WO2024045981A1 - 一种功率设备及光伏系统 - Google Patents

一种功率设备及光伏系统 Download PDF

Info

Publication number
WO2024045981A1
WO2024045981A1 PCT/CN2023/110164 CN2023110164W WO2024045981A1 WO 2024045981 A1 WO2024045981 A1 WO 2024045981A1 CN 2023110164 W CN2023110164 W CN 2023110164W WO 2024045981 A1 WO2024045981 A1 WO 2024045981A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
opening
heat
heat dissipation
fin
Prior art date
Application number
PCT/CN2023/110164
Other languages
English (en)
French (fr)
Inventor
孙发明
蒙浩
惠晓卫
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024045981A1 publication Critical patent/WO2024045981A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor

Definitions

  • This application relates to the field of heat dissipation technology, and in particular to a power device and a photovoltaic system.
  • the inverter chassis mainly relies on natural heat dissipation from the walls of the chassis.
  • this heat dissipation method has limited heat dissipation capacity, resulting in the inability to effectively cool down the interior of the chassis, thus affecting the life and reliability of internal components, and thus affecting the overall inverter. service life.
  • This application provides a power device and a photovoltaic system to improve the heat dissipation performance of the power device and thereby improve the reliability of the power device.
  • the present application provides a power device, which may include a housing and a heat dissipation device.
  • a partition is provided in the housing, and the partition can divide the housing into a first cavity and a second cavity.
  • a first opening and a second opening are provided on the partition, and the first opening and the second opening communicate with the first cavity and the second cavity respectively.
  • the first cavity is provided with a device to be heat dissipated
  • the second cavity is provided with an air inlet and an air outlet.
  • the air inlet and the air outlet can be arranged oppositely along the first direction.
  • the heat dissipation device may include a first fin disposed in the second cavity, the surface of the first fin is disposed toward the partition, and a channel is disposed in the first fin, and the channel may penetrate the first fin in the second direction, Both ends of the channel can be connected with the first opening and the second opening respectively.
  • the minimum angle between the first direction and the second direction is greater than 0° and less than or equal to 90°.
  • an air circulation loop can be formed between the inside of the first cavity and the channel of the first fin, so that the air in the first cavity can communicate with the air flowing through the surface of the first fin during the circulation process.
  • Heat exchange can effectively improve the heat dissipation effect inside the first cavity, thereby reducing the risk of component failure inside the first cavity and improving the reliability of the power equipment.
  • the first direction may be a height direction of the power device
  • the second direction may be a width direction of the power device
  • the number of first fins may be multiple, and air ducts extending along the first direction may be formed between adjacent first fins, which helps to improve the distance between the first fins and the inlet The heat exchange efficiency of the air in the second cavity can thereby improve the heat dissipation effect inside the first cavity.
  • the heat dissipation device may further include a first flow guide member and a second flow guide member disposed in the second cavity.
  • One end of the first flow guide member is connected to the first opening, and the other end is connected to the first flow guide member.
  • One end of the channel of the fin is connected, one end of the second flow guide member is connected with the second opening, and the other end is connected with the other end of the channel of the first fin.
  • the first flow guide member and the second flow guide member can also play a role in supporting and fixing the first fin, thereby improving the structural stability of the heat dissipation device. sex.
  • the device to be heat dissipated in the first cavity may include a first device to be heat dissipated, and the first device to be heat dissipated is disposed close to the partition.
  • the heat dissipation device may also include a base plate and a plurality of second fins disposed in the second housing.
  • the base plate is disposed on the partition, and the base plate is in thermal conductive contact with the first device to be heat dissipated.
  • the second fins are disposed on the base plate away from the partition. One side, and the second fins extend in a direction away from the partition, and an air channel extending in the first direction can be formed between two adjacent second fins.
  • the heat generated by the first device to be heat-dissipated when working can be transferred to the substrate, and transferred to the second fin through the substrate, and further transferred from the second fin to the air flowing through its surface. In this way, the heat of the first device to be heat-dissipated can be realized. of heat dissipation.
  • the first device to be heat dissipated may specifically be a power device.
  • the first fin may be disposed on a side of the free end of each of the plurality of second fins away from the substrate to improve the structural compactness of the heat dissipation device.
  • the plurality of second fins can be divided into a first part and a second part, positioned in a direction away from the substrate.
  • the height of the second fin in the first part is less than the height of the second fin in the second part.
  • the first fin may be disposed on a side of the free end of each second fin in the first part away from the base plate. This design also improves the compactness of the heat sink.
  • the projection of the outer contour of the substrate on the surface of the separator may be located between the first opening and the second opening.
  • the area enclosed by the projection of the outer contour of the substrate on the surface of the partition can cover the first opening and the second opening.
  • the substrate can be provided with a first escape hole and a first escape hole at positions corresponding to the first opening and the second opening respectively.
  • the second escape hole, the end of the first flow guide member can pass through the first escape hole and communicate with the first opening, and the second flow guide member can pass through the second escape hole and communicate with the second opening.
  • an opening can be provided on the partition board at a position corresponding to the first heat dissipation device, and the first heat dissipation device can extend into the opening and make thermal contact with the substrate, which can improve the performance of the first heat dissipation device.
  • the heat exchange efficiency with the heat dissipation device further helps to improve the heat dissipation effect of the first device to be heat dissipated.
  • the heat dissipation device may also include a first fan disposed in the second cavity, with the air inlet side of the first fan being disposed toward the air inlet, and the air outlet side of the first fan being disposed toward the air outlet, so that The air circulation rate in the second cavity is increased, thereby improving the heat dissipation effect of the heat dissipation device.
  • the device to be heat dissipated in the first cavity may also include a second device to be heat dissipated and a third device to be heat dissipated.
  • the heat dissipation device also includes a second fan disposed in the first cavity.
  • the second heat dissipation component can be disposed between the first opening and the air inlet side of the second fan.
  • the third heat dissipation component can be disposed at the outlet of the second fan. between the wind side and the second opening, and the third component to be heat dissipated is located on the side of the first component to be heat dissipated away from the partition.
  • the low-temperature air can first pass through the second heat dissipation device, exchange heat with the second heat dissipation device, and then be blown by the second fan.
  • the third device to be heat-dissipated further exchanges heat with the third device to be heat-dissipated, and then flows from the second opening to the first fin, completing a cycle to achieve heat dissipation for each device to be heat-dissipated in the first cavity.
  • the heat dissipation device may further include a third flow guide member disposed in the first cavity, the third flow guide member is connected to the first opening, and the third flow guide member faces the third device to be heat dissipated.
  • the second device to be heat dissipated is arranged in the third air guide member, the second fan is arranged at the first air outlet, and the air inlet side of the second fan is arranged opposite to the first air outlet.
  • the second device to be heat dissipated can be restricted in a relatively closed space, reducing the risk of air on the outlet side of the second fan from flowing back to the vicinity of the second device to be heat dissipated, thus contributing to The heat dissipation effect on the second device to be heat dissipated is further improved.
  • the heat dissipation device may further include a third fan and a fourth flow guide member disposed in the first cavity, the fourth flow guide member is connected to the second opening, and the fourth flow guide member faces the first cavity.
  • a second air outlet is provided at the third heat dissipation device.
  • the third fan may be disposed at the second air outlet, with the air inlet side of the third fan facing the third device to be heat dissipated, and the air outlet side of the third fan facing the second air outlet.
  • the provision of the third fan and the fourth air guide member can further reduce the risk of air backflow to the attachment of the second device to be heat-dissipated, helping to improve the reliability of use of the second device to be heat-dissipated.
  • the second device to be heat dissipated may be an electrolytic capacitor plate
  • the third device to be heat dissipated may be an output plate
  • a fourth heat-dissipating component may also be disposed in the second cavity, and the fourth heat-dissipating component may be disposed on a side of the first fin facing the air outlet.
  • the fourth component to be heat dissipated may be a magnetic component. Since the protection requirements of magnetic devices are relatively low, placing them downstream of the heat dissipation path can also achieve a certain heat dissipation effect and ensure their normal operation.
  • this application also provides a photovoltaic system, which may include a battery panel and the power device in any possible implementation of the foregoing first aspect.
  • the panel can be used to convert solar energy into electrical energy
  • the power device can be used to power convert the current from the panel, or to power convert the voltage from the panel, so that the output power of the photovoltaic system is consistent with the external electrical equipment. power matches. Due to the better heat dissipation performance of the power equipment, the reliability of the photovoltaic system is also improved.
  • Figure 1 is a side cross-sectional view of a power device provided by an embodiment of the present application.
  • Figure 2 is a cross-sectional view of the power device shown in Figure 1 in a top view
  • FIG 3 is a partial structural diagram of the heat dissipation device shown in Figure 1;
  • Figure 4 is a side cross-sectional view of another power device provided by an embodiment of the present application.
  • Figure 5 is a cross-sectional view of the power device shown in Figure 4 in a top view
  • Figure 6 is a cross-sectional view perpendicular to the third direction of the first cavity of the power device shown in Figure 4;
  • Figure 7 is a cross-sectional view in a top view of another power device provided by an embodiment of the present application.
  • Figure 8 is a cross-sectional view perpendicular to the third direction of the first cavity of the power device shown in Figure 7;
  • Figure 9 is a cross-sectional view in a top view of another power device provided by an embodiment of the present application.
  • Figure 10 is a cross-sectional view perpendicular to the third direction of the first cavity of the power device shown in Figure 9;
  • Figure 11 is a cross-sectional view in a top view of another power device provided by an embodiment of the present application.
  • Figure 12 is a cross-sectional view perpendicular to the third direction of the first cavity of the power device shown in Figure 11;
  • Figure 13 is a side cross-sectional view of another power device provided by an embodiment of the present application.
  • Figure 14 is a cross-sectional view of the power device shown in Figure 13 in a top view
  • FIG 15 is a partial structural schematic diagram of the heat dissipation device shown in Figure 14;
  • Figure 16 is a side cross-sectional view of another power device provided by an embodiment of the present application.
  • Figure 17 is a cross-sectional view of the power device shown in Figure 16 in a top view
  • FIG 18 is a partial structural schematic diagram of the heat dissipation device shown in Figure 16;
  • Figure 19 is a side cross-sectional view of another power device provided by the embodiment of the present application.
  • Figure 20 is a cross-sectional view of the power device shown in Figure 19 in a top view
  • FIG 21 is a partial structural schematic diagram of the heat dissipation device shown in Figure 19;
  • Figure 22 is a side cross-sectional view of another power device provided by an embodiment of the present application.
  • Figure 23 is a cross-sectional view of the power device shown in Figure 22 in a top view
  • FIG. 24 is a partial structural diagram of the heat dissipation device shown in FIG. 22 .
  • a photovoltaic system is a power generation system that uses the photovoltaic effect of semiconductor materials to convert solar energy into electrical energy.
  • Photovoltaic systems usually include panels and power equipment, where panels can be used to convert solar energy into electrical energy, and power equipment can be used to power convert the current from the panels, or can also be used to power convert the voltage from the panels.
  • power equipment includes, but is not limited to, inverters, rectifiers, choppers, etc.
  • the heat generated by the single boards, on-board components, cables and other components inside the power equipment chassis also increases, resulting in an increase in the temperature inside the chassis, which is very important for the chassis.
  • the internal components are very disadvantageous, especially some heat-sensitive components. The risk of failure increases significantly under the influence of sustained high temperatures.
  • the chassis of power equipment mainly removes the walls of the chassis to dissipate heat naturally.
  • the heat dissipation effect of this heat dissipation method is relatively limited, and effective cooling cannot be achieved inside the chassis. Therefore, the life and reliability of the components inside the chassis cannot be guaranteed, which will in turn affect the performance of the chassis. to the overall service life of the power equipment.
  • embodiments of the present application can achieve effective heat dissipation inside the power device by improving the heat dissipation method of the power device, thereby reducing the risk of component failure within the power device and improving the reliability of the power device.
  • FIG. 1 is a side cross-sectional view of a power device 100 provided by an embodiment of the present application
  • FIG. 2 is a cross-sectional view of the power device 100 shown in FIG. 1 in a top view.
  • the power device 100 may include a housing 110 and a heat dissipation device.
  • a partition 111 may be provided inside the housing 110, and the partition 111 divides the housing 110 into two cavities, namely a first cavity 112 and a second cavity 113.
