WO2022130926A1 - 気相成長装置及び気相成長方法 - Google Patents

気相成長装置及び気相成長方法 Download PDF

Info

Publication number
WO2022130926A1
WO2022130926A1 PCT/JP2021/043169 JP2021043169W WO2022130926A1 WO 2022130926 A1 WO2022130926 A1 WO 2022130926A1 JP 2021043169 W JP2021043169 W JP 2021043169W WO 2022130926 A1 WO2022130926 A1 WO 2022130926A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
source gas
purge gas
purge
region
Prior art date
Application number
PCT/JP2021/043169
Other languages
English (en)
French (fr)
Inventor
佳明 醍醐
暁夫 石黒
圭祐 倉島
成明 石井
Original Assignee
株式会社ニューフレアテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニューフレアテクノロジー filed Critical 株式会社ニューフレアテクノロジー
Priority to KR1020237023295A priority Critical patent/KR102678091B1/ko
Priority to EP21906289.0A priority patent/EP4261870A1/en
Priority to JP2022569820A priority patent/JP7440666B2/ja
Priority to TW110145446A priority patent/TWI806273B/zh
Priority to CN202111526029.XA priority patent/CN114622181B/zh
Publication of WO2022130926A1 publication Critical patent/WO2022130926A1/ja
Priority to US18/332,032 priority patent/US20230313411A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a vapor phase growth apparatus and a vapor phase growth method for forming a film by supplying gas to a substrate.
  • an epitaxial growth technique for forming a single crystal film by vapor phase growth on the surface of a substrate.
  • the substrate is placed in a holder in a reaction chamber held at normal pressure or reduced pressure.
  • the process gas containing the raw material of the membrane is supplied to the reaction chamber via the gas introduction section at the upper part of the reaction chamber.
  • a thermal reaction of the process gas occurs on the surface of the substrate, and an epitaxial single crystal film is formed on the surface of the substrate.
  • the reproducibility of the characteristics of the film formed under the same process conditions may not be obtained.
  • the cause of this is, for example, a change over time in the concentration of the raw material of the film in the process gas supplied on the wafer.
  • the problem to be solved by the present invention is to provide a vapor phase growth apparatus capable of improving the reproducibility of the characteristics of the membrane.
  • the gas phase growth apparatus supplies a reaction chamber, a holder provided in the reaction chamber on which a substrate is placed, and a first source gas containing silicon and chlorine into the reaction chamber.
  • the gas phase growth apparatus is a reaction chamber, a holder provided in the reaction chamber on which a substrate is placed, and a gas introduction unit provided above the reaction chamber, which comprises silicon.
  • the source gas conduit that supplies the source gas to the reaction chamber penetrates the second partition plate, the source gas conduit is inserted, and the atomic concentration of silicon in the source gas is increased from the gap between the source gas conduit and the source gas conduit. It also comprises a purge gas conduit that supplies the purge gas containing low atomic concentration silicon to the reaction chamber, and a gas introduction section having a gap between the source gas conduit and the first partition plate.
  • the gas phase growth method of one aspect of the present invention comprises a reaction chamber, a holder provided in the reaction chamber on which a substrate is placed, a source gas flow path for supplying source gas into the reaction chamber, and a purge gas.
  • This is a gas phase growth method using a gas phase growth apparatus including a purge gas flow path for supplying the gas into the reaction chamber, and a source gas containing silicon and chlorine is supplied to the reaction chamber from the source gas flow path.
  • a purge gas containing silicon and chlorine and having a lower atomic concentration of silicon than the source gas is supplied to the reaction chamber from the purge gas flow path to form a silicon carbide film on the surface of the substrate.
  • a vapor phase growth apparatus capable of improving the reproducibility of film characteristics can be realized.
  • the schematic sectional view of the vapor phase growth apparatus of 1st Embodiment An enlarged schematic cross-sectional view of a part of the gas chamber of the gas phase growth apparatus of the first embodiment.
  • FIG. 3 is an enlarged schematic cross-sectional view of a part of a gas chamber of a modified example of the vapor phase growth apparatus of the first embodiment.
  • the schematic sectional view of the vapor phase growth apparatus of 2nd Embodiment. An enlarged schematic cross-sectional view of a part of the gas chamber of the gas phase growth apparatus of the second embodiment. Explanatory drawing of the vapor phase growth method of 2nd Embodiment.
  • FIG. 3 is a schematic cross-sectional view of the vapor phase growth apparatus of the third embodiment.
  • FIG. 6 is an enlarged schematic cross-sectional view of a part of the gas chamber of the gas phase growth apparatus of the fourth embodiment. The explanatory view of the vapor phase growth method of 4th Embodiment.
  • FIG. 6 is an enlarged schematic cross-sectional view of a part of the gas chamber of the gas phase growth apparatus of the fourth embodiment. The explanatory view of the operation and effect of the gas phase growth apparatus of 4th Embodiment.
  • the direction of gravity in a state where the vapor phase growth device is installed so that a film can be formed is defined as "downward", and the opposite direction is defined as “upper”. Therefore, “lower” means the position in the direction of gravity with respect to the reference, and “downward” means the direction of gravity with respect to the reference.
  • the “upper part” means a position in the direction opposite to the gravitational direction with respect to the reference, and the “upper” means the direction opposite to the gravitational direction with respect to the reference.
  • the “vertical direction” is the direction of gravity.
  • process gas is a general term for gases used for forming a film, and for example, a source gas, an assist gas, a dopant gas, a carrier gas, a purge gas, and a mixed gas thereof. It is a concept including.
