WO2022131247A1 - 船舶推進機 - Google Patents

船舶推進機 Download PDF

Info

Publication number
WO2022131247A1
WO2022131247A1 PCT/JP2021/046028 JP2021046028W WO2022131247A1 WO 2022131247 A1 WO2022131247 A1 WO 2022131247A1 JP 2021046028 W JP2021046028 W JP 2021046028W WO 2022131247 A1 WO2022131247 A1 WO 2022131247A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
rotor
armature
gear
shaft
Prior art date
Application number
PCT/JP2021/046028
Other languages
English (en)
French (fr)
Inventor
光司 佐藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020210274A external-priority patent/JP7527191B2/ja
Priority claimed from JP2020210281A external-priority patent/JP7542423B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022131247A1 publication Critical patent/WO2022131247A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/14Transmission between propulsion power unit and propulsion element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • B63H23/10Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from more than one propulsion power unit
    • B63H23/18Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from more than one propulsion power unit for alternative use of the propulsion power units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/30Transmitting power from propulsion power plant to propulsive elements characterised by use of clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D15/00Clutches with wedging balls or rollers or with other wedgeable separate clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/12Clutch systems with a plurality of electro-magnetically-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/064Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls
    • F16D41/066Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical
    • F16D41/067Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical and the members being distributed by a separate cage encircling the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/069Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags
    • F16D41/07Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags between two cylindrical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/14Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising conical gears only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/083Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with radially acting and axially controlled clutching members, e.g. sliding keys

