WO2022134427A1 - 显示基板、其制作方法及三维显示装置 - Google Patents

显示基板、其制作方法及三维显示装置 Download PDF

Info

Publication number
WO2022134427A1
WO2022134427A1 PCT/CN2021/092258 CN2021092258W WO2022134427A1 WO 2022134427 A1 WO2022134427 A1 WO 2022134427A1 CN 2021092258 W CN2021092258 W CN 2021092258W WO 2022134427 A1 WO2022134427 A1 WO 2022134427A1
Authority
WO
WIPO (PCT)
Prior art keywords
base substrate
electrodes
layer
electrode
reflective
Prior art date
Application number
PCT/CN2021/092258
Other languages
English (en)
French (fr)
Inventor
张永峰
袁广才
董学
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/754,225 priority Critical patent/US20230165098A1/en
Publication of WO2022134427A1 publication Critical patent/WO2022134427A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate, a manufacturing method thereof, and a three-dimensional display device.
  • the naked-eye three-dimensional (3D for short) display technology is a display technology that enables people to watch a realistic stereoscopic image without wearing 3D glasses. It frees the wearer from the constraints of traditional 3D glasses, It fundamentally solves the problem of dizziness caused by wearing 3D glasses for a long time, and greatly improves people's viewing comfort.
  • naked-eye 3D technology can be divided into grating naked-eye 3D technology and lenticular lens 3D display technology.
  • the left and right views are formed by a grating-like parallax barrier or lenticular lens. Since the left and right views seen by the viewer's two eyes are two images with parallax, the left and right views with parallax are in After the superposition is regenerated in the viewer's brain, the viewer can view the 3D display image with the naked eye.
  • an embodiment of the present disclosure provides a display substrate, including:
  • the base substrate includes a plurality of sub-pixels; each of the sub-pixels has at least two first electrodes, and a light-emitting functional layer located on the side of the first electrodes away from the base substrate;
  • the first electrode includes: a layered transparent conductive part and a reflective conductive part;
  • a plurality of reflective structures located between the insulating layer and the base substrate;
  • two adjacent first electrodes are provided with a corresponding reflection structure
  • the reflection structure includes a first part and a second part
  • the orthographic projection of the first part on the base substrate It overlaps with the orthographic projection of one of the first electrodes on the base substrate, and the orthographic projection of the second portion on the base substrate is the same as the orthographic projection of the other first electrode on the base substrate. Orthographic overlap.
  • the reflective structure further includes a third part, and the distance between the third part and the light-emitting functional layer in a direction perpendicular to the base substrate, It is smaller than the distance between the first part and the light-emitting functional layer in the direction perpendicular to the base substrate, and is smaller than the distance between the second part and the light-emitting functional layer in the direction perpendicular to the base substrate.
  • the third part is located between the first part and the second part.
  • the orthographic projection of the reflective conductive portion on the base substrate is located within the orthographic projection of the transparent conductive portion on the base substrate.
  • the transparent conductive portion includes: a first transparent conductive portion located on the side of the reflective conductive portion facing the base substrate, and a first transparent conductive portion located on the reflective conductive portion.
  • the second transparent conductive part on the side away from the base substrate;
  • the portion of the second transparent conductive portion beyond the reflective conductive portion includes a sloped surface extending obliquely toward the base substrate, and an edge flat portion in contact with the sloped surface.
  • the display substrate provided by the embodiment of the present disclosure, further comprising: a plurality of transparent protective electrodes located on a side of the layer where the plurality of first electrodes are located away from the base substrate;
  • the plurality of transparent protective electrodes are disposed correspondingly to the plurality of first electrodes, and the orthographic projection of the transparent protective electrodes on the base substrate at least covers the flat edge portion corresponding to the first electrode at Orthographic projection on the base substrate.
  • the at least two first electrodes are arranged along a first direction and extend along a second direction;
  • the width of the transparent protective electrode in the first direction is greater than or equal to the width of the corresponding first electrode in the first direction
  • the length of the transparent protective electrode in the second direction is greater than or equal to Corresponding to the length of the first electrode in the second direction.
  • the above-mentioned display substrate provided in the embodiment of the present disclosure further includes: a flat layer located between the base substrate and the layer where the plurality of reflective structures are located; the reflective structures are disposed on the flat layer in the groove.
  • the display substrate provided by the embodiment of the present disclosure, further comprising: a plurality of pixel driving circuits located between the base substrate and the flat layer;
  • the pixel driving circuit is electrically connected to the first electrode correspondingly through a via hole penetrating the inorganic insulating layer and the flat layer.
  • the via holes are sequentially arranged at the same side edge corresponding to the first electrode along the first direction.
  • the thickness of the reflective conductive portion is greater than or equal to and less than or equal to
  • the angle between the slope and the base substrate is greater than or equal to 30° and less than or equal to 30°. is equal to 60°.
  • the maximum distance between the first part and the second part is greater than 2 ⁇ m and less than or equal to 5 ⁇ m, and the The minimum distance between the first part and the second part is greater than 1 ⁇ m and less than or equal to 2 ⁇ m, and the gap between the transparent protection electrodes is greater than 0 and less than or equal to 2 ⁇ m.
  • the material of the insulating layer is an inorganic insulating layer.
  • an embodiment of the present disclosure also provides a three-dimensional display device, including the above-mentioned display substrate, and a light splitting component located on a display side of the display substrate.
  • an embodiment of the present disclosure also provides a method for fabricating the above-mentioned display substrate, including:
  • a plurality of sub-pixels are formed on the insulating layer, wherein each of the sub-pixels has at least two first electrodes and a light-emitting functional layer on the side of the first electrodes away from the base substrate;
  • the The first electrode includes: a layered transparent conductive part and a reflective conductive part;
  • two adjacent first electrodes are provided with a corresponding reflection structure
  • the reflection structure includes a first part and a second part
  • the orthographic projection of the first part on the base substrate It overlaps with the orthographic projection of one of the first electrodes on the base substrate, and the orthographic projection of the second portion on the base substrate is the same as the orthographic projection of the other first electrode on the base substrate. Orthographic overlap.
  • forming a plurality of first electrodes specifically includes:
  • the first transparent conductive material layer, the reflective conductive material layer and the second transparent conductive material layer are etched using the same etching process to form a first transparent conductive portion, a reflective conductive portion and a second transparent conductive portion.
  • the method further includes:
  • a plurality of transparent protective electrodes are formed on the side of the layer where the first electrodes are located away from the base substrate; wherein, the plurality of transparent protective electrodes are arranged corresponding to the plurality of first electrodes, and the transparent protective electrodes are located on the
  • the width in the first direction is greater than the width in the first direction corresponding to the first electrode, and the length of the transparent protective electrode in the second direction is larger than the length corresponding to the first electrode in the second direction length in the direction.
  • FIG. 1 is a schematic diagram of a single-layer anode structure in the related art
  • FIG. 2 is a schematic diagram of the moiré effect of the single-layer anode shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 4 is another schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 5 is another schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 6 is another schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a method for fabricating a display substrate provided by an embodiment of the present disclosure.
  • FIGS. 8 to 22 are respectively schematic structural diagrams of a display substrate provided in an embodiment of the present disclosure in a manufacturing process
  • FIG. 23 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • the existing medium and large size naked-eye 3D technology has low resolution and cannot achieve high-definition, high-brightness and high-contrast display.
  • the number of viewpoints needs to be increased. The more sub-pixels independently controlled, the higher the 3D display resolution and the better the display effect.
  • the anodes of sub-pixels can be finely patterned into multiple sub-anodes that are independent of each other, and independent pixel driving circuits and compensation circuits are connected by connecting independent pixel driving circuits and compensation circuits.
  • the display and control of the full grayscale of the sub-anode are respectively realized, thereby improving the 3D display resolution, increasing the number of viewing angles, and smoothing the jumps of different viewing angles, improving the naked-eye 3D viewing experience.
  • the present disclosure found that after the anodes of the sub-pixels are divided, there is no parallel electric field generated by the metal electrodes at the adjacent sub-anode space (space) to drive carriers to move and couple to emit light (that is, no light is emitted in the space), and a 3D display molar will appear. If the pattern is bad, the larger the space, the wider the non-luminous area, and the more serious the moiré pattern in 3D display, as shown in Figure 2.
