WO2022133694A1 - 一种功率变换器、热交换器、散热器及光伏发电系统 - Google Patents

一种功率变换器、热交换器、散热器及光伏发电系统 Download PDF

Info

Publication number
WO2022133694A1
WO2022133694A1 PCT/CN2020/138161 CN2020138161W WO2022133694A1 WO 2022133694 A1 WO2022133694 A1 WO 2022133694A1 CN 2020138161 W CN2020138161 W CN 2020138161W WO 2022133694 A1 WO2022133694 A1 WO 2022133694A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat dissipation
cavity
air duct
heat
Prior art date
Application number
PCT/CN2020/138161
Other languages
English (en)
French (fr)
Inventor
孙发明
陈君
李泉明
惠晓卫
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202080031667.1A priority Critical patent/CN115176413A/zh
Priority to EP20966275.8A priority patent/EP4254782A4/en
Priority to PCT/CN2020/138161 priority patent/WO2022133694A1/zh
Publication of WO2022133694A1 publication Critical patent/WO2022133694A1/zh
Priority to US18/336,209 priority patent/US20230328936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • H05K7/20918Forced ventilation, e.g. on heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present application relates to the technical field of heat dissipation equipment, and in particular, to a power converter, a heat exchanger, a radiator and a photovoltaic power generation system.
  • Photovoltaic power generation is a technology that uses the photovoltaic effect of the semiconductor interface to convert light energy into electrical energy.
  • Photovoltaic power generation systems can generally include photovoltaic units, power converters, AC power distribution equipment and other parts.
  • the power converters used in the photovoltaic power generation system mainly include photovoltaic inverters, and the distributed photovoltaic power generation system also includes a maximum power point tracking (MPPT) booster combiner box.
  • Power converters include power semiconductor devices, magnetic components, capacitors and other environmentally sensitive components, wherein magnetic components are usually composed of windings and magnetic cores, mainly inductive devices.
  • the current heat dissipation scheme of the power converter is as follows: exposing the magnetic components in the low protection cavity for ventilation and heat dissipation, or pouring glue into the metal shell, placing the metal shell outside the chassis or in the low protection cavity for ventilation and heat dissipation; The device is exposed in the low protection cavity for ventilation and heat dissipation; other devices are arranged in the high protection cavity, and naturally dissipate heat to the outside through the wall of the high protection cavity.
  • the current heat dissipation scheme of the power converter has the problems of poor reliability and poor heat dissipation effect.
  • the present application provides a power converter, a heat exchanger, a radiator and a photovoltaic power generation system, which improve the reliability and heat dissipation effect of the power converter during heat dissipation.
  • the present application provides a power converter.
  • the power converter includes a power semiconductor device, a magnetic element, a closed cavity and a heat dissipation cavity. Power semiconductor devices and magnetic components are balanced in a closed cavity to avoid exposure. The closed cavity can strictly protect the power semiconductor devices and magnetic components, and improve the reliability.
  • the power semiconductor device is dissipated through the first heat sink, and the heat dissipation fins of the first heat sink are located in the heat dissipation cavity.
  • the magnetic element can be dissipated by a radiator or a heat exchanger. Specifically, when the magnetic element is dissipated through the second heat sink, the heat dissipation fins of the second heat sink are located in the heat dissipation cavity. When the magnetic element dissipates heat through the first heat exchanger, the first heat exchanger is located in the heat dissipation cavity.
  • the power semiconductor devices and magnetic components are arranged in a closed cavity for heat dissipation, which improves the reliability of the power converter.
  • a radiator is used for heat dissipation, which improves the heat dissipation. efficiency.
  • heat sinks or heat exchangers also known as heat exchangers
  • the heat dissipation fins or heat exchangers of the radiator used are arranged in the heat dissipation cavity, and the heat dissipation cavity and the closed cavity are separately arranged to ensure the high protection level of the internal devices and achieve efficient heat dissipation.
  • the magnetic element dissipates heat through the first heat exchanger
  • the closed cavity includes a first air duct
  • the magnetic element is arranged in the first air duct.
  • the first end of the first air duct is an air supply port
  • the second end of the first air duct is an air return port
  • the air supply port is connected to the first end of the first heat exchanger
  • the return air port is connected to the second end of the first heat exchanger;
  • At least one first internal circulation fan is also arranged at the air supply port or the air return port, which is used to control the air flow from the air supply port to reach the air return port along the inner cavity of the first air duct to realize the cooling of the magnetic element.
  • the airtight cavity further includes a second air duct, the first end of the second air duct is shared with the first end of the first air duct, and the second end of the second air duct is shared with the first air duct
  • the lumen of the canal communicates with the lumen of the closed cavity.
  • the second air duct is also provided with at least one second inner circulation fan, which is used to control the air flow from the second air duct to reach the air return port along the inner cavity of the first air duct.
  • the first inner circulation fan fails, the first The two internal circulation fans can continue to work, so that the first heat exchanger can continue to dissipate heat from the magnetic element.
  • the second inner circulation fan can also dissipate heat to the high protection grade components inside the closed cavity.
  • the closed cavity is further provided with at least one second internal circulation fan.
  • the cavity wall of the first air duct includes multiple groups of rebound structures, and each group of rebound structures includes an air duct plate and an opening in the cavity wall. When the air duct plate rebounds, the force direction points to the inside of the first air duct, the area of the air duct plate is larger than the area of the cavity wall opening, and the air duct plate can completely cover the cavity wall opening.
  • the pressure given by the air flow on the air duct plate is greater than the elastic force, and the air duct plate is closed.
  • the air duct plate rebounds under the action of elastic force, and when the second inner circulation fan rebounds, the controlled airflow passes through the inner cavity of the closed cavity and the inner cavity of the first air duct to reach The air return port realizes the cooling of the magnetic components.
  • the rebound structure further includes a stop structure, and the stop structure is used to limit the rebound position of the air duct plate when the air duct plate rebounds.
  • the heat dissipation fins of the first radiator and the first heat exchanger use series air ducts, parallel air ducts or mutually independent air ducts in the heat dissipation cavity to dissipate heat.
  • the first heat exchanger includes a first gas collection chamber, a second gas collection chamber and a connecting portion.
  • the connection portion includes at least one tubular channel.
  • the connecting part is used to communicate the first air collecting chamber and the second air collecting chamber.
  • the first air collection chamber is connected to the air supply port through the first sealing flange, and the second air collection chamber is connected to the air return port through the second sealing flange.
  • At least one tubular channel is provided with a spacer rib to improve the heat dissipation effect.
  • the connecting portion includes at least two tubular channels, and heat dissipation fins are embedded between the at least two tubular channels to improve the heat dissipation effect.
  • the first heat exchanger includes a first sealing flange, a second sealing flange and at least two bent tubular passages.
  • the first ends of the at least two bent tubular passages are connected to the air supply ports through the first sealing flange, and the second ends of the at least two bent tubular passages are connected to the air return ports through the second sealing flange.
  • At least two bent tubular channels are provided with spacer ribs inside to improve the heat dissipation effect.
  • heat dissipation fins are embedded between at least two bent tubular channels.
  • the magnetic element is dissipated through the second heat sink, and the power converter further includes a high protection level element.
  • the high protection grade element is arranged in the closed cavity, and the high protection grade element dissipates heat through the second heat exchanger, and the second heat exchanger is located in the heat dissipation cavity.
  • the first end of the airtight cavity is provided with a third air duct
  • the first end of the third air duct is an air supply port
  • the second end of the third air duct communicates with the inner cavity of the airtight cavity.
  • the second end of the closed cavity is an air return port; the air supply port is connected to the first end of the second heat exchanger, and the air return port is connected to the second end of the second heat exchanger.
  • At least one third internal circulation fan is also arranged at the air supply port or the air return port, which is used to control the air flow from the air supply port to reach the air return port along the inner cavity of the closed cavity.
  • the first end of the airtight cavity is provided with a third air duct
  • the second end of the airtight cavity is provided with a fourth air duct.
  • the first end of the third air duct is an air supply port
  • the second end of the third air duct is communicated with the inner cavity of the closed cavity.
  • the first end of the fourth air duct is a return air outlet
  • the second end of the fourth air duct is communicated with the inner cavity of the closed cavity.
  • At least one third inner circulation fan is arranged at the air supply outlet
  • at least one fourth inner circulation fan is arranged at the air return outlet. The third inner circulation fan and the fourth inner circulation fan are used to control the air flow from the air supply port to the air return port along the inner cavity of the closed cavity.
  • the radiating fins of the first radiator, the radiating fins of the second radiator and the second heat exchanger adopt series air ducts, parallel air ducts or mutually independent air ducts in the heat dissipation cavity to dissipate heat.
  • the first heat sink and the second heat sink include a base plate and heat dissipation fins.
  • the heat dissipation fins are used for contact heat dissipation to the substrate.
  • the base plate includes a temperature equalization cavity, the temperature equalization cavity is filled with a working medium that can undergo gas-liquid phase change, and the lower position of the middle part of the base plate is used to set the device to be dissipated.
  • heat dissipation fins are further provided in the temperature equalizing cavity.
  • the first heat sink and the second heat sink include: a base plate, a vapor chamber, and heat dissipation fins.
  • the heat dissipation fins are used for contact heat dissipation for the substrate, and the inner cavity of the temperature chamber is filled with a working medium that can undergo gas-liquid phase transition.
  • the temperature equalizing plate is fixed on the substrate, and the lower part of the middle part of the temperature equalizing plate is used to set the device to be dissipated;
  • heat dissipation fins are further provided in the vapor chamber.
  • the power converter is a centralized inverter, a string inverter or a maximum power point tracking MPPT boost combiner box.
  • the present application also provides a heat exchanger, the heat exchanger includes a first gas collection chamber, a second gas collection chamber and a connecting portion.
  • the connecting part includes at least one tubular channel, and the at least one tubular channel is used to communicate the first air collecting chamber and the second air collecting chamber; the first air collecting chamber is connected to the air supply port through the first sealing flange, and the second air collecting chamber The cavity is connected to the air return port through a second sealing flange.
  • At least one tubular channel is provided with a spacer rib inside.
  • the connecting portion includes at least two tubular channels, and heat dissipation fins are embedded between the at least two tubular channels.
  • the present application also provides another heat exchanger, the heat exchanger includes a first sealing flange, a second sealing flange and at least two bent tubular passages.
  • the first ends of the at least two bent tubular passages are connected to the air supply ports through the first sealing flange, and the second ends of the at least two bent tubular passages are connected to the air return ports through the second sealing flange.
  • Spacers are arranged inside at least two bent tubular channels.
  • heat dissipation fins are embedded between at least two bent tubular channels.
  • the present application also provides a heat sink, the heat sink includes a base plate and a heat dissipation fin.
  • the heat dissipation fins are used for contact heat dissipation to the substrate.
  • the substrate includes a temperature equalization cavity, and the temperature equalization cavity is filled with a working medium that can undergo gas-liquid phase change. The lower position of the middle of the substrate is used to set the device to be dissipated.
  • heat dissipation fins are further provided in the temperature equalizing cavity.
  • the present application further provides another heat sink, a heat sink substrate, a vapor chamber and a heat dissipation fin.
  • the heat dissipation fins are used for contact heat dissipation for the substrate, and the inner cavity of the temperature chamber is filled with a working medium that can undergo gas-liquid phase transition.
  • the temperature equalizing plate is fixed on the substrate, and the lower part of the middle part of the temperature equalizing plate is used to set the device to be dissipated;
  • heat dissipation fins are further provided in the vapor chamber.
  • the present application further provides a photovoltaic power generation system, the photovoltaic power generation system includes the power converter provided by the above implementation manner, and further includes a photovoltaic unit.
  • the photovoltaic unit includes at least one photovoltaic group; the photovoltaic unit is used to convert light energy into direct current.
  • FIG. 1 is a schematic diagram of a photovoltaic power generation system based on a centralized inverter
  • FIG. 2 is a schematic diagram of a photovoltaic power generation system based on a string inverter
  • FIG. 3 is a schematic diagram of a schematic string inverter provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a photovoltaic power generation system based on a centralized inverter and an MPPT boost combiner box;
  • FIG. 5 is a schematic diagram of a schematic MPPT boost combiner box provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a photovoltaic power generation system based on a photovoltaic optimizer and a string inverter;
  • FIG. 7 is a side view of a power converter according to an embodiment of the present application.
  • FIG. 8 is a front view corresponding to the power converter shown in FIG. 7 according to an embodiment of the present application.
  • Fig. 9 provides the A-A' sectional view in Fig. 8 of the embodiment of this application.
  • FIG. 10 is a front view of another power converter provided by an embodiment of the present application.
  • Fig. 11 is the A-A' sectional view in Fig. 10 provided for the embodiment of the application;
  • FIG. 12 is a front view of the air duct plate of the power converter provided by the embodiment of the application when the air duct plate is closed;
  • FIG. 13 is a front view of the power converter provided by the embodiment of the application when the air duct plate is opened;
  • Fig. 14 provides the A-A' sectional view in Fig. 12 of the embodiment of the application;
  • FIG. 15 is a side view of yet another power converter provided by an embodiment of the present application.
  • FIG. 16 is a front view of the power converter shown in FIG. 15 according to an embodiment of the application.
  • Fig. 17 is the B-B' sectional view of Fig. 16 provided for the embodiment of the application;
  • FIG. 18 is a front view of yet another power converter provided by an embodiment of the application.
  • Fig. 19 is a cross-sectional view along B-B' of Fig. 18 provided for an embodiment of the application;
  • FIG. 20 is a schematic diagram of a heat exchanger according to an embodiment of the application.
  • FIG. 21 is a schematic diagram of another heat exchanger provided in an embodiment of the application.
  • FIG. 22 is a schematic structural diagram of a heat sink provided by an embodiment of the application.
  • Fig. 23 is the C-C' sectional view of Fig. 22 provided for the embodiment of the application;
  • FIG. 24 is a schematic structural diagram of another heat sink provided by an embodiment of the application.
  • 25 is a cross-sectional view of a vapor chamber provided by an embodiment of the application.
