WO2022131671A1 - 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법 - Google Patents

도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법 Download PDF

Info

Publication number
WO2022131671A1
WO2022131671A1 PCT/KR2021/018616 KR2021018616W WO2022131671A1 WO 2022131671 A1 WO2022131671 A1 WO 2022131671A1 KR 2021018616 W KR2021018616 W KR 2021018616W WO 2022131671 A1 WO2022131671 A1 WO 2022131671A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
dip galvanized
galvanized steel
strength
Prior art date
Application number
PCT/KR2021/018616
Other languages
English (en)
French (fr)
Inventor
김영하
이석규
한태교
강대영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202180085903.2A priority Critical patent/CN116648525A/zh
Priority to JP2023536483A priority patent/JP2024500725A/ja
Priority to US18/267,381 priority patent/US20240043954A1/en
Priority to EP21906975.4A priority patent/EP4265808A4/en
Publication of WO2022131671A1 publication Critical patent/WO2022131671A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/021Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously by dipping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet having excellent plating properties and a method for manufacturing the same.
  • Patent Document 1 is a representative technique for solving this problem.
  • Patent Document 1 relates to a technique for suppressing formation of Si oxide or the like on the surface by preferentially concentrating at grain boundaries through addition of trace components such as Sb to steel.
  • Patent Document 1 Japanese Patent Publication No. 6222040
  • One aspect of the present invention is to provide a high-strength hot-dip galvanized steel sheet having excellent plating properties and a method for manufacturing the same.
  • One embodiment of the present invention is a hot-dip galvanized steel sheet having a base steel sheet and a hot-dip galvanized layer formed on one or both surfaces of the base steel sheet, wherein the base steel sheet is weight %, carbon (C): 0.1 to 0.3%, silicon (Si): 0.1 to 2.0%, aluminum (Al): 0.1 to 1.5%, manganese (Mn): 1.5 to 3.0%, the balance includes Fe and unavoidable impurities, and the sum of Si and Al is 1.2 to 3.5% Satisfied, the ratio of Al and Si (Al/Si) satisfies 0.5 to 2.0, the surface roughness (Ra) of the base steel sheet is 0.5 ⁇ m or more, and the thickness is less than 4 ⁇ m directly under the surface of the base steel sheet.
  • a high-strength hot-dip galvanized steel sheet having excellent plating properties including an oxide layer.
  • Another embodiment of the present invention is by weight, carbon (C): 0.1 to 0.3%, silicon (Si): 0.1 to 2.0%, aluminum (Al): 0.1 to 1.5%, manganese (Mn): 1.5 to 3.0% , the remainder Fe and unavoidable impurities, the sum of Si and Al satisfies 1.2% or more, and the Al and Si ratio (Al/Si) satisfies 0.5 to 2.0 by reheating the slab at 1000 to 1300 ° C.
  • Example 1 is a photograph of the surface of Inventive Example 1 according to an embodiment of the present invention.
  • Comparative Example 4 is a photograph of the surface of Comparative Example 4 according to an embodiment of the present invention.
  • FIG 3 is a photograph of a cross section of the cold rolled steel sheet of Inventive Example 1 according to an embodiment of the present invention observed with a scanning electron microscope (SEM).
  • FIG. 4 is a photograph of a cross-section of a cold rolled steel sheet of Comparative Example 4 according to an embodiment of the present invention observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the hot-dip galvanized steel sheet of the present invention has a base steel sheet and a hot-dip galvanized layer formed on one or both surfaces of the base steel sheet.
  • the alloy composition of the base steel sheet of the present invention will be described.
  • the content of the alloy composition to be described below means wt% unless otherwise specified.
  • the C is an element contributing to the stabilization of the austenite structure, and as its content increases, it is advantageous in securing the austenite structure.
  • the C content is preferably 0.1% or more.
  • the content of C is preferably in the range of 0.1 to 0.3%.
  • the lower limit of the C content is more preferably 0.15%.
  • the upper limit of the C content is more preferably 0.25%.
  • Silicon (Si) is an element contributing to stabilization of retained austenite by suppressing precipitation of carbides in ferrite and promoting diffusion of carbon in ferrite into austenite.
  • the Si content is preferably in the range of 0.1 to 2.0%.
  • the lower limit of the Si content is more preferably 0.2%.
  • the upper limit of the Si content is more preferably 1.8%.
  • Aluminum (Al) is an element that deoxidizes by bonding with oxygen in steel. Also, like Si, Al is an element contributing to stabilization of retained austenite by suppressing the formation of carbides in ferrite. In order to obtain the above-described effect, it is preferable that 0.1% or more of Al is added, but when the content exceeds 1.5%, the soundness of the slab is deteriorated, and since it is an element with strong oxygen affinity, an oxide is formed on the surface of the steel sheet This may lead to deterioration of plating properties and adhesion. Accordingly, the Al content is preferably in the range of 0.1 to 1.5%. The lower limit of the Al content is more preferably 0.2%. The upper limit of the Al content is more preferably 1.4%.
  • the Mn is an element that stabilizes the austenite structure together with carbon. If the Mn content is less than 1.5%, it becomes difficult to secure the target strength due to the occurrence of ferrite transformation. do. Accordingly, the Mn content is preferably in the range of 1.5 to 3.0%. The lower limit of the Mn content is more preferably 1.7%. The upper limit of the Mn content is more preferably 2.9%.
  • the remainder may include Fe and unavoidable impurities. Inevitable impurities may be unintentionally mixed in a typical steel manufacturing process, and this cannot be entirely excluded, and those skilled in the ordinary steel manufacturing field can easily understand the meaning.
  • the present invention does not entirely exclude the addition of compositions other than the above-mentioned steel composition.
  • both Si and Al are elements contributing to the stabilization of retained austenite, and in order to effectively achieve this, it is preferable that the sum of the contents of Si and Al satisfy the range of 1.2 to 3.5%.
  • the sum of the Si and Al contents is less than 1.2%, it may be difficult to sufficiently obtain the effect of increasing the elongation.
  • the sum of the content of Si and Al exceeds 3.5%, it may cause a problem in that castability and rollability are inferior.
  • the lower limit of the sum of the Si and Al contents is more preferably 1.3%.
  • the upper limit of the sum of the Si and Al contents is more preferably 3.4%.
  • the ratio of Al and Si (Al/Si) preferably satisfies 0.5 to 2.0.
  • the ratio of Al to Si is less than 0.5, the sensitivity of spot welding LME (Liquid Metal Embrittlement) increases due to matrixing of the Si base, which may lead to inferior weldability.
  • the ratio of Al to Si exceeds 2.0, the oxygen affinity is relatively high due to matrixing of the Al base, and as oxides are easily formed on the surface of the steel sheet, plating properties and adhesion may be deteriorated.
  • the lower limit of the ratio of Al and Si is more preferably 0.6.
  • the upper limit of the ratio of Al and Si is more preferably 1.9.
  • the surface roughness (Ra) of the base steel sheet is preferably 0.5 ⁇ m or more.
  • the surface roughness (Ra) of the steel sheet is preferably 0.5 ⁇ m or more.
  • the surface roughness (Ra) of the base steel sheet is more preferably 0.7 ⁇ m or more.
  • the upper limit thereof is not particularly limited. However, due to limitations in the manufacturing process, the surface roughness of the base steel sheet may be difficult to exceed 2 ⁇ m.
  • the hot-dip galvanized steel sheet of the present invention preferably includes an internal oxide layer having a thickness of less than 4 ⁇ m directly under the surface of the base steel sheet.
  • the present invention prevents the diffusion of Al or Si present in the steel sheet to the surface layer portion of the steel sheet by forming an internal oxide layer directly under the surface of the steel sheet to prevent Al or Si oxide from being formed in the surface layer portion, thereby improving the plating property. as one characteristic.
  • the thickness of the internal oxide layer is 4 ⁇ m or more, there is a disadvantage that oxides on the surface of the steel sheet are picked up on the roll during annealing heat treatment, thereby causing surface defects such as dents. Therefore, the thickness of the internal oxide layer is preferably less than 4 ⁇ m. It is more preferable that the thickness of the internal oxide layer is 3.5 ⁇ m or less.
  • the inner oxide layer may include an oxide having a maximum length of less than 4 ⁇ m.
  • the maximum length of the oxide is 4 ⁇ m or more, there is a disadvantage in that the oxide on the surface of the steel sheet is picked up on the roll during the annealing heat treatment process and may cause surface defects such as dents. Accordingly, the maximum length of the oxide is preferably less than 4 ⁇ m. The maximum length of the oxide is more preferably 3.5 ⁇ m or less.
  • the oxide may be formed of a composite oxide of Al and Si. As described above, by forming the oxide as an Al, Si composite oxide, the oxide in the form of an oxide is formed in an intermittent form rather than a continuous form such as a layer, thereby improving plating adhesion.
