WO2022131084A1 - 炭化珪素半導体装置 - Google Patents

炭化珪素半導体装置 Download PDF

Info

Publication number
WO2022131084A1
WO2022131084A1 PCT/JP2021/044984 JP2021044984W WO2022131084A1 WO 2022131084 A1 WO2022131084 A1 WO 2022131084A1 JP 2021044984 W JP2021044984 W JP 2021044984W WO 2022131084 A1 WO2022131084 A1 WO 2022131084A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
silicon carbide
main surface
gate trench
contact
Prior art date
Application number
PCT/JP2021/044984
Other languages
English (en)
French (fr)
Inventor
雄 斎藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022569898A priority Critical patent/JPWO2022131084A1/ja
Publication of WO2022131084A1 publication Critical patent/WO2022131084A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • This disclosure relates to silicon carbide semiconductor devices.
  • a trench gate type MOSFET Metal Oxide Semiconductor
  • FieldEffectTransistor FieldEffectTransistor
  • the silicon carbide semiconductor device of the present disclosure includes a silicon carbide substrate having a first main surface and a second main surface opposite to the first main surface, and the silicon carbide substrate has a drift having a first conductive type.
  • It has a source region having a source region and a contact region provided on the body region and having the second conductive type, and the first main surface penetrates the source region and the body region.
  • a gate trench defined by a side surface leading to the drift region and a bottom surface connected to the side surface and extending in a first direction parallel to the first main surface is provided, and a source connected to the source region and the contact region is provided.
  • the gate trench is surrounded by the source region and the source region is adjacent in a second direction perpendicular to the first direction when further having electrodes and viewed in a plan view from a direction perpendicular to the first main surface. It has a portion sandwiched between the mating gate trench and the contact area.
  • FIG. 1 is a diagram showing a configuration of an interlayer insulating film and a first main surface in the silicon carbide semiconductor device according to the embodiment.
  • FIG. 2 is a diagram showing a configuration of a first main surface in the silicon carbide semiconductor device according to the embodiment.
  • FIG. 3 is a cross-sectional view (No. 1) showing the configuration of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 4 is a cross-sectional view (No. 2) showing the configuration of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 5 is a cross-sectional view (No. 3) showing the configuration of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 6 is a cross-sectional view (No. 4) showing the configuration of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 1 is a diagram showing a configuration of an interlayer insulating film and a first main surface in the silicon carbide semiconductor device according to the embodiment.
  • FIG. 2 is a diagram showing a configuration of a first
  • FIG. 7 is a cross-sectional view (No. 5) showing the configuration of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 8 is a cross-sectional view (No. 1) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 9 is a cross-sectional view (No. 2) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 10 is a cross-sectional view (No. 3) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 11 is a cross-sectional view (No. 4) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 12 is a cross-sectional view (No. 5) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 13 is a cross-sectional view (No. 6) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 14 is a cross-sectional view (No. 7) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 15 is a cross-sectional view (No. 8) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 16 is a cross-sectional view (No. 9) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 17 is a cross-sectional view (No. 10) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 18 is a cross-sectional view (No.
  • FIG. 11 showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 19 is a cross-sectional view (No. 12) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 20 is a cross-sectional view (No. 13) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 21 is a cross-sectional view (No. 14) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 22 is a cross-sectional view (No. 15) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 23 is a cross-sectional view (No. 16) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 24 is a cross-sectional view (No. 17) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 25 is a cross-sectional view (No. 18) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 26 is a cross-sectional view (No. 19) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 27 is a cross-sectional view (No. 20) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 28 is a cross-sectional view (No. 21) showing a method of manufacturing the silicon carbide semiconductor device according to the embodiment.
  • FIG. 29 is a diagram showing an example of a short-circuit current path.
  • FIG. 30 is a cross-sectional view showing the configuration of the silicon carbide semiconductor device according to the modified example of the embodiment.
  • the object of the present disclosure is to provide a silicon carbide semiconductor device capable of improving the short circuit tolerance.
  • the silicon carbide semiconductor device includes a silicon carbide substrate having a first main surface and a second main surface opposite to the first main surface, and the silicon carbide substrate is a method.
  • a drift region having a first conductive type, a body region provided on the drift region and having a second conductive type different from the first conductive type, and a body region provided on the body region so as to be separated from the drift region. It also has a source region having the first conductive type and a contact region provided on the body region and having the second conductive type, and the source region and the said are on the first main surface.
  • a gate trench defined by a side surface that penetrates the body region and reaches the drift region and a bottom surface that is continuous with the side surface and extends in a first direction parallel to the first main surface is provided, and the source region and the said Further having a source electrode connected to a contact region, the gate trench is surrounded by the source region and the source region is directed in the first direction when viewed in plan from a direction perpendicular to the first principal plane. It has a portion sandwiched between the gate trench and the contact area adjacent to each other in a vertical second direction.
  • the source region has a portion sandwiched by the gate trenches adjacent to each other in the second direction, and the gate trench and the gate trench of the source region in a cross section perpendicular to the first direction.
  • the length of the portion sandwiched by the contact region in the second direction may be shorter than the length of the portion sandwiched by the adjacent gate trenches in the second direction. In this case, it is easy to improve the short-circuit tolerance due to the narrowed portion.
  • the contact region may be provided on only one side of the gate trench in the second direction. In this case, it is easy to secure the on-current flowing through the portion of the source region in contact with the source electrode and to improve the short-circuit tolerance due to the narrowed portion.
  • the silicon carbide substrate is provided between the bottom surface of the gate trench and the second main surface, extends in the first direction, and forms the second conductive type. It has an electric field relaxation region, the contact region and the electric field relaxation region are electrically connected, and has a connection region having the second conductive type, and is viewed in a plan view from a direction perpendicular to the first main surface.
  • the gate trench and the electric field relaxation region may be on a virtual straight line extending in the first direction, and the connection region may be in contact with the electric field relaxation region on the virtual straight line.
  • carriers can be supplied from the source electrode to the electric field relaxation region, and the feedback capacitance can be reduced. By reducing the feedback capacitance, the switching loss can be reduced and the switching speed can be improved.
  • the electric field relaxation region may be separated from the bottom surface of the gate trench. In this case, the on-resistance decreases and the on-current tends to flow.
  • the lower end of the gate trench may be inside the electric field relaxation region when viewed in a plan view from a direction perpendicular to the first main surface. In this case, it is easy to relax the electric field concentration at the lower end of the gate trench.
  • the upper end of the gate trench may be inside the electric field relaxation region when viewed in a plan view from a direction perpendicular to the first main surface. In this case, it is easier to further relax the electric field concentration at the lower end of the gate trench.
  • a plurality of the gate trenches are provided so as to overlap the virtual straight line at regular intervals, and the connection region is viewed in a plan view from a direction perpendicular to the first main surface. At that time, it may be provided between the gate trenches adjacent to each other in the first direction.
  • the carrier can be easily supplied from the source electrode to the electric field relaxation region, the switching loss can be reduced, and the switching speed can be improved by reducing the feedback capacitance.
  • the distance between the gate trenches adjacent to each other in the first direction may be 0.20 times or more and 0.40 times or less the dimension of the gate trench in the first direction. .. In this case, it is easy to secure the on-current and improve the short-circuit withstand capability at the same time.
  • the side surface of the gate trench may include a ⁇ 0-33-8 ⁇ surface. In this case, good mobility can be obtained on the side surface of the gate trench, and channel resistance can be reduced.
  • FIG. 1 is a diagram showing a configuration of an interlayer insulating film and a first main surface in the silicon carbide semiconductor device according to the embodiment.
  • FIG. 2 is a diagram showing a configuration of a first main surface in the silicon carbide semiconductor device according to the embodiment.
  • 3 to 7 are cross-sectional views showing the configuration of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 3 corresponds to a cross-sectional view taken along line III-III in FIGS. 1 and 2.
  • FIG. 4 corresponds to a cross-sectional view taken along the line IV-IV in FIGS. 1 and 2.
  • FIG. 1 is a diagram showing a configuration of an interlayer insulating film and a first main surface in the silicon carbide semiconductor device according to the embodiment.
  • FIG. 2 is a diagram showing a configuration of a first main surface in the silicon carbide semiconductor device according to the embodiment.
  • 3 to 7 are cross-sectional views showing the configuration of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 3 corresponds
  • FIG. 5 corresponds to a cross-sectional view taken along the VV line in FIGS. 1 and 2.
  • FIG. 6 corresponds to a cross-sectional view taken along the line VI-VI in FIGS. 1 and 2.
  • FIG. 7 corresponds to a cross-sectional view taken along the line VII-VII in FIGS. 1 and 2.
  • the MOSFET 100 includes a silicon carbide substrate 10, a gate insulating film 81, a gate electrode 82, an interlayer insulating film 83, a source electrode 60, and a drain electrode 70.
  • the barrier metal film 84 and the passivation film 85 are mainly provided.
  • the silicon carbide substrate 10 includes a silicon carbide single crystal substrate 50 and a silicon carbide epitaxial layer 40 on the silicon carbide single crystal substrate 50.
  • the silicon carbide substrate 10 has a first main surface 1 and a second main surface 2 opposite to the first main surface 1.
  • the silicon carbide epitaxial layer 40 constitutes the first main surface 1
  • the silicon carbide single crystal substrate 50 constitutes the second main surface 2.
  • the silicon carbide single crystal substrate 50 and the silicon carbide epitaxial layer 40 are made of, for example, polytype 4H hexagonal silicon carbide.
  • the silicon carbide single crystal substrate 50 contains an n-type impurity such as nitrogen (N) and has an n-type (first conductive type).
  • the first main surface 1 is a surface on which the ⁇ 0001 ⁇ surface or the ⁇ 0001 ⁇ surface is inclined by an off angle of 8 ° or less in the off direction.
  • the first main surface 1 is a surface on which the (000-1) surface or the (000-1) surface is inclined by an off angle of 8 ° or less in the off direction.
  • the off direction may be, for example, the ⁇ 11-20> direction or the ⁇ 1-100> direction.
  • the off angle may be, for example, 1 ° or more, or 2 ° or more.
  • the off angle may be 6 ° or less, or 4 ° or less.
  • the silicon carbide epitaxial layer 40 mainly has a drift region 11, a body region 12, a source region 13, an electric field relaxation region 16, a connection region 17, and a contact region 18.
  • the drift region 11 contains n-type impurities such as nitrogen or phosphorus (P) and has an n-type conductive type.
  • the drift region 11 mainly has, for example, a third region 11C, a fourth region 11D, and a fifth region 11E.
  • the body region 12 is provided on the drift region 11.
  • the body region 12 contains a p-type impurity such as aluminum (Al) and has a p-type (second conductive type) conductive type.
  • the effective concentration of p-type impurities in the body region 12 is 5 ⁇ 10 17 cm -3 or more.
  • the short-channel effect punch-through
  • the thickness of the body region 12 may be smaller than, for example, 0.7 ⁇ m.
  • the effective concentration of p-type impurities in the body region 12 is, for example, about 1 ⁇ 10 18 cm -3 .
  • the source region 13 is provided on the body region 12 so as to be separated from the drift region 11 by the body region 12.
  • the source region 13 contains n-type impurities such as nitrogen or phosphorus and has an n-type conductive type.
  • the source region 13 constitutes the first main surface 1.
  • the source region 13 mainly has, for example, a first region 13A and a second region 13B.
  • the effective concentration of the n-type impurities in the source region 13 may be higher than the effective concentration of the p-type impurities in the body region 12.
  • the effective concentration of n-type impurities in the source region 13 is, for example, about 1 ⁇ 10 19 cm -3 .
  • the contact region 18 contains a p-type impurity such as aluminum and has a p-type conductive type.
  • the contact area 18 constitutes the first main surface 1.
  • the effective concentration of the p-type impurity in the contact region 18 is higher than, for example, the effective concentration of the p-type impurity in the body region 12 and the effective concentration of the p-type impurity in the connection region 17.
  • the contact region 18 penetrates the source region 13 and touches the body region 12.
  • the effective concentration of the p-type impurity in the contact region 18 is, for example, 1 ⁇ 10 18 cm -3 or more and 1 ⁇ 10 20 cm -3 or less.
  • the first main surface 1 is provided with a gate trench 5 defined by a side surface 3 and a bottom surface 4.
  • the side surface 3 penetrates the source region 13 and the body region 12 to reach the drift region 11.
  • the bottom surface 4 is connected to the side surface 3.