  • FIG. 26 is a schematic diagram of a photovoltaic power generation system provided by an embodiment of the present application.
  • FIG. 1 the figure is a schematic diagram of a photovoltaic power generation system based on a centralized inverter.
  • the photovoltaic power generation system includes photovoltaic units 10 , a DC combiner box 11 , a centralized inverter 12 and a transformer 14 .
  • each photovoltaic unit 10 includes one or more photovoltaic components.
  • the photovoltaic module is a DC power supply formed by encapsulating solar cells in series or in parallel, and is used to convert light energy into electrical energy.
  • the multiple photovoltaic modules can be connected in series with positive and negative poles to form a photovoltaic string to form the photovoltaic unit 10; multiple photovoltaic modules can also be connected in series to form multiple photovoltaic strings. , a plurality of photovoltaic strings are connected in parallel to form a photovoltaic unit 10 .
  • the centralized inverter 12 includes a direct current (DC)-alternating current (AC) circuit, which may also be called an inverter circuit, for inverting the direct current input from the at least one direct current combiner box 11 into alternating current.
  • the power of the centralized inverters 12 is relatively large, so a cabinet-type design is adopted, and the centralized inverters 12 are generally arranged in the machine room or the container 13 . In photovoltaic power plants, centralized inverters with a power of more than 500kW are generally used.
  • the AC power output by the centralized inverter 12 is transformed into the AC power grid 15 after being transformed by the transformer 14 .
  • the following describes the photovoltaic power generation system based on the string inverter.
  • FIG. 2 is a schematic diagram of a photovoltaic power generation system based on a string inverter.
  • the photovoltaic power generation system includes a photovoltaic unit 10 , a string inverter 16 , an AC combiner box 17 and a transformer 14 .
  • the DC side of the string inverter 16 is connected to one or more photovoltaic units 10 .
  • the DC side of the string inverter 11 is generally connected to a plurality of photovoltaic units 10 .
  • this figure is a schematic diagram of a schematic string inverter provided by an embodiment of the present application.
  • the power of the string inverter 16 is smaller than that of the centralized inverter, and mostly adopts an outdoor modular design, including a two-stage power conversion circuit.
  • the first stage is a DC-DC circuit 161, a general boost circuit, and the second stage is a
  • the DC-AC circuit 121 is an inverter circuit.
  • the string inverter 16 may include a multi-channel DC-DC circuit 161, the positive output port of the multi-channel DC-DC circuit 161 is connected in parallel to the positive input port of the DC side of the DC-AC circuit 121, and the multi-channel DC - The negative output port of the DC circuit 161 is connected in parallel with the negative input port of the DC side of the DC-AC circuit 121 .
  • the AC outlet end of the DC-AC circuit 121 is the output end of the string inverter 16 .
  • Each DC-DC circuit 161 is connected to at least one photovoltaic unit 10 , the positive input port of each DC-DC circuit 161 is connected to the positive electrode of the photovoltaic unit 10 , and the negative input port of each DC-DC circuit 161 is connected to the photovoltaic unit 10 . Negative connection.
  • the AC power output by the multi-channel string inverter 16 is fed into the AC combiner box 12 and then collected, and then connected to the AC power grid 15 after being transformed by the transformer 14 .
  • the following describes a photovoltaic power generation system based on a centralized inverter and a maximum power point tracking (MPPT) booster combiner box, which is also called a distributed photovoltaic power generation system.
  • MPPT maximum power point tracking
  • FIG. 4 it is a schematic diagram of a photovoltaic power generation system based on a centralized inverter and an MPPT boost combiner box.
  • the illustrated photovoltaic power generation system includes photovoltaic units 10 , an MPPT boost combiner box 18 , a centralized inverter 21 and a transformer 14 .
  • the MPPT boost combiner box 18 is a boost converter, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 5 is a schematic diagram of a schematic MPPT boost combiner box provided by an embodiment of the present application.
  • the MPPT boost combiner box 20 generally includes at least two DC-DC circuits 161 .
  • Each of the DC-DC circuits 161 is connected to at least one photovoltaic unit 10 respectively.
  • the positive input port of each DC-DC circuit 161 is connected to the positive electrode of the photovoltaic unit 10
  • the negative input port of the DC-DC circuit 161 is connected to the negative electrode of the photovoltaic unit 10 .
  • each DC-DC circuit 161 The positive output ports of each DC-DC circuit 161 are connected in parallel with the positive pole of the output DC bus, and the negative output ports of each DC-DC circuit 161 are connected in parallel with the negative output of the output DC bus.
  • the positive and negative poles of the DC bus are used as the positive and negative output ports of the MPPT boost combiner box 20 respectively, and are respectively connected to the positive and negative input ports of the downstream centralized inverter 12 via the DC cable.
  • the centralized inverter 12 is used to convert a single-channel or multiple-channel parallel-connected DC input connected to the DC side into an AC output, and generally adopts DC-AC single-stage power conversion.
  • the AC power output by the centralized inverter 21 is merged into the AC power grid 15 after passing through the transformer 14 .
  • the centralized inverter 12 generally has a long electrical distance from the photovoltaic unit 10, and is mostly designed in an outdoor cabinet type, or is modularized and integrated outdoors.
  • the photovoltaic power generation system based on photovoltaic optimizer and string inverter will be described below.
  • FIG. 6 it is a schematic diagram of a photovoltaic power generation system based on a photovoltaic optimizer and a string inverter.
  • the illustrated photovoltaic power generation system includes a photovoltaic unit 10 , a photovoltaic optimizer 19 , a string inverter 16 , a transformer 14 and an AC grid 15 .
  • the photovoltaic optimizer 19 is a DC-DC converter, the input side of which is connected to the photovoltaic unit 10, and the output side is connected to the string inverter 16 in series, and in other embodiments, it can also be connected to a centralized
  • the photovoltaic optimizer 19 is used to increase or decrease the output voltage of the photovoltaic unit 10 .
  • the photovoltaic optimizer 19 includes a DC-DC circuit, which may be a buck (BUCK) circuit, a boost (BOOST) circuit, or a BUCK-BOOST circuit.
  • the positive input port of the DC-DC circuit is connected to the positive electrode of the photovoltaic unit 10
  • the negative input port of the DC-DC circuit is connected to the negative electrode of the photovoltaic unit 10 .
  • the positive pole of the DC-DC circuit is connected to the positive pole of the output DC bus as the positive output port of the photovoltaic optimizer 19 ; the negative pole of the DC-DC circuit is connected to the negative pole of the output DC bus as the negative output port of the photovoltaic optimizer 19 .
  • Photovoltaic power generation systems employing photovoltaic optimizers 19 typically connect a plurality of photovoltaic optimizers 19 in series to form substrings.
  • N photovoltaic optimizers are connected in end-to-end series, that is, the positive output port of the ith photovoltaic optimizer is connected to the negative output port of the ith photovoltaic optimizer, and the negative output port of the ith photovoltaic optimizer is connected to the i+th photovoltaic optimizer.
  • the positive output port of the first photovoltaic optimizer is used as the positive output port of the photovoltaic optimizer substring, and the negative output port of the Nth photovoltaic optimizer is used as the negative output port of the photovoltaic optimizer substring.
  • the output end of the photovoltaic optimizer sub-string is connected to the input end of the rear-stage string inverter or the central inverter through the DC cable.
  • the AC power output by the string inverter 16 is transformed into the AC power grid 15 after being transformed by the transformer 14 .
  • the magnetic components are exposed in the low protection cavity for ventilation and heat dissipation, or are installed in the metal shell for heat dissipation with glue; the power semiconductor devices are exposed in the low protection cavity for ventilation and heat dissipation; other devices are set in high
  • the protective cavity is sealed and protected, and the heat is naturally dissipated to the outside through the high protective cavity wall.
  • the present application provides a power converter, a heat exchanger, a radiator and a photovoltaic power generation system.
  • the power semiconductor devices and magnetic components are arranged in a closed cavity to dissipate heat, thereby improving the reliability of the power converter.
  • a radiator is used for heat dissipation, which improves the heat dissipation efficiency.
  • heat sinks or heat exchangers can be used to dissipate heat.
  • the heat dissipation fins or heat exchangers of the radiator used are arranged in the heat dissipation cavity, and the heat dissipation cavity and the closed cavity are separately arranged, so as to ensure the high protection level of the internal devices and achieve efficient heat dissipation.
  • connection should be understood in a broad sense.
  • connection may be a fixed connection, a detachable connection, or an integral body; it may be a direct connection, or a Indirect connections can be made through an intermediary.
  • a typical example of the magnetic element in the embodiments of the present application is an inductor.
  • FIG. 7 is a side view of a power converter provided by an embodiment of the application
  • FIG. 8 is a front view corresponding to the power converter shown in FIG. 7 provided by an embodiment of the application
  • FIG. 9 is provided by an embodiment of the application AA' sectional view in FIG. 8 .
  • the illustrated power converter 200 includes: a magnetic element 211 , a semiconductor device 214 , a closed cavity 210 and a heat dissipation cavity 220 .
  • the power semiconductor device 214 and the magnetic element 211 are arranged in the closed cavity 210 .
  • the power semiconductor device 214 is dissipated by the first heat sink 215 , and the heat dissipation fins of the first heat sink 215 are located in the heat dissipation cavity 220 .
  • the magnetic element 211 dissipates heat through the first heat exchanger 212, and the first heat exchanger 212 is located in the heat dissipation cavity 220, which will be described in detail below.
  • the airtight cavity 210 includes a first air duct 213 , and the magnetic element 211 is disposed in the first air duct 213 .
  • the first air duct 213 is used to constrain the flow direction of the gas that dissipates heat from the magnetic element 211 .
  • the first air duct 213 is a closed air duct.
  • the first end of the first air duct is an air supply port 2131 , and the air supply port 2131 is connected to the first end of the first heat exchanger 212 for receiving gas from the first heat exchanger 212 .
  • the second end of the first air duct is an air return port 2132, and the air return port 2132 is connected to the second end of the first heat exchanger 212 for sending gas into the first heat exchanger 212.
  • the air supply port 2131 or the air return port 2132 is also provided with at least one first internal circulation fan 2133 for controlling the airflow to start from the air supply port 2131 and reach the return air port 2132 along the inner cavity of the first air duct to cool the magnetic element 211 .
  • the air supply port 2131 and the air return port 2132 may each be provided with at least one first internal circulation fan 2133 to improve the heat dissipation effect.
  • the flow circuit of the air flow can be seen in FIG. 9.
  • the gas starts from the air supply port 2131, flows through the magnetic element 211 along the first air duct, exchanges heat with the magnetic element 211 and turns into a high-temperature gas, and returns to the first air exchange through the air return port 2132.
  • the heater 212 after the heat exchange with the outside air (or other cooling medium) is completed, it becomes a low-temperature gas, and then returns to the inside of the first air duct through the air supply port 2132 , and the cycle is repeated in this way.
  • the airtight cavity 210 also includes components 216 with a high protection level, such as single-board circuits and controllers with low heat consumption density.
  • the airtight cavity 210 ensures the safety of the components 216 with a high protection level.
  • the power semiconductor device may be an Insulated Gate Bipolar Transistor (IGBT), a Metal Oxide Semiconductor Field Effect Transistor (Metal Oxide Semiconductor Field Effect Transistor). Filed Effect Transistor, MOSFET, referred to as MOS tube), silicon carbide field effect transistor (Silicon Carbide Metal Oxide Semiconductor, SiC MOSFET), etc.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • MOS tube silicon carbide field effect transistor
  • SiC MOSFET silicon carbide field effect transistor
  • the power converter 200 in the embodiment of the present application may specifically be a centralized inverter, a string inverter, or an MPPT boost combiner box, which is not specifically limited in the embodiment of the present application.
  • both ends may be connected in a sealed manner; or, one end of the first air duct 213 may be connected in a sealed manner, and the other end may be connected through the inner cavity of the closed cavity.
  • the port of the first air duct 213 and the port of the first heat exchanger 212 should be relatively close; The cavities are connected.
  • the ports on both sides of the first air duct 213 and the ports on both sides of the first heat exchanger 212 should be relatively close to each other.
  • the power semiconductor devices and magnetic components are arranged in a closed cavity for heat dissipation, which improves the reliability of the power converter.
  • the heat exchanger is used for heat dissipation, which improves the heat dissipation efficiency
  • the magnetic components use a heat exchanger to dissipate heat.
  • the heat dissipation fins and heat exchanger of the used radiator are arranged in the heat dissipation cavity, and the heat dissipation cavity and the closed cavity are separately arranged, so as to ensure the high protection level of the internal devices and achieve efficient heat dissipation.
  • the power converter 200 in the above embodiment is designed with a single air duct.
  • the present application also provides another A power converter adopts a dual air duct design, which will be described in detail below with reference to the accompanying drawings.
  • Fig. 10 is a front view of another power converter provided by an embodiment of the present application
  • Fig. 11 is a cross-sectional view of A-A' in Fig. 10 provided by an embodiment of the present application.
  • the closed cavity 210 further includes a second air duct 213b, the first end of the second air duct 213b is shared with the first end of the first air duct 213, and the second end of the second air duct 213b is shared with the first air duct 213 internal cavity communication.
  • the first internal circulation fan 2133 controls the airflow to start from the air supply port 2131 , and flows through the magnetic element 211 along the first air duct 213 . middle.
  • the direction of gas circulation can be seen by the solid arrows in Figure 11.
  • the second air duct 213b is also provided with at least one second internal circulation fan 2133b, which is used to control the air flow from the second air duct 213b to enter the first air duct 213 through the path shown by the dashed arrow in FIG.
  • the inner cavity of an air duct 213 reaches the air return port 2132 .
  • the second inner circulation fan 2133b can be activated, so that the first heat exchanger 212 can still dissipate heat normally.
  • FIG. 12 is a front view of the air duct plate of the power converter provided by the embodiment of the application when the air duct plate is closed;
  • FIG. 13 is the front view of the air duct plate of the power converter provided by the embodiment of the application when the air duct plate is opened;
  • the AA' cross-sectional view in FIG. 12 provided in the application example.
  • the illustrated closed cavity includes a second air duct 213b.
  • the second air duct 213b includes other airtight areas other than the first air duct 213 in the airtight cavity.
  • the second air duct 213b is a separate air duct.
  • the first end of the second air duct 213b is shared with the first end of the first air duct 213, and the second end of the second air duct 213b is communicated with the inner cavity of the closed cavity.
  • the cavity wall of the first air duct 213 includes multiple groups of rebound structures, as shown by the dotted frame in the figure, each group of rebound structures includes an air duct plate 218 and an opening in the cavity wall.
  • the specific number of the rebound structures is not specifically limited in the embodiment of the present application, and may be determined according to the actual cavity wall length of the first air duct 213 .
  • the first air duct 213 can be in a closed state.
  • the second air duct 213b is also provided with at least one second internal circulation fan 2133b.
  • the air duct plate 218 overcomes its own elastic force and merges into the corresponding cavity wall opening under the action of the gas pressure.
