WO2022134549A1 - 投影设备控制方法、装置、介质及电子设备 - Google Patents

投影设备控制方法、装置、介质及电子设备 Download PDF

Info

Publication number
WO2022134549A1
WO2022134549A1 PCT/CN2021/106115 CN2021106115W WO2022134549A1 WO 2022134549 A1 WO2022134549 A1 WO 2022134549A1 CN 2021106115 W CN2021106115 W CN 2021106115W WO 2022134549 A1 WO2022134549 A1 WO 2022134549A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
projection
light
color value
target
Prior art date
Application number
PCT/CN2021/106115
Other languages
English (en)
French (fr)
Inventor
胡震宇
吕思成
张子祺
Original Assignee
深圳市火乐科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市火乐科技发展有限公司 filed Critical 深圳市火乐科技发展有限公司
Publication of WO2022134549A1 publication Critical patent/WO2022134549A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present disclosure relates to the technical field of projection equipment, and in particular, to a projection equipment control method, device, medium and electronic equipment.
  • the projection device displays the picture to the user through the principle of diffuse reflection.
  • the ambient light will form a diffuse reflection on the projection plane and enter the human eye together with the diffuse reflection light of the light projected by the projection device, thereby affecting the color temperature of the displayed picture.
  • the wall or curtain has various materials, microstructures and colors, which will affect the absorption and reflectivity of light of different wavelengths. This affects the color temperature of the picture. Therefore, the influence of ambient light and projection plane on the viewing experience is very large. It can be seen that how to adaptively adjust the color temperature of the projection device according to the current environmental conditions plays an important role in improving the viewing experience of users.
  • the present disclosure provides a projection device control method, device, medium and electronic device.
  • the present disclosure provides a method for controlling a projection device, the method comprising: in response to receiving a first projection instruction, acquiring, before the projection device projects to a projection surface, the ambient light passing through the The first color value of the first diffusely reflected light formed by the diffuse reflection on the projection surface; control the projection device to project pure red light, pure green light, and pure blue light to the projection surface in any order, and obtain the time of each projection.
  • the present disclosure provides a method for controlling a projection device, the method comprising: in response to receiving a second projection instruction, controlling the projection device to project pure white light to a projection surface; the fifth color value of the third diffusely reflected light formed by the diffuse reflection of the projection surface; according to the fifth color value, determine the second gain coefficient of the RGB channel in the projection device; according to the second gain coefficient, adjust the the gain of the RGB channel.
  • the present disclosure provides a projection device control device, the device includes: a first acquisition module, configured to acquire, in response to receiving a first projection instruction, the ambient light through the The first color value of the first diffusely reflected light formed by the diffuse reflection of the projection surface; the first control module is used to control the projection device to project pure red light, pure green light, and pure blue light to the a projection surface, and acquire the second color value of the second diffusely reflected light formed by the light projected by the projection device and the ambient light through the diffuse reflection of the projection surface in each projection; a first determination module, used for According to the first color value obtained by the first obtaining module and each of the second color values obtained by the first control module, determine the first gain coefficient of the RGB channel in the projection device; An adjustment module, configured to adjust the gain of the RGB channel according to the first gain coefficient determined by the first determination module.
  • a first acquisition module configured to acquire, in response to receiving a first projection instruction, the ambient light through the The first color value of the first diffusely reflected light formed by the diffuse reflection of the projection
  • the present disclosure provides a projection device control device, the device includes: a second control module, configured to control the projection device to project pure white light to a projection surface in response to receiving a second projection instruction; a module for acquiring the fifth color value of the third diffusely reflected light formed by the diffuse reflection of the pure white light and ambient light through the projection surface; a second determining module for acquiring the third color value obtained by the second acquiring module
  • the five-color value determines the second gain coefficient of the RGB channel in the projection device; the second adjustment module is configured to adjust the gain of the RGB channel according to the second gain coefficient.
  • the present disclosure provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the method provided in the first or second aspect of the present disclosure.
  • the present disclosure provides an electronic device, comprising: a memory on which a computer program is stored; and a processor for executing the computer program in the memory to implement the first or second aspect of the present disclosure Provided the steps of the method.
  • the first color value of the first diffusely reflected light formed by the diffuse reflection of ambient light on the projection surface before the projection device projects to the projection surface is obtained; after that, the projection device is controlled Project pure red light, pure green light, and pure blue light to the projection surface in any order, and obtain the second diffuse reflection light formed by the diffuse reflection of the light projected by the projection device and the ambient light by the projection surface for each projection.
  • Two color values next, determine the first gain coefficient of the RGB channel in the projection device according to the first color value and each second color value, and adjust the gain of the RGB channel according to the first gain coefficient.
  • the first color value of the first diffusely reflected light on the projection surface includes the characteristics of the projection surface and ambient light
  • the second color value of each second diffusely reflected light on the projection surface not only includes the characteristics of the projection light source of the projection device, but also includes It has the characteristics of projection surface and ambient light, so that the influence of ambient light and projection surface color temperature can be removed from each second color value according to the first color value, so that the RGB channel in the projection device can be accurately calculated.
  • the first gain coefficient is used to adjust the gain of the RGB channel according to the first gain coefficient, so as to achieve accurate compensation of the color temperature of the projection light source. In this way, no matter how the ambient light and the projection surface change, the color temperature of the projection image is always kept within a preset value or range, thereby providing users with the best viewing experience.
  • FIG. 1 is a flowchart illustrating a method for controlling a projection device according to an exemplary embodiment.
  • Fig. 2 is a flowchart of a method for determining a first gain coefficient according to an exemplary embodiment.
  • FIG. 3 is an xy coordinate diagram of a CIE1931 according to an exemplary embodiment.
  • FIG. 4 is a graph showing a relationship between a correlated color temperature and a target color temperature according to an exemplary embodiment.
  • FIG. 5 is a partial enlarged view of the coordinate diagram of CIE1931 shown in FIG. 3 .
  • FIG. 6 is a flowchart illustrating a method for controlling a projection device according to another exemplary embodiment.
  • FIG. 7A is a graph showing a relationship between the intensity of infrared light and the weighting coefficient according to an exemplary embodiment.
  • FIG. 7B is a graph showing the relationship between the intensity of infrared light and the weighting coefficient according to another exemplary embodiment.
  • FIG. 8 is a flowchart illustrating a method for controlling a projection device according to another exemplary embodiment.
  • Fig. 9 is a flow chart of a method for determining a second gain coefficient according to an exemplary embodiment.
  • FIG. 10 is an xy coordinate diagram of a CIE1976 according to an exemplary embodiment.
  • FIG. 11 is a partial enlarged view of the coordinate diagram of the uniform color space shown in FIG. 10 .
  • FIG. 12 is a flowchart illustrating a method for controlling a projection device according to another exemplary embodiment.
  • Fig. 13 is a block diagram of a projection device control apparatus according to an exemplary embodiment.
  • Fig. 14 is a block diagram of a projection device control apparatus according to another exemplary embodiment.
  • Fig. 15 is a block diagram of an electronic device according to an exemplary embodiment.
  • FIG. 1 is a flowchart illustrating a method for controlling a projection device according to an exemplary embodiment. As shown in FIG. 1 , the method includes S101 to S104.
  • the projection surface can be a wall or curtain of various materials, and the color of the projection surface can be various colors such as white, pink, gray, etc.
  • the material and color of the projection surface are not specified in this disclosure. limited.
  • the first color value may be RGB data or XYZ data in the XYZ color space.
  • the XYZ color space is the XYZ color space defined by the International Commission on Illumination (CIE) in 1931, also known as CIE1931.
  • the first diffusely reflected light on the projection surface is the light formed by the ambient light diffusely reflected on the projection surface.
  • the first color value of the reflected light includes the characteristics of the projection surface and the ambient light at the same time.
  • the projection device is controlled to project pure red light, pure green light, and pure blue light to the projection surface in any order, and obtains the light projected by the projection device and the ambient light formed by the diffuse reflection of the projection surface during each projection.
  • the second color value of the second diffusely reflected light is controlled to project pure red light, pure green light, and pure blue light to the projection surface in any order, and obtains the light projected by the projection device and the ambient light formed by the diffuse reflection of the projection surface during each projection.
  • the second color value of the second diffusely reflected light is controlled to project pure red light, pure green light, and pure blue light to the projection surface in any order, and obtains the light projected by the projection device and the ambient light formed by the diffuse reflection of the projection surface during each projection.
  • the second color value may be RGB data or XYZ data in the XYZ color space.
  • the above-mentioned first diffusely reflected light and each second diffusely reflected light can be collected by a sensing module facing the projection surface, wherein the sensing module can be a color temperature sensor, a camera, etc., and the sensing module can be integrated in In the projection device, it can also be independent of the projection device and connected to the projection device through a wireless network or a wired network.
  • the sensing module can be a color temperature sensor, a camera, etc.
  • the sensing module can be integrated in In the projection device, it can also be independent of the projection device and connected to the projection device through a wireless network or a wired network.
  • the projection device can respectively project pure red light, pure green light, and pure blue light to the projection surface in any order, as long as the corresponding second color value can be obtained.
  • the projection device can be controlled to project pure red light, pure green light, and pure blue light to the projection surface in sequence; for another example, the projection device can be controlled to project pure red light, pure blue light, and pure green light to the projection surface in sequence.
  • the first gain coefficient of the RGB channel in the projection device is determined according to the first color value and each of the second color values.
  • the RGB channel includes a red (R) channel, a green (G) channel, and a blue (B) channel.
  • the red (R) channel can be determined according to the first color value and each second color value.
  • the gain of the RGB channel is adjusted according to the first gain coefficient.
  • the red (R) The first gain coefficient of the channel adjusts the gain of the red (R) channel in the projection device, adjusts the gain of the green (G) channel in the projection device according to the first gain coefficient of the green (G) channel, and adjusts the gain of the green (G) channel in the projection device according to the first gain coefficient of the blue (B) channel.
  • a gain factor adjusts the gain of the blue (B) channel in the projection device.
  • the first color value of the first diffusely reflected light formed by the diffuse reflection of ambient light on the projection surface before the projection device projects to the projection surface is obtained; after that, the projection device is controlled Project pure red light, pure green light, and pure blue light to the projection surface in any order, and obtain the second diffuse reflection light formed by the diffuse reflection of the light projected by the projection device and the ambient light by the projection surface for each projection.
  • Two color values next, determine the first gain coefficient of the RGB channel in the projection device according to the first color value and each second color value, and adjust the gain of the RGB channel according to the first gain coefficient.
  • the first color value of the first diffusely reflected light on the projection surface includes the characteristics of the projection surface and ambient light
  • the second color value of each second diffusely reflected light on the projection surface not only includes the characteristics of the projection light source of the projection device, but also includes It has the characteristics of projection surface and ambient light, so that the influence of ambient light and projection surface color temperature can be removed from each second color value according to the first color value, so that the RGB channel in the projection device can be accurately calculated.
  • the first gain coefficient is used to adjust the gain of the RGB channel according to the first gain coefficient, so as to achieve accurate compensation of the color temperature of the projection light source. In this way, no matter how the ambient light and the projection surface change, the color temperature of the projection image is always kept within a preset value or range, thereby providing users with the best viewing experience.
  • the first color value is subtracted from the second color value in order to filter out environmental characteristics from the second color value, so as to prevent ambient light from affecting the projection light source of the projection device gamma (Gamma) characteristics.
  • the third color value can be obtained by the following equations (1)-(3):
  • X' R (N), Y' R (N), Z' R (N) are the second difference between the pure red light projected by the projection device and the second diffuse reflection light formed by the diffuse reflection of ambient light on the projection surface.
  • X' G (N), Y' G (N), Z' G (N) are projections respectively The second color value of the second diffuse reflection light formed by the diffuse reflection of the pure green light projected by the device and the ambient light on the projection surface, and the X data, Y data, Z data in the third color value obtained by subtracting the first color value Data
  • X' B (N), Y' B (N), Z' B (N) are the second color of the second diffuse reflection light formed by the pure blue light projected by the projection device and the ambient light diffusely reflected by the projection surface respectively value, X data, Y data, Z data in the third color value obtained after subtracting the first color value;
  • X data, Y data, Z data in the second color value of the second diffuse reflection light formed by reflection X B , Y B , Z B are the pure blue light and ambient light projected by the projection device respectively formed by the diffuse reflection of the projection surface X data, Y data, Z data in the second color value of the second diffuse reflection light;
  • X D , Y D , Z D are the X data, Y data, Z data in the first color value respectively;
  • N is the data The maximum value of the horizontal value, for example, 256, 1024, etc.
  • a target color lookup table is constructed and the first chromaticity coordinates of the projection light source of the projection device are determined.
  • a first gain coefficient is determined according to the first chromaticity coordinates and the target color lookup table.
  • an intermediate color lookup table is constructed according to each third color value; then, the intermediate color lookup table is modified according to the first color value to obtain a target color lookup table.
  • the three third color values obtained in the above S1031 are the color values when the saturation is 100% (that is, the red X data X′ R (N); the red Y data Y′ R ( N); red Z data Z' R (N); green X data X' G (N); green Y data Y' G (N); green Z data Z' G (N) ; blue X data X' B (N); blue Y data Y' B (N); blue Z data Z' B (N)).
  • the color values of the remaining saturation can be calculated based on Gamma2.2, so that the above-mentioned intermediate color look-up table can be obtained.
  • the color values of the remaining saturation can be calculated by the following equations (4)-(6):
  • X' R (IRE) is the X data of red with saturation of IRE/N in the intermediate color lookup table
  • IRE is the data level value
  • IRE is any integer in the range of [0, N-1]
  • Y' R (IRE) is the Y data of red with saturation of IRE/N in the intermediate color look-up table
  • Z' R (IRE) is the Z data of red with saturation of IRE/N in the intermediate color look-up table
  • X' G (IRE) is the X data of green with saturation of IRE/N in the intermediate color look-up table
  • Y' G (IRE) is the Y data of green with saturation of IRE/N in the intermediate color look-up table
  • Z' G (IRE) is the Z data of green with saturation of IRE/N in the intermediate color look-up table
  • X' B (IRE) is the X data of blue with saturation of IRE/N in the intermediate color look-up table
  • Y'B (IRE) is the Y data of blue with saturation
  • the brightness of the projection light source does not conform to Gamma2.2
  • the sixth color value of the projection light source of the projection device is obtained, and then the intermediate color lookup table is obtained by linear interpolation according to the third color value and the sixth color value.
  • the specific manner of obtaining the above-mentioned intermediate color look-up table by means of linear difference is well known to those skilled in the art, and will not be repeated in the present disclosure.
  • the intermediate color lookup table is obtained in the above manner, the intermediate color lookup table is modified according to the first color value to obtain the target color lookup table.
  • each color value in the target color lookup table can be calculated by the following equations (7) to (9):
  • X' R1 (IRE) is the X data of red with saturation of IRE/N in the target color lookup table
  • IRE is the data level value
  • IRE is any integer in the range of [0, N]
  • Y' R1 (IRE) is the Y data of red with saturation of IRE/N in the target color lookup table
  • Z′ R1 (IRE) is the Z data of red with saturation of IRE/N in the target color lookup table
  • X′ G1 (IRE) is the X data of green with saturation of IRE/N in the target color lookup table
  • Y′ G1 (IRE) is the Y data of green with saturation of IRE/N in the target color lookup table
  • Z′ G1 (IRE) is the Z data of green with saturation of IRE/N in the target color lookup table
  • X′ B1 (IRE) is the X data of blue with saturation of IRE/N in the target color lookup table
  • Y ' B1 (IRE) is the Y data of blue
  • the specific implementation of determining the first chromaticity coordinates of the projection light source of the projection device according to the first color value and each third color value in S1032 will be described in detail below. Specifically, first, according to each third color value, the correlated color temperature of the target diffuse reflection light is determined, wherein the target diffuse reflection light is the light obtained by superimposing all the second diffuse reflection lights; then, according to the target diffuse reflection light The correlated color temperature of , determines the first chromaticity coordinate.
  • the correlated color temperature of the target diffusely reflected light can be determined through the following steps 1) to 3).
  • the fourth color value of the target diffusely reflected light can be determined by the following equation (10):
  • X is the X data in the fourth color value
  • Y is the Y data in the fourth color value
  • Z is the Z data in the fourth color value.
  • the second chromaticity coordinates of the target diffusely reflected light in the XYZ color space are determined, that is, the second chromaticity coordinates of the target diffusely reflected light in the xy coordinate diagram of CIE1931 (as shown in FIG. 3 ) are determined Coordinates, in which, in the xy coordinate diagram of the CIE1931, all colors can be represented by the x and y coordinates in the coordinate system.
  • the thick black line in FIG. 3 is the black body locus line, which can be understood as the locus of white under different color temperatures.
  • the color temperature on the black body locus line is the standard color temperature, and the line intersecting the black body locus line is the isotherm.