  • the bottom surface 4 is located in the drift region 11.
  • the bottom surface 4 is, for example, a plane parallel to the second main surface 2.
  • the angle ⁇ 1 of the side surface 3 with respect to the plane including the bottom surface 4 is, for example, 45 ° or more and 65 ° or less.
  • the angle ⁇ 1 may be, for example, 50 ° or more.
  • the angle ⁇ 1 may be, for example, 60 ° or less.
  • the side surface 3 preferably has a ⁇ 0-33-8 ⁇ surface.
  • the ⁇ 0-33-8 ⁇ plane is a crystal plane from which excellent mobility can be obtained.
  • the gate trench 5 has a virtual straight line L1 extending in the first direction parallel to the first main surface 1 when viewed in a plan view from a direction perpendicular to the first main surface 1. Overlap.
  • the gate trench 5 is on the virtual straight line L1 when viewed in a plan view from a direction perpendicular to the first main surface 1.
  • a plurality of gate trenches 5 are provided at regular intervals on the virtual straight line L1.
  • a plurality of gate trenches 5 are provided at regular intervals in a second direction perpendicular to the first direction.
  • a plurality of gate trenches 5 may be provided, for example, in an array.
  • the electric field relaxation region 16 contains a p-type impurity such as Al and has a p-type conductive type.
  • the electric field relaxation region 16 is located between the bottom surface 4 of the gate trench 5 and the second main surface 2. That is, the electric field relaxation region 16 is separated from the bottom surface 4 of the gate trench 5. Similar to the gate trench 5, the electric field relaxation region 16 overlaps with the virtual straight line L1 when viewed in a plan view from a direction perpendicular to the first main surface 1.
  • the electric field relaxation region 16 is on the virtual straight line L1 when viewed in a plane from a direction perpendicular to the first main surface 1.
  • the electric field relaxation region 16 may be provided in common to the plurality of gate trenches 5.
  • a plurality of electric field relaxation regions 16 are provided in the second direction at regular intervals.
  • a plurality of electric field relaxation regions 16 may be provided in a striped pattern.
  • the effective concentration of p-type impurities in the electric field relaxation region 16 is, for example, 5 ⁇ 10 17 cm -3 or more and 5 ⁇ 10 18 cm -3 or less.
  • the fifth region 11E of the drift region 11 is on the second main surface 2 side of the electric field relaxation region 16.
  • the fifth region 11E is in contact with the electric field relaxation region 16.
  • the fifth region 11E is on the first main surface 1 side of the silicon carbide single crystal substrate 50.
  • the fifth region 11E may be sandwiched between the electric field relaxation region 16 and the silicon carbide single crystal substrate 50.
  • the fifth region 11E may be connected to the silicon carbide single crystal substrate 50.
  • the effective concentration of the n-type impurity in the fifth region 11E is, for example, 5 ⁇ 10 15 cm -3 or more and 5 ⁇ 10 16 cm -3 or less.
  • the fourth region 11D is on the first main surface 1 side with respect to the fifth region 11E.
  • the fourth region 11D is connected to the fifth region 11E.
  • the fourth region 11D is in contact with the electric field relaxation region 16 in a direction parallel to the second main surface 2.
  • the fourth region 11D and the electric field relaxation region 16 may be located on the same plane parallel to the second main surface 2.
  • the effective concentration of the n-type impurities in the fourth region 11D may be higher than the effective concentration of the n-type impurities in the fifth region 11E.
  • the effective concentration of the n-type impurities in the fourth region 11D is, for example, 5 ⁇ 10 16 cm -3 or more and 5 ⁇ 10 17 cm -3 or less.
  • the third region 11C is on the second main surface 2 side of the body region 12, and is on the first main surface 1 side of the electric field relaxation region 16 and the fourth region 11D.
  • the third region 11C is connected to the fourth region 11D.
  • the third region 11C is sandwiched between the body region 12, the electric field relaxation region 16 and the fourth region 11D.
  • the third region 11C is in contact with each of the body region 12, the electric field relaxation region 16, and the fourth region 11D.
  • the upper end surface of the third region 11C includes, for example, the bottom surface 4 of the gate trench 5.
  • the effective concentration of the n-type impurities in the third region 11C may be lower than the effective concentration of the n-type impurities in the fourth region 11D.
  • the effective concentration of the n-type impurity in the third region 11C is, for example, 5 ⁇ 10 15 cm -3 or more and 5 ⁇ 10 16 cm -3 or less.
  • the gate insulating film 81 is, for example, an oxide film.
  • the gate insulating film 81 is made of, for example, a material containing silicon dioxide.
  • the gate insulating film 81 is in contact with the side surface 3 and the bottom surface 4.
  • the gate insulating film 81 is in contact with the electric field relaxation region 16 on the bottom surface 4.
  • the gate insulating film 81 is in contact with each of the source region 13, the body region 12, and the drift region 11 on the side surface 3.
  • the gate insulating film 81 may be in contact with the source region 13 on the first main surface 1.
  • the gate electrode 82 is provided on the gate insulating film 81.
  • the gate electrode 82 is made of, for example, polysilicon (polySi) containing a conductive impurity.
  • the gate electrode 82 is arranged inside the gate trench 5. A part of the gate electrode 82 may be arranged on the first main surface 1.
  • the interlayer insulating film 83 is provided in contact with the gate electrode 82 and the gate insulating film 81.
  • the interlayer insulating film 83 is made of a material containing, for example, silicon dioxide.
  • the interlayer insulating film 83 electrically insulates the gate electrode 82 and the source electrode 60.
  • a part of the interlayer insulating film 83 may be provided inside the gate trench 5.
  • the interlayer insulating film 83 overlaps with the virtual straight line L1 when viewed in a plan view from a direction perpendicular to the first main surface 1.
  • the interlayer insulating film 83 may be commonly provided in the plurality of gate trenches 5.
  • contact holes 90 are formed in the interlayer insulating film 83 and the gate insulating film 81 at regular intervals in the second direction.
  • the contact hole 90 is provided so that the gate trench 5 is located between the contact holes 90 adjacent to each other in the second direction when viewed in a plan view from a direction perpendicular to the first main surface 1.
  • the contact hole 90 extends in the first direction. Through the contact hole 90, the source region 13 and the contact region 18 are exposed from the interlayer insulating film 83 and the gate insulating film 81.
  • the first region 13A of the source region 13 extends in the first direction and, like the electric field relaxation region 16 and the gate trench 5, is a plane from the direction perpendicular to the first main surface 1. It overlaps with the virtual straight line L1 when viewed.
  • the first region 13A is on the virtual straight line L1 when viewed in a plane from a direction perpendicular to the first main surface 1.
  • the first region 13A may be provided in common to the plurality of gate trenches 5.
  • a plurality of first regions 13A may be provided in the second direction at regular intervals.
  • a plurality of first regions 13A may be provided in a striped pattern.
  • the first region 13A touches the entire circumference of a plurality of gate trenches 5 arranged on the virtual straight line L1 when viewed in a plan view from a direction perpendicular to the first main surface 1, and surrounds these gate trenches 5.
  • the first region 13A is connected to the contact region 18 in the second direction.
  • the second area 13B extends in the first direction.
  • the second region 13B is provided between two virtual straight lines L1 adjacent to each other in the second direction when viewed in a plan view from a direction perpendicular to the first main surface 1.
  • the second region 13B may be provided on only one side of each gate trench 5 in the second direction.
  • the second region 13B may be provided for each pair of two gate trenches 5 adjacent to each other in the second direction.
  • a plurality of second regions 13B may be provided in a striped pattern.
  • the second region 13B may be connected to two adjacent first regions 13A in the second direction and may be sandwiched between these two first regions 13A in the second direction.
  • the contact area 18 extends in the first direction.
  • the contact region 18 is provided between two virtual straight lines L1 adjacent to each other in the second direction exclusively from the second region 13B when viewed in a plan view from a direction perpendicular to the first main surface 1. ..
  • the contact region 18 may be provided on only one side of each gate trench 5 in the second direction.
  • the contact region 18 may be provided for each pair of two gate trenches 5 adjacent to each other in the second direction.
  • a plurality of contact areas 18 may be provided in a striped pattern.
  • the contact region 18 may be connected to two adjacent first regions 13A in the second direction and may be sandwiched between these two first regions 13A in the second direction.
  • the contact region 18 and the second region 13B are exposed from the interlayer insulating film 83 through the contact hole 90.
  • a part of the first region 13A may be exposed from the interlayer insulating film 83.
  • connection region 17 contains a p-type impurity such as Al and has a p-type conductive type.
  • the connection region 17 electrically connects the contact region 18 and the electric field relaxation region 16.
  • the connection region 17 touches the electric field relaxation region 16 on the virtual straight line L1.
  • the connection region 17 is provided between the gate trenches 5 adjacent to each other in the first direction when viewed in a plan view from the direction perpendicular to the first main surface 1.
  • the connection area 17 is in contact with the body area 12 or the contact area 18.
  • the connection area 17 may be in contact with each of the body area 12 and the contact area 18.
  • the connection region 17 may be between the electric field relaxation region 16 and the contact region 18 in a direction perpendicular to the second main surface 2.
  • connection area 17 is on the second main surface 2 side with respect to the contact area 18.
  • the connection region 17 is on the first main surface 1 side of the electric field relaxation region 16.
  • the connection area 17 may extend in the second direction.
  • the effective concentration of the p-type impurities in the connection region 17 may be substantially the same as the effective concentration of the p-type impurities in the electric field relaxation region 16.
  • the effective concentration of the p-type impurity in the connection region 17 is, for example, 5 ⁇ 10 17 cm -3 or more and 5 ⁇ 10 18 cm -3 or less.
  • the gate trench aggregate is a plurality of gate trenches 5 due to a part of the source region 13 and the body region 12 and the connection region 17. It can be considered to be divided into.
  • the barrier metal film 84 covers the upper surface and the side surface of the interlayer insulating film 83 and the side surface of the gate insulating film 81.
  • the barrier metal film 84 is in contact with each of the interlayer insulating film 83 and the gate insulating film 81.
  • the barrier metal film 84 is made of a material containing, for example, titanium nitride (TiN).
  • the source electrode 60 is in contact with the first main surface 1.
  • the source electrode 60 has a contact electrode 61 and a source wiring 62.
  • the contact electrode 61 is in contact with the second region 13B of the source region 13 and the contact region 18 on the first main surface 1.
  • the contact electrode 61 may be in contact with a part of the first region 13A.
  • the contact electrode 61 is made of a material containing, for example, nickel silicide (NiSi).
  • the contact electrode 61 may be made of a material containing titanium (Ti), Al, and Si.
  • the contact electrode 61 is ohmic contacted with the source region 13 and the contact region 18.
  • the source wiring 62 covers the upper surface and the side surface of the barrier metal film 84 and the upper surface of the contact electrode 61.
  • the source wiring 62 is in contact with each of the barrier metal film 84 and the contact electrode 61.
  • the source wiring 62 is made of, for example, a material containing Al.
  • the passivation film 85 covers the upper surface of the source wiring 62.
  • the passivation film 85 is in contact with the source wiring 62.
  • the passivation film 85 is made of a material containing, for example, polyimide.
  • the drain electrode 70 is in contact with the second main surface 2.
  • the drain electrode 70 is in contact with the silicon carbide single crystal substrate 50 on the second main surface 2.
  • the drain electrode 70 is electrically connected to the drift region 11.
  • the drain electrode 70 is made of a material containing, for example, NiSi.
  • the drain electrode 70 may be made of a material containing Ti, Al, and Si.
  • the drain electrode 70 is ohmic-bonded to the silicon carbide single crystal substrate 50.
  • a buffer layer containing an n-type impurity such as nitrogen and having an n-type conductive type may be provided between the silicon carbide single crystal substrate 50 and the fifth region 11E.
  • the effective concentration of the n-type impurities in the buffer layer may be higher than the effective concentration of the n-type impurities in the fifth region 11E.
  • the effective concentration of impurities in each of the above impurity regions can be measured, for example, by measurement using a scanning capacitance microscope (SCM) or secondary ion mass spectrometry (SIMS).
  • SCM scanning capacitance microscope
  • SIMS secondary ion mass spectrometry
  • FIG. 8 to 28 are cross-sectional views showing a method of manufacturing the MOSFET 100 according to the embodiment.
  • 8 to 11 show changes common to the cross section shown in FIG. 3 and the cross section shown in FIG. 12, FIG. 14, FIG. 17, FIG. 19, FIG. 21, FIG. 21, FIG. 23, FIG. 25 and FIG. 27 show changes in the cross section shown in FIG. 13, FIG. 15, FIG. 16, FIG. 18, FIG. 20, FIG. 22, FIG. 24, FIG. 26 and FIG. 28 show changes in the cross section shown in FIG.
  • a step of preparing the silicon carbide single crystal substrate 50 is carried out.
  • a silicon carbide single crystal substrate 50 is prepared by slicing a silicon carbide ingot (not shown) manufactured by a sublimation method.
  • a buffer layer (not shown) may be formed on the silicon carbide single crystal substrate 50.
  • the buffer layer uses, for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) as a raw material gas, and for example hydrogen (H 2 ) as a carrier gas.
  • Chemical Vapor Deposition (CVD) Can be formed by the method.
  • n-type impurities such as nitrogen may be introduced into the buffer layer.
  • the first epitaxial layer 21 is formed on the silicon carbide single crystal substrate 50 by a CVD method using a mixed gas of silane and propane as a raw material gas and, for example, hydrogen as a carrier gas.
  • n-type impurities such as nitrogen are introduced into the first epitaxial layer 21.
  • the first epitaxial layer 21 has an n-type conductive type. The effective concentration of the n-type impurities in the first epitaxial layer 21 may be lower than the effective concentration of the n-type impurities in the buffer layer.
