WO2022134883A1 - 一种1,4-环己二酮的连续化生产方法 - Google Patents

一种1,4-环己二酮的连续化生产方法 Download PDF

Info

Publication number
WO2022134883A1
WO2022134883A1 PCT/CN2021/128687 CN2021128687W WO2022134883A1 WO 2022134883 A1 WO2022134883 A1 WO 2022134883A1 CN 2021128687 W CN2021128687 W CN 2021128687W WO 2022134883 A1 WO2022134883 A1 WO 2022134883A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclohexanedione
continuous production
production method
dmss
water
Prior art date
Application number
PCT/CN2021/128687
Other languages
English (en)
French (fr)
Inventor
卫冰
郭敏怡
罗光文
张振国
许龙龙
赵少丹
王文幼
康改倩
Original Assignee
西安向阳航天材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安向阳航天材料股份有限公司 filed Critical 西安向阳航天材料股份有限公司
Publication of WO2022134883A1 publication Critical patent/WO2022134883A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/80Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/403Saturated compounds containing a keto group being part of a ring of a six-membered ring

Definitions

  • the invention belongs to the technical field of organic chemical industry, and relates to a continuous production method of 1,4-cyclohexanedione.
  • 1,4-cyclohexanedione English name 1,4-cyclohexanedione, molecular formula C 6 H 8 O 2 , is an important chemical intermediate, which can be used in the production of drugs, pesticides, liquid crystal materials, organic optoelectronic materials, ultra- guide materials, etc.
  • DMSS Dimethyl succinyl succinate
  • DESS diethyl succinyl succinate
  • 1,4-cyclohexanedione is prepared by hydrolysis with DMSS as raw material , has the advantages of sufficient raw material sources and low cost.
  • DMSS is used as a raw material. The reason may be that DMSS is more difficult to hydrolyze than DESS, has more by-products, and is more difficult to separate.
  • the existing DESS hydrolysis process is already in the phase of elimination in industrial production, because the product yield is low, the reaction time is long, and it is a batch reaction, and the production efficiency is low. Therefore, to develop a process for producing 1,4-cyclohexanedione using DMSS as a raw material, it is necessary to solve the problem of production efficiency.
  • the purpose of the present invention is to provide a continuous production process of 1,4-cyclohexanedione, which solves the problem of low production efficiency of producing 1,4-cyclohexanedione by using DMSS as a raw material in the prior art.
  • the technical scheme adopted in the present invention is a continuous production process of 1,4-cyclohexanedione, comprising the steps:
  • Step 1 adding dimethyl succinyl succinate (DMSS), water, and catalyst into the reactor according to the proportions through metering, to obtain a mixed solution;
  • DMSS dimethyl succinyl succinate
  • Step 2 at a preset time and a preset temperature, the mixed solution obtained in the step 1 is subjected to a hydrolysis reaction, then heated to reflux, and the liquid discharge port at the bottom of the reaction kettle is opened, and the hydrolyzed solution flows out of the reaction kettle;
  • Step 3 extracting the hydrolyzed solution obtained in step 2 to obtain an organic layer and an aqueous layer respectively;
  • Step 4 the organic layer obtained in step 3 is distilled to obtain a crude 1,4-cyclohexanedione
  • Step 5 return the water layer obtained in step 3 to the reactor, add DMSS and water, and repeat steps 2 to 5.
  • the catalyst in the step 1 is a mixture of concentrated sulfuric acid, polyethylene glycol and nickel sulfate.
  • the preset temperature in the step 2 is 70-90°C.
  • the preset time in step 2 is 10-16 hours.
  • the amount of the hydrolyzate flowing out from the reaction kettle in the step 2 is 1/4 to 3/4 of the amount of the mixed solution in the step 1.
  • the molar amount of the supplemented water is twice the molar amount of the supplemented DMSS.
  • the step 4 further includes a purification step of 1,4-cyclohexanedione, and the crude 1,4-cyclohexanedione is subjected to sublimation or distillation to obtain 1,4-cyclohexanedione Pure.
  • the step of obtaining the pure 1,4-cyclohexanedione crude product through sublimation treatment of the crude 1,4-cyclohexanedione includes: adding the crude 1,4-cyclohexanedione to 1 to 5 times the mass of petroleum ether, heated to reflux for 0.5 to 2 hours, then cooled, filtered, washed, and dried to remove petroleum ether, and then sublimated at a vacuum degree of -0.095 to -0.098MPa and a temperature of 90 to 100 °C After 8-18h, pure 1,4-cyclohexanedione was obtained.