Definitions

  • the present invention relates to a ship propulsion machine equipped with an engine and an electric motor as a power source.
  • the propulsion unit In small vessels such as motor boats, the propulsion unit is generally placed outside the hull.
  • This type of marine propulsion system has a fuel tank, an engine, and a power transmission system (gears, clutches, propeller shafts, etc.) built into the housing.
  • the ship propulsion machine of Patent Document 1 includes a first clutch that transmits and disengages rotation between the engine and the propeller shaft, and a second clutch that transmits and disengages rotation between the electric motor and the propeller shaft.
  • the first clutch and the second clutch are each configured as a dog clutch. By the shift actuator, one of the first clutch and the second clutch is switched to the rotation transmission state and the other is switched to the cutoff state.
  • Patent Document 1 since the ship propulsion machine of Patent Document 1 is provided with a dog clutch, if the clutch is not engaged after eliminating the rotation difference between the input and output, tooth skipping occurs and the clutch cannot be engaged, or a loud abnormal noise is heard at the time of engagement. There is a problem that occurs.
  • the structure is such that only one of the first clutch and the second clutch is selectively switched to the power transmission state, there is a problem that the propeller shaft can be driven only by one of the engine and the electric motor.
  • the problem to be solved by the present invention is that the propeller shaft can be driven by either or both of the engine and the electric motor, while the coupling can be performed even when there is a slight rotation difference between the input and output of the clutch. It is to make it a good ship propulsion machine.
  • the present invention presents a propeller shaft that rotates integrally with a propeller, an engine, an electric motor, a pinion gear that transmits the power of the engine, and a forward movement that meshes with the pinion gear.
  • the first clutch and the second clutch are provided with a second clutch for transmitting the power of the electric motor to the propeller shaft by a path independent of the first clutch and the second clutch.
  • an outer portion that rotates integrally with the corresponding forward gear or the reverse gear, an inner portion that rotates integrally with the propeller shaft inside the outer portion, and the outer portion and the inner portion.
  • An engaging element arranged between the portions, a cage for holding the engaging element, a neutral spring that is elastically deformed by the relative rotation of the cage with respect to one of the outer portion and the inner portion, and the above-mentioned
  • the armature that is detented to the cage, the electromagnet that faces the armature, and the outer part and the inner part that face the armature while being derotated to the other opposite to the one.
  • It has a rotor and a release spring that presses the armature in a direction away from the rotor, and the engager engages the outer portion and the inner portion by the relative rotation of the cage. It is arranged so that it can be moved between the position and the neutral position where the engagement is disengaged, and the armature adopts a configuration consisting of a movable member that is magnetically attracted to the rotor by energizing the electromagnet.
  • the first clutch and the second clutch are switched to the engaged state by attracting the armature to the rotor with an electromagnet, respectively, so that there is some distance between the outer part and the inner part. Coupling can be performed even when there is a difference in rotation. If the electric magnet of the first clutch is energized and the electric magnet of the second clutch is cut off, the power of the engine can be transmitted to the forward gear to rotate the propeller shaft, and the second clutch can be rotated. If the electric magnet is energized and the electric magnet of the first clutch is cut off, the power of the engine can be transmitted to the reverse gear to rotate the propeller shaft.
  • the propeller shaft is moved forward or in the forward direction according to the rotation direction of the electric motor. It can be rotated in the reverse direction. Since the hybrid transmission path is a path independent of the first clutch and the second clutch, the power of the electric motor should also be transmitted to the propeller shaft while the first clutch or the second clutch transmits the power of the engine to the propeller shaft. Can be done.
  • the hybrid transmission path may have a third clutch that transmits and disconnects rotation between the electric motor and the propeller shaft.
  • the forward gear and the reverse gear surround the propeller shaft and face the axial direction of the propeller shaft, and the pinion gear is located between the forward gear and the reverse gear, and the first clutch and the reverse gear are located.
  • the second clutch may be accommodated in a space formed around the propeller shaft and inside the forward gear, the reverse gear, and the pinion gear. In this way, the first clutch and the second clutch can be arranged compactly.
  • a partition wall that is stationary between the forward gear and the reverse gear and at a position surrounding the periphery of the propeller shaft is further provided, and the electromagnet of the first clutch and the electromagnet of the second clutch are fixed to the partition wall. good.
  • the electromagnets of the forward gear, the first clutch and the second clutch housed inside the reverse gear can be fixed to a common stationary wall, and the wiring for these electromagnets can be organized.
  • first clutch and the second clutch have a rotor guide made of a non-magnetic material fixed to the corresponding forward gear or the reverse gear, respectively, and the rotor of the first clutch and the second clutch It is preferable that the rotors are arranged in a non-contact state with the forward gear or the reverse gear by being fixed to the corresponding rotor guides. In this way, the magnetic field of each electromagnet is prevented from leaking from the corresponding rotor to the forward gear or the reverse gear while the outer portion and the rotor that rotate integrally with the forward gear or the reverse gear are stopped by the rotor guide. be able to.
  • the outer portion and the other of the inner portions have a cylindrical surface, and the outer portion and the inner portion of the outer portion and the inner portion have a cam surface that forms a wedge space in the circumferential direction with the cylindrical surface.
  • the engager may consist of a roller disposed between the cylindrical surface and the cam surface. In this way, when the first clutch and the second clutch are engaged with the rotational difference between the outer part and the inner part being large, until the engager engages with the cylindrical surface and the cam surface. When the engager is rubbed against the cylindrical surface and rotates, it slides between the cylindrical surface and the cam surface, and undergoes a semi-engaged state in which rotation is gradually transmitted, which is advantageous in suppressing an impact.
  • the present invention presents a propeller shaft that rotates integrally with a propeller, an engine, an electric motor, a main transmission path for transmitting the power of the engine, and the electric motor.
  • the main transmission path includes a first shaft that rotates integrally with the engine and the first shaft at a position below the first shaft.
  • a second shaft arranged coaxially, a clutch that transmits and disconnects rotation between the first shaft and the second shaft, a pinion gear that rotates integrally with the second shaft, the pinion gear, and the propeller.
  • the hybrid transmission path joins the main transmission path at the second shaft, and the clutch rotates integrally with the first shaft.
  • the square portion Holds the square portion, the inner portion that rotates integrally with the second shaft inside the outer portion, the engager arranged between the outer portion and the inner portion, and the engager.
  • a neutral spring that is elastically deformed by the relative rotation of the cage with respect to one of the outer portion and the inner portion, an armature that is detented to the cage, and an armature that faces the armature.
  • An electromagnet a rotor facing the armature in a state of being detented against the other of the outer portion and the inner portion opposite to the one, and a separation spring that presses the armature in a direction away from the rotor. And, the engager moves between the engagement position that engages with the outer portion and the inner portion and the neutral position that disengages the engagement by the relative rotation of the cage.
  • the armature adopts a configuration consisting of a movable member that is magnetically attracted to the rotor by energizing the electromagnet.
  • the clutch switches to the engaged state by attracting the armature to the rotor with an electromagnet, so that the clutch is coupled even when there is a slight rotation difference between the outer part and the inner part.
  • the power of the engine can be transmitted to the propeller shaft through the main transmission path.
  • the hybrid transmission path joins the main transmission path on the second shaft, the power of the electric motor can be transmitted to the propeller shaft by the hybrid transmission path, the second shaft, and the output path portion.
  • the propeller shaft can be driven only by the power of the electric motor, and when the energization of the electromagnet is cut off and the engine is operated, the propeller is driven only by the power of the engine.
  • the shaft can be driven, the electromagnet is energized and the engine and the electric motor are operated, the propeller shaft can be driven by the power of both the engine and the electric motor.
  • the hybrid transmission path may have another clutch that transmits and disengages rotation between the electric motor and the second shaft.
  • the clutch and the electric motor are housed.
  • the clutch and the electric motor can be positioned in the same casing, and it is easy to accurately combine the hybrid transmission path and the confluence portion of the second shaft.
  • the rotor is arranged above the electromagnet, the armature is arranged above the rotor, and the detachment spring is arranged between the upper surface of the rotor and the lower surface of the armature.
  • the electromagnet may be one that magnetically attracts the armature downward by energization. In this way, when the electromagnet attracts the armature to the rotor, the weight of the armature also contributes to the downward movement, so that the armature can be easily attracted to the rotor.
  • the outer portion and the other of the inner portions have a cylindrical surface, and the outer portion and the inner portion of the outer portion and the inner portion have a cam surface that forms a wedge space in the circumferential direction with the cylindrical surface.
  • the engager may consist of a roller disposed between the cylindrical surface and the cam surface. In this way, when the clutch is engaged with the rotational difference between the outer part and the inner part being large, the engager stays on the cylindrical surface until the engager engages with the cylindrical surface and the cam surface. By being rubbed and rotating, it slides on the cylindrical surface and the cam surface, and undergoes a semi-engaged state in which rotation is gradually transmitted, which is advantageous in suppressing impact.
  • the clutch has a rotor guide made of a non-magnetic material fixed to the outer portion, and the rotor is arranged in a non-contact state with the outer portion by being fixed to the rotor guide. It is good. By doing so, it is possible to prevent the magnetic field of the electromagnet from leaking from the rotor to the outer portion while preventing the outer portion and the rotor from rotating via the rotor guide. Further, since the armature or the like can be arranged between the rotor and the outer portion in a state where the outer portion and the rotor are separated, the clutch can be easily assembled.
  • the hybrid transmission path may have a main gear arranged in parallel with the second shaft and a driven gear that rotates integrally with the second shaft. In this way, the hybrid transmission path and the second shaft can be merged by a simple gear transmission mechanism.
  • the present invention can be coupled to the engine even when there is a slight difference in rotation between the input and output of the clutch by adopting the configuration according to the first or second means.
  • the propeller shaft can be driven by either one or both of the electric motors.
  • Sectional drawing which shows the structure near the 1st and 2nd clutch of the ship propulsion machine which concerns on 1st Embodiment of this invention.
  • Left side view schematically showing the ship propulsion machine according to the first embodiment Enlarged view of the vicinity of the first clutch shown in FIG.
  • Sectional drawing which shows the main part of the ship propulsion machine which concerns on 2nd Embodiment of this invention.
  • Sectional drawing which shows the structure near the clutch of the ship propulsion machine which concerns on 3rd Embodiment of this invention.
  • FIG. 1 Left side view schematically showing the ship propulsion machine according to the third embodiment Enlarged view of the vicinity of the armature shown in FIG. An enlarged cross-sectional view showing a cut surface of the IV-IV line shown in FIG. Partial cross-sectional view showing the neutral position and the engaging position of the engaging element shown in FIG. Sectional drawing which shows the main part of the ship propulsion machine which concerns on 4th Embodiment of this invention. Sectional drawing which shows the main part of the ship propulsion machine which concerns on 5th Embodiment of this invention.
  • the ship propulsion machine 1 shown in FIGS. 1 and 2 is configured as a unit having an engine 2, an electronic control unit (ECU) 3, etc. in the upper part thereof, and an electric motor 4, a propeller 5, a ladder 6, etc. in the lower part thereof. ..
  • This ship propulsion machine 1 is freely steered around the gravity axis and the horizontal axis via the suspension device 8 at the tail of the hull (ship) 7.
  • the ship propulsion machine 1 is rotated left and right with respect to the hull 7 by the steering device 9, and is rotated up and down with respect to the hull 7 by the power tilt trim device 10.
  • the reference posture of the ship propulsion machine 1 is a posture in which the rotation axis of the engine 2 (crankshaft) extends in the vertical direction and the rotation axis of the propeller shaft 11 orthogonal to the rotation axis of the engine 2 extends in the front-rear direction.
  • the ship propulsion machine 1 includes a housing 12 that houses an engine 2, an ECU 3, an electric motor 4, and the like.
  • the housing 12 has a structure in which an engine accommodating portion and a gear accommodating portion are vertically joined.
  • the ladder 6 is provided integrally with the gear accommodating portion of the housing 12.
  • the engine 2 is an engine that rotates the crankshaft in a constant rotation direction, and is composed of, for example, a 4-cycle gasoline engine. Inside the housing 12, an electric actuator for opening and closing the throttle valve and a fuel tank (not shown) are installed.
  • a main transmission path for transmitting the power of the engine 2 to the propeller shaft 11 and a hybrid transmission path for transmitting the power of the electric motor 4 to the propeller shaft 11 are configured.
  • the propeller 5 is connected so as to rotate integrally with the propeller shaft 11.
  • the propeller 5 rotates forward or reverses by the power transmitted to the propeller shaft 11.
  • the forward rotation of the propeller 5 causes the hull 7 to move forward
  • the reverse rotation of the propeller 5 causes the hull 7 to move backward.
  • the main transmission path and the hybrid transmission path are independent of each other. That is, the main transmission path can transmit the power of the engine 2 to the propeller shaft 11 regardless of whether or not the hybrid transmission path is in a state of transmitting the power of the electric motor 4 to the propeller shaft 11.
  • the hybrid transmission path transmits the power of the electric motor 4 to the propeller shaft 11 regardless of whether or not the main transmission path transmits the power of the engine 2 to the propeller shaft 11. It is configured so that it can be done.
  • Signals output from various control devices (not shown) provided in the hull 7 or the ship propulsion machine 1 are sent to the ECU 3 via the corresponding wirings L1 to L6.
  • the signals include, for example, a steering angle signal according to the steering angle of the steering wheel operated by the operator, a throttle signal according to the position of the throttle lever operated by the operator, and a position of the shift lever operated by the operator.
  • a shift signal corresponding to either neutral, forward or reverse, and a drive system selected by the operator (driving by engine power, drive by electric motor power, drive by engine and electric motor power). Examples include a drive mode signal according to the driver, and a lift angle signal according to a tilt up / down and trim up / down instruction input by the operator.
  • the ECU 3 operates the steering device 9 in response to the steering angle signal to steer the ship propulsion machine 1. Further, the ECU 3 operates the power tilt trim device 10 according to the elevating angle signal to change the tilt angle and the trim angle of the ship propulsion machine 1. Further, the ECU 3 performs predetermined control such as the output of the engine 2, the rotation direction and output of the electric motor 4, and the operation switching of the main transmission path according to the drive mode signal, the throttle signal, and the shift signal.
  • the main transmission path is a drive shaft 13 extending in the vertical direction below the engine 2, a pinion gear 14 that rotates integrally with the drive shaft 13, a forward gear 15 that meshes with the pinion gear 14, and a reverse gear 16 that meshes with the pinion gear 14. It includes a first clutch 17 that transmits and disengages rotation between the gear 15 and the propeller shaft 11, and a second clutch 18 that transmits and disengages rotation between the reverse gear 16 and the propeller shaft 11.
  • the drive shaft 13 transmits the power output from the crankshaft of the engine 2.
  • the pinion gear 14 comprises a bevel gear provided at the lower end of the drive shaft 13.
  • the forward gear 15 and the reverse gear 16 are bevel gears corresponding to the pinion gear 14.
  • the forward gear 15 and the reverse gear 16 surround the propeller shaft 11 and face each other in the axial direction of the propeller shaft 11.
  • the pinion gear 14 is located between the forward gear 15 and the reverse gear 16 at a position above the propeller shaft 11, and is always in mesh with the forward gear 15 and the reverse gear 16.
  • the forward gear 15 and the reverse gear 16 are rotated in opposite directions by the rotation of the pinion gear 14.
  • the first clutch 17 and the second clutch 18 are housed in a space formed around the propeller shaft 11 and inside the forward gear 15, the reverse gear 16, and the pinion gear 14.
  • the power of the engine 2 is transmitted to the forward gear 15 and the reverse gear 16 via the drive shaft 13 and the pinion gear 14, and is also transmitted to the propeller shaft 11 via any one of the first clutch 17 and the second clutch 18. Will be done.
  • the propeller shaft 11 is rotated in the forward rotation direction (the direction in which the propeller advances the ship).
  • the power of the engine 2 is transmitted to the reverse gear 16
  • the propeller shaft 11 is rotated in the reverse direction (the direction in which the propeller 5 reverses the ship).
  • the first clutch 17 has an outer portion 20 that rotates integrally with the forward gear 15, an inner portion 30 that rotates integrally with the propeller shaft 11 inside the outer portion 20, and an outer portion 30.
  • the engaging element 40 arranged between the portion 20 and the inner portion 30, the cage 50 for holding the engaging element 40, and the phase of the cage 50 are held by a spring force, and the outer portion 20 and the inner portion are held.
  • a neutral spring 60 that is elastically deformed by the relative rotation of the cage 50 with respect to the inner portion 30 as one of the holders 30, an armature 70 that is prevented from rotating with respect to the cage 50, an electric magnet 80 that faces the armature 70, and an outside.
  • the axes (rotation center lines) of the inner portion 30 and the outer portion 20 are set coaxially with the axis of the propeller shaft 11, and hereinafter, the direction along the axis is simply referred to as "axis direction".
  • axis direction With respect to the axial direction, the forward direction of the ship corresponds to the left direction in the figure, and the backward direction of the ship corresponds to the right direction in the figure. Further, the direction orthogonal to the axial direction is called “diameter direction”. Further, the circumferential direction around the axis is called “circumferential direction”.
  • the outer portion 20 is composed of a boss portion formed on the forward gear 15.
  • the inner portion 30 is composed of a cam ring coupled to the outer periphery of the propeller shaft 11.
  • the inner circumference of the inner portion 30 and the outer circumference of the propeller shaft 11 are integrally rotatably connected by spline fitting.
  • the boss portion of the forward gear 15 is open at both ends in the axial direction.
  • the outer portion 20 has a cylindrical surface 21 extending all around the circumferential direction, a bearing bearing surface 22 formed at a portion on the front side of the cylindrical surface 21 and having an inner diameter smaller than that of the cylindrical surface 21, and a rear portion of the cylindrical surface 21. It has a guide bearing surface 23 formed at a side portion having an inner diameter larger than that of the cylindrical surface 21.
  • the inner portion 30 has a cam surface 31 forming a wedge space in the circumferential direction with the cylindrical surface 21, and an outer portion smaller than the cam surface 31 at a portion on the front side of the cam surface 31. It has a first end portion 32 formed in a diameter and a second end portion 33 formed in a portion rearward of the cam surface 31 and having an outer diameter smaller than that of the cam surface 31.
  • a bearing 24 is attached between the front side of the outer circumference of the outer portion 20 and the inner circumference of the housing 12.
  • the bearing 24 is for rotatably supporting the outer portion 20 with respect to the housing 12.
  • a bearing 34 is attached between the outer periphery of the first end portion 32 of the inner portion 30 and the bearing seat surface 22 of the outer portion 20.
  • the bearing 34 is for rotatably supporting the inner portion 30 with respect to the outer portion 20.
  • the cam surface 31 is a flat surface extending in the length direction of one side of a regular polygonal shape.
  • the wedge space formed by the cam surface 31 and the cylindrical surface 21 is gradually narrowed from the center of the cam surface 31 in the circumferential direction toward both ends in the circumferential direction.
  • the cam surface 31 may be composed of a plurality of surfaces, or may be composed of a single curved surface.
  • the engaging element 40 is composed of a roller arranged between the cylindrical surface 21 and the cam surface 31.
  • the engagement element 40 is formed in a cylindrical roller shape.
  • a plurality of cam surfaces 31 are formed on the outer periphery of the inner portion 30 at intervals in the circumferential direction. That is, a plurality of wedge spaces are formed, and the engaging elements 40 are arranged in each wedge space.
  • the radial distance between the cam surface 31 and the cylindrical surface 21 is from the position of the engager 40 (drawn by a solid line in FIG. 5) located at the center of the cam surface 31 in the circumferential direction, as shown in FIG. It gradually becomes smaller in one direction in the circumferential direction, and gradually becomes smaller in the other direction in the circumferential direction from the position of the engager 40.
  • the engaging element 40 has an engaging position (position drawn by a chain line in FIG. 5) that engages with the cylindrical surface 21 and the cam surface 31 by the relative rotation of the cage 50 with respect to the cam surface 31, and the cylindrical surface 21 and the cam surface 31. It is movably arranged between the neutral position (the position drawn by the solid line in FIG. 5) and the neutral position for disengaging the engagement with.
  • the engaging element 40 engaged with the cylindrical surface 21 and the cam surface 31 at the engaging position applies a rotational torque between the inner portion 30 and the outer portion 20 when the cage 50 rotates relative to the inner portion 30. introduce.
  • the cage 50 includes a plurality of pillars 51 arranged in the circumferential direction, a first part 52 continuous to the front side of the pillars 51, and a rear side of the pillars 51. It has a second ring portion 53 which is continuous with the second ring portion 53.