  • each color on the isotherm line is the same color temperature. Except for the color temperature on the black body locus line, which is the standard color temperature, the other color temperatures are is the correlated color temperature. The farther from the black body locus line, although the color temperature value is the same, the color shift ⁇ uv will be larger, and the color shift will be more serious.
  • the second chromaticity coordinates (x, y) can be determined according to the fourth color value by the following equation (11):
  • the actual light source is not always on the black body locus, so the concept of Correlative Color Temperature (CCT) is proposed, and the temperature with the shortest distance is used to represent the relative color temperature of the light source on the uniform chromaticity diagram. Expressed in K degrees. Therefore, two beams of white light with the same color temperature may have one beam that is greenish and the other that is purple. Only the subjective perception on the blackbody locus is pure white.
  • CCT Correlative Color Temperature
  • the correlated color temperature CCT of the above-mentioned target diffuse reflection light can be determined by the following equation (12):
  • a1, a2, a3 and c1 are all constants.
  • the first target color temperature of the projection light source corresponding to the correlated color temperature of the target diffusely reflected light is determined.
  • the corresponding relationship between the correlated color temperature and the color temperature of the projection light source is shown in FIG. 4 , in which the upper limit value and the lower limit value of the first target color temperature can be set within a comfortable color temperature range to narrow the first target color temperature.
  • the difference between the color temperature and the correlated color temperature of the target diffuse light, reducing the loss of brightness.
  • intersection coordinates of the black body locus in the XYZ color space and the isotherm of the first target color temperature (ie (u1, v1) shown in FIG. 5 ) are determined as the first chromaticity coordinates.
  • IRE R , IRE G , and IRE B can be combined arbitrarily (wherein IRE R is the data level value corresponding to red, IRE R is any value in the range of [0, N]; IRE G is the corresponding data level value of green data level value, IRE G is any value in the range of [0, N]; IRE B is the data level value corresponding to blue, and IRE B is any value in the range of [0, N]), and substituted into the following equations respectively ( 13), find the IRE R , IRE G , IRE B that make the distance between (x w , y w ) and the target chromaticity coordinates the smallest, which are represented by IRE Rmin , IRE Gmin , and IRE Bmin here, and then set IRE Rmin /N is determined as the first gain factor for the red channel, IRE Gmin /N is determined as the first gain factor for the green channel, and IRE Bmin /N is determined as the first gain factor
  • the first diffusely reflected light and each second diffusely reflected light collected by the sensing module facing the projection surface include not only color values, but also infrared spectrum information.
  • the sensing module is irradiated with infrared light, the The wavelength of infrared light has a response within 700nm, especially when the color value excitation is low and the infrared light excitation is high, it will greatly affect the color value measurement accuracy of the sensor module. Therefore, the sensing module may be provided with an infrared channel for collecting infrared spectral information, so as to assist in improving the measurement accuracy of the color value.
  • the above method further includes S105 to S107 .
  • the infrared spectrum information of the first diffusely reflected light is acquired.
  • the first color value is corrected according to the infrared spectrum information of the first diffusely reflected light, and for each second diffusely reflected light, according to the infrared spectrum information of the second diffusely reflected light, the second diffusely reflected light is The second color value of the reflected light is corrected.
  • the infrared spectrum information of the first diffusely reflected light can also be acquired simultaneously; After the light is projected on the surface, in addition to acquiring the second color value of the second diffusely reflected light formed by the light projected by the projection device and the ambient light through the diffuse reflection of the projection surface at each projection, it is also necessary to obtain the second diffusely reflected light at the same time. IR spectral information.
  • the first color value is corrected according to the infrared spectrum information of the first diffusely reflected light, and for each second diffusely reflected light, according to the infrared spectrum information of the second diffusely reflected light, the second diffusely reflected light is The second color value is corrected.
  • the above S103 can determine the first gain coefficient of the RGB channel in the projection device according to the first color value obtained after correction and each second color value obtained after correction.
  • the first color value may be corrected in various ways according to the infrared spectrum information of the first diffusely reflected light.
  • a third correction matrix may be obtained, wherein the third correction matrix is determined according to the measurement result under a single standard light source; then, according to the product of the third correction matrix and the first matrix to be corrected, determine The first color value obtained after correction, wherein the first matrix to be corrected is a column vector formed by the first color value and the infrared spectrum information of the first diffusely reflected light.
  • the corrected first color value can be determined by the following equation (14) according to the product of the third correction matrix and the first matrix to be corrected:
  • the corrected first color value is the first matrix to be corrected, where IR is the infrared spectral information of the first diffusely reflected light, is the above-mentioned first color value; is the third correction matrix.
  • the projection device is controlled to project a standard light source (for example, any one of D50, D65, TL83, TL84, etc.) to the projection surface; then, the standard light source and ambient light are acquired through the sensing module and diffusely reflected by the projection surface.
  • a standard light source for example, any one of D50, D65, TL83, TL84, etc.
  • the color value and infrared spectrum information of the formed diffuse reflection light, and at the same time, the color value of the standard light source projected by the projection surface is measured by standard instruments such as illuminometer and integrating sphere; , the light source projected by the projection equipment to the projection surface is the same each time.
  • the simulation is carried out. Combined, the above-mentioned third correction matrix is obtained.
  • the color values and infrared spectrum information of multiple groups of diffuse reflected light measured by the sensing module, and the color values of multiple groups of standard light sources measured by standard instruments are shown in Table 2 below:
  • the third calibration matrix can be obtained by fitting
  • a first correction matrix and a second correction matrix may be acquired, wherein the first correction matrix is based on a standard light source with an infrared component greater than a first preset ratio threshold (ie, a light source with a high infrared component).
  • the measurement result is determined, and the second correction matrix is determined according to the measurement result under a standard light source with an infrared component less than a second preset proportional threshold (ie, a light source with a low infrared component), wherein the first preset proportional threshold is greater than the first preset proportional threshold.
  • Two preset proportional thresholds then, according to the product of the first correction matrix and the first matrix to be corrected, and the product of the second correction matrix and the first matrix to be corrected, the first color value obtained after correction is determined.
  • the first color value obtained after correction can be determined by the following equation (15):
  • the weighting coefficient weight may be determined according to the intensity of the infrared light.
  • the weighting coefficient may be determined by the relationship curve between the intensity of the infrared light and the weighting coefficient shown in FIG. 7A or FIG. 7B .
  • the projection device is respectively controlled to project the standard light source to the projection surface; then, the standard light source and ambient light are acquired by the sensing module and diffusely reflected by the projection surface.
  • measure the color value of the standard light source projected by the projection surface through standard instruments such as illuminometer and integrating sphere; according to the above method, carry out multiple measurements under different ambient light , and then perform fitting according to the color values and infrared spectrum information of multiple groups of diffusely reflected light measured by the sensing module, and the color values of multiple groups of standard light sources with different infrared components measured by the standard instrument that are greater than the first preset ratio threshold.
  • the above-mentioned first correction matrix is obtained.
  • the projection device is controlled to project the standard light source to the projection surface respectively; then, the standard light source and ambient light are acquired by the sensing module and diffusely reflected by the projection surface At the same time, measure the color value of the standard light source projected by the projection surface through the standard instrument; according to the above method, carry out multiple measurements under different ambient light, and then, according to the sensor
  • the color values and infrared spectrum information of multiple groups of diffuse reflected light measured by the module, as well as the color values of multiple groups of standard light sources whose infrared components are less than the second preset ratio threshold measured by the standard instrument are fitted to obtain the above-mentioned second correction matrix .
  • the above-mentioned first correction matrix, second correction matrix and third correction matrix may be predetermined and stored in a corresponding storage module in the projection device, so that the projection device can obtain the first correction matrix by accessing the storage module.
  • the correction matrix, the second correction matrix, or the acquisition of the third correction matrix is convenient and quick, thereby speeding up the efficiency of color temperature adjustment.
  • an optical element for filtering out infrared light can also be arranged on the sensing module to improve the first color value.
  • the measurement accuracy of color value can also be arranged on the sensing module to improve the first color value.
  • the present disclosure also provides a projection device control method. As shown in FIG. 8, the method may include S801-S804.
  • the projection device in response to receiving the second projection instruction, the projection device is controlled to project pure white light to the projection surface.
  • the second projection instruction is different from the above-described first projection instruction.
  • the user can respectively issue the first projection instruction and the second projection instruction through two different buttons or operations on the projection device.
  • the fifth color value may be RGB data or XYZ data in the XYZ color space.
  • the third diffuse reflection light on the projection surface is the pure white light projected by the projection device and the environment.
  • the light is formed by the diffuse reflection of the light on the projection surface.
  • the fifth color value of the third diffusely reflected light includes not only the characteristics of the projection light source of the projection device, but also the characteristics of the projection surface and ambient light.
  • the above-mentioned third diffusely reflected light may be collected by a sensing module facing the projection surface, wherein the sensing module may be a color temperature sensor, a camera, etc., and the sensing module may be integrated into the projection device, or may be It is independent of the projection device and connected to the projection device through a wireless network or a wired network.
  • the sensing module may be a color temperature sensor, a camera, etc.
  • the sensing module may be integrated into the projection device, or may be It is independent of the projection device and connected to the projection device through a wireless network or a wired network.
  • the second gain coefficient of the RGB channel in the projection device is determined according to the fifth color value.
  • the RGB channels include a red (R) channel, a green (G) channel, and a blue (B) channel.
  • R red
  • G green
  • B blue
  • the second gain coefficient of the red (R) channel, the green color can be determined according to the fifth color value.
  • the gain of the RGB channel is adjusted according to the second gain coefficient.
  • the red (R) The second gain coefficient of the channel adjusts the gain of the red (R) channel in the projection device, adjusts the gain of the green (G) channel in the projection device according to the second gain coefficient of the green (G) channel, and adjusts the gain of the green (G) channel in the projection device according to the second gain coefficient of the blue (B) channel.
  • a gain factor of two adjusts the gain of the blue (B) channel in the projection device.
  • the projection device When receiving the second projection instruction, control the projection device to project pure white light to the projection surface, and then obtain the fifth color value of the third diffusely reflected light formed by the diffuse reflection of pure white light and ambient light on the projection surface;
  • the fifth color value determines the second gain coefficient of the RGB channel in the projection device, and adjusts the gain of the RGB channel according to the second gain coefficient.
  • the fifth color value of the third diffusely reflected light on the projection surface includes not only the characteristics of the projection light source of the projection device, but also the characteristics of the projection surface and ambient light, so that the second color value of the RGB channel in the projection device can be accurately calculated. gain coefficient, and then adjust the gain of the RGB channel according to the second gain coefficient, so as to achieve accurate compensation of the color temperature of the projection light source. In this way, no matter how the ambient light and the projection surface change, the color temperature of the projection image is always kept within a preset value or range, thereby providing users with the best viewing experience.
  • the second target color temperature of the projection light source of the projection device is respectively determined to be the target compensation color shift.
  • the target chromaticity coordinates of the projection light source of the projection device in the XYZ color space are determined according to the second target color temperature and the target compensation color shift.
  • the second gain coefficient is determined according to the preset color lookup table and the target chromaticity coordinates.
  • the preset color lookup table (LookupTable, LuT) can be constructed in the following ways:
  • N X data X R (N) for red, Y data Y R (N) for red, Z data Z R (N) for red, X data for green X G (N), green Y data Y G (N), green Z data Z G (N), blue X data X B (N), blue Y data Y B (N), green Z data Z B (N), where N is the maximum value of the data level value, for example, 256, 1024, etc.);
  • the color values of the remaining saturation can be calculated by the following equations (16)-(18):
  • X R (IRE) is the X data of red with saturation of IRE/N in the preset color lookup table
  • IRE is the data level value
  • IRE is any integer in the range of [0, N-1]
  • Y R (IRE) is the Y data of red with saturation of IRE/N in the preset color look-up table
  • Z R (IRE) is the red of the preset color look-up table with saturation of IRE/N Z data
  • X G (IRE) is the X data of green with saturation of IRE/N in the preset color look-up table
  • Y G (IRE) is the color of the preset color look-up table with saturation of IRE/N Y data of green
  • Z G (IRE) is the Z data of green with saturation of IRE/N in the preset color look-up table
  • X B (IRE) is the preset color look-up table with saturation of IRE/N N blue X data
  • Y B (IRE) is the blue Y data in the preset color lookup
  • N 1024, and the preset color lookup table obtained by the above method is shown in Table 3 below:
  • the brightness of the projection light source does not conform to Gamma2.2
  • the color value of the projection light source of the projection device and then, according to all the color values measured by the standard instrument, the above-mentioned preset color look-up table is obtained by means of linear interpolation.
  • the specific manner of obtaining the above-mentioned preset color lookup table by means of linear difference is well known to those skilled in the art, and will not be repeated in the present disclosure.
  • any combination of IRE R , IRE G , and IRE B can be substituted into the above equation (13), respectively, to find the IRE R that minimizes the distance between (x w , y w ) and the target chromaticity coordinates , IRE G , IRE B , represented by IRE Rmin1 , IRE Gmin1 , IRE Bmin1 here , then, IRE Rmin1 /N is determined as the second gain coefficient of the red channel, IRE Gmin1 /N is determined as the second gain coefficient of the green channel, Determine IRE Bmin1 /N as the second gain factor for the blue channel.
  • the second target color temperature of the projection light source of the projection device can be determined by the following steps 1) to 5) and the target compensation color shift:
  • the third chromaticity coordinates of the third diffusely reflected light in the XYZ color space are determined, that is, the xy coordinate diagram of the third diffusely reflected light in CIE1931 is determined.
  • the third chromaticity coordinate can be determined in various ways.
  • the fifth color value is RGB data
  • it can be converted into XYZ data in the XYZ color space first, and then according to The XYZ data obtained after the conversion is used to determine the third chromaticity coordinates of the third diffuse reflection light in the XYZ color space.
  • the third chromaticity coordinate of the third diffusely reflected light in the XYZ color space is directly determined according to the fifth color value.
  • the third chromaticity coordinates (x1, y1) can be determined by the following equation (19):
  • X4 is the X data in the fifth color value
  • Y4 is the Y data in the fifth color value
  • Z4 is the Z data in the fifth color value.
  • the correlated color temperature CCT1 of the third diffusely reflected light can be determined by the following equation (20):
  • a11, a21, a31 and c2 are all constants.
  • the above-mentioned second target color temperature CCT comp can be determined by the following equation (21) according to the correlated color temperature of the third diffusely reflected light:
  • the above-mentioned second target color temperature CCT comp can be determined by the following equation (22):
  • CCT2 and CCT comp1 are both intermediate variables.
  • the uniform color space may be the UCS color space of CIE1976.
  • the third chromaticity coordinate can be mapped into the uniform color space, so as to obtain the fourth chromaticity coordinate.
  • the target compensation color shift can be determined by:
  • the coordinates of the first intersection point of the isotherm of the blackbody locus in the uniform color space and the correlated color temperature of the third diffusely reflected light are determined.
  • the black body locus in FIG. 3 can be mapped into the uniform color space according to the above-mentioned mapping relationship to obtain the curve A shown in FIG. 10 (ie, the black body locus in the uniform color space).
  • the coordinates of the first intersection point between the isotherm of the correlated color temperature of the third diffusely reflected light and the blackbody locus in the uniform color space can be calculated. (u std ', v std ')).
  • the distance between the first intersection coordinate and the fourth chromaticity coordinate is determined as the color shift to be compensated.
  • the target compensation strength is obtained, and the color shift to be compensated is enhanced and compensated according to the target compensation strength, so as to obtain the target compensation color shift.
  • the target compensation color shift ⁇ u′v′ comp can be obtained by the following equation (24):
  • the fifth chromaticity coordinate of the projection light source in the uniform color space determines the fifth chromaticity coordinate of the projection light source in the uniform color space; then, map the fifth chromaticity coordinate to the XYZ color space to obtain the target chromaticity coordinate.
  • the fifth chromaticity coordinates can be determined by: first, determining the coordinates of the second intersection of the blackbody locus in the uniform color space and the isotherm of the second target color temperature (ie, (u) shown in FIG. 11 . 1 ′, v 1 ′)); then, according to the second intersection coordinates and the target compensation color shift, determine the fifth chromaticity coordinates (as shown in FIG. 11 (u 2 ′, v 2 ′))
  • the fifth chromaticity coordinate is determined by the following equation (25):
  • (u 2 ', v 2 ') is the fifth chromaticity coordinate
  • (u 1 ', v 1 ') is the second intersection coordinate of the black body locus in the uniform color space and the isotherm of the second target color temperature
  • h is the slope of the isotherm (known quantity) for the second target color temperature.
  • the fifth chromaticity coordinates can be mapped to the XYZ color space according to the mapping relationship shown in the above equation (23), so as to obtain the target chromaticity coordinates.
  • the calculation of the target compensation color shift involves successively the XYZ color space (the non-uniform color space, which is the coordinate system where the color temperature is defined) and the uniform color space (the coordinate system that conforms to the perception of the human eye), which can improve the target compensation color.