  • a step of forming the electric field relaxation region 16 is carried out.
  • a mask layer (not shown) having an opening is formed on the region where the electric field relaxation region 16 is formed.
  • p-type impurity ions that can impart p-type, such as aluminum ions, are injected into the first epitaxial layer 21. As a result, the electric field relaxation region 16 is formed.
  • a step of forming the fourth region 11D is carried out.
  • a mask layer (not shown) having an opening is formed on a region where the fourth region 11D is formed, that is, a region on the side of the electric field relaxation region 16 in a direction parallel to the second main surface 2.
  • an n-type impurity ion capable of imparting an n-type such as nitrogen is injected into the first epitaxial layer 21.
  • the fourth region 11D is formed.
  • the portion on the silicon carbide single crystal substrate 50 side from the electric field relaxation region 16 and the portion on the silicon carbide single crystal substrate 50 side from the fourth region 11D form the fifth region 11E.
  • the effective concentration of the n-type impurities in the fourth region 11D is higher than the effective concentration of the n-type impurities in the fifth region 11E.
  • a step of forming the second epitaxial layer 22 is carried out.
  • a second epitaxial layer 22 is formed on the first epitaxial layer 21 by a CVD method using a mixed gas of silane and propane as a raw material gas and, for example, hydrogen as a carrier gas.
  • n-type impurities such as nitrogen are introduced into the second epitaxial layer 22.
  • the second epitaxial layer 22 has an n-type conductive type.
  • the thickness of the second epitaxial layer 22 is, for example, 0.8 ⁇ m or more and 1.2 ⁇ m or less.
  • the effective concentration of the n-type impurities in the second epitaxial layer 22 is lower than the effective concentration of the n-type impurities in the fourth region 11D.
  • connection region 17 is formed.
  • a mask layer (not shown) having an opening is formed on the region where the connection region 17 is formed.
  • p-type impurity ions that can impart p-type, such as aluminum ions are injected onto the entire surface of the second epitaxial layer 22. As a result, the connection region 17 is formed.
  • a step of forming the body region 12 is carried out.
  • p-type impurity ions that can impart p-type such as aluminum ions are injected into the entire surface of the second epitaxial layer 22. As a result, the body region 12 is formed.
  • the step of forming the source region 13 is carried out.
  • an n-type impurity ion capable of imparting an n-type such as phosphorus is injected into the entire surface of the second epitaxial layer 22. As a result, the source region 13 is formed.
  • a step of forming the contact region 18 is carried out.
  • a mask layer (not shown) having an opening is formed on the region where the contact region 18 is formed.
  • p-type impurity ions that can impart p-type, such as aluminum ions are injected onto the entire surface of the second epitaxial layer 22. As a result, the contact region 18 is formed.
  • activation annealing is performed to activate the impurity ions injected into the silicon carbide substrate 10.
  • the temperature of the activation annealing is preferably 1500 ° C. or higher and 1900 ° C. or lower, for example, about 1700 ° C.
  • the activation annealing time is, for example, about 30 minutes.
  • the atmosphere of the activated annealing is preferably an inert gas atmosphere, for example, an Ar atmosphere.
  • a step of forming the gate trench 5 is performed.
  • a mask layer (not shown) having an opening at a position where the gate trench 5 is formed is formed on the first main surface 1 composed of the source region 13 and the contact region 18.
  • etching for example, reactive ion etching, particularly inductively coupled plasma reactive ion etching can be used.
  • inductively coupled plasma reactive ion etching using sulfur hexafluoride (SF 6 ) or a mixed gas of SF 6 and oxygen (O 2 ) can be used as the reaction gas.
  • SF 6 sulfur hexafluoride
  • O 2 oxygen
  • a recess (not shown) is formed.
  • thermal etching is performed in the recess.
  • Thermal etching can be performed, for example, by heating in an atmosphere containing a reactive gas having at least one kind of halogen atom with the mask layer formed on the first main surface 1.
  • At least one kind of halogen atom contains at least one of a chlorine (Cl) atom and a fluorine (F) atom.
  • the atmosphere comprises, for example, chlorine (Cl 2 ), boron trichloride (BCl 3 ), SF 6 or carbon tetrafluoride (CF 4 ).
  • heat etching is performed using a mixed gas of chlorine gas and oxygen gas as a reaction gas and setting the heat treatment temperature to, for example, 800 ° C. or higher and 900 ° C. or lower.
  • the reaction gas may contain a carrier gas in addition to the chlorine gas and oxygen gas described above.
  • the carrier gas for example, nitrogen gas, argon gas, helium gas, or the like can be used.
  • the gate trench 5 is formed on the first main surface 1 of the silicon carbide substrate 10 by the above thermal etching.
  • the gate trench 5 is defined by a side surface 3 and a bottom surface 4.
  • the side surface 3 is composed of a source region 13, a body region 12, and a drift region 11.
  • the bottom surface 4 is composed of a drift region 11.
  • the angle ⁇ 1 between the side surface 3 and the plane including the bottom surface 4 is, for example, 45 ° or more and 65 ° or less.
  • the mask layer is removed from the first main surface 1.
  • a step of forming the gate insulating film 81 is carried out.
  • a gate insulating film 81 in contact with the source region 13, the body region 12, the drift region 11, the electric field relaxation region 16, and the contact region 18 is formed.
  • the silicon carbide substrate 10 is heated at a temperature of, for example, 1300 ° C. or higher and 1400 ° C. or lower in an atmosphere containing oxygen.
  • the first main surface 1 and the gate insulating film 81 in contact with the side surface 3 and the bottom surface 4 are formed.
  • the gate insulating film 81 is formed by thermal oxidation, a part of the silicon carbide substrate 10 is incorporated into the gate insulating film 81. Therefore, in the subsequent treatment, it is assumed that the first main surface 1, the side surface 3 and the bottom surface 4 are slightly moved to the interface between the gate insulating film 81 after thermal oxidation and the silicon carbide substrate 10.
  • heat treatment may be performed on the silicon carbide substrate 10 in a nitric oxide (NO) gas atmosphere.
  • NO nitric oxide
  • the silicon carbide substrate 10 is held for about 1 hour under the condition of, for example, 1100 ° C. or higher and 1400 ° C. or lower.
  • nitrogen atoms are introduced into the interface region between the gate insulating film 81 and the body region 12.
  • the formation of the interface state in the interface region is suppressed, so that the channel mobility can be improved.
  • the gate electrode 82 is formed on the gate insulating film 81.
  • the gate electrode 82 is formed by, for example, a reduced pressure CVD (Low Pressure-Chemical Vapor Deposition: LP-CVD) method.
  • the gate electrode 82 is formed so as to face each of the source region 13, the body region 12, and the drift region 11.
  • the interlayer insulating film 83 is formed so as to cover the gate electrode 82 and contact the gate insulating film 81.
  • the interlayer insulating film 83 is formed by, for example, a CVD method.
  • the interlayer insulating film 83 is made of a material containing, for example, silicon dioxide. A part of the interlayer insulating film 83 may be formed inside the gate trench 5.
  • a step of forming the barrier metal film 84, the contact electrode 61, and the drain electrode 70 is performed. For example, by etching so that the contact hole 90 is formed in the interlayer insulating film 83 and the gate insulating film 81, the second region 13B and the contact region 18 of the source region 13 are formed in the contact hole 90 with the interlayer insulating film 83 and the contact region 18. It is exposed from the gate insulating film 81. Further, a part of the first region 13A may be exposed from the interlayer insulating film 83 and the gate insulating film 81.
  • the barrier metal film 84 that covers the upper surface and the side surface of the interlayer insulating film 83 and the side surface of the gate insulating film 81 is formed.
  • the barrier metal film 84 is made of a material containing, for example, TiN.
  • the barrier metal film 84 is formed by, for example, film formation by a sputtering method and reactive ion etching (RIE).
  • RIE reactive ion etching
  • a metal film (not shown) for the contact electrode 61 in contact with the portion exposed from the contact hole 90 of the source region 13 and the contact region 18 on the first main surface 1 is formed.
  • the metal film for the contact electrode 61 is formed by, for example, a sputtering method.
  • the metal film for the contact electrode 61 is made of, for example, a material containing Ni.
  • a metal film (not shown) for the drain electrode 70 in contact with the silicon carbide single crystal substrate 50 is formed on the second main surface 2.
  • the metal film for the drain electrode 70 is formed by, for example, a sputtering method.
  • the metal film for the drain electrode 70 is made of, for example, a material containing Ni.
  • the metal film for the contact electrode 61 and the metal film for the drain electrode 70 are held at a temperature of, for example, 900 ° C. or higher and 1100 ° C. or lower for about 5 minutes. As a result, at least a part of the metal film for the contact electrode 61 and at least a part of the metal film for the drain electrode 70 react with the silicon contained in the silicon carbide substrate 10 to silicide. As a result, a contact electrode 61 that ohmic-bonds the source region 13 and the contact region 18 and a drain electrode 70 that ohmic-bonds the silicon carbide single crystal substrate 50 are formed.
  • the contact electrode 61 may be made of a material containing Ti, Al, and Si.
  • the drain electrode 70 may be made of a material containing Ti, Al, and Si.
  • a step of forming the source wiring 62 is performed. Specifically, the source wiring 62 that covers the contact electrode 61 and the barrier metal film 84 is formed.
  • the source wiring 62 is formed by, for example, film formation by a sputtering method and RIE.
  • the source wiring 62 is made of a material containing, for example, aluminum. In this way, the source electrode 60 having the contact electrode 61 and the source wiring 62 is formed.
  • a step of forming the passivation film 85 is carried out. Specifically, a passivation film 85 that covers the source wiring 62 is formed.
  • the passivation film 85 is made of a material containing, for example, polyimide.
  • the passivation film 85 is formed, for example, by a coating method.
  • the passivation film 85 may be formed by a plasma CVD method.
  • FIG. 29 is a diagram showing an example of a short-circuit current path.
  • the short-circuit current 9 when a short circuit occurs, as shown in FIG. 29, a part of the short circuit current 9 goes from the second region 13B of the source region 13 to the first region 13A and goes around the gate trench 5. Detour. Then, the short-circuit current 9 reaches the portion (narrowed portion) sandwiched by the gate trench 5 and the contact region 18 in the second direction of the first region 13A, and heads toward the drift region 11 along the side surface 3 of the gate trench 5. Flows. When the short-circuit current 9 flows, heat is generated on the second main surface 2 side of the gate trench 5, and this heat raises the temperature in the vicinity of the first main surface 1. As a result, the electrical resistance of the narrowed portion increases, the short-circuit current 9 becomes difficult to flow, and the short-circuit tolerance can be improved.
  • the contact region 18 and the electric field relaxation region 16 are electrically connected by the connection region 17.
  • the contact region 18 is electrically connected to the source electrode 60. Therefore, the electric field relaxation region 16 is electrically connected to the source electrode 60. Therefore, the carrier can be supplied from the source electrode 60 to the electric field relaxation region 16, and the feedback capacitance can be reduced. By reducing the feedback capacitance, the switching loss can be reduced and the switching speed can be improved.
  • connection region 17 is provided between the gate trenches 5 adjacent to each other in the first direction when viewed in a plan view from the direction perpendicular to the first main surface 1, carriers are supplied from the source electrode to the electric field relaxation region. It's easy to do. Therefore, by reducing the feedback capacitance, the switching loss can be further reduced and the switching speed can be further improved.
  • the contact region 18 is provided on only one side of the gate trench 5 in the second direction, the on-current flowing through the portion of the source region 13 in contact with the source electrode 60 is secured, and the short-circuit tolerance due to the narrowed portion is improved. It is easy to make both.
  • the electric field relaxation region 16 is separated from the bottom surface 4 of the gate trench 5, the on-current easily flows between the source electrode 60 and the drain electrode 70.
  • the lower end of the gate trench 5 is inside the electric field relaxation region 16 when viewed in a plan view from a direction perpendicular to the first main surface 1. This is because it is easy to relax the electric field concentration at the lower end of the gate trench 5. It is more preferable that the upper end of the gate trench 5 is inside the electric field relaxation region 16 when viewed in a plan view from a direction perpendicular to the first main surface 1. This is because it is easier to relax the electric field concentration at the lower end of the gate trench 5.
  • the distance W1 between the adjacent gate trenches 5 in the first direction is preferably 0.20 times or more and 0.40 times or less the dimension W2 in the first direction of the gate trench 5. If the distance W1 is less than 0.20 times the dimension W2, it is difficult for the current to detour around the gate trench 5 at the time of a short circuit, and it may be difficult to improve the short circuit tolerance. On the other hand, if the distance W1 is more than 0.40 times the dimension W2, the channel may be insufficient and the on-resistance may increase.
  • the distance W1 is more preferably 0.22 times or more and 0.38 times or less of the dimension W2, and further preferably 0.25 times or more and 0.35 times or less.
  • FIG. 30 is a cross-sectional view showing the configuration of a MOSFET (silicon carbide semiconductor device) according to a modified example of the embodiment.
  • FIG. 30 shows a cross section similar to the cross section along lines III-III in FIGS. 1 and 2.
  • the gate trench 5 is a vertical trench. That is, the angle ⁇ 1 of the side surface 3 with respect to the plane including the bottom surface 4 may be 90 °.
  • Other configurations are the same as in the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半導体装置は、第1主面と、前記第1主面と反対側の第2主面とを有する炭化珪素基板を備え、前記炭化珪素基板は、第1導電型を有するドリフト領域と、前記ドリフト領域上に設けられ、前記第1導電型と異なる第2導電型を有するボディ領域と、前記ドリフト領域から隔てられるように前記ボディ領域上に設けられ、かつ前記第1導電型を有するソース領域と、前記ボディ領域上に設けられ、かつ前記第2導電型を有するコンタクト領域と、を有し、前記第1主面には、前記ソース領域及び前記ボディ領域を貫通して前記ドリフト領域に至る側面と、前記側面と連なる底面とにより規定され、前記第1主面に平行な第1方向に延びるゲートトレンチが設けられており、前記ソース領域及び前記コンタクト領域に接続されたソース電極をさらに有し、前記第1主面に垂直な方向から平面視したときに、前記ゲートトレンチは前記ソース領域により囲まれ、前記ソース領域は、前記第1方向に垂直な第2方向で隣り合う前記ゲートトレンチと前記コンタクト領域とにより挟まれた部分を有する。

