WO2022134889A1 - 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 - Google Patents
可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 Download PDFInfo
- Publication number
- WO2022134889A1 WO2022134889A1 PCT/CN2021/128935 CN2021128935W WO2022134889A1 WO 2022134889 A1 WO2022134889 A1 WO 2022134889A1 CN 2021128935 W CN2021128935 W CN 2021128935W WO 2022134889 A1 WO2022134889 A1 WO 2022134889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- heating
- powder
- porous ceramic
- graphene porous
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 96
- 239000000919 ceramic Substances 0.000 title claims abstract description 94
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 75
- 238000010438 heat treatment Methods 0.000 title claims abstract description 70
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000000889 atomisation Methods 0.000 title abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 53
- 239000001993 wax Substances 0.000 claims abstract description 45
- 239000012188 paraffin wax Substances 0.000 claims abstract description 39
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000000843 powder Substances 0.000 claims abstract description 31
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 26
- 238000000498 ball milling Methods 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 22
- 239000011812 mixed powder Substances 0.000 claims abstract description 22
- 238000003756 stirring Methods 0.000 claims abstract description 22
- 238000001035 drying Methods 0.000 claims abstract description 18
- 239000002002 slurry Substances 0.000 claims abstract description 18
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 34
- 239000000377 silicon dioxide Substances 0.000 claims description 21
- 229910002804 graphite Inorganic materials 0.000 claims description 20
- 239000010439 graphite Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 16
- 239000010433 feldspar Substances 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 229920002472 Starch Polymers 0.000 claims description 7
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 7
- 239000004327 boric acid Substances 0.000 claims description 7
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000292 calcium oxide Substances 0.000 claims description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 7
- 239000005543 nano-size silicon particle Substances 0.000 claims description 7
- 239000008107 starch Substances 0.000 claims description 7
- 235000019698 starch Nutrition 0.000 claims description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 235000013312 flour Nutrition 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 239000004005 microsphere Substances 0.000 claims description 6
- 239000007800 oxidant agent Substances 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 238000004321 preservation Methods 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 238000009210 therapy by ultrasound Methods 0.000 claims description 6
- 229910010293 ceramic material Inorganic materials 0.000 claims description 5
- 238000001694 spray drying Methods 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- PNYYBUOBTVHFDN-UHFFFAOYSA-N sodium bismuthate Chemical compound [Na+].[O-][Bi](=O)=O PNYYBUOBTVHFDN-UHFFFAOYSA-N 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- 239000005995 Aluminium silicate Substances 0.000 claims description 3
- 235000010469 Glycine max Nutrition 0.000 claims description 3
- 244000068988 Glycine max Species 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 239000006004 Quartz sand Substances 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 239000004115 Sodium Silicate Substances 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 3
- 229930006000 Sucrose Natural products 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 235000012211 aluminium silicate Nutrition 0.000 claims description 3
- 150000003863 ammonium salts Chemical class 0.000 claims description 3
- 229910052810 boron oxide Inorganic materials 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- 239000005720 sucrose Substances 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 2
- 238000002525 ultrasonication Methods 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 1
- 239000000460 chlorine Substances 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- 239000011148 porous material Substances 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- 229910001385 heavy metal Inorganic materials 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- YIJBJMMXMAYULT-UHFFFAOYSA-K Cl(=O)(=O)[O-].[Bi+3].Cl(=O)(=O)[O-].Cl(=O)(=O)[O-] Chemical compound Cl(=O)(=O)[O-].[Bi+3].Cl(=O)(=O)[O-].Cl(=O)(=O)[O-] YIJBJMMXMAYULT-UHFFFAOYSA-K 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 239000012856 weighed raw material Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- FSAJRXGMUISOIW-UHFFFAOYSA-N bismuth sodium Chemical compound [Na].[Bi] FSAJRXGMUISOIW-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003571 electronic cigarette Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/70—Manufacture
Definitions
- the invention belongs to the technical field of heat-generating ceramics and atomizing cores made of heat-generating ceramics, and particularly relates to a heat-generating graphene porous ceramics, an atomizing core and a preparation method thereof.
- the electronic atomizer includes an atomizing core.
- the atomizing core is used to heat and atomize the liquid to be atomized into aerosol, steam, and vapor, so that the user can take it and use it for health and medical purposes.