  • the accuracy of the offset can be accurately compensated for color offset, which is more in line with the perception of the human eye, and further improves the user's viewing experience.
  • the above-mentioned third diffusely reflected light collected by the above-mentioned sensing module facing the projection surface not only includes color value, but also includes infrared spectrum information.
  • the sensing module is irradiated by infrared light, there is a The response, especially when the color value excitation is low and the infrared light excitation is high, can greatly affect the color value measurement accuracy of the sensing module. Therefore, the sensing module may be provided with an infrared channel for collecting infrared spectral information, so as to assist in improving the measurement accuracy of the color value.
  • the above method further includes S805 and S806.
  • the fifth color value is corrected according to the infrared spectrum information of the third diffusely reflected light.
  • the projection device after controlling the projection device to project pure white light to the projection surface, in addition to acquiring the fifth color value of the third diffusely reflected light formed by the pure white light and ambient light through the diffuse reflection of the projection surface, it is also necessary to simultaneously acquire the third color value of the third diffusely reflected light.
  • the infrared spectrum information of the diffusely reflected light, and then, the fifth color value is corrected according to the infrared spectrum information of the third diffusely reflected light.
  • the above-mentioned S803 can determine the projection device according to the fifth color value obtained after the correction. Second gain factor for RGB channels.
  • the fifth color value may be corrected in various ways according to the infrared spectrum information of the third diffusely reflected light.
  • a third correction matrix may be obtained, wherein the third correction matrix is determined according to the measurement result under a single standard light source; then, according to the product of the third correction matrix and the second matrix to be corrected, the The fifth color value obtained after correction, wherein the second matrix to be corrected is a column vector formed by the fifth color value and the infrared spectrum information of the third diffusely reflected light.
  • the fifth color value obtained after correction can be determined by the following equation (26):
  • IR1 is the infrared spectral information of the third diffusely reflected light, is the above fifth color value; is the third correction matrix.
  • the first correction matrix and the second correction matrix may be obtained; then, according to the product of the first correction matrix and the second matrix to be corrected, and the product of the second correction matrix and the second matrix to be corrected, determine The fifth color value obtained after correction.
  • the fifth color value obtained after correction can be determined by the following equation (27):
  • the weighting coefficient weight1 may be determined according to the intensity of the infrared light, for example, the above-mentioned weighting coefficient may be determined by the relationship curve between the intensity of the infrared light and the weighting coefficient shown in FIG. 7A or FIG. 7B .
  • an optical element for filtering out infrared light can also be arranged on the sensing module to improve the fifth color value.
  • the measurement accuracy of color value can also be arranged on the sensing module to improve the fifth color value.
  • Fig. 13 is a block diagram of a projection device control apparatus according to an exemplary embodiment.
  • the apparatus 1300 includes: a first obtaining module 1301, configured to obtain, in response to receiving the first projection instruction, the ambient light formed by the diffuse reflection of the projection surface before the projection device projects to the projection surface.
  • the first color value of the first diffusely reflected light is used to control the projection device to project pure red light, pure green light, and pure blue light to the projection surface in any order, and obtain each During the second projection, the second color value of the second diffusely reflected light formed by the light projected by the projection device and the ambient light by the diffuse reflection of the projection surface; the first determination module 1303 is used to determine the second color value according to the first The first color value obtained by the acquisition module 1301 and each of the second color values obtained by the first control module 1303 determine the first gain coefficient of the RGB channel in the projection device; the first adjustment module 1304 , which is used to adjust the gain of the RGB channel according to the first gain coefficient determined by the first determining module 1303 .
  • the first color value of the first diffusely reflected light formed by the diffuse reflection of ambient light on the projection surface before the projection device projects to the projection surface is obtained; after that, the projection device is controlled Project pure red light, pure green light, and pure blue light to the projection surface in any order, and obtain the second diffuse reflection light formed by the diffuse reflection of the light projected by the projection device and the ambient light by the projection surface for each projection.
  • Two color values next, determine the first gain coefficient of the RGB channel in the projection device according to the first color value and each second color value, and adjust the gain of the RGB channel according to the first gain coefficient.
  • the first color value of the first diffusely reflected light on the projection surface includes the characteristics of the projection surface and ambient light
  • the second color value of each second diffusely reflected light on the projection surface not only includes the characteristics of the projection light source of the projection device, but also includes It has the characteristics of projection surface and ambient light, so that the influence of ambient light and projection surface color temperature can be removed from each second color value according to the first color value, so that the RGB channel in the projection device can be accurately calculated.
  • the first gain coefficient is used to adjust the gain of the RGB channel according to the first gain coefficient, so as to achieve accurate compensation of the color temperature of the projection light source. In this way, no matter how the ambient light and the projection surface change, the color temperature of the projection image is always kept within a preset value or range, thereby providing users with the best viewing experience.
  • the first determining module 1303 includes: a filtering sub-module for subtracting the first color value from the second color value for each second color value to obtain a third color value a color value; a target construction submodule for constructing a target color lookup table and determining the first chromaticity coordinates of the projection light source of the projection device according to the first color value and each of the third color values; the first A determination submodule, configured to determine the first gain coefficient according to the first chromaticity coordinates and the target color lookup table.
  • the target construction submodule includes: an intermediate construction submodule for constructing an intermediate color lookup table according to each of the third color values; a correction submodule for The intermediate color lookup table is corrected to obtain the target color lookup table.
  • the target construction sub-module further includes: a second determination sub-module for determining the correlated color temperature of the target diffusely reflected light according to each of the third color values, wherein the target diffusely reflected light is a Light obtained by superimposing all the second diffusely reflected light; and a third determination sub-module, configured to determine the first chromaticity coordinate according to the correlated color temperature of the target diffusely reflected light.
  • the second determination sub-module includes: a fourth color value determination sub-module, configured to determine a fourth color value of the target diffusely reflected light according to each of the third color values; a second color value a coordinate determination sub-module for determining the second chromaticity coordinates of the target diffuse reflection light in the XYZ color space according to the fourth color value; a first correlated color temperature determination sub-module for determining the second color according to the second color Degree coordinates to determine the correlated color temperature of the diffuse reflection light of the target.
  • a fourth color value determination sub-module configured to determine a fourth color value of the target diffusely reflected light according to each of the third color values
  • a second color value a coordinate determination sub-module for determining the second chromaticity coordinates of the target diffuse reflection light in the XYZ color space according to the fourth color value
  • a first correlated color temperature determination sub-module for determining the second color according to the second color Degree coordinates to determine the correlated color temperature of the diffuse reflection light
  • the third determination sub-module includes: a first target color temperature determination sub-module, configured to determine the correlated color temperature corresponding to the target diffusely reflected light according to a preset corresponding relationship between the correlated color temperature and the color temperature of the projection light source. , the first target color temperature of the projection light source; the first chromaticity coordinate determination sub-module is used to determine the intersection coordinates of the blackbody locus in the XYZ color space and the isotherm of the first target color temperature as the first target color temperature. Chromaticity coordinates.
  • the apparatus 1300 further includes: an infrared spectrum information acquisition module, configured to determine, in the first determination module 1303, the projection device according to the first color value and each of the second color values Before the first gain coefficient of the RGB channel, the infrared spectrum information of the first diffusely reflected light and each of the second diffusely reflected light are obtained respectively; the first correction module is used for according to the infrared spectrum of the first diffusely reflected light. spectral information, the first color value is corrected, and for each second diffuse reflection light, according to the infrared spectrum information of the second diffuse reflection light, the second color value of the second diffuse reflection light is calculated. Correction; the first determination module 1303 is configured to determine the first gain coefficient of the RGB channel in the projection device according to the first color value obtained after correction and each second color value obtained after correction.
  • an infrared spectrum information acquisition module configured to determine, in the first determination module 1303, the projection device according to the first color value and each of the second color values Before the first gain coefficient of the RGB channel, the infrared spectrum information of
  • the first correction module includes: a first acquisition sub-module for acquiring a first correction matrix and a second correction matrix, wherein the first correction matrix is based on the fact that the infrared component is greater than the first preset ratio threshold.
  • the second calibration matrix is determined according to the measurement results under the standard light source whose infrared component is less than the second preset ratio threshold, wherein the first preset ratio threshold is greater than the second preset proportional threshold;
  • the fourth determination sub-module is configured to, according to the product of the first correction matrix and the first matrix to be corrected, and the product of the second correction matrix and the first matrix to be corrected, The first color value obtained after the correction is determined, wherein the first matrix to be corrected is a column vector formed by the first color value and the infrared spectrum information of the first diffusely reflected light.
  • Fig. 14 is a block diagram of a projection device control apparatus according to another exemplary embodiment.
  • the apparatus 1400 includes: a second control module 1401 for controlling the projection device to project pure white light to the projection surface in response to receiving the second projection instruction; a second acquisition module 1402 for acquiring all the The fifth color value of the third diffusely reflected light formed by the diffuse reflection of the pure white light and the ambient light through the projection surface; the second determination module 1403 is configured to obtain the fifth color according to the second acquisition module 1402 value, to determine the second gain coefficient of the RGB channel in the projection device; the second adjustment module 1404 is configured to adjust the gain of the RGB channel according to the second gain coefficient.
  • the second determination module 1403 includes: a fifth determination sub-module, configured to respectively determine the second target color temperature of the projection light source of the projection device according to the fifth color value; the target compensation color shift; Sixth determination submodule, for determining the target chromaticity coordinates of the projection light source of the projection device in the XYZ color space according to the second target color temperature and the target compensation color shift; seventh determination submodule, for according to The preset color lookup table and the target chromaticity coordinates determine the second gain coefficient.
  • the fifth determination sub-module includes: a third chromaticity coordinate determination sub-module, configured to determine the third value of the third diffusely reflected light in the XYZ color space according to the fifth color value. chromaticity coordinates; a second correlated color temperature determination sub-module for determining the correlated color temperature of the third diffusely reflected light according to the third chromaticity coordinates; a second target color temperature determination sub-module for determining the correlated color temperature of the third diffusely reflected light according to the third The correlated color temperature of the diffusely reflected light is used to determine the second target color temperature; the first mapping sub-module is used to map the third chromaticity coordinate into a uniform color space to obtain the fourth chromaticity coordinate; the compensation color shift is determined A sub-module for determining the target compensation color shift according to the correlated color temperature of the third diffusely reflected light and the fourth chromaticity coordinate.
  • the compensation color shift determination sub-module includes: a first intersection coordinate determination sub-module, configured to determine the blackbody locus in the uniform color space and the third point of the isotherm of the correlated color temperature of the third diffusely reflected light. an intersection coordinate; a color shift determination sub-module for determining the distance between the first intersection coordinate and the fourth chromaticity coordinate as the color shift to be compensated; a compensation sub-module for acquiring the target compensation intensity , and perform enhanced compensation on the color shift to be compensated according to the target compensation strength to obtain the target compensated color shift.
  • the sixth determination sub-module includes: an eighth determination sub-module, configured to determine the fifth color of the projection light source in a uniform color space according to the second target color temperature and the target compensation color shift. Degree coordinates; a second mapping submodule, configured to map the fifth chromaticity coordinates into the XYZ color space to obtain the target chromaticity coordinates.
  • the seventh determination submodule includes: a second intersection coordinate determination submodule, configured to determine the second intersection coordinates of the blackbody locus in the uniform color space and the isotherm of the second target color temperature;
  • the five chromaticity coordinate determination sub-module is configured to determine the fifth chromaticity coordinate according to the coordinate of the second intersection point and the target compensation color shift.
  • the apparatus 1400 further includes: a third obtaining module, configured to obtain the second gain coefficient of the RGB channel in the projection device before the second determining module 1403 determines the second gain coefficient of the RGB channel according to the fifth color value. Infrared spectral information of the third diffusely reflected light; a second correction module for correcting the fifth color value according to the infrared spectral information of the third diffusely reflected light; the second determination module 1403 uses and determining the second gain coefficient of the RGB channel in the projection device according to the fifth color value obtained after correction.
  • a third obtaining module configured to obtain the second gain coefficient of the RGB channel in the projection device before the second determining module 1403 determines the second gain coefficient of the RGB channel according to the fifth color value.
  • the second correction module includes: a second acquisition sub-module, configured to acquire a first correction matrix and a second correction matrix, wherein the first correction matrix is based on the fact that the infrared component is greater than the first preset ratio threshold.
  • the second calibration matrix is determined according to the measurement results under the standard light source whose infrared component is less than the second preset ratio threshold, wherein the first preset ratio threshold is greater than the second preset ratio threshold;
  • the ninth determination submodule is configured to, according to the product of the first correction matrix and the second matrix to be corrected, and the product of the second correction matrix and the second matrix to be corrected, The fifth color value obtained after the correction is determined, wherein the second matrix to be corrected is a column vector formed by the fifth color value and the infrared spectrum information of the third diffusely reflected light.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the above-mentioned projection device control method provided by the present disclosure.
  • FIG. 15 is a block diagram of an electronic device 1500 according to an exemplary embodiment.
  • the electronic device 1500 may include: a processor 1501 and a memory 1502 .
  • the electronic device 1500 may also include one or more of a multimedia component 1503 , an input/output (I/O) interface 1504 , and a communication component 1505 .
  • the processor 1501 is used to control the overall operation of the electronic device 1500 to complete all or part of the steps in the above-mentioned projection device control method.
  • the memory 1502 is used to store various types of data to support operations on the electronic device 1500, such data may include, for example, instructions for any application or method operating on the electronic device 1500, and application-related data, Such as contact data, messages sent and received, pictures, audio, video, and so on.
  • the memory 1502 can be implemented by any type of volatile or non-volatile storage device or their combination, such as Static Random Access Memory (SRAM), Electrically Erasable Programmable Read-Only Memory ( Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read-Only Memory (Read-OnlyMemory, referred to as ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • Multimedia components 1503 may include screen and/or audio components. Wherein the screen can be, for example, a touch screen, and the audio component is used for outputting and/or inputting audio signals.
  • the audio component may include a microphone for receiving external audio signals.
  • the received audio signal may be further stored in memory 1502 or transmitted through communication component 1505.
  • the audio assembly also includes at least one speaker for outputting audio signals.
  • the I/O interface 1504 provides an interface between the processor 1501 and other interface modules, and the above-mentioned other interface modules may be a keyboard, a mouse, a button, and the like. These buttons can be virtual buttons or physical buttons.
  • the communication component 1505 is used for wired or wireless communication between the electronic device 1500 and other devices. Wireless communication, such as Wi-Fi, Bluetooth, Near Field Communication (NFC), 2G, 3G, 4G, NB-IOT, eMTC, or other 5G, etc., or one or more of them The combination is not limited here. Therefore, the corresponding communication component 1505 may include: Wi-Fi module, Bluetooth module, NFC module and so on.
  • the electronic device 1500 may be implemented by one or more Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing (Digital) Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor or other electronic components
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components
  • microcontroller microprocessor or other electronic components
  • a computer-readable storage medium including program instructions, the program instructions implementing the steps of the above-mentioned projection device control method when executed by a processor.
  • the computer-readable storage medium can be the above-mentioned memory 1502 including program instructions, and the above-mentioned program instructions can be executed by the processor 1501 of the electronic device 1500 to complete the above-mentioned projection device control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Projection Apparatus (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