  • an embodiment of the present disclosure provides a display substrate, as shown in FIG. 3 to FIG. 5 , which may include:
  • the base substrate 101 includes a plurality of sub-pixels P; the plurality of sub-pixels P may include but are not limited to red sub-pixels, green sub-pixels, blue sub-pixels, and white sub-pixels; There are at least two first electrodes 102, and a light-emitting functional layer 103 located on the side of the first electrodes 102 away from the base substrate 101; the first electrode 102 includes: a reflective conductive part 1021 and a transparent conductive part 1022 arranged in layers; in some implementations
  • the base substrate 101 is provided with a pixel defining layer (PDL) including a plurality of openings, each opening corresponds to one sub-pixel P, and the first electrode 102 exposed by one opening belongs to one sub-pixel P; wherein each opening corresponds to one sub-pixel P; The whole of each first electrode 102 may be exposed, or only a part of each first electrode 102 may be exposed;
  • PDL pixel defining layer
  • the insulating layer 104 is located between the layer where the plurality of first electrodes 102 are located and the base substrate 101;
  • a plurality of reflective structures 105 located between the insulating layer 104 and the base substrate 101;
  • two adjacent first electrodes 102 are correspondingly provided with a reflective structure 105.
  • the reflective structure 105 includes a first part 1051 and a second part 1052.
  • the orthographic projection of the first part 1051 on the base substrate 101 is the same as the The orthographic projection of one first electrode 102 on the base substrate 101 overlaps, and the orthographic projection of the second portion 1052 on the base substrate 101 overlaps with the orthographic projection of another first electrode 102 on the base substrate 101 .
  • the reflective structure 105 is provided, and the insulating layer 104 is used to achieve mutual insulation between the first electrode 102 and the reflective structure 105, and the light-emitting device at the gap can be realized by adjusting the thickness of the insulating layer 104
  • the optimal microcavity (enclosed by the reflective structure 105 and the second electrode 106 ) has a gain to improve the brightness of the light emission at the gap and solve the problem of moiré caused by the large etching gap.
  • the thickness of the insulating layer 104 is negatively correlated with the reflectivity of the reflective structure 105 .
  • the reflective structure 105 can be made of metals such as aluminum and silver with high reflectivity (for example, the reflectivity is greater than 90%).
  • the material of the insulating layer 104 may be inorganic insulating materials such as silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide.
  • the first electrode 102 may be an anode and the second electrode 106 may be a cathode; alternatively, the first electrode 102 may be a cathode and the second electrode 106 may be an anode.
  • the plurality of sub-pixels P include multiple light-emitting colors, and the light-emitting functional layer 103 in each sub-pixel P may have an integrated structure; in some embodiments, all the sub-pixels P have the same light-emitting color (for example, white), the light-emitting functional layers 103 in all the sub-pixels P may have an integrated structure.
  • the light-emitting functional layer 103 may include a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting material layer, a hole blocking layer, an electron transport layer, an electron injection layer, and the like.
  • the reflective conductive portion 1021 refers to a conductive member with a reflective function, such as a metal or alloy material such as aluminum and silver with high reflectivity;
  • the transparent conductive portion 1022 refers to a conductive member with a transmission function, such as indium tin oxide, etc. Metal oxides or metal materials that can transmit light when the thickness is reduced.
  • the reflective structure 105 may further include a third part 1053 , and the third part 1053 is perpendicular to the light emitting functional layer 103 between the third part 1053 and the light emitting functional layer 103 .
  • the distance in the direction of the base substrate 101 is smaller than the distance between the first part 1051 and the light-emitting functional layer 103 in the direction perpendicular to the base substrate 101, and is smaller than the distance between the second part 1052 and the light-emitting functional layer 103 in the direction perpendicular to the substrate.
  • the distance in the direction of the substrate 101 , the third part 1053 may be located between the first part 1051 and the second part 1052 . In this way, the orthographic projection of the reflective structure 105 on the base substrate 101 and the gap between the reflective conductive parts 1021 can be substantially overlapped, thereby minimizing the overlap between the reflective structure 105 and the reflective conductive parts 1021 to generate coupling capacitance.
  • the first part 1051 , the second part 1052 and the third part 1053 may be an integral structure provided at the same layer, or may be three mutually independent parts provided at different layers.
  • the first part 1051 , the second part 1052 and the third part 1053 are provided in the same layer as an integrated structure.
  • “same layer” refers to a layer structure formed by using the same film forming process to form a film layer for making a specific pattern, and then using the same mask to form a layer structure by one patterning process. That is, one patterning process corresponds to one mask (mask, also called photomask).
  • a patterning process may include multiple exposure, development or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may be at the same height or Have the same thickness, possibly also at different heights or have different thicknesses.
  • the orthographic projection of the reflective conductive portion 1021 on the base substrate 101 is located at the position of the transparent conductive portion 1022 on the base substrate 101 .
  • the reflective conductive portion 1021 is protected from corrosion by water and oxygen through the transparent conductive portion 1022 .
  • the transparent conductive part 1022 may include: a first transparent conductive part located on the side of the reflective conductive part 1021 facing the base substrate 101 1022a, and a second transparent conductive portion 1022b located on the side of the reflective conductive portion 1021 away from the base substrate 101; wherein,
  • the portion of the second transparent conductive portion 1022b beyond the reflective conductive portion 1021 includes a sloped surface extending obliquely toward the base substrate 101, and an edge flat portion in contact with the sloped surface.
  • the light-emitting functional layer 103 of the light-emitting device when the light-emitting functional layer 103 of the light-emitting device is formed, since the slope of the first transparent conductive portion 1021 is relatively gentle and has no vertical discontinuity, the light-emitting functional layer 103 will not be broken at the gap.
  • the holes of the first electrode 102 eg, the anode
  • the electrons of the second electrode 106 eg, the cathode
  • the holes of the first electrode 102 and the electrons of the second electrode 106 are transported to the light-emitting layer to emit light, because the carrier concentration in the light-emitting layer corresponding to the first electrode 102 is higher than The carrier concentration at the gap, so the carriers will diffuse laterally from a high concentration to a low concentration, so that the intrinsic crosstalk of the light-emitting device is used to increase the luminous brightness at the gap, thereby realizing continuous luminescence in the same sub-pixel P, The moiré phenomenon is further reduced.
  • the material of the first transparent conductive part 1022a and the second transparent conductive part 1022b may be indium tin oxide (ITO), and the material of the reflective conductive part 1021 may be silver (Ag), that is, the first electrode 102 has ITO /Ag/ITO stack structure.
  • ITO indium tin oxide
  • the material of the reflective conductive part 1021 may be silver (Ag)
  • the first electrode 102 has ITO /Ag/ITO stack structure.
  • the ITO/Ag/ITO stacked structure has higher anode reflectivity, higher current efficiency and longer life of the corresponding light-emitting device.
  • the slope of the second transparent conductive part 1022b may be in contact with the first transparent conductive part 1022a, and the edge flat part of the second transparent conductive part 1022b may overlap with the first transparent conductive part 1022a.
  • the first transparent conductive portion 1022 a is located in the orthographic projection of the second transparent conductive portion 1022 b , and the flat edge portion of the second transparent conductive portion 1022 b is in contact with the insulating layer 104 .
  • the pixel defining layer 107 is disposed between adjacent sub-pixels P, and in order to achieve continuous light emission, the pixel defining layer 107 cannot be disposed at the gap between the adjacent first electrodes 102 . Since the first transparent conductive portion 1022a and the second transparent conductive portion 1022b are two independent film layers, there is a certain gap between them. In the subsequent process of fabricating the pixel defining layer 107, a curing (Curing) process ( 230° C./1hour) is likely to cause water, oxygen, etc. to enter the interior of the first electrode 102 through the gap, corrode the edge of the reflective conductive portion 1021 made of silver material, generate edge burrs, and cause serious leakage of the light-emitting device.
  • a curing (Curing) process 230° C./1hour
  • the display substrate may further include: a plurality of transparent protective electrodes located on the side of the layer where the plurality of first electrodes 102 are located away from the base substrate 101 108;
  • the plurality of transparent protective electrodes 108 are disposed correspondingly to the plurality of first electrodes 102 , and the orthographic projection of the transparent protective electrodes 108 on the base substrate 101 at least covers the flat edge portion corresponding to the second transparent conductive portion 1022 b in the first electrode 101 . Orthographic projection on the base substrate 101 .