Description

炭化珪素半導体装置
 本開示は、炭化珪素半導体装置に関する。
 本出願は、2020年12月18日出願の日本出願第2020-210100号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 炭化珪素半導体装置の一つとして、層間絶縁膜に形成されたコンタクトホールの内側に、ボディ領域に接続されるコンタクト領域がゲートトレンチに沿って断続的に配置されたトレンチゲート型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)が開示されている(たとえば、特許文献1)。
日本国特開2012-23291号公報
 本開示の炭化珪素半導体装置は、第1主面と、前記第1主面と反対側の第2主面とを有する炭化珪素基板を備え、前記炭化珪素基板は、第1導電型を有するドリフト領域と、前記ドリフト領域上に設けられ、前記第1導電型と異なる第2導電型を有するボディ領域と、前記ドリフト領域から隔てられるように前記ボディ領域上に設けられ、かつ前記第1導電型を有するソース領域と、前記ボディ領域上に設けられ、かつ前記第2導電型を有するコンタクト領域と、を有し、前記第1主面には、前記ソース領域及び前記ボディ領域を貫通して前記ドリフト領域に至る側面と、前記側面と連なる底面とにより規定され、前記第1主面に平行な第1方向に延びるゲートトレンチが設けられており、前記ソース領域及び前記コンタクト領域に接続されたソース電極をさらに有し、前記第1主面に垂直な方向から平面視したときに、前記ゲートトレンチは前記ソース領域により囲まれ、前記ソース領域は、前記第1方向に垂直な第2方向で隣り合う前記ゲートトレンチと前記コンタクト領域とにより挟まれた部分を有する。
図1は、実施形態に係る炭化珪素半導体装置における層間絶縁膜及び第1主面の構成を示す図である。 図2は、実施形態に係る炭化珪素半導体装置における第1主面の構成を示す図である。 図3は、実施形態に係る炭化珪素半導体装置の構成を示す断面図(その1)である。 図4は、実施形態に係る炭化珪素半導体装置の構成を示す断面図(その2)である。 図5は、実施形態に係る炭化珪素半導体装置の構成を示す断面図(その3)である。 図6は、実施形態に係る炭化珪素半導体装置の構成を示す断面図(その4)である。 図7は、実施形態に係る炭化珪素半導体装置の構成を示す断面図(その5)である。 図8は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その1)である。 図9は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その2)である。 図10は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その3)である。 図11は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その4)である。 図12は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その5)である。 図13は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その6)である。 図14は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その7)である。 図15は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その8)である。 図16は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その9)である。 図17は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その10)である。 図18は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その11)である。 図19は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その12)である。 図20は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その13)である。 図21は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その14)である。 図22は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その15)である。 図23は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その16)である。 図24は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その17)である。 図25は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その18)である。 図26は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その19)である。 図27は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その20)である。 図28は、実施形態に係る炭化珪素半導体装置の製造方法を示す断面図(その21)である。 図29は、短絡電流の経路の一例を示す図である。 図30は、実施形態の変形例に係る炭化珪素半導体装置の構成を示す断面図である。
 [本開示が解決しようとする課題]
 従来のコンタクト領域が断続的に配置されたMOSFETでは、十分な短絡耐量が得られない。
 本開示は、短絡耐量を向上できる炭化珪素半導体装置を提供することを目的とする。
 [本開示の効果]
 本開示によれば、短絡耐量を向上できる。
 実施するための形態について、以下に説明する。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
 〔1〕 本開示の一態様に係る炭化珪素半導体装置は、第1主面と、前記第1主面と反対側の第2主面とを有する炭化珪素基板を備え、前記炭化珪素基板は、第1導電型を有するドリフト領域と、前記ドリフト領域上に設けられ、前記第1導電型と異なる第2導電型を有するボディ領域と、前記ドリフト領域から隔てられるように前記ボディ領域上に設けられ、かつ前記第1導電型を有するソース領域と、前記ボディ領域上に設けられ、かつ前記第2導電型を有するコンタクト領域と、を有し、前記第1主面には、前記ソース領域及び前記ボディ領域を貫通して前記ドリフト領域に至る側面と、前記側面と連なる底面とにより規定され、前記第1主面に平行な第1方向に延びるゲートトレンチが設けられており、前記ソース領域及び前記コンタクト領域に接続されたソース電極をさらに有し、前記第1主面に垂直な方向から平面視したときに、前記ゲートトレンチは前記ソース領域により囲まれ、前記ソース領域は、前記第1方向に垂直な第2方向で隣り合う前記ゲートトレンチと前記コンタクト領域とにより挟まれた部分を有する。
 炭化珪素半導体装置が短絡状態になると、短絡電流の一部は平面視でゲートトレンチの周囲を迂回し、ソース領域の第2方向でゲートトレンチ及びコンタクト領域により挟まれた部分(狭窄部分)に達し、ゲートトレンチの側面に沿ってドリフト領域に向かって流れる。短絡電流が流れると、ゲートトレンチよりも第2主面側で熱が発生し、この熱により第1主面の近傍の温度が上昇する。この結果、特に狭窄部分の電気抵抗が上昇し、短絡電流が流れにくくなり、短絡耐量を向上できる。
 〔2〕 〔1〕において、前記ソース領域は、前記第2方向で隣り合う前記ゲートトレンチにより挟まれた部分を有し、前記第1方向に垂直な断面において、前記ソース領域の前記ゲートトレンチ及び前記コンタクト領域により挟まれた部分の前記第2方向の長さは、隣り合う前記ゲートトレンチにより挟まれた部分の前記第2方向の長さよりも短くてもよい。この場合、狭窄部分により短絡耐量を向上しやすい。
 〔3〕 〔1〕又は〔2〕において、前記コンタクト領域は、前記第2方向で前記ゲートトレンチの片側のみに設けられていてもよい。この場合、ソース領域のソース電極に接する部分を介して流れるオン電流の確保と、狭窄部分による短絡耐量の向上とを両立させやすい。
 〔4〕 〔1〕~〔3〕において、前記炭化珪素基板は、前記ゲートトレンチの前記底面と前記第2主面との間に設けられ、前記第1方向に延び、前記第2導電型を有する電界緩和領域と、前記コンタクト領域と前記電界緩和領域とを電気的に接続し、前記第2導電型を有する接続領域と、を有し、前記第1主面に垂直な方向から平面視したときに、前記ゲートトレンチ及び前記電界緩和領域は、前記第1方向に延びる仮想直線上にあり、前記接続領域は、前記仮想直線上で前記電界緩和領域に接していてもよい。この場合、ソース電極から電界緩和領域にキャリアを供給することができ、帰還容量を低減することができる。帰還容量の低減によりスイッチング損失を低減し、スイッチング速度を向上することができる。
 〔5〕 〔4〕において、前記電界緩和領域は、前記ゲートトレンチの前記底面から離れていてもよい。この場合、オン抵抗が低下してオン電流が流れやすい。
 〔6〕 〔4〕又は〔5〕において、前記第1主面に垂直な方向から平面視したときに、前記ゲートトレンチの下端は、前記電界緩和領域の内側にあってもよい。この場合、ゲートトレンチの下端における電界集中を緩和しやすい。
 〔7〕 〔6〕において、前記第1主面に垂直な方向から平面視したときに、前記ゲートトレンチの上端は、前記電界緩和領域の内側にあってもよい。この場合、ゲートトレンチの下端における電界集中を更に緩和しやすい。
 〔8〕 〔4〕~〔7〕において、前記ゲートトレンチが複数、一定の間隔で前記仮想直線と重なって設けられており、前記接続領域は、前記第1主面に垂直な方向から平面視したときに、前記第1方向で隣り合う前記ゲートトレンチの間に設けられていてもよい。この場合、ソース電極から電界緩和領域にキャリアを供給しやすく、帰還容量の低減によりスイッチング損失を低減し、スイッチング速度を向上することができる。
 〔9〕 〔8〕において、前記第1方向で隣り合う前記ゲートトレンチの間の距離は、前記ゲートトレンチの前記第1方向における寸法の0.20倍以上0.40倍以下であってもよい。この場合、オン電流の確保と短絡耐量の向上とを両立させやすい。
 〔10〕 〔1〕~〔9〕において、前記ゲートトレンチの前記側面は、{0-33-8}面を含んでもよい。この場合、ゲートトレンチの側面において良好な移動度が得られ、チャネル抵抗を低減することができる。
 [本開示の実施形態]