- the liquid to be atomized can be smoke. liquid or solutions containing drugs.
- the atomization core is the key component of the electronic atomizer, and its performance directly determines the atomization effect, heating efficiency and user experience of the electronic atomizer.
- the atomizing core on the market is usually composed of liquid-conducting cotton plus heating resistance wire, or ceramic liquid-conducting and heating resistance wire.
- the combination method brings a certain degree of improvement in heat transfer efficiency.
- Invention patent CN111671163 discloses a preparation method of a graphene thermally conductive ceramic heating element for an electronic cigarette atomizer. Using the fast thermal reaction efficiency, good thermal stability and thermal conductivity of graphene materials, the graphene modified thermally conductive coating is The coating on the ceramic is shaped, that is, printing or spraying on the surface of the ceramic heating element.
- the graphene modified thermal conductive coating Compared with the resistance wire, the graphene modified thermal conductive coating further increases the heating surface and improves the heat transfer efficiency, but the graphene modified thermal conductive coating still belongs to the ceramics.
- the heating components on the surface are essentially the process of transferring heat from the heating components to the ceramic heating body. It is inevitable that a large temperature gradient will occur during the heating process, and fatigue will occur due to the difference in thermal stress during the repeated heating and cooling process. , resulting in a decrease in the reliability of the porous ceramic structure. In the case of unstable structure, impurities and heavy metals in the ceramic are easily separated and mixed into the liquid to be atomized. Excessive heavy metals will bring potential harm to the human body.
- the technical problem to be solved by the present invention is to overcome the problem of poor structural stability caused by the large temperature gradient and thermal fatigue of the existing heating method during the heating process, and to solve the problem that impurities and heavy metals in the ceramic are easily separated under the condition of structural instability.
- the problem of exceeding the standard caused by being mixed into the liquid to be atomized is provided, and a heat-generating graphene porous ceramic, an atomizing core and a preparation method thereof are provided.
- a heatable graphene porous ceramic is made of a base material, and the base material includes the following raw material components by weight: 1-60 parts of graphene oxide powder, ceramic powder 10-80 parts, pore-forming agent 1-50 parts, sintering aid 1-40 parts.
- the base material includes the following raw material components by weight: 10-40 parts of graphene oxide powder, 20-80 parts of ceramic powder, 1-30 parts of pore-forming agent, and 1-20 parts of sintering aid.
- the graphene oxide powder is obtained by chemical oxidation, ultrasonication, spraying and drying of graphite through bismuthate under strong acid conditions.
- the ceramic powder includes at least one of kaolin, diatomite, alumina, silicon nitride, silicon carbide, quartz sand, glass sand, clay, and feldspar powder;
- the pore-forming agent is at least one of graphite, starch, flour, soybean flour, polystyrene microspheres, polymethyl methacrylate microspheres, carbonates, ammonium salts, sucrose, and fibers.
- the particle size of the pore-forming agent is 1-200 microns;
- the sintering aid is at least one of boron oxide, boric acid, oleic acid, stearic acid, sodium silicate, calcium oxide, iron oxide, and titanium oxide.
- the base material further includes the following raw material components in parts by weight: 1-40 parts of nano-silicon oxide.
- the nano-silica is nano-silica, and the nano-silica is colloidal nano-silica or powdery nano-silica.
- the porosity of the exothermic graphene porous ceramic is 35-70%.
- an atomizing core which includes a heating body for conducting and heating the liquid to be atomized, and positive and negative electrodes arranged at both ends of the heating body, the heating body is made of heat-generating graphite Made of ene porous ceramics.
- it also includes a liquid-conducting layer connected to the heating element, and the liquid-conducting layer is made of a porous ceramic material.
- Another technical solution of the present invention is a method for preparing a heat-generating graphene porous ceramic, characterized in that it comprises the following steps:
- Another technical solution of the present invention is a method for preparing a heat-generating graphene porous ceramic, characterized in that it comprises the following steps:
- the graphene oxide powder is prepared by the following steps: taking graphite, using a strong oxidant under the condition of concentrated sulfuric acid, and carrying out chemical oxidation at a temperature of 10-50 ° C, washing with water until the pH value is weakly acidic, ultrasonically
- the graphene oxide dispersion is obtained by processing, and the graphene oxide dispersion is spray-dried to obtain graphene oxide powder.