  • the flat edge portion of the first transparent conductive portion 1021a overlaps with the edge of the second transparent conductive portion 1022b, and the transparent protective electrode 108 covering the flat edge portion is provided to prevent water and oxygen from passing through the first transparent conductive portion 1021a and the second transparent conductive portion 1021a.
  • the gap at the edge of the transparent conductive portion 1022b enters the inside of the first electrode 102, thereby ensuring that the edge of the reflective conductive portion 1021 is not corroded during the subsequent fabrication of the pixel defining layer 107, thereby improving the stability of the light emitting device.
  • the material of the transparent protective electrode 108 may be indium tin oxide or the like.
  • the transparent protective electrodes 108 are conductive and directly wrap the first electrodes 102, in order to avoid crosstalk of driving signals loaded on different first electrodes 102, the transparent protective electrodes 108 can be set to wrap the first electrodes 102 in a one-to-one correspondence; In the case where the transparent protective electrode 108 is insulated, or an insulating layer is provided between the transparent protective electrode 108 and the first electrode 102 , one transparent protective electrode 108 may be set to cover the plurality of first electrodes 102 correspondingly.
  • the sub-pixel P in the sub-pixel P, at least two first electrodes 102 are arranged along the first direction X and extend along the second direction Y; transparent
  • the width W 1 of the protective electrode 108 in the first direction X is greater than or equal to the width W 2 of the corresponding first electrode 102 in the first direction X
  • the length L 1 of the transparent protective electrode 108 in the second direction Y is greater than or equal to the corresponding
  • the length L 2 of the first electrode 102 in the second direction Y is to better protect the first electrode 102 , and at the same time, it is also beneficial to realize the film continuity of the subsequent light-emitting functional layer 103 .
  • the width W 2 of the first electrode 102 in the first direction X is the maximum width value among the first transparent conductive part 1021 a , the second transparent conductive part 1022 b and the reflective conductive part 1021 .
  • the width of the first transparent conductive portion 1021a is greater than the width of the second transparent conductive portion 1022b and greater than the width of the reflective conductive portion 1021
  • the width of the first electrode 102 in the first direction X is W 2 Refers to the width of the first transparent conductive portion 1021a.
  • the length L 2 of the first electrode 102 in the second direction Y is the maximum length value of the first transparent conductive portion 1021 a , the second transparent conductive portion 1022 b and the reflective conductive portion 1021 .
  • the display substrate may further include: a flat layer 109 located between the base substrate 101 and the layers where the plurality of reflective structures 105 are located; the flat layer 109 has A plurality of grooves are provided, and the reflective structure 105 is disposed in the grooves of the flat layer 109 to improve the flatness of the edge of the first electrode 102 .
  • the upper surface of the groove of the flat layer 109 may be provided The distance from the base substrate 101 is equal to the distance between the upper surface of the reflective structure 105 and the base substrate 101 , that is, the reflective structure 105 can just be embedded in the groove of the flat layer 109 .
  • each pixel driving circuit 110 may be configured to be electrically connected to one first electrode 102 correspondingly.
  • the via holes H may be arranged in sequence along the first direction X at the same side edge corresponding to the first electrode 102 . .
  • the slope of the second transparent conductive portion 1022b can be changed by adjusting the thickness of the reflective conductive portion 1021.
  • the slope is perpendicular to the substrate.
  • the thickness of the reflective conductive portion 1021 may be greater than or equal to and less than or equal to
  • the angle ⁇ between the slope and the base substrate 101 may be greater than or equal to 30 ° and less than or equal to 60°.
  • the maximum distance d 1 between the first part 1051 and the second part 1052 is greater than 2 ⁇ m and less than or equal to 5 ⁇ m
  • the minimum distance d 2 between the first part 1051 and the second part 1052 is greater than 1 ⁇ m and less than or equal to 2 ⁇ m
  • the gap between the transparent protective electrodes 108 is greater than 0 and less than or equal to 2 ⁇ m.
  • a row of first electrodes 102 is arranged in one sub-pixel P.
  • the above-mentioned d 1 , d 2 and d 3 refer specifically to the first electrodes in the first direction X size; in some embodiments, multiple rows and multiple columns of first electrodes 102 may also be arranged in one sub-pixel P.
  • the above d 1 , d 2 and d 3 refer specifically to the first direction X and the second Dimensions in direction Y.
  • an encapsulation layer 112 and the like may be further included.
  • the encapsulation layer 112 may include a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer that are stacked.
  • Other essential components of the display substrate should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be used as a limitation of the present disclosure.
  • an embodiment of the present disclosure further provides a method for manufacturing the above-mentioned display substrate. Since the principle of solving the problem of the manufacturing method is similar to the principle of solving the problem of the above-mentioned display substrate, the manufacturing method provided by the embodiment of the present invention For the implementation of , please refer to the implementation of the above-mentioned display substrate provided in the embodiments of the present invention, and the repeated places will not be repeated.
  • a method for manufacturing the above-mentioned display substrate provided by an embodiment of the present disclosure may include the following steps:
  • each sub-pixel has at least two first electrodes and a light-emitting functional layer located on the side of the first electrodes away from the base substrate;
  • the first electrodes include: a stacked arrangement The transparent conductive part and the reflective conductive part;
  • two adjacent first electrodes are correspondingly provided with a reflective structure
  • the reflective structure includes a first part and a second part
  • the orthographic projection of the first part on the base substrate is the same as that of one of the first electrodes on the base substrate
  • the orthographic projection of the second part on the base substrate overlaps with the orthographic projection of another first electrode on the base substrate.
  • a plurality of pixel driving circuits 110 and a flat layer 109 are sequentially formed on the base substrate 101; wherein, the driving transistors in the pixel driving circuit 110 have source/drain electrodes 111, and the flat layer 109 has a plurality of grooves C and Via H, as shown in Figure 8 and Figure 9.
  • the reflective structures 105 are formed in the grooves C of the flat layer 109 in a one-to-one correspondence, as shown in FIG. 10 and FIG. 11 .
  • an insulating layer 104 is formed on the side of the reflective structure 105 away from the base substrate 101 , and patterned to form a via hole H penetrating the insulating layer 104 and the flat layer 109 , as shown in FIG. 12 and FIG. 13 .
  • a first transparent conductive material layer 1022a', a reflective conductive material layer 1021' and a second transparent conductive material 1022b' are formed on the insulating layer 104, as shown in FIG. 14 .
  • the fifth step is to form a patterned photoresist layer PR on the second transparent conductive material 1022b ′, the orthographic projection of the photoresist layer PR on the base substrate 101 and the gap between the reflective structure 105 and the positive surface of the reflective structure 105 The projected edges overlap each other, as shown in Figure 15.
  • the sixth step using the photoresist layer PR as a shield, the second transparent conductive material layer 1022b' is etched to form a plurality of second transparent conductive parts 1022b, as shown in FIG. 16 ; continue to the reflective conductive material layer 1021' Perform etching to form multiple reflective conductive parts 1021 , as shown in FIG. 17 ; continue to etch the first transparent conductive material layer 1022 a to form multiple first transparent electric parts 1022 a , as shown in FIG. 18 .
  • the photoresist PR is peeled off, thus completing the preparation of the first electrode 102 .
  • the part of the second transparent conductive part 1022b beyond the reflective conductive part 1021 is not supported by the reflective conductive part 1021, the part of the second transparent conductive part 1022b beyond the reflective conductive part 1021 is finally affected by gravity to form a slope overlap On the first transparent conductive part 1022a, as shown in FIG. 19 and FIG. 20 .
  • a plurality of transparent protective electrodes 108 are formed on the layer where the first electrode 102 is located, as shown in FIG. 21 .
  • the light-emitting functional layer 103 , the second electrode 106 and the encapsulation layer 112 are sequentially formed on the layer where the transparent protective electrode 108 is located, as shown in FIG. 22 .
  • the light-emitting functional layer 103 can be prepared by evaporation or printing.
  • the patterning process involved in forming each layer structure may not only include deposition, photoresist coating, mask masking, exposure, development, etching, Part or all of the photoresist stripping and other process processes may also include other process processes, which are specifically subject to the desired patterning pattern formed in the actual manufacturing process, which is not limited here.
  • a post-bake process may also be included after development and before etching.
  • the deposition process can be chemical vapor deposition, plasma enhanced chemical vapor deposition or physical vapor deposition, which is not limited here;
  • the mask used in the mask process can be a half tone mask (Half Tone Mask). ), a single slit diffraction mask (Single Slit Mask) or a gray tone mask (Gray Tone Mask), which is not limited here;
  • the etching can be dry etching or wet etching, which is not limited here.