  • the space between the pillars 51 adjacent to each other in the circumferential direction is a space for accommodating the engaging element 40.
  • the engaging element 40 is restricted in its circumferential position with respect to the cam surface 31 by contact with the column portion 51 facing in the circumferential direction, and is forcibly rotated together with the cage 50. ..
  • the cage 50 has a flange portion 54 extending from the first integrated portion 52 along the axial direction to the inward portion 30 side.
  • the flange portion 54 contributes to improving the rigidity of the cage 50.
  • the entire cage 50 is integrally formed by, for example, press working using a metal plate as a material or powder metallurgy.
  • a steel plate can be used as a metal plate.
  • the cage 50 is rotatably fitted to the outer periphery of the first end portion 32 of the inner portion 30 on the inner circumference of the flange portion 54.
  • the contact between the flange portion 54 and the stepped surface 35 on the front side of the inner portion 30 restricts the movement of the cage 50 to the rear side. Further, the movement of the cage 50 to the front side is restricted by the contact between the retaining ring 36 attached to the outer periphery of the first end portion 32 of the inner portion 30 and the flange portion 54.
  • the neutral spring 60 shown in FIGS. 3 and 4 is made of an elastic member that is elastically deformed by the relative rotation of the cage 50 with respect to the inner portion 30 and returns and rotates the cage 50 by its restoring elasticity.
  • the neutral spring 60 elastically holds the cage 50 so that the engager 40 is in the neutral position.
  • the neutral spring 60 is composed of a metal spring having a C-shaped ring portion 61 and a pair of engaging piece portions 62 formed from both ends of the ring portion 61 toward the cage 50 side.
  • the inner portion 30 is formed with a recess 37 that opens toward the rear side.
  • the recess 37 has an annular wall 37a having a shape that is partially cut off in the circumferential direction.
  • the recess 37 has a constant depth in the axial direction.
  • a neutral spring 60 is fitted in the recess 37.
  • the ring portion 61 of the neutral spring 60 is passed through the outer periphery of the second end portion 33 of the inner portion 30 and fitted inside the annular wall 37a.
  • the cage 50 has an engagement port 55 on the outer side of the disconnection space of the annular wall 37a.
  • the pair of engaging piece portions 62 are inserted into the disconnection space (the space between both ends in the circumferential direction of the annular wall) and the engagement opening portion 55 of the annular wall 37a.
  • the pair of engaging piece portions 62 presses the annular wall 37a and the engaging opening portion 55 in the opposite directions in the circumferential direction. By the pressing, the cage 50 is held in the phase in which the engager 40 is in the neutral position.
  • the neutral spring 60 shown in FIG. 3 is held in the recess by a spring holding ring 56 that rotates integrally with the cage 50.
  • the spring retaining ring 56 is fitted from a plate member fitted to the outer periphery of the second end 33 of the inner portion 30 and coupled to the second ring 53 so that it can rotate integrally with the cage 50. Become.
  • the spring holding ring 56 is prevented from moving to the rear side by a retaining ring 38 attached to the outer periphery of the second end portion 33.
  • the armature 70 is composed of a movable member slidably fitted to the outer periphery of the second end 33 of the inner portion 30.
  • the armature 70 has an annular side surface extending radially and all around.
  • the armature 70 and the cage 50 are detented via a spring retaining ring 56.
  • the engaging portion of the spring holding ring 56 has a detent structure inserted into the notch portion of the second ring portion 53 of the cage 50 and the engaging hole portion of the armature 70. It is also possible to omit the spring holding ring 56, form an engaging hole in the armature, and adopt a detent structure in which the engaging projecting piece of the cage is inserted.
  • a rotor guide 91 made of a non-magnetic material is fixed to the guide seat surface 23 of the outer portion 20.
  • the rotor 90 is fixed to the rotor guide 91.
  • the rotor guide 91 is formed in a substantially cylindrical shape, and is fixed by press fitting into the guide seat surface 23.
  • the non-magnetic material include aluminum alloys and the like.
  • the rotor 90 has an inner cylindrical portion 92, an outer cylindrical portion 93 located on the outer side of the inner cylindrical portion 92, and an end wall portion 94 connecting both of the inner cylindrical portions 92 and 93.
  • the rotor 90 is fixed so as to be integrally rotatable with the outer portion 20 by press-fitting the outer cylindrical portion 93 into the inner circumference of the rotor guide 91.
  • the end wall portion 94 has an annular surface along the radial direction and extending over the entire circumference.
  • a bearing 95 is arranged between the propeller shaft 11 and the inner circumference of the rotor 90.
  • the bearing 95 is for rotatably supporting the rotor 90 with respect to the propeller shaft 11.
  • the rotor 90 is fixed to the outer portion 20 via the rotor guide 91, so that the rotor 90 is arranged in a non-contact state with the steel advance gear 15 which is a ferromagnetic material.
  • the rotor guide 91 prevents the magnetic flux entering the rotor 90 from leaking to the forward gear 15 without going toward the armature 70.
  • the electromagnet 80 is arranged in the space between the inner cylindrical portion 92 and the outer cylindrical portion 93 of the rotor 90.
  • the electromagnet 80 includes a field core 81 and a coil 82 supported by the field core 81.
  • the electromagnet 80 is fixed to the stationary portion in the field core 81.
  • the stationary portion is a partition wall 12a that is stationary between the forward gear 15 and the reverse gear 16 and at a position surrounding the periphery of the propeller shaft 11.
  • the partition wall 12a is provided at a position facing the pinion gear 14 in the vertical direction.
  • the partition wall 12a is a plate member having a through port through which the propeller shaft 11 passes, and is fixed to the inner bottom surface of the housing 12.
  • the release spring 100 is interposed between the facing surfaces of the armature 70 and the rotor 90.
  • the amount of the armature 70 deviating from the rotor 90 in the axial direction corresponds to the air gap between the rotor 90 and the armature 70. This air gap is limited by the separation regulation of the armature 70 by the retaining ring 38.
  • the movement of the propeller shaft 11 in the axial direction is The bearings and the structure that regulates the axial movement of these bearings regulate the range smaller than the air gap. Therefore, even if an axial load acts on the propeller shaft 11 when the electromagnet 80 is not excited, abnormal contact between the rotor 90 and the armature 70 does not occur against the separation spring 100.
  • the first clutch 17 and the second clutch 18 shown in FIGS. 1 and 2 differ only in that their mounting directions are opposite to each other with respect to the axial direction of the propeller shaft 11, and the second clutch 18 is a clutch mechanism. It has the same structure as the first clutch 17. Therefore, the detailed description of the second clutch 18 is omitted, and the corresponding components are designated by the same reference numerals.
  • the plane of symmetry with respect to the first clutch 17 and the second clutch 18 is a virtual plane including the axis of the pinion gear 14.
  • the electromagnet 80 of the first clutch 17 is fixed to the front side of the partition wall 12a.
  • the electromagnet 80 of the second clutch 18 is fixed to the rear side of the partition wall 12a.
  • the wirings L7 and L8 for energizing the coil 82 of the electromagnet 80 are bundled into one cable and connected to the ECU 3.
  • the above-mentioned hybrid transmission path transmits the power of the electric motor 4 to the propeller shaft 11 by a path independent of the first clutch 17 and the second clutch 18.
  • the hybrid transmission path has a speed reducer 110 between the electric motor 4 and the propeller shaft 11.
  • the speed reducer 110 reduces the rotation input from the rotation shaft of the electric motor 4.
  • the speed reducer 110 is a gear box combined with the electric motor 4, and has a transmission shaft 111 that outputs the decelerated rotation in the gear box to the propeller shaft 11.
  • the outer periphery of the transmission shaft 111 and the inner peripheral portion on the front side of the propeller shaft 11 are integrally rotatably connected by spline fitting.
  • the electric motor 4 and the transmission shaft 111 are arranged coaxially with the propeller shaft 11 is shown, it is also possible to arrange the electric motor 4 and the transmission shaft 111 in parallel with the propeller shaft 11. In this case, the electric motor 4 and the transmission shaft 111 are provided on the outer periphery of the propeller shaft 11.
  • the gear portion that is the end of the hybrid transmission path may be engaged with the gear portion.
  • FIGS. 1 to 5 are appropriately referred to.
  • the engaging element 40 In the non-excited state in which the energization of the electromagnet 80 to the coil 82 is cut off by the ECU 3, the engaging element 40 is in the neutral position, and the cage 50 has the engaging element with respect to the cam surface 31 due to the spring force of the neutral spring 60. It is held in phase that keeps 40 in the neutral position. Therefore, even if relative rotation occurs between the inner portion 30 (propeller shaft 11) and the outer portion 20 (forward gear 15 or reverse gear 16), torque is transmitted between the inner portion 30 and the outer portion 20. Instead, the inner portion 30 and the outer portion 20 are relatively idle (free rotation). That is, the first clutch 17 and the second clutch 18 are in a disengaged state in which the engaging element 40 cannot engage with the inner portion 30 and the outer portion 20.
  • the neutral spring 60 pushed from the cage 50 that is detented to the armature 70 undergoes elastic deformation, and the cage 50 rotates relative to the inward portion 30. Due to the relative rotation, the engaging element 40 is pushed into the narrow portion of the wedge space between the cylindrical surface 21 and the cam surface 31 and engages with the cylindrical surface 21 and the cam surface 31. Therefore, torque is transmitted between the inner portion 30 and the outer portion 20 via the engaging element 40. In this way, the first clutch 17 and the second clutch 18 can electromagnetically switch from the disengaged state to the engaged state in which the engaging element 40 can engage with the inner portion 30 and the outer portion 20. ..
  • the engaging element 40 is a cylinder. Until the surface 21 and the cam surface 31 are engaged, the engaging element 40 is rubbed against the cylindrical surface 21 and rotates to slide on the cylindrical surface 21 and the cam surface 31, and the rotation is gradually transmitted in a semi-engaged state. Since it engages after passing through, the impact is suppressed.
  • the ECU 3 has a first engine drive mode execution function that energizes the electric magnet 80 of the first clutch 17 and cuts off the energization of the electric magnet 80 of the second clutch 18, and cuts off the energization of the electric magnet 80 of the first clutch 17.
  • a second engine drive mode execution function that energizes the electric magnet 80 of the second clutch 18, a neutral mode execution function that cuts off energization of each electric magnet 80 of the first clutch 17 and the second clutch 18, and a normal rotation of the electric motor 4. It has a first electric mode execution function for causing the electric motor 4 to reverse, and a second electric mode execution function for reversing the electric motor 4, and one or a plurality of these execution functions are selected and executed.
  • the ship propulsion machine 1 causes the propeller shaft 11 to rotate forward or reverse by the power of the electric motor 4 to move the hull 7 forward or backward. Can be done.
  • the ship propulsion machine 1 uses the power of the engine 2 and the power of the electric motor 4 to drive the propeller shaft 11.
  • the hull 7 can be advanced by rotating it in the forward direction.
  • the ship propulsion machine 1 uses the power of the engine 2 and the power of the electric motor 4 to drive the propeller shaft 11.
  • the hull 7 can be reversed and moved backward.
  • the ship propulsion machine 1 as described above includes a propeller shaft 11 that rotates integrally with the propeller 5, an engine 2, an electric motor 4, a pinion gear 14 that transmits the power of the engine 2, and a forward gear 15 that meshes with the pinion gear 14.
  • the reverse gear 16 that meshes with the pinion gear 14, the first clutch 17 that transmits and disengages the rotation between the forward gear 15 and the propeller shaft 11, and the transmission of the rotation between the reverse gear 16 and the propeller shaft 11.
  • a second clutch 18 for disengaging and a hybrid transmission path for transmitting the power of the electric motor 4 to the propeller shaft 11 by a path independent of the first clutch 17 and the second clutch 18 are provided, and the first clutch 17 and the second clutch 18 and the second clutch 18 are provided.
  • the engager 40 has an outer portion 20 and an inner portion due to the relative rotation of the cage 50.
  • a movable member that is arranged so as to be moved between an engaging position that engages with the portion 30 and a neutral position that disengages the engagement, and the armature 70 is magnetically attracted to the rotor 90 by energizing the electromagnet 80.
  • the armature 70 is attracted to the electric magnet 80 regardless of the phase difference from the rotor 90, and the cage 50 is attached to the outer portion 20 together with the armature 70.
  • the engager 40 is moved to the engagement position by the relative rotation of the cage 50 and the inner portion 30 and the outer portion 20 and the inner portion via the engager 40. Rotation transmission is performed between 30.
  • the cage 50 is rotated so that the engaging element 40 returns to the neutral position due to the elastic rebound of the release spring 100 and the neutral spring 60.
  • the power of the engine 2 is transmitted to the forward gear 15 to rotate the propeller shaft 11. If the electric magnet 80 of the second clutch 18 is energized and the electric magnet 80 of the first clutch 17 is cut off, the power of the engine 2 is transmitted to the reverse gear 16 to rotate the propeller shaft 11. Can be made to.
  • the electric motor 4 is rotated according to the rotation direction of the electric motor 4.
  • the propeller shaft 11 can be rotated in the forward direction or the reverse direction. Since the hybrid transmission path is a path independent of the first clutch 17 and the second clutch 18, the power of the electric motor 4 is transmitted to the propeller shaft 11 by the first clutch 17 or the second clutch 18. Can also be transmitted to the propeller shaft 11.
  • the ship propulsion machine 1 can be coupled even when there is a slight rotation difference between the input / output of the first and second clutches 17 and 18, but the engine 2 and the electric motor 4 can be coupled.
  • the propeller shaft 11 can be driven by either one or both.
  • the forward gear 15 and the reverse gear 16 surround the propeller shaft 11 and face each other in the axial direction of the propeller shaft 11, and the pinion gear 14 is located between the forward gear 15 and the reverse gear 16.
  • the first clutch 17 and the second clutch 18 are housed in a space formed around the propeller shaft 11 and inside the forward gear 15, the reverse gear 16, and the pinion gear 14, so that the pinion gear 14, the forward gear 15, and the reverse gear 14 are accommodated.
  • the first clutch 17 and the second clutch 18 are arranged in a cohesive manner with the forward gear 15 and the like by utilizing the axial length of the space for arranging the gear 16, and by extension, both clutches 17 and 18 are arranged compactly. can do.
  • the ship propulsion machine 1 further includes a partition wall 12a stationary between the forward gear 15 and the reverse gear 16 and at a position surrounding the periphery of the propeller shaft 11, and the electromagnet 80 of the first clutch 17 and the second clutch 18 are provided. Since the electromagnet 80 is fixed to the partition wall 12a, the electromagnets 80 of the first clutch 17 and the second clutch 18 housed inside the forward gear 15 and the reverse gear 16 are fixed to a common stationary wall, and these electromagnets 80 are fixed.
  • the wirings L7 and L8 can be put together.
  • the ship propulsion machine 1 has a rotor guide 91 made of a non-magnetic material in which the first clutch 17 and the second clutch 18 are fixed to the corresponding forward gear 15 or the reverse gear 16, respectively, and the first clutch 17 has a rotor guide 91.
  • the rotor 90 and the rotor 90 of the second clutch 18 are fixed to the corresponding rotor guides 91 so as to be arranged in a non-contact state with the forward gear 15 or the reverse gear 16, so that the forward gear 15 or the reverse gear 16 is arranged in a non-contact state.
  • the other of the outer portion 20 and the inner portion 30 has a cylindrical surface 21, and one of the outer portion 20 and the inner portion 30 has a wedge space in the circumferential direction with the cylindrical surface 21.
  • the cam surface 31 to be formed is provided, and the engaging element 40 is composed of a roller arranged between the cylindrical surface 21 and the cam surface 31, so that the rotational difference between the outer portion 20 and the inner portion 30 is large.
  • the hybrid transmission path of the ship propulsion device according to the second embodiment has a third clutch 120 that transmits and disconnects rotation between the electric motor 4 and the propeller shaft 11.
  • the third clutch 120 is an electromagnetic clutch.
  • the ECU 3 also controls energization of the third clutch 120.
  • rotation is transmitted between the electric motor 4 and the propeller shaft 11 via the hybrid transmission path.
  • the third clutch 120 is arranged between the electric motor 4 and the speed reducer 110 in order to suppress the clutch capacity.
  • the regeneration by the electric motor 4 becomes a regenerative resistance for the propeller shaft 11 rotated by the power of the engine 2, which leads to deterioration of the fuel efficiency of the engine 2. Therefore, in such a case, the ECU 3 If the rotation transmission between the electric motor 4 and the propeller shaft 11 is cut off by cutting off the energization of the third clutch 120, it is possible to avoid the rotation of the electric motor 4 and improve the fuel efficiency.
  • the hybrid transmission path according to the second embodiment has the third clutch 120 that transmits and disconnects the rotation between the electric motor 4 and the propeller shaft 11, so that only the power of the engine 2 is transmitted to the propeller shaft.
  • the third clutch 120 can cut off the rotational transmission between the propeller shaft 11 and the electric motor 4, thereby improving the fuel efficiency of the engine 2.
  • FIGS. 7 to 11 A third embodiment as an example according to the invention of the second means will be described with reference to FIGS. 7 to 11 attached.
  • the ship propulsion machine 200 shown in FIGS. 7 and 8 is configured as a unit including the engine 2 to the ladder 6 and the like as in the first embodiment, and the power transmission system of the engine 2 and the electric motor 4 is first. It is a modification from the embodiment.
  • a main transmission path for transmitting the power of the engine 2 and a hybrid transmission path for transmitting the power of the electric motor 4 are configured.
  • the main transmission paths are the first shaft 201 that rotates integrally with the crankshaft of the engine 2, the second shaft 202 that is arranged coaxially with the first shaft 201 at a position below the first shaft 201, and the first shaft.
  • a clutch 203 that transmits and disconnects rotation between the shaft 201 and the second shaft 202, a pinion gear 204 that rotates integrally with the second shaft 202, and an output path unit that transmits rotation between the pinion gear 204 and the propeller shaft 11. It is composed of 205.
  • the pinion gear 204 includes a bevel gear provided coaxially with the second shaft 202.
  • the boss portion of the pinion gear 204 is connected to the second shaft 202 by spline fitting.
  • the output path portion 205 includes a forward gear that constantly meshes with the pinion gear 204.
  • the output path portion 205 rotates integrally with the propeller shaft 11.
  • the clutch 203 includes an outer portion 210 that rotates integrally with the first shaft 201 and an inner portion 220 that rotates integrally with the second shaft 202 inside the outer portion 210.
  • the engager 230 arranged between the outer portion 210 and the inner portion 220, the cage 240 that holds the engager 230, and the outer portion 210 that holds the phase of the cage 240 by a spring force.
  • a neutral spring 250 elastically deformed by the relative rotation of the cage 240 with respect to the inner portion 220 as one of the inner portions 220, an armature 260 derotated with respect to the cage 240, and an electromagnet 270 facing the armature 260.
  • the rotor 280 facing the armature 260 in a state of being derotated with respect to the outer portion 210 as the other of the outer portion 210 and the inner portion 220, and the separation that presses the armature 260 in a direction away from the rotor 280. It has a spring 290 and.
  • the rotation axes of the outer portion 210 and the inner portion 220 are set coaxially with the rotation axis of the first axis 201.
  • axis direction the direction along the rotation axis
  • diameter direction the direction orthogonal to the axial direction
  • circumferential direction around the rotation axis is called “circumferential direction”.
  • the clutch 203 is inserted in the casing 300.
  • the clutch 203 is fixed to the inside of the housing 12 shown in FIG.
  • the insertion range of the clutch 203 with respect to the casing 300 is an operation linked to the ON / OFF switching of the electromagnet 270, the outer portion 210, the inner portion 220 and the engaging element 230, and the electromagnet 270.
  • the portion (armature 260, rotor 280, separation spring 290) is accommodated in the casing 300.
  • the space between the storage cylinder portion 301 into which the clutch 203 is inserted and the outer periphery of the outer portion 210, and the space between the storage cylinder portion 301 and the second shaft 202 are each closed by a sealing member.
  • the outer portion 210 has an outer ring 211 and a joint shaft 212 connected to the upper side of the outer ring 211.
  • the joint shaft 212 is constrained in the axial direction by a shoulder portion formed on the upper side of the outer ring 211 and a retaining ring 213 attached to the upper side of the outer ring 211.
  • the lower side of the joint shaft 212 is spline-fitted with the upper side of the outer ring 211, and the upper side of the joint shaft 212 is spline-fitted with the first shaft 201 shown in FIG.
  • the outer portion 210 shown in FIG. 9 is rotatably connected to the first shaft 201 shown in FIG.
  • the outer ring 211 and the joint shaft 212 can be integrally formed.
  • the outer ring 211 is composed of annular parts opened at both ends in the axial direction.
  • a cylindrical surface 214 extending all around the circumferential direction and a bearing seat surface 215 formed at a portion above the cylindrical surface 214 and having an inner diameter smaller than that of the cylindrical surface 214 are formed. ..
  • a shoulder portion 216 forming the outer diameter of the outer portion 210 is formed.
  • the inner portion 220 is composed of a cam ring coupled to the upper end portion of the second shaft 202.
  • the inner circumference of the inner portion 220 and the outer circumference of the second shaft 202 are integrally rotatably connected by spline fitting.
  • the inner portion 220 is formed with a cam surface 221 forming a wedge space in the circumferential direction with the cylindrical surface 214, and a portion above the cam surface 221 with an outer diameter smaller than that of the cam surface 221. It has a first end portion 222 formed thereof and a second end portion 223 formed at a portion below the cam surface 221 and having an outer diameter smaller than that of the cam surface 221.
  • a bearing 310 is attached between the lower side of the outer circumference of the outer portion 210 and the inner circumference of the accommodating cylinder portion 301.
  • the bearing 310 is for rotatably supporting the outer portion 210 with respect to the accommodating cylinder portion 301.
  • the bearing 310 is a rolling bearing.
  • the bearing 310 is attached to the shoulder portion formed in the accommodating cylinder portion 301, the retaining ring 311 attached to the accommodating cylinder portion 301, the rotor guide 281 connected to the outer ring 211, the shoulder portion 216, and the outer ring 211.
  • the movement in the axial direction is restricted by the retaining ring 312.