- the graphite is flake graphite with a particle size of 500-5000 mesh
- the strong oxidant includes one or more of sodium bismuthate, potassium bismuthate, bismuth chlorate, bismuth nitrate and bismuth oxynitrate, washed with water The pH value after it is 5-7, and the temperature of spray drying is 80-200 degreeC.
- the rotational speed of the ball milling device is set to 150-350 rpm, the ball-milling time is 1-10 h, and the diameter of the abrasive is 1-20 mm.
- the baking-drying temperature is 60-120° C.
- the baking-drying time is 2-12 hours.
- the melting point of the paraffin wax is 60-110° C.
- the weight of the paraffin wax is 10-60% of the weight of the mixed powder.
- the temperature for removing wax is 400-800° C.
- the time for removing wax is 2-12 hours.
- the sintering temperature is 700-1500°C, the heating rate is 1-5°C/min, and the sintering holding time is 2-12h;
- the sintering protective atmosphere is a reducing atmosphere, and the reducing atmosphere includes Hydrogen or a mixture of hydrogen and inert gases.
- the present invention utilizes the excellent electrothermal properties of graphene materials, and adds graphene thermally conductive materials in the process of preparing porous ceramics, so that the ceramic heating element and the heating resistance material are integrally formed, and the large temperature gradient in the heating process is solved. And the problem of poor structural stability caused by thermal fatigue;
- the graphene porous ceramic of the present invention becomes a ceramic resistor as a whole, which can not only conduct the atomized liquid, but also generate heat internally, with high electrothermal conversion efficiency, uniform heat generation, and wide temperature tolerance range, up to -50°C ⁇ 500°C, the atomization effect of the liquid to be atomized is good;
- the present invention has reliable structural stability due to the integrated sintering of graphene oxide and ceramic materials, and solves the problem that ceramics are easily broken during use, and impurities and heavy metals are easily separated, resulting in the potential harm to the human body caused by excessive heavy metals. .
- Fig. 1 is the structural representation of the atomizing core of the present invention
- Fig. 2 is a bottom view of the atomizing core of the present invention.
- a heatable graphene porous ceramic of the invention is made of a base material, and the base material includes the following raw material components in parts by weight: 1-60 parts of graphene oxide powder, 10-80 parts of ceramic powder, pore-forming agent 1 to 50 parts, 1 to 40 parts of sintering aid.
- the base material includes the following raw material components by weight: 10-40 parts of graphene oxide powder, 20-80 parts of ceramic powder, 1-30 parts of pore-forming agent, and 1-20 parts of sintering aid.
- Graphene oxide powder is obtained by chemical oxidation, ultrasonic, spraying and drying of graphite by bismuthate under strong acid conditions.
- the ceramic powder includes at least one of kaolin, diatomaceous earth, alumina, silicon nitride, silicon carbide, quartz sand, glass sand, clay, and feldspar powder.
- the pore-forming agent is at least one of graphite, starch, flour, soybean flour, polystyrene microspheres, polymethyl methacrylate microspheres, carbonate, ammonium salt, sucrose, and fibers, and the particle size of the pore-forming agent is 1 to 200 microns.
- the sintering aid is at least one of boron oxide, boric acid, oleic acid, stearic acid, sodium silicate, calcium oxide, iron oxide, and titanium oxide.
- graphene oxide is added to the porous ceramic matrix material as a heating material
- the surface of graphene oxide includes functional groups such as hydroxyl and carboxyl groups, the oxygen-containing functional groups on the surface of ceramic particles, and the functional groups such as hydroxyl and carboxyl groups on the surface of graphene.
- the ceramic powder material and the graphene form a stable combination to obtain a graphene porous ceramic that can heat, and the graphene has electrical conductivity, so that the graphene porous ceramic can be a resistor as a whole. Can get hot.
- the resistance value can be adjusted by the ratio of graphene and ceramic powder. It has high electrothermal conversion efficiency and good thermal conductivity.
- the temperature range can be as high as -50°C ⁇ 500°C.
- Well due to the integrated sintering of the graphene material, its structural stability is excellent, it will not be broken during use, and the problem of excessive heavy metals caused by the separation of impurities and heavy metals is avoided.