  • the step of obtaining the pure 1,4-cyclohexanedione crude product through distillation treatment of the crude 1,4-cyclohexanedione includes: subjecting the crude 1,4-cyclohexanedione to a pressure of The fractions at 110-114°C were collected under the condition of 19.5 mmHg to obtain pure 1,4-cyclohexanedione.
  • the hydrolysis reaction of the present invention is carried out continuously, the production efficiency is high, and the feature that DMSS will float on the upper layer of the reaction system under high temperature is utilized, and the high-efficiency separation of solid and liquid phase is realized.
  • the aqueous phase containing the catalyst can be directly recycled, no waste water is generated, the use of ammonia water is eliminated, and the production process is environmentally friendly.
  • the continuous production process of 1,4-cyclohexanedione comprises the steps:
  • Step 1 adding dimethyl succinyl succinate (DMSS), water, and catalyst into the reactor according to the proportions through metering, to obtain a mixed solution;
  • DMSS dimethyl succinyl succinate
  • Step 2 at a preset time and at a preset temperature, the mixed solution obtained in step 1 is subjected to hydrolysis reaction, then heated to reflux, and the liquid discharge port at the bottom of the reaction kettle is opened, and the hydrolyzed solution flows out from the reaction kettle;
  • Step 3 extracting the hydrolyzed solution obtained in step 2 to obtain an organic layer and an aqueous layer respectively;
  • Step 4 the organic layer obtained in step 3 is distilled to obtain a crude 1,4-cyclohexanedione
  • Step 5 return the water layer obtained in step 3 to the reactor, add DMSS and water, and repeat steps 2 to 5.
  • the catalyst in step 1 is a mixture of concentrated sulfuric acid, polyethylene glycol and nickel sulfate.
  • the preset temperature in step 2 is 70-90°C.
  • the preset time in step 2 is 10-16h.
  • step 2 the amount of the hydrolyzed solution flowing out from the reactor is 1/4 to 3/4 of the amount of the mixed solution in step 1.
  • step 5 the molar amount of the supplemented water is twice the molar amount of the supplemented DMSS.
  • Step 4 also includes a purification step of 1,4-cyclohexanedione, and the crude 1,4-cyclohexanedione is subjected to sublimation or distillation to obtain pure 1,4-cyclohexanedione.
  • the step of obtaining the pure 1,4-cyclohexanedione crude product by sublimation treatment of the crude 1,4-cyclohexanedione comprises: adding the crude 1,4-cyclohexanedione into petroleum ether of 1 to 5 times the mass, and Heating and refluxing for 0.5 ⁇ 2h, then cooling, filtering, washing and drying to remove petroleum ether, and then sublimation under vacuum degree of -0.095 ⁇ -0.098MPa and temperature of 90 ⁇ 100°C for 8 ⁇ 18h to obtain 1,4-ring Pure hexanedione.
  • the step of obtaining the pure 1,4-cyclohexanedione crude product by distillation treatment includes: collecting the 110-114°C group of the 1,4-cyclohexanedione crude product under the condition of a pressure of 19.5 mmHg 1,4-cyclohexanedione pure product was obtained.
  • the hydrolyzed solution of the present invention is divided into an aqueous layer and an organic layer after extraction.
  • the aqueous layer contains a catalyst and can be directly recycled and used.
  • the organic layer contains the product 1,4-cyclohexanedione and methanol, and the solvent is distilled off to obtain the crude product 1,4-cyclohexanedione. Hexanedione.
  • the hydrolysis reaction is carried out continuously, the production efficiency is high, and the characteristic of DMSS floating on the upper layer of the reaction system at high temperature is used to realize the high-efficiency solid-liquid phase separation.
  • the aqueous phase containing the catalyst after extraction can be directly recycled, which not only saves costs, but also does not generate waste water, avoids the use of ammonia water, and the production process is environmentally friendly. Therefore, the continuous production method of 1,4-cyclohexanedione provided by the embodiment of the present invention has a simple process, low cost, less discharge of three wastes, high yield, low energy consumption and high product purity.
  • the crude product is obtained by distillation, and the distilled organic solvent is further rectified to separate chloroform and methanol.
  • the chloroform is recovered and used, and the methanol is collected as a by-product.
  • the crude 1,4-cyclohexanedione was sublimed under the condition of vacuum degree -0.097MPa and temperature of 95°C for 12h to obtain a white 1,4-cyclohexanedione product.
  • the purity of chromatographic detection was 99.7%.
  • the crude product is obtained by distillation, and the distilled organic solvent is further rectified to separate chloroform and methanol.