  • a bearing 313 is attached between the outer periphery of the first end 222 of the inner portion 220 and the bearing seat surface 215 of the outer portion 210.
  • the bearing 313 is for rotatably supporting the inner portion 220 with respect to the outer portion 210.
  • the bearing 313 is a rolling bearing.
  • the bearing 313 is restricted from moving in the axial direction by the shoulder portion formed on the inner circumference of the outer ring 211, the retaining ring 314 attached to the outer ring 211, and the shoulder portion formed on the outer periphery of the inner ring 220. ing.
  • the cam surface 221 has a planar shape extending in the length direction of one side of a regular polygonal shape.
  • the wedge space formed by the cam surface 221 and the cylindrical surface 214 is gradually narrowed from the center of the cam surface 221 in the circumferential direction toward both ends in the circumferential direction.
  • the cam surface 221 may be configured by a plurality of surfaces, or may be configured by a single curved surface.
  • the engaging element 230 is composed of a roller arranged between the cylindrical surface 214 and the cam surface 221.
  • the engagement element 230 is formed in a cylindrical roller shape.
  • a plurality of cam surfaces 221 are formed on the outer periphery of the inner portion 220 at intervals in the circumferential direction. That is, a plurality of wedge spaces are formed, and the engaging elements 230 are arranged in each wedge space.
  • the cage 240 includes a plurality of pillars 241 arranged in the circumferential direction, a first part 242 continuous above the pillars 241 and a lower side of the pillars 241. It has a second ring portion 243 which is continuous with the second ring portion 243.
  • the space between the pillar portions 241 adjacent to each other in the circumferential direction is a space for accommodating the engaging element 230.
  • the engagement element 230 is restricted in its circumferential position with respect to the cam surface 221 by contact with the column portion 241 facing in the circumferential direction, and is forcibly rotated together with the cage 240.
  • the radial distance between the cam surface 221 and the cylindrical surface 214 is oriented in one direction in the circumferential direction from the position of the engager 230 (drawn by a solid line in FIG. 11) located at the center of the cam surface 221 in the circumferential direction.
  • the size gradually decreases, and the size gradually decreases from the position of the engager 230 toward the other direction in the circumferential direction.
  • the engaging element 230 has an engaging position (position drawn by a chain line in FIG. 11) that engages with the cylindrical surface 214 and the cam surface 221 by the relative rotation of the cage 240 with respect to the cam surface 221 and the cylindrical surface 214 and the cam surface 221. It is movably arranged between the neutral position (the position drawn by the solid line in FIG.
  • the engaging element 230 engaged with the cylindrical surface 214 and the cam surface 221 at the engaging position applies a rotational torque between the inner portion 220 and the outer portion 210 when the cage 240 rotates relative to the inner portion 220. introduce.
  • the first part 242 of the cage 240 is bent like a flange that travels toward the inner portion 220.
  • This flange state contributes to the improvement of the rigidity of the cage 240.
  • the entire cage 240 is integrally formed by, for example, press working using a metal plate as a material or powder metallurgy.
  • a steel plate can be used as a metal plate.
  • the cage 240 is rotatably fitted to the outer periphery of the first end portion 222 of the inner portion 220 on the inner circumference of the first part portion 242.
  • the contact between the first part 242 and the stepped surface 224 on the front side of the inner portion 220 restricts the downward movement of the cage 240. Further, the movement of the cage 240 upward is restricted by the contact between the retaining ring 315 attached to the outer periphery of the first end portion 222 of the inner portion 220 and the first integrated portion 242.
  • the neutral spring 250 shown in FIGS. 9 and 10 is composed of an elastic member that is elastically deformed by the relative rotation of the cage 240 with respect to the inner portion 220 and returns and rotates the cage 240 by its restoring elasticity.
  • the neutral spring 250 elastically holds the cage 240 so that the engager 230 is in the neutral position.
  • the neutral spring 250 is composed of a metal spring having a C-shaped ring portion 251 and a pair of engaging piece portions 252 formed from both ends of the ring portion 251 toward the cage 240 side.
  • the inner portion 220 is formed with a recess 225 that opens downward.
  • the recess 225 has an annular wall 225a having a shape that is partially cut off in the circumferential direction.
  • the recess 225 has a constant depth in the axial direction.
  • a neutral spring 250 is fitted in the recess 225.
  • the ring portion 251 of the neutral spring 250 is passed through the outer periphery of the second end portion 223 of the inner portion 220 and fitted inside the annular wall 225a.
  • the cage 240 has an engaging port portion 244 outside the disconnection space of the annular wall 225a.
  • the pair of engaging piece portions 252 are inserted into the disconnection space (the space between both ends in the circumferential direction of the annular wall) and the engagement opening portion 244 of the annular wall 225a.
  • the pair of engaging piece portions 252 press the annular wall 225a and the engaging opening portion 244 in opposite directions in the circumferential direction. By the pressing, the cage 240 is held in a phase in which the engager 230 is in the neutral position.
  • the neutral spring 250 shown in FIG. 9 is held in the recess by a spring holding ring 245 that rotates integrally with the cage 240.
  • the spring retaining ring 245 is fitted to the outer circumference of the second end 223 of the inner portion 220 and is from a plate member coupled to the second ring portion 243 so that it can rotate integrally with the cage 240.
  • the spring holding ring 245 is prevented from moving downward by a retaining ring 316 attached to the outer periphery of the second end portion 223.
  • the armature 260 is composed of a movable member slidably fitted to the outer periphery of the second end portion 223 of the inner portion 220.
  • the armature 260 has annular sides extending along the radial direction and all around.
  • the armature 260 and the cage 240 are detented via a spring retaining ring 245.
  • the engagement portion of the spring holding ring 245 has a detent structure inserted into the notch portion of the second ring portion 243 of the cage 240 and the engagement hole portion of the armature 260. It is also possible to omit the spring holding ring 245, form an engaging hole in the armature, and adopt a detent structure in which the engaging projecting piece of the cage is inserted.
  • the rotor guide 281 shown in FIGS. 7 and 9 is made of a non-magnetic tubular member.
  • the non-magnetic material include aluminum alloys and the like.
  • the upper side of the rotor guide 281 is fitted to the lower side of the outer circumference of the outer ring 211.
  • the rotor guide 281 is fixed to the outer portion 210 by a shoulder portion 216, a bearing 310, and a retaining ring 312.
  • the rotor 280 is fixed to the lower side of the rotor guide 281. Circumferential grooves are formed on the outer circumference of the rotor 280 and the inner circumference of the rotor guide 281, respectively, and a retaining ring 282 is interposed between the peripheral grooves.
  • the rotor 280 is fixed to the rotor guide 281 by fitting to the rotor guide 281 and locking the retaining ring 282 and both circumferential grooves.
  • the rotor 280 is fixed to the rotor guide 281 so that it can rotate integrally with the outer portion 210 and is arranged in a non-contact state with the outer portion 210.
  • the rotor 280 has an inner cylindrical portion 283, an outer cylindrical portion 284 located on the outer side of the inner cylindrical portion 283, and an end wall portion 285 connecting these both cylindrical portions 283 and 284.
  • the end wall portion 285 has an annular surface along the radial direction and extending all around.
  • the magnetic circuit circulating between the armature 260, the electromagnet 270, and the rotor 280 penetrates the end wall portion 285 in the axial direction in order to increase the number of times the magnetic circuit reciprocates between the armature 260 and the electromagnet 270 to strengthen the magnetic attraction force against the armature 260.
  • a plurality of slits for blocking magnetic flux extending in an arc shape in the circumferential direction are formed.
  • a bearing 317 is arranged between the inner circumference of the rotor 280 and the second shaft 202.
  • the bearing 317 is for rotatably supporting the rotor 280 with respect to the second shaft 202.
  • the electromagnet 270 is arranged in the space between the inner cylindrical portion 283 and the outer cylindrical portion 284 of the rotor 280.
  • the electromagnet 270 includes a field core 271 and a coil 272 supported by the field core 271.
  • the accommodating cylinder portion 301 has an annular seat 302 that fits on the lower side of the inner circumference of the field core 271 and abuts in the axial direction. Further, the retaining ring 318 attached to the outer periphery of the field core 271 and the retaining ring 319 attached to the inner circumference of the accommodating cylinder portion 301 are engaged in the axial direction.
  • the annular seat 302 regulates the radial and downward movement of the field core 271, and the engagement between the retaining ring 318 and the retaining ring 319 regulates the upward movement of the field core 271. It is stationary with respect to 301.
  • the end wall portion 285 of the rotor 280 is arranged above the electromagnet 270.
  • the armature 260 is located above the end wall portion 285.
  • the release spring 290 is arranged so as to be interposed between the upper surface of the end wall portion 285 and the lower surface of the armature 260.
  • the electromagnet 270 magnetically attracts the armature 260 downward by energization.
  • the amount of the armature 260 deviating from the rotor 280 in the axial direction corresponds to the air gap between the rotor 280 and the armature 260. This air gap is limited by the separation regulation of the armature 260 by the retaining ring 316.
  • a plurality of bearings 320 and 321 that support the thrust load are attached between the second shaft 202 and the casing 300.
  • the bearing 320 is attached between the second shaft 202 and the lower side of the accommodating cylinder portion 301.
  • the casing 300 has a gear case portion 303 fitted to the lower side of the accommodating cylinder portion 301 and abutted in the axial direction, and a double-row bearing is also provided between the gear case portion 303 and the second shaft 202. 321 is attached.
  • the above-mentioned hybrid transmission path rotates integrally with the speed reducer 330 that reduces the rotation input from the rotation shaft of the electric motor 4, the driving gear 331 arranged in parallel with the second shaft 202, and the second shaft 202. It has a driven gear 332 and a driven gear 332.
  • the driven gear 332 is integrally formed with the second shaft 202.
  • the speed reducer 330 decelerates the rotation input from the rotation shaft of the electric motor 4.
  • the speed reducer 330 is a gearbox combined with the electric motor 4, and outputs the decelerated rotation in the gearbox to the main gear 331.
  • the hybrid transmission path joins at the second shaft 202 due to the meshing of the main gear 331 and the driven gear 332.
  • the wiring L7 for driving the electric motor 4 and the wiring L8 for energizing the coil 272 of the electromagnet 270 are connected to the ECU 3 shown in FIG. 8, respectively.
  • the electromagnet 270 When at least one of the inner portion 220 and the outer portion 210 is rotated and the coil 272 of the electromagnet 270 is energized in a state where both portions are relatively rotated, the electromagnet 270 is excited and the armature 260 is excited. It is magnetically attracted to the rotor 280 against the separation spring 290. At this time, since the annular surfaces of the rotor 280 and the armature 260 are adsorbed to each other, they are adsorbed regardless of the phase difference between the rotor 280 and the armature 260. The frictional resistance acting between the annular surface of the rotor 280 and the armature 260 is greater than the spring force of the neutral spring 250.
  • the neutral spring 250 pushed from the cage 240 that is detented to the armature 260 causes elastic deformation, and the cage 240 rotates relative to the inward portion 220. Due to the relative rotation, the engaging element 230 is pushed into the narrow portion of the wedge space between the cylindrical surface 214 and the cam surface 221 to engage the cylindrical surface 214 and the cam surface 221. Therefore, torque is transmitted between the inner portion 220 and the outer portion 210 via the engaging element 230. In this way, the clutch 203 can electromagnetically switch from the disengaged state to the engaged state in which the engaging element 230 can engage with the inner portion 220 and the outer portion 210.
  • the ECU 3 has an engine drive mode execution function that energizes the electromagnet 270 of the clutch 203, a neutral mode execution function that cuts off the energization of the electromagnet 270 of the clutch 203, and a first electric mode execution function that rotates the electric motor 4 in the normal direction. It has a second electric mode execution function that reverses the electric motor 4, and one or a plurality of these execution functions are selected and executed.
  • the clutch 203 slips and the forward or reverse rotation of the electric motor 4 is hybrid transmission. Since the vehicle joins the second shaft 202 of the main transmission path and is transmitted to the propeller shaft 11, the ship propulsion machine 200 rotates the propeller shaft 11 forward or reverse by the power of the electric motor 4 to move the hull 7 forward or reverse. You can move it backwards.
  • the ship propulsion machine 200 as described above has a propeller shaft 11 that rotates integrally with the propeller 5, an engine 2, an electric motor 4, a main transmission path that transmits the power of the engine 2, and the power of the electric motor 4.
  • a first axis 201 having a hybrid transmission path for transmission, the main transmission path of which rotates integrally with the engine 2, and a second axis arranged coaxially with the first axis 201 at a position below the first axis 201.
  • the outer portion 210 in which the hybrid transmission path joins the main transmission path at the second shaft 202, and the clutch 203 rotates integrally with the first shaft 201, and the outer portion 210.
  • An inner portion 220 that rotates integrally with the second shaft 202 inside the portion 210, an engager 230 arranged between the outer portion 210 and the inner portion 220, and a cage 240 that holds the engager 230.
  • a neutral spring 250 that is elastically deformed by the relative rotation of the cage 240 with respect to one of the outer portion 210 and the inner portion 220, an armature 260 that is prevented from rotating with respect to the cage 240, and a motor that faces the armature 260.
  • the engaging element 230 is moved between the engaging position in which the outer portion 210 and the inner portion 220 are engaged by the relative rotation of the cage 240 and the neutral position in which the engagement is released.
  • the armature 260 is composed of a movable member that is magnetically attracted to the rotor 280 by energizing the electric magnet 270.
  • the armature 260 has a phase difference with the rotor 280 by energizing the electric magnet 270.
  • the cage 240 is rotated relative to one of the outer portion 210 and the inner portion 220 together with the armature 260, and the engager 230 is moved to the engaging position by the relative rotation of the cage 240.
  • the rotation is transmitted between the outer portion 210 and the inner portion 220 via the engaging element 230.
  • the elastic repulsion of the release spring 290 and the neutral spring 250 causes the cage 240 to rotate so that the engager 230 returns to the neutral position.
  • the clutch 203 since the clutch 203 switches to the engaged state by attracting the armature 260 to the rotor 280 with the electromagnet 270, it is possible to perform a coupling operation that allows a phase difference between the armature 260 and the rotor 280, like a dog clutch. Since the structure does not cause a sharp tooth skip, the coupling can be performed even when there is a slight rotation difference between the outer portion 210 (first axis 201) and the inner portion 220 (second axis 202).
  • the ship propulsion machine 200 cuts off the energization of the electric magnet 270, and when the electric motor 4 is operated, the propeller shaft 11 can be driven only by the power of the electric motor 4, and the energization of the electric magnet 270 is cut off.
  • the propeller shaft 11 can be driven only by the power of the engine 2 and when the electric magnet 270 is energized and the engine 2 and the electric motor 4 are operated, both the engine 2 and the electric motor 4 are operated.
  • the propeller shaft 11 can be driven by the power of.
  • the ship propulsion machine 200 can be coupled even when there is a slight rotation difference between the input and output of the clutch 203, and the propeller shaft 11 can be used with either or both of the engine 2 and the electric motor 4. Can be driven.
  • the rotor 280 is arranged above the electromagnet 270
  • the armature 260 is arranged above the rotor 280
  • the separation spring is provided between the upper surface of the rotor 280 and the lower surface of the armature 260.
  • the 290 is arranged, and the electromagnet 270 magnetically attracts the armature 260 downward by energization. Therefore, when the electromagnet 270 attracts the armature 260 to the rotor 280, the weight of the armature 260 also contributes to the downward movement. Therefore, the armature 260 can be easily attracted to the rotor 280.
  • the other of the outer portion 210 and the inner portion 220 has a cylindrical surface 214, and one of the outer portion 210 and the inner portion 220 has a wedge space in the circumferential direction with the cylindrical surface 214. It has a cam surface 221 to be formed, and the engaging element 230 is composed of a roller arranged between the cylindrical surface 214 and the cam surface 221 so that the rotational difference between the outer portion 210 and the inner portion 220 is large.
  • the engaging element 230 is rubbed against the cylindrical surface 214 and rotates until the engaging element 230 engages with the cylindrical surface 214 and the cam surface 221. It is advantageous to suppress the impact because it goes through a semi-engaged state in which the rotation is gradually transmitted.
  • the ship propulsion machine 200 has a rotor guide 281 made of a non-magnetic material in which the clutch 203 is fixed to the outer portion 210, and the rotor 280 is fixed to the rotor guide 281 so that the rotor 280 is not attached to the outer portion 210.
  • the ship propulsion machine 200 has a rotor guide 281 made of a non-magnetic material in which the clutch 203 is fixed to the outer portion 210, and the rotor 280 is fixed to the rotor guide 281 so that the rotor 280 is not attached to the outer portion 210.
  • the armature 260 and the like can be arranged between the rotor 280 and the outer portion 210 in a state where the outer portion 210 and the rotor 280 are separated, so that the clutch 203 can be easily assembled. can do.
  • the ship propulsion machine 200 has a hybrid transmission path and a driven gear 331 in which the hybrid transmission path is arranged in parallel with the second shaft 202, and a driven gear 332 that rotates integrally with the second shaft 202.
  • the second shaft 202 can be merged by a simple gear transmission mechanism.
  • the hybrid transmission path of the ship propulsion device according to the fourth embodiment has another clutch 333 that transmits and disconnects rotation between the electric motor 4 and the second shaft 202.
  • the other clutch 333 is an electromagnetic clutch.
  • the wiring L9 (not shown in FIG. 8) for energizing the other clutch 333 is connected to the ECU 3.
  • the ECU 3 also controls energization of the other clutch 333.
  • the other clutch 333 is arranged between the electric motor 4 and the speed reducer 330 in order to suppress the clutch capacity.
  • the regeneration by the electric motor 4 becomes a regenerative resistance for the propeller shaft 11 rotated by the power of the engine 2, which leads to deterioration of the fuel efficiency of the engine 2. Therefore, in such a case, the ECU 3 If the rotation transmission between the electric motor 4 and the propeller shaft 11 is cut off by cutting off the energization of the other clutch 333, it is possible to avoid the rotation of the electric motor 4 and improve the fuel efficiency.
  • the hybrid transmission path according to the fourth embodiment has another clutch 333 that transmits and disconnects the rotation between the electric motor 4 and the second shaft 202, so that only the power of the engine 2 is propellered.
  • the rotation transmission between the second shaft 202 and the electric motor 4 can be cut off by another clutch 333 to improve the fuel efficiency of the engine 2.
  • the ship propulsion machine further includes an integrated casing 340 capable of accommodating the clutch 203 and the electric motor 4.
  • the casing 340 integrally has a motor accommodating portion 341 into which the electric motor 4 is inserted and an accommodating cylinder portion 342 into which the clutch 203 is inserted.
  • the motor accommodating portion 341 has a cylindrical shape that opens downward and closes the upper side.
  • the accommodating cylinder portion 342 has an accommodating function equivalent to that of the accommodating cylinder portion of the third embodiment.
  • the inner circumference of the motor accommodating portion 341 keeps the rotation axis of the inserted electric motor 4 in a predetermined parallelism with the rotation axes of the first axis 201 and the second axis 202.
  • the gear case portion 343 is fitted to the lower side of the motor accommodating portion 341 and the accommodating cylinder portion 342.
  • the clutch 203 and the electric motor 4 can be positioned by the same casing 340, and the confluence portion of the hybrid transmission path and the second shaft 202 (the main gear 331 and the driven gear in the illustrated example). It is easy to combine 332) with high accuracy.
  • the inner portion is selected as one of the outer portion and the inner portion, and the outer portion is selected as the other. Therefore, the cam surfaces 31 and 221 are formed on the inner portions 30 and 220, and the cylinder is formed.
  • the outer portion is formed on one side, the inner portion is formed on the other side, and the cylindrical surface is formed on the inner portion. It is also possible to form the surface on the inner peripheral portion of the outer portion, in which case the neutral spring and the cage may be fitted to the outer portion and the rotor may be prevented from rotating in the inner portion.
  • the first and second clutches 17, 18 and the clutch 203 are reversed in the forward rotation direction.
  • An example is shown in which coupling is possible in any of the directions, but the first clutch, the second clutch, and the clutch can be coupled in at least one of the normal rotation direction and the reverse rotation direction.
  • it is possible to change to a one-way clutch by narrowing the wedge space on only one side in the circumferential direction.
  • a sprag as an engager.
  • an annular space is formed between the inner circumference of the outer portion and the outer circumference of the inner portion, and the tilt position of the sprag is determined by the relative rotation of the cage. It may be controlled.
  • a ship propulsion machine having no function of moving the hull 7 backward by the power of the engine 2 is exemplified, but a function of moving the hull 7 forward and backward by the power of the engine 2 is added. It is also possible to change it.
  • Such an output path portion corresponding to forward / backward movement is a general one using a shifter clutch. For example, a forward gear and a reverse gear facing the forward gear and the rotation axis direction of the propeller shaft are meshed with the pinion gear 204.
  • the rotation of the pinion gear 204 may rotate the forward gear and the reverse gear in opposite directions, and one of the forward gear and the reverse gear may be configured to be selectively coupled to the propeller shaft by a dog clutch (shifter clutch). ..
  • a dog clutch shifter clutch
  • the clutch 203 cuts off the rotation transmission between the first shaft 201 and the second shaft 202, the power of the engine is not transmitted to the forward gear and the reverse gear, and the rotation of these gears and the propeller shaft is accelerated.
  • the impact at the time of gear-in due to the dog clutch can be reduced, and the impact is cut off by the clutch 203 and is not transmitted to the first shaft 201, resulting in vibration of the ship propulsion machine and damage to the main power transmission system. It is advantageous to prevent.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