  • the Al and Si composite oxides may be present in both grains or at grain boundaries, but are present in relatively large amounts at grain boundaries. In this case, it is preferable that the Al, Si composite oxide is intermittently present at the grain boundary. As described above, the Al and Si composite oxide may be advantageous in securing plating adhesion as compared to continuously existing by intermittently existing at the grain boundary. More specifically, among Al included in the Al and Si composite oxide, Al present at grain boundaries may have an interval of 20 nm or more. When the gap of Al present at the grain boundary is less than 20 nm, it may be difficult to secure plating adhesion. It is more preferable that the interval of Al present at the grain boundary is 30 nm or more.
  • the hot-dip galvanized steel sheet of the present invention provided as described above has a yield strength of 600 MPa or more, a tensile strength of 950 MPa or more, and an elongation of 20% or more, thereby securing excellent mechanical properties.
  • the area of the hot-dip galvanized layer relative to the total area of the base steel sheet is 95% or more, and the plating adhesion is good, so that it can have excellent plating properties.
  • LME cracking does not occur, it can have excellent LME cracking resistance.
  • the slab satisfying the above-mentioned alloy composition is reheated at 1000 ⁇ 1300 °C. If the slab reheating temperature is less than 1000 °C may cause a problem that the rolling load significantly increases, if it exceeds 1300 °C, the problem of excessive surface scale may occur. Therefore, the slab reheating temperature is preferably in the range of 1000 ⁇ 1300 °C. The lower limit of the slab reheating temperature is more preferably 1050 °C. The upper limit of the slab reheating temperature is more preferably 1250 °C.
  • the reheated slab is hot finish-rolled at 800 to 950° C. to obtain a hot-rolled steel sheet.
  • the hot finish rolling temperature is preferably in the range of 800 ⁇ 950 °C.
  • the lower limit of the hot finish rolling temperature is more preferably 830°C.
  • the upper limit of the hot finish rolling temperature is more preferably 930 °C.
  • the hot-rolled steel sheet is wound at 630 ⁇ 700 °C.
  • the coiling temperature is less than 630 °C, since the internal oxide layer is not formed, the formation of oxides on the surface layer of the steel sheet is promoted during the annealing heat treatment process, so that the plating property may be inferior, and if it exceeds 700 °C, the depth of the internal oxide layer is Oxide may be picked up on the roll during the subsequent annealing heat treatment process as it deepens, causing surface defects such as dents. Therefore, the coiling temperature is preferably in the range of 630 ⁇ 700 °C.
  • the lower limit of the coiling temperature is more preferably 650°C.
  • the upper limit of the coiling temperature is more preferably 680 °C.
  • the wound hot-rolled steel sheet is pickled for more than 30 seconds and less than 60 seconds. If the pickling time is less than 30 seconds, hot-rolled scale is not completely removed, which may lead to non-plating and plating peeling due to residual scale. On the other hand, in the case of more than 60 seconds, the internal oxide layer of the finally obtained steel sheet is completely removed as the pickling solution penetrates along the grain boundaries of the internal oxide layer and the internal oxide layer is removed. Otherwise, plating properties and adhesion may be inferior. In addition, if the above pickling time is not satisfied, the surface roughness (Ra) of the base steel sheet is less than 0.5 ⁇ m and a smooth surface is obtained, so an anchoring effect with the hot-dip galvanizing layer is expected in the subsequent plating process.
  • Ra surface roughness
  • the pickling time preferably has a range of more than 30 seconds and less than 60 seconds.
  • the lower limit of the pickling time is more preferably 35 seconds, and still more preferably 40 seconds.
  • the upper limit of the pickling time is more preferably 55 seconds, still more preferably 50 seconds.
  • the pickled hot rolled steel sheet is cold rolled, annealed and cooled to obtain a cold rolled steel sheet.
  • the cold rolling, annealing and cooling conditions are not particularly limited, and conditions commonly performed in the art may be used.
  • the cooled cold-rolled steel sheet is hot-dip galvanized.
  • the hot-dip galvanizing method is not particularly limited, and conditions commonly used in the art may be used.
  • the cold-rolled steel sheet may be immersed in a hot-dip galvanizing bath at 440 to 460°C.
  • the temperature of the hot-dip galvanizing bath is less than 440°C, the viscosity of the plating bath increases and the mobility of a roll that winds the steel sheet is reduced, causing a slip between the steel sheet and the roll, which may cause defects in the steel sheet.
  • it exceeds 460° C. the dissolution of the steel sheet in the plating bath is accelerated, thereby accelerating the generation of dross in the form of Fe—Zn compounds, which may cause surface defects.
  • the step of alloying heat treatment of the hot-dip galvanized steel sheet at 480 ⁇ 600 °C may be further included. If the alloying heat treatment temperature is less than 480 °C, Fe in the base material may not sufficiently diffuse into the plating layer, so it may not be possible to sufficiently secure the Fe content in the plating layer, and if it exceeds 600 ° C, the Fe content in the plating layer is excessive. In the process, a powdering phenomenon in which the plating layer falls off may occur.
  • the molten metal having the alloy composition shown in Table 1 was prepared as an ingot having a width of 175 mm and a thickness of 90 mm in a vacuum melting furnace, followed by reheating at 1200° C. for 1 hour to homogenize, and hot finish rolling at 900° C., which is a temperature of Ar3 or higher. Then, it was wound under the conditions shown in Table 2 to prepare a hot-rolled steel sheet. This hot-rolled steel sheet was pickled by immersing it in a pickling solution of 15% HCl under the conditions shown in Table 2 below. Thereafter, cold rolling was performed at a cold rolling reduction of 50 to 60% to prepare a cold rolled steel sheet.
  • This cold-rolled steel sheet is subjected to annealing heat treatment by blowing nitrogen gas containing 5 vol% hydrogen in a reduction furnace at 860°C, then cooled and immersed in a hot-dip galvanizing bath for 5 seconds, followed by air wipe ), by adjusting the plating adhesion to a level of 60 g/m 2 on one side, a hot-dip galvanized steel sheet was manufactured.
  • the surface roughness (Ra), internal oxide layer thickness, and maximum oxide length of the base steel sheet are randomly selected from 10 cross-sectional microstructure photos obtained through scanning electron microscopy (SEM) and measured at 5000 magnification, and then the average value thereof was described.
  • the spacing of Al existing at grain boundaries was measured through component mapping using EDS (Energy Dispersive Spectroscopy) through transmission electron microscopy (TEM).
  • the plating property is measured by measuring the area of the hot-dip galvanized layer to the total area of the hot-dip galvanized steel sheet by image analysis to determine the fraction, and after applying a structural adhesive on the hot-dip galvanized steel sheet, curing it at 175°C for 20 minutes, When bending at 90°, it was evaluated by checking whether or not it comes out on the sealer (plating adhesion).
  • LME cracking resistance was evaluated by whether or not LME cracking occurred at the upper limit of current after welding the hot-dip galvanized steel sheet.
  • the welding was carried out under the conditions of 16 cycles of energization time and 15 cycles of holding time with a pressing force of 2.6 kN while flowing a welding current using a Cu-Cr electrode with a tip diameter of 6 mm.
  • the welding current at the point when the nugget diameter becomes smaller than 4 ⁇ t is set as the lower limit current, and the welding current at the point in time when the blow-off phenomenon occurs is set as the upper limit current (expulsion current).
  • Comparative Example 1 does not satisfy the sum of Si and Al suggested by the present invention, so it can be seen that the elongation is at a low level.
  • Comparative Example 2 was at a level lower than the ratio of Al and Si proposed by the present invention, so it can be seen that LME cracks occurred.
  • Comparative Example 3 it can be seen that, as the ratio of Al and Si proposed by the present invention was exceeded, a large amount of non-plating occurred and the plating quality was poor.
  • Comparative Example 4 did not satisfy the coiling temperature suggested by the present invention, so that the internal oxide layer was not formed, so that not only did the non-plating occur, but also the plating adhesion was poor.
  • Comparative Example 5 did not satisfy the pickling rate suggested by the present invention, so that the internal oxide layer was not formed, so that not only did the non-plating occur, but also the plating adhesion was poor.
  • FIG. 1 is a photograph of the surface of Inventive Example 1
  • FIG. 2 is a photograph of the surface of Comparative Example 4.
  • the plating quality of Inventive Example 1 is good because there are almost no unplated areas, whereas in Comparative Example 4, the plating quality is inferior because there are many unplated areas.
  • FIG. 3 is a photograph of the cross-section of the cold-rolled steel sheet of Invention Example 1 observed with a scanning electron microscope (SEM)
  • FIG. 4 is a photograph of the cross-section of the cold-rolled steel sheet of Comparative Example 3 observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