 本開示の実施形態は、いわゆる縦型のMOSFET(炭化珪素半導体装置)に関する。図1は、実施形態に係る炭化珪素半導体装置における層間絶縁膜及び第1主面の構成を示す図である。図2は、実施形態に係る炭化珪素半導体装置における第1主面の構成を示す図である。図3~図7は、実施形態に係る炭化珪素半導体装置の構成を示す断面図である。図3は、図1及び図2中のIII-III線に沿った断面図に相当する。図4は、図1及び図2中のIV-IV線に沿った断面図に相当する。図5は、図1及び図2中のV-V線に沿った断面図に相当する。図6は、図1及び図2中のVI-VI線に沿った断面図に相当する。図7は、図1及び図2中のVII-VII線に沿った断面図に相当する。
 図1~図7に示されるように、本実施形態に係るMOSFET100は、炭化珪素基板10と、ゲート絶縁膜81と、ゲート電極82と、層間絶縁膜83と、ソース電極60と、ドレイン電極70と、バリアメタル膜84と、パッシベーション膜85とを主に有している。炭化珪素基板10は、炭化珪素単結晶基板50と、炭化珪素単結晶基板50上にある炭化珪素エピタキシャル層40とを含む。炭化珪素基板10は、第1主面1と、第1主面1と反対側の第2主面2とを有する。炭化珪素エピタキシャル層40は第1主面1を構成し、炭化珪素単結晶基板50は第2主面2を構成する。炭化珪素単結晶基板50及び炭化珪素エピタキシャル層40は、例えばポリタイプ4Hの六方晶炭化珪素から構成されている。炭化珪素単結晶基板50は、例えば窒素(N)などのn型不純物を含みn型(第1導電型)を有する。
 第1主面1は、{0001}面または{0001}面がオフ方向に8°以下のオフ角だけ傾斜した面である。好ましくは、第1主面1は、(000-1)面または(000-1)面がオフ方向に8°以下のオフ角だけ傾斜した面である。オフ方向は、例えば<11-20>方向であってもよいし、<1-100>方向であってもよい。オフ角は、例えば1°以上であってもよいし、2°以上であってもよい。オフ角は、6°以下であってもよいし、4°以下であってもよい。
 炭化珪素エピタキシャル層40は、ドリフト領域11と、ボディ領域12と、ソース領域13と、電界緩和領域16と、接続領域17と、コンタクト領域18とを主に有する。
 ドリフト領域11は、例えば窒素またはリン(P)などのn型不純物を含み、n型の導電型を有する。ドリフト領域11は、例えば第3領域11Cと、第4領域11Dと、第5領域11Eとを主に有している。
 ボディ領域12はドリフト領域11上に設けられている。ボディ領域12は、例えばアルミニウム(Al)などのp型不純物を含み、p型(第2導電型)の導電型を有する。ボディ領域12におけるp型不純物の実効濃度は、5×1017cm-3以上である。短チャネル効果(パンチスルー)は、pn接合領域からチャネル領域内に空乏層が広がってチャネル領域全体が空乏層になることによって発生し得る。ボディ領域12におけるp型不純物の実効濃度を高くすることによって、チャネル領域に形成される空乏層の広がりを低減することができる。ボディ領域12の厚さは、例えば0.7μmよりも小さくてもよい。ボディ領域12のp型不純物の実効濃度は、例えば1×1018cm-3程度である。
 ソース領域13は、ボディ領域12によってドリフト領域11から隔てられるようにボディ領域12上に設けられている。ソース領域13は、例えば窒素またはリンなどのn型不純物を含んでおり、n型の導電型を有する。ソース領域13は、第1主面1を構成する。ソース領域13は、例えば第1領域13Aと、第2領域13Bとを主に有している。ソース領域13のn型不純物の実効濃度は、ボディ領域12のp型不純物の実効濃度よりも高くてもよい。ソース領域13のn型不純物の実効濃度は、例えば1×1019cm-3程度である。
 コンタクト領域18は、例えばアルミニウムなどのp型不純物を含み、p型の導電型を有する。コンタクト領域18は、第1主面1を構成する。コンタクト領域18のp型不純物の実効濃度は、例えばボディ領域12のp型不純物の実効濃度及び接続領域17のp型不純物の実効濃度よりも高い。コンタクト領域18は、ソース領域13を貫通し、ボディ領域12に接する。コンタクト領域18のp型不純物の実効濃度は、例えば1×1018cm-3以上1×1020cm-3以下である。
 第1主面1には、側面3と底面4とにより規定されるゲートトレンチ5が設けられている。側面3は、ソース領域13及びボディ領域12を貫通してドリフト領域11に至る。底面4は、側面3と連なる。底面4は、ドリフト領域11に位置する。底面4は、例えば第2主面2と平行な平面である。底面4を含む平面に対する側面3の角度θ1は、例えば45°以上65°以下である。角度θ1は、例えば50°以上であってもよい。角度θ1は、例えば60°以下であってもよい。側面3は、好ましくは、{0-33-8}面を有する。{0-33-8}面は、優れた移動度が得られる結晶面である。
 特に図1及び図2に示されるように、第1主面1に垂直な方向から平面視したときに、ゲートトレンチ5は、第1主面1と平行な第1方向に延びる仮想直線L1と重なる。第1主面1に垂直な方向から平面視したときに、ゲートトレンチ5は仮想直線L1上にある。仮想直線L1上には、複数のゲートトレンチ5が一定の間隔で設けられている。また、第1主面1に垂直な方向から平面視したときに、複数のゲートトレンチ5が、第1方向に垂直な第2方向にも一定の間隔で設けられている。複数のゲートトレンチ5が、例えばアレイ状に設けられていてもよい。
 電界緩和領域16は、例えばAlなどのp型不純物を含み、p型の導電型を有する。電界緩和領域16は、ゲートトレンチ5の底面4と第2主面2との間にある。つまり、電界緩和領域16は、ゲートトレンチ5の底面4から離れている。電界緩和領域16は、ゲートトレンチ5と同様に、第1主面1に垂直な方向から平面視したときに仮想直線L1と重なる。第1主面1に垂直な方向から平面視したときに、電界緩和領域16は仮想直線L1上にある。仮想直線L1上において、電界緩和領域16は複数のゲートトレンチ5に共通に設けられていてもよい。また、第1主面1に垂直な方向から平面視したときに、複数の電界緩和領域16が第2方向に一定の間隔で設けられている。複数の電界緩和領域16がストライプ状に設けられていてもよい。電界緩和領域16のp型不純物の実効濃度は、例えば5×1017cm-3以上5×1018cm-3以下である。
 ドリフト領域11の第5領域11Eは、電界緩和領域16よりも第2主面2側にある。第5領域11Eは、電界緩和領域16と接している。第5領域11Eは、炭化珪素単結晶基板50よりも第1主面1側にある。第5領域11Eは、電界緩和領域16と炭化珪素単結晶基板50とに挟まれていてもよい。第5領域11Eは、炭化珪素単結晶基板50に連なっていてもよい。第5領域11Eのn型不純物の実効濃度は、例えば5×1015cm-3以上5×1016cm-3以下である。
 第4領域11Dは、第5領域11Eよりも第1主面1側にある。第4領域11Dは、第5領域11Eと連なっている。第4領域11Dは、第2主面2と平行な方向において電界緩和領域16と接している。第4領域11Dと電界緩和領域16とは、第2主面2と平行な同一平面に位置していてもよい。第4領域11Dのn型不純物の実効濃度は、第5領域11Eのn型不純物の実効濃度よりも高くてもよい。第4領域11Dのn型不純物の実効濃度は、例えば5×1016cm-3以上5×1017cm-3以下である。
 第3領域11Cは、ボディ領域12よりも第2主面2側にあり、電界緩和領域16及び第4領域11Dよりも第1主面1側にある。第3領域11Cは、第4領域11Dと連なっている。第3領域11Cは、ボディ領域12と、電界緩和領域16及び第4領域11Dとに挟まれている。第3領域11Cは、ボディ領域12、電界緩和領域16及び第4領域11Dの各々と接している。第3領域11Cの上端面は、例えばゲートトレンチ5の底面4を含む。第3領域11Cのn型不純物の実効濃度は、第4領域11Dのn型不純物の実効濃度よりも低くてもよい。第3領域11Cのn型不純物の実効濃度は、例えば5×1015cm-3以上5×1016cm-3以下である。
 ゲート絶縁膜81は、例えば酸化膜である。ゲート絶縁膜81は、例えば二酸化珪素を含む材料により構成されている。ゲート絶縁膜81は、側面3及び底面4に接する。ゲート絶縁膜81は、底面4において電界緩和領域16と接する。ゲート絶縁膜81は、側面3においてソース領域13、ボディ領域12及びドリフト領域11の各々と接している。ゲート絶縁膜81は、第1主面1においてソース領域13と接していてもよい。
 ゲート電極82は、ゲート絶縁膜81上に設けられている。ゲート電極82は、例えば導電性不純物を含むポリシリコン(ポリSi)から構成されている。ゲート電極82は、ゲートトレンチ5の内部に配置されている。ゲート電極82の一部は、第1主面1上に配置されていてもよい。
 層間絶縁膜83は、ゲート電極82及びゲート絶縁膜81に接して設けられている。層間絶縁膜83は、例えば二酸化珪素を含む材料から構成されている。層間絶縁膜83は、ゲート電極82とソース電極60とを電気的に絶縁している。層間絶縁膜83の一部は、ゲートトレンチ5の内部に設けられていてもよい。
 層間絶縁膜83は、ゲートトレンチ5及び電界緩和領域16と同様に、第1主面1に垂直な方向から平面視したときに仮想直線L1と重なる。仮想直線L1上において、層間絶縁膜83は複数のゲートトレンチ5に共通に設けられていてもよい。第1主面1に垂直な方向から平面視したときに、層間絶縁膜83及びゲート絶縁膜81には、第2方向に一定の間隔でコンタクトホール90が形成されている。コンタクトホール90は、第1主面1に垂直な方向から平面視したときに、第2方向で隣り合うコンタクトホール90の間にゲートトレンチ5が位置するように設けられている。コンタクトホール90は、第1方向に延びる。コンタクトホール90を通じて、ソース領域13及びコンタクト領域18が層間絶縁膜83及びゲート絶縁膜81から露出している。
 特に図1及び図2に示されるように、ソース領域13の第1領域13Aは第1方向に延び、電界緩和領域16及びゲートトレンチ5と同様に、第1主面1に垂直な方向から平面視したときに仮想直線L1と重なる。第1主面1に垂直な方向から平面視したときに、第1領域13Aは仮想直線L1上にある。仮想直線L1上において、第1領域13Aは複数のゲートトレンチ5に共通に設けられていてもよい。また、第1主面1に垂直な方向から平面視したときに、複数の第1領域13Aが第2方向に一定の間隔で設けられていてもよい。複数の第1領域13Aがストライプ状に設けられていてもよい。第1領域13Aは、第1主面1に垂直な方向から平面視したときに、仮想直線L1上に並ぶ複数のゲートトレンチ5の全周に接し、これらゲートトレンチ5を取り囲む。第1領域13Aは、第2方向でコンタクト領域18に連なっている。