  • an embodiment of the present disclosure further provides a three-dimensional display device, as shown in FIG. 23 , including the above-mentioned display substrate 001 and a light splitting component 002 located on the display side of the display substrate 001 . Since the principle of solving the problem of the three-dimensional display device is similar to the principle of solving the problem of the above-mentioned display substrate, the implementation of the three-dimensional display device provided by the embodiment of the present invention may refer to the implementation of the above-mentioned display substrate provided by the embodiment of the present invention. No longer.
  • the spectroscopic component 002 may include a glass substrate 201 , a substrate 202 , a high-folding resin layer 203 , a low-folding resin layer 204 and a protective film 205 ; the display substrate 001 may also have a color resist layer 113 (including but not limited to red color resist R-CF, green color resist G-CF and blue color resist B-CF), black matrix 114 , protective cover 115 , blocking dam 116 .
  • a color resist layer 113 including but not limited to red color resist R-CF, green color resist G-CF and blue color resist B-CF
  • the light-emitting device to which the first electrode 102 under the red color resistance R-CF belongs is a red light-emitting device
  • the light-emitting device to which the first electrode 102 under the green color resistance G-CF belongs is a green light-emitting device
  • the light emitting devices to which the first electrodes 102 under the blue color resist B-CF belong are blue light emitting devices; in some medium and large size products, all the light emitting devices to which the first electrodes 102 belong may be white light emitting devices.
  • the high-refractive resin layer 203 is composed of a plurality of cylindrical lenses (Lens), and each cylindrical lens can perform light splitting on the light-emitting device to which the first electrode 102 covered by the cylindrical lens belongs; For the above reasons, the above solution provided by the present disclosure can improve the moiré defect without affecting the 3D display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供了显示基板、其制作方法及三维显示装置,包括具有多个亚像素的衬底基板;每个亚像素内具有至少两个第一电极、以及位于第一电极背离衬底基板一侧的发光功能层;第一电极包括:层叠设置的透明导电部和反射导电部;在至少一个亚像素内,相邻两个第一电极对应设置一个反射结构,反射结构包括第一部分和第二部分,第一部分在衬底基板上的正投影与其中一个第一电极的正投影交叠,第二部分在衬底基板上的正投影与另外一个第一电极的正投影交叠。

Description

显示基板、其制作方法及三维显示装置
相关申请的交叉引用
本公开要求在2020年12月23日提交中国专利局、申请号为PCT/CN2020/138592、申请名称为“一种有机发光显示基板和显示装置”的PCT专利申请的优先权,以及在2021年02月01日提交中国专利局、申请号为202110133787.9、申请名称为“显示基板、其制作方法及三维显示装置”的中国专利申请的优先权,其部分或全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板、其制作方法及三维显示装置。
背景技术
裸眼三维(Three dimensional,3D的简称)显示技术是一种无须佩戴3D眼镜,即可以使人们观看到形象逼真的立体影像显示技术,它将佩戴者从传统的3D眼镜的束缚中解脱出来,从根本上解决了长时间佩戴3D眼镜所出现的头晕目眩的问题,极大的提高了人们的观看舒适度。
根据显示原理的不同,裸眼3D技术可以分为光栅式裸眼3D技术和柱状透镜3D显示技术。通过类似光栅的视差障壁或柱状透镜形成左视图和右视图,由于观看者的两只眼睛所看到的左视图和右视图是具有视差的两幅图像,因此具有视差的左视图和右视图在观看者大脑中叠加重生后,就能够使观看者在裸眼的情况下观看到3D化的显示图像。
发明内容
一方面,本公开实施例提供了一种显示基板,包括:
衬底基板,所述衬底基板包括多个亚像素;每个所述亚像素内具有至少两个第一电极、以及位于所述第一电极背离所述衬底基板一侧的发光功能层;所述第一电极包括:层叠设置的透明导电部和反射导电部;
绝缘层,位于所述第一电极所在层与所述衬底基板之间;
多个反射结构,位于所述绝缘层与所述衬底基板之间;
在至少一个所述亚像素内,相邻两个所述第一电极对应设置一个所述反射结构,所述反射结构包括第一部分和第二部分,所述第一部分在衬底基板上的正投影与其中一个所述第一电极在衬底基板上的正投影交叠,所述第二部分在所述衬底基板上的正投影与另外一个所述第一电极在所述衬底基板上的正投影交叠。
可选地,在本公开实施例提供的上述显示基板中,所述反射结构还包括第三部分,所述第三部分与所述发光功能层之间在垂直于衬底基板方向上的距离,小于所述第一部分与所述发光功能层之间在垂直于衬底基板方向上的距离,且小于所述第二部分与所述发光功能层之间在垂直于衬底基板方向上的距离。
可选地,在本公开实施例提供的上述显示基板中,所述第三部分位于所述第一部分和所述第二部分之间。
可选地,在本公开实施例提供的上述显示基板中,所述反射导电部在所述衬底基板上的正投影位于所述透明导电部在所述衬底基板上的正投影内。
可选地,在本公开实施例提供的上述显示基板中,所述透明导电部包括:位于所述反射导电部面向所述衬底基板一侧的第一透明导电部,以及位于所述反射导电部背离所述衬底基板一侧的第二透明导电部;其中,
所述第二透明导电部超出所述反射导电部的部分包括:向所述衬底基板倾斜延伸的坡面,以及与所述坡面接触的边缘平坦部。
可选地,在本公开实施例提供的上述显示基板中,还包括:位于所述多个第一电极所在层背离所述衬底基板一侧的多个透明保护电极;
所述多个透明保护电极与所述多个第一电极对应设置,且所述透明保护 电极在所述衬底基板上的正投影,至少覆盖对应所述第一电极中所述边缘平坦部在所述衬底基板上的正投影。
可选地,在本公开实施例提供的上述显示基板中,在所述亚像素内,所述至少两个第一电极沿第一方向排列并沿第二方向延伸;
所述透明保护电极在所述第一方向上的宽度大于或等于对应所述第一电极在所述第一方向上的宽度,所述透明保护电极在所述第二方向上的长度大于或等于对应所述第一电极在所述第二方向上的长度。
可选地,在本公开实施例提供的上述显示基板中,还包括:位于所述衬底基板与所述多个反射结构所在层之间的平坦层;所述反射结构设置于所述平坦层的凹槽内。
可选地,在本公开实施例提供的上述显示基板中,还包括:位于所述衬底基板与所述平坦层之间的多个像素驱动电路;
所述像素驱动电路通过贯穿所述无机绝缘层和所述平坦层的过孔与所述第一电极对应电连接。
可选地,在本公开实施例提供的上述显示基板中,所述过孔沿第一方向依次排列在对应所述第一电极的同一侧边缘处。