クラッチの入出力間で多少の回転差がある状態でも結合可能かつエンジンと電動モータの一方でも両方でもプロペラシャフトを駆動可能な船舶推進機にするため、エンジン(2)側のギヤ(14)と噛み合うギヤ(15、16)の夫々とプロペラシャフト(11)間にクラッチ(17、18)を設け、モータ(4)の動力を両クラッチ(17、18)から独立した経路でシャフト(11)に伝達する。クラッチ(17、18)は、ギヤ(15、16)側の外方部(20)と、シャフト(11)側の内方部(30)との間に係合子(40)を保持する保持器(50)に対して回り止めされたアーマチュア(70)を電磁石(80)でロータ(90)に磁気吸着させることで係合子(40)を係合位置に移動させ、ばね(60、100)で中立位置に復帰させるものとする。

Description

船舶推進機
 この発明は、動力源としてエンジン及び電動モータを備える船舶推進機に関する。
 モータボート等の小型船舶では、一般に、船体の外に推進機が配置されている。この種の船舶推進機は、燃料タンク、エンジン、動力伝達系(ギヤ、クラッチ、プロペラシャフト等)をハウジングに内蔵している。
 船体外で推進機から発せられる騒音は、入出港の際に問題視される。そのため、入出港時に電動モータでプロペラシャフトを駆動することが可能な船舶推進機が注目されている(例えば、特許文献1)。
 特許文献1の船舶推進機は、エンジンとプロペラシャフト間で回転の伝達と遮断を行う第一クラッチと、電動モータとプロペラシャフト間で回転の伝達と遮断を行う第二クラッチとを備えている。その第一クラッチと第二クラッチは、それぞれドグクラッチに構成されている。シフトアクチュエータにより、第一クラッチと第二クラッチの一方が回転伝達状態に切り替えられると共に他方が遮断状態に切り替えられる。
特開2020-29185号公報
 しかしながら、特許文献1の船舶推進機では、ドグクラッチを備えるため、入出力間の回転差を無くしてからクラッチを結合しないと、歯飛びが発生してクラッチが噛み合えなかったり、噛み合い時に大きな異音が発生したりする問題がある。
 また、第一クラッチと第二クラッチの一方だけを選択的に動力伝達状態に切り替える構造であるから、エンジンと電動モータの一方でしかプロペラシャフトを駆動することができない問題がある。
 そこで、この発明が解決しようとする課題は、クラッチの入出力間で多少の回転差がある状態でも結合を行うことが可能でありながら、エンジンと電動モータの一方でも両方でもプロペラシャフトを駆動可能な船舶推進機にすることである。
 上記の課題を達成するための第一の手段として、この発明は、プロペラと一体に回転するプロペラシャフトと、エンジンと、電動モータと、前記エンジンの動力を伝達するピニオンギヤと、前記ピニオンギヤと噛み合う前進ギヤと、前記ピニオンギヤと噛み合う後進ギヤと、前記前進ギヤと前記プロペラシャフトとの間で回転の伝達と遮断を行う第一クラッチと、前記後進ギヤと前記プロペラシャフトとの間で回転の伝達と遮断を行う第二クラッチと、前記電動モータの動力を前記第一クラッチ及び前記第二クラッチから独立した経路で前記プロペラシャフトに伝達するハイブリッド伝達経路と、を備え、前記第一クラッチ及び前記第二クラッチは、それぞれ対応の前記前進ギヤ又は前記後進ギヤと一体に回転する外方部と、前記外方部の内側で前記プロペラシャフトと一体に回転する内方部と、前記外方部と前記内方部との間に配置された係合子と、前記係合子を保持する保持器と、前記外方部と前記内方部の一方に対する前記保持器の相対回転によって弾性変形させられる中立ばねと、前記保持器に対して回り止めされたアーマチュアと、前記アーマチュアに対向する電磁石と、前記外方部と前記内方部の前記一方と反対の他方に対して回り止めされた状態で前記アーマチュアに対向するロータと、前記アーマチュアを前記ロータから離反する方向に押圧する離反ばねと、を有し、前記係合子は、前記保持器の相対回転によって前記外方部及び前記内方部に係合する係合位置と、当該係合を解除する中立位置との間を移動させられるように配置されており、前記アーマチュアは、前記電磁石に対する通電によって前記ロータに磁気吸着させられる可動部材からなる構成を採用した。
 上記第一の手段に係る構成によれば、第一クラッチ及び第二クラッチは、それぞれ電磁石でアーマチュアをロータに吸着させることで係合状態に切り替わるものなので、外方部と内方部間に多少の回転差がある状態でも結合を行うことができる。その第一クラッチの電磁石に対して通電しかつ第二クラッチの電磁石に対する通電を遮断した状態にすれば、エンジンの動力を前進ギヤに伝達してプロペラシャフトを回転させることができ、第二クラッチの電磁石に対して通電しかつ第一クラッチの電磁石に対する通電を遮断した状態にすれば、エンジンの動力を後進ギヤに伝達してプロペラシャフトを回転させることができる。一方、第一クラッチ及び第二クラッチの各電磁石に対する通電を遮断した状態としかつ電動モータの動力をハイブリッド伝達経路でプロペラシャフトに伝達すれば、電動モータの回転方向に応じてプロペラシャフトを前進方向又は後進方向に回転させることができる。そのハイブリッド伝達経路は第一クラッチ及び第二クラッチから独立した経路であるから、エンジンの動力を第一クラッチ又は第二クラッチがプロペラシャフトに伝達する状態で電動モータの動力もプロペラシャフトに伝達することができる。
 前記ハイブリッド伝達経路は、前記電動モータと前記プロペラシャフトとの間で回転の伝達と遮断を行う第三クラッチを有するとよい。このようにすると、エンジンの動力のみをプロペラシャフトに伝達させる場合に第三クラッチでプロペラシャフトと電動モータ間の回転伝達を遮断して、エンジンの燃費を良くすることができる。
 前記前進ギヤ及び前記後進ギヤは、前記プロペラシャフトを取り囲みかつ前記プロペラシャフトの軸線方向に向き合っており、前記ピニオンギヤは、前記前進ギヤと前記後進ギヤ間に位置しており、前記第一クラッチ及び前記第二クラッチは、前記プロペラシャフトの周囲かつ前記前進ギヤ、前記後進ギヤ及び前記ピニオンギヤの内側に形成された空間に収容されているとよい。このようにすると、第一クラッチと第二クラッチをコンパクトに配置することができる。
 前記前進ギヤと前記後進ギヤとの間かつ前記プロペラシャフトの周囲を取り囲む位置に静止する隔壁をさらに備え、前記第一クラッチの電磁石と前記第二クラッチの電磁石は、前記隔壁に固定されているとよい。このようにすると、前進ギヤ、後進ギヤの内側に収容する第一クラッチ、第二クラッチの各電磁石を共通の静止壁に固定し、これら電磁石に対する配線を取り纏めることができる。
 また、前記第一クラッチ及び前記第二クラッチは、それぞれ対応の前記前進ギヤ又は前記後進ギヤに固定された非磁性材製のロータガイドを有し、前記第一クラッチのロータと前記第二クラッチのロータは、それぞれ対応の前記ロータガイドに固定されることによって前記前進ギヤ又は前記後進ギヤと非接触の状態に配置されているとよい。このようにすると、前進ギヤ又は後進ギヤと一体回転する外方部とロータをロータガイドを介して回り止めしつつ、各電磁石の磁界が対応のロータから前進ギヤ又は後進ギヤに漏洩することを抑えることができる。
 前記外方部と前記内方部の前記他方は円筒面を有し、前記外方部と前記内方部の前記一方は前記円筒面と周方向にくさび空間を形成するカム面を有し、前記係合子は、前記円筒面と前記カム面との間に配置されたローラからなるとよい。このようにすると、外方部と内方部間の回転差が大きい状態で第一クラッチ、第二クラッチの結合が行われるとき、係合子が円筒面とカム面に係合するまでの間、係合子が円筒面に擦られて自転することで円筒面とカム面を滑り、回転が徐々に伝達される半係合状態を経るので、衝撃を抑えるのに有利である。
 上記の課題を達成するための第二の手段として、この発明は、プロペラと一体に回転するプロペラシャフトと、エンジンと、電動モータと、前記エンジンの動力を伝達する主伝達経路と、前記電動モータの動力を伝達するハイブリッド伝達経路とを備える船舶推進機において、前記主伝達経路は、前記エンジンと一体に回転する第一軸と、前記第一軸に対して下方の位置で前記第一軸と同軸に配置された第二軸と、前記第一軸と前記第二軸との間で回転の伝達と遮断を行うクラッチと、前記第二軸と一体に回転するピニオンギヤと、前記ピニオンギヤと前記プロペラシャフト間で回転を伝達する出力経路部とを有し、前記ハイブリッド伝達経路は、前記第二軸で前記主伝達経路に合流しており、前記クラッチは、前記第一軸と一体に回転する外方部と、前記外方部の内側で前記第二軸と一体に回転する内方部と、前記外方部と前記内方部との間に配置された係合子と、前記係合子を保持する保持器と、前記外方部と前記内方部の一方に対する前記保持器の相対回転によって弾性変形させられる中立ばねと、前記保持器に対して回り止めされたアーマチュアと、前記アーマチュアに対向する電磁石と、前記外方部と前記内方部の前記一方と反対の他方に対して回り止めされた状態で前記アーマチュアに対向するロータと、前記アーマチュアを前記ロータから離反する方向に押圧する離反ばねと、を有し、前記係合子は、前記保持器の相対回転によって前記外方部及び前記内方部に係合する係合位置と、当該係合を解除する中立位置との間を移動させられるように配置されており、前記アーマチュアは、前記電磁石に対する通電によって前記ロータに磁気吸着させられる可動部材からなる構成を採用した。
 上記第二の手段に係る構成によれば、クラッチが電磁石でアーマチュアをロータに吸着させることで係合状態に切り替わるものなので、外方部と内方部間に多少の回転差がある状態でも結合を行い、エンジンの動力を主伝達経路でプロペラシャフトまで伝達することができる。また、ハイブリッド伝達経路が第二軸で主伝達経路に合流しているので、電動モータの動力をハイブリッド伝達経路、第二軸、出力経路部によりプロペラシャフトまで伝達することができる。したがって、電磁石に対する通電を遮断し、電動モータを運転する場合、電動モータの動力だけでプロペラシャフトを駆動することができ、電磁石に対する通電を遮断し、エンジンを運転する場合、エンジンの動力だけでプロペラシャフトを駆動することができ、電磁石に対して通電しかつエンジン及び電動モータを運転する場合、エンジンと電動モータの両方の動力でプロペラシャフトを駆動することができる。
 前記ハイブリッド伝達経路は、前記電動モータと前記第二軸との間で回転の伝達と遮断を行う他のクラッチを有するとよい。このようにすると、エンジンの動力のみをプロペラシャフトに伝達させる場合に他のクラッチで第二軸と電動モータ間の回転伝達を遮断して、エンジンの燃費を良くすることができる。
 前記クラッチ及び前記電動モータが収容された一体のケーシングをさらに備えるとよい。このようにすると、クラッチと電動モータを同一のケーシングで位置決めすることができ、ハイブリッド伝達経路と第二軸の合流部を精度よく組み合わせることが容易である。
 前記ロータは、前記電磁石の上方に配置されており、前記アーマチュアは、前記ロータの上方に配置されており、前記ロータの上面と前記アーマチュアの下面との間に前記離反ばねが配置されており、前記電磁石は、通電によって前記アーマチュアを下方に磁気吸引するものであるとよい。このようにすると、電磁石がアーマチュアをロータに吸着する際、アーマチュアの自重も下方への移動に寄与するので、アーマチュアをロータに吸着し易くすることができる。
 前記外方部と前記内方部の前記他方は円筒面を有し、前記外方部と前記内方部の前記一方は前記円筒面と周方向にくさび空間を形成するカム面を有し、前記係合子は、前記円筒面と前記カム面との間に配置されたローラからなるとよい。このようにすると、外方部と内方部間の回転差が大きい状態でクラッチの結合が行われるとき、係合子が円筒面とカム面に係合するまでの間、係合子が円筒面に擦られて自転することで円筒面とカム面を滑り、回転が徐々に伝達される半係合状態を経るので、衝撃を抑えるのに有利である。
 前記クラッチは、前記外方部に固定された非磁性材製のロータガイドを有し、前記ロータは、前記ロータガイドに固定されることによって前記外方部と非接触の状態に配置されているとよい。このようにすると、外方部とロータをロータガイドを介して回り止めしつつ、電磁石の磁界がロータから外方部に漏洩することを抑えることができる。また、外方部とロータが分離した状態でアーマチュア等をロータと外方部との間に配置することが可能なため、クラッチの組み立てを容易にすることができる。
 前記ハイブリッド伝達経路は、前記第二軸と平行に配置された主動ギヤと、前記第二軸と一体に回転する従動ギヤとを有するとよい。このようにすると、ハイブリッド伝達経路と第二軸を簡素な歯車伝達機構で合流させることができる。
 上述のように、この発明は、上記第一又は第二の手段に係る構成の採用により、クラッチの入出力間で多少の回転差がある状態でも結合を行うことが可能でありながら、エンジンと電動モータの一方でも両方でもプロペラシャフトを駆動可能な船舶推進機にすることができる。
この発明の第一実施形態に係る船舶推進機の第一、第二クラッチ付近の構造を示す断面図 第一実施形態に係る船舶推進機を模式的に示す左側面図 図1に示す第一クラッチ付近の拡大図 図3に示すIV-IV線の切断面を示す拡大断面図 図3に示す係合子の中立位置と係合位置を示す部分断面図 この発明の第二実施形態に係る船舶推進機の要部を示す断面図 この発明の第三実施形態に係る船舶推進機のクラッチ付近の構造を示す断面図 第三実施形態に係る船舶推進機を模式的に示す左側面図 図7に示すアーマチュア付近の拡大図 図9に示すIV-IV線の切断面を示す拡大断面図 図9に示す係合子の中立位置と係合位置を示す部分断面図 この発明の第四実施形態に係る船舶推進機の要部を示す断面図 この発明の第五実施形態に係る船舶推進機の要部を示す断面図
 以下、上記第一の手段の発明に係る一例としての第一実施形態を添付図面に基づいて説明する。
 図1、2に示す船舶推進機1は、その上部にエンジン2、電子制御ユニット(ECU)3等を備え、その下部に電動モータ4、プロペラ5、ラダー6等を備えるユニットとして構成されている。
 この船舶推進機1は、船体(船舶)7の後尾に懸架装置8を介して重力軸回りおよび水平軸回りに転舵自在に取り付けられる。この船舶推進機1は、ステアリング装置9によって船体7に対して左右に回動させられ、パワーチルトトリム装置10によって船体7に対して上下に回動させられる。この船舶推進機1の基準姿勢は、エンジン2(クランクシャフト)の回転軸線が鉛直方向に延び、エンジン2の回転軸線に直交するプロペラシャフト11の回転軸線が前後方向に延びる姿勢である。
 エンジン2及び電動モータ4の一方又は両方の動力がプロペラシャフト11に伝達される。船舶推進機1は、エンジン2、ECU3、電動モータ4等を収容するハウジング12を備える。ハウジング12は、エンジン収容部と、ギヤ収容部とを上下に接合する構造になっている。ラダー6は、ハウジング12のギヤ収容部と一体に設けられている。
 エンジン2は、一定の回転方向にクランクシャフトを回転させる機関であり、例えば、4サイクルガソリンエンジンからなる。ハウジング12の内部には、スロットルバルブを開閉する電動アクチュエータや燃料タンク(図示省略)が設置されている。
 ハウジング12の内部には、エンジン2の動力をプロペラシャフト11まで伝達する主伝達経路と、電動モータ4の動力をプロペラシャフト11まで伝達するハイブリッド伝達経路とが構成されている。
 プロペラ5は、プロペラシャフト11と一体に回転するように連結されている。プロペラ5は、プロペラシャフト11に伝達された動力で正転又は逆転する。プロペラ5の正転により船体7が前進させられ、プロペラ5の逆転により船体7が後進させられる。
 主伝達経路とハイブリッド伝達経路は、互いに独立している。すなわち、主伝達経路は、ハイブリッド伝達経路が電動モータ4の動力をプロペラシャフト11まで伝達している状態であるか否かを問わず、エンジン2の動力をプロペラシャフト11まで伝達することが可能な構成になっており、ハイブリッド伝達経路は、主伝達経路がエンジン2の動力をプロペラシャフト11まで伝達している状態であるか否かを問わず、電動モータ4の動力をプロペラシャフト11へ伝達することが可能な構成になっている。
 船体7ないし船舶推進機1に備わる各種操縦装置(図示省略)から出力された信号は、対応の配線L1~L6を介してECU3に送られる。その信号として、例えば、操縦者によって操作されるステアリングホイールの操舵角に応じた舵角信号、操縦者によって操作されるスロットルレバーの位置に応じたスロットル信号、操縦者によって操作されるシフトレバーの位置、具体的には中立、前進および後進のいずれかに応じたシフト信号、操縦者によって選択される駆動方式(エンジンの動力による駆動、電動モータの動力による駆動、エンジン及び電動モータの動力による駆動)に応じた駆動モード信号、操縦者によって入力されるチルトのアップ・ダウンおよびトリムのアップ・ダウンの指示に応じた昇降角信号が挙げられる。
 ECU3は、舵角信号に応じてステアリング装置9を動作させて船舶推進機1を操舵する。また、ECU3は、昇降角信号に応じてパワーチルトトリム装置10を動作させて船舶推進機1のチルト角やトリム角を変える。また、ECU3は、駆動モード信号、スロットル信号及びシフト信号に応じてエンジン2の出力、電動モータ4の回転方向及び出力、主伝達経路の動作切り替え等の所定の制御を行う。
 主伝達経路は、エンジン2の下方で上下方向に延びるドライブシャフト13と、ドライブシャフト13と一体に回転するピニオンギヤ14と、ピニオンギヤ14と噛み合う前進ギヤ15と、ピニオンギヤ14と噛み合う後進ギヤ16と、前進ギヤ15とプロペラシャフト11との間で回転の伝達と遮断を行う第一クラッチ17と、後進ギヤ16とプロペラシャフト11との間で回転の伝達と遮断を行う第二クラッチ18とを備える。
 ドライブシャフト13は、エンジン2のクランクシャフトから出力された動力を伝達する。ピニオンギヤ14は、ドライブシャフト13の下方側端部に設けられたベベルギヤからなる。前進ギヤ15及び後進ギヤ16は、ピニオンギヤ14に対応のベベルギヤからなる。前進ギヤ15及び後進ギヤ16は、プロペラシャフト11を取り囲みかつプロペラシャフト11の軸線方向に向き合っている。ピニオンギヤ14は、プロペラシャフト11に対して上方の位置で前進ギヤ15と後進ギヤ16間に位置し、前進ギヤ15及び後進ギヤ16と常時噛み合っている。前進ギヤ15と後進ギヤ16は、ピニオンギヤ14の回転によって互いに相反する方向に回転させられる。
 第一クラッチ17及び第二クラッチ18は、プロペラシャフト11の周囲かつ前進ギヤ15、後進ギヤ16及びピニオンギヤ14の内側に形成された空間に収容されている。エンジン2の動力は、ドライブシャフト13とピニオンギヤ14を介して前進ギヤ15と後進ギヤ16に伝達されると共に、第一クラッチ17と第二クラッチ18のいずれか一つを介してプロペラシャフト11に伝達される。エンジン2の動力が前進ギヤ15に伝達される場合には、プロペラシャフト11が正転方向(プロペラが船舶を前進させる方向)に回転させられる。エンジン2の動力が後進ギヤ16に伝達される場合には、プロペラシャフト11が逆転方向(プロペラ5が船舶を後進させる方向)に回転させられる。
 第一クラッチ17は、図3に示すように、前進ギヤ15と一体に回転する外方部20と、外方部20の内側でプロペラシャフト11と一体に回転する内方部30と、外方部20と内方部30との間に配置された係合子40と、係合子40を保持する保持器50と、保持器50の位相をばね力で保持し、外方部20と内方部30の一方としての内方部30に対する保持器50の相対回転によって弾性変形させられる中立ばね60と、保持器50に対して回り止めされたアーマチュア70と、アーマチュア70に対向する電磁石80と、外方部20と内方部30の他方としての外方部20に対して回り止めされた状態でアーマチュア70に対向するロータ90と、アーマチュア70をロータ90から離反する方向に押圧する離反ばね100と、を有する。
 内方部30と外方部20の軸線(回転中心線)は、プロペラシャフト11の軸線と同軸に設定されており、以下、その軸線に沿った方向を単に「軸線方向」という。軸線方向に関して船舶の前進方向は、図中左方向に相当し、船舶の後進方向は、図中右方向に相当する。また、その軸線方向に直交する方向を「径方向」という。また、その軸線回りの円周方向を「周方向」という。
 外方部20は、前進ギヤ15に形成されたボス部からなる。内方部30は、プロペラシャフト11の外周に結合されたカムリングからなる。内方部30の内周とプロペラシャフト11の外周は、スプライン嵌合によって一体に回転可能に連結されている。
 前進ギヤ15のボス部は、軸線方向の両端で開口している。外方部20は、周方向全周に延びる円筒面21と、円筒面21よりも前方側の部位で円筒面21よりも小さな内径に形成された軸受座面22と、円筒面21よりも後方側の部位で円筒面21よりも大きな内径に形成されたガイド座面23とを有する。
 内方部30は、図3、図4に示すように、円筒面21と周方向にくさび空間を形成するカム面31と、カム面31よりも前方側の部位でカム面31よりも小さな外径に形成された第一端部32と、カム面31よりも後方側の部位でカム面31よりも小さな外径に形成された第二端部33とを有する。
 外方部20の外周の前方側とハウジング12の内周との間に軸受24が取り付けられている。軸受24は、外方部20をハウジング12に対して回転自在に支持するためのものである。
 また、内方部30の第一端部32の外周と外方部20の軸受座面22との間に軸受34が取り付けられている。軸受34は、内方部30を外方部20に対して回転自在に支持するためのものである。
 カム面31は、正多角形状の一辺の長さ方向に延びる平面状になっている。カム面31と円筒面21とで形成されるくさび空間は、カム面31の周方向中央から周方向両端に向かって次第に狭小となっている。なお、カム面31を複数の面で構成してもよいし、単一の曲面で構成することも可能である。
 係合子40は、円筒面21とカム面31との間に配置されたローラからなる。係合子40は、円筒ころ状に形成されている。内方部30の外周には、周方向に間隔をおいて複数のカム面31が形成されている。すなわち、複数のくさび空間が形成され、各くさび空間に係合子40が配置されている。
 カム面31と円筒面21との間の径方向の距離は、図5に示すように、カム面31の周方向中央に位置する係合子40(図5において実線で描いた。)の位置から周方向の一方向に向かって次第に小さくなり、また、当該係合子40の位置から周方向の他方向に向かって次第に小さくなっている。係合子40は、カム面31に対する保持器50の相対回転によって円筒面21及びカム面31に係合する係合位置(図5において一点鎖線で描いた位置)と、円筒面21及びカム面31との係合を解除する中立位置(図5において実線で描いた位置)との間を移動可能に配置されている。係合位置で円筒面21およびカム面31に係合した係合子40は、内方部30に対して保持器50が相対回転する際、内方部30と外方部20間で回転トルクを伝達する。
 保持器50は、図3~図5に示すように、周方向に並ぶ複数の柱部51と、これら柱部51の前方側に連続する第一環部52と、これら柱部51の後方側に連続する第二環部53とを有する。周方向に隣り合う柱部51間の空間が、係合子40を収容する空間になっている。係合子40は、図4に例示するように、周方向に対向する柱部51との当接により、カム面31に対する周方向位置が制限され、また、保持器50と共に強制的に回転させられる。
 図3に示すように、保持器50は、軸方向に沿った第一環部52から内方部30側へ出張ったフランジ部54を有する。フランジ部54は、保持器50の剛性向上に貢献する。保持器50の全体は、例えば、金属板を素材としたプレス加工や、粉末冶金によって一体に形成される。プレス加工で保持器50の全体的な形状を形成する場合、例えば、金属板として鋼板を用いることができる。
 保持器50は、図1に示すように、フランジ部54の内周において内方部30の第一端部32の外周に回転自在に嵌合されている。フランジ部54と内方部30の前方側の段差面35との当接によって、保持器50の後方側への移動が規制される。また、内方部30の第一端部32の外周に取り付けられた止め輪36とフランジ部54との当接によって、保持器50の前方側への移動が規制される。
 図3、図4に示す中立ばね60は、内方部30に対する保持器50の相対回転により弾性変形させられ、その復元弾性によって当該保持器50を復帰回転させる弾性部材からなる。中立ばね60は、係合子40が中立位置となるように保持器50を弾性的に保持する。
 中立ばね60は、C形のリング部61と、リング部61の両端から保持器50側に向けて形成された一対の係合片部62とを有する金属ばねからなる。内方部30には、後方側に向かって開放した凹部37が形成されている。凹部37は、周方向の一部で断絶した形状の環状壁37aを有する。凹部37は、軸線方向に一定の深さをもっている。その凹部37内に中立ばね60が嵌っている。
 中立ばね60のリング部61は、内方部30の第二端部33の外周に通され、環状壁37aの内側に嵌合されている。保持器50は、環状壁37aの断絶空間の外方に係合口部55を有する。一対の係合片部62は、環状壁37aの断絶空間(環状壁の周方向両端間の空間)及び係合口部55に挿入されている。一対の係合片部62は、環状壁37a、係合口部55を周方向の相反する方向に向かって押圧する。その押圧によって、保持器50は、係合子40が中立位置となる位相に保持される。