 第2領域13Bは第1方向に延びる。第2領域13Bは、第1主面1に垂直な方向から平面視したときに、第2方向で隣り合う2本の仮想直線L1の間に設けられている。第2領域13Bは、第2方向で各ゲートトレンチ5の片側のみに設けられていてもよい。第2領域13Bは、第2方向で隣り合う2つのゲートトレンチ5のペア毎に設けられていてもよい。複数の第2領域13Bがストライプ状に設けられていてもよい。第2領域13Bは、第2方向で隣り合う2つの第1領域13Aに連なり、第2方向でこれら2つの第1領域13Aに挟まれていてもよい。
 コンタクト領域18は第1方向に延びる。コンタクト領域18は、第1主面1に垂直な方向から平面視したときに、第2領域13Bとは排他的に、第2方向で隣り合う2本の仮想直線L1の間に設けられている。コンタクト領域18は、第2方向で各ゲートトレンチ5の片側のみに設けられていてもよい。コンタクト領域18は、第2方向で隣り合う2つのゲートトレンチ5のペア毎に設けられていてもよい。複数のコンタクト領域18がストライプ状に設けられていてもよい。コンタクト領域18は、第2方向で隣り合う2つの第1領域13Aに連なり、第2方向でこれら2つの第1領域13Aに挟まれていてもよい。
 特に図1及び図2に示されるように、コンタクト領域18と、第2領域13Bとがコンタクトホール90を通じて層間絶縁膜83から露出している。第1領域13Aの一部が層間絶縁膜83から露出していてもよい。
 接続領域17は、例えばAlなどのp型不純物を含み、p型の導電型を有する。接続領域17は、コンタクト領域18と電界緩和領域16とを電気的に接続する。接続領域17は、仮想直線L1上で電界緩和領域16に接する。接続領域17は、第1主面1に垂直な方向から平面視したときに、第1方向で隣り合うゲートトレンチ5の間に設けられている。接続領域17は、ボディ領域12またはコンタクト領域18に接する。接続領域17は、ボディ領域12及びコンタクト領域18の各々に接してもよい。第2主面2に垂直な方向で、接続領域17は、電界緩和領域16とコンタクト領域18との間にあってもよい。接続領域17は、コンタクト領域18よりも第2主面2側にある。接続領域17は、電界緩和領域16よりも第1主面1側にある。第2主面2に垂直な方向で、接続領域17が、コンタクト領域18と電界緩和領域16との間にあり、コンタクト領域18及び電界緩和領域16の各々に接していると、コンタクト領域18と電界緩和領域16との間の直列抵抗が低減される。接続領域17は、第2方向に延びていてもよい。接続領域17のp型不純物の実効濃度は、電界緩和領域16のp型不純物の実効濃度とほぼ同じであってもよい。接続領域17のp型不純物の実効濃度は、例えば5×1017cm-3以上5×1018cm-3以下である。
 第1方向に並ぶ複数のゲートトレンチ5を一つのゲートトレンチ集合体と仮定すれば、ゲートトレンチ集合体が、ソース領域13及びボディ領域12の一部と、接続領域17とにより複数のゲートトレンチ5に分断されているとみなすことができる。
 バリアメタル膜84は、層間絶縁膜83の上面及び側面と、ゲート絶縁膜81の側面とを覆う。バリアメタル膜84は、層間絶縁膜83及びゲート絶縁膜81の各々と接している。バリアメタル膜84は、例えば窒化チタン(TiN)を含む材料から構成されている。
 ソース電極60は、第1主面1に接する。ソース電極60は、コンタクト電極61と、ソース配線62とを有する。コンタクト電極61は、第1主面1において、ソース領域13の第2領域13Bと、コンタクト領域18とに接している。コンタクト電極61が更に第1領域13Aの一部に接していてもよい。コンタクト電極61は、例えばニッケルシリサイド(NiSi)を含む材料から構成されている。コンタクト電極61が、チタン(Ti)と、Alと、Siとを含む材料から構成されていてもよい。コンタクト電極61は、ソース領域13及びコンタクト領域18とオーミック接合している。ソース配線62は、バリアメタル膜84の上面及び側面と、コンタクト電極61の上面とを覆う。ソース配線62は、バリアメタル膜84及びコンタクト電極61の各々と接している。ソース配線62は、例えばAlを含む材料から構成されている。
 パッシベーション膜85は、ソース配線62の上面を覆う。パッシベーション膜85は、ソース配線62と接している。パッシベーション膜85は、例えばポリイミドを含む材料から構成されている。
 ドレイン電極70は、第2主面2に接する。ドレイン電極70は、第2主面2において炭化珪素単結晶基板50と接している。ドレイン電極70は、ドリフト領域11と電気的に接続されている。ドレイン電極70は、例えばNiSiを含む材料から構成されている。ドレイン電極70がTiと、Alと、Siとを含む材料から構成されていてもよい。ドレイン電極70は、炭化珪素単結晶基板50とオーミック接合している。
 炭化珪素単結晶基板50と第5領域11Eとの間に、例えば窒素などのn型不純物を含み、n型の導電型を有するバッファ層が設けられていてもよい。バッファ層のn型不純物の実効濃度は、第5領域11Eのn型不純物の実効濃度よりも高くてもよい。
 なお、上記各不純物領域における不純物の実効濃度は、例えば走査型静電容量顕微鏡(scanning capacitance microscope:SCM)を用いた測定又は二次イオン質量分析(secondary ion mass spectrometry:SIMS)等により測定できる。
 次に、実施形態に係るMOSFET100の製造方法について説明する。図8~図28は、実施形態に係るMOSFET100の製造方法を示す断面図である。図8~図11は、図3に示す断面及び図4に示す断面に共通の変化を示す。図12、図14、図17、図19、図21、図23、図25及び図27は、図4に示す断面の変化を示す。図13、図15、図16、図18、図20、図22、図24、図26及び図28は、図3に示す断面の変化を示す。
 まず、図8に示されるように、炭化珪素単結晶基板50を準備する工程が実施される。例えば昇華法によって製造された炭化珪素インゴット(図示せず)がスライスされることにより、炭化珪素単結晶基板50が準備される。炭化珪素単結晶基板50上にバッファ層(図示せず)が形成されてもよい。バッファ層は、例えば原料ガスとしてシラン(SiH)とプロパン(C)との混合ガスを用い、キャリアガスとして例えば水素(H)を用いた化学気相成長(Chemical Vapor Deposition:CVD)法により形成することができる。バッファ層のエピタキシャル成長の際に、例えば窒素などのn型不純物がバッファ層に導入されてもよい。
 次に、同じく図8に示されるように、第1エピタキシャル層21を形成する工程が実施される。例えば原料ガスとしてシランとプロパンとの混合ガスを用い、キャリアガスとして例えば水素を用いたCVD法により、炭化珪素単結晶基板50上に第1エピタキシャル層21が形成される。エピタキシャル成長の際、例えば窒素などのn型不純物が第1エピタキシャル層21に導入される。第1エピタキシャル層21は、n型の導電型を有する。第1エピタキシャル層21のn型不純物の実効濃度は、バッファ層のn型不純物の実効濃度よりも低くてもよい。
 次に、図9に示されるように、電界緩和領域16を形成する工程が実施される。例えば、電界緩和領域16が形成される領域上に開口部を有するマスク層(図示せず)が形成される。次に、例えばアルミニウムイオンなどのp型を付与可能なp型不純物イオンが第1エピタキシャル層21に注入される。これにより、電界緩和領域16が形成される。
 次に、図10に示されるように、第4領域11Dを形成する工程が実施される。例えば、第4領域11Dが形成される領域、つまり第2主面2と平行な方向において電界緩和領域16の側方の領域上に開口部を有するマスク層(図示せず)が形成される。次に、窒素などのn型を付与可能なn型不純物イオンが第1エピタキシャル層21に対して注入される。これにより、第4領域11Dが形成される。第1エピタキシャル層21のうち、電界緩和領域16より炭化珪素単結晶基板50側の部分と、第4領域11Dより炭化珪素単結晶基板50側の部分とが第5領域11Eとなる。第4領域11Dのn型不純物の実効濃度は、第5領域11Eのn型不純物の実効濃度よりも高くなる。
 次に、図11に示されるように、第2エピタキシャル層22を形成する工程が実施される。例えば原料ガスとしてシランとプロパンとの混合ガスを用い、キャリアガスとして例えば水素を用いたCVD法により、第1エピタキシャル層21上に第2エピタキシャル層22が形成される。エピタキシャル成長の際、例えば窒素などのn型不純物が第2エピタキシャル層22に導入される。第2エピタキシャル層22は、n型の導電型を有する。第2エピタキシャル層22の厚さは、例えば0.8μm以上1.2μm以下である。例えば、第2エピタキシャル層22のn型不純物の実効濃度は、第4領域11Dのn型不純物の実効濃度よりも低くする。
 次に、図12及び図13に示されるように、接続領域17を形成する工程が実施される。例えば、接続領域17が形成される領域上に開口部を有するマスク層(図示せず)が形成される。次に、例えばアルミニウムイオンなどのp型を付与可能なp型不純物イオンが第2エピタキシャル層22の表面全体に対して注入される。これにより、接続領域17が形成される。
 次に、同じく図12及び図13に示されるように、ボディ領域12を形成する工程が実施される。例えばアルミニウムイオンなどのp型を付与可能なp型不純物イオンが第2エピタキシャル層22の表面全体に対して注入される。これにより、ボディ領域12が形成される。
 次に、同じく図12及び図13に示されるように、ソース領域13を形成する工程が実施される。例えば、リンなどのn型を付与可能なn型不純物イオンが第2エピタキシャル層22の表面全体に対して注入される。これにより、ソース領域13が形成される。
 次に、図14及び図15に示されるように、コンタクト領域18を形成する工程が実施される。例えば、コンタクト領域18が形成される領域上に開口部を有するマスク層(図示せず)が形成される。次に、例えばアルミニウムイオンなどのp型を付与可能なp型不純物イオンが第2エピタキシャル層22の表面全体に対して注入される。これにより、コンタクト領域18が形成される。
 次に、炭化珪素基板10に注入された不純物イオンを活性化するために活性化アニールが実施される。活性化アニールの温度は、好ましくは1500℃以上1900℃以下であり、例えば1700℃程度である。活性化アニールの時間は、例えば30分程度である。活性化アニールの雰囲気は、好ましくは不活性ガス雰囲気であり、例えばAr雰囲気である。