可选地,在本公开实施例提供的上述显示基板中,在垂直于所述衬底基板的方向上,所述反射导电部的厚度大于或等于
Figure PCTCN2021092258-appb-000001
且小于或等于
Figure PCTCN2021092258-appb-000002
可选地,在本公开实施例提供的上述显示基板中,在邻近所述反射导电部的一侧,所述坡面与所述衬底基板之间的夹角大于或等于30°且小于或等于60°。
可选地,在本公开实施例提供的上述显示基板中,在每个所述亚像素内,所述第一部分与所述第二部分之间的最大距离大于2μm且小于或等于5μm,所述第一部分与所述第二部分之间的最小距离大于1μm且小于或等于2μm,所述透明保护电极之间的间隙大于0且小于或等于2μm。
可选地,在本公开实施例提供的上述显示基板中,所述绝缘层的材料为无机绝缘层。
另一方面,本公开实施例还提供了一种三维显示装置,包括上述显示基板,以及位于所述显示基板显示侧的分光组件。
另一方面,本公开实施例还提供了一种上述显示基板的制作方法,包括:
提供一个衬底基板;
在所述衬底基板上形成多个反射结构;
在所述多个反射结构所在层上形成绝缘层;
在所述绝缘层上形成多个亚像素,其中,每个所述亚像素内具有至少两个第一电极、以及位于所述第一电极背离所述衬底基板一侧的发光功能层;所述第一电极包括:层叠设置的透明导电部和反射导电部;
在至少一个所述亚像素内,相邻两个所述第一电极对应设置一个所述反射结构,所述反射结构包括第一部分和第二部分,所述第一部分在衬底基板上的正投影与其中一个所述第一电极在衬底基板上的正投影交叠,所述第二部分在所述衬底基板上的正投影与另外一个所述第一电极在所述衬底基板上的正投影交叠。
可选地,在本公开实施例提供的上述制作方法中,形成多个第一电极,具体包括:
在所述绝缘层上依次形成第一透明导电材料层、反射导电材料层和第二透明导电材料层;
采用同一道刻蚀工艺对所述第一透明导电材料层、所述反射导电材料层和所述第二透明导电材料层进行刻蚀,形成包括第一透明导电部、反射导电部和第二透明导电部的多个第一电极;其中,所述第二透明导电部超出所述反射导电部的部分包括:向所述衬底基板倾斜延伸的坡面,以及与所述坡面、所述第一透明导电部接触的边缘平坦部;同一所述亚像素内,各所述第一电极沿第一方向排列并沿第二方向延伸。
可选地,在本公开实施例提供的上述制作方法中,在形成多个第一电极之后,且在形成发光功能层之前,还包括:
在所述第一电极所在层背离所述衬底基板一侧形成多个透明保护电极; 其中,所述多个透明保护电极与所述多个第一电极对应设置,所述透明保护电极在所述第一方向上的宽度大于对应所述第一电极在所述第一方向上的宽度,所述透明保护电极在所述第二方向上的长度大于对应所述第一电极在所述第二方向上的长度。
附图说明
图1为相关技术中单层阳极结构的示意图;
图2为图1所示单层阳极的摩尔纹效应示意图;
图3为本公开实施例提供的显示基板的一种结构示意图;
图4为本公开实施例提供的显示基板的又一种结构示意图;
图5为本公开实施例提供的显示基板的又一种结构示意图;
图6为本公开实施例提供的显示基板的又一种结构示意图;
图7为本公开实施例提供的显示基板的制作方法的流程图;
图8至图22分别为本公开实施例提供的显示基板在制作过程中的结构示意图;
图23为本公开实施例提供的显示装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领 域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
现有中大尺寸裸眼3D技术,分辨率较低,无法达到高清晰、高亮度及高对比度显示。为提高3D观看效果,需要增加视点数量,独立控制的子像素数量越多,3D显示分辨率越高,显示效果越好。
在一些实施例中,如图1所示,可以在亚像素基础上,将亚像素的阳极再次精细图案(pattern)化为相互独立的多个子阳极,并通过连接独立的像素驱动电路和补偿电路分别实现对子阳极全灰阶的显示和控制,从而提高了3D显示分辨率,增加了视角数量,不同视角的跳变更平滑,提升了裸眼3D的观看体验。然而,本公开发现,亚像素的阳极进行分割后,相邻子阳极间隙(space)处没有金属电极产生的平行电场驱动载流子移动耦合发光(即space处不发光),会出现3D显示摩尔纹不良,space越大,不发光的区域越宽,3D显示摩尔纹越严重,如图2所示。
针对相关技术中存在的上述问题,本公开实施例提供了一种显示基板,如图3至图5所示,可以包括:
衬底基板101,衬底基板101包括多个亚像素P;多个亚像素P可以包括但不限于红光亚像素、绿光亚像素、蓝光亚像素、白光亚像素;每个亚像素P内具有至少两个第一电极102、以及位于第一电极102背离衬底基板101一侧的发光功能层103;第一电极102包括:层叠设置的反射导电部1021和透明导电部1022;在一些实施例中,衬底基板101上设置有包括多个开口的像素界定层(PDL),每个开口对应一个亚像素P,一个开口暴露出的第一电极102属于一个亚像素P;其中每个开口可以暴露每个第一电极102的全部,也可以 仅暴露每个第一电极102的一部分;
绝缘层104,位于多个第一电极102所在层与衬底基板101之间;
多个反射结构105,位于绝缘层104与衬底基板101之间;
在至少一个亚像素P内,相邻两个第一电极102对应设置一个反射结构105,反射结构105包括第一部分1051和第二部分1052,第一部分1051在衬底基板101上的正投影与其中一个第一电极102在衬底基板101上的正投影交叠,第二部分1052在衬底基板101上的正投影与另外一个第一电极102在衬底基板101上的正投影交叠。
在本公开实施例提供的上述显示基板中,通过设置反射结构105,并利用绝缘层104实现第一电极102和反射结构105的相互绝缘,且可通过调节绝缘层104的厚度实现间隙处发光器件最佳的微腔(由反射结构105与第二电极106围成)增益,以提升间隙处发光亮度,解决了刻蚀间隙偏大造成的摩尔纹不良。
在一些实施例中,绝缘层104的厚度与反射结构105的反射率呈负相关的关系。换句话说,在达到相同微腔增益效果的条件下,反射结构105的反射率越大,绝缘层104的厚度越小。为了实现产品轻薄化设计,可采用高反射率(例如反射率大于90%)的铝、银等金属制作反射结构105。另外,绝缘层104的材料可以为氧化硅、氮化硅、氮氧化硅、氧化铝等无机绝缘材料。
在一些实施例中,第一电极102可以为阳极,第二电极106可以为阴极;或者,第一电极102可以为阴极,第二电极106可以为阳极。在一些实施例中,多个亚像素P包括多种发光颜色,此时每个亚像素P内的发光功能层103可以为一体结构;在一些实施例中,全部亚像素P具有同一种发光颜色(例如白色),则全部亚像素P内的发光功能层103可以为一体结构。发光功能层103可以包括空穴注入层、空穴传输层、电子阻挡层、发光材料层、空穴阻挡层、电子传输层和电子注入层等。
另外,在本公开中,反射导电部1021指具有反射功能的导电部件,例如反射率较高铝、银等金属或合金材料;透明导电部1022指具有透射功能的导 电部件,例如氧化铟锡等金属氧化物或厚度减薄后可以透光的金属材料。
可选地,在本公开实施例提供的上述显示基板中,如图3至图5所示,反射结构105还可以包括第三部分1053,第三部分1053与发光功能层103之间在垂直于衬底基板101方向上的距离,小于第一部分1051与发光功能层103之间在垂直于衬底基板101方向上的距离,且小于第二部分1052与发光功能层103之间在垂直于衬底基板101方向上的距离,第三部分1053可以位于第一部分1051和第二部分1052之间。这样设置,可以使得反射结构105在衬底基板101上的正投影与反射导电部1021之间的间隙大致重合,从而尽可能减小了反射结构105与反射导电部1021之间交叠而产生耦合电容。
需要说明的是,在实际工艺中,由于工艺条件的限制或其他因素,上述“大致重合”可能会完全重合,也可能会有一些偏差,因此上述特征之间“大致重合”的关系只要满足误差允许即可,均属于本公开的保护范围。
在一些实施例中,第一部分1051、第二部分1052和第三部分1053三者可以为同层设置的一体结构,也可以为异层设置的三个相互独立的部分。优选地,为了提高后续第一电极102的平坦性,第一部分1051、第二部分1052和第三部分1053同层设置为一体结构。
需要说明的是,在本公开中,“同层”指的是采用同一成膜工艺形成用于制作特定图形的膜层,然后利用同一掩模板通过一次构图工艺形成的层结构。即一次构图工艺对应一道掩模板(mask,也称光罩)。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而所形成层结构中的特定图形可以是连续的也可以是不连续的,这些特定图形可能处于相同的高度或者具有相同的厚度、也可能处于不同的高度或者具有不同的厚度。
可选地,在本公开实施例提供的上述显示基板中,如图3和图4所示,反射导电部1021在衬底基板101上的正投影位于透明导电部1022在衬底基板101上的正投影内,以通过透明导电部1022保护反射导电部1021免受水氧等的腐蚀。
可选地,在本公开实施例提供的上述显示基板中,如图3和图4所示, 透明导电部1022可以包括:位于反射导电部1021面向衬底基板101一侧的第一透明导电部1022a,以及位于反射导电部1021背离衬底基板101一侧的第二透明导电部1022b;其中,
第二透明导电部1022b超出反射导电部1021的部分包括:向衬底基板101倾斜延伸的坡面,以及与坡面接触的边缘平坦部。
如图3和图4所示,在形成发光器件的发光功能层103时,由于第一透明导电部1021的坡面相对平缓,无垂直断差,因此发光功能层103在间隙处不会断裂。在发光器件中第一电极102(例如阳极)的空穴和第二电极106(例如阴极)的电子传输到发光层复合发光,因为第一电极102对应的发光层中的载流子浓度高于间隙处载流子浓度,所以载流子会由高浓度向低浓度横向扩散,从而利用发光器件的本征串扰,增加间隙处的发光亮度,由此实现了同一亚像素P内的连续发光,进一步减轻了摩尔纹现象。