  • the first cavity 112 may be a closed cavity
  • the second cavity 113 may be a ventilated cavity.
  • components in the power device 100 that have relatively high performance requirements such as waterproofing, dustproofing, or corrosion resistance can be placed in the first cavity 112
  • components that do not have such protection requirements or have relatively low protection requirements can be placed in the first cavity 112 . in the second cavity 113.
  • the housing 110 may be roughly a rectangular parallelepiped structure, including a first side wall 1101, a second side wall 1102, a third side wall 1103, a fourth side wall 1104, a fifth side wall 1105 and a sixth side wall 1106.
  • first side wall 1101 and the second side wall 1102 can be arranged oppositely along the first direction
  • third sidewall 1103 and the fourth sidewall 1104 can be arranged oppositely along the second direction
  • fifth sidewall 1105 and the sixth sidewall can be arranged oppositely along the first direction.
  • 1106 can be relatively arranged along a third direction.
  • the minimum included angle between the first direction and the second direction can be greater than 0° and less than or equal to 90°
  • the minimum included angle between the second direction and the third direction can be greater than 0° and less than or equal to 90°
  • the minimum angle between the first direction and the third direction may be greater than 0° and less than or equal to 90°.
  • the first side wall 1101 is the bottom wall of the power device
  • the second side wall 1102 is the top wall of the power device
  • the fifth side wall 1105 is the front side wall of the power device
  • the sixth side wall 1105 is the front side wall of the power device.
  • Side wall 1106 is the rear side wall of the power device.
  • the first direction, the second direction and the third direction may be the height direction, width direction and length direction of the power device 100 respectively, and the three directions are perpendicular to each other.
  • both ends of the partition 111 can be connected to the first side wall 1101 and the second side wall 1102 respectively, and the first cavity 112 and the second cavity 113 formed at this time are arranged along the third direction.
  • the first side wall 1101 and the second side wall 1102 may be respectively provided with an air inlet 1131 and an air outlet 1132 at positions corresponding to the second cavity 113.
  • the air inlet 1131 and the air outlet 1132 are located opposite to each other, so that the second cavity 113 can be ventilated. Function.
  • FIG. 3 is a partial structural diagram of the heat dissipation device 120 shown in FIG. 1 .
  • the heat dissipation device 120 may include first fins 121 located in the second cavity, and the first fins 121 are disposed toward the partition 111 .
  • the first fin 121 may be provided with a channel therein, and the channel may penetrate the first fin 121 along the second direction.
  • the partition 111 may be provided with a first opening 1111 and a second opening 1112. The first opening 1111 and the second opening 1112 communicate with the first cavity 112 and the second cavity 113 respectively.
  • One end of the channel of the first fin 121 can be connected with the first opening 1111 , and the other end of the channel of the first fin 121 can be connected with the second opening 1112 .
  • An air circulation loop can be formed between the channels so that the air between the two can circulate.
  • the embodiment of the present application can realize the internal heat dissipation inside the first cavity 112 while meeting the design requirements of the relevant protection performance of the power device 100 .
  • the circulating flow of air dissipates heat, which can effectively improve the heat dissipation effect inside the first cavity 112 , thereby reducing the risk of component failure inside the first cavity 112 and improving the reliability of the power device 100 .
  • the number of the first fins 121 may be multiple, and a channel extending along the first direction may be formed between two adjacent first fins 121 . That is to say, two adjacent first fins 121 may form a channel extending in the first direction.
  • the direction of the air channel formed between one fin 121 is consistent with the ventilation direction of the second cavity 113, which helps to improve the heat exchange efficiency between the first fin 121 and the air entering the second cavity 113, thereby improving The heat dissipation effect inside the first cavity 112.
  • the plurality of first fins 121 may be arranged along the third direction, that is, the plurality of first fins 121 may be arranged away from the partition 111 in sequence.
  • the heat dissipation device may also include a first fan 122 (see FIG. 1 ).
  • the first fan 122 is disposed in the second cavity 113 , and the air inlet side of the first fan 122 is disposed toward the air inlet 1131 .
  • the first fan 122 The air outlet side is disposed toward the air outlet 1132, thereby supplying air to the air outlet 1132 side to increase the air circulation rate in the second cavity 113, thereby improving the heat dissipation effect of the heat dissipation device.
  • the first fan 122 may be located at one end close to the first side wall 1101 or may be located at one end close to the second side wall 1102, which is not limited in this application.
  • the heat dissipation device 120 may further include a first air guide member 123 and a second air guide member 124.
  • the first air guide member 123 and the second air guide member 124 124 are arranged in the second cavity 113, and one end of the first flow guide member 123 is connected to the first opening 1111, and the other end can be connected to one end of each first fin 121, and one end of the second flow guide member 124 is connected to the first opening 1111.
  • the second opening 1112 is connected, and the other end is connected with the other end of each first fin 121 .
  • the first flow guide member 123 and the second flow guide member 124 can also serve to connect the first fin 121 to the interior of the first cavity 112.
  • the supporting and fixing function of the piece 121 can improve the structural stability of the heat dissipation device 120 .
  • the first flow guide member 123 can be fixed at the first opening 1111 of the partition 111 by welding, or can also be disposed at the first opening 1111 by plugging or other assembly methods. Within the first opening 1111, this application does not limit this. It should be noted that when the first flow guide member 123 is plugged into the first opening 1111, a sealing ring may also be provided between the outer wall of the first flow guide member 123 and the inner wall of the first opening 1111 to reduce the There is a risk of air leakage from the cavity 112 through the first opening 1111 .
  • the first flow guide member 123 may be provided with openings corresponding to the plurality of first fins 121 , and each first fin 121 may pass through Connect with the corresponding openings by welding or plugging. Similarly, when the first fin 121 is inserted into the opening, a sealing ring may be pressed between the outer wall of the first fin 121 and the inner wall of the opening to reduce the risk of air leakage at the opening.
  • the connection method between the second air guide member 124, the second opening 1112 and each first fin 121 can be set up with reference to the first air guide member 123, and will not be described again here.
  • first opening 1111 and the second opening 1112 may be arranged along the second direction.
  • first flow guide member 123 and the second flow guide member 124 are arranged oppositely along the second direction, thereby reducing the The small obstruction to the air flow in the second cavity 113 allows the air entering the second cavity 113 to smoothly flow into the air channels formed by the adjacent first fins 121 .
  • the heat dissipation device may also include a base plate 125 and a second fin 126, wherein the base plate 125 may be disposed on the partition 111, and the second fin 126 may be disposed on a side of the base plate 125 away from the partition 111 , and the second fins 126 extend in a direction away from the base plate 125 .
  • the second fin 126 may be a solid sheet-like structure.
  • the devices disposed in the first cavity 112 may include a first heat dissipation device 131 , which is disposed close to the partition 111 and may be connected to the substrate located in the second cavity 113 125 is in thermal contact, thereby transferring the heat generated during its operation to the base plate 125, and further transferred to the second fin 126 through the base plate 125.
  • the external air enters the second cavity 113 through the air inlet 1131, and is discharged from the air outlet 1132 after exchanging heat with the second fins 126, thereby taking away the heat of the second fins 126. In this way, the heat of the second fin 126 can be removed.
  • the heat dissipation device 131 is to be dissipated.
  • the first device to be heat dissipated 131 can be attached to the side of the partition 111 facing the first cavity 112. At this time, the first device 131 to be heat dissipated and the substrate 125 can be in indirect thermal contact through the partition 111. .
  • the partition 111 may have a through hole corresponding to the position of the first heat dissipation device 131 .
  • the first heat dissipation device 131 may at least partially extend into the through hole to achieve direct connection with the substrate 125 .
  • Thermal conductive contact can improve the heat exchange efficiency between the first heat dissipation device 131 and the heat dissipation device, thereby helping to improve the heat dissipation effect of the first heat dissipation device 131 .
  • the first device 131 to be heat dissipated may be a power device. It should be noted that the numbers of the power devices below are the same as the numbers of the first device 131 to be heat dissipated. Since the heat generated by the power device 131 is relatively large during operation, part of the heat generated by the power device 131 can be dissipated into the first cavity 112 and dissipated outward through the first fin 121 connected with the first cavity 112 , and the other part of the heat Then, the heat can be radiated outward from the second fins 126 through the above-mentioned thermal conductive contact, thereby enhancing the heat dissipation effect on the power device 131 and improving the operating reliability of the power device 131 .
  • the power device 100 may further include a power plate 132 disposed in the first cavity 112 .
  • the power plate 132 may be disposed approximately parallel to the partition 111 .
  • the power device 131 may be disposed on the power plate 132 toward the partition 111 . 111 side.
  • the number of power devices 131 may be one or more, and this application does not limit this.
  • through holes can be provided on the partition 111 corresponding to the position of each power device 131 , so that each power device 131 can dissipate heat through direct thermal contact.
  • other electronic components such as capacitors, can also be provided on the power board 132 . These electronic components can be provided on the side of the power board 132 facing the partition 111 or on the back side of the power board 132 .
  • the side facing the partition 111 is also not limited in this application.
  • the projection of the outer contour of the substrate 125 on the surface of the partition 111 may be located between the first opening 1111 and the second opening 1112 .
  • the projection of the lines constituting the outer edge of the substrate 125 on the surface of the partition 111 may be located between the first opening 1111 and the second opening 1112 .
  • the first flow guide member 123 and the second flow guide member 124 may be respectively located on both sides of the substrate 125 along the second direction.
  • the number of the second fins 126 may be multiple, and the plurality of second fins 126 may be arranged along the second direction. In this case, adjacent second fins 126 may form a gap extending along the first direction. aisle.
  • the wind direction of the air duct formed between adjacent second fins 126 is consistent with the ventilation direction of the second cavity 113, which helps to improve the air flow between the second fins 126 and the air entering the second cavity 113.
  • the heat exchange efficiency can thereby improve the heat dissipation effect of the first device 131 to be heat dissipated.
  • the first fin 121 may be disposed on a free end of each second fin 126 of the plurality of second fins 126 away from the base plate 125 . side.
  • the free end of the second fin 126 can be understood as the end of the second fin 126 away from the substrate.
  • the projection of the plurality of first fins 121 on the surface of the substrate 125 is the same as the projection of the plurality of second fins 126 on the substrate. Projections of 125 surfaces can overlap.
  • the structural compactness of the heat dissipation device 120 can be improved and the space occupied in the power device 100 can be reduced.
  • the first fins 121 and the The two fins 126 are approximately at the same height, so the low-temperature air entering the second cavity 113 from the air inlet 1131 can pass through the first fin 121 and the second fin 126 approximately simultaneously, so that the temperatures of the two sets of fins can interact with each other. No impact, it helps to improve the heat dissipation effect of the heat dissipation device.
  • FIG. 4 is a side cross-sectional view of another power device 100 provided by an embodiment of the present application
  • FIG. 5 is a cross-sectional view of the power device 100 shown in FIG. 4 in a top view.
  • the heat dissipation device may further include a second fan 127 , which may be disposed in the first cavity 112 , and the second fan 127 is disposed close to the first opening 1111 .
  • the devices provided in the first cavity 112 may also include second heat dissipation devices 133 and third heat dissipation devices 134 , wherein the second heat dissipation devices 133 may be disposed between the first opening 1111 and the second fan 127 between the air inlet side, the third heat dissipation component 134 may be disposed between the air outlet side of the second fan 127 and the second opening 1112 .
  • the second heat dissipating device 133 may be located at one end of the third heat dissipating device 134 along the second direction, and the third heat dissipating device 134 may be located on a side of the first heat dissipating device 131 away from the partition 111 .
  • the low-temperature air can first pass through the second heat dissipation device 133, exchange heat with the second heat dissipation device 133, and then pass through the second heat dissipation device 133.
  • the second fan 127 blows towards the third component to be heat dissipated 134, thereby further exchanging heat with the third component to be heat dissipated 134, and then flows from the second opening 1112 into the first fin 121, completing a cycle.
  • the position of the device to be heat dissipated in the first cavity 112 can be arranged according to the heat dissipation priority or the amount of heat generated.
  • a device with a relatively high heat dissipation priority can be placed in the heat dissipation priority. Upstream of devices with relatively low levels of heat, or devices with relatively small heat dissipation placed upstream of devices with relatively large heat dissipation, to ensure the heat dissipation effect of each device to be heat dissipated.
  • the second device to be heat dissipated 133 may be an electrolytic capacitor plate
  • the third device to be heat dissipated 134 may be an output plate.
  • the electrolytic capacitor plate has the same number as the second device to be heat dissipated 133
  • the output plate has the same number as the third device to be heat dissipated 134 .