- the matrix material further includes the following raw material components in parts by weight: 1-40 parts of nano-silicon oxide.
- Nano-silica is nano-silica
- nano-silica is colloidal nano-silica or powdery nano-silica.
- a micro-nano composite structure is formed through the curing reaction during the calcination process. Due to its ultra-high specific surface area and a large number of hydroxyl groups on the surface, nano-silica can effectively react with ceramic powder in solid phase.
- nano-silica can enable the product to maintain high porosity and achieve high strength at the same time. Under the conditions of high strength and stable internal structure, the graphene porous ceramic is less likely to be broken, and it is more difficult to separate out impurities and precipitate heavy metals during use, which can minimize heavy metals exceeding the standard.
- the porosity of the exothermic graphene porous ceramic is 35-70%.
- An atomizing core of the present invention includes a heating element for conducting and heating the liquid to be atomized, and positive and negative electrodes arranged at both ends of the heating element.
- the heating element is made of graphene porous ceramics that can generate heat.
- the liquid-conducting layer connected to the heating element is composed of a porous ceramic material.
- the preparation method of a kind of exothermic graphene porous ceramics of the present invention comprises the following steps:
- the sintering process includes heating, heat preservation, and cooling to obtain graphene porous ceramics; wherein, the sintering temperature is 700-1500°C, the heating rate is 1-5°C/min, and the sintering is performed.
- the holding time is 2 to 12 hours;
- the sintering protective atmosphere is a reducing atmosphere, and the reducing atmosphere includes hydrogen or a mixed gas of hydrogen and an inert gas.
- Another preparation method of the exothermic graphene porous ceramic of the present invention comprises the following steps:
- the sintering process includes heating, heat preservation, and cooling to obtain graphene porous ceramics; wherein, the sintering temperature is 700-1500°C, the heating rate is 1-5°C/min, and the sintering is performed.
- the holding time is 2 to 12 hours;
- the sintering protective atmosphere is a reducing atmosphere, and the reducing atmosphere includes hydrogen or a mixed gas of hydrogen and an inert gas.
- the above-mentioned graphene oxide powder is prepared by the following steps:
- graphite use a strong oxidant under the condition of concentrated sulfuric acid, and carry out chemical oxidation at a temperature of 10 to 50 ° C, wash with water until the pH value is weakly acidic, obtain graphene oxide dispersion by ultrasonic treatment, and spray the graphene oxide dispersion Dry to obtain graphene oxide powder.
- the graphite is flake graphite
- the particle size is 500-5000 mesh
- the strong oxidant includes one or more of sodium bismuth, potassium bismuthate, bismuth chlorate, bismuth nitrate, bismuth oxynitrate
- the pH value after washing is 5 ⁇ 7
- the temperature of spray drying is 80 ⁇ 200 °C.
- the exothermic graphene porous ceramic of the embodiment of the present invention is made of a base material, and the base material includes the following raw material components in percentage by weight: 20% graphene oxide powder, 60% feldspar powder, 15% pore-forming agent, 4% calcium oxide, 1% boric acid.
- the mesh number of the feldspar powder is 400 meshes
- the pore-forming agent is starch with a particle size of 1 micron.
- Graphene oxide powder is obtained from graphite by chemical oxidation of bismuthate under strong acid conditions, followed by ultrasonic treatment and spray drying.
- the exothermic graphene porous ceramic of the embodiment of the present invention is made of a base material, and the base material includes the following raw material components in percentage by weight: 20% graphene oxide powder, 20% nano-silica, 40% Feldspar powder, 15% pore former, 4% calcium oxide, 1% boric acid.
- the mesh number of the feldspar powder is 400 meshes
- the pore-forming agent is starch with a particle size of 1 micron.
- Graphene oxide powder is obtained from graphite by chemical oxidation of bismuthate under strong acid conditions, followed by ultrasonic treatment and spray drying.
- Nano-silica is silica sol with a particle size of 150 nm, and the amount of nano-silica in the silica sol is calculated as the solid content of silica.
- the atomizing core of the embodiment of the present invention includes a heating element 1 and positive and negative electrodes 3 arranged at both ends of the heating element 1.