 図3に示す中立ばね60は、保持器50と一体に回転するばね保持リング56によって凹部内に保たれている。ばね保持リング56は、内方部30の第二端部33の外周に嵌合されると共に、保持器50と一体に回転することができるように第二環部53に結合された板部材からなる。ばね保持リング56は、第二端部33の外周に取り付けられた止め輪38により、後方側への移動が阻止されている。
 アーマチュア70は、内方部30の第二端部33の外周にスライド自在に嵌合された可動部材からなる。アーマチュア70は、径方向に沿いかつ全周に延びる環状側面を有する。アーマチュア70と保持器50は、ばね保持リング56を介して回り止めされている。ばね保持リング56の係合部が保持器50の第二環部53の切欠部及びアーマチュア70の係合孔部に挿入された回り止め構造になっている。なお、ばね保持リング56を省略し、アーマチュアに係合孔部を形成し、そこに保持器の係合突片を挿入する回り止め構造を採用することも可能である。
 外方部20のガイド座面23に非磁性材製のロータガイド91が固定されている。ロータ90は、ロータガイド91に固定されている。
 ロータガイド91は、略円筒状に形成されており、ガイド座面23に対する圧入によって固定されている。非磁性材として、例えば、アルミニウム合金等が挙げられる。
 ロータ90は、内方円筒部92と、この内方円筒部92の外方に位置する外方円筒部93と、これら両円筒部92、93を繋ぐ端壁部94とを有する。ロータ90は、その外方円筒部93をロータガイド91の内周に圧入することによって外方部20と一体回転可能に固定されている。端壁部94は、径方向に沿いかつ全周に亘る環状面を有する。なお、アーマチュア70と電磁石80とロータ90間を循環する磁気回路がアーマチュア70と電磁石80間を往復する回数を増やしてアーマチュア70に対する磁気吸引力を強くするため、端壁部94を軸線方向に貫通し周方向に円弧状に延びる磁束遮断用のスリットが複数形成されている。
 プロペラシャフト11とロータ90の内周との間に軸受95が配置されている。軸受95は、ロータ90をプロペラシャフト11に対して回転自在に支持するためのものである。
 ロータ90は、ロータガイド91を介して外方部20に固定されることによって、強磁性材である鋼製の前進ギヤ15と非接触の状態に配置されている。ロータガイド91は、ロータ90に入った磁束がアーマチュア70に向かわずに前進ギヤ15への磁束漏洩することを防ぐ。
 電磁石80は、ロータ90の内方円筒部92と外方円筒部93との間の空間に配置されている。電磁石80は、フィールドコア81と、フィールドコア81に支持されたコイル82とからなる。電磁石80は、そのフィールドコア81において静止部に固定されている。静止部は、前進ギヤ15と後進ギヤ16との間かつプロペラシャフト11の周囲を取り囲む位置に静止する隔壁12aになっている。隔壁12aは、ピニオンギヤ14と上下方向に対向する位置に設けられている。隔壁12aは、プロペラシャフト11を通す貫通口を有する板部材になっており、ハウジング12の内底面に固定されている。
 離反ばね100は、アーマチュア70とロータ90の対向面間に介在している。アーマチュア70がロータ90から軸線方向に離反する量は、ロータ90とアーマチュア70間のエアギャップに相当する。このエアギャップは、止め輪38によるアーマチュア70の離反規制によって制限されている。なお、プロペラシャフト11の軸線方向の移動は、
軸受と、これら軸受の軸線方向移動を規制する構造とによってエアギャップよりも小さい範囲に規制されている。このため、電磁石80の無励磁時、プロペラシャフト11に軸線方向荷重が作用したとしても、離反ばね100に抗してロータ90とアーマチュア70の異常接触が生じることはない。
 図1、図2に示す第一クラッチ17と第二クラッチ18は、互いの取り付け方向がプロペラシャフト11の軸線方向に関して正反対になっている点で異なるだけであり、第二クラッチ18は、クラッチ機構として第一クラッチ17と同一の構造を有する。このため、第二クラッチ18の詳細説明を省略し、対応の構成要素に同一符号を付す。
 第一クラッチ17と第二クラッチ18に関する対称面は、ピニオンギヤ14の軸線を含む仮想平面である。第一クラッチ17の電磁石80は、隔壁12aの前方側に固定されている。第二クラッチ18の電磁石80は、隔壁12aの後方側に固定されている。これら電磁石80のコイル82に通電するための配線L7、L8は、一本のケーブルに纏められて、ECU3に接続されている。
 前述のハイブリッド伝達経路は、電動モータ4の動力を第一クラッチ17及び第二クラッチ18から独立した経路でプロペラシャフト11に伝達する。
 ハイブリッド伝達経路は、電動モータ4とプロペラシャフト11との間に減速機110を有する。減速機110は、電動モータ4の回転軸から入力された回転を減速する。減速機110は、電動モータ4と組み合わされたギヤボックスになっており、ギヤボックス内で減速した回転をプロペラシャフト11に出力する伝達軸111を有する。伝達軸111の外周とプロペラシャフト11の前方側の内周部は、スプライン嵌合によって一体に回転可能に連結されている。なお、電動モータ4及び伝達軸111をそれぞれプロペラシャフト11と同軸に配置した例を示したが、プロペラシャフト11と平行軸に配置することも可能であり、この場合、プロペラシャフト11の外周に設けたギヤ部にハイブリッド伝達経路の終端となるギヤ部を噛み合わせればよい。
 第一クラッチ17、第二クラッチ18の動作について説明する(以下、図1~図5を適宜、参照のこと。)。ECU3によって電磁石80のコイル82への通電が遮断されている無励磁状態では、係合子40が中立位置にあり、保持器50は、中立ばね60のばね力により、カム面31に対して係合子40を中立位置に保つ位相に保持される。このため、内方部30(プロペラシャフト11)と外方部20(前進ギヤ15又は後進ギヤ16)間で相対回転が生じたとしても、内方部30と外方部20間ではトルクが伝達されず、内方部30と外方部20が相対的に空転(フリー回転)する。つまり、第一クラッチ17、第二クラッチ18は、係合子40が内方部30及び外方部20に係合不可な係合解除状態にある。
 内方部30と外方部20の少なくとも一方が回転し、これら両部が相対的に回転する状態において、電磁石80のコイル82に通電すると、電磁石80が励磁状態になって、アーマチュア70が、離反ばね100に抗してロータ90に磁気的に吸着させられる。このとき、ロータ90とアーマチュア70の環状面同士が吸着させられるので、ロータ90とアーマチュア70の位相差を問わずに吸着させられる。そのロータ90とアーマチュア70の環状面間に作用する摩擦抵抗は中立ばね60のばね力よりも大きい。このため、アーマチュア70に対して回り止めされた保持器50から押される中立ばね60が弾性変形を生じて、保持器50が内方部30に対して相対回転する。その相対回転により、係合子40は、円筒面21とカム面31間のくさび空間の狭小部に押し込まれて円筒面21とカム面31に係合する。このため、内方部30と外方部20間では、係合子40を介してトルクが伝達される。このように、第一クラッチ17、第二クラッチ18は、係合解除状態から電磁的に、係合子40が内方部30及び外方部20に係合可能な係合状態に切り替えることができる。
 このように係合状態へ切り替えて第一クラッチ17、第二クラッチ18の結合が行われるとき、外方部20と内方部30間の回転差が大きい状態であれば、係合子40が円筒面21とカム面31に係合するまでの間、係合子40が円筒面21に擦られて自転することで円筒面21とカム面31を滑り、回転が徐々に伝達される半係合状態を経てから係合するので、衝撃が抑えられる。
 前述の係合状態において、ECU3が電磁石80のコイル82に対する通電を遮断すると、離反ばね100の押圧により、アーマチュア70がロータ90から離反させられる。アーマチュア70がロータ90から離反すると、中立ばね60のばね力により、保持器50が内方部30に対して係合時の逆方向に回転し、柱部51に押された係合子40が中立位置に戻る。このように、第一クラッチ17、第二クラッチ18は、係合状態から電磁的に、係合子40が内方部30及び外方部20に係合不可な解除状態に切り替えることができる。
 ECU3は、第一クラッチ17の電磁石80に通電しかつ第二クラッチ18の電磁石80への通電を遮断する第一エンジン駆動モード実行機能と、第一クラッチ17の電磁石80への通電を遮断しかつ第二クラッチ18の電磁石80に通電する第二エンジン駆動モード実行機能と、第一クラッチ17及び第二クラッチ18の各電磁石80への通電を遮断する中立モード実行機能と、電動モータ4を正転させる第一電動モード実行機能と、電動モータ4を逆転させる第二電動モード実行機能とを有し、これら実行機能の中から一又は複数を選択して実行する。
 ECU3が前述の信号に応じて第一エンジン駆動モード実行機能を実行する場合、前進ギヤ15とプロペラシャフト11間での回転伝達が第一クラッチ17を介して行われ、後進ギヤ16とプロペラシャフト11間での回転伝達が第二クラッチ18の空転で遮断されるので、船舶推進機1は、エンジン2の動力によりプロペラシャフト11を正転させて船体7を前進させることができる。
 ECU3が前述の信号に応じて第二エンジン駆動モード実行機能を実行する場合、後進ギヤ16とプロペラシャフト11間での回転伝達が第二クラッチ18を介して行われ、前進ギヤ15とプロペラシャフト11間での回転伝達が第一クラッチ17の空転で遮断されるので、船舶推進機1は、エンジン2の動力によりプロペラシャフト11を逆転させて船体7を後進させることができる。
 ECU3が前述の信号に応じて中立モード実行機能を実行する場合、第一クラッチ17の空転、第二クラッチ18の空転により、前進ギヤ15とプロペラシャフト11間、並びに後進ギヤ16とプロペラシャフト11間での回転伝達が遮断されるので、船舶推進機1は、エンジン2の動力によりプロペラシャフト11を回転させることができない。
 ECU3が前述の信号に応じて中立モード実行機能に加えて第一電動モード実行機能又は第二電動モード実行機能を実行する場合、第一クラッチ17及び第二クラッチ18が空転し、電動モータ4の正転又は逆転がハイブリッド伝達経路を介してプロペラシャフト11に伝達されるので、船舶推進機1は、電動モータ4の動力によりプロペラシャフト11を正転又は逆転させて船体7を前進又は後進させることができる。
 ECU3が前述の信号に応じて第一エンジン駆動モード実行機能と第一電動モード実行機能の両方を実行する場合、船舶推進機1は、エンジン2の動力及び電動モータ4の動力によりプロペラシャフト11を正転させて船体7を前進させることができる。
 ECU3が前述の信号に応じて第二エンジン駆動モード実行機能と第二電動モード実行機能の両方を実行する場合、船舶推進機1は、エンジン2の動力及び電動モータ4の動力によりプロペラシャフト11を逆転させて船体7を後進させることができる。
 上述のようなこの船舶推進機1は、プロペラ5と一体に回転するプロペラシャフト11と、エンジン2と、電動モータ4と、エンジン2の動力を伝達するピニオンギヤ14と、ピニオンギヤ14と噛み合う前進ギヤ15と、ピニオンギヤ14と噛み合う後進ギヤ16と、前進ギヤ15とプロペラシャフト11との間で回転の伝達と遮断を行う第一クラッチ17と、後進ギヤ16とプロペラシャフト11との間で回転の伝達と遮断を行う第二クラッチ18と、電動モータ4の動力を第一クラッチ17及び第二クラッチ18から独立した経路でプロペラシャフト11に伝達するハイブリッド伝達経路と、を備え、第一クラッチ17及び第二クラッチ18がそれぞれ対応の前進ギヤ15又は後進ギヤ16と一体に回転する外方部20と、外方部20の内側でプロペラシャフト11と一体に回転する内方部30と、外方部20と内方部30との間に配置された係合子40と、係合子40を保持する保持器50と、外方部20と内方部30の一方に対する保持器50の相対回転によって弾性変形させられる中立ばね60と、保持器50に対して回り止めされたアーマチュア70と、アーマチュア70に対向する電磁石80と、外方部20と内方部30の一方と反対の他方に対して回り止めされた状態でアーマチュア70に対向するロータ90と、アーマチュア70をロータ90から離反する方向に押圧する離反ばね100と、を有し、係合子40が保持器50の相対回転によって外方部20及び内方部30に係合する係合位置と、当該係合を解除する中立位置との間を移動させられるように配置されており、アーマチュア70が電磁石80に対する通電によってロータ90に磁気吸着させられる可動部材からなることにより、第一クラッチ17、第二クラッチ18では、電磁石80に対する通電によってアーマチュア70がロータ90との位相差を問わずに吸着させられ、そのアーマチュア70と共に保持器50が外方部20と内方部30の一方に対して相対回転させられ、その保持器50の相対回転によって係合子40が係合位置に移動させられ、その係合子40を介して外方部20と内方部30間で回転伝達が行われる。電磁石80に対する通電を遮断すれば、離反ばね100、中立ばね60の弾性反発により、係合子40が中立位置に戻るように保持器50が回転させられる。
 すなわち、第一クラッチ17、第二クラッチ18は、それぞれ電磁石80でアーマチュア70をロータ90に吸着させることで係合状態に切り替わるものなので、アーマチュア70とロータ90間の位相差を許容した結合動作が可能であって、ドグクラッチのような歯飛びを起こす構造ではないので、外方部20と内方部30間に多少の回転差がある状態でも結合を行うことができる。
 その第一クラッチ17の電磁石80に対して通電しかつ第二クラッチ18の電磁石80に対する通電を遮断した状態にすれば、エンジン2の動力を前進ギヤ15に伝達してプロペラシャフト11を回転させることができ、第二クラッチ18の電磁石80に対して通電しかつ第一クラッチ17の電磁石80に対する通電を遮断した状態にすれば、エンジン2の動力を後進ギヤ16に伝達してプロペラシャフト11を回転させることができる。
 一方、第一クラッチ17及び第二クラッチ18の各電磁石80に対する通電を遮断した状態としかつ電動モータ4の動力をハイブリッド伝達経路でプロペラシャフト11に伝達すれば、電動モータ4の回転方向に応じてプロペラシャフト11を前進方向又は後進方向に回転させることができる。そのハイブリッド伝達経路は第一クラッチ17及び第二クラッチ18から独立した経路であるから、エンジン2の動力を第一クラッチ17又は第二クラッチ18がプロペラシャフト11に伝達する状態で電動モータ4の動力もプロペラシャフト11に伝達することができる。
 このように、この船舶推進機1は、第一、第二クラッチ17、18の入出力間で多少の回転差がある状態でも結合を行うことが可能でありながら、エンジン2と電動モータ4の一方でも両方でもプロペラシャフト11を駆動可能なものにすることができる。
 また、この船舶推進機1は、前進ギヤ15及び後進ギヤ16がプロペラシャフト11を取り囲みかつプロペラシャフト11の軸線方向に向き合っており、ピニオンギヤ14が前進ギヤ15と後進ギヤ16間に位置しており、第一クラッチ17及び第二クラッチ18がプロペラシャフト11の周囲かつ前進ギヤ15、後進ギヤ16及びピニオンギヤ14の内側に形成された空間に収容されていることにより、ピニオンギヤ14、前進ギヤ15及び後進ギヤ16を配置するためのスペースの軸線方向長さを利用して第一クラッチ17と第二クラッチ18を前進ギヤ15等とまとまりよく配置することになり、ひいては両クラッチ17、18をコンパクトに配置することができる。
 また、この船舶推進機1は、前進ギヤ15と後進ギヤ16との間かつプロペラシャフト11の周囲を取り囲む位置に静止する隔壁12aをさらに備え、第一クラッチ17の電磁石80と第二クラッチ18の電磁石80が隔壁12aに固定されていることにより、前進ギヤ15、後進ギヤ16の内側に収容する第一クラッチ17、第二クラッチ18の各電磁石80を共通の静止壁に固定し、これら電磁石80に対する配線L7、L8を取り纏めることができる。
 また、この船舶推進機1は、第一クラッチ17及び第二クラッチ18がそれぞれ対応の前進ギヤ15又は後進ギヤ16に固定された非磁性材製のロータガイド91を有し、第一クラッチ17のロータ90と第二クラッチ18のロータ90がそれぞれ対応のロータガイド91に固定されることによって前進ギヤ15又は後進ギヤ16と非接触の状態に配置されていることにより、前進ギヤ15又は後進ギヤ16と一体回転する外方部20と、前進ギヤ15又は後進ギヤ16の内側に配置するロータ90とをロータガイド91を介して回り止めしつつ、各電磁石80の磁界が対応のロータ90から強磁性材製の前進ギヤ15又は後進ギヤ16に漏洩することを抑えることができる。
 また、この船舶推進機1は、外方部20と内方部30の他方が円筒面21を有し、外方部20と内方部30の一方が円筒面21と周方向にくさび空間を形成するカム面31を有し、係合子40が円筒面21とカム面31との間に配置されたローラからなることにより、外方部20と内方部30間の回転差が大きい状態で第一クラッチ17、第二クラッチ18の結合が行われるとき、係合子40が円筒面21とカム面31に係合するまでの間、係合子40が円筒面21に擦られて自転することで円筒面21とカム面31を滑り、回転が徐々に伝達される半係合状態を経るので、衝撃を抑えるのに有利である。
 この発明の第二実施形態を図1、図6に基づいて説明する。なお、以下では、第一実施形態との相違点を述べるに留める。
 第二実施形態に係る船舶推進機のハイブリッド伝達経路は、電動モータ4とプロペラシャフト11との間で回転の伝達と遮断を行う第三クラッチ120を有する。
 第三クラッチ120は、電磁クラッチになっている。ECU3は、第三クラッチ120に対する通電も制御する。ECU3が第三クラッチ120に通電することで第三クラッチ120が結合すると、ハイブリッド伝達経路を介して電動モータ4とプロペラシャフト11間での回転の伝達が行われる。
 第三クラッチ120は、クラッチ容量を抑えるため、電動モータ4と減速機110との間に配置されている。
 エンジン2の動力のみでプロペラシャフト11が回転させられ、電動モータ4への電源供給が行われておらず、かつ第三クラッチ120が結合された状態では、プロペラシャフト11の回転力がハイブリッド伝達経路を経て電動モータ4に逆入力されるので、常に電動モータ4が回転させられ、これにより、電動モータ4で回生された電気エネルギをバッテリ(図示省略)に充電することができる。
 一方、バッテリを充電する必要がない場合、電動モータ4による回生は、エンジン2の動力で回転させられるプロペラシャフト11にとって連れ回り抵抗となり、エンジン2の燃費悪化に繋がるため、このような場合、ECU3が第三クラッチ120への通電を遮断することにより、電動モータ4とプロペラシャフト11間での回転伝達を遮断すれば、電動モータ4の連れ回りを避けて燃費向上を図ることができる。
 このように、第二実施形態に係るハイブリッド伝達経路は、電動モータ4とプロペラシャフト11との間で回転の伝達と遮断を行う第三クラッチ120を有することにより、エンジン2の動力のみをプロペラシャフト11に伝達させる場合に第三クラッチ120でプロペラシャフト11と電動モータ4間の回転伝達を遮断して、エンジン2の燃費を良くすることができる。
 上記第二の手段の発明に係る一例としての第三実施形態を添付の図7~図11に基づいて説明する。
 図7、8に示す船舶推進機200は、第一実施形態と同じくエンジン2~ラダー6等を備えるユニットとして構成されているものであって、エンジン2と電動モータ4の動力伝達系を第一実施形態から変更したものである。
 すなわち、ハウジング12の内部には、エンジン2の動力を伝達する主伝達経路と、電動モータ4の動力を伝達するハイブリッド伝達経路とが構成されている。
 主伝達経路は、エンジン2のクランクシャフトと一体に回転する第一軸201と、第一軸201に対して下方の位置で第一軸201と同軸に配置された第二軸202と、第一軸201と第二軸202との間で回転の伝達と遮断を行うクラッチ203と、第二軸202と一体に回転するピニオンギヤ204と、ピニオンギヤ204とプロペラシャフト11間で回転を伝達する出力経路部205とで構成されている。
 クラッチ203が第一軸201と第二軸202を結合すると、エンジン2の動力をクランクシャフトからピニオンギヤ204まで伝達するドライブシャフトが構成される。ピニオンギヤ204は、第二軸202と同軸に設けられたベベルギヤからなる。ピニオンギヤ204のボス部は、第二軸202とスプライン嵌合によって連結されている。出力経路部205は、ピニオンギヤ204と常時噛み合う前進ギヤからなる。出力経路部205は、プロペラシャフト11と一体に回転する。エンジン2の動力が出力経路部205に伝達される場合には、プロペラシャフト11が正転方向(プロペラが船舶を前進させる方向)に回転させられる。
 クラッチ203は、図7、図9に示すように、第一軸201と一体に回転する外方部210と、外方部210の内側で第二軸202と一体に回転する内方部220と、外方部210と内方部220との間に配置された係合子230と、係合子230を保持する保持器240と、保持器240の位相をばね力で保持し、外方部210と内方部220の一方としての内方部220に対する保持器240の相対回転によって弾性変形させられる中立ばね250と、保持器240に対して回り止めされたアーマチュア260と、アーマチュア260に対向する電磁石270と、外方部210と内方部220の他方としての外方部210に対して回り止めされた状態でアーマチュア260に対向するロータ280と、アーマチュア260をロータ280から離反する方向に押圧する離反ばね290と、を有する。
 外方部210と内方部220の回転軸線は、第一軸201の回転軸線と同軸に設定されている。以下、その回転軸線に沿った方向を単に「軸線方向」という。また、その軸線方向に直交する方向を「径方向」という。また、その回転軸線回りの円周方向を「周方向」という。
 クラッチ203は、ケーシング300に挿入されている。クラッチ203は、図8に示すハウジング12の内側に固定されている。図9に示すように、ケーシング300に対するクラッチ203の挿入範囲は、電磁石270と、外方部210、内方部220と係合子230の係合部、電磁石270のON/OFF切り替えに連動する作動部(アーマチュア260、ロータ280、離反ばね290)をケーシング300内に収容する範囲となっている。ケーシング300のうち、クラッチ203が挿入された収容筒部301と外方部210の外周との間、収容筒部301と第二軸202との間は、それぞれシール部材によって塞がれている。
 外方部210は、外輪211と、外輪211の上方側に連結された継手軸212とを有する。継手軸212は、外輪211の上方側に形成された肩部と、外輪211の上方側に取り付けられた止め輪213とで軸線方向に拘束されている。継手軸212の下方側は、外輪211の上方側とスプライン嵌合され、継手軸212の上方側は、図8に示す第一軸201とスプライン嵌合される。これにより、図9に示す外方部210は、図8に示す第一軸201と一体に回転可能に連結されている。なお、外輪211と継手軸212は、一体に形成することも可能である。
 図9、図10に示すように、外輪211は、軸線方向両端で開口した環状部品からなる。外輪211の内周には、周方向全周に延びる円筒面214と、円筒面214よりも上方側の部位で円筒面214よりも小さな内径に形成された軸受座面215とが形成されている。外輪211の外周の下方側には、外方部210の外径を成す肩部216が形成されている。
 内方部220は、第二軸202の上方側の端部に結合されたカムリングからなる。内方部220の内周と第二軸202の外周は、スプライン嵌合によって一体に回転可能に連結されている。
 図9に示すように、内方部220は、円筒面214と周方向にくさび空間を形成するカム面221と、カム面221よりも上方側の部位でカム面221よりも小さな外径に形成された第一端部222と、カム面221よりも下方側の部位でカム面221よりも小さな外径に形成された第二端部223とを有する。
 外方部210の外周の下方側と収容筒部301の内周との間に軸受310が取り付けられている。軸受310は、外方部210を収容筒部301に対して回転自在に支持するためのものである。軸受310は、転がり軸受になっている。軸受310は、収容筒部301に形成された肩部と、収容筒部301に取り付けられた止め輪311と、外輪211に連結されたロータガイド281と、肩部216と、外輪211に取り付けられた止め輪312とにより、軸線方向の移動を規制されている。
 また、内方部220の第一端部222の外周と外方部210の軸受座面215との間に軸受313が取り付けられている。軸受313は、内方部220を外方部210に対して回転自在に支持するためのものである。図7、図9に示すように、軸受313は、転がり軸受になっている。軸受313は、外輪211の内周に形成された肩部と、外輪211に取り付けられた止め輪314と、内方部220の外周に形成された肩部とにより、軸線方向の移動を規制されている。
 図10に示すように、カム面221は、正多角形状の一辺の長さ方向に延びる平面状になっている。カム面221と円筒面214とで形成されるくさび空間は、カム面221の周方向中央から周方向両端に向かって次第に狭小となっている。なお、カム面221を複数の面で構成してもよいし、単一の曲面で構成することも可能である。