在一些实施例中,第一透明导电部1022a和第二透明导电部1022b的材料可以为氧化铟锡(ITO),反射导电部1021的材料可以为银(Ag),即第一电极102具有ITO/Ag/ITO叠层结构。相较于Al/ITO、AlNd/ITO等叠层结构,ITO/Ag/ITO叠层结构的阳极反射率较高,对应发光器件的电流效率更高,寿命更长。
在一些实施例中,第二透明导电部1022b的坡面可以与第一透明导电部1022a接触,并且第二透明导电部1022b的边缘平坦部可以与第一透明导电部1022a相互交叠。在另一些实施例中,第一透明导电部1022a位于第二透明导电部1022b的正投影内,且第二透明导电部1022b的边缘平坦部与绝缘层104接触。
在本公开中,如图6所示,在相邻亚像素P之间设置有像素界定层107,而为了实现连续发光,相邻第一电极102的间隙处不能设置像素界定层107。由于第一透明导电部1022a和第二透明导电部1022b为两个独立的膜层,二者之间存在一定程度上的缝隙,后续在制作像素界定层107的过程中,固化(Curing)工艺(230℃/1hour)容易造成水氧等经该缝隙进入第一电极102 内部,腐蚀银材质的反射导电部1021边缘,产生边缘毛刺,造成发光器件漏电严重。
基于此,在本公开实施例提供的上述显示基板中,如图3和图4所示,还可以包括:位于多个第一电极102所在层背离衬底基板101一侧的多个透明保护电极108;
多个透明保护电极108与多个第一电极102对应设置,且透明保护电极108在衬底基板101上的正投影,至少覆盖对应第一电极101中第二透明导电部1022b的边缘平坦部在衬底基板101上的正投影。
第一透明导电部1021a的边缘平坦部与第二透明导电部1022b的边缘搭接,通过设置覆盖该边缘平坦部的透明保护电极108,避免了水氧等通过第一透明导电部1021a和第二透明导电部1022b边缘处的缝隙进入第一电极102内部,从而可保证后续制作像素界定层107的过程中反射导电部1021的边缘不被腐蚀,提高了发光器件的稳定性。在一些实施例中,透明保护电极108的材料可以为氧化铟锡等。
需要说明的是,在透明保护电极108导电且直接包裹第一电极102的情况下,为了避免不同第一电极102上加载驱动信号串扰,可以设置透明保护电极108一一对应包裹第一电极102;在透明保护电极108绝缘、或者透明保护电极108与第一电极102之间具有绝缘层的情况下,可以设置一个透明保护电极108对应覆盖多个第一电极102。
可选地,在本公开实施例提供的上述显示基板中,如图5所示,在亚像素P内,至少两个第一电极102沿第一方向X排列并沿第二方向Y延伸;透明保护电极108在第一方向X上的宽度W 1大于或等于对应第一电极102在第一方向上X的宽度W 2,透明保护电极108在第二方向Y上的长度L 1大于或等于对应第一电极102在第二方向Y上的长度L 2,以更好地保护第一电极102,同时也利于实现后续发光功能层103的膜层连续性。
具体地,在本公开中,第一电极102在第一方向上X的宽度W 2是第一透明导电部1021a、第二透明导电部1022b和反射导电部1021中的最大宽度值。 例如,第一方向上X,第一透明导电部1021a的宽度大于第二透明导电部1022b的宽度,且大于反射导电部1021的宽度,则第一电极102在第一方向上X的宽度W 2指第一透明导电部1021a的宽度。同理,第一电极102在第二方向Y上的长度L 2是第一透明导电部1021a、第二透明导电部1022b和反射导电部1021中的最大长度值。
可选地,在本公开实施例提供的上述显示基板中,如图4所示,还可以包括:位于衬底基板101与多个反射结构105所在层之间的平坦层109;平坦层109具有多个凹槽,反射结构105设置于平坦层109的凹槽内,以提升第一电极102边缘的平坦性。
在一些实施例中,为了有效提高第一电极102边缘的平坦性,解决第一电极102表面不平整造成的出光方向异常问题,如图4所示,可以设置平坦层109的凹槽的上表面与衬底基板101之间的距离,等于反射结构105的上表面与衬底基板101之间的距离,即反射结构105可以刚好内嵌入平坦层109的凹槽内。
可选地,在本公开实施例提供的上述显示基板中,如图3和图4所示,还可以包括:位于衬底基板101与平坦层109之间的多个像素驱动电路110;像素驱动电路110(具体可以为像素驱动电路110中驱动晶体管的源/漏极111),通过贯穿绝缘层104和平坦层109的过孔H与第一电极102对应电连接。如此,则可以通过像素驱动电路110独立驱动对应第一电极102所属发光器件发光。在一些实施例中,为了提高3D显示的分辨率,可以设置每个像素驱动电路110与一个第一电极102对应电连接。
可选地,在本公开实施例提供的上述显示基板中,如图5所示,为了简化制作工艺,可以设置过孔H沿第一方向X依次排列在对应第一电极102的同一侧边缘处。
可选地,在本公开实施例提供的上述显示基板中,可通过调节反射导电部1021的厚度来改变第二透明导电部1022b的坡面倾斜度,在一些实施例中,在垂直于衬底基板101的方向上,反射导电部1021的厚度可以大于或等于
Figure PCTCN2021092258-appb-000003
且小于或等于
Figure PCTCN2021092258-appb-000004
可选地,在本公开实施例提供的上述显示基板中,如图3所示,在邻近反射导电部1021的一侧,坡面与衬底基板101之间的夹角λ可以大于或等于30°且小于或等于60°。这样设置,通过更好地利用倾斜的坡面实现对发光器件出光方向的调节,从而基于相邻发光器件的光学串扰实现“假”连续发光。
可选地,在本公开实施例提供的上述显示基板中,如图3至图5所示,在每个亚像素P内,第一部分1051与第二部分1052之间的最大距离d 1(即反射导电部1021之间的间隙)大于2μm且小于或等于5μm,第一部分1051与第二部分1052之间的最小距离d 2(即透明导电部1022之间的间隙)大于1μm且小于或等于2μm,透明保护电极108之间的间隙大于0且小于或等于2μm。
在一些实施例中,如图5所示,在一个亚像素P内设置了一行第一电极102,在这种情况下,上述d 1、d 2和d 3具体指在第一方向X上的尺寸;在一些实施例中,一个亚像素P内还可以设置多行多列第一电极102,在这种情况下,上述d 1、d 2和d 3具体指在第一方向X和第二方向Y上的尺寸。
可选地,在本公开实施例提供的上述显示基板中,如图3和图4所示,还可以包括封装层112等。在一些实施例中,封装层112可以包括层叠设置的第一无机封装层、有机封装层和第二无机封装层。对于显示基板的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
基于同一发明构思,本公开实施例还提供了一种上述显示基板的制作方法,由于该制作方法解决问题的原理与上述显示基板解决问题的原理相似,因此,本发明实施例提供的该制作方法的实施可以参见本发明实施例提供的上述显示基板的实施,重复之处不再赘述。
具体地,本公开实施例提供的一种上述显示基板的制作方法,如图7所示,可以包括以下步骤:
S701、提供一个衬底基板;
S702、在衬底基板上形成多个反射结构;
S703、在多个反射结构所在层上形成绝缘层;
S704、在绝缘层上形成多个亚像素,其中,每个亚像素内具有至少两个第一电极、以及位于第一电极背离衬底基板一侧的发光功能层;第一电极包括:层叠设置的透明导电部和反射导电部;
在至少一个亚像素内,相邻两个第一电极对应设置一个反射结构,反射结构包括第一部分和第二部分,第一部分在衬底基板上的正投影与其中一个第一电极在衬底基板上的正投影交叠,第二部分在衬底基板上的正投影与另外一个第一电极在衬底基板上的正投影交叠。
为更好地理解本公开制作方法的技术方案,下面以一个具体的实施例进行详细说明。
第一步,在衬底基板101上依次形成像素多个像素驱动电路110和平坦层109;其中,像素驱动电路110中驱动晶体管具有源/漏极111,平坦层109具有多个凹槽C和过孔H,如图8和图9所示。
第二步,在平坦层109的凹槽C内一一对应形成反射结构105,如图10和图11所示。
第三步,在反射结构105背离衬底基板101的一侧形成绝缘层104,并构图形成贯穿绝缘层104和平坦层109的过孔H,如图12和图13所示。
第四步,在绝缘层104上形成第一透明导电材料层1022a’、反射导电材料层1021’和第二透明导电材料1022b’,如图14所示。
第五步,在第二透明导电材料1022b’上形成图案化的光刻胶层PR,该光刻胶层PR在衬底基板101上的正投影与反射结构105的间隙及反射结构105的正投影边缘相互交叠,如图15所示。
第六步,以光刻胶层PR为遮挡,对第二透明导电材料层1022b’进行刻蚀,形成多个第二透明导电部1022b,如图16所示;继续对反射导电材料层1021’进行刻蚀,形成多个反射导电部1021,如图17所示;继续对第一透明导电材料层1022a进行刻蚀,形成多个第一透明电部1022a,如图18所示。
第七步,剥离光刻胶PR,至此完成了第一电极102的制备。应当理解的是,由于第二透明导电部1022b超出反射导电部1021的部分没有反射导电部1021的支撑,最终导致第二透明导电部1022b超出反射导电部1021的部分受重力影响形成坡面搭接在第一透明导电部1022a上,如图19和图20所示。
第八步,在第一电极102所在层上形成多个透明保护电极108,如图21所示。
第九步,在透明保护电极108所在层上依次形成发光功能层103、第二电极106和封装层112,如图22所示。在一些实施例中,可通过蒸镀或打印的方式制备发光功能层103。
需要说明的是,在本发明实施例提供的上述制作方法中,形成各层结构涉及到的构图工艺,不仅可以包括沉积、光刻胶涂覆、掩模板掩模、曝光、显影、刻蚀、光刻胶剥离等部分或全部的工艺过程,还可以包括其他工艺过程,具体以实际制作过程中形成所需构图的图形为准,在此不做限定。例如,在显影之后和刻蚀之前还可以包括后烘工艺。