 次に、図16に示されるように、ゲートトレンチ5を形成する工程が実施される。例えば、ソース領域13及びコンタクト領域18から構成される第1主面1上に、ゲートトレンチ5が形成される位置上に開口を有するマスク層(図示せず)が形成される。マスク層を用いて、ソース領域13の一部と、ボディ領域12の一部と、ドリフト領域11の一部とがエッチングにより除去される。エッチングの方法としては、例えば反応性イオンエッチング、特に誘導結合プラズマ反応性イオンエッチングを用いることができる。具体的には、例えば反応ガスとして六フッ化硫黄(SF)またはSFと酸素(O)との混合ガスを用いた誘導結合プラズマ反応性イオンエッチングを用いることができる。エッチングにより、ゲートトレンチ5が形成されるべき領域に、第1主面1に対してほぼ垂直な側部と、側部と連続的に設けられ、かつ第1主面1とほぼ平行な底部とを有する凹部(図示せず)が形成される。
 次に、凹部において熱エッチングが行われる。熱エッチングは、第1主面1上にマスク層が形成された状態で、例えば、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中での加熱によって行い得る。少なくとも1種類以上のハロゲン原子は、塩素(Cl)原子及びフッ素(F)原子の少なくともいずれかを含む。当該雰囲気は、例えば、塩素(Cl)、三塩化ホウ素(BCl)、SFまたは四フッ化炭素(CF)を含む。例えば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、例えば800℃以上900℃以下として、熱エッチングが行われる。なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、例えば窒素ガス、アルゴンガスまたはヘリウムガスなどを用いることができる。
 上記熱エッチングにより、炭化珪素基板10の第1主面1にゲートトレンチ5が形成される。ゲートトレンチ5は、側面3と、底面4とにより規定される。側面3は、ソース領域13と、ボディ領域12と、ドリフト領域11とにより構成される。底面4は、ドリフト領域11により構成される。側面3と、底面4を含む平面との間の角度θ1は、例えば45°以上65°以下である。次に、マスク層が第1主面1から除去される。
 次に、図17及び図18に示されるように、ゲート絶縁膜81を形成する工程が実施される。例えば炭化珪素基板10を熱酸化することにより、ソース領域13と、ボディ領域12と、ドリフト領域11と、電界緩和領域16と、コンタクト領域18とに接するゲート絶縁膜81が形成される。具体的には、炭化珪素基板10が、酸素を含む雰囲気中において、例えば1300℃以上1400℃以下の温度で加熱される。これにより、第1主面1と、側面3及び底面4に接するゲート絶縁膜81が形成される。なお、ゲート絶縁膜81が熱酸化により形成された場合、厳密には、炭化珪素基板10の一部がゲート絶縁膜81に取り込まれる。このため、以降の処理では、熱酸化後のゲート絶縁膜81と炭化珪素基板10との間の界面に第1主面1、側面3及び底面4が若干移動したものとする。
 次に、一酸化窒素(NO)ガス雰囲気中において炭化珪素基板10に対して熱処理(NOアニール)が行われてもよい。NOアニールにおいて、炭化珪素基板10が、例えば1100℃以上1400℃以下の条件下で1時間程度保持される。これにより、ゲート絶縁膜81とボディ領域12との界面領域に窒素原子が導入される。その結果、界面領域における界面準位の形成が抑制されることで、チャネル移動度を向上させることができる。
 次に、図19及び図20に示されるように、ゲート電極82を形成する工程が実施される。ゲート電極82は、ゲート絶縁膜81上に形成される。ゲート電極82は、例えば減圧CVD(Low Pressure - Chemical Vapor Deposition:LP-CVD)法により形成される。ゲート電極82は、ソース領域13と、ボディ領域12と、ドリフト領域11との各々に対面するように形成される。
 次に、図21及び図22に示されるように、層間絶縁膜83を形成する工程が実施される。具体的には、ゲート電極82を覆い、かつゲート絶縁膜81と接するように層間絶縁膜83が形成される。層間絶縁膜83は、例えば、CVD法により形成される。層間絶縁膜83は、例えば二酸化珪素を含む材料から構成される。層間絶縁膜83の一部は、ゲートトレンチ5の内部に形成されてもよい。
 次に、図23及び図24に示されるように、バリアメタル膜84、コンタクト電極61及びドレイン電極70を形成する工程が実施される。例えば、層間絶縁膜83及びゲート絶縁膜81にコンタクトホール90が形成されるようにエッチングが行われることにより、コンタクトホール90にソース領域13の第2領域13B及びコンタクト領域18が層間絶縁膜83及びゲート絶縁膜81から露出する。更に第1領域13Aの一部が層間絶縁膜83及びゲート絶縁膜81から露出してもよい。次に、層間絶縁膜83の上面及び側面と、ゲート絶縁膜81の側面とを覆うバリアメタル膜84が形成される。バリアメタル膜84は、例えばTiNを含む材料から構成される。バリアメタル膜84は、例えばスパッタリング法による成膜及び反応性イオンエッチング(Reactive Ion Etching:RIE)により形成される。次に、第1主面1においてソース領域13及びコンタクト領域18のコンタクトホール90から露出している部分に接するコンタクト電極61用の金属膜(図示せず)が形成される。コンタクト電極61用の金属膜は、例えばスパッタリング法により形成される。コンタクト電極61用の金属膜は、例えばNiを含む材料から構成される。次に、第2主面2において炭化珪素単結晶基板50に接するドレイン電極70用の金属膜(図示せず)が形成される。ドレイン電極70用の金属膜は、例えばスパッタリング法により形成される。ドレイン電極70用の金属膜は、例えばNiを含む材料から構成される。
 次に、合金化アニールが実施される。コンタクト電極61用の金属膜及びドレイン電極70用の金属膜が、例えば900℃以上1100℃以下の温度で5分程度保持される。これにより、コンタクト電極61用の金属膜の少なくとも一部及びドレイン電極70用の金属膜の少なくとも一部が、炭化珪素基板10が含む珪素と反応してシリサイド化する。これにより、ソース領域13及びコンタクト領域18とオーミック接合するコンタクト電極61と、炭化珪素単結晶基板50とオーミック接合するドレイン電極70とが形成される。コンタクト電極61が、Tiと、Alと、Siとを含む材料から構成されてもよい。ドレイン電極70が、Tiと、Alと、Siとを含む材料から構成されてもよい。
 次に、図25及び図26に示されるように、ソース配線62を形成する工程が実施される。具体的には、コンタクト電極61及びバリアメタル膜84を覆うソース配線62が形成される。ソース配線62は、例えばスパッタリング法による成膜及びRIEにより形成される。ソース配線62は、例えばアルミニウムを含む材料から構成される。このようにして、コンタクト電極61とソース配線62とを有するソース電極60が形成される。
 次に、図27及び図28に示されるように、パッシベーション膜85を形成する工程が実施される。具体的には、ソース配線62を覆うパッシベーション膜85が形成される。パッシベーション膜85は、例えばポリイミドを含む材料から構成される。パッシベーション膜85は、例えば塗布法により形成される。パッシベーション膜85をプラズマCVD法により形成してもよい。
 このようにして、実施形態に係るMOSFET100が完成する。
 次に、本実施形態に係るMOSFETの作用効果について説明する。図29は、短絡電流の経路の一例を示す図である。
 本実施形態に係るMOSFET100では、短絡状態になると、図29に示すように、短絡電流9の一部は、ソース領域13の第2領域13Bから第1領域13Aに向かい、ゲートトレンチ5の周囲を迂回する。そして、この短絡電流9は、第1領域13Aの第2方向でゲートトレンチ5及びコンタクト領域18により挟まれた部分(狭窄部分)に達し、ゲートトレンチ5の側面3に沿ってドリフト領域11に向かって流れる。短絡電流9が流れると、ゲートトレンチ5よりも第2主面2側で熱が発生し、この熱により第1主面1の近傍の温度が上昇する。この結果、特に狭窄部分の電気抵抗が上昇し、短絡電流9が流れにくくなり、短絡耐量を向上できる。
 本実施形態では、コンタクト領域18と電界緩和領域16とが接続領域17により電気的に接続される。コンタクト領域18はソース電極60に電気的に接続される。従って、電界緩和領域16はソース電極60に電気的に接続される。このため、ソース電極60から電界緩和領域16にキャリアを供給することができ、帰還容量を低減することができる。帰還容量の低減によりスイッチング損失を低減し、スイッチング速度を向上することができる。
 また、接続領域17が第1主面1に垂直な方向から平面視したときに第1方向で隣り合うゲートトレンチ5の間に設けられていることで、ソース電極から電界緩和領域にキャリアを供給しやすい。従って、帰還容量の低減によりスイッチング損失をより低減し、スイッチング速度をより向上することができる。
 コンタクト領域18が第2方向でゲートトレンチ5の片側のみに設けられていることで、ソース領域13のソース電極60に接する部分を介して流れるオン電流の確保と、狭窄部分による短絡耐量の向上とを両立させやすい。
 電界緩和領域16がゲートトレンチ5の底面4から離れていることで、オン電流がソース電極60とドレイン電極70との間を流れやすい。
 第1主面1に垂直な方向から平面視したときに、ゲートトレンチ5の下端は、電界緩和領域16の内側にあることが好ましい。ゲートトレンチ5の下端における電界集中を緩和しやすいためである。第1主面1に垂直な方向から平面視したときに、ゲートトレンチ5の上端は、電界緩和領域16の内側にあることがより好ましい。ゲートトレンチ5の下端における電界集中をより緩和しやすいためである。
 第1方向で隣り合うゲートトレンチ5の間の距離W1は、ゲートトレンチ5の第1方向における寸法W2の0.20倍以上0.40倍以下であることが好ましい。距離W1が寸法W2の0.20倍未満であると、短絡時にゲートトレンチ5の周囲を電流が迂回しにくく、短絡耐量を向上しにくくなるおそれがある。一方、距離W1が寸法W2の0.40倍超であると、チャネルが不足し、オン抵抗が高くなるおそれがある。距離W1は寸法W2の0.22倍以上0.38倍以下であることがより好ましく、0.25倍以上0.35倍以下であることが更に好ましい。
 [変形例]
 次に、実施形態の変形例について説明する。変形例は、主にゲートトレンチの形状の点で実施形態と相違する。図30は、実施形態の変形例に係るMOSFET(炭化珪素半導体装置)の構成を示す断面図である。図30は、図1及び図2中のIII-III線に沿った断面と同様の断面を示す。
 図30に示されるように、変形例に係るMOSFET110では、ゲートトレンチ5が垂直トレンチである。つまり、底面4を含む平面に対する側面3の角度θ1は、90°であってもよい。他の構成は実施形態と同様である。
 このような変形例によっても実施形態と同様の効果を得ることができる。
 