- the heating element 1 is used to conduct and heat the atomization to be atomized.
- the heating body is made of the heatable graphene porous ceramics described in the previous embodiments, and the heating body is also connected with a liquid-conducting layer 2 made of porous ceramic materials, and the atomized liquid flows from top to bottom to the conductive layer.
- the liquid layer 2 and the liquid conducting layer 2 can conduct downwards and penetrate the liquid to be atomized, and the liquid to be atomized continues to penetrate into the heating element 1.
- the heating element 1 is made of graphene porous ceramics that can generate heat, so the heating element 1 can be integrated as a whole. Heat, even heat, good atomization effect.
- the electrode 3 shown in FIG. 1 is an electrode with electrode leads, and the electrode 3 shown in FIG. 2 is a circular electrode sheet, which can be sintered together with the heating element 1 .
- the electrode sheet can be energized by interference connection with the spring electrode.
- step (2) Weigh the paraffin wax calculated according to 40% of the total weight of the raw materials in step (2), the melting point of the paraffin wax is 60°C, heat the paraffin wax to 65°C, and in the melted state, add the above mixed powder while stirring, and the addition is completed. Then continue to stir for 6h to obtain paraffin slurry;
- step (2) Weigh the paraffin wax calculated according to 40% of the total weight of the raw materials in step (2), the melting point of the paraffin wax is 60°C, heat the paraffin wax to 65°C, and in the melted state, add the above mixed powder while stirring, and the addition is completed. Then continue to stir for 6h to obtain paraffin slurry;
Landscapes
- Carbon And Carbon Compounds (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
Claims (20)
- 一种可发热的石墨烯多孔陶瓷,其特征在于,由基体材料制成,所述基体材料按重量份包括如下组分:氧化石墨烯粉体1~60份,陶瓷粉体10~80份,造孔剂1~50份,烧结助剂1~40份。
- 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述基体材料按重量份包括如下组分:氧化石墨烯粉体10~40份,陶瓷粉体20~80份,造孔剂1~30份,烧结助剂1~20份。
- 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述氧化石墨烯粉体是由石墨经铋酸盐在强酸条件下化学氧化、超声、喷雾及干燥处理得到。
- 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述陶瓷粉体包括高岭土、硅藻土、氧化铝、氮化硅、碳化硅、石英砂、玻璃砂,黏土,长石粉中的至少一种。
- 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述造孔剂为石墨、淀粉、面粉、豆粉、聚苯乙烯微球、聚甲基丙烯酸甲酯微球、碳酸盐、铵盐、蔗糖、纤维中的至少一种,所述造孔剂粒径为1~200微米。
- 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述烧结助剂为氧化硼、硼酸、油酸、硬脂酸、硅酸钠、氧化钙、氧化铁、氧化钛中的至少一种。
