中,加入氧化石墨烯作为发热材料,氧化石墨烯表面包括羟基、羧基等官能团,陶瓷颗粒表面的含氧官能团和石墨烯表面的羟基、羧基等官能团,在还原气氛烧结过程中使得陶瓷粉体材料和石墨烯形成了稳定的结合体,得到可发热的石墨烯多孔陶瓷,石墨烯具有可导电性,这样该可石墨烯多孔陶瓷可整体为一个电阻,在通电时可以发热。通过石墨烯与陶瓷粉体的配比可调节阻值,其电热转化效率高、具有良好的热导性能,耐受温度范围高可达-50℃~500℃,发热均匀,烟油雾化效果好,由于石墨烯材料一体烧结,其结构稳定性优良,在使用过程中不会碎裂、避免分离出杂质和重金属导致重金属超标的问题。
基体材料按重量份还包括如下原料组分:纳米氧化硅1~40份。纳米氧化硅为纳米二氧化硅,纳米二氧化硅为胶体状的纳米二氧化硅或粉体状的纳米二氧化硅。加入纳米氧化硅的组分后,在煅烧过程中通过固化反应形成微纳米复合结构,纳米氧化硅由于其超高比表面积,且表面含有大量的羟基,在与陶瓷粉体固相反应时能有效降低烧结温度,纳米氧化硅可以使产品同时保持高孔隙率和实现高强度。在高强度、内部结构稳定的条件下,此石墨烯多孔陶瓷更不易碎裂,且在使用过程中更不易分离出杂质和析出重金属,可最大限度地避免重金属超标。
可发热的石墨烯多孔陶瓷的孔隙率是35~70%。
本发明的一种雾化芯,包括用于传导并加热待雾化液的发热体和设于发热体两端的正负电极,发热体由可发热的石墨烯多孔陶瓷制成,另外还包括与发热体连接的导液层,导液层由多孔陶瓷材料构成。
本发明的一种可发热的石墨烯多孔陶瓷的制备方法,包括以下步骤:
(1)按照配方称取氧化石墨烯粉体、陶瓷粉体、造孔剂、烧结助剂原料,置于球磨装置中混合球磨;其中,球磨装置的转速设为150~350rpm,球磨时间为1~10h,磨料直径为1~20mm;
(2)将球磨后的混合料烘烤干燥,得到混合粉料;其中,烘烤干燥的温度为60~120℃,烘烤干燥的时间为2~12h;
(3)将石蜡加热至融化状态,边搅拌边加入混合粉料,加入完毕后继续搅拌1~8h,得到石蜡浆料;其中,石蜡的熔点为60~110℃,石蜡的重量为混合粉料重量的10~60%。
(4)将石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;
(5)将蜡模放入炉中进行预加热进行除蜡,得到除蜡样;其中,除蜡的温度为400~800℃,除蜡的时间为2~12h。
(6)将除蜡样放入炉中进行烧结,烧结过程包括升温、保温、降温,得到石墨烯多孔陶瓷;其中,烧结的温度为700~1500℃,升温速度1~5℃/min,烧结的保温时间为2~12h;烧结保护气氛为还原性气氛,还原性气氛包括氢气或者氢气与惰性气体的混合气体。
本发明的另一种可发热的石墨烯多孔陶瓷的制备方法,包括以下步骤:
(1)按照配方称取氧化石墨烯粉体、纳米二氧化硅、陶瓷粉体、造孔剂、烧结助剂原料,置于球磨装置中混合球磨;其中,球磨装置的转速设为150~350rpm,球磨时间为1~10h,磨料直径为1~20mm;
(2)将球磨后的混合料烘烤干燥,得到混合粉料;其中,烘烤干燥的温度为60~120℃,烘烤干燥的时间为2~12h;
(3)将石蜡加热至融化状态,边搅拌边加入混合粉料,加入完毕后继续搅拌1~8h,得到石蜡浆料;其中,石蜡的熔点为60~110℃,石蜡的重量为混合粉料重量的10~60%。
(4)将石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;
(5)将蜡模放入炉中进行预加热进行除蜡,得到除蜡样;其中,除蜡的温度为400~800℃,除蜡的时间为2~12h。
(6)将除蜡样放入炉中进行烧结,烧结过程包括升温、保温、降温,得到石墨烯多孔陶瓷;其中,烧结的温度为700~1500℃,升温速度1~5℃/min,烧结的保温时间为2~12h;烧结保护气氛为还原性气氛,还原性气氛包括氢气或者氢气与惰性气体的混合气体。
上述氧化石墨烯粉体通过以下步骤进行制备:
取石墨,利用强氧化剂在浓硫酸条件下,并在温度10~50℃下进行化学氧化,水洗至pH值为弱酸性,通过超声处理得到氧化石墨烯分散液,将氧化石墨烯分散液进行喷雾干燥得到氧化石墨烯粉体。其中,石墨为鳞片状石墨,颗粒度500~5000目,强氧化剂包括铋酸钠、铋酸钾、氯酸铋、硝酸铋、硝酸氧铋中的一种或多种,水洗后的pH值为5~7,喷雾干燥的温度为80~200℃。
本发明的实施方式
本发明下面将结合实施例作进一步详述:
实施例一