 以上、実施形態について詳述したが、特定の実施形態に限定されるものではなく、請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
 1 第1主面
 2 第2主面
 3 側面
 4 底面
 5 ゲートトレンチ
 9 短絡電流
 10 炭化珪素基板
 11 ドリフト領域
 11C 第3領域
 11D 第4領域
 11E 第5領域
 12 ボディ領域
 13 ソース領域
 13A 第1領域
 13B 第2領域
 16 電界緩和領域
 17 接続領域
 18 コンタクト領域
 21 第1エピタキシャル層
 22 第2エピタキシャル層
 40 炭化珪素エピタキシャル層
 50 炭化珪素単結晶基板
 60 ソース電極
 61 コンタクト電極
 62 ソース配線
 70 ドレイン電極
 81 ゲート絶縁膜
 82 ゲート電極
 83 層間絶縁膜
 84 バリアメタル膜
 85 パッシベーション膜
 90 コンタクトホール
 100 MOSFET
 110 MOSFET
 L1 仮想直線

Claims (10)

  1.  第1主面と、前記第1主面と反対側の第2主面とを有する炭化珪素基板を備え、
     前記炭化珪素基板は、
     第1導電型を有するドリフト領域と、
     前記ドリフト領域上に設けられ、前記第1導電型と異なる第2導電型を有するボディ領域と、
     前記ドリフト領域から隔てられるように前記ボディ領域上に設けられ、かつ前記第1導電型を有するソース領域と、
     前記ボディ領域上に設けられ、かつ前記第2導電型を有するコンタクト領域と、
     を有し、
     前記第1主面には、前記ソース領域及び前記ボディ領域を貫通して前記ドリフト領域に至る側面と、前記側面と連なる底面とにより規定され、前記第1主面に平行な第1方向に延びるゲートトレンチが設けられており、
     前記ソース領域及び前記コンタクト領域に接続されたソース電極をさらに有し、
     前記第1主面に垂直な方向から平面視したときに、
     前記ゲートトレンチは前記ソース領域により囲まれ、
     前記ソース領域は、前記第1方向に垂直な第2方向で隣り合う前記ゲートトレンチと前記コンタクト領域とにより挟まれた部分を有する炭化珪素半導体装置。
  2.  前記ソース領域は、前記第2方向で隣り合う前記ゲートトレンチにより挟まれた部分を有し、
     前記第1方向に垂直な断面において、
     前記ソース領域の前記ゲートトレンチ及び前記コンタクト領域により挟まれた部分の前記第2方向の長さは、隣り合う前記ゲートトレンチにより挟まれた部分の前記第2方向の長さよりも短い請求項1に記載の炭化珪素半導体装置。
  3.  前記コンタクト領域は、前記第2方向で前記ゲートトレンチの片側のみに設けられている請求項1または請求項2に記載の炭化珪素半導体装置。
  4.  前記炭化珪素基板は、
     前記ゲートトレンチの前記底面と前記第2主面との間に設けられ、前記第1方向に延び、前記第2導電型を有する電界緩和領域と、
     前記コンタクト領域と前記電界緩和領域とを電気的に接続し、前記第2導電型を有する接続領域と、
     を有し、
     前記第1主面に垂直な方向から平面視したときに、
     前記ゲートトレンチ及び前記電界緩和領域は、前記第1方向に延びる仮想直線上にあり、
     前記接続領域は、前記仮想直線上で前記電界緩和領域に接している請求項1から請求項3のいずれか1項に記載の炭化珪素半導体装置。
  5.  前記電界緩和領域は、前記ゲートトレンチの前記底面から離れている請求項4に記載の炭化珪素半導体装置。
  6.  前記第1主面に垂直な方向から平面視したときに、
     前記ゲートトレンチの下端は、前記電界緩和領域の内側にある請求項4または請求項5に記載の炭化珪素半導体装置。
  7.  前記第1主面に垂直な方向から平面視したときに、
     前記ゲートトレンチの上端は、前記電界緩和領域の内側にある請求項6に記載の炭化珪素半導体装置。
  8.  前記ゲートトレンチが複数、一定の間隔で前記仮想直線と重なって設けられており、
     前記接続領域は、前記第1主面に垂直な方向から平面視したときに、前記第1方向で隣り合う前記ゲートトレンチの間に設けられている請求項4から請求項7のいずれか1項に記載の炭化珪素半導体装置。
  9.  前記第1方向で隣り合う前記ゲートトレンチの間の距離は、前記ゲートトレンチの前記第1方向における寸法の0.20倍以上0.40倍以下である請求項8に記載の炭化珪素半導体装置。
  10.  前記ゲートトレンチの前記側面は、{0-33-8}面を含む請求項1から請求項9のいずれか1項に記載の炭化珪素半導体装置。
PCT/JP2021/044984 2020-12-18 2021-12-07 炭化珪素半導体装置 WO2022131084A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022569898A JPWO2022131084A1 (ja) 2020-12-18 2021-12-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-210100 2020-12-18
JP2020210100 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022131084A1 true WO2022131084A1 (ja) 2022-06-23

Family

ID=82057748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044984 WO2022131084A1 (ja) 2020-12-18 2021-12-07 炭化珪素半導体装置

Country Status (2)

Country Link
JP (1) JPWO2022131084A1 (ja)
WO (1) WO2022131084A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002766A1 (ja) * 2014-06-30 2016-01-07 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置およびその製造方法
WO2017179377A1 (ja) * 2016-04-14 2017-10-19 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
WO2019155783A1 (ja) * 2018-02-06 2019-08-15 住友電気工業株式会社 炭化珪素半導体装置
WO2020031446A1 (ja) * 2018-08-09 2020-02-13 住友電気工業株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2020035807A (ja) * 2018-08-28 2020-03-05 住友電気工業株式会社 炭化珪素半導体装置の製造方法
WO2020162175A1 (ja) * 2019-02-04 2020-08-13 住友電気工業株式会社 炭化珪素半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002766A1 (ja) * 2014-06-30 2016-01-07 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置およびその製造方法
WO2017179377A1 (ja) * 2016-04-14 2017-10-19 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
WO2019155783A1 (ja) * 2018-02-06 2019-08-15 住友電気工業株式会社 炭化珪素半導体装置
WO2020031446A1 (ja) * 2018-08-09 2020-02-13 住友電気工業株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2020035807A (ja) * 2018-08-28 2020-03-05 住友電気工業株式会社 炭化珪素半導体装置の製造方法
WO2020162175A1 (ja) * 2019-02-04 2020-08-13 住友電気工業株式会社 炭化珪素半導体装置

Also Published As

Publication number Publication date
JPWO2022131084A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
JP7156314B2 (ja) 炭化珪素半導体装置
US20120313112A1 (en) Semiconductor device
JP6806162B2 (ja) 炭化珪素半導体装置
WO2017179377A1 (ja) 炭化珪素半導体装置およびその製造方法
CN112368809A (zh) 碳化硅半导体器件及其制造方法
US20170207311A1 (en) Silicon carbide semiconductor device and method for manufacturing same
JP6950398B2 (ja) 炭化珪素半導体装置
US9806167B2 (en) Method for manufacturing silicon carbide semiconductor device
WO2018042835A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2021124800A1 (ja) 炭化珪素半導体装置
JP7395972B2 (ja) 炭化珪素半導体装置
WO2022131084A1 (ja) 炭化珪素半導体装置
WO2022113609A1 (ja) 炭化珪素半導体装置
JP7156313B2 (ja) 炭化珪素半導体装置
WO2021095609A1 (ja) 炭化珪素半導体装置
WO2023167147A1 (ja) 炭化珪素半導体装置
WO2022102262A1 (ja) 炭化珪素半導体装置
WO2022137649A1 (ja) 炭化珪素半導体装置
WO2023026803A1 (ja) 炭化珪素半導体装置及び炭化珪素半導体装置の製造方法
WO2023100500A1 (ja) 炭化珪素半導体装置
WO2022270245A1 (ja) 炭化珪素半導体装置
WO2021024972A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2023104657A (ja) 炭化珪素半導体装置
JP2023023614A (ja) 炭化珪素半導体装置
JP2023057352A (ja) 炭化珪素半導体装置及び炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906447

Country of ref document: EP

Kind code of ref document: A1