  • the chloroform is recovered and used, and the methanol is collected as a by-product.
  • the crude 1,4-cyclohexanedione was collected at 110-114°C under the pressure of 19.5mmHg to obtain a white 1,4-cyclohexanedione product.
  • the purity of the chromatographic detection was 99.6%.
  • the hydrolyzed solution released each time Available pure product 75.5kg, the yield is 92%.
  • the hydrolysis reaction was carried out in the kettle at a temperature of 70 ° C. After the reaction for 10 hours, the hydrolysis system was heated to boiling, and then the liquid discharge port at the bottom of the reaction kettle was opened to obtain a hydrolyzed liquid.
  • the organic layer was distilled to obtain 1, 4-cyclohexanedione crude product, after the hydrolysis reaction kettle hydrolyzed liquid is discharged, the water layer obtained by extraction is returned to the hydrolysis reaction kettle for continuous use, and DMSS and water are added, and the temperature is lowered to 70 ° C to continue the hydrolysis reaction. After the reaction for 10 hours, the The hydrolysis system is heated to boiling to release the hydrolyzed solution, repeating like this, to realize continuous production, wherein, the discharge amount of each hydrolyzed solution is 1/4 of the solution amount of the reaction system.
  • the liquid ratio is filled into the DMSS of the corresponding proportion, and the water layer after the extraction is filled into the reactor again, and additionally filled with water, and the amount of the added water is 2 times of the molar weight of the newly added DMSS;
  • the crude 1,4-cyclohexanedione obtained in this example is subjected to sublimation treatment to obtain pure 1,4-cyclohexanedione, and the sublimation treatment conditions are: adding the crude 1,4-cyclohexanedione to 1 times In the high-quality petroleum ether, heated to reflux for 0.5h, then cooled, filtered, washed, and dried to remove petroleum ether, and then sublimed under the condition of vacuum degree -0.095MPa and temperature of 90 °C for 8h to obtain a content of not less than 99.5%. 1,4-cyclohexanedione.
  • the distillation treatment conditions are that the crude 1,4-cyclohexanedione is collected under a pressure of 19.5 mmHg to collect 110° C. components to obtain 1,4-cyclohexanedione with a content of not less than 99.5%.
  • the hydrolysis reaction was carried out in the kettle at a temperature of 70 ° C. After the reaction for 14 hours, the hydrolysis system was heated to boiling, and then the liquid discharge port at the bottom of the reaction kettle was opened to obtain a hydrolyzed liquid.
  • the crude 1,4-cyclohexanedione obtained in this example is subjected to sublimation treatment to obtain pure 1,4-cyclohexanedione, and the sublimation treatment conditions are: adding the crude 1,4-cyclohexanedione to 3 times quality petroleum ether, heated to reflux for 1 hour, then cooled, filtered, washed, and dried to remove petroleum ether, and then sublimed for 15 hours at a vacuum degree of -0.097MPa and a temperature of 95 °C to obtain a content of not less than 99.5% of 1, 4-cyclohexanedione.
  • the distillation treatment conditions are that the crude 1,4-cyclohexanedione is collected at a pressure of 19.5 mmHg to obtain a 112°C fraction to obtain 1,4-cyclohexanedione with a content of not less than 99.5%.
  • the hydrolysis reaction was carried out in the kettle at a temperature of 70 ° C. After the reaction for 16 hours, the hydrolysis system was heated to boiling, and then the liquid discharge port at the bottom of the reaction kettle was opened to obtain a hydrolyzed liquid.
  • the crude 1,4-cyclohexanedione obtained in this example is subjected to sublimation treatment to obtain pure 1,4-cyclohexanedione, and the sublimation treatment conditions are: adding the crude 1,4-cyclohexanedione to 5 times quality petroleum ether, heated to reflux for 2 hours, then cooled, filtered, washed, and dried to remove petroleum ether, and then sublimed for 18 hours under the condition of vacuum degree -0.097MPa and temperature of 100 °C to obtain 1, 4-cyclohexanedione.
  • the distillation treatment condition is to collect the 114°C fraction of the crude 1,4-cyclohexanedione under the condition of a pressure of 19.5 mmHg to obtain 1,4-cyclohexanedione with a content of not less than 99.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种1,4-环己二酮的连续化生产方法,包括步骤:步骤1,将丁二酰丁二酸二甲酯(DMSS)、水、催化剂经过计量按照比例加入反应釜中,获得混合溶液;步骤2,在预设时间和预设温度下,所述步骤1获得的混合溶液进行水解反应,随后加热至回流,打开反应釜底部放液口,水解液从反应釜内流出;步骤3,将步骤2获得的水解液进行萃取,分别得到有机层和水层;步骤4,将步骤3获得的有机层进行蒸馏,获得1,4-环己二酮粗品;步骤5,将步骤3获得的水层返回反应釜,并补入DMSS和水,重复步骤2至步骤5。本发明的一种1,4-环己二酮的连续化生产工艺,解决了现有技术中存在的以DMSS为原料生产1,4-环己二酮生产效率低的问题。