  • An air duct 213 flows through the magnetic element 211, exchanges heat with the magnetic element 211 and turns into a high-temperature gas, and returns to the first heat exchanger 212 through the air return port 2132.
  • the gas flow cycle can be referred to the solid arrow in FIG. 14 shown.
  • the air duct plate 218 rebounds, the cavity wall of the first air duct 213 has holes, and the second inner circulation fan 2133b controls the airflow from the second air duct. Starting from 213b, it passes through the inner cavity of the closed cavity and the inner cavity of the first air duct 213 in sequence and then reaches the air return port 2132, so as to realize the heat dissipation of the magnetic element 211.
  • the second inner circulation fan 2133b can also dissipate heat to the high protection level element 216 in the closed cavity.
  • each set of rebound structures further includes a stop structure 217 , and the stop structure 217 can be a stop post or stop pin for restricting the rebound of the air duct plate 218 when the air duct plate 218 rebounds. Location.
  • the position of the rebound structure is close to the first inner circulation fan 2133 to ensure sufficient gas pressure on the air duct plate 218 Overcome resilience.
  • the power converters provided by the above embodiments use the first heat exchanger to dissipate heat from the magnetic element, and use the first heat sink to dissipate heat from the power semiconductor device.
  • the heat dissipation fins of the first radiator and the first heat exchanger can use series air ducts, parallel air ducts or mutually independent air ducts for heat dissipation, or use a cooling medium for heat dissipation. No specific limitation is made.
  • the following describes an implementation method when a radiator is used to dissipate heat from magnetic components, and a heat exchanger is used to dissipate heat from components with a high protection level.
  • FIG. 15 is a side view of another power converter provided by an embodiment of the application
  • FIG. 16 is a front view of the power converter shown in FIG. 15 provided by an embodiment of the application
  • FIG. 17 is provided by an embodiment of the application BB' sectional view of FIG. 16 .
  • the power semiconductor device 214 of the power converter 200 is dissipated by the first heat sink 215 , and the heat dissipation fins of the first heat sink 215 are located in the heat dissipation cavity 220 .
  • the magnetic element 211 of the power converter 200 is dissipated through the second heat sink 215 b , and the heat dissipation fins of the second heat sink 215 b are located in the heat dissipation cavity 220 .
  • the magnetic element 211 may be disposed in a metal casing, and then the metal casing is fixed to the second heat sink 215b. In other embodiments, the magnetic element 211 can be directly glued to the second heat sink 215b. In still other embodiments, the magnetic element 211 may be attached to the second heat sink 215b through a thermal pad.
  • the magnetic element 211 may be covered with a thermal interface material (Thermal Interface Material, TIM).
  • TIM Thermal Interface Material
  • the application does not specifically limit the type of the thermal interface material.
  • the high protection level element 216 of the power converter 200 is disposed in the closed cavity 210 , and the high protection level element 216 dissipates heat through the second heat exchanger 212 b , and the second heat exchanger 212 b is located in the heat dissipation cavity 220 .
  • the first end of the airtight cavity 210 is provided with a third air duct 213c , the first end of the third air duct 213c is the air supply port 2131 , and the second end of the third air duct 213c communicates with the inner cavity of the airtight cavity 210 .
  • the second end of the airtight cavity 210 is the air return port 2132 .
  • the air supply port 2131 is connected to the first end of the second heat exchanger 212b, and the air return port 2132 is connected to the second end of the second heat exchanger 212b.
  • At least one third internal circulation fan 2133c is also installed at the air supply port 2131 or the air return port 2132, which is used to control the airflow from the air supply port 2131, along the inner cavity of the airtight cavity and the high protection grade element 216 after the heat exchange is completed, it becomes a high temperature gas , and then enters the second heat exchanger 212b through the air return port 2132, so as to realize the heat dissipation of the high protection level element 216.
  • the gas circulation path can be shown by the realization arrow in FIG. 17 .
  • the power semiconductor device and the magnetic element are arranged in a closed cavity to dissipate heat, and the high protection grade element is dissipated through the heat exchanger, and the heat dissipation cavity and the closed cavity are used to dissipate heat.
  • the split setting of the cavity achieves efficient heat dissipation while ensuring the high protection level of the internal devices.
  • the power converter 200 in the above embodiment is designed with a single air duct.
  • the second heat exchanger 212b can continue to dissipate heat for the components with high protection level.
  • Another type of power converter adopts a dual air duct design, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 18 is a front view of another power converter provided by an embodiment of the application
  • FIG. 19 is a cross-sectional view taken along line B-B' of FIG. 18 provided by an embodiment of the application.
  • 15-17 is that the first end of the airtight cavity 210 is provided with a third air duct 213c, and the second end of the airtight cavity 210 is provided with a fourth air duct 213d.
  • the first end of the third air duct 213c is the air supply port 2131 , and the second end of the third air duct 213c communicates with the inner cavity of the airtight cavity 210 .
  • the first end of the fourth air duct 213d is the air return port 2132 , and the second end of the fourth air duct 213d communicates with the inner cavity of the closed cavity 210 .
  • At least one third internal circulation fan 2133c is provided at the air supply port 2131
  • at least one fourth internal circulation fan 2133d is provided at the air return port 2132 .
  • the third inner circulation fan 2133c and the fourth inner circulation fan 2133d are used to control the air flow from the air supply port 2131 to the air return port 2132 along the inner cavity of the closed cavity.
  • the third inner circulation fan 2133c and the fourth inner circulation fan 2133d can be activated at the same time, or one of them can be activated, for example, the third inner circulation fan 2133c is activated and the fourth inner circulation fan 2133d is turned off. When the activated fan fails, another fan is activated to ensure that the heat dissipation of the high protection class components is not affected.
  • the cooling fins of the first radiator 215 , the cooling fins of the second radiator 215b and the second heat exchanger 212b may adopt series air ducts, parallel air ducts or mutually independent air ducts in the radiating cavity 220 .
  • the cooling medium may also be used for heat dissipation, which is not specifically limited in this embodiment of the present application.
  • the heat exchanger provided by the embodiments of the present application, the heat dissipation efficiency during heat dissipation of high protection grade components or magnetic components is improved.
  • the embodiment of the present application further provides a heat exchanger, which can be used to dissipate heat from a magnetic element, or to dissipate heat from a high-protection element, that is, the heat exchanger in the above embodiment.
  • This heat exchanger can be used for the first heat exchanger and the second heat exchanger, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 20 this figure is a schematic diagram of a heat exchanger according to an embodiment of the present application.
  • the heat exchanger includes a first gas collection chamber 31 , a second gas collection chamber 32 and a connecting portion 33 .
  • connection portion 33 includes at least one tubular channel.
  • a plurality of tubular channels are generally included.
  • the tubular channel is formed by extruding a profile, or a sheet can be rolled to form the tubular channel, which is not specifically limited in the embodiment of the present application.
  • the tubular channel is a flat cuboid channel.
  • the connecting portion 33 is used to communicate the first air collecting chamber 31 and the second air collecting chamber 32 .
  • the first air collection chamber 31 is connected to the air supply port through the first sealing flange 34
  • the second air collection chamber 32 is connected to the air return port through the second sealing flange 35 .
  • the side wall of the gas collection chamber is provided with holes matching the number and size of the tubular channels, and the tubular channels are inserted into the gas collection chamber.
  • a spacer 331 can be provided inside the tubular channel to improve the heat dissipation effect.
  • heat dissipation fins 37 may be embedded between two adjacent tubular channels to improve the heat dissipation effect.
  • the tubular channel, the plenum and the external fins are integrated by welding.
  • this figure is a schematic diagram of another heat exchanger provided in this embodiment of the present application.
  • the illustrated heat exchanger includes a first sealing flange 34 , a second sealing flange 35 and at least two bent tubular passages 38 .
  • the first ends of the at least two bent tubular passages 38 are connected to the air supply port through the first sealing flange 34 , and the second ends of the at least two bent tubular passages 38 are connected to the air return port through the second sealing flange 35 .
  • the bent tubular channel is formed by extruding a profile, or a sheet can be rolled into a tubular channel, which is not specifically limited in the embodiment of the present application.
  • the bent tubular channel is a flat rectangular parallelepiped channel and is bent at both ends thereof.
  • first sealing flange 34 and the second sealing flange 35 are provided with holes matching the number and size of the bent tubular channels, and both ends of the bent tubular channels can be inserted into the corresponding holes of the sealing flanges.
  • a spacer 331 is arranged inside the bent tubular channel 38 to improve the heat dissipation effect.
  • Heat dissipation fins are embedded between the bent tubular channels 38 to improve the heat dissipation effect.
  • bent tubular channel, the sealing flange and the outer fins are integrated by welding.
  • the heat exchanger provided by the embodiments of the present application, the heat dissipation efficiency during heat dissipation of high protection grade components or magnetic components is improved.
  • the embodiment of the present application further provides a heat sink, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 22 is a schematic structural diagram of a heat sink provided by an embodiment of the application
  • FIG. 23 is a C-C' cross-sectional view of FIG. 22 provided by an embodiment of the application.
  • the heat sink 40 includes a base plate 41 and heat dissipation fins 42 .
  • the heat dissipation fins 42 are used for contact heat dissipation to the substrate 41 .
  • the substrate 41 includes a temperature equalization chamber, and the temperature equalization chamber is filled with a working medium that can undergo gas-liquid phase transition.
  • the lower position of the middle part of the substrate is used to set the devices to be dissipated, that is, the magnetic element 211 and the power semiconductor device 214 and other devices with high heat consumption density.
  • internal heat dissipation fins 412 are further disposed in the temperature equalization chamber to speed up the temperature equalization of the substrate.
  • the heat dissipation fins in the temperature equalizing chamber, the bottom of the substrate and the cavity cover 411 at the top of the substrate are welded into one body. After vacuuming, the working medium is injected into the temperature equalizing chamber through the reserved liquid injection port, and finally the liquid injection port is closed.
  • the external heat dissipation fins 42 may be integrally formed by extrusion, shovel teeth, etc., or may be connected by welding.
  • the working medium at the bottom of the inner cavity is heated to undergo a gas-liquid phase change, and condenses and refluxes at the top to realize the temperature uniformity of the entire substrate.
  • FIG. 24 is a schematic structural diagram of another heat sink provided by an embodiment of the present application.
  • FIG. 23 is a cross-sectional view of a vapor chamber provided by an embodiment of the present application.
  • the heat sink 40 includes a base plate 41 , heat dissipation fins 42 and a vapor chamber 43 .
  • the heat dissipation fins 42 are used for contact heat dissipation to the substrate 41;
  • the embodiments of the present application are described by taking the temperature equalizing plate 43 disposed on the substrate 41 as an example.
  • the inner cavity of the vapor chamber 43 is filled with a working medium that can undergo gas-liquid phase change.
  • the position on the lower side of the middle of the temperature equalizing plate 43 is used to set the devices to be dissipated, that is, the magnetic element 211 and the power semiconductor device 214 and other devices with high heat consumption density.
  • heat dissipation fins 433 are further disposed in the temperature equalizing plate 43 to increase the temperature equalization speed.
  • the vapor chamber 43 can be mounted on the base plate by means of screws or welding.
  • the temperature equalizing plate 43 includes an upper cover plate 431 and a lower cover plate 432 .
  • the upper cover plate 431, the lower cover plate 432 and the internal heat dissipation fins 433 are welded into one body. After vacuuming, the working medium is injected into the chamber of the uniform temperature plate through the reserved liquid injection port, and finally the liquid injection port is closed.
  • the external heat dissipation fins 42 can be integrally formed by extrusion, shovel teeth, etc., or can be connected and fixed by welding. During operation, the device to be dissipated is installed in the lower part of the middle of the temperature uniform plate 43, and the working medium at the bottom of the inner cavity of the temperature uniform plate 43 undergoes a gas-liquid phase change when heated, and condenses and refluxes at the top to realize the temperature uniformity of the entire substrate.
  • the vapor chamber 43 may be mounted to the inner cavity of the base plate 41 by screws or welding, and in this case, the lower part of the middle of the base plate 41 is used to set the device to be dissipated.
  • Using the heat sink provided by the embodiment of the present application improves the temperature uniformity rate of the substrate, thereby improving the heat dissipation efficiency when dissipating power semiconductor devices, magnetic components, and other devices with high heat dissipation density.
  • the embodiment of the present application further provides a photovoltaic power generation system, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 26 is a schematic diagram of a photovoltaic power generation system provided by an embodiment of the present application.
  • the photovoltaic power generation system 26 includes the power converter 200 provided in the above embodiment, and further includes the photovoltaic unit 10 .
  • the embodiments of the present application do not specifically limit the number of photovoltaic units.
  • the photovoltaic unit 10 includes at least one photovoltaic assembly.
  • the multiple photovoltaic modules can be connected in series with positive and negative poles to form a photovoltaic string to form the photovoltaic unit 10; multiple photovoltaic modules can also be connected in series to form multiple photovoltaic strings. , a plurality of photovoltaic strings are connected in parallel to form a photovoltaic unit 10 .
  • the photovoltaic unit 10 is used to convert light energy into direct current.
  • the power converter 200 is a centralized inverter.
  • the photovoltaic power generation system includes a DC combiner box or an MPPT booster combiner box, hereinafter collectively referred to as a combiner box.
  • the inverter converts the DC power input from at least one combiner box into AC power.
  • the power converter 200 is a string inverter, and the input end of the power converter 200 may be directly connected to a photovoltaic unit or a photovoltaic optimizer string.
  • the power converter 200 is an MPPT boost combiner box, in which case the input end of the power converter 200 can be directly connected to the photovoltaic unit.
  • the photovoltaic power generation system utilizes the power converter provided in the embodiment of the present application, and the power converter disposes the power semiconductor device and the magnetic element in a closed cavity for heat dissipation, which improves the reliability of the power converter.
  • Power semiconductor devices with high heat dissipation density use heat sinks for heat dissipation, which improves heat dissipation efficiency.
  • heat sinks or heat exchangers also known as heat exchangers
  • the heat dissipation fins or heat exchangers of the radiator used are arranged in the heat dissipation cavity, and the heat dissipation cavity and the closed cavity are separately arranged to ensure the high protection level of the internal devices and achieve efficient heat dissipation.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)