本公开涉及一种投影设备控制方法、装置、介质及电子设备。方法包括:响应于接收到第一投影指令,获取在投影设备向投影面投射之前,环境光经投影面漫反射形成的第一漫反射光的第一色值;控制投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至投影面,获取每次投射时、投影设备所投射的光与环境光经投影面漫反射形成的第二漫反射光的第二色值;根据第一色值和每一第二色值,确定RGB通道的第一增益系数;根据第一增益系数调整RGB通道的增益。由此,能准确计算投影设备中RGB通道的第一增益系数,实现投影光源色温的精准补偿。这样,无论环境光和投影面如何变化,投影画面的色温始终保持在预设的值或范围内,为用户提供最佳的观感体验。

Description

投影设备控制方法、装置、介质及电子设备
本公开要求于2020年12月23日提交中国专利局、申请号为202011556260.9、发明名称为“投影设备控制方法、装置、介质及电子设备”的中国专利申请,以及于2020年12月23日提交中国专利局、申请号为202011556302.9、发明名称为“投影设备控制方法、装置、介质及电子设备”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及投影设备技术领域,具体地,涉及一种投影设备控制方法、装置、介质及电子设备。
背景技术
投影设备是通过漫反射原理将画面展示给用户的,其中,环境光会在投影平面形成漫反射并跟投影设备投射的光的漫反射光一同进入人眼,从而影响呈现画面的色温。另外,用户在使用投影设备时,通常将画面投射在墙面或者幕布上,而墙面或者幕布有各种各样的材料、微结构和颜色,会影响不同波长光线的吸收率和反射率,从而影响画面的色温。因此,环境光和投影平面对观感体验的影响非常大,可见,如何根据当前环境条件自适应调节投影设备的色温,对于提升用户的观感体验具有重要的作用。
发明内容
为了克服相关技术中存在的问题,本公开提供一种投影设备控制方法、装置、介质及电子设备。
为了实现上述目的,第一方面,本公开提供一种投影设备控制方法,所述方法包括:响应于接收到第一投影指令,获取在所述投影设备向投影面投射之前,环境光经所述投影面漫反射形成的第一漫反射光的第一色值;控制所述投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至所述投影面,并获取每次投射时、所述投影设备所投射的光与所述环境光经所述投影面漫反射形成的第二漫反射光的第二色值;根据所述第一色值和每一所述第二色值,确定所述投影设备中RGB通道的第一增益系数;根据所述第一增益系数,调整所述RGB通道的增益。
第二方面,本公开提供一种投影设备控制方法,所述方法包括:响应于接收到第二投影指令,控制所述投影设备向投影面投射纯白光;获取所述纯白光和环境光经所述投影面漫反射形成的第三漫反射光的第五色值;根据所述第五色值,确定所述投影设备中RGB通道的第二增益系数;根据所述第二增益系数,调整所述RGB通道的增益。
第三方面,本公开提供一种投影设备控制装置,所述装置包括:第一获取模块,用于响应于接收到第一投影指令,获取在所述投影设备向投影面投射之前,环境光经所述投影面漫反射形成的第一漫反射光的第一色值;第一控制模块,用于控制所述投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至所述投影面,并获取每次投射时、所述投影设备所投射的光与所述环境光经所述投影面漫反射形成的第二漫反射光的第二色值;第一确定模块,用于根据所述第一获取模块获取到的所述第一色值和所述第一控制模块得到的每一所述第二色值,确定所述投影设备中RGB通道的第一增益系数;第一调整模块,用于根据所述第一确定模块确定出的所述第一增益系数,调整所述RGB通道的增益。
第四方面,本公开提供一种投影设备控制装置,所述装置包括:第二控制模块, 用于响应于接收到第二投影指令,控制所述投影设备向投影面投射纯白光;第二获取模块,用于获取所述纯白光和环境光经所述投影面漫反射形成的第三漫反射光的第五色值;第二确定模块,用于根据所述第二获取模块获取到的第五色值,确定所述投影设备中RGB通道的第二增益系数;第二调整模块,用于根据所述第二增益系数,调整所述RGB通道的增益。
第五方面,本公开提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开第一方面或第二方面提供的所述方法的步骤。
第六方面,本公开提供一种电子设备,包括:存储器,其上存储有计算机程序;处理器,用于执行所述存储器中的所述计算机程序,以实现本公开第一方面或第二方面提供的所述方法的步骤。
在上述技术方案中,在接收到第一投影指令时,获取在投影设备向投影面投射之前,环境光经投影面漫反射形成的第一漫反射光的第一色值;之后,控制投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至投影面,并获取每次投射时、投影设备所投射的光与环境光经投影面漫反射形成的第二漫反射光的第二色值;接下来,根据第一色值和各第二色值,确定投影设备中RGB通道的第一增益系数,并根据该第一增益系数,调整RGB通道的增益。其中,投影面的第一漫反射光的第一色值包含投影面、环境光的特性,投影面的各第二漫反射光的第二色值不仅包含投影设备的投影光源的特性,还包含有投影面、环境光的特性,由此,就能够根据第一色值,从各第二色值中去除环境光和投影面对色温的影响,从而能够准确地计算出投影设备中RGB通道的第一增益系数,进而根据该第一增益系数调整RGB通道的增益,实现投影光源色温的精准补偿。这样,无论环境光和投影面如何变化,投影画面的色温始终保持在一个预设的值或者范围内,从而为用户提供最佳的观感体验。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据一示例性实施例示出的一种投影设备控制方法的流程图。
图2是根据一示例性实施例示出的一种确定第一增益系数的方法的流程图。
图3是根据一示例性实施例示出的一种CIE1931的xy坐标图。
图4是根据一示例性实施例示出的一种相关色温与目标色温的关系曲线图。
图5是图3所示的CIE1931的坐标图的局部放大图。
图6是根据另一示例性实施例示出的一种投影设备控制方法的流程图。
图7A是根据一示例性实施例示出的一种红外光线的强度与权重系数的关系曲线图。
图7B是根据另一示例性实施例示出的一种红外光线的强度与权重系数的关系曲线图。
图8是根据另一示例性实施例示出的一种投影设备控制方法的流程图。
图9是根据一示例性实施例示出的一种确定第二增益系数的方法的流程图。
图10是根据一示例性实施例示出的一种CIE1976的xy坐标图。
图11是图10所示的均匀色空间的坐标图的局部放大图。
图12是根据另一示例性实施例示出的一种投影设备控制方法的流程图。
图13是根据一示例性实施例示出的一种投影设备控制装置的框图。
图14是根据另一示例性实施例示出的一种投影设备控制装置的框图。
图15是根据一示例性实施例示出的一种电子设备的框图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
正如背景技术中所论述的那样,如何根据当前环境条件自适应调节投影设备的色温,对于提升用户的观感体验具有重要的作用。为此,现阶段主要以下两种方式来实现投影设备色温的自适应调整:(1)根据环境光改变投影设备的投影光源来弥补色温偏差(即色偏),但该种方式未考虑投影面、投影光源的特性,很容易出现补偿过度或者补偿不足的问题;(2)根据投影设备当前投射的光源改变其后续投射的投影光源来弥补色温偏差(即色偏),该种方式虽然可以准确地控制自身光源的色温准确性,但其无法对环境光和投影面带来的色偏进行色温补偿。鉴于此,本公开提供一种投影设备控制方法、装置、介质及电子设备。
图1是根据一示例性实施例示出的一种投影设备控制方法的流程图。如图1所示,该方法包括S101~S104。
在S101中,响应于接收到第一投影指令,获取在投影设备向投影面投射之前,环境光经投影面漫反射形成的第一漫反射光的第一色值。
在本公开中,投影面可以为各种材质的墙面或幕布,并且,投影面的颜色可以为白色、粉色、灰色等各种颜色,对于投影面的材质和颜色,在本公开中不作具体限定。第一色值可以为RGB数据或者XYZ色彩空间中的XYZ数据。其中,XYZ色彩空间为国际照明协会(International Commission on illumination,简称CIE)在1931年定义的XYZ色彩空间,又称CIE1931。
在投影设备向投影面投射之前,环境光照射到投影面上后,会发生漫反射,因此,投影面的第一漫反射光为环境光经投影面漫反射形成的光,这样,第一漫反射光的第一色值就同时包含有投影面、环境光的特性。
在S102中,控制投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至投影面,并获取每次投射时、投影设备所投射的光与环境光经投影面漫反射形成的第二漫反射光的第二色值。
在本公开中,第二色值可以为RGB数据或者XYZ色彩空间中的XYZ数据。投影设备所投射的光投射到投影面上后,会发生漫反射,同时,环境光照射到投影面上后,也会发生漫反射,因此,投影面的第二漫反射光为投射设备投射的光和环境光经投影面漫反射形成的光,这样,各第二漫反射光的第二色值不仅包含投影设备的投影光源的特性,还包含有投影面、环境光的特性。
另外,可以通过朝向投影面的传感模块来采集上述第一漫反射光和各第二漫反射光,其中,该传感模块可以为色温传感器、摄像机等,并且,该传感模块可以集成于投影设备中,也可以为独立于投影设备、并与该投影设备通过无线网络或有线网络连接。
此外,需要说明的是,投影设备可以将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至投影面,只要能够获取到相应的第二色值即可。例如,可以控制投影设备依次将纯红光、纯绿光、纯蓝光投射至投影面;又例如,可以控制投影设备依次将纯红光、纯蓝光、纯绿光投射至投影面。
在S103中,根据第一色值和每一第二色值,确定投影设备中RGB通道的第一增益系数。
在本公开中,RGB通道包括红色(R)通道、绿色(G)通道以及蓝色(B)通道,这样,可以根据第一色值和各第二色值,确定出红色(R)通道的第一增益系数、绿色(G) 通道的第一增益系数以及蓝色(B)通道的第一增益系数。
在S104中,根据第一增益系数,调整RGB通道的增益。
在本公开中,在通过S103确定出红色(R)通道的第一增益系数、绿色(G)通道的第一增益系数以及蓝色(B)通道的第一增益系数,可以根据红色(R)通道的第一增益系数调整投影设备中红色(R)通道的增益,根据绿色(G)通道的第一增益系数调整投影设备中绿色(G)通道的增益,根据蓝色(B)通道的第一增益系数调整投影设备中蓝色(B)通道的增益。
在上述技术方案中,在接收到第一投影指令时,获取在投影设备向投影面投射之前,环境光经投影面漫反射形成的第一漫反射光的第一色值;之后,控制投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至投影面,并获取每次投射时、投影设备所投射的光与环境光经投影面漫反射形成的第二漫反射光的第二色值;接下来,根据第一色值和各第二色值,确定投影设备中RGB通道的第一增益系数,并根据该第一增益系数,调整RGB通道的增益。其中,投影面的第一漫反射光的第一色值包含投影面、环境光的特性,投影面的各第二漫反射光的第二色值不仅包含投影设备的投影光源的特性,还包含有投影面、环境光的特性,由此,就能够根据第一色值,从各第二色值中去除环境光和投影面对色温的影响,从而能够准确地计算出投影设备中RGB通道的第一增益系数,进而根据该第一增益系数调整RGB通道的增益,实现投影光源色温的精准补偿。这样,无论环境光和投影面如何变化,投影画面的色温始终保持在一个预设的值或者范围内,从而为用户提供最佳的观感体验。
下面针对上述S103中的根据第一色值和每一第二色值,确定投影设备中RGB通道的第一增益系数的具体实施方式进行详细说明。具体来说,可以通过图2中所示的S1031~S1033来实现。
在S1031中,针对每一第二色值,从第二色值中减去第一色值,得到第三色值。
在本公开中,针对每一第二色值,从第二色值中减去第一色值,是为了将环境特性从第二色值中滤除,以避免环境光对投影设备的投影光源的伽马(Gamma)特性造成影响。
示例地,可以通过以下等式(1)~(3)来得到第三色值:
Figure PCTCN2021106115-appb-000001
Figure PCTCN2021106115-appb-000002
Figure PCTCN2021106115-appb-000003
其中,X′ R(N)、Y′ R(N)、Z′ R(N)分别为投影设备所投射的纯红光与环境光经投影面漫反射形成的第二漫反射光的第二色值、减去第一色值后所得的第三色值中的X数据、Y数据、Z数据;X′ G(N)、Y′ G(N)、Z′ G(N)分别为投影设备所投射的纯绿光与环境光经投影面漫反射形成的第二漫反射光的第二色值、减去第一色值后所得的第三色值中的X数据、Y数据、Z数据;X′ B(N)、Y′ B(N)、Z′ B(N)分别为投影设备所投 射的纯蓝光与环境光经投影面漫反射形成的第二漫反射光的第二色值、减去第一色值后所得的第三色值中的X数据、Y数据、Z数据;X R、Y R、Z R分别为投影设备所投射的纯红光与环境光经投影面漫反射形成的第二漫反射光的第二色值中的X数据、Y数据、Z数据;X G、Y G、Z G分别为投影设备所投射的纯绿光与环境光经投影面漫反射形成的第二漫反射光的第二色值中的X数据、Y数据、Z数据;X B、Y B、Z B分别为投影设备所投射的纯蓝光与环境光经投影面漫反射形成的第二漫反射光的第二色值中的X数据、Y数据、Z数据;X D、Y D、Z D分别为第一色值中的X数据、Y数据、Z数据;N为数据水平值的最大值,例如,256、1024等。
在S1032中,根据第一色值和每一第三色值,构建目标颜色查找表并确定投影设备的投影光源的第一色度坐标。
在S1033中,根据第一色度坐标和目标颜色查找表,确定第一增益系数。
下面针对S1032中的根据第一色值和每一第三色值,构建目标颜色查找表的具体实施方式进行详细说明。
首先,根据每一第三色值,构建中间颜色查找表;然后,根据第一色值,对中间颜色查找表进行修正,得到目标颜色查找表。
具体来说,通过上述S1031中获取到的三个第三色值即为饱和度为100%时的色值(即,红色的X数据X′ R(N);红色的Y数据Y′ R(N);红色的Z数据Z′ R(N);绿色的X数据X′ G(N);绿色的Y数据Y′ G(N);绿色的Z数据Z′ G(N);蓝色的X数据X′ B(N);蓝色的Y数据Y′ B(N);蓝色的Z数据Z′ B(N))。
由于投影光源的亮度一般都符合Gamma2.2,故可以基于Gamma2.2来计算其余饱和度的色值,从而可以得到上述中间颜色查找表。
示例地,可以通过以下等式(4)~(6)来计算其余饱和度的色值:
Figure PCTCN2021106115-appb-000004
Figure PCTCN2021106115-appb-000005
Figure PCTCN2021106115-appb-000006
其中,X′ R(IRE)为中间颜色查找表中、饱和度为IRE/N的红色的X数据,IRE为数据水平值,并且,IRE为[0,N-1]范围内的任意整数;Y′ R(IRE)为中间颜色查找表中、饱和度为IRE/N的红色的Y数据;Z′ R(IRE)为中间颜色查找表中、饱和度为IRE/N的红色的Z数据;X′ G(IRE)为中间颜色查找表中、饱和度为IRE/N的绿色的X数据;Y′ G(IRE)为中间颜色查找表中、饱和度为IRE/N的绿色的Y数据;Z′ G(IRE)为中间颜色查找表中、饱和度为IRE/N的绿色的Z数据;X′ B(IRE)为中间颜色查找表中、饱和度为IRE/N的蓝色的X数据;Y′ B(IRE)为中间颜色查找表中、饱和度为IRE/N的蓝色 的Y数据;Z′ B(IRE)为中间颜色查找表中、饱和度为IRE/N的蓝色的Z数据。
示例地,N=1024,通过上述方法得到的中颜色查找表如下表1中所示:
表1中间颜色查找表
IRE X′ R Y′ R Z′ R X′ G Y′ G Z′ G X′ B Y′ B Z′ B
0 X′ R(0) Y′ R(0) Z′ R(0) X′ G(0) Y′ G(0) Z′ G(0) X′ B(0) Y′ B(0) Z′ B(0)
1 X′ R(1) Y′ R(1) Z′ R(1) X′ G(1) Y′ G(1) Z′ G(1) X′ B(1) Y′ B(1) Z′ B(1)
2 …… …… …… …… …… …… …… …… ……
3 …… …… …… …… …… …… …… …… ……
…… …… …… …… …… …… …… …… …… ……
…… …… …… …… …… …… …… …… …… ……
1021 …… …… …… …… …… …… …… …… ……
1022 …… …… …… …… …… …… …… …… ……
1023 X′ R(1023) Y′ R(1023) Z′ R(1023) X′ G(1023) Y′ G(1023) Z′ G(1023) X′ B(1023) Y′ B(1023) Z′ B(1023)
1024 X′ R(1024) Y′ R(1024) Z′ R(1024) X′ G(1024) Y′ G(1024) Z′ G(1024) X′ B(1024) Y′ B(1024) Z′ B(1024)
另外,若投影光源的亮度不符合Gamma2.2,则还需要控制投影设备将90%白光、80%白光、……、10%白光按照任意顺序分别投射至投影面,并通过传感模块测量每次投射时、投影设备的投影光源的第六色值,然后,根据上述各第三色值和各第六色值,通过线性插值的方式得到上述中间颜色查找表。其中,通过线性差值的方式得到上述中间颜色查找表的具体方式属于本领域技术人员公知的,在本公开中不再赘述。
在通过上述方式得到中间颜色查找表后,根据第一色值,对该中间颜色查找表进行修正,得到目标颜色查找表。
示例地,可以通过以下等式(7)~(9)来计算目标颜色查找表中的各色值:
Figure PCTCN2021106115-appb-000007
Figure PCTCN2021106115-appb-000008
Figure PCTCN2021106115-appb-000009
其中,X′ R1(IRE)为目标颜色查找表中、饱和度为IRE/N的红色的X数据,IRE为数据水平值,并且,IRE为[0,N]范围内的任意整数;Y′ R1(IRE)为目标颜色查找表中、饱和度为IRE/N的红色的Y数据;Z′ R1(IRE)为目标颜色查找表中、饱和度为IRE/N的红色的Z数据;X′ G1(IRE)为目标颜色查找表中、饱和度为IRE/N的绿色的X数据;Y′ G1(IRE)为目标颜色查找表中、饱和度为IRE/N的绿色的Y数据;Z′ G1(IRE)为目标颜色查找表中、饱和度为IRE/N的绿色的Z数据;X′ B1(IRE)为目标颜色查找表中、饱和度为IRE/N的蓝色的X数据;Y′ B1(IRE)为目标颜色查找表中、饱和度为IRE/N的蓝色的Y数据;Z′ B1(IRE)为目标颜色查找表中、饱和度为IRE/N的蓝色的Z数据。