其中,沉积工艺可以为化学气相沉积法、等离子体增强化学气相沉积法或物理气相沉积法,在此不做限定;掩膜工艺中所用的掩膜板可以为半色调掩膜板(Half Tone Mask)、单缝衍射掩模板(Single Slit Mask)或灰色调掩模板(Gray Tone Mask),在此不做限定;刻蚀可以为干法刻蚀或者湿法刻蚀,在此不做限定。
基于同一发明构思,本公开实施例还提供了一种三维显示装置,如图23所示,包括上述显示基板001,以及位于显示基板001显示侧的分光组件002。由于该三维显示装置解决问题的原理与上述显示基板解决问题的原理相似,因此,本发明实施例提供的该三维显示装置的实施可以参见本发明实施例提供的上述显示基板的实施,重复之处不再赘述。
在一些实施例中,如图23所示,分光组件002可以包括玻璃基底201、基材202、高折树脂层203、低折树脂层204和保护膜205;显示基板001还可以具有色阻层113(包括但不限于红光色阻R-CF、绿光色阻G-CF和蓝光 色阻B-CF)、黑矩阵114、保护盖板115、阻挡坝116。并且在一些中小尺寸产品中,红光色阻R-CF下方第一电极102所属发光器件为红光发光器件、绿光色阻G-CF下方第一电极102所属发光器件为绿光发光器件、蓝光色阻B-CF下方第一电极102所属发光器件为蓝光发光器件;在一些中大尺寸产品中,全部第一电极102所属发光器件均可以为白光发光器件。
需要说明的是,高折树脂层203由多个柱透镜(Lens)构成,每个柱透镜可对其所覆盖的第一电极102所属发光器件进行分光;并且,虽然在一个亚像素P内实现了连续发光,但第一电极102所属发光器件处的亮度大于第一电极102间隙处的亮度,基于以上原因,本公开提供的上述方案既可以改善摩尔纹不良,又不会影响3D显示效果。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (18)

  1. 一种显示基板,其中,包括:
    衬底基板,所述衬底基板包括多个亚像素;每个所述亚像素内具有至少两个第一电极、以及位于所述第一电极背离所述衬底基板一侧的发光功能层;所述第一电极包括:层叠设置的透明导电部和反射导电部;
    绝缘层,位于所述第一电极所在层与所述衬底基板之间;
    多个反射结构,位于所述绝缘层与所述衬底基板之间;
    在至少一个所述亚像素内,相邻两个所述第一电极对应设置一个所述反射结构,所述反射结构包括第一部分和第二部分,所述第一部分在衬底基板上的正投影与其中一个所述第一电极在衬底基板上的正投影交叠,所述第二部分在所述衬底基板上的正投影与另外一个所述第一电极在所述衬底基板上的正投影交叠。
  2. 如权利要求1所述的显示基板,其中,所述反射结构还包括第三部分,所述第三部分与所述发光功能层之间在垂直于衬底基板方向上的距离,小于所述第一部分与所述发光功能层之间在垂直于衬底基板方向上的距离,且小于所述第二部分与所述发光功能层之间在垂直于衬底基板方向上的距离。
  3. 如权利要求2所述的显示基板,其中,所述第三部分位于所述第一部分和所述第二部分之间。
  4. 如权利要求1所述的显示基板,其中,所述反射导电部在所述衬底基板上的正投影位于所述透明导电部在所述衬底基板上的正投影内。
  5. 如权利要求4所述的显示基板,其中,所述透明导电部包括:位于所述反射导电部面向所述衬底基板一侧的第一透明导电部,以及位于所述反射导电部背离所述衬底基板一侧的第二透明导电部;其中,
    所述第二透明导电部超出所述反射导电部的部分包括:向所述衬底基板倾斜延伸的坡面,以及与所述坡面接触的边缘平坦部。
  6. 如权利要求5所述的显示基板,其中,还包括:位于所述多个第一电 极所在层背离所述衬底基板一侧的多个透明保护电极;
    所述多个透明保护电极与所述多个第一电极对应设置,且所述透明保护电极在所述衬底基板上的正投影,至少覆盖对应所述第一电极中所述边缘平坦部在所述衬底基板上的正投影。
  7. 如权利要求6所述的显示基板,其中,在所述亚像素内,所述至少两个第一电极沿第一方向排列并沿第二方向延伸;
    所述透明保护电极在所述第一方向上的宽度大于或等于对应所述第一电极在所述第一方向上的宽度,所述透明保护电极在所述第二方向上的长度大于或等于对应所述第一电极在所述第二方向上的长度。
  8. 如权利要求1-7任一项所述的显示基板,其中,还包括:位于所述衬底基板与所述多个反射结构所在层之间的平坦层;所述反射结构设置于所述平坦层的凹槽内。
  9. 如权利要求8所述的显示基板,其中,还包括:位于所述衬底基板与所述平坦层之间的多个像素驱动电路;
    所述像素驱动电路通过贯穿所述无机绝缘层和所述平坦层的过孔与所述第一电极电连接。
  10. 如权利要求9所述的显示基板,其中,所述过孔沿第一方向依次排列在对应所述第一电极的同一侧边缘处。
  11. 如权利要求1所述的显示基板,其中,在垂直于所述衬底基板的方向上,所述反射导电部的厚度大于或等于
    Figure PCTCN2021092258-appb-100001
    且小于或等于
    Figure PCTCN2021092258-appb-100002
  12. 如权利要求5所述的显示基板,其中,在邻近所述反射导电部的一侧,所述坡面与所述衬底基板之间的夹角大于或等于30°且小于或等于60°。
  13. 如权利要求1所述的显示基板,其中,在每个所述亚像素内,所述第一部分与所述第二部分之间的最大距离大于2μm且小于或等于5μm,所述第一部分与所述第二部分之间的最小距离大于1μm且小于或等于2μm,所述透明保护电极之间的间隙大于0且小于或等于2μm。
  14. 如权利要求1所述的显示基板,其中,所述绝缘层的材料为无机绝 缘层。
  15. 一种三维显示装置,其中,包括如权利要求1-14任一项所述的显示基板,以及位于所述显示基板显示侧的分光组件。
  16. 一种如权利要求1-14任一项所述显示基板的制作方法,其中,包括:
    提供一个衬底基板;
    在所述衬底基板上形成多个反射结构;
    在所述多个反射结构所在层上形成绝缘层;
    在所述绝缘层上形成多个亚像素,其中,每个所述亚像素内具有至少两个第一电极、以及位于所述第一电极背离所述衬底基板一侧的发光功能层;所述第一电极包括:层叠设置的透明导电部和反射导电部;
    在至少一个所述亚像素内,相邻两个所述第一电极对应设置一个所述反射结构,所述反射结构包括第一部分和第二部分,所述第一部分在衬底基板上的正投影与其中一个所述第一电极在衬底基板上的正投影交叠,所述第二部分在所述衬底基板上的正投影与另外一个所述第一电极在所述衬底基板上的正投影交叠。
  17. 如权利要求16所述的制作方法,其中,形成多个第一电极,具体包括:
    在所述绝缘层上依次形成第一透明导电材料层、反射导电材料层和第二透明导电材料层;
    采用同一道刻蚀工艺对所述第一透明导电材料层、所述反射导电材料层和所述第二透明导电材料层进行刻蚀,形成包括第一透明导电部、反射导电部和第二透明导电部的多个第一电极;其中,所述第二透明导电部超出所述反射导电部的部分包括:向所述衬底基板倾斜延伸的坡面,以及与所述坡面接触的边缘平坦部;同一所述亚像素内,各所述第一电极沿第一方向排列并沿第二方向延伸。
  18. 如权利要求16所述的制作方法,其中,在形成多个第一电极之后,且在形成发光功能层之前,还包括:
    在所述第一电极所在层背离所述衬底基板一侧形成多个透明保护电极;其中,所述多个透明保护电极与所述多个第一电极对应设置,所述透明保护电极在所述第一方向上的宽度大于对应所述第一电极在所述第一方向上的宽度,所述透明保护电极在所述第二方向上的长度大于对应所述第一电极在所述第二方向上的长度。
PCT/CN2021/092258 2020-12-23 2021-05-08 显示基板、其制作方法及三维显示装置 WO2022134427A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/754,225 US20230165098A1 (en) 2020-12-23 2021-05-08 Display substrate, manufacturing method thereof and three-dimensional display apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/138592 2020-12-23
PCT/CN2020/138592 WO2022133795A1 (zh) 2020-12-23 2020-12-23 一种有机发光显示基板和显示装置
CN202110133787.9A CN114665039A (zh) 2020-12-23 2021-02-01 显示基板、其制作方法及三维显示装置
CN202110133787.9 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022134427A1 true WO2022134427A1 (zh) 2022-06-30

Family

ID=79145612

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/138592 WO2022133795A1 (zh) 2020-12-23 2020-12-23 一种有机发光显示基板和显示装置
PCT/CN2021/092258 WO2022134427A1 (zh) 2020-12-23 2021-05-08 显示基板、其制作方法及三维显示装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138592 WO2022133795A1 (zh) 2020-12-23 2020-12-23 一种有机发光显示基板和显示装置