Abstract

一种功率变换器(200)、热交换器(212、212b)、散热器(215、215b)及光伏发电系统(26),涉及散热设备技术领域。其中,该功率变换器(200)包括:功率半导体器件(214)、磁性元件(211)、密闭腔(210)和散热腔(220)。功率半导体器件(214)和磁性元件(211)设置在密闭腔(210)内;功率半导体器件(214)通过第一散热器(215)进行散热,且第一散热器(215)的散热翅片位于散热腔(220)。磁性元件(211)通过第二散热器(215b)进行散热,且第二散热器(215b)的散热翅片位于散热腔(220),或磁性元件(211)通过第一热交换器(212)进行散热,且第一热交换器(212)位于散热腔(220)。该技术方案提升了对功率变换器(200)进行散热时的可靠性与散热效果。

Description

一种功率变换器、热交换器、散热器及光伏发电系统 技术领域
本申请涉及散热设备技术领域,尤其涉及一种功率变换器、热交换器、散热器及光伏发电系统。
背景技术
光伏发电是利用半导体界面的光生伏特效应,将光能转变为电能的一种技术。光伏发电系统通常可以包括光伏单元、功率变换器、交流配电设备等部分。
光伏发电系统中应用的功率变换器主要包括光伏逆变器,集散式光伏发电系统中还包括最大功率点跟踪(Maximum power point tracking,MPPT)升压汇流箱。功率变换器包括功率半导体器件、磁性元件、电容等环境敏感元件,其中磁性元件通常由绕组和磁芯构成,主要为电感器件。
目前的功率变换器散热方案为:将磁性元件裸露于低防护腔中进行通风散热,或者灌胶设置于金属壳体内,将金属壳体放置在机箱外部或者低防护腔内通风散热;将功率半导体器件裸露于低防护腔中进行通风散热;其他器件设置在高防护腔内,通过高防护腔壁面对外自然散热。
但该方案将功率半导体器件和磁性元件等环境敏感元件直接裸露于低防护腔,可靠性差且散热能力有限。此外,对于采用将磁性元件灌胶设置于金属壳体内的方案,随着功率变换器的功率不断增加,磁性元件的热耗逐渐增加,而灌封胶导热系数低且热阻大,使得散热效果无法有效提升。
综上所述,目前的功率变换器散热方案存在可靠性差且散热效果差的问题。
发明内容
本申请提供了一种功率变换器、热交换器、散热器及光伏发电系统,提升了功率变换器进行散热时的可靠性与散热效果。
第一方面,本申请提供了一种功率变换器,功率变换器包括功率半导体器件、磁性元件、密闭腔和散热腔。功率半导体器件和磁性元件均衡设置在密闭腔内,避免裸露。密闭腔可以对功率半导体器件和磁性元件进行严密保护,提高了可靠性。功率半导体器件通过第一散热器进行散热,且第一散热器的散热翅片位于散热腔。磁性元件可以采用散热器或换热器进行散热,具体的,当磁性元件通过第二散热器进行散热时,第二散热器的散热翅片位于散热腔。当磁性元件通过第一热交换器进行散热时,第一热交换器位于散热腔。
利用本申请提供的方案,将功率半导体器件和磁性元件设置在密闭腔内进行散热,提升了功率变换器的可靠性,对于热耗密度高的功率半导体器件,采用散热器进行散热,提升了散热效率。对于磁性元件,可以采用散热器或者热交换器(又称换热器)进行散热。将使用的散热器的散热翅片或热交换器设置在散热腔内,通过散热腔和密闭腔的分体设置,在保障内部器件高防护等级的同时,实现了高效散热。
综上所述,利用本申请实施例提供的功率变换器,,提升了功率变换器进行散热时的可靠性与散热效果。
在一种可能的实现方式中,磁性元件通过第一热交换器进行散热,密闭腔包括第一风道,磁性元件设置于第一风道内。第一风道的第一端为送风口,第一风道的第二端为回风口,送风口连接第一热交换器的第一端,回风口连接第一热交换器的第二端;送风口或回风口处还设置至少一颗第一内循环风扇,用于控制气流由送风口开始,沿第一风道的内腔到达回风口,实现对磁性元件的冷却。
在一种可能的实现方式中,密闭腔内还包括第二风道,第二风道的第一端与第一风道的第一端共用,第二风道的第二端与第一风道的内腔以及密闭腔的内腔连通。第二风道还设置至少一颗第二内循环风扇,用于控制气流由所述第二风道开始,沿第一风道的内腔到达回风口,当第一内循环风扇故障时,第二内循环风扇可以继续工作,使得第一热交换器继续对磁性元件进行散热。第二内循环风扇还可以对密闭腔内部的高防护等级元件进行散热。
在一种可能的实现方式中,密闭腔还设置至少一颗第二内循环风扇。第一风道的腔壁上包括多组回弹结构,每组回弹结构包括风道板和腔壁开孔。风道板回弹时的受力方向指向第一风道内部,风道板的面积大于腔壁开孔的面积,且风道板能够完全覆盖腔壁开孔。
当第一内循环风扇正常工作时,风道板所受气流给予的压力大于弹力,风道板闭合。当第一内循环风扇故障时,风道板在弹力作用下回弹,第二内循环风扇当风道板回弹时,控制气流经过密闭腔的内腔、第一风道的内腔后到达回风口,实现对磁元件的冷却。
在一种可能的实现方式中,回弹结构还包括止位结构,止位结构用于当所述风道板回弹时,限制风道板的回弹位置。
在一种可能的实现方式中,第一散热器的散热翅片与第一热交换器在散热腔内采用串联风道、并联风道或相互独立的风道进行散热。
在一种可能的实现方式中,第一热交换器包括第一集气腔、第二集气腔和连接部。连接部包括至少一根管状通道。连接部用于连通第一集气腔和第二集气腔。第一集气腔通过第一密封法兰连接送风口,第二集气腔通过第二密封法兰连接回风口。至少一根管状通道内部设置隔筋,以提升散热效果。
在一种可能的实现方式中,连接部包括至少两根管状通道,至少两个管状通道之间嵌入散热翅片,以提升散热效果。
在一种可能的实现方式中,第一热交换器包括第一密封法兰、第二密封法兰和至少两根弯折管状通道。至少两根弯折管状通道的第一端通过第一密封法兰连接送风口,至少两根弯折管状通道的第二端通过第二密封法兰连接回风口。至少两个弯折管状通道内部设置隔筋,以提升散热效果。
在一种可能的实现方式中,至少两个弯折管状通道之间嵌入散热翅片。
在一种可能的实现方式中,磁性元件通过第二散热器进行散热,功率变换器还包括高防护等级元件。高防护等级元件设置在密闭腔内,高防护等级元件通过第二热交换器进行散热,且第二热交换器位于散热腔。
在一种可能的实现方式中,密闭腔的第一端设置有第三风道,第三风道的第一端为送风口,第三风道的第二端与密闭腔的内腔连通。密闭腔的第二端为回风口;送风口连接第 二热交换器的第一端,回风口连接第二热交换器的第二端。送风口或回风口处还设置至少一颗第三内循环风扇,用于控制气流由送风口开始,沿密闭腔的内腔到达回风口。
在一种可能的实现方式中,密闭腔的第一端设置有第三风道,密闭腔的第二端设置有第四风道。第三风道的第一端为送风口,第三风道的第二端与密闭腔的内腔连通。第四风道的第一端为回风口,第四风道的第二端与密闭腔的内腔连通。送风口处设置至少一颗第三内循环风扇,回风口处设置至少一颗第四内循环风扇。第三内循环风扇和第四内循环风扇用于控制气流由送风口开始,沿密闭腔的内腔到达回风口。
在一种可能的实现方式中,第一散热器的散热翅片、第二散热器的散热翅片与第二热交换器在散热腔内采用串联风道、并联风道或相互独立的风道进行散热。
在一种可能的实现方式中,第一散热器和第二散热器包括基板和散热翅片。散热翅片用于对基板进行接触式散热。基板包括均温腔,均温腔内填充可进行气液相变的工质,基板中部下侧位置用于设置待散热的器件。
在一种可能的实现方式中,均温腔内还设置有散热翅片。
在一种可能的实现方式中,第一散热器和第二散热器包括:基板、均温板和散热翅片。散热翅片用于对基板进行接触式散热,均温板的内腔填充有可进行气液相变的工质。均温板固定设置在基板上,且均温板中部下侧位置用于设置待散热的器件,或,均温板固定设置在基板内腔且基板中部下侧位置用于设置待散热的器件。
在一种可能的实现方式中,均温板内还设置有散热翅片。
在一种可能的实现方式中,功率变换器为集中式逆变器、组串式逆变器或最大功率点跟踪MPPT升压汇流箱。
第二方面,本申请还提供了一种热交换器,热交换器包括第一集气腔、第二集气腔和连接部。连接部包括至少一根管状通道,至少一根管状通道用于连通第一集气腔和第二集气腔;第一集气腔通过第一密封法兰连接送风口,第二集气腔通过第二密封法兰连接回风口。至少一根管状通道内部设置隔筋。
在一种可能的实现方式中,连接部包括至少两根管状通道,至少两个管状通道之间嵌入散热翅片。
第三方面,本申请还提供了另一种热交换器,热交换器包括第一密封法兰、第二密封法兰和至少两根弯折管状通道。至少两根弯折管状通道的第一端通过第一密封法兰连接送风口,至少两根弯折管状通道的第二端通过第二密封法兰连接回风口。至少两个弯折管状通道内部设置隔筋。
在一种可能的实现方式中,至少两个弯折管状通道之间嵌入散热翅片。
第四方面,本申请还提供了一种散热器,散热器包括基板和散热翅片。散热翅片用于对基板进行接触式散热。基板包括均温腔,均温腔内填充可进行气液相变的工质。基板中部下侧位置用于设置待散热的器件。
在一种可能的实现方式中,均温腔内还设置有散热翅片。
第五方面,本申请还提供了另一种散热器,散热器基板、均温板和散热翅片。散热翅片用于对基板进行接触式散热,均温板的内腔填充有可进行气液相变的工质。均温板固定 设置在基板上,且均温板中部下侧位置用于设置待散热的器件,或,均温板固定设置在基板内腔且基板中部下侧位置用于设置待散热的器件。
在一种可能的实现方式中,均温板内还设置有散热翅片。
第六方面,本申请还提供了一种光伏发电系统,光伏发电系统包括以上实现方式提供的功率变换器,还包括光伏单元。光伏单元包括至少一个光伏组;光伏单元用于将光能转换为直流电。
附图说明
图1为一种基于集中式逆变器的光伏发电系统的示意图;
图2为一种基于组串式逆变器的光伏发电系统的示意图;
图3为本申请实施例提供的一种示意性的组串式逆变器的示意图;
图4为一种基于集中式逆变器及MPPT升压汇流箱的光伏发电系统的示意图;
图5为本申请实施例提供的一种示意性的MPPT升压汇流箱的示意图;
图6为一种基于光伏优化器及组串式逆变器的光伏发电系统的示意图;
图7为本申请实施例提供的一种功率变换器的侧视图;
图8为本申请实施例提供的图7所示功率变换器对应的主视图;
图9为本申请实施例提供的图8中的A-A’剖面图;
图10为本申请实施例提供的另一种功率变换器的主视图;
图11为本申请实施例提供的图10中的A-A’剖面图;
图12为本申请实施例提供的功率变换器的风道板闭合时的主视图;
图13为本申请实施例提供的功率变换器的风道板打开时的主视图;
图14为本申请实施例提供的图12中的A-A’剖面图;
图15为本申请实施例提供的又一种功率变换器的侧视图;
图16为本申请实施例提供的图15所示功率变换器的主视图;
图17为本申请实施例提供的图16的B-B’剖面图;
图18为本申请实施例提供的又一种功率变换器的主视图;
图19为本申请实施例提供的图18的B-B’剖面图;
图20为本申请实施例提供的一种热交换器的示意图;
图21为本申请实施例提供的另一种热交换器的示意图;
图22为本申请实施例提供的一种散热器的结构示意图;
图23为本申请实施例提供的图22的C-C’剖面图;
图24为本申请实施例提供的另一种散热器的结构示意图;
图25为本申请实施例提供的均温板的剖面图;
图26为本申请实施例提供的一种光伏发电系统的示意图。
具体实施方式
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面首先介绍本申请提供的技术方案的应用场景。
下面首先说明基于集中式逆变器的光伏发电系统。
参见图1,该图为一种基于集中式逆变器的光伏发电系统的示意图。
该光伏发电系统包括光伏单元10、直流汇流箱11、集中式逆变器12以及变压器14。
其中,每个光伏单元10包括一个或多个光伏组件。其中,光伏组件为由太阳能电池片串联或并联封装构成的直流电源,用于将光能转换为电能。
当光伏单元10包括多个光伏组件时,多个光伏组件可以通过正、负极首尾串联的方式形成一个光伏组串,以形成光伏单元10;多个光伏组件也可以先串联形成多个光伏组串,多个光伏组串再并联以形成光伏单元10。