본 발명의 일 실시형태는 소지강판 및 상기 소지강판의 일면 또는 양면에 형성되는 용융아연도금층을 갖는 용융아연도금강판으로서, 상기 소지강판은 중량%로, 탄소(C): 0.1~0.3%, 실리콘(Si): 0.1~2.0%, 알루미늄(Al): 0.1~1.5%, 망간(Mn): 1.5~3.0%, 잔부 Fe 및 불가피한 불순물을 포함하고, 상기 Si 및 Al의 합은 1.2~3.5%를 만족하며, 상기 Al 및 Si의 비(Al/Si)는 0.5~2.0을 만족하고, 상기 소지강판의 표면조도(Ra)는 0.5㎛ 이상이며, 상기 소지강판의 표면 직하에 두께가 4㎛ 미만인 내부산화층을 포함하는 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법을 제공한다.

Description

도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법
본 발명은 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법에 관한 것이다.
최근 부각되고 있는 환경 규제에 따라 엄격한 자동차 연비 규제 및 충돌 안정성 규제 강화에 대응하기 위한 방안으로 초고강도 강판에 대한 수요가 급증하고 있다. 또한, 국가별 탄소배출량 감축목표 달성을 위해 연비 개선이 요구되고 있는 반면, 고성능화와 각종 편의장치의 증가로 인해 자동차 중량은 지속적으로 증가하고 있으며, 이러한 문제를 해결하기 위하여 초고강도 강판의 수요가 지속적으로 증가하고 있다. 이에 철강사들은 Dual Phase(DP)강, Transformation Induced Plasticity(TRIP)강, Complex Phase(CP)강 등의 고강도 강판의 개발에 주력하고 있다.
자동차용 강판의 고강도화를 위해서는 강도를 증가시키기 위해 강 중에 다량의 Si, Mn, Al 등의 원소를 첨가하는 것이 일반적이나, 이들 원소를 포함하는 강판은 소둔 열처리 과정에서 상기 원소들이 강판 표면에 산화물을 생성하게 됨에 따라 용융아연도금욕 중에 강판 침지 시 도금성을 열위하게 만들고, 도금박리를 초래할 수 있다. 또한, 이후 점용접 과정에서 액상 용융금속에 모재 금속 입계로 침투하여 크랙을 유발하는 액상금속취화(Liquid Metal Embrittlement)를 일으켜 점용접성을 열위하게 만들 수 있다.
상술한 Si, Mn, Al이 다량 첨가된 강판의 도금성을 향상시키기 위해서는 강판 표면에 생성되는 산화물을 억제해야 하며, 이를 위해서는 강중에 Si 및 Al의 첨가량을 줄여야 하지만, 이러한 경우에는 목표로 하는 재질확보가 어려운 문제가 있다.
이를 해결하기 위한 대표적인 기술로는 특허문헌 1이 있다. 특허문헌 1은 강중에 Sb 등의 미량 성분 첨가를 통해 입계에 우선적으로 농화시킴으로써, Si 산화물 등이 표면에 형성되는 것을 억제하는 기술에 관한 것이다.
그러나, 강판 제조 시, 강 중 합금원소의 확산을 보다 확실하게 방지할 수 있는 기술의 개발이 여전히 요구되고 있는 실정이다.
[선행기술문헌]
(특허문헌 1) 일본 등록특허공보 제6222040호
본 발명의 일측면은, 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법을 제공하고자 하는 것이다.
본 발명의 일 실시형태는 소지강판 및 상기 소지강판의 일면 또는 양면에 형성되는 용융아연도금층을 갖는 용융아연도금강판으로서, 상기 소지강판은 중량%로, 탄소(C): 0.1~0.3%, 실리콘(Si): 0.1~2.0%, 알루미늄(Al): 0.1~1.5%, 망간(Mn): 1.5~3.0%, 잔부 Fe 및 불가피한 불순물을 포함하고, 상기 Si 및 Al의 합은 1.2~3.5%를 만족하며, 상기 Al 및 Si의 비(Al/Si)는 0.5~2.0을 만족하고, 상기 소지강판의 표면조도(Ra)는 0.5㎛ 이상이며, 상기 소지강판의 표면 직하에 두께가 4㎛ 미만인 내부산화층을 포함하는 도금성이 우수한 고강도 용융아연도금강판을 제공한다.
본 발명의 다른 실시형태는 중량%로, 탄소(C): 0.1~0.3%, 실리콘(Si): 0.1~2.0%, 알루미늄(Al): 0.1~1.5%, 망간(Mn): 1.5~3.0%, 잔부 Fe 및 불가피한 불순물을 포함하고, 상기 Si 및 Al의 합은 1.2% 이상을 만족하며, 상기 Al 및 Si의 비(Al/Si)는 0.5~2.0을 만족하는 슬라브를 1000~1300℃에서 재가열하는 단계; 상기 재가열된 슬라브를 800~950℃에서 열간 마무리 압연하여 열연강판을 얻는 단계; 상기 열연강판을 630~700℃에서 권취하는 단계; 상기 권취된 열연강판을 30초 초과 60초 미만 동안 산세하는 단계; 상기 산세된 열연강판을 냉간압연, 소둔 및 냉각하여 냉연강판을 얻는 단계; 및 상기 냉연강판을 용융아연도금하는 단계;를 포함하는 도금성이 우수한 고강도 용융아연도금강판의 제조방법을 제공한다.
본 발명의 일측면에 따르면, 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 발명예 1의 표면 사진이다.
도 2는 본 발명의 일 실시예에 따른 비교예 4의 표면 사진이다.
도 3은 본 발명의 일 실시예에 따른 발명예 1의 냉연강판 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
도 4는 본 발명의 일 실시예에 따른 비교예 4의 냉연강판 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
이하, 본 발명의 일 실시형태에 따른 도금성이 우수한 고강도 용융아연도금강판에 대하여 설명한다. 본 발명의 용융아연도금강판은 소지강판 및 상기 소지강판의 일면 또는 양면에 형성되는 용융아연도금층을 갖는다. 먼저, 본 발명의 소지강판의 합금조성에 대해서 설명한다. 하기 설명되는 합금조성의 함량은 별도의 언급이 없는 한, 중량%를 의미한다.
탄소(C): 0.1~0.3%
상기 C는 오스테나이트 조직의 안정화에 기여하는 원소로서 그 함량이 증가할수록 오스테나이트 조직을 확보하는데 유리한 측면이 있다. 상기 효과를 얻기 위해서는, 상기 C 함량은 0.1% 이상인 것이 바람직하다. 다만, 0.3%를 초과하는 경우에는 주편 결함이 발생할 수 있고 용접성도 저하되는 문제가 있다. 따라서, 상기 C의 함량은 0.1~0.3%의 범위를 갖는 것이 바람직하다. 상기 C 함량의 하한은 0.15%인 것이 보다 바람직하다. 상기 C 함량의 상한은 0.25%인 것이 보다 바람직하다.