Description

一种1,4-环己二酮的连续化生产方法 技术领域
本发明属于有机化工技术领域,涉及一种1,4-环己二酮的连续化生产方法。
背景技术
1,4-环己二酮,英文名称1,4-cyclohexanedione,分子式为C 6H 8O 2,是一种重要的化工中间体,可用于生产药物、农药、液晶材料、有机光电材料、超导材料等。
国内外目前公开的资料中,主要有两种制备工艺,一是以丁二酸二乙酯为原料,通过酯缩合、水解、中和、萃取、蒸馏及后续处理得到纯品,文献《环境友好的1,4-环二酮的合成研究》(宁慧森,2011,河北大学硕士论文),详细描述了该工艺的过程,仅丁二酰丁二酸二乙酯水解工艺就需要5天时间,该工艺存在原料价格高、产品收率低、反应时间长的缺点。另外一种是:如中国专利CN100486950C及CN109942388A所报道的以对苯二酚为原料的工艺,通过加氢得到1,4-环己二醇,然后在氧化剂作用下生成1,4-环己二酮。该工艺同样存在反应条件苛刻、反应路线长、副产物多且难于分离的特点,且需要用到多种昂贵的催化剂,产生较多的废水废渣,也使生产成本居高不下。
丁二酰丁二酸二甲酯(DMSS)国内来源广泛,价格远低于丁二酰丁二酸二乙酯(DESS),以DMSS为原料通过水解工艺来制备1,4-环己二酮,具 有原料来源充足、成本低的优点。目前文献报道少有以DMSS为原料,其原因可能是DMSS与DESS相比,水解更为困难,副产物更多,更难于分离。现有的DESS水解工艺在工业生产中已经处于淘汰阶段,原因是产品收率低、反应时间长,而且是间歇反应,生产效率低,中和过程也会产生大量含有机物废水,难于处理。因此,开发以DMSS为原料生产1,4-环己二酮的工艺,需要解决生产效率的问题。
发明内容
本发明的目的是提供一种1,4-环己二酮的连续化生产工艺,解决了现有技术中存在的以DMSS为原料生产1,4-环己二酮生产效率低的问题。
本发明所采用的技术方案是,一种1,4-环己二酮的连续化生产工艺,包括步骤:
步骤1,将丁二酰丁二酸二甲酯(DMSS)、水、催化剂经过计量按照比例加入反应釜中,获得混合溶液;
步骤2,在预设时间和预设温度下,所述步骤1获得的混合溶液进行水解反应,随后加热至回流,打开反应釜底部放液口,水解液从反应釜内流出;
步骤3,将步骤2获得的水解液进行萃取,分别得到有机层和水层;
步骤4,将步骤3获得的有机层进行蒸馏,获得1,4-环己二酮粗品;
步骤5,将步骤3获得的水层返回反应釜,并补入DMSS和水,重复步骤2至步骤5。
作为一种实施方式,所述步骤1中的催化剂为浓硫酸、聚乙二醇和硫酸镍的混合物。
作为一种实施方式,所述步骤1中DMSS、水、浓硫酸、聚乙二醇和硫 酸镍的质量比为:DMSS:水:浓硫酸:聚乙二醇:硫酸镍=1:(4~6):(0.6~0.9):(0.002~0.006):(0.1~0.3)。
作为一种实施方式,所述步骤2中的预设温度为70~90℃。
作为一种实施方式,所述步骤2中的预设时间为10~16h。
作为一种实施方式,所述步骤2中从反应釜中流出的水解液的量为所述步骤1中混合溶液的量的1/4~3/4。
作为一种实施方式,所述步骤5中,补入的水的摩尔量为补入的DMSS的摩尔量的2倍。
作为一种实施方式,所述步骤4还包括1,4-环己二酮的纯化步骤,所述1,4-环己二酮粗品通过升华处理或者蒸馏处理得到1,4-环己二酮纯品。
作为一种实施方式,所述1,4-环己二酮粗品通过升华处理得到所述1,4-环己二酮纯品的步骤包括:将1,4-环己二酮粗品,加入到1~5倍质量的石油醚中,加热回流0.5~2h,然后冷却后过滤、洗涤、烘干以除去石油醚,然后在真空度-0.095~-0.098MPa下,温度90~100℃条件下升华8~18h,获得1,4-环己二酮纯品。
作为一种实施方式,所述1,4-环己二酮粗品通过蒸馏处理得到所述1,4-环己二酮纯品的步骤包括:将1,4-环己二酮粗品在压力为19.5mmHg条件下收集110~114℃组分,获得1,4-环己二酮纯品。
本发明的有益效果是:
1.本发明的水解反应连续进行,生产效率高,利用了高温下DMSS会浮于反应体系上层的特点,实现了固液相的高效分离。
2.萃取后含有催化剂的水相可以直接回收利用,没有废水产生,免除了氨水的使用,生产过程环保。