集中式逆变器12包括直流(Direct Current,DC)-交流(Alternating Current,AC)电路,也可以称为逆变电路,用于将至少一个直流汇流箱11输入的直流电逆变为交流电。集中式逆变器12的功率都相对较大,因此采用机柜式设计,集中式逆变器12一般设置在机房或集装箱13中。光伏电站中一般采用500kW功率以上的集中式逆变器。
集中式逆变器12输出的交流电进过变压器14变压后汇入交流电网15。
下面说明基于组串式逆变器的光伏发电系统。
参见图2,该图为一种基于组串式逆变器的光伏发电系统的示意图。
该光伏发电系统包括光伏单元10、组串式逆变器16、交流汇流箱17以及变压器14。
组串式逆变器16的直流侧接入一个或多个光伏单元10,实际应用中,组串式逆变器11的直流侧一般接入多个光伏单元10。
下面具体介绍组串式逆变器的实现方式。
参见图3,该图为本申请实施例提供的一种示意性的组串式逆变器的示意图。
组串式逆变器16的功率相对集中式逆变器小,多采用室外模块化设计,包括两级功率变换电路,第一级为DC-DC电路161,一般升压电路,第二级为DC-AC电路121,即逆变电路。
其中,组串式逆变器16中可以包括多路DC-DC电路161,多路DC-DC电路161的正输出端口并联接入DC-AC电路121的直流侧的正输入端口,多路DC-DC电路161的负输出端口并联接入DC-AC电路121的直流侧的负输入端口。
DC-AC电路121的交流出线端为组串式逆变器16的输出端。
每路DC-DC电路161与至少一路光伏单元10相连,每路DC-DC电路161的正输入端口与光伏单元10的正极相连,每路DC-DC电路161的负输入端口与光伏单元10的负极相连。
多路组串式逆变器16输出的交流电进过交流汇流箱12后汇集,再通过变压器14变压后接入交流电网15。
下面说明基于集中式逆变器及最大功率点跟踪(Maximum power point tracking,MPPT)升压汇流箱的光伏发电系统,该光伏发电系统又称为集散式光伏发电系统。
参见图4,该图为一种基于集中式逆变器及MPPT升压汇流箱的光伏发电系统的示意图。
图示光伏发电系统包括光伏单元10、MPPT升压汇流箱18、集中式逆变器21以及变压器14。
其中,MPPT升压汇流箱18为一种升压变流器,下面结合附图具体说明。
参见图5,该图为本申请实施例提供的一种示意性的MPPT升压汇流箱的示意图。
MPPT升压汇流箱20一般包括至少两路DC-DC电路161。其中每路DC-DC电路161分别与至少一路光伏单元10相连。每路DC-DC电路161的正输入端口与光伏单元10的正极相连,DC-DC电路161的负输入端口与光伏单元10的负极相连。
各路DC-DC电路161的正输出端口并联接入输出直流母线正极,各路DC-DC电路161的负输出端口并联接入输出直流母线负极。
直流母线的正、负极分别作为MPPT升压汇流箱20的正、负输出端口,经直流线缆分别与后级的集中式逆变器12的正、负输入端口相连。
集中式逆变器12用于将直流侧接入的单路或多路彼此并联的直流输入转换为交流输出,一般采用DC-AC单级功率变换。集中式逆变器21输出的交流电经变压器14后汇入交流电网15。
集中式逆变器12一般与光伏单元10的电气距离较远,多采用室外机柜式设计,或者室外模块化集成。
下面说明基于光伏优化器及组串式逆变器的光伏发电系统。
参见图6,该图为一种基于光伏优化器及组串式逆变器的光伏发电系统的示意图。
图示光伏发电系统包括光伏单元10、光伏优化器19、组串式逆变器16、变压器14以及交流电网15。
其中,光伏优化器19为一种DC-DC变换器,其输入侧接入光伏单元10,输出侧通过串联方式接入组串式逆变器16,在另一些实施例中也可以接入集中式逆变器,光伏优化器19用于升高或降低光伏单元10的输出电压。
光伏优化器19包括DC-DC电路,该DC-DC电路可以为降压(BUCK)电路、升压(BOOST)电路或BUCK-BOOST电路。DC-DC电路的正输入端口与光伏单元10的正极相连,DC-DC电路的负输入端口与光伏单元10的负极相连。
DC-DC电路的正极与输出直流母线正极相连,作为光伏优化器19的正输出端口;DC-DC电路的负极与输出直流母线负极相连,作为光伏优化器19的负输出端口。
应用光伏优化器19的光伏发电系统一般将多个光伏优化器19串联以形成子串。
例如,N个光伏优化器首尾串联,即第i个光伏优化器的正输出端口与第i-1个光伏优化器的负输出端口相连,第i个光伏优化器的负输出端口与第i+1个光伏优化器的正输出端口相连,i=2,3,…,N-1。第1个光伏优化器的正输出端口作为光伏优化器子串的正输出端口,第N个光伏优化器的负输出端口作为光伏优化器子串的负输出端口。光伏优化器子串的输出端经直流线缆与后级组串式逆变器,或集中式逆变器的输入端相连。
组串式逆变器16输出的交流电经变压器14变压后汇入交流电网15。
随着光伏发电系统输出功率的增加,光伏单元10的总输出功率不断增加,因此以 上各类光伏发电系统中使用的集中式逆变器、MPPT升压汇流箱和组串式逆变器等功率变换器的功率密度持续增加成为必然趋势,由此带来的散热挑战也越来越大。
目前的功率变换器散热时将磁性元件裸露于低防护腔中进行通风散热,或者灌胶设置于金属壳体内进行散热;将功率半导体器件裸露于低防护腔中进行通风散热;其他器件设置在高防护腔内进行密闭保护,通过高防护腔壁面对外自然散热。
但该方案将功率半导体器件和磁性元件等环境敏感元件直接裸露于低防护腔,可靠性差且散热能力有限。此外,对于采用将磁性元件灌胶设置于金属壳体内的方案,随着功率变换器的功率不断增加,磁性元件的热耗逐渐增加,而灌封胶导热系数低且热阻大,使得散热效果无法有效提升。
为了解决上述技术问题,本申请提供了一种功率变换器、热交换器、散热器及光伏发电系统,将功率半导体器件和磁性元件设置在密闭腔内进行散热,提升了功率变换器的可靠性,对于热耗密度高的功率半导体器件,采用散热器进行散热,提升了散热效率。对于磁性元件,可以采用散热器或者热交换器进行散热。并且将使用的散热器的散热翅片或热交换器设置在散热腔内,通过散热腔和密闭腔的分体设置,在保障内部器件高防护等级的同时,实现了高效散热。
下面结合附图对本申请的技术方案进行详细说明。
本申请以下说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接连接,也可以通过中间媒介间接连接。
本申请实施例中的磁性元件的一种典型示例为电感器。
下面首先说明磁性元件通过热交换器进行散热时的方案。
一并参见图7-图9。其中,图7为本申请实施例提供的一种功率变换器的侧视图;图8为本申请实施例提供的图7所示功率变换器对应的主视图;图9为本申请实施例提供的图8中的A-A’剖面图。
图示功率变换器200包括:磁性元件211、半导体器件214、密闭腔210和散热腔220。
其中,功率半导体器件214和磁性元件211设置在密闭腔210内。
功率半导体器件214通过第一散热器215进行散热,且第一散热器215的散热翅片位于散热腔220。
磁性元件211通过第一热交换器212进行散热,第一热交换器212位于散热腔220,下面具体说明。
密闭腔210包括第一风道213,磁性元件211设置于第一风道213内。第一风道213用于约束对磁性元件211进行散热的气体的流动方向。在一种可能的实现方式中,第一风道213为密闭的风道。
参见图8,第一风道的第一端为送风口2131,送风口2131连接第一热交换器212的第一端,用于接收来自第一热交换器212的气体。第一风道的第二端为回风口2132,回风口 2132连接第一热交换器212的第二端,用于将气体送入第一热交换器212。
送风口2131或回风口2132处还设置至少一颗第一内循环风扇2133,用于控制气流由送风口2131开始,沿第一风道的内腔到达回风口2132,以对磁性元件211进行冷却。
在一些实施例中,送风口2131和回风口2132还可以均设置至少一颗第一内循环风扇2133,以提升散热效果。
此时气流的流动回路可以参见图9,气体由送风口2131开始,沿第一风道流经磁性元件211,与磁性元件211换热后变成高温气体,经由回风口2132回到第一换热器212中,与外部空气(或其他冷却介质)完成热交换后变回低温气体,再经由送风口2132重新回到第一风道内部,如此循环。
密闭腔210内还包括高防护等级元件216,例如单板电路和控制器等热耗密度低的器件,密闭腔210保证了高防护等级元件216的安全性。
本申请实施例不具体限定功率半导体器件的类型,在一些实施例中,功率半导体器件可以为绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Filed Effect Transistor,MOSFET,简称MOS管)、碳化硅场效应管(Silicon Carbide Metal Oxide Semiconductor,SiC MOSFET)等。
本申请实施例中的功率变换器200具体可以为集中式逆变器、组串式逆变器或MPPT升压汇流箱,本申请实施例对此不做具体限定。
其中,第一风道213的两端与第一热交换器212的两端连接时,可以两端均采用密封连接的方式;或者,其中一端密封连接,另一端通过密闭腔的内腔实现连接,此时第一风道213的端口与第一热交换器212的端口位置应较为靠近;或者,第一风道213的两端与第一热交换器212的两端均通过密闭腔的内腔实现连接,此时第一风道213的两侧端口与第一热交换器212的两侧端口位置均应当应较为靠近。
综上所述,利用本申请实施例提供的方案,将功率半导体器件和磁性元件设置在密闭腔内进行散热,提升了功率变换器的可靠性,对于热耗密度高的功率半导体器件,采用散热器进行散热,提升了散热效率,磁性元件采用热交换器进行散热。并且将使用的散热器的散热翅片和热交换器设置在散热腔内,通过散热腔和密闭腔的分体设置,在保障内部器件高防护等级的同时,实现了高效散热。
以上实施例中的功率变换器200为单风道设计,为了保证第一风道213中的风扇失效时,第一热交换器212还可以继续为磁性元件211进行散热,本申请还提供了另一种功率变换器,采用了双风道设计,下面结合附图具体说明。
一并参见图10和图11。其中,图10为本申请实施例提供的另一种功率变换器的主视图;图11为本申请实施例提供的图10中的A-A’剖面图。
图示密闭腔210内还包括第二风道213b,第二风道213b的第一端与第一风道213的第一端共用,第二风道213b的第二端与第一风道213的内腔连通。
第一内循环风扇2133控制气流由送风口2131开始,沿第一风道213流经磁性元件211,与磁性元件211换热后变成高温气体,经由回风口2132回到第一换热器212中。气体循环 方向可以参见图11中的实线箭头。
第二风道213b还设置至少一颗第二内循环风扇2133b,用于控制气流由第二风道213b开始,经由图11中虚线箭头所示的路径接入第一风道213,再沿第一风道213的内腔到达回风口2132。
此时,当第一风道213中的第一内循环风扇2133部分失效或者全部失效时,第二内循环风扇2133b可以启动,以使第一热交换器212依然可以正常散热。
下面结合附图说明另一种采用了回弹结构的功率变换器。
一并参见图12-图14。其中,图12为本申请实施例提供的功率变换器的风道板闭合时的主视图;图13为本申请实施例提供的功率变换器的风道板打开时的主视图;图14为本申请实施例提供的图12中的A-A’剖面图。
图示的密闭腔包括第二风道213b。在一些实施例中,该第二风道213b包括密闭腔除第一风道213以外的其他密闭区域。在另一些实施例中,该第二风道213b为单独设置的风道。
第二风道213b的第一端与第一风道213的第一端共用,第二风道213b的第二端与密闭腔的内腔连通。
第一风道213的腔壁上包括多组回弹结构,如图中的虚线框所示,每组回弹结构包括风道板218和腔壁开孔。
本申请实施例对回弹结构的具体数量不作具体限定,可以根据实际的第一风道213的腔壁长度决定。