下面针对S1032中的根据第一色值和每一第三色值,确定投影设备的投影光源的第一色度坐标的具体实施方式进行详细说明。具体来说,首先,根据每一第三色值,确定 目标漫反射光的相关色温,其中,目标漫反射光是将所有第二漫反射光叠加后所得的光;然后,根据目标漫反射光的相关色温,确定第一色度坐标。
下面针对上述根据每一第三色值,确定目标漫反射光的相关色温的具体实施方式进行详细说明。具体来说,可以通过以下步骤1)~步骤3)来确定目标漫反射光的相关色温。
1)根据每一第三色值,确定目标漫反射光的第四色值。
示例地,可以根据每一第三色值,通过以下等式(10)来确定目标漫反射光的第四色值:
Figure PCTCN2021106115-appb-000010
其中,X为第四色值中的X数据;Y为第四色值中的Y数据;Z为第四色值中的Z数据。
2)根据第四色值,确定目标漫反射光在XYZ色彩空间中的第二色度坐标。
在本公开中,根据第四色值,确定目标漫反射光在XYZ色彩空间中的第二色度坐标,即确定目标漫反射光在CIE1931的xy坐标图(如图3中所示)中的坐标,其中,该CIE1931的xy坐标图中,所有颜色都可以用坐标系里的x、y坐标表示。其中,图3中的黑色粗线为黑体轨迹线,可以理解为是不同色温下白色的轨迹。黑体轨迹线上面的色温是标准色温,与黑体轨迹线相交的线为等温线,其中,等温线上的各颜色都是同一个色温,除了黑体轨迹线上的色温为标准色温外,其余色温都是相关色温。离黑体轨迹线越远虽然色温数值是一样的,但是色偏Δuv会越大,表现为色偏更加严重。
示例地,可以根据第四色值,通过以下等式(11)来确定第二色度坐标(x,y):
Figure PCTCN2021106115-appb-000011
3)根据第二色度坐标,确定目标漫反射光的相关色温。
在本公开中,实际光源并不总是在黑体轨迹线上,因此提出相关色温(Correlative Color Temperature,CCT)这个概念,在均匀色品图上用距离最短的温度来表示光源的相对色温,也用K氏温度表示。所以色温相同的两束白光,有可能一束偏绿,一束偏紫,只有在黑体轨迹线上主观感受才是纯白色。
示例地,可以根据第二色度坐标,通过以下等式(12)来确定上述目标漫反射光的相关色温CCT:
Figure PCTCN2021106115-appb-000012
其中,a1、a2、a3以及c1均为常数。
下面针对上述根据目标漫反射光的相关色温,确定第一色度坐标的具体实施方式进行详细说明:
首先,根据预设的相关色温与投影光源的色温的对应关系,确定与目标漫反射光的相关色温对应的、投影光源的第一目标色温。
示例地,相关色温与投影光源的色温的对应关系如图4所示,其中,可以把第一目标色温的上限值和下限值设置在一个观感舒适的色温范围里,以缩小第一目标色温和目标漫反射光的相关色温的差距,减少亮度损失。
然后,将XYZ色彩空间中的黑体轨迹与第一目标色温的等温线的交点坐标(即图5 中所示的(u1,v1))确定为第一色度坐标。
下面针对上述在S1033中根据第一色度坐标和目标颜色查找表,确定第一增益系数的具体实施方式进行详细说明:
在本公开中,可以将IRE R、IRE G、IRE B任意组合(其中,IRE R为红色对应的数据水平值,IRE R为[0,N]范围内的任意值;IRE G为绿色对应的数据水平值,IRE G为[0,N]范围内的任意值;IRE B为蓝色对应的数据水平值,IRE B为[0,N]范围内的任意值),分别代入以下等式(13)中,找到使得(x w,y w)与目标色度坐标之间的距离最小的IRE R、IRE G、IRE B,这里用IRE Rmin、IRE Gmin、IRE Bmin表示,然后,将IRE Rmin/N确定为红色通道的第一增益系数、将IRE Gmin/N确定为绿色通道第一增益系数、将IRE Bmin/N确定为蓝色通道的第一增益系数。
Figure PCTCN2021106115-appb-000013
另外,上述朝向投影面的传感模块采集到的上述第一漫反射光、各第二漫反射光中,不但包含色值,还包括红外光谱信息,当传感模块受到红外光照射时,在红外光的波长700nm以内有响应,尤其是当色值激励较低而红外光激励较高时,会大大影响传感模块对色值的测量精度。因此,传感模块可以设置有用于采集红外光谱信息的红外通道,以辅助提高色值的测量精度。具体来说,如图6所示,在S103之前,上述方法还包括S105~S107。
在S105中,获取第一漫反射光的红外光谱信息。
在S106中,获取每一第二漫反射光的红外光谱信息。
在S107中,根据第一漫反射光的红外光谱信息,对第一色值进行校正,并针对每一第二漫反射光,根据该第二漫反射光的红外光谱信息,对该第二漫反射光的第二色值进行校正。
在本公开中,在获取环境光经投影面漫反射形成的第一漫反射光的第一色值时,还可以同时获取第一漫反射光的红外光谱信息;在每次控制投影设备向投影面投射光之后,除了获取每次投射时、投影设备所投射的光与环境光经投影面漫反射形成的第二漫反射光的第二色值外,还需要同时获取该第二漫反射光的红外光谱信息。之后,根据第一漫反射光的红外光谱信息,对第一色值进行校正,并针对每一第二漫反射光,根据该第二漫反射光的红外光谱信息,对该第二漫反射光的第二色值进行校正。这样,上述S103就可以根据校正后所得的第一色值和校正后所得的每一第二色值,确定投影设备中RGB通道的第一增益系数。
下面针对上述根据第一漫反射光的红外光谱信息,对第一色值进行校正的具体实施方式进行详细说明。在本公开中,可以根据第一漫反射光的红外光谱信息,通过多种方式对第一色值进行校正。在一种实施方式中,可以获取第三校正矩阵,其中,第三校正矩阵是根据单一标准光源下的测量结果确定出的;然后,根据第三校正矩阵与第一待校正矩阵的乘积,确定校正后所得的第一色值,其中,第一待校正矩阵为上述第一色值与第一漫反射光的红外光谱信息构成的列向量。
示例地,可以根据第三校正矩阵与第一待校正矩阵的乘积,通过以下等式(14)来确定校正后的第一色值:
Figure PCTCN2021106115-appb-000014
其中,
Figure PCTCN2021106115-appb-000015
为校正后的第一色值;
Figure PCTCN2021106115-appb-000016
为第一待校正矩阵,其中,IR为第一漫反射光的红外光谱信息,
Figure PCTCN2021106115-appb-000017
为上述第一色值;
Figure PCTCN2021106115-appb-000018
为第三校正矩阵。
下面针对上述第三校正矩阵的确定方式进行详细说明。
具体来说,控制投影设备向投影面投射一标准光源(例如,D50、D65、TL83、TL84等中的任一者);然后,通过传感模块获取该标准光源和环境光经投影面漫反射形成的漫反射光的色值和红外光谱信息,同时,通过照度计、积分球等标准仪器测量投影面投射的标准光源的色值;按照上述方式,在不同环境光下进行多次测量,其中,投影设备向投影面每次投射的光源均一致,之后,根据传感模块测量的多组漫反射光的色值和红外光谱信息,以及标准仪器测量的多组标准光源的色值,进行拟合,得到上述第三校正矩阵。
示例地,通过传感模块测量的多组漫反射光的色值和红外光谱信息,以及标准仪器测量的多组标准光源的色值如下表2所示:
表2传感模块和标准仪器的测量数据表
Figure PCTCN2021106115-appb-000019
根据上表2中的传感模块的测量数据和标准仪器的测量数据,进行拟合,可以得到第三校正矩阵
Figure PCTCN2021106115-appb-000020
在另一种实施方式中,可以获取第一校正矩阵和第二校正矩阵,其中,第一校正矩阵是根据红外成分大于第一预设比例阈值的标准光源(即红外成分高的光源)下的测量结果确定出的,第二校正矩阵是根据红外成分小于第二预设比例阈值的标准光源(即红外成分低的光源)下的测量结果确定出的,其中,第一预设比例阈值大于第二预设比例阈值;然后,根据第一校正矩阵与第一待校正矩阵的乘积、第二校正矩阵与第一待校正矩阵的乘积,确定校正后所得的第一色值。
示例地,可以根据第一校正矩阵与第一待校正矩阵的乘积、第二校正矩阵与第一待校正矩阵的乘积,通过以下等式(15)来确定校正后所得的第一色值:
Figure PCTCN2021106115-appb-000021
其中,
Figure PCTCN2021106115-appb-000022
为第二校正矩阵;
Figure PCTCN2021106115-appb-000023
为第一校正矩阵;weight为权重系数。
其中,权重系数weight可以根据红外光线的强度确定,示例地,可以通过图7A或者图7B所示的红外光线的强度与权重系数的关系曲线来确定上述权重系数。
下面针对上述第一校正矩阵的确定方式进行详细说明。
具体来说,针对红外成分大于第一预设比例阈值的每一标准光源,分别控制投影设备向投影面投射该标准光源;然后,通过传感模块获取该标准光源和环境光经投影面漫反射形成的漫反射光的色值和红外光谱信息,同时,通过照度计、积分球等标准仪器测量投影面投射的该标准光源的色值;按照上述方式,在不同环境光下的进行多次测量,之后,根据传感模块测量的多组漫反射光的色值和红外光谱信息,以及标准仪器测量的多组不同红外成分大于第一预设比例阈值的标准光源的色值,进行拟合,得到上述第一校正矩阵。
下面针对上述第二校正矩阵的确定方式进行详细说明。
具体来说,针对红外成分小于第二预设比例阈值的每一标准光源,分别控制投影设备向投影面投射该标准光源;然后,通过传感模块获取该标准光源和环境光经投影面漫反射形成的漫反射光的色值和红外光谱信息,同时,通过标准仪器测量投影面投射的该标准光源的色值;按照上述方式,在不同环境光下的进行多次测量,之后,根据传感模块测量的多组漫反射光的色值和红外光谱信息,以及标准仪器测量的多组不同红外成分小于第二预设比例阈值的标准光源的色值,进行拟合,得到上述第二校正矩阵。
其中,上述第一校正矩阵、第二校正矩阵以及第三校正矩阵可以是预先确定出并存储在投影设备中的相应存储模块中的,这样,投影设备通过访问该存储模块即可获取到第一校正矩阵、第二校正矩阵,或者获取到第三校正矩阵,方便快捷,从而加快了色温调整的效率。
另外,除了采用上述根据第一漫反射光的红外光谱信息,对第一色值进行校正的方式外,还可以通过在传感模块上设置用于滤除红外光的光学元件,以提升第一色值的测量精度。
由于对该第二漫反射光的第二色值进行校正的具体方式与上述第一色值的校正方式相同,在本公开中不再赘述。
另外,如图8所示,本公开还提供一种投影设备控制方法。如图8所示,该方法可以包括S801~S804。
在S801中,响应于接收到第二投影指令,控制投影设备向投影面投射纯白光。
在本公开中,第二投影指令不同于上述第一投影指令。示例地,用户可以通过投影设备上的两个不同按钮或操作来分别下达第一投影指令、第二投影指令。
在S802中,获取纯白光和环境光经投影面漫反射形成的第三漫反射光的第五色值。
在本公开中,第五色值可以为RGB数据或者XYZ色彩空间中的XYZ数据。
纯白光投射到投影面上后,会发生漫反射,同时,环境光照射到投影面上后,也会发生漫反射,因此,投影面的第三漫反射光为投射设备投射的纯白光和环境光经投影面漫反射形成的光,这样,该第三漫反射光的第五色值不仅包含投影设备的投影光源的 特性,还包含有投影面、环境光的特性。
另外,可以通过朝向投影面的传感模块来采集上述第三漫反射光,其中,该传感模块可以为色温传感器、摄像机等,并且,该传感模块可以集成于投影设备中,也可以为独立于投影设备、并与该投影设备通过无线网络或有线网络连接。
在S803中,根据第五色值,确定投影设备中RGB通道的第二增益系数。
在本公开中,RGB通道包括红色(R)通道、绿色(G)通道以及蓝色(B)通道,这样,可以根据第五色值,确定出红色(R)通道的第二增益系数、绿色(G)通道的第二增益系数以及蓝色(B)通道的第二增益系数。
在S804中,根据第二增益系数,调整RGB通道的增益。
在本公开中,在通过S803确定出红色(R)通道的第二增益系数、绿色(G)通道的第二增益系数以及蓝色(B)通道的第二增益系数,可以根据红色(R)通道的第二增益系数调整投影设备中红色(R)通道的增益,根据绿色(G)通道的第二增益系数调整投影设备中绿色(G)通道的增益,根据蓝色(B)通道的第二增益系数调整投影设备中蓝色(B)通道的增益。
在接收到第二投影指令时,控制投影设备向投影面投射纯白光,之后,获取纯白光和环境光经投影面漫反射形成的第三漫反射光的第五色值;接下来,根据该第五色值,确定投影设备中RGB通道的第二增益系数,并根据该第二增益系数,调整RGB通道的增益。其中,投影面的第三漫反射光的第五色值不仅包含投影设备的投影光源的特性,还包含有投影面、环境光的特性,从而能够准确地计算出投影设备中RGB通道的第二增益系数,进而根据该第二增益系数调整RGB通道的增益,从而实现投影光源色温的精准补偿。这样,无论环境光和投影面如何变化,投影画面的色温始终保持在一个预设的值或者范围内,从而为用户提供最佳的观感体验。
下面针对上述S803中的根据第五色值,确定投影设备中RGB通道的第二增益系数的具体实施方式进行详细说明。具体来说,可以通过图9中所示的S8031~S8033来实现。
在S8031中,根据第五色值,分别确定投影设备的投影光源的第二目标色温和目标补偿色偏。
在S8032中,根据第二目标色温和目标补偿色偏,确定投影设备的投影光源在XYZ色彩空间中的目标色度坐标。
在S8033中,根据预设的颜色查找表和目标色度坐标,确定第二增益系数。
在本公开中,预设的颜色查找表(LookupTable,LuT)可以通过以下方式来构建:
1)控制投影设备依次向投影面投射纯红光、纯绿光、纯蓝光,并通过照度计、积分球等标准仪器测量每次投射时、投影设备的投影光源的色值,得到预设的颜色查找表中、饱和度为100%时的色值(即红色的X数据X R(N)、红色的Y数据Y R(N)、红色的Z数据Z R(N)、绿色的X数据X G(N)、绿色的Y数据Y G(N)、绿色的Z数据Z G(N)、蓝色的X数据X B(N)、蓝色的Y数据Y B(N)、绿色的Z数据Z B(N),其中,N为数据水平值的最大值,例如,256、1024等);
2)由于投影光源的亮度一般都符合Gamma2.2,故可以基于Gamma2.2来计算其余饱和度的色值,从而可以得到上述预设的颜色查找表。
示例地,可以通过以下等式(16)~(18)来计算其余饱和度的色值:
Figure PCTCN2021106115-appb-000024
Figure PCTCN2021106115-appb-000025
Figure PCTCN2021106115-appb-000026
其中,X R(IRE)为预设的颜色查找表中、饱和度为IRE/N的红色的X数据,IRE为数据水平值,并且,IRE为[0,N-1]范围内的任意整数;Y R(IRE)为预设的颜色查找表中、饱和度为IRE/N的红色的Y数据;Z R(IRE)为预设的颜色查找表中、饱和度为IRE/N的红色的Z数据;X G(IRE)为预设的颜色查找表中、饱和度为IRE/N的绿色的X数据;Y G(IRE)为预设的颜色查找表中、饱和度为IRE/N的绿色的Y数据;Z G(IRE)为预设的颜色查找表中、饱和度为IRE/N的绿色的Z数据;X B(IRE)为预设的颜色查找表中、饱和度为IRE/N的蓝色的X数据;Y B(IRE)为预设的颜色查找表中、饱和度为IRE/N的蓝色的Y数据;Z B(IRE)为预设的颜色查找表中、饱和度为IRE/N的蓝色的Z数据。
示例地,N=1024,通过上述方法得到的预设的颜色查找表如下表3中所示:
表3预设的颜色查找表
IRE X R Y R Z R X G Y G Z G X B Y B Z B
0 X R(0) Y R(0) Z R(0) X G(0) Y G(0) Z G(0) X B(0) Y B(0) Z B(0)
1 X R(1) Y R(1) Z R(1) X G(1) Y G(1) Z G(1) X B(1) Y B(1) Z B(1)
2 …… …… …… …… …… …… …… …… ……
3 …… …… …… …… …… …… …… …… ……
…… …… …… …… …… …… …… …… …… ……
…… …… …… …… …… …… …… …… …… ……
1021 …… …… …… …… …… …… …… …… ……
1022 …… …… …… …… …… …… …… …… ……
1023 X R(1023) Y R(1023) Z R(1023) X G(1023) Y G(1023) Z G(1023) X B(1023) Y B(1023) Z B(1023)
1024 X R(1024) Y R(1024) Z R(1024) X G(1024) Y G(1024) Z G(1024) X B(1024) Y B(1024) Z B(1024)
另外,若投影光源的亮度不符合Gamma2.2,则还需要控制投影设备依次向投影面投射90%白光、80%白光、……、10%白光,并通过照度计、积分球等标准仪器测量每次投射时、投影设备的投影光源的色值,然后,根据上述标准仪器测量的所有色值,通过线性插值的方式得到上述预设的颜色查找表。其中,通过线性差值的方式得到上述预设的颜色查找表的具体方式属于本领域技术人员公知的,在本公开中不再赘述。
下面针对上述在S8033中根据预设的颜色查找表和目标色度坐标,确定第二增益系 数的具体实施方式进行详细说明:
在本公开中,可以将IRE R、IRE G、IRE B任意组合,分别代入以上等式(13)中,找到使得(x w,y w)与目标色度坐标之间的距离最小的IRE R、IRE G、IRE B,这里用IRE Rmin1、IRE Gmin1、IRE Bmin1表示,然后,将IRE Rmin1/N确定为红色通道的第二增益系数、将IRE Gmin1/N确定为绿色通道第二增益系数、将IRE Bmin1/N确定为蓝色通道的第二增益系数。
下面针对上述S8031中的根据第五色值,分别确定投影设备的投影光源的第二目标色温和目标补偿色偏的具体实施方式进行详细说明。具体来说,可以通过以下步骤1)~5)来确定投影设备的投影光源的第二目标色温和目标补偿色偏:
1)根据第五色值,确定第三漫反射光在XYZ色彩空间中的第三色度坐标。
在本公开中,根据第五色值,确定第三漫反射光在XYZ色彩空间中的第三色度坐标,即确定第三漫反射光在CIE1931的xy坐标图。
具体来说,可以通过多种方式来确定第三色度坐标,在一种实施方式中,若第五色值为RGB数据,则可以先将其转换为XYZ色彩空间中的XYZ数据,然后根据转换后所得的XYZ数据,确定第三漫反射光在XYZ色彩空间中的第三色度坐标。