3.生产工艺简单,产品成本低。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明提供的1,4-环己二酮的连续化生产工艺,包括步骤:
步骤1,将丁二酰丁二酸二甲酯(DMSS)、水、催化剂经过计量按照比例加入反应釜中,获得混合溶液;
步骤2,在预设时间和预设温度下,步骤1获得的混合溶液进行水解反应,随后加热至回流,打开反应釜底部放液口,水解液从反应釜内流出;
步骤3,将步骤2获得的水解液进行萃取,分别得到有机层和水层;
步骤4,将步骤3获得的有机层进行蒸馏,获得1,4-环己二酮粗品;
步骤5,将步骤3获得的水层返回反应釜,并补入DMSS和水,重复步骤2至步骤5。
步骤1中的催化剂为浓硫酸、聚乙二醇和硫酸镍的混合物。
步骤1中DMSS、水、浓硫酸、聚乙二醇和硫酸镍的质量比为:DMSS:水:浓硫酸:聚乙二醇:硫酸镍=1:(4~6):(0.6~0.9):(0.002~0.006):(0.1~0.3)。
步骤2中的预设温度为70~90℃。
步骤2中的预设时间为10~16h。
步骤2中从反应釜中流出的水解液的量为步骤1中混合溶液的量的1/4~3/4。
步骤5中,补入的水的摩尔量为补入的DMSS的摩尔量的2倍。
步骤4还包括1,4-环己二酮的纯化步骤,1,4-环己二酮粗品通过升华处理或者蒸馏处理得到1,4-环己二酮纯品。
1,4-环己二酮粗品通过升华处理得到1,4-环己二酮纯品的步骤包括:将 1,4-环己二酮粗品,加入到1~5倍质量的石油醚中,加热回流0.5~2h,然后冷却后过滤、洗涤、烘干以除去石油醚,然后在真空度-0.095~-0.098MPa下,温度90~100℃条件下升华8~18h,获得1,4-环己二酮纯品。
1,4-环己二酮粗品通过蒸馏处理得到1,4-环己二酮纯品的步骤包括:将1,4-环己二酮粗品在压力为19.5mmHg条件下收集110~114℃组分,获得1,4-环己二酮纯品。
本发明水解液通过萃取后分为水层和有机层,水层含有催化剂,可以直接回收使用,有机层含有产物1,4-环己二酮和甲醇,蒸出溶剂得到粗品1,4-环己二酮。
本发明实施例提供的1,4-环己二酮的连续化生产方法,水解反应连续进行,生产效率高,并且利用高温下DMSS会浮于反应体系上层的特点,实现了固液相的高效分离。另外,萃取后含有催化剂的水相可以直接回收利用,不仅节省成本,还没有废水产生,免除了氨水的使用,生产过程环保。因此,本发明实施例提供的1,4-环己二酮的连续化生产方法流程简单,成本低,三废排放量少,产率高,能耗少,产物纯度高。
实施例1
在反应釜中投入DMSS 500kg,按如下投料比加料:DMSS:水:浓硫酸:聚乙二醇:硫酸镍=200:1000:156:1:26.3,反应温度为80℃;反应12h后,加热至回流,然后放液约850L。使用氯仿进行萃取后,水相余约800L,在反应釜中补入167kgDMSS、26.3kg水及萃取后的水相800kg,然后在80℃下继续反应。每12h重复放液及补料过程。有机相萃取后蒸馏得粗品,蒸馏出的有机溶剂进行进一步精馏分离氯仿和甲醇,氯仿回收使用,甲醇收集后作为副产品。粗品1,4-环己二酮,真空度-0.097MPa下,温度95℃条件下升华 12h,得白色1,4-环己二酮产品,色谱检测纯度为99.7%,每次放出的水解液可得纯品75.5kg,收率为92%。
实施例2
在反应釜中投入DMSS 500kg,按如下投料比加料:DMSS:水:浓硫酸:聚乙二醇:硫酸镍=200:1000:156:1:26.3,反应温度为80℃;反应12h后,加热至回流,然后放液约850L。使用氯仿进行萃取后,水相余约800L,在反应釜中补入167kgDMSS、26.3kg水及萃取后的水相800kg,然后在80℃下继续反应。每12h重复放液及补料过程。有机相萃取后蒸馏得粗品,蒸馏出的有机溶剂进行进一步精馏分离氯仿和甲醇,氯仿回收使用,甲醇收集后作为副产品。粗品1,4-环己二酮,在压力为19.5mmHg条件下收集110~114℃组分,得白色1,4-环己二酮产品,色谱检测纯度为99.6%,每次放出的水解液可得纯品75.5kg,收率为92%。
实施例3