- 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述基体材料按重量份还包括如下组分:纳米氧化硅1~40份。
- 根据权利要求7所述可发热的石墨烯多孔陶瓷,其特征在于,所述纳米氧化硅为纳米二氧化硅,所述纳米二氧化硅为胶体状的纳米二氧化硅或粉体状的纳米二氧化硅。
- 根据权利要求1所述可发热的石墨烯多孔陶瓷,其特征在于,所述可发热的石墨烯多孔陶瓷的孔隙率是35~70%。
- 一种雾化芯,其特征在于,包括用于传导并加热待雾化液的发热体和设于发热体两端的正负电极,所述发热体由权利要求1~9任一项所述的可发热的石墨烯多孔陶瓷制成。
- 根据权利要求10所述的雾化芯,其特征在于,还包括与所述发热体连接的导液层,所述导液层由多孔陶瓷材料制成。
- 一种可发热的石墨烯多孔陶瓷的制备方法,其特征在于,包括以下步骤:(1)按照配方称取氧化石墨烯粉体、陶瓷粉体、造孔剂、烧结助剂原料,置于球磨装置中混合球磨;(2)将球磨后的混合料烘烤干燥,得到混合粉料;(3)将石蜡加热至融化状态,边搅拌边加入所述混合粉料,加入完毕后继续搅拌1~8h,得到石蜡浆料;(4)将所述石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;(5)将所述蜡模放入炉中进行预加热进行除蜡,得到除蜡样;(6)将所述除蜡样放入炉中进行烧结,烧结过程包括升温、保温、降温,得到石墨烯多孔陶瓷。
- 一种可发热的石墨烯多孔陶瓷的制备方法,其特征在于,包括以下步骤:(1)按照配方称取氧化石墨烯粉体、纳米氧化硅、陶瓷粉体、造孔剂、烧结助剂原料,置于球磨装置中混合球磨;(2)将球磨后的混合料烘烤干燥,得到混合粉料;(3)将石蜡加热至融化状态,边搅拌边加入所述混合粉料,加入完毕后继续搅拌1~8h,得到石蜡浆料;(4)将所述石蜡浆料注入预先准备的模具中,冷却成型,脱模后得到蜡模;(5)将所述蜡模放入炉中进行预加热进行除蜡,得到除蜡样;(6)将所述除蜡样放入炉中进行烧结,烧结过程包括升温、保温、降温,得到石墨烯多孔陶瓷。
- 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述氧化石墨烯粉体通过以下步骤进行制备:取石墨,利用强氧化剂在浓硫酸条件下,并在温度10~50℃下进行化学氧化,水洗至pH值为弱酸性,通过超声处理得到氧化石墨烯分散液,将氧化石墨烯分散液进行喷雾干燥得到氧化石墨烯粉体。
- 根据权利要求14所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述石墨为鳞片状石墨,颗粒度500~5000目,所述强氧化剂包括铋酸钠、铋酸钾、氯酸铋、硝酸铋、硝酸氧铋中的一种或多种,水洗后的pH值为5~7,喷雾干燥的温度为80~200℃。
- 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(1)中,球磨装置的转速设为150~350rpm,球磨时间为1~10h,磨料直径为1~20mm。
- 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(2)中,烘烤干燥的温度为60~120℃,烘烤干燥的时间为2~12h。
- 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(3)中,所述石蜡的熔点为60~110℃,所述石蜡的重量为所述混合粉料重量的10~60%。
- 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(5)中,除蜡的温度为400~800℃,除蜡的时间为2~12h。
- 根据权利要求12或13所述可发热的石墨烯多孔陶瓷的制备方法,其特征在于,所述步骤(6)中,烧结的温度为700~1500℃,升温速度1~5℃/min,烧结的保温时间为2~12h;烧结保护气氛为还原性气氛,还原性气氛包括氢气或者氢气与惰性气体的混合气体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011561876.5 | 2020-12-25 | ||
CN202011561876.5A CN112545066B (zh) | 2020-12-25 | 2020-12-25 | 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022134889A1 true WO2022134889A1 (zh) | 2022-06-30 |
Family
ID=75032680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/128935 WO2022134889A1 (zh) | 2020-12-25 | 2021-11-05 | 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112545066B (zh) |
WO (1) | WO2022134889A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115286423A (zh) * | 2022-08-03 | 2022-11-04 | 东莞市国研电热材料有限公司 | 一种贴片式氢气保护高温一体化烧结的微孔陶瓷雾化芯及其制备方法和微孔陶瓷雾化芯 |
CN116144964A (zh) * | 2023-02-22 | 2023-05-23 | 无锡盛旭复合材料有限公司 | 一种多层石墨烯增强铝基复合材料的制备方法 |
CN116288079A (zh) * | 2023-02-28 | 2023-06-23 | 南宁市武汉理工大学先进技术产业研究院 | 一种无机微孔金属陶瓷材料及制备方法 |