  • One or more electrolytic capacitors 135 may be provided on the electrolytic capacitor plate 133 , and devices such as relays, common mode inductors, and capacitors may be provided on the output board 134 .
  • the heat generated by the electrolytic capacitor 135 is relatively small, so it is placed upstream of the heat dissipation circuit.
  • the low-temperature air entering the first cavity 112 through the first opening 1111 can still be at a relatively low temperature after exchanging heat with it, so that It can still achieve better heat dissipation effect for other downstream devices. And since the electrolytic capacitor 135 is a heat-sensitive device, placing it at the first opening 1111 can also reduce the risk of the electrolytic capacitor 135 failing due to high temperature, thereby improving the overall reliability of the power device 100 .
  • the heat dissipation device may further include a third flow guide member 128.
  • the third flow guide member 128 is disposed in the first cavity 112, and one end of the third flow guide member 128 may be connected to the first opening 1111.
  • the third air guide member 128 is provided with a first air outlet (not shown in the figure) at a position facing the third device 134 to be heat dissipated.
  • the second heat dissipating device 133 can be disposed in the third air guide member 128, and the second fan 127 can be disposed at the first air outlet of the third air guide member 128, and the air inlet side of the second fan 127 Opposite to the first air outlet, the air in the third air guide member 128 is blown toward the third device 134 to be heat dissipated.
  • the second device to be heat dissipated 133 can be restricted in a relatively closed space, reducing the risk of the air on the outlet side of the second fan 127 flowing back to the vicinity of the second device to be heat dissipated 133. This helps to further improve the heat dissipation effect of the second device 133 to be heat dissipated.
  • FIG. 6 is a cross-sectional view perpendicular to the third direction of the first cavity 112 of the power device 100 shown in FIG. 4 .
  • the second device to be heat dissipated 133 and the third device to be heat dissipated 134 may be arranged substantially parallel to each other.
  • the electrolytic capacitor plate 133 , the output plate 134 and the power plate 132 can be parallel to each other, and the output plate 134 is located away from the power plate 132 and away from the partition 111 side.
  • FIG. 7 is a cross-sectional view in a top view of another power device 100 provided by an embodiment of the present application.
  • FIG. 8 is a first cavity of the power device 100 shown in FIG. 7 112 Sectional view perpendicular to the third direction.
  • the heat dissipation device of the power device 100 can be set up with reference to the embodiment shown in FIGS. 4 to 6 . The difference is that in this embodiment, the second heat dissipation device 133 and the third heat dissipation device 134 can be Set roughly vertically.
  • the electrolytic capacitor plate 133 can be arranged parallel to the first direction, and the output plate 134 can still be located on the side of the power plate 132 away from the separator. and are parallel to the power board 132 .
  • Figure 9 is a cross-sectional view in a top view of another power device 100 provided by an embodiment of the present application.
  • Figure 10 is a first cavity of the power device 100 shown in Figure 9 112 Sectional view perpendicular to the third direction.
  • the heat dissipation device may further include a third fan 129 and a fourth flow guide member 1210. Both the third fan 129 and the fourth flow guide member 1210 may be disposed in the first cavity 112, and both are close to the first cavity 112. Two openings 1112 are provided.
  • One end of the fourth air guide member 1210 may be connected to the second opening 1112, and a second air outlet (not shown in the figure) may be provided at a position of the fourth air guide member 1210 facing the third device 134 to be heat dissipated.
  • the third fan 129 can be disposed at the second air outlet, and the air inlet side of the third fan 129 is disposed toward the third device 134 to be heat dissipated.
  • the air outlet side of 129 is opposite to the second air outlet, so that the high-temperature air that has been exchanged with the third heat dissipation device 134 is sent into the fourth guide member 1210, and further flows from the fourth guide member 1210 to the first fin. 121 conducts heat exchange and cooling in the channel.
  • the third fan 129 and the second fan 127 may be arranged on both sides of the first cavity 112 along the second direction.
  • the fourth flow guide member 1210 and the third flow guide member 128 are also generally disposed opposite to each other along the second direction.
  • the solution of this embodiment can increase the air flow rate in the first cavity 112, thereby achieving the purpose of improving the heat dissipation efficiency of each device to be heat dissipated in the first cavity 112.
  • the third fan 129 and the fourth fan The provision of the air guide member 1210 can further reduce the risk of air backflow to the vicinity of the second device to be heat dissipated 133 , which helps to improve the reliability of use of the second device to be heat dissipated 133 .
  • the second device to be heat dissipated 133 may be arranged substantially parallel to the third device to be heat dissipated 134 .
  • the electrolytic capacitor plate 133 , the output plate 134 and the power plate 132 can be parallel to each other, and the output plate 134 is located away from the power plate 132 and away from the partition plate. one side.
  • the second device to be heat dissipated and the third device to be heat dissipated can also be arranged substantially vertically with reference to the manner shown in FIGS. 7 and 8 .
  • the electrolytic capacitor plate can be arranged parallel to the first direction, and the output plate can still be located on the side of the power board away from the partition and mutually connected with the power board. parallel.
  • Figure 11 is a cross-sectional view in a top view of another power device 100 provided by an embodiment of the present application.
  • Figure 12 is a first cavity of the power device 100 shown in Figure 11 112 Sectional view perpendicular to the third direction.
  • the third flow guide member is omitted in this embodiment.
  • an installation device may also be provided in the first cavity 112 .
  • the mounting plate 1211 is disposed between the second device to be heat dissipated 133 and the third device to be heat dissipated 134 , and a third air outlet (not shown in the figure) can be provided on the mounting plate 1211 .
  • the second device 133 to be heat dissipated can be isolated in the space between the side wall of the housing and the mounting plate 1211.
  • the second fan 127 is disposed at the third air outlet of the mounting plate 1211, and the inlet of the second fan 127 The wind side is opposite to the third air outlet to blow the air between the side wall and the mounting plate 1211 to the third device 134 to be heat dissipated.
  • This solution can also reduce the risk of the air on the outlet side of the second fan 127 flowing back to the vicinity of the second device to be heat dissipated 133 , thus helping to improve the heat dissipation effect of the second device to be heat dissipated 133 .
  • the second device to be heat dissipated 133 and the third device to be heat dissipated 134 may be arranged substantially parallel.
  • the electrolytic capacitor plate 133 , the output plate 134 and the power plate 132 can be parallel to each other, and the output plate 134 is located away from the power plate 132 and away from the partition plate. one side.
  • the second device to be heat dissipated and the third device to be heat dissipated can also be arranged substantially vertically with reference to the manner shown in FIGS. 7 and 8 .
  • the electrolytic capacitor plate can be arranged parallel to the first direction, and the output plate can still be located on the side of the power board away from the partition and mutually connected with the power board. parallel.
  • FIG. 13 is a side cross-sectional view of another power device 100 provided by an embodiment of the present application.
  • Figure 14 is a top view of the power device 100 shown in Figure 13.
  • FIG. 15 is a partial structural diagram of the heat dissipation device 120 shown in FIG. 14 .
  • the heat dissipation device 120 may also include a first fin 121, a base plate 125, a second fin 126, a first air guide member 123, a second air guide member 124, a first fan 122 and other structures.
  • the plurality of second fins 126 in this embodiment can be designed as two parts with different heights, namely the first part and the second part.
  • the two parts of the second fins 126 are arranged along the first part. Arranged in one direction.
  • the height of the second fin 1261 located in the first part is smaller than the height of the second fin 1262 located in the second part.
  • the height direction of the second fin 126 here can be understood as the direction away from the substrate 125 , that is, the third direction defined above.
  • the first fin 121 may be disposed on a side of the free end of each second fin 1261 located in the first part away from the base plate 125 . That is to say, the projection of the plurality of first fins 121 on the surface of the substrate 125 and the projection of the plurality of second fins 1261 located in the first part on the surface of the substrate 125 can overlap. This design can also improve the structure of the heat dissipation device. Compactness effect.
  • the third air guide member, the fourth air guide member 1210, the second fan and the third fan 129 can be selectively set according to the heat dissipation requirements in the first cavity.
  • Figure 14 only It is schematically shown that the fourth air guide member 1210 and the third fan 129 are disposed in the first cavity 112 .
  • FIG. 16 is a side cross-sectional view of another power device 100 provided by an embodiment of the present application
  • Figure 17 is a top view of the power device 100 shown in Figure 16
  • FIG. 18 is a partial structural diagram of the heat dissipation device 120 shown in FIG. 16
  • the heat dissipation device 120 may also include a first fin 121, a base plate 125, a second fin 126, a first air guide member 123, a second air guide member 124, a first fan 122 and other structures.
  • the area enclosed by the projection of the outer contour of the substrate 125 on the partition surface can cover the first opening 1111 and the second opening 1112 .
  • the first opening 1111 and the second opening 1112 may be covered by the projection of the line constituting the outer edge of the substrate 125 on the partition surface.
  • the substrate 125 is connected with the first opening 1111 and the second opening.
  • a first escape hole 1251 and a second escape hole 1252 can be respectively provided at opposite positions of 1112 .
  • the end of the first flow guide member 123 can pass through the first escape hole 1251 and communicate with the first opening 1111, and the end of the second flow guide member 124 can pass through the second escape hole 1252 and the second opening 1112. Connected.
  • This design can increase the area of the substrate 125, thereby improving the heat dissipation effect of the first device 131 to be heat dissipated.
  • Figure 19 is a side cross-sectional view of another power device 100 provided by an embodiment of the present application.
  • Figure 20 is a top view of the power device 100 shown in Figure 19.
  • FIG. 21 is a partial structural diagram of the heat dissipation device 120 shown in FIG. 19 .
  • the first fin 121 and the second fin 126 can be arranged in the embodiment shown in FIGS. 12 and 13 , which are different from the embodiment shown in FIGS. 12 and 13 Yes, in this embodiment, the area enclosed by the projection of the outer contour of the base plate 125 on the partition surface can also cover the first opening 1111 and the second opening 1112, and be opposite to the first opening 1111 and the second opening 1112 on the base plate.
  • the first escape hole 1251 and the second escape hole 1252 are respectively provided at positions to facilitate communication between the first flow guide member 123 and the second flow guide member 124 and the first cavity 112 .
  • FIG. 22 is a side cross-sectional view of another power device 100 provided by an embodiment of the present application.
  • FIG. 23 is a cross-sectional view of the power device 100 shown in FIG. 22 in a top view.
  • FIG. 24 is a partial structural diagram of the heat dissipation device 120 shown in FIG. 22 .
  • the heat dissipation device may include a first fin 121, a base plate 125, a second fin 126 and a first fan 122 structure. The positional relationship of each component may be referred to the descriptions in the previous embodiments and will not be repeated here. Repeat.
  • both the first fin 121 and the second fin 126 can adopt a solid sheet-like structure, and the first fin 121 is no longer connected to the first cavity 112 .
  • the heat dissipation device further includes a first support member 1212 and a second support member 1213.
  • the first support member 1212 and the second support member 1213 are relatively arranged in the second cavity 113 along the second direction, and the first support member One ends of the first support member 1212 and the second support member 1213 are respectively fixedly connected to the base plate 125, and the other ends of the first support member 1212 and the second support member 1213 are respectively fixedly connected to both ends of each first fin 121, thereby connecting the first fins.
  • 121 is supported on the side of the second fin 126 facing away from the base plate 125 .
  • the heat generated by the first heat dissipation device 131 is transferred to the base plate 125, part of the heat can be directly transferred to the second fin 126 through the base plate 125, and the other part of the heat can be transferred to the first support member through the base plate 125. 1212 and the second support member 1213, and further transferred to the first fin 121 by the first support member 1212 and the second support member 1213.
  • the external air enters the second cavity 113 through the air inlet 1131, it exchanges heat with the first fins 121 and the second fins 126 respectively, and is finally discharged from the air outlet 1132, thereby separating the first fins 121 and the second fins 126.
  • the heat is removed from the fins 126.
  • first fins 121 and the second fins 126 in this embodiment are both used to dissipate heat from the first device 131 to be heat dissipated, thereby improving the heat dissipation effect of the first device 131 to be heat dissipated.
  • the second cavity 113 of the power device 100 may also be provided with a fourth heat dissipation component 136 , and the fourth heat dissipation component 136 may be disposed on the first fin 121
  • the side facing the air outlet 1132 is located downstream of the ventilation path of the second cavity 113. In this way, the low-temperature air entering the second cavity 113 can preferentially interact with the first fins 121 and the second fins 126. Heat exchange, thereby ensuring the heat dissipation effect for each device in the first cavity 112.
  • the fourth device 136 to be heat dissipated 136 may be a magnetic device, such as an inductor.
  • the devices provided in the first cavity are not limited to the first heat dissipation device, the second heat dissipation device, and the third heat dissipation device mentioned above.
  • the devices provided in the second cavity are not limited to the fourth heat dissipation device mentioned above.
  • matching devices can be provided according to the specific type of the power device, which will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供了一种功率设备及光伏系统,用以提高功率设备的散热性能,进而提高功率设备的使用可靠性。功率设备包括壳体和散热装置,壳体内设置有隔板,隔板将壳体分隔为第一腔体和第二腔体,且隔板设置有将第一腔体与第二腔体连通的第一开口和第二开口;第一腔体内设置有待散热器件,第二腔体设置有进风口和出风口,进风口与出风口沿第一方向相对设置;散热装置包括设置于第二腔体内的第一翅片,第一翅片内设置有通道,通道沿第二方向贯穿第一翅片,通道的两端分别与第一开口和第二开口连通;第二方向与第一方向之间的最小夹角大于0°且小于或等于90°。