실리콘(Si): 0.1~2.0%
실리콘(Si)은 페라이트 내에서 탄화물의 석출을 억제하고, 페라이트 내 탄소가 오스테나이트로 확산하는 것을 조장하여, 잔류 오스테나이트의 안정화에 기여하는 원소이다. 상술한 효과를 얻기 위해서는, 상기 Si이 0.1% 이상 첨가되는 것이 바람직하나, 그 함량이 2.0%를 초과하는 경우 압연성이 열위해질 뿐만 아니라 열처리 과정에서 강판 표면에 산화물을 형성하여 도금성 및 밀착성 열위를 초래할 수 있다. 따라서, 상기 Si의 함량은 0.1~2.0%의 범위를 갖는 것이 바람직하다. 상기 Si 함량의 하한은 0.2%인 것이 보다 바람직하다. 상기 Si 함량의 상한은 1.8%인 것이 보다 바람직하다.
알루미늄(Al): 0.1~1.5%
알루미늄(Al)은 강중 산소와 결합하여 탈산작용을 하는 원소이며, 또한, Al은 상기 Si과 같이 페라이트 내에서 탄화물의 생성을 억제하여 잔류 오스테나이트의 안정화에 기여하는 원소이다. 상술한 효과를 얻기 위해서는, 상기 Al이 0.1% 이상 첨가되는 것이 바람직하나, 그 함량이 1.5%를 초과하게 되면 슬라브의 건전성이 열위해질 뿐만 아니라, 산소 친화력이 강한 원소이기 때문에 강판 표면에 산화물을 형성하여 도금성 및 밀착성 저해를 초래할 수 있다. 따라서, 상기 Al의 함량은 0.1~1.5%의 범위를 갖는 것이 바람직하다. 상기 Al 함량의 하한은 0.2%인 것이 보다 바람직하다. 상기 Al 함량의 상한은 1.4%인 것이 보다 바람직하다.
망간(Mn): 1.5~3.0%
상기 Mn은 탄소와 함께 오스테나이트 조직을 안정화시키는 원소이다. 상기 Mn함량이 1.5% 미만이면 페라이트 변태 발생에 따라 목표 강도 확보가 어려워지게 되며, 3.0%를 초과하게 되면 2차 소둔 열처리 과정에서 상변태 지연에 따른 마르텐사이트 형성으로 목표로 하는 연성 확보에 어려움이 발생한다. 따라서, 상기 Mn의 함량은 1.5~3.0%의 범위를 갖는 것이 바람직하다. 상기 Mn 함량의 하한은 1.7%인 것이 보다 바람직하다. 상기 Mn 함량의 상한은 2.9%인 것이 보다 바람직하다.
상술한 강 조성 이외에 나머지는 Fe 및 불가피한 불순물을 포함할 수 있다. 불가피한 불순물은 통상의 철강 제조공정에서 의도되지 않게 혼입될 수 있는 것으로, 이를 전면 배제할 수는 없으며, 통상의 철강제조 분야의 기술자라면 그 의미를 쉽게 이해할 수 있다. 또한, 본 발명은, 앞서 언급한 강 조성 이외의 다른 조성의 첨가를 전면적으로 배제하는 것은 아니다.
한편, 앞서 언급한 바와 같이, Si 및 Al는 모두 잔류 오스테나이트 안정화에 기여하는 원소로서, 이를 효과적으로 달성하기 위해서는 Si과 Al의 함량의 합이 1.2~3.5%의 범위를 만족하는 것이 바람직하다. 상기 Si과 Al의 함량의 합이 1.2% 미만인 경우에는 연신율 증가의 효과를 충분히 얻기 곤란할 수 있다. 반면, 상기 Si과 Al의 함량의 합이 3.5%를 초과하게 되면 주조성 및 압연성이 열위해지는 문제를 초래할 수 있다. 상기 Si과 Al의 함량의 합의 하한은 1.3%인 것이 보다 바람직하다. 상기 Si과 Al의 함량의 합의 상한은 3.4%인 것이 보다 바람직하다.
또한, Al 및 Si의 비(Al/Si)는 0.5~2.0을 만족하는 것이 바람직하다. 상기 Al 및 Si의 비가 0.5 미만일 경우, Si base의 matrix화로 인해 점용접 LME(Liquid Metal Embrittlement) 민감도가 증가하여 용접성 열위를 초래할 수 있다. 반면, Al 및 Si의 비가 2.0를 초과할 경우, Al base의 matrix화로 인해 산소 친화력이 상대적으로 높아져 강판 표면에 산화물의 형성이 용이해짐에 따라 도금성 및 밀착성이 열위해질 수 있다. 상기 Al 및 Si의 비의 하한은 0.6인 것이 보다 바람직하다. 상기 Al 및 Si의 비의 상한은 1.9인 것이 보다 바람직하다.
본 발명의 용융아연도금강판은 소지강판의 표면조도(Ra)는 0.5㎛ 이상인 것이 바람직하다. 이와 같이, 소지강판에 표면조도를 부여함으로써, 용융아연도금층과 소지강판 간에 엥커링 효과(anchoring effect)에 의한 밀착성이 확보될 수 있다. 상기 효과를 얻기 위해서는, 상기 소지강판의 표면조도(Ra)가 0.5㎛ 이상인 것이 바람직하다. 상기 소지강판의 표면조도(Ra)는 0.7㎛ 이상인 것이 보다 바람직하다. 한편, 본 발명에서는 상기 소지강판의 표면조도가 클수록 전술한 효과를 확보하기에 유리하므로, 그 상한에 대해서 특별히 한정하지 않는다. 다만, 제조공정상의 한계로 상기 소지강판의 표면조도는 2㎛를 초과하기 어려울 수 있다.
본 발명의 용융아연도금강판은 소지강판의 표면 직하에 두께가 4㎛ 미만인 내부산화층을 포함하는 것이 바람직하다. 본 발명은 소지강판의 표면 직하에 내부산화층을 형성시킴으로써 소지강판에 존재하는 Al이나 Si이 강판의 표층부로 확산되는 것을 방지하여 상기 표층부에 Al 또는 Si 산화물이 형성되지 않도록 함으로써 도금성을 향상시키는 것을 하나의 특징으로 한다. 다만, 상기 내부산화층의 두께가 4㎛ 이상인 경우에는 소둔 열처리 과정에서 강판 표면의 산화물이 롤에 픽업이 되어 dent와 같은 표면 결함을 발생시킬 수 있는 단점이 있다. 따라서, 상기 내부산화층의 두께는 4㎛ 미만인 것이 바람직하다. 상기 내부산화층의 두께는 3.5㎛ 이하인 것이 보다 바람직하다.
상기 내부산화층은 최대 길이가 4㎛미만인 산화물을 포함할 수 있다. 상기 산화물의 최대 길이가 4㎛를 이상인 경우에는 소둔 열처리 과정에서 강판 표면의 산화물이 롤에 픽업이 되어 dent와 같은 표면 결함을 발생시킬 수 있는 단점이 있다. 따라서, 상기 산화물의 최대 길이는 4㎛ 미만인 것이 바람직하다. 상기 산화물의 최대 길이는 3.5㎛ 이하인 것이 보다 바람직하다.
상기 산화물은 Al, Si 복합 산화물로 이루어질 수 있다. 이와 같이, 산화물이 Al, Si 복합 산화물이 이루어지도록 함으로써 산화물의 형태가 layer와 같은 연속적인 형태보다는 단속적인 형태의 산화물을 형성시켜 도금 밀착성을 향상킬 수 있는 효과를 얻을 수 있다.