CN118373941A (zh) * | 2024-06-25 | 2024-07-23 | 德州乐宜新材料有限公司 | 一种基于天然矿物质晶体的床垫材料及其制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112592200B (zh) * | 2020-12-18 | 2023-06-27 | 惠州市新泓威科技有限公司 | 雾化芯用纳米多孔陶瓷及其制备方法 |
CN112545066B (zh) * | 2020-12-25 | 2024-03-29 | 海宁新纳陶科技有限公司 | 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 |
CN114190602B (zh) * | 2021-11-11 | 2024-07-02 | 立讯精密工业股份有限公司 | 雾化芯及雾化器 |
CN114538953A (zh) * | 2022-03-28 | 2022-05-27 | 深圳市立场科技有限公司 | 一种发热陶瓷雾化芯的制作工艺以及发热陶瓷雾化芯 |
CN115159991B (zh) * | 2022-07-18 | 2023-12-12 | 深圳市赛尔美电子科技有限公司 | 多孔陶瓷发热结构及其制备方法 |
CN115819070B (zh) * | 2022-11-16 | 2023-12-19 | 深圳市爱斯强科技有限公司 | 一种陶瓷浆料及陶瓷基体 |
CN116923689A (zh) * | 2023-09-18 | 2023-10-24 | 中国空气动力研究与发展中心高速空气动力研究所 | 一种基于快速高温温场的主动流动控制结构及制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104876611A (zh) * | 2015-04-09 | 2015-09-02 | 浙江泰索科技有限公司 | 一种石墨烯增强陶瓷及其制备方法 |
JP2015160761A (ja) * | 2014-02-26 | 2015-09-07 | 東海カーボン株式会社 | 多孔質シリコンオキシカーバイドセラミックス、その製造方法、多孔質シリコンオキシカーバイド複合材料および非水電解質二次電池 |
CN107311665A (zh) * | 2017-07-04 | 2017-11-03 | 黑龙江科技大学 | 石墨烯掺杂ZrB2‑SiC复合陶瓷及其制备方法 |
CN107325377A (zh) * | 2017-08-10 | 2017-11-07 | 厦门科新材料有限公司 | 高效石墨烯纳米改性散热材料及其制备方法 |
CN108821777A (zh) * | 2018-06-28 | 2018-11-16 | 浙江东新新材料科技有限公司 | 石墨烯/碳化硅复合陶瓷及其制备方法 |
CN109293349A (zh) * | 2018-11-27 | 2019-02-01 | 中航装甲科技有限公司 | 一种氧化硅基石墨烯陶瓷型芯及其制备方法 |
CN112545066A (zh) * | 2020-12-25 | 2021-03-26 | 深圳市康泓威科技有限公司 | 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130230709A1 (en) * | 2010-12-29 | 2013-09-05 | Ocean's King Lighting Science & Technology Co., Ltd | Porous graphene material and preparation method and uses as electrode material thereof |
CN104235237B (zh) * | 2014-05-09 | 2017-05-10 | 石家庄东大汇通新材料有限公司 | 碳化硅泡沫陶瓷/铝合金复合材料制动盘及制备方法 |
CN105198476B (zh) * | 2015-09-29 | 2018-02-27 | 常州金杉环保科技有限公司 | 无机多孔陶瓷膜的制备方法 |
CN109400203A (zh) * | 2018-12-29 | 2019-03-01 | 厦门凯纳石墨烯技术股份有限公司 | 一种石墨烯无机多孔陶瓷膜的制备方法 |
CN109809833B (zh) * | 2019-04-01 | 2021-09-28 | 河北工业大学 | 一种复合相变材料及其制备方法 |
CN111205104A (zh) * | 2020-01-14 | 2020-05-29 | 东莞市陶陶新材料科技有限公司 | 电子烟用多孔陶瓷及其制备方法 |
-
2020
- 2020-12-25 CN CN202011561876.5A patent/CN112545066B/zh active Active
-
2021
- 2021-11-05 WO PCT/CN2021/128935 patent/WO2022134889A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015160761A (ja) * | 2014-02-26 | 2015-09-07 | 東海カーボン株式会社 | 多孔質シリコンオキシカーバイドセラミックス、その製造方法、多孔質シリコンオキシカーバイド複合材料および非水電解質二次電池 |
CN104876611A (zh) * | 2015-04-09 | 2015-09-02 | 浙江泰索科技有限公司 | 一种石墨烯增强陶瓷及其制备方法 |
CN107311665A (zh) * | 2017-07-04 | 2017-11-03 | 黑龙江科技大学 | 石墨烯掺杂ZrB2‑SiC复合陶瓷及其制备方法 |