本发明实施例的可发热的石墨烯多孔陶瓷,由基体材料制成,基体材料按重量百分比包括如下原料组分:20%的氧化石墨烯粉体,60%的长石粉,15%的造孔剂,4%的氧化钙,1%的硼酸。其中,长石粉的目数为400目,造孔剂为粒径1微米的淀粉。氧化石墨烯粉体是由石墨经铋酸盐在强酸条件下化学氧化后超声处理喷雾干燥得到。
实施例二
本发明实施例的可发热的石墨烯多孔陶瓷,由基体材料制成,基体材料按重量百分比包括如下原料组分:20%的氧化石墨烯粉体,20%的纳米二氧化硅,40%的长石粉,15%的造孔剂,4%的氧化钙,1%的硼酸。其中,长石粉的目数为400目,造孔剂为粒径1微米的淀粉。氧化石墨烯粉体是由石墨经铋酸盐在强酸条件下化学氧化后超声处理喷雾干燥得到。纳米二氧化硅为粒径150nm的硅溶胶,硅溶胶的纳米二氧化硅的量以其中固体份二氧化硅计。
实施例三
本发明实施例的雾化芯,如图1、图2所示,该雾化芯包括发热体1和设于发热体1两端的正负电极3,发热体1用于传导并加热待雾化液,发热体由前面实施例所述的可发热的石墨烯多孔陶瓷制成,发热体上面还连接设有多孔陶瓷材料制成的导液层2,待雾化液自上而下流动到导液层2,导液层2可向下传导、渗透待雾化液,待雾化液继续渗透到发热体1,发热体1由可发热的石墨烯多孔陶瓷制成,因此发热体1可整体发热,发热均匀,雾化效果好。图1所示电极3为带电极引线的电极,图2所示电极3为圆形电极片,该电极片可与发热体1一起烧结而成。电极片可与弹簧电极进行抵触式连接通电。
实施例四
本发明实施例的可发热的石墨烯多孔陶瓷的制备方法,包括以下步骤:
(1)取10g颗粒度1500目的鳞片状石墨加入到250mL浓硫酸中,搅拌60min后加入40g铋酸钠,继续高速搅拌3h后将反应液倒入300mL去离子水中,利用陶瓷膜过滤设备过滤后,得到的固体清洗至pH为6-7,然后加入到1000mL去离子水中超声处理2h后得到氧化石墨烯水性分散液,在150℃条件下喷雾干燥得到氧化石墨烯粉体;
(2)按照重量百分比称取20%的氧化石墨烯粉体,60%的长石粉,15%的造孔剂,4%的氧化钙,1%的硼酸;其中,长石粉的目数为400目,造孔剂为粒径1微米的淀粉;将称好的原料置于球磨机中进行混合球磨,球磨机转速300rpm,球磨时间10h,磨料颗粒直径20mm;
(3)将球磨好的混合料置于60℃烘箱烘烤干燥,烘烤12h后得到干燥的混合粉料;
(4)称取按步骤(2)中原料总重量40%计算的石蜡,该石蜡熔点为60℃,将石蜡加热至65℃,在融化状态下,边搅拌边加入上述混合粉料,加入完毕后继续搅拌6h,得到石蜡浆料;
(5)将石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;
(6)将蜡膜放入除蜡炉中,在空气气氛中加热至400℃进行除蜡,除蜡时间为6h,得到除蜡样;
(7)将除蜡样放入烧结炉中,在氢气气氛中进行烧结,烧结温度为1150℃,升温速度为3℃/min,烧结保温时间为4h。
实施例五
本发明实施例的可发热的石墨烯多孔陶瓷的制备方法,包括以下步骤:
(1)取10g颗粒度1500目的鳞片状石墨加入到250mL浓硫酸中,搅拌60min后加入40g铋酸钠,继续高速搅拌3h后将反应液倒入300mL去离子水中,利用陶瓷膜过滤设备过滤后,得到的固体清洗至pH为6-7,然后加入到1000mL去离子水中超声处理2h后得到氧化石墨烯水性分散液,在150℃条件下喷雾干燥得到氧化石墨烯粉体;
(2)按照重量百分比称取20%的氧化石墨烯粉体,20%胶体状的纳米二氧化硅,40%的长石粉,15%的造孔剂,4%的氧化钙,1%的硼酸;其中,长石粉的目数为400目,造孔剂为粒径1微米的淀粉;将称好的原料置于球磨机中进行混合球磨,球磨机转速300rpm,球磨时间10h,磨料颗粒直径20mm;
(3)将球磨好的混合料置于60℃烘箱烘烤干燥,烘烤12h后得到干燥的混合粉料;
(4)称取按步骤(2)中原料总重量40%计算的石蜡,该石蜡熔点为60℃,将石蜡加热至65℃,在融化状态下,边搅拌边加入上述混合粉料,加入完毕后继续搅拌6h,得到石蜡浆料;
(5)将石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;
(6)将蜡膜放入除蜡炉中,在空气气氛中加热至400℃进行除蜡,除蜡时间为6h,得到除蜡样;
(7)将除蜡样放入烧结炉中,在氢气气氛中进行烧结,烧结温度为1150℃,升温速度为3℃/min,烧结保温时间为4h。
工业实用性
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明权利要求的涵盖范围。