상기 Al, Si 복합 산화물은 결정립내 또는 결정립계에 모두 존재할 수 있으나, 결정립계에 상대적으로 많이 존재하게 된다. 이때, 상기 Al, Si 복합 산화물은 결정립계에서 단속적으로 존재하는 것이 바람직하다. 이와 같이, 상기 Al, Si 복합 산화물은 결정립계에서 단속적으로 존재하도록 함으로써 연속적으로 존재하도록 하는 것에 비하여 도금 밀착성 확보에 유리할 수 있다. 보다 구체적으로는, 상기 Al, Si 복합 산화물에 포함되는 Al 중 결정립계에 존재하는 Al은 20nm 이상의 간격을 가질 수 있다. 상기 결정립계에 존재하는 Al의 간격이 20nm 미만인 경우에는 도금 밀착성 확보에 어려움이 있을 수 있다. 상기 결정립계에 존재하는 Al의 간격은 30nm 이상인 것이 보다 바람직하다.
전술한 바와 같이 제공되는 본 발명의 용융아연도금강판은 600MPa 이상의 항복강도, 950MPa 이상의 인장강도 및 20% 이상의 연신율을 가져 우수한 기계적 물성을 확보할 수 있다. 또한, 소지강판의 전체 면적 대비 용융아연도금층의 면적이 95% 이상이면서도 도금밀착성이 양호하여, 우수한 도금성을 가질 수 있다. 아울러, LME 균열이 발생하지 않아 우수한 LME 균열 저항성을 가질 수 있다.
이하, 본 발명의 일 실시형태에 따른 도금성이 우수한 고강도 용융아연도금강판의 제조방법에 대하여 설명한다.
우선, 전술한 합금조성을 만족하는 슬라브를 1000~1300℃에서 재가열한다. 상기 슬라브 재가열온도가 1000℃ 미만인 경우에는 압연 하중이 현저히 증가하는 문제가 발생할 수 있고, 1300℃를 초과하는 경우에는 표면 스케일이 과다해지는 문제가 발생할 수 있다. 따라서, 상기 슬라브 재가열온도는 1000~1300℃의 범위를 갖는 것이 바람직하다. 상기 슬라브 재가열온도의 하한은 1050℃인 것이 보다 바람직하다. 상기 슬라브 재가열온도의 상한은 1250℃인 것이 보다 바람직하다.
이후, 상기 재가열된 슬라브를 800~950℃에서 열간 마무리 압연하여 열연강판을 얻는다. 상기 열간 마무리 압연온도가 800℃ 미만인 경우에는 압연 하중이 증가하여 압연이 어려워지는 문제점이 있고, 950℃를 초과하는 경우에는 압연롤의 열적 피로 증가로 롤수명이 짧아지는 단점이 있다. 따라서, 상기 열간 마무리 압연온도는 800~950℃의 범위를 갖는 것이 바람직하다. 상기 열간 마무리 압연온도의 하한은 830℃인 것이 보다 바람직하다. 상기 열간 마무리 압연온도의 상한은 930℃인 것이 보다 바람직하다.
이후, 상기 열연강판을 630~700℃에서 권취한다. 상기 권취온도가 630℃ 미만인 경우에는 내부산화층이 형성되지 않음에 따라 소둔 열처리 과정에서 강판 표층부에 산화물의 형성이 촉진되어 도금성이 열위해질 수 있고, 700℃를 초과하는 경우에는 내부산화층의 깊이가 상당히 깊어져 이후 소둔 열처리 과정에서 롤에 산화물이 픽업되어 dent와 같은 표면결함을 유발할 수 있다. 따라서, 상기 권취온도는 630~700℃의 범위를 갖는 것이 바람직하다. 상기 권취온도의 하한은 650℃인 것이 보다 바람직하다. 상기 권취온도의 상한은 680℃인 것이 보다 바람직하다.
이후, 상기 권취된 열연강판을 30초 초과 60초 미만 동안 산세한다. 상기 산세 시간이 30초 이하일 경우에는 열연 스케일이 완전히 제거되지 않아 잔류 스케일에 의한 미도금 및 도금박리를 초래할 수 있다. 반면, 60초 이상인 경우에는 내부산화층 입계를 따라 산세액이 침투하여 내부산화층을 탈락시킴에 따라 최종적으로 얻어지는 강판의 내부산화층이 완전 제거되어 소둔 열처리 과정에서 합금원소가 강판 표층부로 확산되는 것을 억제하지 못해 도금성 및 밀착성이 열위해질 수 있다. 또한, 상기 산세시간을 만족하지 않는 경우에는, 소지강판의 표면조도(Ra)가 0.5㎛ 미만으로 smooth한 표면이 얻어짐에 따라 이후 도금과정에서 용융아연도금층과의 앵커링(anchoring) 효과를 기대하기 어렵고 밀착성 확보하기 어렵게 된다. 따라서, 상기 산세 시간은 30초 초과 60초 미만의 범위를 갖는 것이 바람직하다. 상기 산세 시간의 하한은 35초인 것이 보다 바람직하고, 40초인 것이 보다 더 바람직하다. 상기 산세 시간의 상한은 55초인 것이 보다 바람직하고, 50초인 것이 보다 더 바람직하다.
이후, 상기 산세된 열연강판을 냉간압연, 소둔 및 냉각하여 냉연강판을 얻는다. 본 발명에서는 상기 냉간압연, 소둔 및 냉각 조건에 대해서 특별히 한정하지 않으며, 당해 기술분야에서 통상적으로 수행되는 조건을 이용할 수 있다.
이후, 상기 냉각된 냉연강판을 용융아연도금한다. 본 발명에서는 상기 용융아연도금 방법에 대해서 특별히 한정하지 않으며, 당해 기술분야에서 통상적으로 이용되는 조건을 이용할 수 있다. 다만, 예를 들면, 상기 냉연강판을 440~460℃의 용융아연도금욕에 침지하는 방식으로 이루어질 수 있다. 상기 용융아연도금욕의 온도가 440℃ 미만인 경우에는 도금욕의 점도가 증가하여 강판을 감는 롤(roll)의 이동도가 감소되어 강판과 롤간의 미끄럼(slip)을 유발시켜 강판에 결함을 유발할 수 있고, 460℃를 초과하는 경우에는 강판이 도금욕 중에 용해되는 현상이 촉진되어 Fe-Zn 화합물 형태의 드로스 발생이 가속화되어 표면결함을 유발시킬 수 있다.
한편, 상기 용융아연도금 후, 용융아연도금강판을 480~600℃에서 합금화 열처리하는 단계를 추가로 포함할 수 있다. 상기 합금화 열처리 온도가 480℃ 미만인 경우에는 모재 내 Fe가 도금층 내로 충분히 확산되지 못해 도금층 내 Fe함량을 충분히 확보하지 못할 수 있고, 600℃를 초과하는 경우에는 도금층 내 Fe함량이 과도하여 강판을 가공하는 과정에서 도금층이 탈락하는 파우더링 현상이 발생할 수 있다.
이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세하게 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 한정하지는 않는다.
(실시예)
하기 표 1에 기재된 합금조성을 갖는 용융금속을 진공용해로에서 폭 175mm, 두께 90mm의 잉곳으로 제조한 후, 1200℃에서 1시간 동안 재가열하여 균질화 처리를 하고, Ar3 이상의 온도인 900℃에서 열간 마무리 압연한 뒤, 하기 표 2에 기재된 조건으로 권취하여 열연강판을 제조하였다. 이 열연강판을 15%HCl의 산세용액에 하기 표 2의 조건으로 침지하여 산세하였다. 이후 50~60%의 냉간압하율로 냉간압연하여 냉연강판을 제조하였다. 이 냉연강판을 860℃의 환원로에서 5부피%의 수소를 포함하는 질소가스를 불어주며 소둔 열처리를 행한 뒤, 냉각하고, 용융아연도금욕에 5초 동안 침지한 후, 에어 와이핑(Air wipping)을 통해 도금 부착량을 편면 기준 60g/m2 수준으로 조절하여 용융아연도금강판을 제조하였다.