风道板218回弹时的受力方向指向第一风道213内部,风道板218的面积大于腔壁开孔的面积,且风道板218能够完全覆盖对应的腔壁开孔,此时当风道板218合入对应的腔壁开孔后,能够使第一风道213处于封闭的状态。
第二风道213b还设置至少一颗第二内循环风扇2133b。
当第一风道213的第一内循环风扇2133正常工作时,风道板218在气体压力的作用下,克服自身弹力并合入对应的腔壁开孔,气流由送风口2131开始,沿第一风道213流经磁性元件211,与磁性元件211换热后变成高温气体,经由回风口2132回到第一换热器212中,此时气体流动循环可以参见图14中的实线箭头所示。
参见图13,当第一内循环风扇2133部分故障或全部故障时,风道板218回弹,第一风道213的腔壁出现开孔,第二内循环风扇2133b控制气流由第二风道213b开始,依次经过密闭腔的内腔、第一风道213的内腔后到达回风口2132,实现对磁性元件211的散热。
第二内循环风扇2133b还可以对密闭腔内的高防护等级元件216进行散热。
在一些实施例中,每组回弹结构还包括止位结构217,止位结构217可以为止位柱或止位钉,用于当风道板218回弹时,限制风道板218的回弹位置。
在一些实施例中,为了使第一内循环风扇2133正常工作时风道板218不会回弹,回弹结构的位置靠近第一内循环风扇2133,以确保风道板218所受气体压力足够克服回弹力。
以上各实施例提供的功率变换器采用了第一热交换器对磁性元件进行散热,采用第一散热器对功率半导体器件进行散热。在散热腔内,第一散热器的散热翅片与第一热交换器可以采用串联风道、并联风道或相互独立的风道进行散热,或者采用冷却介质进行散热,本申请实施例对此不做具体限定。
下面说明采用散热器对磁性元件进行散热,并采用热交换器对高防护等级元件进行散热时的实现方式。
一并参见图15-17。其中,图15为本申请实施例提供的又一种功率变换器的侧视图;图16为本申请实施例提供的图15所示功率变换器的主视图;图17为本申请实施例提供的图16的B-B’剖面图。
该功率变换器200的功率半导体器件214通过第一散热器215进行散热,且第一散热器215的散热翅片位于散热腔220。
功率变换器200的磁性元件211通过第二散热器215b进行散热,第二散热器215b的散热翅片位于散热腔220。
在一些实施例中,磁性元件211可以设置在金属外壳中,再将金属外壳固定至第二散热器215b。在另一些实施例中,磁性元件211可以直接灌胶固定于第二散热器215b。在又一些实施例中,磁性元件211可以通过导热垫贴到第二散热器215b上。
为了提高散热效率,磁性元件211外可以覆盖热界面材料(Thermal Interface Material,TIM),本申请对热界面材料的类型不做具体限定。
功率变换器200的高防护等级元件216设置在密闭腔210内,高防护等级元件216通过第二热交换器212b进行散热,且第二热交换器212b位于散热腔220。
此时,密闭腔210的第一端设置有第三风道213c,第三风道213c的第一端为送风口2131,第三风道213c的第二端与密闭腔210的内腔连通。
密闭腔210的第二端为回风口2132。
送风口2131连接第二热交换器212b的第一端,回风口2132连接第二热交换器212b的第二端。
送风口2131或回风口2132处还设置至少一颗第三内循环风扇2133c,用于控制气流由送风口2131开始,沿密闭腔的内腔与高防护等级元件216完成换热后变成高温气体,再经由回风口2132进入第二热交换器212b,进而实现对高防护等级元件216的散热,此时气体循环路径可以参见图17中的实现箭头所示。
综上所述,利用本申请实施例提供的功率变换器,将功率半导体器件和磁性元件设置在密闭腔内进行散热,并且通过热交换器对高防护等级元件进行了散热,通过散热腔和密闭腔的分体设置,在保障内部器件高防护等级的同时,实现了高效散热。
以上实施例中的功率变换器200为单风道设计,为了保证第三风道213c中的风扇失效时,第二热交换器212b还可以继续为高防护等级元件进行散热,本申请还提供了另一种功率变换器,采用了双风道设计,下面结合附图具体说明。
一并参见图18和图19。其中,图18为本申请实施例提供的又一种功率变换器的主视图;图19为本申请实施例提供的图18的B-B’剖面图。
图示功率变换器与图15-17的区别在于,密闭腔210的第一端设置有第三风道213c,密闭腔210的第二端设置有第四风道213d。
第三风道213c的第一端为送风口2131,第三风道213c的第二端与密闭腔210的内腔连通。
第四风道213d的第一端为回风口2132,第四风道213d的第二端与密闭腔210的内腔连通。
送风口2131处设置至少一颗第三内循环风扇2133c,回风口2132处设置至少一颗第四内循环风扇2133d。
第三内循环风扇2133c和第四内循环风扇2133d用于控制气流由送风口2131开始,沿密闭腔的内腔到达回风口2132,此时气体循环路径可以参见图19中的实现箭头所示。
第三内循环风扇2133c和第四内循环风扇2133d可以同时启动,或启动其中的一个,例如启动第三内循环风扇2133c,关闭第四内循环风扇2133d。当启动的风扇出现故障时,再启动另一个风扇以确保高防护等级元件的散热不受影响。
以上实施例中的第一散热器215的散热翅片、第二散热器215b的散热翅片与第二热交换器212b在散热腔220内可以采用串联风道、并联风道或相互独立的风道进行散热,还可以采用冷却介质进行散热,本申请实施例对此不做具体限定。
利用本申请实施例提供的热交换器,提升了对高防护等级元件或磁性元件进行散热时的散热效率。
基于以上实施例提供的功率变换器,本申请实施例还提供了一种热交换器,该热交换器可以用于对磁性元件进行散热,或对高防护元件进行散热,即以上实施例中的第一热交换器和第二热交换器可以采用该热交换器,下面结合附图具体说明。
参见图20,该图为本申请实施例提供的一种热交换器的示意图。
热交换器包括第一集气腔31、第二集气腔32和连接部33。
连接部33包括至少一根管状通道。实际应用中,为了提升散热效果,一般包括多根管状通道。
管状通道采用型材挤出成型,也可以采用板材卷成管状通道,本申请实施例不做具体限定。在一种可能的实现方式中,管状通道为扁平的长方体通道。
连接部33用于连通第一集气腔31和第二集气腔32。
第一集气腔31通过第一密封法兰34连接送风口,第二集气腔32通过第二密封法兰35连接回风口。
集气腔侧壁开有与管状通道数量和尺寸匹配的孔,管状通道插入集气腔。
管状通道内部可以设置隔筋331以提升散热效果。
当连接部33包括多个管状通道时,两个相邻的管状通道之间可以嵌入散热翅片37,以提升散热效果。
通过焊接管状通道、集气腔和外部翅片形成一体。
参见图21,该图为本申请实施例提供的另一种热交换器的示意图。
图示热交换器包括第一密封法兰34、第二密封法兰35和至少两根弯折管状通道38。
至少两根弯折管状通道38的第一端通过第一密封法兰34连接送风口,至少两根弯折管状通道38的第二端通过第二密封法兰35连接回风口。
弯折管状通道采用型材挤出成型,也可以采用板材卷成管状通道,本申请实施例不做具体限定。在一种可能的实现方式中,弯折管状通道为扁平的长方体通道,并且在其两端进行弯折。
在一些实施例中,第一密封法兰34和第二密封法兰35上开有与弯折管状通道数量和尺寸匹配的孔,弯折管状通道两端能够插入密封法兰对应孔位。
弯折管状通道38内部设置隔筋331以提升散热效果。
弯折管状通道38之间嵌入散热翅片以提升散热效果。
通过焊接使得弯折管状通道、密封法兰和外部翅片形成一体。
利用本申请实施例提供的热交换器,提升了对高防护等级元件或磁性元件进行散热时的散热效率。
基于以上实施例提供的功率变换器,本申请实施例还提供了一种散热器,下面结合附图具体说明。
一并参见图22和图23。其中,图22为本申请实施例提供的一种散热器的结构示意图;图23为本申请实施例提供的图22的C-C’剖面图。
散热器40包括基板41和散热翅片42。
散热翅片42用于对基板41进行接触式散热。
基板41包括均温腔,均温腔内填充可进行气液相变的工质。
基板中部下侧位置用于设置待散热的器件,即磁性元件211和功率半导体器件214等热耗密度高的器件。
在一些实施例中,均温腔内还设置有内部散热翅片412,以加快基板均温的速度。
均温腔内的散热翅片、基板底部和基板顶部腔体盖板411通过焊接成一体,抽真空后,工质通过预留注液口注入均温腔内,最后再封闭注液口。
外部的散热翅片42可以通过挤型、铲齿等方式一体成型,也可以通过焊接方式连接。内腔底部的工质受热发生气液相变,在顶部冷凝回流实现整个基板均温。
下面说明另一种散热器的实现方式。
一并参见图24和图25。其中,图24为本申请实施例提供的另一种散热器的结构示意图;图23为本申请实施例提供的均温板的剖面图。
该散热器40包括基板41、散热翅片42和均温板43。
散热翅片42用于对基板41进行接触式散热;
本申请实施例以均温板43设置在基板41上为例进行说明。
均温板43的内腔填充有可进行气液相变的工质。
均温板43中部下侧位置用于设置待散热的器件,即磁性元件211和功率半导体器件214等热耗密度高的器件。
在一些实施例中,均温板43内还设置有散热翅片433以提升均温速度。
参见图25,均温板43可以通过螺钉或者焊接方式安装到基板上。均温板43包括上盖板431和下盖板432。
上盖板431、下盖板432和内部的散热翅片433焊接成一体,抽真空后,工质通过预留注液口注入均温板腔内,最后再封闭注液口。外部的散热翅片42可以通过挤型、铲齿等方式一体成型,也可以通过焊接方式连接固定。工作时,待散热的器件安装在均温板43中部偏下位置,均温板43内腔底部的工质受热发生气液相变,在顶部冷凝回流实现对整个基板均温。
在另一些实现方式中,均温板43可以通过螺钉或者焊接方式安装到基板41的内腔,此时基板41中部下侧位置用于设置待散热的器件。
利用本申请实施例提供的散热器,提升了基板的均温速度,进而提升了对功率半导体器件、磁性元件以及其它热耗密度高的器件进行散热时的散热效率。
基于以上实施例提供的功率变换器,本申请实施例还提供了一种光伏发电系统,下面结合附图具体说明。
参见图26,该图为本申请实施例提供的一种光伏发电系统的示意图。
光伏发电系统26包括以上实施例提供的功率变换器200,还包括光伏单元10。
本申请实施例对光伏单元的数量不做具体限定。
光伏单元10包括至少一个光伏组件。当光伏单元10包括多个光伏组件时,多个光伏组件可以通过正、负极首尾串联的方式形成一个光伏组串,以形成光伏单元10;多个光伏组件也可以先串联形成多个光伏组串,多个光伏组串再并联以形成光伏单元10。
光伏单元10用于将光能转换为直流电。
关于功率变换器200的具体实现方式可以参见以上实施例中的相关说明,本申请实施例在此不再赘述。
在一些实施例中,该功率变换器200为集中式逆变器,此时光伏发电系统包括直流汇流箱或MPPT升压汇流箱,以下统称汇流箱,光伏单元先将直流电汇入汇流箱,集中式逆变器再将至少一个汇流箱输入的直流电逆变为交流电。
在另一些实施例中,该功率变换器200为组串式逆变器,此时功率变换器200的输入端可以直接连接光伏单元,或者连接光伏优化器组串。
在又一些实施例中,该功率变换器200为MPPT升压汇流箱,此时功率变换器200的输入端可以直接连接光伏单元。
综上所述,该光伏发电系统利用了本申请实施例提供的功率变换器,该功率变换器将功率半导体器件和磁性元件设置在密闭腔内进行散热,提升了功率变换器的可靠性,对于热耗密度高的功率半导体器件,采用散热器进行散热,提升了散热效率。对于磁性元件,可以采用散热器或者热交换器(又称换热器)进行散热。将使用的散热器的散热翅片或热交换器设置在散热腔内,通过散热腔和密闭腔的分体设置,在保障内部器件高防护等级的同时,实现了高效散热。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (28)