Description

一种功率设备及光伏系统
相关申请的交叉引用
本申请要求在2022年08月31日提交中国专利局、申请号为202211056306.X、申请名称为“一种功率设备及光伏系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热技术领域,尤其涉及到一种功率设备及光伏系统。
背景技术
随着逆变器的功率越来越大,逆变器机箱内部的单板、在板元器件以及线缆等结构的发热量也越来越大。由于电解电容等热敏感器件都布置在机箱内部,因此机箱内部的温升直接决定着这些器件的性能。目前,逆变器机箱主要依靠机箱壁面对外自然散热,然而这种散热方式散热能力较为有限,导致机箱内部无法实现有效降温,从而影响内部元器件的寿命和可靠性,进而影响到逆变器整体的使用寿命。
发明内容
本申请提供了一种功率设备及光伏系统,用以提高功率设备的散热性能,进而提高功率设备的使用可靠性。
第一方面,本申请提供了一种功率设备,该功率设备可包括壳体和散热装置。壳体内设置有隔板,该隔板可将壳体分隔为第一腔体和第二腔体。隔板上设置有第一开口和第二开口,第一开口和第二开口分别将第一腔体和第二腔体连通。第一腔体内设置有待散热器件,第二腔体设置有进风口和出风口,进风口与出风口可沿第一方向相对设置。散热装置可包括设置于第二腔体内的第一翅片,第一翅片的表面朝向隔板设置,且第一翅片内设置有通道,该通道可沿第二方向贯穿第一翅片,通道的两端可分别与第一开口和第二开口连通。其中,第一方向和第二方向之间的最小夹角大于0°且小于或等于90°。
上述方案中,第一腔体内部与第一翅片的通道之间可以形成一个空气流通回路,使得第一腔体内的空气可在循环流动的过程中实现与流经第一翅片表面空气的热交换,从而可以有效提高第一腔体内部的散热效果,进而可以降低第一腔体内部元器件失效的风险,提高功率设备的使用可靠性。
示例性地,第一方向可以为功率设备的高度方向,第二方向可以为功率设备的宽度方向。
在一些可能的实施方案中,第一翅片的数量可以为多个,相邻的第一翅片之间可形成沿第一方向延伸的风道,这样有助于提高第一翅片与进入第二腔体内的空气的换热效率,进而可以提高对第一腔体内部的散热效果。
在一些可能的实施方案中,散热装置还可以包括设置于第二腔体内的第一导流构件和第二导流构件,第一导流构件的一端与第一开口连通,另一端与第一翅片的通道的一端连通,第二导流构件的一端与第二开口连通,另一端与第一翅片的通道的另一端连通。第一导流构件和第二导流构件除了可以将第一翅片的通道与第一腔体连通以外,还可以起到对第一翅片的支撑固定作用,从而可以提高散热装置的结构稳定性。
在一些可能的实施方案中,第一腔体内的待散热器件可包括第一待散热器件,第一待散热器件靠近隔板设置。散热装置还可包括设置于第二壳体内的基板和多个第二翅片,基板设置于隔板上,且基板与第一待散热器件导热接触,第二翅片设置于基板背离隔板的一侧,且第二翅片沿远离隔板的方向延伸,相邻的两个第二翅片之间可形成沿第一方向延伸的风道。第一待散热器件工作时产生的热量可传递给基板,并通过基板传递给第二翅片,进一步由第二翅片传递给流经其表面的空气,如此即可实现对第一待散热器件的散热。
示例性地,第一待散热器件具体可以为功率器件。
在一些可能的实施方案中,第一翅片可设置于多个第二翅片中每个第二翅片的自由端远离基板的一侧,以提高散热装置的结构紧凑性。
在另外一些可能的实施方案中,多个第二翅片可分为第一部分和第二部分,沿远离基板的方向,位 于第一部分内的第二翅片的高度小于位于第二部分内的第二翅片的高度。这时,第一翅片可设置于第一部分内的每个第二翅片的自由端远离基板的一侧。这种设计也能够提高散热装置的紧凑性。
在一些可能的实施方案中,基板的外轮廓在隔板表面的投影可位于第一开口和第二开口之间。或者,基板的外轮廓在隔板表面的投影所围合的区域可覆盖第一开口和第二开口,这时,基板对应第一开口和第二开口的位置可分别设置有第一避让孔和第二避让孔,第一导流构件的端部可穿过第一避让孔与第一开口连通,第二导流构件可穿过第二避让孔与第二开口连通。这种设计可以增大基板的面积,从而有利于提高对第一待散热器件的散热效果。
在一些可能的实施方案中,隔板上与第一待散热器件对应的位置可设置有开孔,第一待散热器件可伸入开孔内与基板导热接触,这样可以提高第一待散热器件与散热装置之间的换热效率,进而有助于提高对第一待散热器件的散热效果。
在一些可能的实施方案中,散热装置还可包括设置于第二腔体内的第一风扇,第一风扇的进风侧朝向进风口设置,第一风扇的出风侧朝向出风口设置,这样可以提高第二腔体内的空气流通速率,进而可以提高散热装置的散热效果。
在一些可能的实施方案中,第一腔体内的待散热器件还可以包括第二待散热器件和第三待散热器件。散热装置还包括设置于第一腔体内的第二风扇,第二待散热器件可设置于第一开口与第二风扇的进风侧之间,第三待散热器件可设置于第二风扇的出风侧与第二开口之间,且第三待散热器件位于第一待散热器件背离隔板的一侧。第一翅片内经过换热降温后的空气由第一开口进入第一腔体后,低温空气可先经过第二待散热器件,与第二待散热器件换热后再由第二风扇吹向第三待散热器件,从而进一步与第三待散热器件进行换热,之后由第二开口流向第一翅片内,完成一次循环,实现对第一腔体内的各待散热器件的散热。
在一些可能的实施方案中,散热装置还可以包括设置于第一腔体内的第三导流构件,第三导流构件与第一开口连通,且第三导流构件在面向第三待散热器件处设置有第一风口。第二待散热器件设置于第三导流构件内,第二风扇设置于第一风口处,且第二风扇的进风侧与第一风口相对设置。通过设置第三导流构件,可以将第二待散热器件限制在一个相对密闭的空间,减小第二风扇出风侧一侧的空气回流到第二待散热器件附近的风险,从而有助于进一步提高对第二待散热器件的散热效果。
在一些可能的实施方案中,散热装置还可以包括设置于第一腔体内的第三风扇和第四导流构件,第四导流构件与第二开口连通,且第四导流构件在面向第三待散热器件处设置有第二风口。第三风扇可设置于第二风口处,且第三风扇的进风侧朝向第三待散热器件设置,第三风扇的出风侧与第二风口相对设置。第三风扇和第四导流构件的设置还可以进一步减小空气回流到第二待散热器件附件的风险,有助于提高第二待散热器件的使用可靠性。
示例性地,第二待散热器件具体可以为电解电容板,第三待散热器件具体可以为输出板。
在一些可能的实施方案中,第二腔体内还可以设置有第四待散热器件,第四待散热器件可设置于第一翅片朝向出风口的一侧。示例性地,第四待散热器件可以为磁性器件。由于磁性器件的防护要求相对较低,因此将其设置于散热路径的下游也可以对其实现一定的散热效果,保障其正常工作。
第二方面,本申请还提供了一种光伏系统,该光伏系统可包括电池板以及前述第一方面任一可能的实施方案中的功率设备。其中,电池板可用于将太阳能转化为电能,功率设备则可用于对来自电池板的电流进行功率转换,或者对来自电池板的电压进行功率转换,以使光伏系统的输出功率与外部用电设备的功率相匹配。由于功率设备的散热性能较好,因此该光伏系统的可靠性也得以提升。
附图说明
图1为本申请实施例提供的一种功率设备的侧面剖视图;
图2为图1中所示的功率设备在俯视状态下的剖视图;
图3为图1中所示的散热装置的局部结构示意图;
图4为本申请实施例提供的另一种功率设备的侧面剖视图;
图5为图4中所示的功率设备在俯视状态下的剖视图;
图6为图4中所示的功率设备的第一腔体在垂直于第三方向的剖视图;
图7为本申请实施例提供的另一种功率设备在俯视状态下的剖视图;
图8为图7中所示的功率设备的第一腔体在垂直于第三方向的剖视图;
图9为本申请实施例提供的另一种功率设备在俯视状态下的剖视图;
图10为图9中所示的功率设备的第一腔体在垂直于第三方向的剖视图;
图11为本申请实施例提供的另一种功率设备在俯视状态下的剖视图;
图12为图11中所示的功率设备的第一腔体在垂直于第三方向的剖视图;
图13为本申请实施例提供的另一种功率设备的侧面剖视图;
图14为图13中所示的功率设备在俯视状态下的剖视图;
图15为图14中所示的散热装置的局部结构示意图;
图16为本申请实施例提供的另一种功率设备的侧面剖视图;
图17为图16中所示的功率设备在俯视状态下的剖视图;
图18为图16中所示的散热装置的局部结构示意图;
图19为本申请实施例提供的另一种功率设备的侧面剖视图;
图20为图19中所示的功率设备在俯视状态下的剖视图;
图21为图19中所示的散热装置的局部结构示意图;
图22为本申请实施例提供的另一种功率设备的侧面剖视图;
图23为图22中所示的功率设备在俯视状态下的剖视图;
图24为图22中所示的散热装置的局部结构示意图。
附图标记:
100-功率设备;110-壳体;111-隔板;1111-第一开口;1112-第二开口;1101-第一侧壁;
1102-第二侧壁;1103-第三侧壁;1104-第四侧壁;1105-第五侧壁;1106-第六侧壁;112-第一腔体;113-第二腔体;1131-进风口;1132-出风口;120-散热装置;121-第一翅片;122-第一风扇;123-第一导流构件;124-第二导流构件;125-基板;1251-第一避让孔;1252-第二避让孔;126、1261、1262-第二翅片;127-第二风扇;128-第三导流构件;129-第三风扇;1210-第四导流构件;1211-安装板;1212-第一支撑件;1213-第二支撑件;131-第一待散热器件、功率器件;132-功率板;133-第二待散热器件、电解电容板;134-第三待散热器件、输出板;135-电解电容;136-第四待散热器件。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请实施例中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请实施例的附图仅用于示意相对位置关系不代表真实比例。
需要说明的是,在以下描述中阐述了具体细节以便于理解本申请。但是本申请能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广。因此本申请不受下面公开的具体实施方式的限制。
光伏系统是利用半导体材料的光伏效应,将太阳能转化为电能的一种发电系统。光伏系统通常电池板和功率设备,其中,电池板可用于将太阳能转化为电能,功率设备则用于对来自电池板的电流进行功率转换,或者也可用于对来自电池板的电压进行功率转换,以使光伏系统的输出功率与外部用电设备的功率相匹配。示例性地,功率设备包括但不限于为逆变器、整流器、斩波器等。随着功率设备的功率越来越大,功率设备机箱内部的单板、在板元器件和线缆等部件的发热量也越来越大,由此导致机箱内部的温度升高,这对于机箱内部设置的元器件非常不利,尤其是一些热敏感器件,在持续高温的影响下失效风险显著升高。