在另一种实施方式中,若第五色值为XYZ数据,则直接根据其确定第三漫反射光在XYZ色彩空间中的第三色度坐标。
示例地,可以通过以下等式(19)来确定第三色度坐标(x1,y1):
Figure PCTCN2021106115-appb-000027
其中,X4为第五色值中的X数据;Y4为第五色值中的Y数据;Z4为第五色值中的Z数据。
2)根据第三色度坐标,确定第三漫反射光的相关色温。
示例地,可以通过以下等式(20)来确定上述第三漫反射光的相关色温CCT1:
Figure PCTCN2021106115-appb-000028
其中,a11、a21、a31以及c2均为常数。
3)根据第三漫反射光的相关色温,确定第二目标色温。
示例地,可以根据第三漫反射光的相关色温,通过以下等式(21)来确定上述第二目标色温CCT comp
Figure PCTCN2021106115-appb-000029
其中,M为大于或等于1的常数;b i为常数,i=1,2,……,M。
又示例地,为了浮点运算时能够保留更多有效小数位,以提升第二目标色温的计算精度,可以通过以下等式(22)来确定上述第二目标色温CCT comp
Figure PCTCN2021106115-appb-000030
其中,CCT2和CCT comp1均为中间变量。
4)将第三色度坐标映射到均匀色空间中,以得到第四色度坐标。
在本公开中,均匀色空间可以为CIE1976的UCS色彩空间。并且,可以根据XYZ色彩空间与均匀色空间之间的映射关系,将第三色度坐标映射到均匀色空间中,从而得到第四色度坐标。
其中,上述映射关系如以下等式(23)所示:
Figure PCTCN2021106115-appb-000031
5)根据第三漫反射光的相关色温以及第四色度坐标,确定目标补偿色偏。
在本公开中,可以通过以下方式来确定目标补偿色偏:
首先,确定均匀色空间中的黑体轨迹和第三漫反射光的相关色温的等温线的第一交点坐标。
在本公开中,可以根据上述映射关系将图3中的黑体轨迹线映射至均匀色空间中,得到图10中所示的曲线A(即均匀色空间中的黑体轨迹)。在通过上述步骤2)确定出第三漫反射光的相关色温后,可以计算均匀色空间中第三漫反射光的相关色温的等温线与黑体轨迹的第一交点坐标(即图11中所示的(u std′,v std′))。
然后,将第一交点坐标与第四色度坐标之间的距离确定为待补偿色偏。即待补偿色偏
Figure PCTCN2021106115-appb-000032
其中,(u′,v′)为第四色度坐标。
最后,获取目标补偿强度,并根据该目标补偿强度对待补偿色偏进行增强补偿,以得到目标补偿色偏。
在均匀色空间中,由于第四色度坐标(u′,v′)并不在黑体轨迹线上,所以第四色度坐标(u′,v′)所表征的颜色并非是标准的白色,因此,第二目标色温需要在黑体轨迹线上朝相反方向做偏移来抵消色偏,示例地,可以通过以下等式(24)来得到目标补偿色偏Δu′v′ comp
Figure PCTCN2021106115-appb-000033
其中,Y ratio为目标补偿强度;c3为常数;Y 100%W为上述第五色值中的Y值;Y base为黑暗环境下,投影设备向投影面投射纯白光时,获取到的纯白光经投影面漫反射形成的第三漫反射光的第五色值中的Y值。
下面针对上述S8032中的根据第二目标色温和目标补偿色偏,确定投影设备的投影光源在XYZ色彩空间中的目标色度坐标的具体实施方式进行详细说明。具体来说,可以通过以下方式来实现:
首先,根据第二目标色温和目标补偿色偏,确定投影光源在均匀色空间中的第五色度坐标;然后,将第五色度坐标映射到XYZ色彩空间中,以得到目标色度坐标。
在本公开中,可以通过以下方式来确定第五色度坐标:首先,确定均匀色空间中的黑体轨迹和第二目标色温的等温线的第二交点坐标(即图11中所示的(u 1′,v 1′));然后,根据第二交点坐标和目标补偿色偏,确定第五色度坐标(如图11中所示的(u 2′,v 2′))
具体来说,根据第二交点坐标和目标补偿色偏,通过以下等式(25)来确定第五色度坐标:
Figure PCTCN2021106115-appb-000034
其中,(u 2′,v 2′)为第五色度坐标;(u 1′,v 1′)为均匀色空间中的黑体轨迹和第二目标色温的等温线的第二交点坐标;h为第二目标色温的等温线的斜率(已知量)。
在得到第五色度坐标后,可以根据上述等式(23)所示的映射关系,将第五色度坐 标映射到XYZ色彩空间,从而得到目标色度坐标。
在上述实施方式中,目标补偿色偏的计算先后涉及XYZ色彩空间(非均匀色彩空间,为色温定义所在坐标系)和均匀色彩空间(为符合人眼感知的坐标系),能够提升目标补偿色偏的准确度,从而能够进行精准色偏补偿,且更加符合人眼感知,进一步提升用户的观感体验。
另外,上述朝向投影面的传感模块采集到的上述第三漫反射光中,不但包含色值,还包括红外光谱信息,当传感模块受到红外光照射时,在红外光的波长700nm以内有响应,尤其是当色值激励较低而红外光激励较高时,会大大影响传感模块对色值的测量精度。因此,传感模块可以设置有用于采集红外光谱信息的红外通道,以辅助提高色值的测量精度。具体来说,如图12所示,在S803之前,上述方法还包括S805和S806。
在S805中,获取第三漫反射光的红外光谱信息。
在S806中,根据第三漫反射光的红外光谱信息,对第五色值进行校正。
在本公开中,在控制投影设备向投影面投射纯白光之后,除了获取纯白光和环境光经投影面漫反射形成的第三漫反射光的第五色值外,还需要同时获取该第三漫反射光的红外光谱信息,之后,根据该第三漫反射光的红外光谱信息对上述第五色值进行校正,这样,上述S803就可以根据校正后所得的第五色值,确定投影设备中RGB通道的第二增益系数。
在本公开中,可以根据第三漫反射光的红外光谱信息,通过多种方式对第五色值进行校正。在一种实施方式中,可以获取第三校正矩阵,其中,第三校正矩阵是根据单一标准光源下的测量结果确定出的;然后,根据第三校正矩阵与第二待校正矩阵的乘积,确定校正后所得的第五色值,其中,第二待校正矩阵为上述第五色值与第三漫反射光的红外光谱信息构成的列向量。
示例地,可以根据第三校正矩阵与第二待校正矩阵的乘积,通过以下等式(26)来确定校正后所得的第五色值:
Figure PCTCN2021106115-appb-000035
其中,
Figure PCTCN2021106115-appb-000036
为校正后所得的第五色值;
Figure PCTCN2021106115-appb-000037
为第二待校正矩阵,其中,IR1为第三漫反射光的红外光谱信息,
Figure PCTCN2021106115-appb-000038
为上述第五色值;
Figure PCTCN2021106115-appb-000039
为第三校正矩阵。
在另一种实施方式中,可以获取第一校正矩阵和第二校正矩阵;然后,根据第一校正矩阵与第二待校正矩阵的乘积、第二校正矩阵与第二待校正矩阵的乘积,确定校正后所得的第五色值。
示例地,可以根据第一校正矩阵与第二待校正矩阵的乘积、第二校正矩阵与第二待校正矩阵的乘积,通过以下等式(27)来确定校正后所得的第五色值:
Figure PCTCN2021106115-appb-000040
其中,
Figure PCTCN2021106115-appb-000041
为第二校正矩阵;
Figure PCTCN2021106115-appb-000042
为第一校正矩阵;weight1为权重系数。
其中,权重系数weight1可以根据红外光线的强度确定,示例地,可以通过图7A或者图7B所示的红外光线的强度与权重系数的关系曲线来确定上述权重系数。
另外,除了采用上述根据第三漫反射光的红外光谱信息,对第五色值进行校正的方式外,还可以通过在传感模块上设置用于滤除红外光的光学元件,以提升第五色值的测量精度。
基于同样的构思,本公开还提供一种投影设备控制装置。图13是根据一示例性实施例示出的一种投影设备控制装置的框图。如图13所示,该装置1300包括:第一获取模块1301,用于响应于接收到第一投影指令,获取在所述投影设备向投影面投射之前,环境光经所述投影面漫反射形成的第一漫反射光的第一色值;第一控制模块1302,用于控制所述投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至所述投影面,并获取每次投射时、所述投影设备所投射的光与所述环境光经所述投影面漫反射形成的第二漫反射光的第二色值;第一确定模块1303,用于根据所述第一获取模块1301获取到的所述第一色值和所述第一控制模块1303得到的每一所述第二色值,确定所述投影设备中RGB通道的第一增益系数;第一调整模块1304,用于根据所述第一确定模块1303确定出的所述第一增益系数,调整所述RGB通道的增益。
在上述技术方案中,在接收到第一投影指令时,获取在投影设备向投影面投射之前,环境光经投影面漫反射形成的第一漫反射光的第一色值;之后,控制投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至投影面,并获取每次投射时、投影设备所投射的光与环境光经投影面漫反射形成的第二漫反射光的第二色值;接下来,根据第一色值和各第二色值,确定投影设备中RGB通道的第一增益系数,并根据该第一增益系数,调整RGB通道的增益。其中,投影面的第一漫反射光的第一色值包含投影面、环境光的特性,投影面的各第二漫反射光的第二色值不仅包含投影设备的投影光源的特性,还包含有投影面、环境光的特性,由此,就能够根据第一色值,从各第二色值中去除环境光和投影面对色温的影响,从而能够准确地计算出投影设备中RGB通道的第一增益系数,进而根据该第一增益系数调整RGB通道的增益,实现投影光源色温的精准补偿。这样,无论环境光和投影面如何变化,投影画面的色温始终保持在一个预设的值或者范围内,从而为用户提供最佳的观感体验。
可选地,所述第一确定模块1303包括:滤除子模块,用于针对每一所述第二色值,从所述第二色值中减去所述第一色值,得到第三色值;目标构建子模块,用于根据所述第一色值和每一所述第三色值,构建目标颜色查找表并确定所述投影设备的投影光源的第一色度坐标;第一确定子模块,用于根据所述第一色度坐标和所述目标颜色查找表,确定所述第一增益系数。
可选地,所述目标构建子模块包括:中间构建子模块,用于根据每一所述第三色值,构建中间颜色查找表;修正子模块,用于根据所述第一色值,对所述中间颜色查找表进行修正,得到所述目标颜色查找表。
可选地,所述目标构建子模块还包括:第二确定子模块,用于根据每一所述第三色值,确定目标漫反射光的相关色温,其中,所述目标漫反射光是将所有所述第二漫反射光叠加后所得的光;第三确定子模块,用于根据所述目标漫反射光的相关色温,确定所述第一色度坐标。
可选地,所述第二确定子模块包括:第四色值确定子模块,用于根据每一所述第 三色值,确定所述目标漫反射光的第四色值;第二色度坐标确定子模块,用于根据所述第四色值,确定所述目标漫反射光在XYZ色彩空间中的第二色度坐标;第一相关色温确定子模块,用于根据所述第二色度坐标,确定所述目标漫反射光的相关色温。
可选地,所述第三确定子模块包括:第一目标色温确定子模块,用于根据预设的相关色温与投影光源的色温的对应关系,确定与所述目标漫反射光的相关色温对应的、所述投影光源的第一目标色温;第一色度坐标确定子模块,用于将XYZ色彩空间中的黑体轨迹与所述第一目标色温的等温线的交点坐标确定为所述第一色度坐标。
可选地,所述装置1300还包括:红外光谱信息获取模块,用于在所述第一确定模块1303根据所述第一色值和每一所述第二色值,确定所述投影设备中RGB通道的第一增益系数之前,分别获取所述第一漫反射光、每一所述第二漫反射光的红外光谱信息;第一校正模块,用于根据所述第一漫反射光的红外光谱信息,对所述第一色值进行校正,并针对每一所述第二漫反射光,根据该第二漫反射光的红外光谱信息,对该第二漫反射光的第二色值进行校正;所述第一确定模块1303,用于根据校正后所得的第一色值和校正后所得的每一第二色值,确定所述投影设备中RGB通道的第一增益系数。
可选地,所述第一校正模块包括:第一获取子模块,用于获取第一校正矩阵和第二校正矩阵,其中,所述第一校正矩阵是根据红外成分大于第一预设比例阈值的标准光源下的测量结果确定出的,所述第二校正矩阵是根据红外成分小于第二预设比例阈值的标准光源下的测量结果确定出的,其中,所述第一预设比例阈值大于所述第二预设比例阈值;第四确定子模块,用于根据所述第一校正矩阵与第一待校正矩阵的乘积、所述第二校正矩阵与所述第一待校正矩阵的乘积,确定所述校正后所得的第一色值,其中,所述第一待校正矩阵为所述第一色值与所述第一漫反射光的红外光谱信息构成的列向量。
本公开还提供一种投影设备控制装置。图14是根据另一示例性实施例示出的一种投影设备控制装置的框图。如图14所示,该装置1400包括:第二控制模块1401,用于响应于接收到第二投影指令,控制所述投影设备向投影面投射纯白光;第二获取模块1402,用于获取所述纯白光和环境光经所述投影面漫反射形成的第三漫反射光的第五色值;第二确定模块1403,用于根据所述第二获取模块1402获取到的所述第五色值,确定所述投影设备中RGB通道的第二增益系数;所述第二调整模块1404,用于根据所述第二增益系数,调整所述RGB通道的增益。
可选地,所述第二确定模块1403包括:第五确定子模块,用于根据所述第五色值,分别确定所述投影设备的投影光源的第二目标色温和目标补偿色偏;第六确定子模块,用于根据所述第二目标色温和所述目标补偿色偏,确定所述投影设备的投影光源在XYZ色彩空间中的目标色度坐标;第七确定子模块,用于根据预设的颜色查找表和所述目标色度坐标,确定所述第二增益系数。
可选地,所述第五确定子模块包括:第三色度坐标确定子模块,用于根据所述第五色值,确定所述第三漫反射光在所述XYZ色彩空间中的第三色度坐标;第二相关色温确定子模块,用于根据所述第三色度坐标,确定所述第三漫反射光的相关色温;第二目标色温确定子模块,用于根据所述第三漫反射光的相关色温,确定所述第二目标色温;第一映射子模块,用于将所述第三色度坐标映射到均匀色空间中,以得到第四色度坐标;补偿色偏确定子模块,用于根据所述第三漫反射光的相关色温以及所述第四色度坐标,确定所述目标补偿色偏。
可选地,所述补偿色偏确定子模块包括:第一交点坐标确定子模块,用于确定所述均匀色空间中的黑体轨迹和所述第三漫反射光的相关色温的等温线的第一交点坐标;待补偿色偏确定子模块,用于将所述第一交点坐标与所述第四色度坐标之间的距离确定为待补偿色偏;补偿子模块,用于获取目标补偿强度,并根据所述目标补偿强度对所述待 补偿色偏进行增强补偿,以得到所述目标补偿色偏。
可选地,所述第六确定子模块包括:第八确定子模块,用于根据所述第二目标色温和所述目标补偿色偏,确定所述投影光源在均匀色空间中的第五色度坐标;第二映射子模块,用于将所述第五色度坐标映射到所述XYZ色彩空间中,以得到所述目标色度坐标。
可选地,所述第七确定子模块包括:第二交点坐标确定子模块,用于确定所述均匀色空间中的黑体轨迹和所述第二目标色温的等温线的第二交点坐标;第五色度坐标确定子模块,用于根据所述第二交点坐标和所述目标补偿色偏,确定所述第五色度坐标。
可选地,所述装置1400还包括:第三获取模块,用于在所述第二确定模块1403根据所述第五色值,确定所述投影设备中RGB通道的第二增益系数之前,获取所述第三漫反射光的红外光谱信息;第二校正模块,用于根据所述第三漫反射光的红外光谱信息,对所述第五色值进行校正;所述第二确定模块1403用于根据校正后所得的第五色值,确定所述投影设备中RGB通道的第二增益系数。
可选地,所述第二校正模块包括:第二获取子模块,用于获取第一校正矩阵和第二校正矩阵,其中,所述第一校正矩阵是根据红外成分大于第一预设比例阈值的标准光源下的测量结果确定出的,所述第二校正矩阵是根据红外成分小于第二预设比例阈值的标准光源下的测量结果确定出的,其中,所述第一预设比例阈值大于所述第二预设比例阈值;第九确定子模块,用于根据所述第一校正矩阵与第二待校正矩阵的乘积、所述第二校正矩阵与所述第二待校正矩阵的乘积,确定所述校正后所得的第五色值,其中,所述第二待校正矩阵为所述第五色值与所述第三漫反射光的红外光谱信息构成的列向量。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开提供的上述投影设备控制方法的步骤。
图15是根据一示例性实施例示出的一种电子设备1500的框图。如图15所示,该电子设备1500可以包括:处理器1501,存储器1502。该电子设备1500还可以包括多媒体组件1503,输入/输出(I/O)接口1504,以及通信组件1505中的一者或多者。
其中,处理器1501用于控制该电子设备1500的整体操作,以完成上述的投影设备控制方法中的全部或部分步骤。存储器1502用于存储各种类型的数据以支持在该电子设备1500的操作,这些数据例如可以包括用于在该电子设备1500上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器1502可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-OnlyMemory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件1503可以包括屏幕和/或音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1502或通过通信组件1505发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口1504为处理器1501和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件1505用于该电子设备1500与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、NB-IOT、eMTC、或其他5G等等,或它 们中的一种或几种的组合,在此不做限定。因此相应的该通信组件1505可以包括:Wi-Fi模块,蓝牙模块,NFC模块等等。
在一示例性实施例中,电子设备1500可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的投影设备控制方法。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述的投影设备控制方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器1502,上述程序指令可由电子设备1500的处理器1501执行以完成上述的投影设备控制方法。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (20)