 係合子230は、円筒面214とカム面221との間に配置されたローラからなる。係合子230は、円筒ころ状に形成されている。
 内方部220の外周には、周方向に間隔をおいて複数のカム面221が形成されている。すなわち、複数のくさび空間が形成され、各くさび空間に係合子230が配置されている。
 保持器240は、図9~図11に示すように、周方向に並ぶ複数の柱部241と、これら柱部241の上方側に連続する第一環部242と、これら柱部241の下方側に連続する第二環部243とを有する。周方向に隣り合う柱部241間の空間が、係合子230を収容する空間になっている。係合子230は、周方向に対向する柱部241との当接により、カム面221に対する周方向位置が制限され、また、保持器240と共に強制的に回転させられる。
 カム面221と円筒面214との間の径方向の距離は、カム面221の周方向中央に位置する係合子230(図11において実線で描いた。)の位置から周方向の一方向に向かって次第に小さくなり、また、当該係合子230の位置から周方向の他方向に向かって次第に小さくなっている。係合子230は、カム面221に対する保持器240の相対回転によって円筒面214及びカム面221に係合する係合位置(図11において一点鎖線で描いた位置)と、円筒面214及びカム面221との係合を解除する中立位置(図11において実線で描いた位置)との間を移動可能に配置されている。係合位置で円筒面214およびカム面221に係合した係合子230は、内方部220に対して保持器240が相対回転する際、内方部220と外方部210間で回転トルクを伝達する。
 図9に示すように、保持器240の第一環部242は、内方部220側へ出張ったフランジ状に曲げられている。このフランジ状態は、保持器240の剛性向上に貢献する。保持器240の全体は、例えば、金属板を素材としたプレス加工や、粉末冶金によって一体に形成される。プレス加工で保持器240の全体的な形状を形成する場合、例えば、金属板として鋼板を用いることができる。
 保持器240は、第一環部242の内周において内方部220の第一端部222の外周に回転自在に嵌合されている。第一環部242と内方部220の前方側の段差面224との当接によって、保持器240の下方側への移動が規制される。また、内方部220の第一端部222の外周に取り付けられた止め輪315と第一環部242との当接によって、保持器240の上方側への移動が規制される。
 図9、図10に示す中立ばね250は、内方部220に対する保持器240の相対回転により弾性変形させられ、その復元弾性によって当該保持器240を復帰回転させる弾性部材からなる。中立ばね250は、係合子230が中立位置となるように保持器240を弾性的に保持する。
 中立ばね250は、C形のリング部251と、リング部251の両端から保持器240側に向けて形成された一対の係合片部252とを有する金属ばねからなる。内方部220には、下方側に向かって開放した凹部225が形成されている。凹部225は、周方向の一部で断絶した形状の環状壁225aを有する。凹部225は、軸線方向に一定の深さをもっている。その凹部225内に中立ばね250が嵌っている。
 中立ばね250のリング部251は、内方部220の第二端部223の外周に通され、環状壁225aの内側に嵌合されている。保持器240は、環状壁225aの断絶空間の外方に係合口部244を有する。一対の係合片部252は、環状壁225aの断絶空間(環状壁の周方向両端間の空間)及び係合口部244に挿入されている。一対の係合片部252は、環状壁225a、係合口部244を周方向の相反する方向に向かって押圧する。その押圧によって、保持器240は、係合子230が中立位置となる位相に保持される。
 図9に示す中立ばね250は、保持器240と一体に回転するばね保持リング245によって凹部内に保たれている。ばね保持リング245は、内方部220の第二端部223の外周に嵌合されると共に、保持器240と一体に回転することができるように第二環部243に結合された板部材からなる。ばね保持リング245は、第二端部223の外周に取り付けられた止め輪316により、下方側への移動が阻止されている。
 アーマチュア260は、内方部220の第二端部223の外周にスライド自在に嵌合された可動部材からなる。アーマチュア260は、径方向に沿いかつ全周に延びる環状側面を有する。アーマチュア260と保持器240は、ばね保持リング245を介して回り止めされている。ばね保持リング245の係合部が保持器240の第二環部243の切欠部及びアーマチュア260の係合孔部に挿入された回り止め構造になっている。なお、ばね保持リング245を省略し、アーマチュアに係合孔部を形成し、そこに保持器の係合突片を挿入する回り止め構造を採用することも可能である。
 図7、図9に示すロータガイド281は、非磁性材の筒部材からなる。非磁性材として、例えば、アルミニウム合金等が挙げられる。ロータガイド281の上方側は、外輪211の外周の下方側に嵌合されている。ロータガイド281は、肩部216、軸受310、止め輪312により、外方部210に固定されている。
 ロータ280は、ロータガイド281の下方側に固定されている。ロータ280の外周と、ロータガイド281の内周には、それぞれ周溝が形成されており、それら周溝間に抜け止めリング282が介在している。ロータ280は、ロータガイド281に対する嵌合と、抜け止めリング282と両周溝の係止とにより、ロータガイド281に固定されている。ロータ280は、ロータガイド281に固定されることによって、外方部210と一体回転可能かつ外方部210と非接触の状態に配置されている。
 ロータ280は、内方円筒部283と、この内方円筒部283の外方に位置する外方円筒部284と、これら両円筒部283、284を繋ぐ端壁部285とを有する。端壁部285は、径方向に沿いかつ全周に亘る環状面を有する。なお、アーマチュア260と電磁石270とロータ280間を循環する磁気回路がアーマチュア260と電磁石270間を往復する回数を増やしてアーマチュア260に対する磁気吸引力を強くするため、端壁部285を軸線方向に貫通し周方向に円弧状に延びる磁束遮断用のスリットが複数形成されている。
 ロータガイド281を介してロータ280と鋼製の外輪211とを非接触の状態に保たれるため、電磁石270からロータ280に入った磁束がアーマチュア260へ向かわずに外輪211へ磁束漏洩することは防止される。
 ロータ280の内周と第二軸202との間に軸受317が配置されている。軸受317は、ロータ280を第二軸202に対して回転自在に支持するためのものである。
 電磁石270は、ロータ280の内方円筒部283と外方円筒部284との間の空間に配置されている。電磁石270は、フィールドコア271と、フィールドコア271に支持されたコイル272とからなる。収容筒部301は、フィールドコア271の内周の下方側に嵌合しかつ軸線方向に突き当たる環状座302を有する。また、フィールドコア271の外周に取り付けられた止め輪318と、収容筒部301の内周に取り付けられた止め輪319とが軸線方向に係合している。電磁石270は、環状座302がフィールドコア271の径方向及び下方動を規制し、止め輪318と止め輪319の係合がフィールドコア271の上方動を規制することにより、電磁石270が収容筒部301に対して静止させられている。
 図9に示すように、ロータ280の端壁部285は、電磁石270の上方に配置されている。アーマチュア260は、端壁部285の上方に配置されている。離反ばね290は、端壁部285の上面とアーマチュア260の下面との間に介在するように配置されている。電磁石270は、通電によってアーマチュア260を下方に磁気吸引する。
 アーマチュア260がロータ280から軸線方向に離反する量は、ロータ280とアーマチュア260間のエアギャップに相当する。このエアギャップは、止め輪316によるアーマチュア260の離反規制によって制限されている。
 第二軸202の軸線方向移動によるエアギャップの狂いを防止するため、第二軸202とケーシング300との間には、スラスト荷重を支持する複数の軸受320、321が取り付けられている。軸受320は、第二軸202と収容筒部301の下方側との間に取り付けられている。また、ケーシング300は、収容筒部301の下方側に嵌合されかつ軸線方向に突き合わされたギヤケース部303を有し、このギヤケース部303と第二軸202との間にも、複列の軸受321が取り付けられている。
 前述のハイブリッド伝達経路は、電動モータ4の回転軸から入力された回転を減速する減速機330と、第二軸202と平行に配置された主動ギヤ331と、第二軸202と一体に回転する従動ギヤ332とを有する。従動ギヤ332は、第二軸202と一体に形成されている。減速機330は、電動モータ4の回転軸から入力された回転を減速する。減速機330は、電動モータ4と組み合わされたギヤボックスになっており、ギヤボックス内で減速した回転を主動ギヤ331に出力する。ハイブリッド伝達経路は、主動ギヤ331と従動ギヤ332の噛み合いにより、第二軸202で合流している。
 なお、従動ギヤを第二軸に取り付ける構造に変更することも可能であり、このような変更は、内方部と第二軸を一体に形成する場合に好適である。
 電動モータ4を駆動するための配線L7と、電磁石270のコイル272に通電するための配線L8は、それぞれ図8に示すECU3に接続されている。
 クラッチ203の動作について説明する(以下、図7~図11を適宜、参照のこと。)。ECU3によって電磁石270のコイル272への通電が遮断されている無励磁状態では、係合子230が中立位置にあり、保持器240は、中立ばね250のばね力により、カム面221に対して係合子230を中立位置に保つ位相に保持される。このため、内方部220(第二軸202)と外方部210(第一軸201)間で相対回転が生じたとしても、内方部220と外方部210間ではトルクが伝達されず、内方部220と外方部210が相対的に空転(フリー回転)する。つまり、クラッチ203は、係合子230が内方部220及び外方部210に係合不可な係合解除状態にある。
 内方部220と外方部210の少なくとも一方が回転し、これら両部が相対的に回転する状態において、電磁石270のコイル272に通電すると、電磁石270が励磁状態になって、アーマチュア260が、離反ばね290に抗してロータ280に磁気的に吸着させられる。このとき、ロータ280とアーマチュア260の環状面同士が吸着させられるので、ロータ280とアーマチュア260の位相差を問わずに吸着させられる。そのロータ280とアーマチュア260の環状面間に作用する摩擦抵抗は中立ばね250のばね力よりも大きい。このため、アーマチュア260に対して回り止めされた保持器240から押される中立ばね250が弾性変形を生じて、保持器240が内方部220に対して相対回転する。その相対回転により、係合子230は、円筒面214とカム面221間のくさび空間の狭小部に押し込まれて円筒面214とカム面221に係合する。このため、内方部220と外方部210間では、係合子230を介してトルクが伝達される。このように、クラッチ203は、係合解除状態から電磁的に、係合子230が内方部220及び外方部210に係合可能な係合状態に切り替えることができる。
 このように係合状態へ切り替えてクラッチ203の結合が行われるとき、外方部210と内方部220間の回転差が大きい状態であれば、係合子230が円筒面214とカム面221に係合するまでの間、係合子230が円筒面214に擦られて自転することで円筒面214とカム面221を滑り、回転が徐々に伝達される半係合状態を経てから係合するので、衝撃が抑えられる。
 前述の係合状態において、ECU3が電磁石270のコイル272に対する通電を遮断すると、離反ばね290の押圧により、アーマチュア260がロータ280から離反させられる。アーマチュア260がロータ280から離反すると、中立ばね250のばね力により、保持器240が内方部220に対して係合時の逆方向に回転し、柱部241に押された係合子230が中立位置に戻る。このように、クラッチ203は、係合状態から電磁的に係合解除状態に切り替えることができる。
 ECU3は、クラッチ203の電磁石270に通電するエンジン駆動モード実行機能と、クラッチ203の電磁石270への通電を遮断する中立モード実行機能と、電動モータ4を正転させる第一電動モード実行機能と、電動モータ4を逆転させる第二電動モード実行機能とを有し、これら実行機能の中から一又は複数を選択して実行する。
 ECU3が前述の信号に応じてエンジン駆動モード実行機能を実行する場合、主伝達経路とプロペラシャフト11間での回転伝達がクラッチ203を介して行われるので、船舶推進機1は、エンジン2の動力によりプロペラシャフト11を正転させて船体7を前進させることができる。
 ECU3が前述の信号に応じて中立モード実行機能を実行する場合、クラッチ203の空転により、主伝達経路とプロペラシャフト11間での回転伝達が遮断されるので、船舶推進機200は、エンジン2の動力によりプロペラシャフト11を回転させることができない。
 ECU3が前述の信号に応じて中立モード実行機能に加えて第一電動モード実行機能又は第二電動モード実行機能を実行する場合、クラッチ203が空転し、電動モータ4の正転又は逆転がハイブリッド伝達経路から主伝達経路の第二軸202に合流してプロペラシャフト11に伝達されるので、船舶推進機200は、電動モータ4の動力によりプロペラシャフト11を正転又は逆転させて船体7を前進又は後進させることができる。
 上述のようなこの船舶推進機200は、プロペラ5と一体に回転するプロペラシャフト11と、エンジン2と、電動モータ4と、エンジン2の動力を伝達する主伝達経路と、電動モータ4の動力を伝達するハイブリッド伝達経路とを備え、その主伝達経路がエンジン2と一体に回転する第一軸201と、第一軸201に対して下方の位置で第一軸201と同軸に配置された第二軸202と、第一軸201と第二軸202との間で回転の伝達と遮断を行うクラッチ203と、第二軸202と一体に回転するピニオンギヤ204と、ピニオンギヤ204とプロペラシャフト11間で回転を伝達する出力経路部205とを有し、ハイブリッド伝達経路が第二軸202で主伝達経路に合流しており、クラッチ203が第一軸201と一体に回転する外方部210と、外方部210の内側で第二軸202と一体に回転する内方部220と、外方部210と内方部220との間に配置された係合子230と、係合子230を保持する保持器240と、外方部210と内方部220の一方に対する保持器240の相対回転によって弾性変形させられる中立ばね250と、保持器240に対して回り止めされたアーマチュア260と、アーマチュア260に対向する電磁石270と、外方部210と内方部220の一方と反対の他方に対して回り止めされた状態でアーマチュア260に対向するロータ280と、アーマチュア260をロータ280から離反する方向に押圧する離反ばね290と、を有し、係合子230が保持器240の相対回転によって外方部210及び内方部220に係合する係合位置と、当該係合を解除する中立位置との間を移動させられるように配置されており、アーマチュア260が電磁石270に対する通電によってロータ280に磁気吸着させられる可動部材からなることにより、クラッチ203では、電磁石270に対する通電によってアーマチュア260がロータ280との位相差を問わずに吸着させられ、そのアーマチュア260と共に保持器240が外方部210と内方部220の一方に対して相対回転させられ、その保持器240の相対回転によって係合子230が係合位置に移動させられ、その係合子230を介して外方部210と内方部220間で回転伝達が行われる。電磁石270に対する通電を遮断すれば、離反ばね290、中立ばね250の弾性反発により、係合子230が中立位置に戻るように保持器240が回転させられる。
 すなわち、クラッチ203は、電磁石270でアーマチュア260をロータ280に吸着させることで係合状態に切り替わるものなので、アーマチュア260とロータ280間の位相差を許容した結合動作が可能であって、ドグクラッチのような歯飛びを起こす構造ではないので、外方部210(第一軸201)と内方部220(第二軸202)間に多少の回転差がある状態でも結合を行うことができる。
 また、ハイブリッド伝達経路は、第二軸202で主伝達経路に合流しているので、電動モータ4の動力をハイブリッド伝達経路、第二軸202、出力経路部205によりプロペラシャフト11まで伝達することができる。したがって、この船舶推進機200は、電磁石270に対する通電を遮断し、電動モータ4を運転する場合、電動モータ4の動力だけでプロペラシャフト11を駆動することができ、電磁石270に対する通電を遮断し、エンジン2を運転する場合、エンジン2の動力だけでプロペラシャフト11を駆動することができ、電磁石270に対して通電しかつエンジン2及び電動モータ4を運転する場合、エンジン2と電動モータ4の両方の動力でプロペラシャフト11を駆動することができる。
 このように、この船舶推進機200は、クラッチ203の入出力間で多少の回転差がある状態でも結合を行うことが可能でありながら、エンジン2と電動モータ4の一方でも両方でもプロペラシャフト11を駆動可能なものにすることができる。
 また、この船舶推進機200は、ロータ280が電磁石270の上方に配置されており、アーマチュア260がロータ280の上方に配置されており、ロータ280の上面とアーマチュア260の下面との間に離反ばね290が配置されており、電磁石270が通電によってアーマチュア260を下方に磁気吸引するものであることにより、電磁石270がアーマチュア260をロータ280に吸着する際、アーマチュア260の自重も下方への移動に寄与するので、アーマチュア260をロータ280に吸着し易くすることができる。
 また、この船舶推進機200は、外方部210と内方部220の他方が円筒面214を有し、外方部210と内方部220の一方が円筒面214と周方向にくさび空間を形成するカム面221を有し、係合子230が円筒面214とカム面221との間に配置されたローラからなることにより、外方部210と内方部220間の回転差が大きい状態でクラッチ203の結合が行われるとき、係合子230が円筒面214とカム面221に係合するまでの間、係合子230が円筒面214に擦られて自転することで円筒面214とカム面221を滑り、回転が徐々に伝達される半係合状態を経るので、衝撃を抑えるのに有利である。
 また、この船舶推進機200は、クラッチ203が外方部210に固定された非磁性材製のロータガイド281を有し、ロータ280がロータガイド281に固定されることによって外方部210と非接触の状態に配置されていることにより、外方部210とロータ280をロータガイド281を介して回り止めしつつ、電磁石270の磁界がロータ280から外方部210に漏洩することを抑えることができる。また、この船舶推進機200は、外方部210とロータ280が分離した状態でアーマチュア260等をロータ280と外方部210との間に配置することができるため、クラッチ203の組み立てを容易にすることができる。
 また、この船舶推進機200は、ハイブリッド伝達経路が第二軸202と平行に配置された主動ギヤ331と、第二軸202と一体に回転する従動ギヤ332とを有することにより、ハイブリッド伝達経路と第二軸202を簡素な歯車伝達機構で合流させることができる。
 この発明の第四実施形態を図8、図12に基づいて説明する。なお、以下では、第三実施形態との相違点を述べるに留める。
 第四実施形態に係る船舶推進機のハイブリッド伝達経路は、電動モータ4と第二軸202との間で回転の伝達と遮断を行う他のクラッチ333を有する。
 他のクラッチ333は、電磁クラッチになっている。他のクラッチ333に通電するための配線L9(図8において図示省略)は、ECU3に接続されている。ECU3は、他のクラッチ333に対する通電も制御する。ECU3が他のクラッチ333に通電することで他のクラッチ333が結合すると、電動モータ4と第二軸202間での回転の伝達が行われる。
 他のクラッチ333は、クラッチ容量を抑えるため、電動モータ4と減速機330との間に配置されている。
 エンジン2の動力のみでプロペラシャフト11が回転させられ、電動モータ4への電源供給が行われておらず、かつクラッチ203が結合された状態では、プロペラシャフト11の回転力が第二軸202からハイブリッド伝達経路を経て電動モータ4に逆入力されるので、常に電動モータ4が回転させられ、これにより、電動モータ4で回生された電気エネルギをバッテリ(図示省略)に充電することができる。
 一方、バッテリを充電する必要がない場合、電動モータ4による回生は、エンジン2の動力で回転させられるプロペラシャフト11にとって連れ回り抵抗となり、エンジン2の燃費悪化に繋がるため、このような場合、ECU3が他のクラッチ333への通電を遮断することにより、電動モータ4とプロペラシャフト11間での回転伝達を遮断すれば、電動モータ4の連れ回りを避けて燃費向上を図ることができる。
 このように、第四実施形態に係るハイブリッド伝達経路は、電動モータ4と第二軸202との間で回転の伝達と遮断を行う他のクラッチ333を有することにより、エンジン2の動力のみをプロペラシャフト11に伝達させる場合に他のクラッチ333で第二軸202と電動モータ4間の回転伝達を遮断して、エンジン2の燃費を良くすることができる。
 この発明の第五実施形態を図13に基づいて説明する。
 第五実施形態に係る船舶推進機は、クラッチ203及び電動モータ4を収容可能な一体のケーシング340をさらに備える。ケーシング340は、電動モータ4を挿入するモータ収容部341と、クラッチ203を挿入する収容筒部342とを一体に有する。モータ収容部341は、下方に向かって開放し、上方側を閉じた筒状になっている。収容筒部342は、第三実施形態の収容筒部と同等の収容機能を有する。モータ収容部341の内周は、挿入された電動モータ4の回転軸を第一軸201、第二軸202の回転軸線と所定の平行度に保つ。ギヤケース部343は、モータ収容部341の下方側と収容筒部342とに嵌合されている。
 第五実施形態に係る船舶推進機は、クラッチ203と電動モータ4を同一のケーシング340で位置決めすることができ、ハイブリッド伝達経路と第二軸202の合流部(図示例において主動ギヤ331と従動ギヤ332)を精度よく組み合わせることが容易である。
 上述の各実施形態では、外方部と内方部の一方として内方部を選択し、他方として外方部を選択したため、内方部30、220にカム面31、221を形成し、円筒面21、214を外方部20、210に形成した例を示したが、これとは逆に外方部を一方とし、内方部を他方として、円筒面を内方部に形成し、カム面を外方部の内周部に形成することも可能であり、この場合、中立ばね、保持器を外方部に嵌合し、ロータを内方部に回り止めすればよい。
 また、カム面31、221と円筒面21、214とで形成するくさび空間として周方向両側で狭くなる空間を採用して、第一、第二クラッチ17、18、クラッチ203を正転方向と逆転方向のいずれにも結合可能なものとした例を示したが、第一クラッチ、第二クラッチ、クラッチは、正転方向と逆転方向のうち、対応の少なくとも一方向に結合可能なものであればよく、例えば、くさび空間を周方向片側だけで狭くすることで一方向クラッチに変更することが可能である。
 また、係合子としてスプラグを採用することも可能であり、この場合、外方部の内周及び内方部の外周間に円環空間を形成し、保持器の相対回転によりスプラグの傾動位置を制御するようにしてもよい。
 また、上述の第三~第五実施形態では、エンジン2の動力によって船体7を後進させる機能をもたない船舶推進機を例示したが、エンジン2の動力によって船体7を前後進させる機能を付加する変更も可能である。このような前後進対応の出力経路部は、シフタークラッチを利用した一般的なものであり、例えば、前進ギヤと、前進ギヤとプロペラシャフトの回転軸線方向に向き合う後進ギヤとをピニオンギヤ204に噛み合せ、ピニオンギヤ204の回転で前進ギヤと後進ギヤを相反する方向に回転させ、その前進ギヤと後進ギヤの一方をドグクラッチ(シフタークラッチ)で選択的にプロペラシャフトに結合することができるように構成すればよい。この変更例の場合、クラッチ203で第一軸201と第二軸202間の回転伝達を遮断すれば、エンジンの動力が前進ギヤと後進ギヤに伝達されず、これらギヤとプロペラシャフトの回転を早期に同期させて、ドグクラッチによるギヤイン時の衝撃を低減することができ、また、その衝撃がクラッチ203で遮断されて第一軸201に伝達せず、船舶推進機の振動と主動力伝達系の損傷を防止するのに有利となる。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1、200 船舶推進機
2 エンジン
4 電動モータ
5 プロペラ
11 プロペラシャフト
12 ハウジング
12a 隔壁
14、204 ピニオンギヤ
15 前進ギヤ
16 後進ギヤ
17 第一クラッチ
18 第二クラッチ
20、210 外方部
21、214 円筒面
30、220 内方部
31、221 カム面
40、230 係合子
50、240 保持器
60、250 中立ばね
70、260 アーマチュア
80、270 電磁石
90、280 ロータ
91、281 ロータガイド
100、290 離反ばね
120 第三クラッチ
201 第一軸
202 第二軸
203 クラッチ
205 出力経路部
300、340 ケーシング
331 主動ギヤ
332 従動ギヤ
333 他のクラッチ