目前,功率设备的机箱主要移开机箱壁面对外自然散热,然而这种散热方式的散热效果较为有限,机箱内部无法实现有效降温,因此机箱内部元器件的寿命和可靠性不能得到保障,进而会影响到功率设备整体的使用寿命。
针对上述问题,本申请实施例通过对功率设备的散热方式进行改进,可以实现对功率设备内部的有效散热,从而降低功率设备内部元器件失效的风险,提高功率设备的使用可靠性。下面结合附图对本申 请实施例提供的功率设备进行具体说明。
一并参考图1和图2所示,图1为本申请实施例提供的一种功率设备100的侧面剖视图,图2为图1中所示的功率设备100在俯视状态下的剖视图。在本实施例中,功率设备100可以包括壳体110和散热装置。壳体110内可以设置有隔板111,该隔板111将壳体110分隔为两个腔体,分别为第一腔体112和第二腔体113。其中,第一腔体112可以为封闭腔体,第二腔体113可以为通风腔体。这样,功率设备100中对于防水、防尘或者防腐蚀等性能要求相对较高的器件可以设置于第一腔体112内,而对于没有这类防护要求或者防护要求相对较低的器件则可以设置于第二腔体113内。
示例性地,壳体110可大致为长方体结构,包括第一侧壁1101、第二侧壁1102、第三侧壁1103、第四侧壁1104、第五侧壁1105以及第六侧壁1106,其中,第一侧壁1101与第二侧壁1102可沿第一方向相对设置,第三侧壁1103与第四侧壁1104可沿第二方向相对设置,第五侧壁1105与第六侧壁1106可沿第三方向相对设置。其中,第一方向与第二方向之间的最小夹角可大于0°且小于或等于90°,第二方向与第三方向之间的最小夹角可大于0°且小于或等于90°,第一方向与第三方向之间的最小夹角可大于0°且小于或等于90°。
作为本申请的一个实施例,第一侧壁1101为该功率设备的底壁,第二侧壁1102为该功率设备的顶壁,第五侧壁1105为该功率设备的前侧壁,第六侧壁1106为该功率设备的后侧壁。这时,第一方向、第二方向和第三方向可分别为功率设备100的高度方向、宽度方向和长度方向,该三个方向两两垂直。沿第一方向,隔板111的两端可分别与第一侧壁1101和第二侧壁1102连接,这时所形成的第一腔体112和第二腔体113沿第三方向排布。第一侧壁1101和第二侧壁1102对应第二腔体113的位置可分别设置有进风口1131和出风口1132,进风口1131和出风口1132位置相对,从而使第二腔体113实现通风功能。
一并参考图1、图2和图3,图3为图1中所示的散热装置120的局部结构示意图。散热装置120可包括位于第二腔体内的第一翅片121,第一翅片121朝向隔板111设置。示例性地,第一翅片121可内可设置有通道,该通道可沿第二方向贯穿第一翅片121。这时,隔板111上可以设置有第一开口1111和第二开口1112,第一开口1111和第二开口1112分别将第一腔体112和第二腔体113连通。第一翅片121的通道的一端可与第一开口1111连通,第一翅片121通道的另一端则可与第二开口1112连通,这样,第一腔体112内部与第一翅片121的通道之间可以形成一个空气流通回路,使得两者之间的空气可以循环流动。当第一腔体112内的高温空气进入第一翅片121的通道中时,可与第二腔体113内流经第一翅片121表面的低温空气进行换热,第二腔体113内的空气在换热升温后由出风口1132排出,而第一翅片121中的空气则在换热降温后再次回到第一腔体112内部,从而实现对第一腔体112内部的散热。
由以上描述可以看出,相较于现有技术中利用腔体壁面对外自然散热的方式,本申请实施例可以在满足功率设备100的相关防护性能的设计要求下,实现第一腔体112内部空气的循环流动散热,从而可以有效提高对第一腔体112内部的散热效果,进而可以降低第一腔体112内部元器件失效的风险,提高功率设备100的使用可靠性。
在一些实施方式中,第一翅片121的数量可以为多个,相邻的两个第一翅片121之间可形成沿第一方向延伸的通道,也就是说,相邻的两个第一翅片121之间形成的风道方向与第二腔体113的通风方向一致,这样有助于提高第一翅片121与进入第二腔体113内的空气的换热效率,进而可以提高对第一腔体112内部的散热效果。示例性地,多个第一翅片121可以沿第三方向排布,也即多个第一翅片121可依次远离隔板111设置。
另外,散热装置还可以包括第一风扇122(参见附图1),第一风扇122设置于第二腔体113内,且第一风扇122的进风侧朝向进风口1131设置,第一风扇122的出风侧朝向出风口1132设置,从而向出风口1132一侧送风,以提高第二腔体113内的空气流通速率,进而可以提高散热装置的散热效果。示例性地,第一风扇122可以位于靠近第一侧壁1101的一端,或者也可以位于靠近第二侧壁1102的一端,本申请对此不作限制。
在将第一翅片121的通道与第一腔体112连通时,散热装置120还可以包括第一导流构件123和第二导流构件124,第一导流构件123和第二导流构件124均设置于第二腔体113内,且第一导流构件123的一端与第一开口1111连通,另一端可与各个第一翅片121的一端连通,第二导流构件124的一端与第二开口1112连通,另一端与各个第一翅片121的另一端连通。在本实施例中,第一导流构件123和第二导流构件124除了可以将第一翅片121的通道与第一腔体112内部连通以外,还可以起到对第一翅 片121的支撑固定作用,从而可以提高散热装置120的结构稳定性。
在第一导流构件123与第一开口1111连通的一端,第一导流构件123可以通过焊接的方式固定在隔板111的第一开口1111处,或者也可以通过插接等组装方式设置在第一开口1111内,本申请对此不作限制。需要说明的是,当第一导流构件123与第一开口1111插接设置时,还可以在第一导流构件123的外壁与第一开口1111的内壁之间设置密封圈,以减小第一腔体112通过第一开口1111漏风的风险。在第一导流构件123与第一翅片121的通道连通的一端,第一导流构件123可设置与多个第一翅片121一一对应的开孔,各个第一翅片121可以通过焊接或者插接的方式与对应的开孔连接。类似地,当第一翅片121与开孔插接设置时,第一翅片121的外壁与开孔的内壁之间可挤压设置密封圈,以减小开孔处漏风的风险。第二导流构件124与第二开口1112和各个第一翅片121的连接方式可参照第一导流构件123进行设置,此处不再进行赘述。
在具体的实施例中,第一开口1111和第二开口1112可沿第二方向排布,这时,第一导流构件123和第二导流构件124沿第二方向相对设置,从而可以减小对第二腔体113内的空气流动的阻碍,使进入第二腔体113内的空气可以顺利流入相邻的第一翅片121形成的风道之间。
请继续参考图1、图2和图3,在一些实施例中,散热装置还可以包括基板125和第二翅片126,其中,其中,基板125可设置于隔板111上,第二翅片126可以设置于基板125背离隔板111的一侧,且第二翅片126沿远离基板125的方向延伸。示例性地,第二翅片126可以为实心的薄片状结构。在一种实现中,第一腔体112内所设置的器件可包括第一待散热器件131,该第一待散热器件131靠近隔板111设置,并可以与位于第二腔体113内的基板125导热接触,从而将其工作时产生的热量传递给基板125,并进一步通过基板125传递给第二翅片126。这样,外部空气通过进风口1131进入第二腔体113内,在与第二翅片126换热之后由出风口1132排出,从而将第二翅片126的热量带走,如此即可实现对第一待散热器件131的散热。
在一些实施方式中,第一待散热器件131可以贴合于隔板111朝向第一腔体112的一面,这时,第一待散热器件131与基板125之间可通过隔板111间接导热接触。
在另外一些实施方式中,隔板111对应第一待散热器件131的位置可开设有通孔,这时,第一待散热器件131可至少部分伸入该通孔内,实现与基板125的直接导热接触,这样可以提高第一待散热器件131与散热装置之间的换热效率,进而有助于提高对第一待散热器件131的散热效果。
示例性地,第一待散热器件131可以为功率器件。需要说明的是,下文功率器件的标号与第一待散热器件131的标号相同。由于功率器件131工作时产生的热量相对较大,其产生的热量一部分可散发到第一腔体112内,并通过与第一腔体112连通的第一翅片121向外散发,另一部分热量则可以通过上述导热接触的方式,由第二翅片126向外散发,从而可以加强对功率器件131的散热效果,提高功率器件131的工作可靠性。
在一种实现中,功率设备100还可以包括设置于第一腔体112内的功率板132,功率板132可大致与隔板111平行设置,功率器件131具体可以设置于功率板132朝向隔板111的一面。另外,功率器件131的数量可以为一个或多个,本申请对此不作限制。当功率器件131为多个时,可在隔板111上对应每个功率器件131的位置分别设置通孔,以使各个功率器件131均可以通过直接导热接触的方式进行散热。当然,功率板132上除功率器件131以外,也可以设置其它电子元器件,如电容等,这些电子元器件既可以设置于功率板132朝向隔板111的一面,也可以设置于功率板132背向隔板111的一面,本申请对此同样不作限制。
在本实施例中,基板125的外轮廓在隔板111表面的投影可以位于第一开口1111和第二开口1112之间。或者可以理解为,构成基板125外缘的线条在隔板111表面的投影可以位于第一开口1111和第二开口1112之间。这时,第一导流构件123和第二导流构件124可分别位于基板125沿第二方向的两侧。另外,第二翅片126的数量可以为多个,多个第二翅片126可沿第二方向排布,这时,相邻的第二翅片126之间可形成沿第一方向延伸的通道。也就是说,相邻的第二翅片126之间形成的风道风向与第二腔体113的通风方向一致,这样有助于提高第二翅片126与进入第二腔体113内的空气的换热效率,进而可以提高对第一待散热器件131的散热效果。