Claims (20)

  1. 一种可发热的石墨烯多孔陶瓷,其特征在于,由基体材料制成,所述基体材料按重量份包括如下组分:氧化石墨烯粉体1~60份,陶瓷粉体10~80份,造孔剂1~50份,烧结助剂1~40份。
  2. 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述基体材料按重量份包括如下组分:氧化石墨烯粉体10~40份,陶瓷粉体20~80份,造孔剂1~30份,烧结助剂1~20份。
  3. 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述氧化石墨烯粉体是由石墨经铋酸盐在强酸条件下化学氧化、超声、喷雾及干燥处理得到。
  4. 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述陶瓷粉体包括高岭土、硅藻土、氧化铝、氮化硅、碳化硅、石英砂、玻璃砂,黏土,长石粉中的至少一种。
  5. 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述造孔剂为石墨、淀粉、面粉、豆粉、聚苯乙烯微球、聚甲基丙烯酸甲酯微球、碳酸盐、铵盐、蔗糖、纤维中的至少一种,所述造孔剂粒径为1~200微米。
  6. 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述烧结助剂为氧化硼、硼酸、油酸、硬脂酸、硅酸钠、氧化钙、氧化铁、氧化钛中的至少一种。
  7. 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述基体材料按重量份还包括如下组分:纳米氧化硅1~40份。
  8. 根据权利要求7所述可发热的石墨烯多孔陶瓷,其特征在于,所述纳米氧化硅为纳米二氧化硅,所述纳米二氧化硅为胶体状的纳米二氧化硅或粉体状的纳米二氧化硅。
  9. 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述可发热的石墨烯多孔陶瓷的孔隙率是35~70%。
  10. 一种雾化芯,其特征在于,包括用于传导并加热待雾化液的发热体和设于发热体两端的正负电极,所述发热体由权利要求1~9任一项所述的可发热的石墨烯多孔陶瓷制成。
  11. 根据权利要求10所述的雾化芯,其特征在于,还包括与所述发热体连接的导液层,所述导液层由多孔陶瓷材料制成。
  12. 一种可发热的石墨烯多孔陶瓷的制备方法,其特征在于,包括以下步骤:
    (1)按照配方称取氧化石墨烯粉体、陶瓷粉体、造孔剂、烧结助剂原料,置于球磨装置中混合球磨;
    (2)将球磨后的混合料烘烤干燥,得到混合粉料;
    (3)将石蜡加热至融化状态,边搅拌边加入所述混合粉料,加入完毕后继续搅拌1~8h,得到石蜡浆料;
    (4)将所述石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;
    (5)将所述蜡模放入炉中进行预加热进行除蜡,得到除蜡样;
    (6)将所述除蜡样放入炉中进行烧结,烧结过程包括升温、保温、降温,得到石墨烯多孔陶瓷。
  13. 一种可发热的石墨烯多孔陶瓷的制备方法,其特征在于,包括以下步骤:
    (1)按照配方称取氧化石墨烯粉体、纳米氧化硅、陶瓷粉体、造孔剂、烧结助剂原料,置于球磨装置中混合球磨;
    (2)将球磨后的混合料烘烤干燥,得到混合粉料;
    (3)将石蜡加热至融化状态,边搅拌边加入所述混合粉料,加入完毕后继续搅拌1~8h,得到石蜡浆料;
    (4)将所述石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;
    (5)将所述蜡模放入炉中进行预加热进行除蜡,得到除蜡样;
    (6)将所述除蜡样放入炉中进行烧结,烧结过程包括升温、保温、降温,得到石墨烯多孔陶瓷。
  14. 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述氧化石墨烯粉体通过以下步骤进行制备:
    取石墨,利用强氧化剂在浓硫酸条件下,并在温度10~50℃下进行化学氧化,水洗至pH值为弱酸性,通过超声处理得到氧化石墨烯分散液,将氧化石墨烯分散液进行喷雾干燥得到氧化石墨烯粉体。
  15. 根据权利要求14所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述石墨为鳞片状石墨,颗粒度500~5000目,所述强氧化剂包括铋酸钠、铋酸钾、氯酸铋、硝酸铋、硝酸氧铋中的一种或多种,水洗后的pH值为5~7,喷雾干燥的温度为80~200℃。
  16. 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(1)中,球磨装置的转速设为150~350rpm,球磨时间为1~10h,磨料直径为1~20mm。
  17. 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(2)中,烘烤干燥的温度为60~120℃,烘烤干燥的时间为2~12h。
  18. 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(3)中,所述石蜡的熔点为60~110℃,所述石蜡的重量为所述混合粉料重量的10~60%。
  19. 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(5)中,除蜡的温度为400~800℃,除蜡的时间为2~12h。
  20. 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(6)中,烧结的温度为700~1500℃,升温速度1~5℃/min,烧结的保温时间为2~12h;烧结保护气氛为还原性气氛,还原性气氛包括氢气或者氢气与惰性气体的混合气体。
PCT/CN2021/128935 2020-12-25 2021-11-05 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 WO2022134889A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011561876.5 2020-12-25
CN202011561876.5A CN112545066B (zh) 2020-12-25 2020-12-25 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法