Country Status (3)

Country Link
US (2) US20220399528A1 (zh)
CN (3) CN114981992A (zh)
WO (2) WO2022133795A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230157132A1 (en) * 2021-01-28 2023-05-18 Boe Technology Group Co., Ltd. Organic light-emitting display substrate, method for manufacturing the same, and display device
CN115210880A (zh) * 2021-02-09 2022-10-18 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
US20240268186A1 (en) * 2023-01-03 2024-08-08 Yunnan Invensight Optoelectronics Technology Co., Ltd. Display substrate and method of manufacturing display substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050098532A (ko) * 2004-04-07 2005-10-12 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조방법
CN104201190A (zh) * 2014-08-26 2014-12-10 上海和辉光电有限公司 有机发光装置及其制备方法
CN110808274A (zh) * 2019-11-14 2020-02-18 京东方科技集团股份有限公司 一种显示面板的制备方法、显示面板及显示装置
CN111740035A (zh) * 2020-07-03 2020-10-02 京东方科技集团股份有限公司 阵列基板、显示面板及制造方法
CN111769205A (zh) * 2020-07-10 2020-10-13 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560782B1 (ko) * 2003-08-25 2006-03-13 삼성에스디아이 주식회사 유기 전계 발광 표시 장치
JP2008310974A (ja) * 2007-06-12 2008-12-25 Casio Comput Co Ltd 表示装置及びその製造方法
CN103928495B (zh) * 2013-12-31 2017-01-18 上海天马有机发光显示技术有限公司 一种oled显示面板及其制备方法、显示装置
CN105280684B (zh) * 2015-09-14 2019-03-12 上海和辉光电有限公司 一种oled显示面板及其制备方法
JP6876042B2 (ja) * 2016-07-08 2021-05-26 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 有機エレクトロルミネッセンス素子、表示装置、照明装置
JP6299845B1 (ja) * 2016-11-15 2018-03-28 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法、及び、電子機器
KR102578996B1 (ko) * 2016-11-30 2023-09-14 엘지디스플레이 주식회사 유기발광표시패널 및 이를 이용한 유기발광표시장치
KR102513383B1 (ko) * 2017-12-05 2023-03-22 엘지디스플레이 주식회사 전계 발광 표시장치
GB201901359D0 (en) * 2019-01-31 2019-03-20 Flexenable Ltd Conductor etching for producing thin-film transistor devices
US11043650B2 (en) * 2019-05-28 2021-06-22 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display device
CN110518142A (zh) * 2019-08-15 2019-11-29 深圳市华星光电半导体显示技术有限公司 显示面板
KR102710917B1 (ko) * 2019-08-27 2024-09-26 엘지디스플레이 주식회사 유기발광 표시장치
KR20210044938A (ko) * 2019-10-15 2021-04-26 삼성디스플레이 주식회사 표시 장치
US20210159452A1 (en) * 2019-11-26 2021-05-27 Applied Materials, Inc. Oled display devices with surfaces of different wettability for deposition of light enhancing layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050098532A (ko) * 2004-04-07 2005-10-12 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조방법
CN104201190A (zh) * 2014-08-26 2014-12-10 上海和辉光电有限公司 有机发光装置及其制备方法
CN110808274A (zh) * 2019-11-14 2020-02-18 京东方科技集团股份有限公司 一种显示面板的制备方法、显示面板及显示装置
CN111740035A (zh) * 2020-07-03 2020-10-02 京东方科技集团股份有限公司 阵列基板、显示面板及制造方法
CN111769205A (zh) * 2020-07-10 2020-10-13 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Also Published As

Publication number Publication date
US20220399528A1 (en) 2022-12-15
WO2022133795A1 (zh) 2022-06-30
CN215008277U (zh) 2021-12-03
CN114665039A (zh) 2022-06-24
CN114981992A (zh) 2022-08-30
US20230165098A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
US11917867B2 (en) Display panel and display device for both 2D and 3D display, and method for manufacturing the same
WO2022134427A1 (zh) 显示基板、其制作方法及三维显示装置
US10811475B2 (en) Array substrate, manufacturing method thereof and display device
CN109411613A (zh) 有机发光显示装置、包括其的头戴式显示器及其制造方法
KR101988217B1 (ko) 유기 발광 다이오드 마이크로-캐비티 구조 및 그 제조 방법
CN111668382B (zh) 显示基板及其制备方法、显示装置
CN111146244B (zh) 电致发光显示装置
CN111668381B (zh) 显示基板及其制备方法、显示装置
KR20150127368A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
CN109817664B (zh) 显示基板及其制备方法、显示面板
WO2022262367A1 (zh) 显示面板及其制作方法
CN111276526B (zh) 电致发光显示面板及电致发光显示装置
KR101904466B1 (ko) 유기 발광 표시 장치 및 그 제조방법
WO2022174443A1 (zh) 一种显示面板、显示装置和显示面板的制作方法
KR20200061624A (ko) 표시장치
TWI489625B (zh) 有機發光顯示面板及其製作方法
CN113811942B (zh) 显示面板和显示装置
CN113748515B (zh) 显示面板和显示装置
CN116326246A (zh) 显示基板以及显示装置
CN116057427A (zh) 显示设备和电子设备
WO2023039792A1 (zh) 显示面板和显示装置
CN113053958B (zh) 电致发光显示装置
WO2022239576A1 (ja) 表示装置及び電子機器
KR20210028462A (ko) 발광 소자 및 컬러 필터를 포함하는 디스플레이 장치 및 그의 제조 방법
KR20240109181A (ko) 유기 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.10.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21908438

Country of ref document: EP

Kind code of ref document: A1