  1. 一种投影设备控制方法,所述方法包括:
    响应于接收到第一投影指令,获取在所述投影设备向投影面投射之前,环境光经所述投影面漫反射形成的第一漫反射光的第一色值;
    控制所述投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至所述投影面,并获取每次投射时、所述投影设备所投射的光与所述环境光经所述投影面漫反射形成的第二漫反射光的第二色值;
    根据所述第一色值和每一所述第二色值,确定所述投影设备中RGB通道的第一增益系数;
    根据所述第一增益系数,调整所述RGB通道的增益。
  2. 根据权利要求1所述的方法,其中,所述根据所述第一色值和每一所述第二色值,确定所述投影设备中RGB通道的第一增益系数,包括:
    针对每一所述第二色值,从所述第二色值中减去所述第一色值,得到第三色值;
    根据所述第一色值和每一所述第三色值,构建目标颜色查找表并确定所述投影设备的投影光源的第一色度坐标;
    根据所述第一色度坐标和所述目标颜色查找表,确定所述第一增益系数。
  3. 根据权利要求2所述的方法,其中,所述根据所述第一色值和每一所述第三色值,构建目标颜色查找表,包括:
    根据每一所述第三色值,构建中间颜色查找表;
    根据所述第一色值,对所述中间颜色查找表进行修正,得到所述目标颜色查找表。
  4. 根据权利要求2或3所述的方法,其中,所述根据所述第一色值和每一所述第三色值,确定所述投影设备的投影光源的第一色度坐标,包括:
    根据每一所述第三色值,确定目标漫反射光的相关色温,其中,所述目标漫反射光是将所有所述第二漫反射光叠加后所得的光;
    根据所述目标漫反射光的相关色温,确定所述第一色度坐标。
  5. 根据权利要求4所述的方法,其中,所述根据每一所述第三色值,确定目标漫反射光的相关色温,包括:
    根据每一所述第三色值,确定所述目标漫反射光的第四色值;
    根据所述第四色值,确定所述目标漫反射光在XYZ色彩空间中的第二色度坐标;
    根据所述第二色度坐标,确定所述目标漫反射光的相关色温。
  6. 根据权利要求4或5所述的方法,其中,所述根据所述目标漫反射光的相关色温,确定所述第一色度坐标,包括:
    根据预设的相关色温与投影光源的色温的对应关系,确定与所述目标漫反射光的相关色温对应的、所述投影光源的第一目标色温;
    将XYZ色彩空间中的黑体轨迹与所述第一目标色温的等温线的交点坐标确定为所述第一色度坐标。
  7. 根据权利要求1-6中任一项所述的方法,其中,在所述根据所述第一色值和每一所述第二色值,确定所述投影设备中RGB通道的第一增益系数的步骤之前,所述方法还包括:
    分别获取所述第一漫反射光、每一所述第二漫反射光的红外光谱信息;
    根据所述第一漫反射光的红外光谱信息,对所述第一色值进行校正,并针对每一所述第二漫反射光,根据该第二漫反射光的红外光谱信息,对该第二漫反射光的第二色值进行校正;
    所述根据所述第一色值和每一所述第二色值,确定所述投影设备中RGB通道的第一增益系数,包括:
    根据校正后所得的第一色值和校正后所得的每一第二色值,确定所述投影设备中RGB通道的第一增益系数。
  8. 根据权利要求7所述的方法,其中,所述根据所述第一漫反射光的红外光谱信息,对所述第一色值进行校正,包括:
    获取第一校正矩阵和第二校正矩阵,其中,所述第一校正矩阵是根据红外成分大于第一预设比例阈值的标准光源下的测量结果确定出的,所述第二校正矩阵是根据红外成分小于第二预设比例阈值的标准光源下的测量结果确定出的,其中,所述第一预设比例阈值大于所述第二预设比例阈值;
    根据所述第一校正矩阵与第一待校正矩阵的乘积、所述第二校正矩阵与所述第一待校正矩阵的乘积,确定所述校正后所得的第一色值,其中,所述第一待校正矩阵为所述第一色值与所述第一漫反射光的红外光谱信息构成的列向量。
  9. 一种投影设备控制方法,所述方法包括:
    响应于接收到第二投影指令,控制所述投影设备向投影面投射纯白光;
    获取所述纯白光和环境光经所述投影面漫反射形成的第三漫反射光的第五色值;
    根据所述第五色值,确定所述投影设备中RGB通道的第二增益系数;
    根据所述第二增益系数,调整所述RGB通道的增益。
  10. 根据权利要求9所述的方法,其中,所述根据所述第五色值,确定所述投影设备中RGB通道的第二增益系数,包括:
    根据所述第五色值,分别确定所述投影设备的投影光源的第二目标色温和目标补偿色偏;
    根据所述第二目标色温和所述目标补偿色偏,确定所述投影设备的投影光源在XYZ色彩空间中的目标色度坐标;
    根据预设的颜色查找表和所述目标色度坐标,确定所述第二增益系数。
  11. 根据权利要求10所述的方法,其中,所述根据所述第五色值,分别确定所述投影设备的投影光源的第二目标色温和目标补偿色偏,包括:
    根据所述第五色值,确定所述第三漫反射光在所述XYZ色彩空间中的第三色度坐标;
    根据所述第三色度坐标,确定所述第三漫反射光的相关色温;
    根据所述第三漫反射光的相关色温,确定所述第二目标色温;
    将所述第三色度坐标映射到均匀色空间中,以得到第四色度坐标;
    根据所述第三漫反射光的相关色温以及所述第四色度坐标,确定所述目标补偿色偏。
  12. 根据权利要求11所述的方法,其中,所述根据所述第三漫反射光的相关色温以及所述第四色度坐标,确定所述目标补偿色偏,包括:
    确定所述均匀色空间中的黑体轨迹和所述第三漫反射光的相关色温的等温线的第一交点坐标;
    将所述第一交点坐标与所述第四色度坐标之间的距离确定为待补偿色偏;
    获取目标补偿强度,并根据所述目标补偿强度对所述待补偿色偏进行增强补偿,以得到所述目标补偿色偏。
  13. 根据权利要求10-12中任一项所述的方法,其中,所述根据所述第二目标色温和所述目标补偿色偏,确定所述投影设备的投影光源在XYZ色彩空间中的目标色度坐标,包括:
    根据所述第二目标色温和所述目标补偿色偏,确定所述投影光源在均匀色空间中的 第五色度坐标;
    将所述第五色度坐标映射到所述XYZ色彩空间中,以得到所述目标色度坐标。
  14. 根据权利要求13所述的方法,其中,所述根据所述第二目标色温和所述目标补偿色偏,确定所述投影光源在均匀色空间中的第五色度坐标,包括:
    确定所述均匀色空间中的黑体轨迹和所述第二目标色温的等温线的第二交点坐标;
    根据所述第二交点坐标和所述目标补偿色偏,确定所述第五色度坐标。
  15. 根据权利要求9-14中任一项所述的方法,其中,在所述根据所述第五色值,确定所述投影设备中RGB通道的第二增益系数的步骤之前,所述方法还包括:
    获取所述第三漫反射光的红外光谱信息;
    根据所述第三漫反射光的红外光谱信息,对所述第五色值进行校正;
    所述根据所述第五色值,确定所述投影设备中RGB通道的第二增益系数,包括:
    根据校正后所得的第五色值,确定所述投影设备中RGB通道的第二增益系数。
  16. 根据权利要求15所述的方法,其中,所述根据所述第三漫反射光的红外光谱信息,对所述第五色值进行校正,包括:
    获取第一校正矩阵和第二校正矩阵,其中,所述第一校正矩阵是根据红外成分大于第一预设比例阈值的标准光源下的测量结果确定出的,所述第二校正矩阵是根据红外成分小于第二预设比例阈值的标准光源下的测量结果确定出的,其中,所述第一预设比例阈值大于所述第二预设比例阈值;
    根据所述第一校正矩阵与第二待校正矩阵的乘积、所述第二校正矩阵与所述第二待校正矩阵的乘积,确定所述校正后所得的第五色值,其中,所述第二待校正矩阵为所述第五色值与所述第三漫反射光的红外光谱信息构成的列向量。
  17. 一种投影设备控制装置,所述装置包括:
    第一获取模块,用于响应于接收到第一投影指令,获取在所述投影设备向投影面投射之前,环境光经所述投影面漫反射形成的第一漫反射光的第一色值;
    第一控制模块,用于控制所述投影设备将纯红光、纯绿光、纯蓝光按照任意顺序分别投射至所述投影面,并获取每次投射时、所述投影设备所投射的光与所述环境光经所述投影面漫反射形成的第二漫反射光的第二色值;
    第一确定模块,用于根据所述第一获取模块获取到的所述第一色值和所述第一控制模块得到的每一所述第二色值,确定所述投影设备中RGB通道的第一增益系数;
    第一调整模块,用于根据所述第一确定模块确定出的所述第一增益系数,调整所述RGB通道的增益。
  18. 一种投影设备控制装置,所述装置包括:
    第二控制模块,用于响应于接收到第二投影指令,控制所述投影设备向投影面投射纯白光;
    第二获取模块,用于获取所述纯白光和环境光经所述投影面漫反射形成的第三漫反射光的第五色值;
    第二确定模块,用于根据所述第二获取模块获取到的第五色值,确定所述投影设备中RGB通道的第二增益系数;
    第二调整模块,用于根据所述第二增益系数,调整所述RGB通道的增益。
  19. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求1-16中任一项所述方法的步骤。
  20. 一种电子设备,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1-16中任一项所述方法的步骤。
PCT/CN2021/106115 2020-12-23 2021-07-13 投影设备控制方法、装置、介质及电子设备 WO2022134549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011556260.9A CN112738488B (zh) 2020-12-23 2020-12-23 投影设备控制方法、装置、介质及电子设备
CN202011556260.9 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022134549A1 true WO2022134549A1 (zh) 2022-06-30