Publications (1)

Publication Number Publication Date
WO2022134889A1 true WO2022134889A1 (zh) 2022-06-30

Family

ID=75032680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128935 WO2022134889A1 (zh) 2020-12-25 2021-11-05 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法

Country Status (2)

Country Link
CN (1) CN112545066B (zh)
WO (1) WO2022134889A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286423A (zh) * 2022-08-03 2022-11-04 东莞市国研电热材料有限公司 一种贴片式氢气保护高温一体化烧结的微孔陶瓷雾化芯及其制备方法和微孔陶瓷雾化芯
CN116144964A (zh) * 2023-02-22 2023-05-23 无锡盛旭复合材料有限公司 一种多层石墨烯增强铝基复合材料的制备方法
CN116288079A (zh) * 2023-02-28 2023-06-23 南宁市武汉理工大学先进技术产业研究院 一种无机微孔金属陶瓷材料及制备方法
CN118373941A (zh) * 2024-06-25 2024-07-23 德州乐宜新材料有限公司 一种基于天然矿物质晶体的床垫材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592200B (zh) * 2020-12-18 2023-06-27 惠州市新泓威科技有限公司 雾化芯用纳米多孔陶瓷及其制备方法
CN112545066B (zh) * 2020-12-25 2024-03-29 海宁新纳陶科技有限公司 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法
CN114190602B (zh) * 2021-11-11 2024-07-02 立讯精密工业股份有限公司 雾化芯及雾化器
CN114538953A (zh) * 2022-03-28 2022-05-27 深圳市立场科技有限公司 一种发热陶瓷雾化芯的制作工艺以及发热陶瓷雾化芯
CN115159991B (zh) * 2022-07-18 2023-12-12 深圳市赛尔美电子科技有限公司 多孔陶瓷发热结构及其制备方法
CN115819070B (zh) * 2022-11-16 2023-12-19 深圳市爱斯强科技有限公司 一种陶瓷浆料及陶瓷基体
CN116923689A (zh) * 2023-09-18 2023-10-24 中国空气动力研究与发展中心高速空气动力研究所 一种基于快速高温温场的主动流动控制结构及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876611A (zh) * 2015-04-09 2015-09-02 浙江泰索科技有限公司 一种石墨烯增强陶瓷及其制备方法
JP2015160761A (ja) * 2014-02-26 2015-09-07 東海カーボン株式会社 多孔質シリコンオキシカーバイドセラミックス、その製造方法、多孔質シリコンオキシカーバイド複合材料および非水電解質二次電池
CN107311665A (zh) * 2017-07-04 2017-11-03 黑龙江科技大学 石墨烯掺杂ZrB2‑SiC复合陶瓷及其制备方法
CN107325377A (zh) * 2017-08-10 2017-11-07 厦门科新材料有限公司 高效石墨烯纳米改性散热材料及其制备方法
CN108821777A (zh) * 2018-06-28 2018-11-16 浙江东新新材料科技有限公司 石墨烯/碳化硅复合陶瓷及其制备方法