继续参考图1、图2和图3,在一个具体的实施例中,第一翅片121可以设置于多个第二翅片126中每个第二翅片126的自由端远离基板125的一侧。其中,第二翅片126的自由端可理解为第二翅片126远离基板的一端。示例性地,多个第一翅片121在基板125表面的投影与多个第二翅片126在基板 125表面的投影可以重叠。采用这种设计,一方面可以提高散热装置120的结构紧凑性,减小其在功率设备100内的占用空间,另一方面,在第二腔体113的通风方向,第一翅片121和第二翅片126大致处于同一高度,因此由进风口1131进入第二腔体113内的低温空气可近似同步穿过第一翅片121和第二翅片126,使得两组翅片的温度可以互不影响,有助于提高散热装置的散热效果。
一并参考图4和图5所示,图4为本申请实施例提供的另一种功率设备100的侧面剖视图,图5为图4中所示的功率设备100在俯视状态下的剖视图。在本实施例中,散热装置还可以包括第二风扇127,第二风扇127可以设置于第一腔体112内,且第二风扇127靠近第一开口1111处设置。这时,第一腔体112内所设置的器件还可以包括第二待散热器件133和第三待散热器件134,其中,第二待散热器件133可以设置在第一开口1111与第二风扇127的进风侧之间,第三待散热器件134可以设置在第二风扇127的出风侧与第二开口1112之间。在一种实现中,第二待散热器件133可位于第三待散热器件134沿第二方向的一端,第三待散热器件134则可位于第一待散热器131件背离隔板111的一侧。
第一翅片121内经过换热降温后的空气由第一开口1111进入第一腔体112后,低温空气可先经过第二待散热器件133,与第二待散热器件133换热后再由第二风扇127吹向第三待散热器件134,从而进一步与第三待散热器件134进行换热,之后由第二开口1112流向第一翅片121内,完成一次循环。通过这种设置,可以根据第一腔体112内待散热器件的散热优先级或发热量布置其在第一腔体112内的位置,例如可以将散热优先级相对较高的器件放置在散热优先级相对较低的器件的上游,或者将发热量相对较小的器件放置在发热量相对较大的器件的上游,以保证对各个待散热器件的散热效果。
示例性地,第二待散热器件133可以为电解电容板,第三待散热器件134可以为输出板。需要说明的是,下文电解电容板的标号与第二待散热器件133的标号相同,输出板的标号与第三待散热器件134的标号相同。电解电容板133上可设置有一个或多个电解电容135,输出板134上则可设置有继电器、共模电感以及电容等器件。电解电容135的发热量相对较小,因此将其设置散热回路的上游,由第一开口1111进入第一腔体112内的低温空气在与其换热后依然可以处于一个相对较低的温度,从而对下游的其它器件仍然能够实现较好的散热效果。并且由于电解电容135为热敏感器件,因此将其放置在第一开口1111处还可以减小电解电容135由于高温失效的风险,进而可以提高功率设备100整体的使用可靠性。
在一些实施方式中,散热装置还可以包括第三导流构件128,第三导流构件128设置于第一腔体112内,且第三导流构件128的一端可与第一开口1111连通,第三导流构件128朝向第三待散热器件134的位置则设置有第一风口(图中未示出)。这时,第二待散热器件133可以设置于第三导流构件128内,而第二风扇127则可以设置于第三导流构件128的第一风口处,且第二风扇127的进风侧与第一风口相对,以将第三导流构件128内的空气吹向第三待散热器件134。通过设置第三导流构件128,可以将第二待散热器件133限制在一个相对密闭的空间,减小第二风扇127出风侧一侧的空气回流到第二待散热器件133附近的风险,从而有助于进一步提高对第二待散热器件133的散热效果。
图6为图4中所示的功率设备100的第一腔体112在垂直于第三方向的剖视图。一并参考图4至图6,在本实施例中,第二待散热器件133可与第三待散热器件134大致平行设置。当第二待散热器件133为电解电容板,第三待散热器件134为输出板时,电解电容板133、输出板134以及功率板132可相互平行,输出板134位于功率板132背离隔板111的一侧。
一并参考图7和图8所示,图7为本申请实施例提供的另一种功率设备100在俯视状态下的剖视图,图8为图7中所示的功率设备100的第一腔体112在垂直于第三方向的剖视图。在本实施例中,功率设备100的散热装置可参考图4至图6所示的实施例进行设置,所不同的是,本实施例中第二待散热器件133与第三待散热器件134可大致垂直设置。当第二待散热器件133为电解电容板,第三待散热器件134为输出板时,电解电容板133可平行于第一方向设置,输出板134仍可位于功率板132背离隔板的一侧并与功率板132相互平行。
一并参考图9和图10所示,图9为本申请实施例提供的另一种功率设备100在俯视状态下的剖视图,图10为图9中所示的功率设备100的第一腔体112在垂直于第三方向的剖视图。在本实施例中,散热装置还可以包括第三风扇129和第四导流构件1210,第三风扇129和第四导流构件1210均可以设置在第一腔体112内,且两者靠近第二开口1112处设置。第四导流构件1210的一端可与第二开口1112连通,第四导流构件1210朝向第三待散热器件134的位置则可设置有第二风口(图中未示出)。第三风扇129可以设置于该第二风口处,且第三风扇129的进风侧朝向第三待散热器件134设置,第三风扇 129的出风侧与第二风口相对,以将与第三待散热器件134换热过后的高温空气送入第四导流构件1210内,并进一步由第四导流构件1210流向第一翅片121的通道内进行换热降温。
在具体的实施例中,第三风扇129与第二风扇127可分列于第一腔体112沿第二方向的两侧。这时,第四导流构件1210与第三导流构件128也大致沿第二方向相对设置。本实施例方案一方面可以提高第一腔体112内的空气流动速率,进而达到提高第一腔体112内的各待散热器件的散热效率的目的,另一方面,第三风扇129和第四导流构件1210的设置还可以进一步减小空气回流到第二待散热器件133附件的风险,有助于提高第二待散热器件133的使用可靠性。
另外,在本实施例中,第二待散热器件133可与第三待散热器件134大致平行设置。当第二待散热器件133为电解电容板,第三待散热器件134为输出板时,电解电容板133、输出板134以及功率板132可相互平行,输出板134位于功率板132背离隔板的一侧。
当然,在其它一些实施方式中,也可以参照图7和图8中所示的方式,使第二待散热器件与第三待散热器件大致垂直设置。当第二待散热器件为电解电容板,第三待散热器件为输出板时,电解电容板可平行于第一方向设置,输出板仍可位于功率板背离隔板的一侧并与功率板相互平行。
一并参考图11和图12所示,图11为本申请实施例提供的另一种功率设备100在俯视状态下的剖视图,图12为图11中所示的功率设备100的第一腔体112在垂直于第三方向的剖视图。与前述图9至图10所示的实施例相比,本实施例中省略了第三导流构件,这时,为了便于第二风扇127的安装,第一腔体112内还可以设置有安装板1211,该安装板1211设置于第二待散热器件133与第三待散热器件134之间,且安装板1211上可设置有第三风口(图中未示出)。这时,第二待散热器件133可被隔离在壳体的侧壁与安装板1211之间的空间内,第二风扇127设置于安装板1211的第三风口处,且第二风扇127的进风侧与第三风口相对,以将侧壁与安装板1211之间的空气吹向第三待散热器件134。该方案同样可以减小第二风扇127出风侧一侧的空气回流到第二待散热器件133附近的风险,从而有助于提高对第二待散热器件133的散热效果。
类似地,在该实施例中,第二待散热器件133可与第三待散热器件134可大致平行设置。当第二待散热器件133为电解电容板,第三待散热器件134为输出板时,电解电容板133、输出板134以及功率板132可相互平行,输出板134位于功率板132背离隔板的一侧。
当然,在其它一些实施方式中,也可以参照图7和图8中所示的方式,使第二待散热器件与第三待散热器件大致垂直设置。当第二待散热器件为电解电容板,第三待散热器件为输出板时,电解电容板可平行于第一方向设置,输出板仍可位于功率板背离隔板的一侧并与功率板相互平行。
一并参考图13、图14和图15所示,图13为本申请实施例提供的另一种功率设备100的侧面剖视图,图14为图13中所示的功率设备100在俯视状态下的剖视图,图15为图14中所示的散热装置120的局部结构示意图。在本实施例中,散热装置120也可以包括第一翅片121、基板125、第二翅片126、第一导流构件123、第二导流构件124、第一风扇122等结构。与前述各实施例所不同的是,本实施例中的多个第二翅片126可被设计为高度不同的两部分,分别为第一部分和第二部分,两部分第二翅片126沿第一方向排布。其中,位于第一部分内的第二翅片1261的高度小于位于第二部分内的第二翅片1262的高度。需要说明的是,此处第二翅片126的高度方向可以理解为其远离基板125的方向,也即前述定义的第三方向。这时,第一翅片121可以设置于位于第一部分内的每个第二翅片1261的自由端远离基板125的一侧。也就是说,多个第一翅片121在基板125表面的投影与位于第一部分内的多个第二翅片1261在基板125表面的投影可以重叠,这种设计也能够实现提高散热装置的结构紧凑性的效果。
另外需要说明的是,在本实施例中,第三导流构件、第四导流构件1210以及第二风扇和第三风扇129可以根据第一腔体内的散热需求选择性设置,图14中只示意性地示出了在第一腔体112内设置第四导流构件1210和第三风扇129的情况。
一并参考图16、图17和图18所示,图16为本申请实施例提供的另一种功率设备100的侧面剖视图,图17为图16中所示的功率设备100在俯视状态下的剖视图,图18为图16中所示的散热装置120的局部结构示意图。在本实施例中,散热装置120同样可以包括第一翅片121、基板125、第二翅片126、第一导流构件123、第二导流构件124、第一风扇122等结构。与前述各实施例所不同的是,本实施例中基板125的外轮廓在隔板表面的投影所围合的区域可覆盖第一开口1111和第二开口1112。换句话说,由构成基板125的外缘的线条在隔板表面的投影可覆盖第一开口1111和第二开口1112。这时,为了将第一导流构件123和第二导流构件124与第一腔体112连通,基板125在与第一开口1111和第二开口 1112相对的位置可分别设置第一避让孔1251和第二避让孔1252。示例性地,第一导流构件123的端部可穿过第一避让孔1251与第一开口1111连通,第二导流构件124的端部可穿过第二避让孔1252与第二开口1112连通。这种设计可以增大基板125的面积,从而有利于提高对第一待散热器件131的散热效果。