  1. 一种功率变换器,其特征在于,所述功率变换器包括功率半导体器件、磁性元件、密闭腔和散热腔;
    所述功率半导体器件和磁性元件设置在所述密闭腔内;
    所述功率半导体器件通过第一散热器进行散热,且所述第一散热器的散热翅片位于所述散热腔;
    所述磁性元件通过第二散热器进行散热,所述第二散热器的散热翅片位于所述散热腔;
    或,所述磁性元件通过第一热交换器进行散热,所述第一热交换器位于所述散热腔。
  2. 根据权利要求1所述的功率变换器,其特征在于,所述磁性元件通过第一热交换器进行散热,所述密闭腔包括第一风道,所述磁性元件设置于所述第一风道内;
    所述第一风道的第一端为送风口,所述第一风道的第二端为回风口,所述送风口连接所述第一热交换器的第一端,所述回风口连接所述第一热交换器的第二端;
    所述送风口或回风口处还设置至少一颗第一内循环风扇,用于控制气流由所述送风口开始,沿所述第一风道的内腔到达所述回风口。
  3. 根据权利要求2所述的功率变换器,其特征在于,所述密闭腔内还包括第二风道,所述第二风道的第一端与所述第一风道的第一端共用,所述第二风道的第二端与所述第一风道的内腔以及所述密闭腔的内腔连通;
    所述第二风道还设置至少一颗第二内循环风扇,用于控制气流由所述第二风道开始,沿所述第一风道的内腔到达所述回风口。
  4. 根据权利要求2所述的功率变换器,其特征在于,所述密闭腔还设置至少一颗第二内循环风扇;
    所述第一风道的腔壁上包括多组回弹结构,每组回弹结构包括风道板和腔壁开孔;
    所述风道板回弹时的受力方向指向所述第一风道内部,所述风道板的面积大于所述腔壁开孔的面积,且所述风道板能够完全覆盖所述腔壁开孔;
    所述至少一颗第二内循环风扇,用于当所述风道板回弹时,控制气流经过所述密闭腔的内腔、所述第一风道的内腔后到达所述回风口。
  5. 根据权利要求4述的功率变换器,其特征在于,每组所述回弹结构还包括止位结构,所述止位结构用于当所述风道板回弹时,限制所述风道板的回弹位置。
  6. 根据权利要求2-5中任一项所述的功率变换器,其特征在于,所述第一散热器的散热翅片与所述第一热交换器在所述散热腔内采用串联风道、并联风道或相互独立的风道进行散热。
  7. 根据权利要求2-6中任意一项所述的功率变换器,其特征在于,所述第一热交换器包括第一集气腔、第二集气腔和连接部;
    所述连接部包括至少一根管状通道;
    所述至少一根管状通道用于连通所述第一集气腔和第二集气腔;
    所述第一集气腔通过第一密封法兰连接所述送风口,所述第二集气腔通过第二密封法兰连接所述回风口;
    所述至少一根管状通道内部设置隔筋。
  8. 根据权利要求7所述的功率变换器,其特征在于,所述连接部包括至少两根管状通道,所述至少两个管状通道之间嵌入散热翅片。
  9. 根据权利要求2-6中任意一项所述的功率变换器,其特征在于,所述第一热交换器包括第一密封法兰、第二密封法兰和至少两根弯折管状通道;
    所述至少两根弯折管状通道的第一端通过所述第一密封法兰连接所述送风口,所述至少两根弯折管状通道的第二端通过所述第二密封法兰连接所述回风口;
    所述至少两个弯折管状通道内部设置隔筋。
  10. 根据权利要求9所述的功率变换器,其特征在于,所述至少两个弯折管状通道之间嵌入散热翅片。
  11. 根据权利要求1所述的功率变换器,其特征在于,所述磁性元件通过第二散热器进行散热,所述功率变换器还包括高防护等级元件;
    所述高防护等级元件设置在所述密闭腔内;
    所述高防护等级元件通过第二热交换器进行散热,且所述第二热交换器位于所述散热腔。
  12. 根据权利要求11所述的功率变换器,其特征在于,所述密闭腔的第一端设置有第三风道,所述第三风道的第一端为送风口,所述第三风道的第二端与所述密闭腔的内腔连通;
    所述密闭腔的第二端为回风口;
    所述送风口连接所述第二热交换器的第一端,所述回风口连接所述第二热交换器的第二端;
    所述送风口或回风口处还设置至少一颗第三内循环风扇,用于控制气流由所述送风口开始,沿所述密闭腔的内腔到达所述回风口。
  13. 根据权利要求11所述的功率变换器,其特征在于,所述密闭腔的第一端设置有第三风道,所述密闭腔的第二端设置有第四风道;
    所述第三风道的第一端为送风口,所述第三风道的第二端与所述密闭腔的内腔连通;
    所述第四风道的第一端为回风口,所述第四风道的第二端与所述密闭腔的内腔连通;
    所述送风口处设置至少一颗第三内循环风扇,所述回风口处设置至少一颗第四内循环风扇;
    所述第三内循环风扇和所述第四内循环风扇用于控制气流由所述送风口开始,沿所述密闭腔的内腔到达所述回风口。
  14. 根据权利要求11-13中任意一项所述的功率变换器,其特征在于,所述第一散热器的散热翅片、所述第二散热器的散热翅片与所述第二热交换器在所述散热腔内采用串联风道、并联风道或相互独立的风道进行散热。
  15. 根据权利要求1-14中任一项所述的功率变换器,其特征在于,所述第一散热器和第二散热器包括:基板和散热翅片;
    所述散热翅片用于对所述基板进行接触式散热;
    所述基板包括均温腔,所述均温腔内填充可进行气液相变的工质;
    所述基板中部下侧位置用于设置待散热的器件。
  16. 根据权利要求15所述的功率变换器,其特征在于,所述均温腔内还设置有散热翅片。
  17. 根据权利要求1-14中任一项所述的功率变换器,其特征在于,所述第一散热器和第二散热器包括:基板、均温板和散热翅片;
    所述散热翅片用于对所述基板进行接触式散热;
    所述均温板的内腔填充有可进行气液相变的工质;
    所述均温板固定设置在所述基板上,且所述均温板中部下侧位置用于设置待散热的器件,或,所述均温板固定设置在所述基板内腔且所述基板中部下侧位置用于设置待散热的器件。
  18. 根据权利要求17所述的功率变换器,其特征在于,所述均温板内还设置有散热翅片。
  19. 根据权利要求1-18中任一项所述的功率变换器,其特征在于,所述功率变换器为集中式逆变器、组串式逆变器或最大功率点跟踪MPPT升压汇流箱。
  20. 一种热交换器,其特征在于,所述热交换器包括第一集气腔、第二集气腔和连接部;
    所述连接部包括至少一根管状通道;
    所述至少一根管状通道用于连通所述第一集气腔和第二集气腔;
    所述第一集气腔通过第一密封法兰连接送风口,所述第二集气腔通过第二密封法兰连接回风口;
    所述至少一根管状通道内部设置隔筋。
  21. 根据权利要求20所述的热交换器,其特征在于,连接部包括至少两根管状通道,所述至少两个管状通道之间嵌入散热翅片。
  22. 一种热交换器,其特征在于,所述热交换器包括第一密封法兰、第二密封法兰和至少两根弯折管状通道;
    所述至少两根弯折管状通道的第一端通过所述第一密封法兰连接送风口,所述至少两根弯折管状通道的第二端通过所述第二密封法兰连接回风口;
    所述至少两个弯折管状通道内部设置隔筋。
  23. 根据权利要求22所述的热交换器,其特征在于,所述至少两个弯折管状通道之间嵌入散热翅片。
  24. 一种散热器,其特征在于,所述散热器包括基板和散热翅片;
    所述散热翅片用于对所述基板进行接触式散热;
    所述基板包括均温腔,所述均温腔内填充可进行气液相变的工质;
    所述基板中部下侧位置用于设置待散热的器件。
  25. 根据权利要求24所述的散热器,其特征在于,所述均温腔内还设置有散热翅片。
  26. 一种散热器,其特征在于,所述散热器基板、均温板和散热翅片;
    所述散热翅片用于对所述基板进行接触式散热;
    所述均温板的内腔填充有可进行气液相变的工质;
    所述均温板固定设置在所述基板上,且所述均温板中部下侧位置用于设置待散热的器件,或,所述均温板固定设置在所述基板内腔且所述基板中部下侧位置用于设置待散热的器件。
  27. 根据权利要求26所述的散热器,其特征在于,所述均温板内还设置有散热翅片。
  28. 一种光伏发电系统,其特征在于,所述光伏发电系统包括权利要求1-19中任一项所述的功率变换器,还包括:光伏单元;
    所述光伏单元包括至少一个光伏组件;
    所述光伏单元,用于将光能转换为直流电。
PCT/CN2020/138161 2020-12-22 2020-12-22 一种功率变换器、热交换器、散热器及光伏发电系统 WO2022133694A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080031667.1A CN115176413A (zh) 2020-12-22 2020-12-22 一种功率变换器、热交换器、散热器及光伏发电系统
EP20966275.8A EP4254782A4 (en) 2020-12-22 2020-12-22 CURRENT CONVERTER, HEAT EXCHANGERS, HEAT SINKS AND PHOTOVOLTAIC POWER GENERATION SYSTEM
PCT/CN2020/138161 WO2022133694A1 (zh) 2020-12-22 2020-12-22 一种功率变换器、热交换器、散热器及光伏发电系统
US18/336,209 US20230328936A1 (en) 2020-12-22 2023-06-16 Power converter, heat exchanger, heat sink, and photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138161 WO2022133694A1 (zh) 2020-12-22 2020-12-22 一种功率变换器、热交换器、散热器及光伏发电系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/336,209 Continuation US20230328936A1 (en) 2020-12-22 2023-06-16 Power converter, heat exchanger, heat sink, and photovoltaic power generation system