이와 같이 제조된 용융아연도금강판에 대하여 기계적 물성, 소지강판 조도, 내부산화층 두께, 산화물 최대 길이, 결정립계에 존재하는 Al 간격, 도금성 및 LME 균열 저항성을 측정한 뒤, 그 결과를 하기 표 2 및 3에 나타내었다. 한편, 상기 측정된 산화물은 Al, Si 복합 산화물이었다.
기계적 물성은 용융아연도금강판을 압연방향의 수직방향으로 40mm×200mm 크기로 절단하고, 측면을 밀링연삭한 뒤, JIS 5호 규격으로 인장시편을 제작하여 인장시험기로 항복강도(YS), 인장강도(TS) 및 연신율(EL)를 측정하였다.
소지강판의 표면조도(Ra), 내부산화층 두께, 산화물 최대 길이는 주사전자현미경(Scanning Electron Spectroscopy, SEM)을 통해 얻어진 단면 미세조직 사진에서 10군데를 임의로 선정하여 5000배율에서 측정한 뒤, 그 평균값을 기재하였다.
Al, Si 복합 산화물에 포함되는 Al 중 결정립계에 존재하는 Al의 간격은 투과전자현미경(Transmission Electron Microscopy, TEM)을 통해 EDS(Energy Dispersive Spectroscopy)를 이용한 성분 mapping을 통해 측정하였다.
도금성은 용융아연도금강판의 전체 면적 대비 용융아연도금층의 형성 면적을 image analysis로 측정하여 분율을 측정하는 것과, 구조용 접착제를 용융아연도금강판 위에 도포한 후, 175℃에서 20분 동안 경화시킨 뒤, 90°로 벤딩(bending)하였을 때, sealer에 묻어 나오는지 여부(도금밀착성)를 확인하는 것으로 평가하였다.
LME 균열 저항성은 용융아연도금강판을 용접한 후 상한전류에서 LME 균열이 발생하는지에 대한 여부로 평가하였다. 이 때, 용접은 선단경이 6mm인 Cu-Cr 전극을 사용하여 용접전류를 흘려주며 가압력 2.6kN으로 16cycle의 통전시간과 15cycle의 holding시간인 조건에서 실시하였다. 강판 두께를 t라고 할 때 너깃 직경이 4√t보다 작아지는 시점의 용접전류를 하한전류로 정하였고 날림현상이 발생하는 시점의 용접전류를 상한전류(expulsion current)으로 정하였다.
강종No. 합금조성(중량%)
C Si Al Mn Al+Si Al/Si
발명강1 0.2 0.7 0.75 2.8 1.45 1.07
발명강2 0.22 0.5 0.8 2.5 1.3 1.60
발명강3 0.21 0.7 0.5 2.6 1.2 0.71
발명강4 0.2 0.5 1 2.7 1.5 2.00
비교강1 0.24 0.5 0.5 2.8 1 1.00
비교강2 0.21 1 0.2 2.6 1.2 0.20
비교강3 0.22 0.2 1 2.7 1.2 5.00
발명강5 0.22 0.7 0.6 2.8 1.3 0.86
발명강6 0.21 0.8 0.7 2.6 1.5 0.88
구분 강종No. 권취온도(℃) 산세시간(초) 항복강도(MPa) 인장강도(MPa) 연신율(%)
발명예1 발명강1 682 33 765 1047 23.2
발명예2 발명강2 633 39 612 1058 21.9
발명예3 발명강3 644 38 660 1055 21.5
발명예4 발명강4 675 34 778 1088 23.8
비교예1 비교강1 631 42 512 966 18.9
비교예2 비교강2 638 45 665 1060 21.3
비교예3 비교강3 630 31 663 1059 21.8
비교예4 발명강5 501 49 614 1062 21.7
비교예5 발명강6 641 130 769 1055 23.0
구분 강종No. 소지강판
표면조도
(Ra)(㎛)
내부산화층
두께(㎛)
산화물
최대 길이
(㎛)
결정립계에 존재하는 Al 간격(nm) 도금성 LME 균열 여부
도금층
면적분율
(%)
도금
밀착성
발명예1 발명강1 0.9 3.1 3.8 26 95 비박리 미균열
발명예2 발명강2 0.5 2.2 2.4 28 97 비박리 미균열
발명예3 발명강3 0.6 2.5 2.9 21 98 비박리 미균열
발명예4 발명강4 0.8 3.5 3.6 34 96 비박리 미균열
비교예1 비교강1 0.5 1.6 2.2 22 99 비박리 미균열
비교예2 비교강2 0.6 1.2 2.8 8 98 비박리 균열
비교예3 비교강3 0.5 0.2 0.5 35 88 비박리 미균열
비교예4 발명강5 0.1 - - 23 85 박리 미균열
비교예5 발명강6 0.2 - - 24 92 박리 미균열
상기 표 1 내지 3을 통해 알 수 있듯이, 본 발명이 제안하는 합금조성 및 제조조건을 만족하는 발명예 1 내지 4의 경우에는 본 발명이 얻고자 하는 소지강판 표면조도, 내부산화물층 두께, 산화물 최대 길이, 결정립계에 존재하는 Al 간격 조건을 확보함에 따라, 우수한 도금성과 LME 균열 저항성을 가지고 있음을 알 수 있다.
반면, 비교예 1은 본 발명이 제안하는 Si 및 Al의 합을 만족하지 않음에 따라 연신율이 낮은 수준임을 알 수 있다.
비교예 2는 본 발명이 제안하는 Al 및 Si의 비 보다 낮은 수준이어서 LME 균열이 발생하였음을 알 수 있다.
비교예 3은 본 발명이 제안하는 Al 및 Si의 비를 초과함에 따라 미도금이 다량 발생하여 도금품질이 열위한 것을 알 수 있다.
비교예 4는 본 발명이 제안하는 권취온도를 만족하지 않음에 따라 내부산화층이 형성되지 않아 미도금이 발생하였을 뿐만 아니라 도금밀착성도 열위한 것을 알 수 있다.
비교예 5는 본 발명이 제안하는 산세속도를 만족하지 않음에 따라 내부산화층이 형성되지 않아 미도금이 발생하였을 뿐만 아니라 도금밀착성도 열위한 것을 알 수 있다.
도 1은 발명예 1의 표면 사진이며, 도 2는 비교예 4의 표면 사진이다. 도 1 및 2를 통해 알 수 있듯이, 발명예 1은 미도금된 영역이 거의 없어 도금 품질이 양호한 반면, 비교예 4는 미도금된 영역이 많아 도금품질이 열위한 것을 알 수 있다.
도 3은 발명예 1의 냉연강판 단면을 주사전자현미경(SEM)으로 관찰한 사진이고, 도 4는 비교예 3의 냉연강판 단면을 주사전자현미경(SEM)으로 관찰한 사진이다. 도 3 및 4를 통해 알 수 있듯이, 발명예 1은 소지강판에 적절한 표면조도가 형성되고, 내부산화층이 적정 두께로 형성된 반면, 비교예 4는 소지강판의 표면조도가 매우 낮을 뿐만 아니라 내부산화층이 형성되어 있지 않음을 확인할 수 있다.