本实施例提供的1,4-环己二酮的连续化生产工艺,具体为:按照DMSS:水:浓硫酸:聚乙二醇:硫酸镍=1:4:0.6:0.002:0.1比例加入反应釜中在70℃温度下进行水解反应,反应10h后,将水解体系加热至沸腾,然后打开反应釜底部放液口,得水解液,将水解液进行萃取后,将有机层进行蒸馏得1,4-环己二酮粗品,水解反应釜水解液放完毕后,将萃取所得水层返回水解反应釜继续使用,并补入DMSS和水,降温至70℃继续进行水解反应,反应10h后,将水解体系加热至沸腾放水解液,如此反复,实现连续化生产,其中,每次水解液的放液量为反应体系溶液量的1/4,连续生产时,每次放液完毕后,根据放液比例补入相应比例的DMSS,并将萃取后的水层重新补入反应釜,并额外补入水,补水的量为新补入DMSS的摩尔量的2倍;
本实施例中得到的1,4-环己二酮粗品经过升华处理得到1,4-环己二酮纯品,升华处理条件为:将1,4-环己二酮粗品,加入到1倍质量的石油醚中,加热回流0.5h,然后冷却后过滤、洗涤、烘干以除去石油醚,然后在真空度-0.095MPa下,温度90℃条件下升华8h,得含量不少于99.5%的1,4-环己二酮。
当然,作为一种可替代的实施方式,1,4-环己二酮粗品通过蒸馏处理得到1,4-环己二酮纯品也是可以的。具体地,蒸馏处理条件为将1,4-环己二酮粗品在压力为19.5mmHg条件下收集110℃组分,得含量不少于99.5%的1,4-环己二酮。
实施例4
本实施例提供的1,4-环己二酮的连续化生产工艺,具体为:按照DMSS:水:浓硫酸:聚乙二醇:硫酸镍=1:5:0.8:0.004:0.2比例加入反应釜中在70℃温度下进行水解反应,反应14h后,将水解体系加热至沸腾,然后打开反应釜底部放液口,得水解液,将水解液进行萃取后,将有机层进行蒸馏得1,4-环己二酮粗品,水解反应釜水解液放完毕后,将萃取所得水层返回水解反应釜继续使用,并补入DMSS和水,降温至70℃继续进行水解反应,反应14h后,将水解体系加热至沸腾放水解液,如此反复,实现连续化生产,其中,每次水解液的放液量为反应体系溶液量一半,连续生产时,每次放液完毕后,根据放液比例补入相应比例的DMSS,并将萃取后的水层重新补入反应釜,并额外补入水,补水的量为新补入DMSS的摩尔量的2倍;
本实施例中得到的1,4-环己二酮粗品经过升华处理得到1,4-环己二酮纯品,升华处理条件为:将1,4-环己二酮粗品,加入到3倍质量的石油醚,加热回流1h,然后冷却后过滤、洗涤、烘干以除去石油醚,然后在真空度 -0.097MPa下,温度95℃条件下升华15h,得含量不少于99.5%的1,4-环己二酮。
当然,作为一种可替代的实施方式,1,4-环己二酮粗品通过蒸馏处理得到1,4-环己二酮纯品也是可以的。具体地,蒸馏处理条件为将1,4-环己二酮粗品在压力为19.5mmHg条件下收集112℃组分,得含量不少于99.5%的1,4-环己二酮。
实施例5
本实施例提供的1,4-环己二酮的连续化生产工艺,具体为:按照DMSS:水:浓硫酸:聚乙二醇:硫酸镍=1:6:0.9:0.006:0.3比例加入反应釜中在70℃温度下进行水解反应,反应16h后,将水解体系加热至沸腾,然后打开反应釜底部放液口,得水解液,将水解液进行萃取后,将有机层进行蒸馏得1,4-环己二酮粗品,水解反应釜水解液放完毕后,将萃取所得水层返回水解反应釜继续使用,并补入DMSS和水,降温至70℃继续进行水解反应,反应16h后,将水解体系加热至沸腾放水解液,如此反复,实现连续化生产,其中,每次水解液的放液量为反应体系溶液量一半,连续生产时,每次放液完毕后,根据放液比例补入相应比例的DMSS,并将萃取后的水层重新补入反应釜,并额外补入水,补水的量为新补入DMSS的摩尔量的2倍;
本实施例中得到的1,4-环己二酮粗品经过升华处理得到1,4-环己二酮纯品,升华处理条件为:将1,4-环己二酮粗品,加入到5倍质量的石油醚,加热回流2h,然后冷却后过滤、洗涤、烘干以除去石油醚,然后在真空度-0.097MPa下,温度100℃条件下升华18h,得含量不少于99.5%的1,4-环己二酮。
当然,作为一种可替代的实施方式,1,4-环己二酮粗品通过蒸馏处理得 到1,4-环己二酮纯品也是可以的。具体地,蒸馏处理条件为将1,4-环己二酮粗品在压力为19.5mmHg条件下收集114℃组分,得含量不少于99.5%的1,4-环己二酮。