CN107325377A (zh) * | 2017-08-10 | 2017-11-07 | 厦门科新材料有限公司 | 高效石墨烯纳米改性散热材料及其制备方法 |
CN108821777A (zh) * | 2018-06-28 | 2018-11-16 | 浙江东新新材料科技有限公司 | 石墨烯/碳化硅复合陶瓷及其制备方法 |
CN109293349A (zh) * | 2018-11-27 | 2019-02-01 | 中航装甲科技有限公司 | 一种氧化硅基石墨烯陶瓷型芯及其制备方法 |
CN112545066A (zh) * | 2020-12-25 | 2021-03-26 | 深圳市康泓威科技有限公司 | 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115286423A (zh) * | 2022-08-03 | 2022-11-04 | 东莞市国研电热材料有限公司 | 一种贴片式氢气保护高温一体化烧结的微孔陶瓷雾化芯及其制备方法和微孔陶瓷雾化芯 |
CN115286423B (zh) * | 2022-08-03 | 2023-07-14 | 东莞市国研电热材料有限公司 | 一种贴片式氢气保护高温一体化烧结的微孔陶瓷雾化芯及其制备方法和微孔陶瓷雾化芯 |
CN116144964A (zh) * | 2023-02-22 | 2023-05-23 | 无锡盛旭复合材料有限公司 | 一种多层石墨烯增强铝基复合材料的制备方法 |
CN116144964B (zh) * | 2023-02-22 | 2023-08-18 | 无锡盛旭复合材料有限公司 | 一种多层石墨烯增强铝基复合材料的制备方法 |
CN116288079A (zh) * | 2023-02-28 | 2023-06-23 | 南宁市武汉理工大学先进技术产业研究院 | 一种无机微孔金属陶瓷材料及制备方法 |
CN118373941A (zh) * | 2024-06-25 | 2024-07-23 | 德州乐宜新材料有限公司 | 一种基于天然矿物质晶体的床垫材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112545066A (zh) | 2021-03-26 |
CN112545066B (zh) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022134889A1 (zh) | 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法 | |
WO2022127429A1 (zh) | 雾化芯用纳米多孔陶瓷及其制备方法 | |
CN105294140B (zh) | 多孔陶瓷的制备方法、多孔陶瓷及其应用 | |
WO2017045273A1 (zh) | 一种气凝胶-金属复合材料及其制备方法和应用 | |
WO2015192300A1 (zh) | 多孔陶瓷的制备方法、多孔陶瓷及电子烟 | |
CN104141181B (zh) | 一种含有SiO2掺杂的ZrO2纤维的制备方法 | |
CN107572498B (zh) | 一种碳化物掺杂多孔炭及其制备方法 | |
CN103896621A (zh) | 气相纳米SiO2-Al2O3复合介孔隔热材料及其制备方法 | |
CN112830773A (zh) | 湿敏多孔陶瓷、雾化芯及其制备方法 | |
CN107523276A (zh) | 一种高温微胶囊铝硅合金相变材料及其制备方法 | |
WO2022148126A1 (zh) | 除重金属多孔陶瓷的制备方法、除重金属的多孔陶瓷及雾化芯 | |
WO2022148144A1 (zh) | 湿敏多孔陶瓷、雾化芯及其制备方法 | |
CN108484182A (zh) | 一种氧化镁晶须原位合成镁铝尖晶石增强氧化镁基泡沫陶瓷过滤器及其制备方法 | |
CN102491333A (zh) | 一种碳化硅粉体及其制备方法 | |
CN110526270A (zh) | 一种低钠球形纳米α-氧化铝粉体的制备方法 | |
CN107161989A (zh) | 一种蜂窝状三维石墨烯的制备方法 | |
CN110002893A (zh) | 一种陶瓷超滤膜的制备方法 | |
CN101717262B (zh) | 溶胶凝胶-溶剂热法制备纳米莫来石粉体的方法 | |
WO2022148146A1 (zh) | 湿敏多孔陶瓷、雾化芯及其制备方法 | |
CN101700980B (zh) | 溶胶凝胶-水热法制备纳米莫来石粉体的方法 | |
CN101700979B (zh) | 溶胶凝胶-超声化学法制备纳米莫来石粉体的方法 | |
CN107128925A (zh) | 一种非水解溶胶‑凝胶结合碳热还原法制备SiC粉体的方法 | |
CN105129802B (zh) | 一种碳化硅纳米片的制备方法 | |
Jiang et al. | Preparation core/shell-type microparticles consisting of cBN cores aluminum coating via composite method | |
WO2024027354A1 (zh) | 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21908890 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21908890 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21908890 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/01/2024) |