Claims (13)

  1.  プロペラと一体に回転するプロペラシャフトと、エンジンと、電動モータと、前記エンジンの動力を伝達するピニオンギヤと、前記ピニオンギヤと噛み合う前進ギヤと、前記ピニオンギヤと噛み合う後進ギヤと、前記前進ギヤと前記プロペラシャフトとの間で回転の伝達と遮断を行う第一クラッチと、前記後進ギヤと前記プロペラシャフトとの間で回転の伝達と遮断を行う第二クラッチと、前記電動モータの動力を前記第一クラッチ及び前記第二クラッチから独立した経路で前記プロペラシャフトに伝達するハイブリッド伝達経路と、を備え、
     前記第一クラッチ及び前記第二クラッチは、それぞれ対応の前記前進ギヤ又は前記後進ギヤと一体に回転する外方部と、前記外方部の内側で前記プロペラシャフトと一体に回転する内方部と、前記外方部と前記内方部との間に配置された係合子と、前記係合子を保持する保持器と、前記外方部と前記内方部の一方に対する前記保持器の相対回転によって弾性変形させられる中立ばねと、前記保持器に対して回り止めされたアーマチュアと、前記アーマチュアに対向する電磁石と、前記外方部と前記内方部の前記一方と反対の他方に対して回り止めされた状態で前記アーマチュアに対向するロータと、前記アーマチュアを前記ロータから離反する方向に押圧する離反ばねと、を有し、
     前記係合子は、前記保持器の相対回転によって前記外方部及び前記内方部に係合する係合位置と、当該係合を解除する中立位置との間を移動させられるように配置されており、
     前記アーマチュアは、前記電磁石に対する通電によって前記ロータに磁気吸着させられる可動部材からなる船舶推進機。
  2.  前記ハイブリッド伝達経路は、前記電動モータと前記プロペラシャフトとの間で回転の伝達と遮断を行う第三クラッチを有する請求項1に記載の船舶推進機。
  3.  前記前進ギヤ及び前記後進ギヤは、前記プロペラシャフトを取り囲みかつ前記プロペラシャフトの軸線方向に向き合っており、
     前記ピニオンギヤは、前記前進ギヤと前記後進ギヤ間に位置しており、
     前記第一クラッチ及び前記第二クラッチは、前記プロペラシャフトの周囲かつ前記前進ギヤ、前記後進ギヤ及び前記ピニオンギヤの内側に形成された空間に収容されている請求項1又は2に記載の船舶推進機。
  4.  前記前進ギヤと前記後進ギヤとの間かつ前記プロペラシャフトの周囲を取り囲む位置に静止する隔壁をさらに備え、
     前記第一クラッチの電磁石と前記第二クラッチの電磁石は、前記隔壁に固定されている請求項3に記載の船舶推進機。
  5.  前記第一クラッチ及び前記第二クラッチは、それぞれ対応の前記前進ギヤ又は前記後進ギヤに固定された非磁性材製のロータガイドを有し、前記第一クラッチのロータと前記第二クラッチのロータは、それぞれ対応の前記ロータガイドに固定されることによって前記前進ギヤ又は前記後進ギヤと非接触の状態に配置されている請求項3又は4に記載の船舶推進機。
  6.  前記外方部と前記内方部の前記他方は円筒面を有し、前記外方部と前記内方部の前記一方は前記円筒面と周方向にくさび空間を形成するカム面を有し、
     前記係合子は、前記円筒面と前記カム面との間に配置されたローラからなる請求項1から5のいずれか1項に記載の船舶推進機。
  7.  プロペラと一体に回転するプロペラシャフトと、エンジンと、電動モータと、前記エンジンの動力を伝達する主伝達経路と、前記電動モータの動力を伝達するハイブリッド伝達経路とを備える船舶推進機において、
     前記主伝達経路は、前記エンジンと一体に回転する第一軸と、前記第一軸に対して下方の位置で前記第一軸と同軸に配置された第二軸と、前記第一軸と前記第二軸との間で回転の伝達と遮断を行うクラッチと、前記第二軸と一体に回転するピニオンギヤと、前記ピニオンギヤと前記プロペラシャフト間で回転を伝達する出力経路部とを有し、
     前記ハイブリッド伝達経路は、前記第二軸で前記主伝達経路に合流しており、
     前記クラッチは、前記第一軸と一体に回転する外方部と、前記外方部の内側で前記第二軸と一体に回転する内方部と、前記外方部と前記内方部との間に配置された係合子と、前記係合子を保持する保持器と、前記外方部と前記内方部の一方に対する前記保持器の相対回転によって弾性変形させられる中立ばねと、前記保持器に対して回り止めされたアーマチュアと、前記アーマチュアに対向する電磁石と、前記外方部と前記内方部の前記一方と反対の他方に対して回り止めされた状態で前記アーマチュアに対向するロータと、前記アーマチュアを前記ロータから離反する方向に押圧する離反ばねと、を有し、
     前記係合子は、前記保持器の相対回転によって前記外方部及び前記内方部に係合する係合位置と、当該係合を解除する中立位置との間を移動させられるように配置されており、
     前記アーマチュアは、前記電磁石に対する通電によって前記ロータに磁気吸着させられる可動部材からなることを特徴とする船舶推進機。
  8.  前記ハイブリッド伝達経路は、前記電動モータと前記第二軸との間で回転の伝達と遮断を行う他のクラッチを有する請求項7に記載の船舶推進機。
  9.  前記クラッチ及び前記電動モータが収容された一体のケーシングをさらに備える請求項7又は8に記載の船舶推進機。
  10.  前記ロータは、前記電磁石の上方に配置されており、前記アーマチュアは、前記ロータの上方に配置されており、前記ロータの上面と前記アーマチュアの下面との間に前記離反ばねが配置されており、前記電磁石は、通電によって前記アーマチュアを下方に磁気吸引するものである請求項7から9のいずれか1項に記載の船舶推進機。
  11.  前記外方部と前記内方部の前記他方は円筒面を有し、前記外方部と前記内方部の前記一方は前記円筒面と周方向にくさび空間を形成するカム面を有し、
     前記係合子は、前記円筒面と前記カム面との間に配置されたローラからなる請求項7から10のいずれか1項に記載の船舶推進機。
  12.  前記クラッチは、前記外方部に固定された非磁性材製のロータガイドを有し、前記ロータは、前記ロータガイドに固定されることによって前記外方部と非接触の状態に配置されている請求項7から11のいずれか1項に記載の船舶推進機。
  13.  前記ハイブリッド伝達経路は、前記第二軸と平行に配置された主動ギヤと、前記第二軸と一体に回転する従動ギヤとを有する請求項7から12のいずれか1項に記載の船舶推進機。
PCT/JP2021/046028 2020-12-18 2021-12-14 船舶推進機 WO2022131247A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020210274A JP7527191B2 (ja) 2020-12-18 2020-12-18 船舶推進機
JP2020-210274 2020-12-18
JP2020-210281 2020-12-18
JP2020210281A JP7542423B2 (ja) 2020-12-18 2020-12-18 船舶推進機

Publications (1)

Publication Number Publication Date
WO2022131247A1 true WO2022131247A1 (ja) 2022-06-23

Family

ID=82059471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046028 WO2022131247A1 (ja) 2020-12-18 2021-12-14 船舶推進機

Country Status (1)

Country Link
WO (1) WO2022131247A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311438A (ja) * 2000-04-28 2001-11-09 Ntn Corp 回転伝達装置
JP2004278654A (ja) * 2003-03-14 2004-10-07 Honda Motor Co Ltd 船外機のシフトチェンジ装置
JP2004276726A (ja) * 2003-03-14 2004-10-07 Honda Motor Co Ltd 船外機の動力伝達装置
JP2007069840A (ja) * 2005-09-09 2007-03-22 Honda Motor Co Ltd 船外機
JP2017218016A (ja) * 2016-06-07 2017-12-14 ヤマハ発動機株式会社 船舶推進機
JP2019158050A (ja) * 2018-03-15 2019-09-19 株式会社ジェイテクト 駆動力伝達装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311438A (ja) * 2000-04-28 2001-11-09 Ntn Corp 回転伝達装置
JP2004278654A (ja) * 2003-03-14 2004-10-07 Honda Motor Co Ltd 船外機のシフトチェンジ装置
JP2004276726A (ja) * 2003-03-14 2004-10-07 Honda Motor Co Ltd 船外機の動力伝達装置
JP2007069840A (ja) * 2005-09-09 2007-03-22 Honda Motor Co Ltd 船外機
JP2017218016A (ja) * 2016-06-07 2017-12-14 ヤマハ発動機株式会社 船舶推進機
JP2019158050A (ja) * 2018-03-15 2019-09-19 株式会社ジェイテクト 駆動力伝達装置

Similar Documents

Publication Publication Date Title
JP6695216B2 (ja) 船舶推進機
EP0776779B1 (en) Hybrid drive system
EP3613663B1 (en) Hybrid type vessel propulsion apparatus
CN109416112B (zh) 驱动装置
JP5921335B2 (ja) 船舶推進機
US8047885B2 (en) Boat propulsion unit
US8678153B2 (en) Twin-clutch device
US11608879B2 (en) Disconnector apparatus
WO2019176771A1 (ja) 車両駆動装置のパークロック装置及び車両駆動装置
WO2022131247A1 (ja) 船舶推進機
JP2020100271A (ja) ハイブリッド車両用駆動装置
JP2022096968A (ja) 船舶推進機
US11396913B2 (en) Two-speed transmission for electric driving vehicle
JP2022096971A (ja) 船舶推進機
JP2011058534A (ja) 車両用モータ駆動装置および自動車
JP2015140133A (ja) 車両駆動システム
JP5109490B2 (ja) 車両の駆動装置
US11085533B2 (en) Vehicle power unit
JP6487887B2 (ja) 動力伝達装置
JPH0464747A (ja) 差動制限装置
JP2006189149A (ja) デファレンシャル装置
JP2020100263A (ja) ハイブリッド車両用駆動装置
WO2024195403A1 (ja) モータ駆動装置
US20180142774A1 (en) Transmission
CN211175322U (zh) 一种单双向变挡机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906609

Country of ref document: EP

Kind code of ref document: A1