Publications (1)

Publication Number Publication Date
WO2022133694A1 true WO2022133694A1 (zh) 2022-06-30

Family

ID=82156916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138161 WO2022133694A1 (zh) 2020-12-22 2020-12-22 一种功率变换器、热交换器、散热器及光伏发电系统

Country Status (4)

Country Link
US (1) US20230328936A1 (zh)
EP (1) EP4254782A4 (zh)
CN (1) CN115176413A (zh)
WO (1) WO2022133694A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202147075U (zh) * 2011-06-28 2012-02-22 维多利绍德机械科技(苏州)有限公司 一种回流焊空气冷却系统
US20120044647A1 (en) * 2010-08-20 2012-02-23 Hyundai Motor Company Structure for cooling parts of hev
CN207368891U (zh) * 2017-08-28 2018-05-15 山东奥太电气有限公司 一种小体积高性能的大功率光伏并网逆变器
CN111895521A (zh) * 2020-07-20 2020-11-06 青岛海尔空调电子有限公司 散热器和空调室外机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355149A (zh) * 2011-10-18 2012-02-15 华为技术有限公司 逆变器、密封风道和散热系统
EP2879475A1 (en) * 2013-11-27 2015-06-03 SMA Solar Technology AG Solar inverter
CN204168153U (zh) * 2014-09-25 2015-02-18 阳光电源股份有限公司 一种光伏逆变器及其机柜
WO2016157534A1 (ja) * 2015-04-03 2016-10-06 三菱電機株式会社 電子機器
EP3079451B1 (en) * 2015-04-09 2017-08-02 ABB Schweiz AG Cooled power conversion assembly
CN109361240A (zh) * 2018-12-10 2019-02-19 阳光电源股份有限公司 功率柜、光伏并网系统和集装箱
CN111327208B (zh) * 2018-12-14 2022-06-03 台达电子工业股份有限公司 具散热机制的逆变器装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120044647A1 (en) * 2010-08-20 2012-02-23 Hyundai Motor Company Structure for cooling parts of hev
CN202147075U (zh) * 2011-06-28 2012-02-22 维多利绍德机械科技(苏州)有限公司 一种回流焊空气冷却系统
CN207368891U (zh) * 2017-08-28 2018-05-15 山东奥太电气有限公司 一种小体积高性能的大功率光伏并网逆变器
CN111895521A (zh) * 2020-07-20 2020-11-06 青岛海尔空调电子有限公司 散热器和空调室外机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254782A4 *

Also Published As

Publication number Publication date
EP4254782A1 (en) 2023-10-04
US20230328936A1 (en) 2023-10-12
EP4254782A4 (en) 2024-01-17
CN115176413A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2020155502A1 (zh) 冷却散热箱体及散热控制方法
CN209358435U (zh) 一种紧凑型svg功率单元
US20200187391A1 (en) Power Cabinet, Grid-Connected Photovoltaic System And Container
CN201690342U (zh) 逆变器风冷散热系统结构
CN106329951A (zh) 风电变流器功率柜
CN208368494U (zh) 模块化多电平换流器半桥功率单元
US10251319B2 (en) Heat radiation apparatus using modular cooling apparatus
WO2022133694A1 (zh) 一种功率变换器、热交换器、散热器及光伏发电系统
WO2024045981A1 (zh) 一种功率设备及光伏系统
CN208597219U (zh) 一种机箱及电气设备
CN203040087U (zh) 用于逆变器的散热装置和太阳能逆变器
CN112449555A (zh) 一种大功率逆变器用主动热虹吸散热系统
CN210016794U (zh) 耗热型散热装置
CN209449127U (zh) 一种高频电源散热装置
CN209805206U (zh) 一种电子设备和包含其的电气柜
CN207743846U (zh) 变频器
CN218679762U (zh) 一种逆变器组串散热板
CN103259421A (zh) 一种光伏逆变器
CN219881623U (zh) 一种水冷焊接电源的冷却系统
CN215774072U (zh) 一种模组式变流器风冷散热系统
CN220629857U (zh) 逆变器和储能电源
CN211089434U (zh) 一种改进的微波变频电源组件及散热结构
CN217606336U (zh) 一种水冷散热底座
CN217011541U (zh) 一种具有独立风道结构的充电模块
CN111077971B (zh) 一种电子设备用散热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020966275

Country of ref document: EP

Effective date: 20230626

NENP Non-entry into the national phase

Ref country code: DE