Claims (10)

  1. 一种1,4-环己二酮的连续化生产方法,其特征在于,包括步骤:
    步骤1,将丁二酰丁二酸二甲酯(DMSS)、水、催化剂经过计量按照比例加入反应釜中,获得混合溶液;
    步骤2,在预设时间和预设温度下,所述步骤1获得的混合溶液进行水解反应,随后加热至回流,打开反应釜底部放液口,水解液从反应釜内流出;
    步骤3,将步骤2获得的水解液进行萃取,分别得到有机层和水层;
    步骤4,将步骤3获得的有机层进行蒸馏,获得1,4-环己二酮粗品;
    步骤5,将步骤3获得的水层返回反应釜,并补入DMSS和水,重复步骤2至步骤5。
  2. 根据权利要求1所述的1,4-环己二酮的连续化生产方法,其特征在于,所述步骤1中的催化剂为浓硫酸、聚乙二醇和硫酸镍的混合物。
  3. 根据权利要求2所述的1,4-环己二酮的连续化生产方法,其特征在于,所述步骤1中DMSS、水、浓硫酸、聚乙二醇和硫酸镍的质量比为:DMSS:水:浓硫酸:聚乙二醇:硫酸镍=1:(4~6):(0.6~0.9):(0.002~0.006):(0.1~0.3)。
  4. 根据权利要求1所述的1,4-环己二酮的连续化生产方法,其特征在于,所述步骤2中的预设温度为70~90℃。
  5. 根据权利要求1所述的1,4-环己二酮的连续化生产方法,其特征在于,所述步骤2中的预设时间为10~16h。
  6. 根据权利要求1所述的1,4-环己二酮的连续化生产方法,其特征在于,所述步骤2中从反应釜中流出的水解液的量为所述步骤1中混合溶液的量的1/4~3/4。
  7. 根据权利要求1所述的1,4-环己二酮的连续化生产方法,其特征在于, 所述步骤5中,补入的水的摩尔量为补入的DMSS的摩尔量的2倍。
  8. 根据权利要求1所述的1,4-环己二酮的连续化生产方法,其特征在于,所述步骤4还包括1,4-环己二酮的纯化步骤,所述1,4-环己二酮粗品通过升华处理或者蒸馏处理得到1,4-环己二酮纯品。
  9. 根据权利要求8所述的1,4-环己二酮的连续化生产方法,其特征在于,所述1,4-环己二酮粗品通过升华处理得到所述1,4-环己二酮纯品的步骤包括:将1,4-环己二酮粗品,加入到1~5倍质量的石油醚中,加热回流0.5~2h,然后冷却后过滤、洗涤、烘干以除去石油醚,然后在真空度-0.095~-0.098MPa下,温度90~100℃条件下升华8~18h,获得1,4-环己二酮纯品。
  10. 根据权利要求8所述的1,4-环己二酮的连续化生产方法,其特征在于,所述1,4-环己二酮粗品通过蒸馏处理得到所述1,4-环己二酮纯品的步骤包括:将1,4-环己二酮粗品在压力为19.5mmHg条件下收集110~114℃组分,获得1,4-环己二酮纯品。
PCT/CN2021/128687 2020-12-24 2021-11-04 一种1,4-环己二酮的连续化生产方法 WO2022134883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011552713.0A CN112679329A (zh) 2020-12-24 2020-12-24 一种1,4-环己二酮的连续化生产工艺
CN202011552713.0 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022134883A1 true WO2022134883A1 (zh) 2022-06-30

Family

ID=75452867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128687 WO2022134883A1 (zh) 2020-12-24 2021-11-04 一种1,4-环己二酮的连续化生产方法

Country Status (2)