一并参考图19、图20和图21所示,图19为本申请实施例提供的另一种功率设备100的侧面剖视图,图20为图19中所示的功率设备100在俯视状态下的剖视图,图21为图19中所示的散热装置120的局部结构示意图。在本实施例中,第一翅片121与第二翅片126可采用图12和图13中所示的实施例中的布置方式,与图12和图13中所示的实施例所不同的是,本实施例中基板125的外轮廓在隔板表面的投影所围合的区域也可以覆盖第一开口1111和第二开口1112,并在基板上与第一开口1111和第二开口1112相对的位置分别设置第一避让孔1251和第二避让孔1252,以便于将第一导流构件123和第二导流构件124与第一腔体112连通。
一并参考图22和图23所示,图22为本申请实施例提供的另一种功率设备100的侧面剖视图,图23为图22中所示的功率设备100在俯视状态下的剖视图,图24为图22中所示的散热装置120的局部结构示意图。在本实施例中,散热装置可包括第一翅片121、基板125、第二翅片126和第一风扇122结构,各部件的位置关系可参考前述各实施例中的描述,此处不再赘述。与前述实施例所不同的是,本实施例中第一翅片121和第二翅片126均可以采用实心的薄片状结构,第一翅片121不再与第一腔体112连通。这时,散热装置还以包括第一支撑件1212和第二支撑件1213,第一支撑件1212和第二支撑件1213沿第二方向相对设置于第二腔体113内,且第一支撑件1212和第二支撑件1213的一端分别与基板125固定连接,第一支撑件1212和第二支撑件1213的另一端分别与各第一翅片121的两端固定连接,从而将第一翅片121支撑于第二翅片126背离基板125的一侧。
该实施例中,第一待散热器件131工作时产生的热量传递给基板125后,一部分热量可通过基板125直接传递给第二翅片126,另一部分热量可通过基板125传递给第一支撑件1212和第二支撑件1213,并进一步由第一支撑件1212和第二支撑件1213传递给第一翅片121。当外部空气通过进风口1131进入第二腔体113内之后,分别与第一翅片121和第二翅片126进行换热,最后由出风口1132排出,从而将第一翅片121和第二翅片126的热量带走。可以看出,本实施例中的第一翅片121和第二翅片126均用于对第一待散热器件131进行散热,从而可以提高对第一待散热器件131的散热效果。
另外,需要说明的是,在以上各实施例中,功率设备100的第二腔体113中还可设置有第四待散热器件136,该第四待散热器件136可以设置于第一翅片121朝向出风口1132的一侧,也即,位于第二腔体113的通风路径的下游,这样,进入第二腔体113内的低温空气可优先与第一翅片121及第二翅片126进行换热,从而保证对第一腔体112内的各器件的散热效果,而由于第四待散热器件136的防护要求相对较低,因此将其设置于散热路径的下游也可以实现一定的散热效果,保障其正常工作。示例性地,第四待散热器件136可以为磁性器件,如电感。
应当理解的是,在本申请各实施例中,第一腔体内所设置的器件并不限于上文中提到的第一待散热器件、第二待散热器件、第三待散热器件,同理,第二腔体内所设置的器件也并不限于上文中提到的第四待散热器件,在实际应用中可以根据功率设备的具体类型设置相匹配的器件,此处不再过多赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种功率设备(100),其特征在于,包括壳体(110)和散热装置(120),其中:
    所述壳体(110)内设置有隔板(111),所述隔板(111)将所述壳体(110)分隔为第一腔体(112)和第二腔体(113),且所述隔板(111)设置有将所述第一腔体(112)与所述第二腔体(113)连通的第一开口(1111)和第二开口(1112);所述第一腔体(112)内设置有待散热器件,所述第二腔体(113)设置有进风口(1131)和出风口(1132),所述进风口(1131)与所述出风口(1132)沿第一方向相对设置;
    所述散热装置(120)包括设置于所述第二腔体(113)内的第一翅片(121),所述第一翅片(121)的表面朝向所述隔板(111),所述第一翅片(121)内设置有通道,所述通道沿第二方向贯穿所述第一翅片(121);所述通道的两端分别与所述第一开口(1111)和第二开口(1112)连通;
    所述第二方向与所述第一方向之间的最小夹角大于0°且小于或等于90°。
  2. 如权利要求1所述的功率设备(100),其特征在于,所述第一翅片(121)的数量为多个,相邻的所述第一翅片(121)之间形成沿所述第一方向延伸的风道。
  3. 如权利要求1或2所述的功率设备(100),其特征在于,所述散热装置(120)还包括设置于所述第二腔体(113)内的第一导流构件(123)和第二导流构件(124),所述第一导流构件(123)的一端与所述第一开口(1111)连通,另一端与所述通道(121)的一端连通,所述第二导流构件(124)的一端与所述第二开口(1112)连通,另一端与所述通道的另一端连通。
  4. 如权利要求1~3任一项所述的功率设备(100),其特征在于,所述第一腔体(112)内的待散热器件(131)包括第一待散热器件(131),所述第一待散热器件(131)靠近所述隔板(111)设置;
    所述散热装置(120)还包括设置于所述第二壳体(113)内的基板(125)和多个第二翅片(126),所述基板(125)设置于所述隔板上,且所述基板(125)与所述第一待散热器(131)件导热接触,所述第二翅片(126)设置于所述基板(125)背离所述隔板(111)的一侧,且沿远离所述隔板(111)的方向延伸,相邻的所述第二翅片(126)之间形成沿所述第一方向延伸的风道。
  5. 如权利要求4所述的功率设备(100),其特征在于,所述第一翅片(121)设置于多个所述第二翅片(126)中每一所述第二翅片(126)的自由端远离所述基板(125)的一侧。
  6. 如权利要求4所述的功率设备(100),其特征在于,多个所述第二翅片(126)分为第一部分和第二部分,沿远离所述基板(125)的方向,位于所述第一部分内的所述第二翅片(1261)的高度小于位于所述第二部分内的所述第二翅片(1262)的高度;
    所述第一翅片设置于所述第一部分内的每一所述第二翅片的自由端远离所述基板的一侧。
  7. 如权利要求4~6任一项所述的功率设备(100),其特征在于,所述基板(125)的外轮廓在所述隔板(111)表面的投影位于所述第一开口(1111)和所述第二开口(1112)之间;或者,
    所述基板(125)的外轮廓在所述隔板(111)表面的投影所围合的区域覆盖所述第一开口(1111)和所述第二开口(1112),所述基板对应所述第一开口(1111)和所述第二开口(1112)的位置分别设置有第一避让孔和第二避让孔。
  8. 如权利要求4~7任一项所述的功率设备(100),其特征在于,所述隔板(111)对应所述第一待散热器件(131)的位置设置有开孔,所述第一待散热器件(131)伸入所述开孔内与所述基板(125)导热接触。
  9. 如权利要求1~8任一项所述的功率设备(100),其特征在于,所述散热装置(120)还包括设置于所述第二腔体(113)内的第一风扇(122),所述第一风扇(122)的进风侧朝向所述进风口(1131)设置,所述第一风扇(122)的出风侧朝向所述出风口(1132)设置。
  10. 如权利要求1~9任一项所述的功率设备(100),其特征在于,所述第一腔体(112)内的待散热器件包括第二待散热器件(133)和第三待散热器件(134);
    所述散热装置(120)还包括设置于所述第一腔体(112)内的第二风扇(127),所述第二待散热器件(133)设置于所述第一开口(1111)与所述第二风扇(127)的进风侧之间,所述第三待散热器件(134)设置于所述第二风扇(127)的出风侧与所述第二开口(1112)之间,且所述第三待散热器件(133)位于所述第一待散热器件(131)背离所述隔板(111)的一侧。
  11. 如权利要求10所述的功率设备(100),其特征在于,所述散热装置(120)还包括设置于所述 第一腔体(112)内的第三导流构件(128),所述第三导流构件(128)与所述第一开口(1111)连通,且所述第三导流构件(128)在面向所述第三待散热器件(134)处设置有第一风口;
    所述第二待散热器件(133)设置于所述第三导流构件(128)内,所述第二风扇(127)设置于所述第一风口处,且所述第二风扇(127)的进风侧与所述第一风口相对设置。
  12. 如权利要求10或11所述的功率设备(100),其特征在于,所述散热装置(120)还包括设置于所述第一腔体(112)内的第三风扇(129)和第四导流构件(1210),所述第四导流构件(1210)与所述第二开口(1112)连通,且所述第四导流构件(1210)在面向所述第三待散热器件(134)处设置有第二风口;
    所述第三风扇(129)设置于所述第二风口处,所述第三风扇(129)的进风侧朝向所述第三待散热器件(134)设置,所述第二风扇(129)的出风侧与所述第二风口相对设置。
  13. 如权利要求10~12任一项所述的功率设备(100),其特征在于,所述第二待散热器件(133)为电解电容板;和/或,所述第三待散热器件(134)为输出板。
  14. 如权利要求1~13任一项所述的功率设备(100),其特征在于,所述第二腔体(113)内设置有第四待散热器件(136),所述第四待散热器件(136)设置于所述第一翅片(121)朝向所述出风口(1132)的一侧。
  15. 一种光伏系统,其特征在于,包括电池板和如权利要求1~14任一项所述的功率设备(100),所述电池板用于将太阳能转化为电能,所述功率设备用于对来自所述电池板的电流和/或电压进行转换。
PCT/CN2023/110164 2022-08-31 2023-07-31 一种功率设备及光伏系统 WO2024045981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211056306.XA CN115413200A (zh) 2022-08-31 2022-08-31 一种功率设备及光伏系统
CN202211056306.X 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045981A1 true WO2024045981A1 (zh) 2024-03-07