Claims (10)

  1. 소지강판 및 상기 소지강판의 일면 또는 양면에 형성되는 용융아연도금층을 갖는 용융아연도금강판으로서,
    상기 소지강판은 중량%로, 탄소(C): 0.1~0.3%, 실리콘(Si): 0.1~2.0%, 알루미늄(Al): 0.1~1.5%, 망간(Mn): 1.5~3.0%, 잔부 Fe 및 불가피한 불순물을 포함하고, 상기 Si 및 Al의 합은 1.2~3.5%를 만족하며, 상기 Al 및 Si의 비(Al/Si)는 0.5~2.0을 만족하고,
    상기 소지강판의 표면조도(Ra)는 0.5㎛ 이상이며,
    상기 소지강판의 표면 직하에 두께가 4㎛ 미만인 내부산화층을 포함하는 도금성이 우수한 고강도 용융아연도금강판.
  2. 청구항 1에 있어서,
    상기 내부산화층은 최대 길이가 4㎛ 미만인 산화물을 포함하는 도금성이 우수한 고강도 용융아연도금강판.
  3. 청구항 2에 있어서,
    상기 산화물은 Al, Si 복합 산화물로 이루어지는 도금성이 우수한 고강도 용융아연도금강판.
  4. 청구항 3에 있어서,
    상기 Al, Si 복합 산화물은 결정립계에서 단속적으로 존재하는 도금성이 우수한 고강도 용융아연도금강판.
  5. 청구항 4에 있어서,
    상기 Al, Si 복합 산화물에 포함되는 Al 중 결정립계에 존재하는 Al은 20nm 이상의 간격을 갖는 도금성이 우수한 고강도 용융아연도금강판.
  6. 청구항 1에 있어서,
    상기 용융아연도금강판은 600MPa 이상의 항복강도, 950MPa 이상의 인장강도 및 20% 이상의 연신율을 갖는 도금성이 우수한 고강도 용융아연도금강판.
  7. 청구항 1에 있어서,
    상기 용융아연도금강판은 소지강판의 전체 면적 대비 용융아연도금층의 면적이 95% 이상인 도금성이 우수한 고강도 용융아연도금강판.
  8. 중량%로, 탄소(C): 0.1~0.3%, 실리콘(Si): 0.1~2.0%, 알루미늄(Al): 0.1~1.5%, 망간(Mn): 1.5~3.0%, 잔부 Fe 및 불가피한 불순물을 포함하고, 상기 Si 및 Al의 합은 1.2% 이상을 만족하며, 상기 Al 및 Si의 비(Al/Si)는 0.5~2.0을 만족하는 슬라브를 1000~1300℃에서 재가열하는 단계;
    상기 재가열된 슬라브를 800~950℃에서 열간 마무리 압연하여 열연강판을 얻는 단계;
    상기 열연강판을 630~700℃에서 권취하는 단계;
    상기 권취된 열연강판을 30초 초과 60초 미만 동안 산세하는 단계;
    상기 산세된 열연강판을 냉간압연, 소둔 및 냉각하여 냉연강판을 얻는 단계;
    상기 냉연강판을 용융아연도금하는 단계;를 포함하는 도금성이 우수한 고강도 용융아연도금강판의 제조방법.
  9. 청구항 8에 있어서,
    상기 용융아연도금하는 단계는 상기 냉연강판을 440~460℃의 용융아연도금욕에 침지하는 것을 포함하는 도금성이 우수한 고강도 용융아연도금강판의 제조방법.
  10. 청구항 8에 있어서,
    상기 용융아연도금하는 단계 후, 상기 용융아연도금된 냉연강판을 480~600℃에서 합금화 열처리하는 단계를 추가로 포함하는 도금성이 우수한 고강도 용융아연도금강판의 제조방법.
PCT/KR2021/018616 2020-12-18 2021-12-09 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법 WO2022131671A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180085903.2A CN116648525A (zh) 2020-12-18 2021-12-09 镀覆性优异的高强度热浸镀锌钢板及其制造方法
JP2023536483A JP2024500725A (ja) 2020-12-18 2021-12-09 めっき性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
US18/267,381 US20240043954A1 (en) 2020-12-18 2021-12-09 High strength hot-dip galvanized steel sheet having excellent coatability and method of manufacturing same
EP21906975.4A EP4265808A4 (en) 2020-12-18 2021-12-09 HIGH-STRENGTH HOT DIP GALVANIZED STEEL SHEET HAVING EXCELLENT COATING SUITABILITY AND METHOD FOR MANUFACTURING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200178318A KR102453006B1 (ko) 2020-12-18 2020-12-18 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법
KR10-2020-0178318 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022131671A1 true WO2022131671A1 (ko) 2022-06-23