CN109293349A (zh) * 2018-11-27 2019-02-01 中航装甲科技有限公司 一种氧化硅基石墨烯陶瓷型芯及其制备方法
CN112545066A (zh) * 2020-12-25 2021-03-26 深圳市康泓威科技有限公司 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230709A1 (en) * 2010-12-29 2013-09-05 Ocean's King Lighting Science & Technology Co., Ltd Porous graphene material and preparation method and uses as electrode material thereof
CN104235237B (zh) * 2014-05-09 2017-05-10 石家庄东大汇通新材料有限公司 碳化硅泡沫陶瓷/铝合金复合材料制动盘及制备方法
CN105198476B (zh) * 2015-09-29 2018-02-27 常州金杉环保科技有限公司 无机多孔陶瓷膜的制备方法
CN109400203A (zh) * 2018-12-29 2019-03-01 厦门凯纳石墨烯技术股份有限公司 一种石墨烯无机多孔陶瓷膜的制备方法
CN109809833B (zh) * 2019-04-01 2021-09-28 河北工业大学 一种复合相变材料及其制备方法
CN111205104A (zh) * 2020-01-14 2020-05-29 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160761A (ja) * 2014-02-26 2015-09-07 東海カーボン株式会社 多孔質シリコンオキシカーバイドセラミックス、その製造方法、多孔質シリコンオキシカーバイド複合材料および非水電解質二次電池
CN104876611A (zh) * 2015-04-09 2015-09-02 浙江泰索科技有限公司 一种石墨烯增强陶瓷及其制备方法
CN107311665A (zh) * 2017-07-04 2017-11-03 黑龙江科技大学 石墨烯掺杂ZrB2‑SiC复合陶瓷及其制备方法
CN107325377A (zh) * 2017-08-10 2017-11-07 厦门科新材料有限公司 高效石墨烯纳米改性散热材料及其制备方法
CN108821777A (zh) * 2018-06-28 2018-11-16 浙江东新新材料科技有限公司 石墨烯/碳化硅复合陶瓷及其制备方法
CN109293349A (zh) * 2018-11-27 2019-02-01 中航装甲科技有限公司 一种氧化硅基石墨烯陶瓷型芯及其制备方法
CN112545066A (zh) * 2020-12-25 2021-03-26 深圳市康泓威科技有限公司 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286423A (zh) * 2022-08-03 2022-11-04 东莞市国研电热材料有限公司 一种贴片式氢气保护高温一体化烧结的微孔陶瓷雾化芯及其制备方法和微孔陶瓷雾化芯
CN115286423B (zh) * 2022-08-03 2023-07-14 东莞市国研电热材料有限公司 一种贴片式氢气保护高温一体化烧结的微孔陶瓷雾化芯及其制备方法和微孔陶瓷雾化芯
CN116144964A (zh) * 2023-02-22 2023-05-23 无锡盛旭复合材料有限公司 一种多层石墨烯增强铝基复合材料的制备方法
CN116144964B (zh) * 2023-02-22 2023-08-18 无锡盛旭复合材料有限公司 一种多层石墨烯增强铝基复合材料的制备方法
CN116288079A (zh) * 2023-02-28 2023-06-23 南宁市武汉理工大学先进技术产业研究院 一种无机微孔金属陶瓷材料及制备方法
CN118373941A (zh) * 2024-06-25 2024-07-23 德州乐宜新材料有限公司 一种基于天然矿物质晶体的床垫材料及其制备方法