Family

ID=84163776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110164 WO2024045981A1 (zh) 2022-08-31 2023-07-31 一种功率设备及光伏系统

Country Status (2)

Country Link
CN (1) CN115413200A (zh)
WO (1) WO2024045981A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413200A (zh) * 2022-08-31 2022-11-29 华为数字能源技术有限公司 一种功率设备及光伏系统
CN116761386A (zh) * 2023-05-19 2023-09-15 华为数字能源技术有限公司 一种带风液复合散热机组的功率变换器及储能系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841791A (zh) * 2012-11-21 2014-06-04 华为技术有限公司 换热装置及机柜
US20150216090A1 (en) * 2013-03-19 2015-07-30 Fuji Electric Co., Ltd. Cooling device and power converter having cooling device
CN205510642U (zh) * 2016-03-02 2016-08-24 艾默生网络能源有限公司 封闭式散热结构及具有该散热结构的电器设备
CN115413200A (zh) * 2022-08-31 2022-11-29 华为数字能源技术有限公司 一种功率设备及光伏系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209627906U (zh) * 2018-12-24 2019-11-12 深圳市英威腾电气股份有限公司 电气设备机箱及电气设备
CN209233152U (zh) * 2019-03-08 2019-08-09 北京镭创高科光电科技有限公司 一种荧光轮内循环风冷散热装置及激光器
CN113163635A (zh) * 2020-01-23 2021-07-23 华为技术有限公司 一种电子设备外罩及电子设备组件
CN112236018A (zh) * 2020-11-05 2021-01-15 阳光电源股份有限公司 功率柜及变流器
CN115176413A (zh) * 2020-12-22 2022-10-11 华为数字能源技术有限公司 一种功率变换器、热交换器、散热器及光伏发电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841791A (zh) * 2012-11-21 2014-06-04 华为技术有限公司 换热装置及机柜
US20150216090A1 (en) * 2013-03-19 2015-07-30 Fuji Electric Co., Ltd. Cooling device and power converter having cooling device
CN205510642U (zh) * 2016-03-02 2016-08-24 艾默生网络能源有限公司 封闭式散热结构及具有该散热结构的电器设备
CN115413200A (zh) * 2022-08-31 2022-11-29 华为数字能源技术有限公司 一种功率设备及光伏系统

Also Published As

Publication number Publication date
CN115413200A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
US10820453B2 (en) Power cabinet, grid-connected photovoltaic system and container
WO2024045981A1 (zh) 一种功率设备及光伏系统
US10462938B2 (en) Inverter power cabinet
JP6209790B2 (ja) ヒートシンク付き電子的構成要素ハウジング
CN114630558B (zh) 一种散热系统、供电系统和充电桩
JP5962326B2 (ja) 強制空冷式ヒートシンク
JP6074346B2 (ja) 配電盤装置
CN213692028U (zh) 一种风冷型模块用高效散热器模块
JP2006210516A (ja) 電子機器の冷却構造
CN115176413A (zh) 一种功率变换器、热交换器、散热器及光伏发电系统
WO2024082664A1 (zh) 一种充电设备和充电系统
CN117355089A (zh) 功率变换设备与储能设备
US20210226467A1 (en) High-density heat sink for dissipating heat from heat-generating components
CN222339827U (zh) 电子设备
CN219322837U (zh) 一种具有散热结构的机壳及焊机
CN221448276U (zh) 一种功率设备
CN118174515B (zh) 功率变换设备和储能设备
CN222339241U (zh) 功率模组及变流器
CN219536639U (zh) 电力电子设备的散热结构、散热风道、电力电子设备
CN210129816U (zh) 变换器
CN215817891U (zh) 逆变器和具有其的光伏电站
CN217240606U (zh) 一种光储逆变器
CN217563985U (zh) 一种散热组件以及储能电源
CN221329433U (zh) 散热模组和供电装置
CN220964643U (zh) 一种电源功率模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859016

Country of ref document: EP

Kind code of ref document: A1