Family

ID=75615687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106115 WO2022134549A1 (zh) 2020-12-23 2021-07-13 投影设备控制方法、装置、介质及电子设备

Country Status (2)

Country Link
CN (2) CN113965739B (zh)
WO (1) WO2022134549A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965739B (zh) * 2020-12-23 2023-07-25 深圳市火乐科技发展有限公司 投影设备控制方法、装置、介质及电子设备
CN113259645B (zh) * 2021-06-08 2021-10-19 深圳市火乐科技发展有限公司 色温调节方法、装置、计算机可读存储介质及投影设备
CN114222098B (zh) * 2021-12-10 2023-07-21 峰米(北京)科技有限公司 投影设备伽马曲线调整方法及设备
CN114866753A (zh) * 2022-06-06 2022-08-05 深圳康佳电子科技有限公司 一种投影仪画质调整方法和装置、投影仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217674A (zh) * 2007-01-04 2008-07-09 三星电子株式会社 用于环境光自适应颜色校正的设备和方法
CN101349856A (zh) * 2007-07-20 2009-01-21 鸿富锦精密工业(深圳)有限公司 投影系统及其色温调整方法
JP2012248910A (ja) * 2011-05-25 2012-12-13 Canon Inc 投射表示装置の色補正方法
US20130093914A1 (en) * 2011-10-12 2013-04-18 Apple Inc. Transformations and White Point Constraint Solutions for a Novel Chromaticity Space
CN108600725A (zh) * 2018-05-10 2018-09-28 杭州雄迈集成电路技术有限公司 一种基于rgb-ir图像数据的白平衡校正装置及方法
CN110913194A (zh) * 2019-11-22 2020-03-24 Oppo广东移动通信有限公司 一种自动白平衡的补偿方法、终端以及计算机存储介质
CN112738488A (zh) * 2020-12-23 2021-04-30 深圳市火乐科技发展有限公司 投影设备控制方法、装置、介质及电子设备
CN112738489A (zh) * 2020-12-23 2021-04-30 深圳市火乐科技发展有限公司 投影设备控制方法、装置、介质及电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668596A (en) * 1996-02-29 1997-09-16 Eastman Kodak Company Digital imaging device optimized for color performance
US7265781B2 (en) * 2001-08-22 2007-09-04 Fujifilm Corporation Method and apparatus for determining a color correction matrix by minimizing a color difference maximum or average value
JP3514257B2 (ja) * 2002-05-20 2004-03-31 セイコーエプソン株式会社 画像処理システム、プロジェクタ、画像処理方法、プログラムおよび情報記憶媒体
US8953049B2 (en) * 2010-11-24 2015-02-10 Echostar Ukraine L.L.C. Television receiver—projector compensating optical properties of projection surface
WO2013027277A1 (ja) * 2011-08-24 2013-02-28 Necディスプレイソリューションズ株式会社 画像表示装置および色むら補正方法
KR20150128467A (ko) * 2014-05-09 2015-11-18 삼성전자주식회사 프로젝터를 가지는 전자 장치 및 이의 색 보정 방법
JP6508890B2 (ja) * 2014-07-07 2019-05-08 キヤノン株式会社 画像処理装置、その制御方法、および制御プログラム
CN106707674B (zh) * 2015-11-17 2021-02-26 深圳光峰科技股份有限公司 投影设备的自动对焦方法及投影设备
CN106791749A (zh) * 2017-02-09 2017-05-31 微鲸科技有限公司 投影画面色彩校正方法及投影机
CN108376539B (zh) * 2018-04-09 2019-12-10 青岛海信电器股份有限公司 一种图像的色彩补偿方法及设备
CN108737806B (zh) * 2018-08-30 2020-05-08 Oppo广东移动通信有限公司 一种投影仪色彩校正方法及装置、计算机存储介质
US10630948B2 (en) * 2018-09-26 2020-04-21 Christie Digital Systems Usa, Inc. Device, system and method for photometric compensation of images provided by a display device
CN110487412B (zh) * 2019-08-14 2020-09-01 北京环境特性研究所 红外高光谱图像非均匀性校正方法、装置和计算机设备
CN110784696B (zh) * 2019-09-30 2021-04-30 深圳市火乐科技发展有限公司 一种白平衡校正方法和相关装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217674A (zh) * 2007-01-04 2008-07-09 三星电子株式会社 用于环境光自适应颜色校正的设备和方法
CN101349856A (zh) * 2007-07-20 2009-01-21 鸿富锦精密工业(深圳)有限公司 投影系统及其色温调整方法
JP2012248910A (ja) * 2011-05-25 2012-12-13 Canon Inc 投射表示装置の色補正方法
US20130093914A1 (en) * 2011-10-12 2013-04-18 Apple Inc. Transformations and White Point Constraint Solutions for a Novel Chromaticity Space
CN108600725A (zh) * 2018-05-10 2018-09-28 杭州雄迈集成电路技术有限公司 一种基于rgb-ir图像数据的白平衡校正装置及方法
CN110913194A (zh) * 2019-11-22 2020-03-24 Oppo广东移动通信有限公司 一种自动白平衡的补偿方法、终端以及计算机存储介质
CN112738488A (zh) * 2020-12-23 2021-04-30 深圳市火乐科技发展有限公司 投影设备控制方法、装置、介质及电子设备
CN112738489A (zh) * 2020-12-23 2021-04-30 深圳市火乐科技发展有限公司 投影设备控制方法、装置、介质及电子设备

Also Published As

Publication number Publication date
CN112738488A (zh) 2021-04-30
CN113965739B (zh) 2023-07-25
CN112738488B (zh) 2021-12-07
CN113965739A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2022134549A1 (zh) 投影设备控制方法、装置、介质及电子设备
CN113891053B (zh) 投影设备控制方法、装置、介质及电子设备
Berns Methods for characterizing CRT displays
US8243210B2 (en) Apparatus and method for ambient light adaptive color correction
JP5589299B2 (ja) 測色装置および該方法ならびに液晶表示システム
JP5430254B2 (ja) 画像表示装置及びその制御方法
JP3514776B2 (ja) マルチビジョンシステム
JP2009168466A (ja) ディスプレイ用カラーセンサおよびそれを用いるディスプレイシステムならびにディスプレイの校正方法
JP4030199B2 (ja) 投写型液晶表示装置
WO2022174651A1 (zh) 投影设备控制方法、装置、介质及电子设备
JP2016105079A (ja) 測色計の較正
CN113194303A (zh) 图像白平衡方法、装置、电子设备和计算机可读存储介质
WO2022205652A1 (zh) 颜色调节方法、装置、介质及电子设备
JP2010217645A (ja) 画像表示装置の補正値作成方法、画像表示装置の補正値作成装置、及び画像表示装置の補正値作成プログラム
TWI602419B (zh) 調整方法及其所適用之顯示設備
KR101680446B1 (ko) 컬러 테이블 생성 장치, 카메라 영상 보정/제어 장치 및 그 방법
KR20090041695A (ko) 주변 광원에 의한 화이트 밸런스 보상 장치 및 방법
JP2010217644A (ja) 画像表示装置の補正値作成方法、画像表示装置の補正値作成装置、及び画像表示装置の補正値作成プログラム
US8284260B2 (en) Optimal raw RGB determination for color calibration
JP2007322203A (ja) 三刺激値直読型計測器の校正方法、校正システム、色測定方法、色測定装置、および三刺激値直読型計測器
CN112738486B (zh) 投影控制的方法、装置、系统、介质及电子设备
JP2008157782A (ja) 三刺激値直読型計測器の校正方法、校正システム、色測定方法、および色測定装置
JP4661129B2 (ja) 撮像装置及びそのプログラム
JP6729578B2 (ja) 光学特性測定装置及び光学特性測定装置の設定方法
CN113259645B (zh) 色温调节方法、装置、计算机可读存储介质及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.11.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21908554

Country of ref document: EP

Kind code of ref document: A1