Also Published As

Publication number Publication date
CN112545066A (zh) 2021-03-26
CN112545066B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2022134889A1 (zh) 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法
WO2022127429A1 (zh) 雾化芯用纳米多孔陶瓷及其制备方法
CN105294140B (zh) 多孔陶瓷的制备方法、多孔陶瓷及其应用
WO2017045273A1 (zh) 一种气凝胶-金属复合材料及其制备方法和应用
WO2015192300A1 (zh) 多孔陶瓷的制备方法、多孔陶瓷及电子烟
CN104141181B (zh) 一种含有SiO2掺杂的ZrO2纤维的制备方法
CN107572498B (zh) 一种碳化物掺杂多孔炭及其制备方法
CN103896621A (zh) 气相纳米SiO2-Al2O3复合介孔隔热材料及其制备方法
CN112830773A (zh) 湿敏多孔陶瓷、雾化芯及其制备方法
CN107523276A (zh) 一种高温微胶囊铝硅合金相变材料及其制备方法
WO2022148126A1 (zh) 除重金属多孔陶瓷的制备方法、除重金属的多孔陶瓷及雾化芯
WO2022148144A1 (zh) 湿敏多孔陶瓷、雾化芯及其制备方法
CN108484182A (zh) 一种氧化镁晶须原位合成镁铝尖晶石增强氧化镁基泡沫陶瓷过滤器及其制备方法
CN102491333A (zh) 一种碳化硅粉体及其制备方法
CN110526270A (zh) 一种低钠球形纳米α-氧化铝粉体的制备方法
CN107161989A (zh) 一种蜂窝状三维石墨烯的制备方法
CN110002893A (zh) 一种陶瓷超滤膜的制备方法
CN101717262B (zh) 溶胶凝胶-溶剂热法制备纳米莫来石粉体的方法
WO2022148146A1 (zh) 湿敏多孔陶瓷、雾化芯及其制备方法
CN101700980B (zh) 溶胶凝胶-水热法制备纳米莫来石粉体的方法
CN101700979B (zh) 溶胶凝胶-超声化学法制备纳米莫来石粉体的方法
CN107128925A (zh) 一种非水解溶胶‑凝胶结合碳热还原法制备SiC粉体的方法
CN105129802B (zh) 一种碳化硅纳米片的制备方法
Jiang et al. Preparation core/shell-type microparticles consisting of cBN cores aluminum coating via composite method
WO2024027354A1 (zh) 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908890

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21908890

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/01/2024)