Country Link
CN (1) CN112679329A (zh)
WO (1) WO2022134883A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645806A (zh) * 2020-12-24 2021-04-13 西安向阳航天材料股份有限公司 一种1,4-环己二酮的纯化方法
CN112679329A (zh) * 2020-12-24 2021-04-20 西安向阳航天材料股份有限公司 一种1,4-环己二酮的连续化生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818542A (zh) * 2019-11-27 2020-02-21 怀化旺达生物科技有限公司 一种1,2-环己二酮的纯化方法
CN112013633A (zh) * 2019-05-30 2020-12-01 株式会社斯库林集团 衬底处理方法及衬底处理装置
CN112645806A (zh) * 2020-12-24 2021-04-13 西安向阳航天材料股份有限公司 一种1,4-环己二酮的纯化方法
CN112679330A (zh) * 2020-12-24 2021-04-20 西安向阳航天材料股份有限公司 一种丁二酰丁二酸二甲酯的水解工艺
CN112679329A (zh) * 2020-12-24 2021-04-20 西安向阳航天材料股份有限公司 一种1,4-环己二酮的连续化生产工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100486950C (zh) * 2007-01-22 2009-05-13 河北大学 一种1,4-环己二酮的合成方法
CN103304380B (zh) * 2013-04-27 2015-08-26 中国中化股份有限公司 多釜串联连续水解生产对苯二酚的生产工艺
CN104478681B (zh) * 2014-12-31 2016-03-16 济南诚汇双达化工有限公司 一种1-氯-3,3-二甲基丁基乙酸酯的水解方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112013633A (zh) * 2019-05-30 2020-12-01 株式会社斯库林集团 衬底处理方法及衬底处理装置
CN110818542A (zh) * 2019-11-27 2020-02-21 怀化旺达生物科技有限公司 一种1,2-环己二酮的纯化方法
CN112645806A (zh) * 2020-12-24 2021-04-13 西安向阳航天材料股份有限公司 一种1,4-环己二酮的纯化方法
CN112679330A (zh) * 2020-12-24 2021-04-20 西安向阳航天材料股份有限公司 一种丁二酰丁二酸二甲酯的水解工艺
CN112679329A (zh) * 2020-12-24 2021-04-20 西安向阳航天材料股份有限公司 一种1,4-环己二酮的连续化生产工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAO PING, ET AL.: "Synthesis of Enadoline", CHINESE JOURNAL OF PHARMACEUTICALS, SHANGHAI YIYAO GONGYE YANJIUYUAN,SHANGHAI INSTITUTE OF PHARMACEUTICAL INDUSTRY, CN, vol. 32, no. 8, 31 December 2001 (2001-12-31), CN , pages 342 - 345, XP055945276, ISSN: 1001-8255 *
NIELSEN, ARNOLD T.; CARPENTER, WAYNE R.: "1, 4-Cyclohexanedione", ORGANIC SYNTHESES, vol. 45, 31 December 1965 (1965-12-31), US , pages 25, XP009537759, ISSN: 0078-6209, DOI: 10.15227/orgsyn.045.0025 *

Also Published As

Publication number Publication date
CN112679329A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2022134883A1 (zh) 一种1,4-环己二酮的连续化生产方法
CN102464573B (zh) 一种利用熔融结晶制备高纯间苯二酚的方法
CN101102986A (zh) 制备三羟甲基丙烷的方法
CN101412662A (zh) 一种制备对苯二酚的方法
WO2019119934A1 (zh) 一种连续制备2-甲基烯丙醇的方法
CN110668917A (zh) 一种1,3-丁二醇的合成装置及合成方法
CN109232178B (zh) 制备高纯度羟基酪醇的新方法
CN111269115A (zh) 一种低共熔溶剂中肉桂酸酯的制备方法
CN102030627B (zh) 用来从甲基丙烯酸甲酯纯化产生的物流中回收有价值的化合物的方法
CN101337890A (zh) 应用新型复合催化剂制备乙酰乙酸甲酯的方法
WO2022134882A1 (zh) 一种1,4-环己二酮的纯化方法
CN109748791B (zh) 生产己二酸二甲酯的节能方法
CN101434539B (zh) 乙酸苄酯的制造方法
CN109160880B (zh) 一种苯甲酸乙酯的制备方法
CN216584817U (zh) 一种从废稀释剂中回收丙二醇甲醚的系统
CN113735764B (zh) 一种回收2-氰基-3-氯-5-三氟甲基吡啶精馏釜残的方法
CN102816048A (zh) 萃取分离发酵液中1,3-丙二醇的方法
CN101125799B (zh) 檀香合成香料的合成方法
CN211445568U (zh) 一种丙二酸的生产装置
CN108546232A (zh) 一种单取代或双取代苯甲酸酯类化合物的制备方法
CN108821948B (zh) 苯甲醇精馏副产物回收再利用的方法
CN111662170B (zh) 环戊酮的提纯方法
CN110878040B (zh) 一种邻甲基苯胺制备吲哚的方法
CN209778706U (zh) 一种固体酸催化低沸点醇酯化的连续系统
CN215540782U (zh) 一种醛缩合的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908884

Country of ref document: EP

Kind code of ref document: A1