Family

ID=82057942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018616 WO2022131671A1 (ko) 2020-12-18 2021-12-09 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법

Country Status (6)

Country Link
US (1) US20240043954A1 (ko)
EP (1) EP4265808A4 (ko)
JP (1) JP2024500725A (ko)
KR (1) KR102453006B1 (ko)
CN (1) CN116648525A (ko)
WO (1) WO2022131671A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323970A (ja) * 2003-04-10 2004-11-18 Nippon Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2013117042A (ja) * 2011-12-02 2013-06-13 Nippon Steel & Sumitomo Metal Corp 合金化溶融亜鉛めっき鋼帯およびその製造方法
KR20140083819A (ko) * 2012-12-26 2014-07-04 주식회사 포스코 고강도 열연강판, 이를 이용한 용융아연도금강판, 합금화 용융아연도금강판 및 이들의 제조방법
KR101726090B1 (ko) * 2015-12-22 2017-04-12 주식회사 포스코 표면품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법
KR20170076919A (ko) * 2015-12-24 2017-07-05 주식회사 포스코 도금성이 우수한 고강도 용융 아연계 도금 강재 및 그 제조방법
JP6222040B2 (ja) 2014-10-29 2017-11-01 Jfeスチール株式会社 化成処理性に優れた高加工性高強度冷延鋼板およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163393A (en) 1979-06-05 1980-12-19 Toshiba Corp Self-circulating lubrication type thrust bearing device
MX366222B (es) * 2011-07-29 2019-07-03 Nippon Steel Corp Star Laminas de acero de alta resistencia y laminas de acero galvanizadas de alta resistencia con capacidad de fijacion de forma excelente, y metodo para la fabricacion de las mismas.
MX356543B (es) * 2011-09-30 2018-06-01 Nippon Steel & Sumitomo Metal Corp Lámina de acero galvanizada por inmersión en caliente, de alta resistencia.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323970A (ja) * 2003-04-10 2004-11-18 Nippon Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2013117042A (ja) * 2011-12-02 2013-06-13 Nippon Steel & Sumitomo Metal Corp 合金化溶融亜鉛めっき鋼帯およびその製造方法
KR20140083819A (ko) * 2012-12-26 2014-07-04 주식회사 포스코 고강도 열연강판, 이를 이용한 용융아연도금강판, 합금화 용융아연도금강판 및 이들의 제조방법
JP6222040B2 (ja) 2014-10-29 2017-11-01 Jfeスチール株式会社 化成処理性に優れた高加工性高強度冷延鋼板およびその製造方法
KR101726090B1 (ko) * 2015-12-22 2017-04-12 주식회사 포스코 표면품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법
KR20170076919A (ko) * 2015-12-24 2017-07-05 주식회사 포스코 도금성이 우수한 고강도 용융 아연계 도금 강재 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4265808A4

Also Published As

Publication number Publication date
KR102453006B1 (ko) 2022-10-12
EP4265808A1 (en) 2023-10-25
KR20220087870A (ko) 2022-06-27
EP4265808A4 (en) 2024-05-29
US20240043954A1 (en) 2024-02-08
JP2024500725A (ja) 2024-01-10
CN116648525A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2018117716A1 (ko) 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법
WO2020130631A1 (ko) 전기 저항 점용접성이 우수한 고강도 아연도금강판 및 그 제조방법
WO2015099455A1 (ko) 액체금속취화에 의한 크랙 저항성이 우수한 용융아연도금강판
WO2020130602A2 (ko) 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2018117769A1 (ko) 내식성 및 가공성이 우수한 용융 알루미늄계 도금강재 및 그 제조방법
WO2018117714A1 (ko) 용접성 및 프레스 가공성이 우수한 용융 아연계 도금강재 및 그 제조방법
WO2020116876A2 (ko) 수소취성에 대한 저항성이 우수한 열간 프레스 성형 부재 및 그 제조방법
WO2014098503A1 (ko) 우수한 도금성과 초고강도를 갖는 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판
WO2017111491A1 (ko) 도금성 및 용접성이 우수한 오스테나이트계 용융 알루미늄 도금강판 및 그 제조방법
WO2020111881A1 (ko) 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법
WO2021112584A1 (ko) 표면품질과 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2018117770A1 (ko) 가공부 내식성이 우수한 알루미늄계 합금 도금강판
WO2020111879A1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법
WO2019132289A1 (ko) 점용접성이 우수한 고강도 고망간 도금강판 용접 구조물 및 그의 제조방법
WO2022131671A1 (ko) 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2019132288A1 (ko) 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법
WO2022131673A1 (ko) 도금밀착성 및 용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2020111883A1 (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
WO2020111884A1 (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 알루미늄계 도금 강판 및 그 제조방법
WO2020130666A1 (ko) 열간성형 후 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2020032446A1 (ko) 강도 및 도금성이 우수한 저비중 클래드 강판 및 그 제조방법
WO2022245064A1 (ko) 내수소취성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2021112581A1 (ko) 전기저항 점용접부의 피로강도가 우수한 아연도금강판 및 그 제조방법
WO2023048449A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2022139367A1 (ko) 실러 접착성이 우수한 도금 강판 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18267381

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023536483

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180085903.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906975

Country of ref document: EP

Effective date: 20230718