  • the gas phase growth apparatus of the first embodiment supplies a reaction chamber, a holder provided in the reaction chamber on which a substrate is placed, and a first source gas containing silicon and chlorine into the reaction chamber. It is provided with a source gas flow path of No. 1 and a purge gas flow path of supplying a purge gas containing silicon and chlorine and having an atomic concentration of silicon lower than the atomic concentration of silicon of the first source gas into the reaction chamber.
  • the gas phase growth apparatus of the first embodiment is a reaction chamber, a holder provided in the reaction chamber on which a substrate is placed, and a gas introduction unit provided above the reaction chamber, which is made of silicon.
  • a source gas region in which a source gas containing chlorine is introduced, a purge gas region in which a purge gas containing chlorine is introduced, and a purge gas region and a purge gas region are provided between the source gas region and the reaction chamber.
  • the source gas is supplied to the reaction chamber by penetrating the first partition plate to be formed, the second partition plate provided between the purge gas region and the reaction chamber, and the first partition plate and the second partition plate.
  • a source gas conduit is inserted through the source gas conduit and the second partition plate, and a purge gas containing silicon having an atomic concentration lower than that of the silicon of the source gas is supplied to the reaction chamber through a gap between the source gas conduit and the source gas conduit. It comprises a purge gas conduit to be provided, and a gas introduction portion having a gap between the source gas conduit and the first partition plate.
  • FIG. 1 is a schematic cross-sectional view of the vapor phase growth apparatus of the first embodiment.
  • the vapor phase growth apparatus 100 of the first embodiment is, for example, a single-wafer type epitaxial growth apparatus in which a single crystal SiC film is epitaxially grown on a single crystal SiC substrate.
  • the vapor phase growth apparatus 100 of the first embodiment is a vertical vapor phase growth apparatus in which a process gas is vertically supplied to the surface of a SiC substrate.
  • the vapor phase growth apparatus 100 of the first embodiment includes a reaction chamber 10 and a gas introduction unit 12.
  • the reaction chamber 10 includes a susceptor 14 (holder), a rotating body 16, a rotating shaft 18, a rotating drive mechanism 20, a first heater 22, a reflector 28, a support column 30, a fixed base 32, a fixed shaft 34, a hood 40, and a second. Includes a heater 42 and a gas outlet 44.
  • the gas introduction unit 12 includes source gas regions 51, 52, purge gas regions 53, 54, 55, rectifying plate 60, partition plates 61, 62, 63, 64, top plate 65, source gas conduits 71, 72, purge gas conduit 73, and the like. Includes 74, 75, gas cap 76, source gas inlets 81, 82, and purge gas inlets 83, 84, 85.
  • the susceptor 14 is an example of a holder.
  • the partition plate 63 is an example of the first partition plate.
  • the partition plate 62 is an example of the second partition plate.
  • the source gas region 51 and the source gas conduit 71 form a first source gas flow path of the source gas G1.
  • the source gas region 52 and the source gas conduit 72 form a second source gas flow path for the source gas G2.
  • the purge gas region 53 and the purge gas conduit 73, the purge gas region 54 and the purge gas conduit 74, the purge gas region 55 and the purge gas conduit 75 each form a purge gas flow path of the purge gas G3.
  • Source gas G1 is an example of the first source gas.
  • the source gas G2 is an example of the second source gas.
  • the reaction chamber 10 is made of, for example, stainless steel.
  • the reaction chamber 10 has a cylindrical wall.
  • a SiC film is formed on the wafer W in the reaction chamber 10.
  • Wafer W is an example of a substrate.
  • the susceptor 14 is provided in the reaction chamber 10.
  • a wafer W can be placed on the susceptor 14.
  • the susceptor 14 may be provided with an opening in the center.
  • the susceptor 14 is an example of a holder.
  • the susceptor 14 is formed of a material having high heat resistance such as, for example, SiC or carbon, or carbon coated with SiC or TaC.
  • the susceptor 14 is fixed to the upper part of the rotating body 16.
  • the rotating body 16 is fixed to the rotating shaft 18.
  • the susceptor 14 is indirectly fixed to the rotating shaft 18.
  • the rotation shaft 18 can be rotated by the rotation drive mechanism 20.
  • the rotation drive mechanism 20 makes it possible to rotate the susceptor 14 by rotating the rotation shaft 18. By rotating the susceptor 14, the wafer W placed on the susceptor 14 can be rotated.
  • the wafer W can be rotated at a rotation speed of 300 rpm or more and 3000 rpm or less.
  • the rotation drive mechanism 20 is composed of, for example, a motor and a bearing.
  • the first heater 22 is provided under the susceptor 14.
  • the first heater 22 is provided in the rotating body 16.
  • the first heater 22 heats the wafer W held by the susceptor 14 from below.
  • the first heater 22 is, for example, a resistance heating heater.
  • the first heater 22 has, for example, a disc shape with a comb-shaped pattern.
  • the first heater 22 may be divided into an outer peripheral heater that heats the outer peripheral portion of the wafer and an inner peripheral heater that heats the inner peripheral portion of the wafer (not shown).
  • the reflector 28 is provided under the first heater 22.
  • a first heater 22 is provided between the reflector 28 and the susceptor 14.
  • the reflector 28 reflects the heat radiated downward from the first heater 22 to improve the heating efficiency of the wafer W. Further, the reflector 28 prevents the members below the reflector 28 from being heated.
  • the reflector 28 has, for example, a disk shape.
  • the reflector 28 is formed of a highly heat-resistant material such as carbon coated with SiC.
  • the reflector 28 is fixed to the fixing base 32 by, for example, a plurality of support columns 30.
  • the fixed base 32 is supported by, for example, a fixed shaft 34.
  • a push-up pin (not shown) is provided in the rotating body 16 in order to attach / detach the susceptor 14 from the rotating body 16.
  • the push-up pin penetrates, for example, the reflector 28 and the first heater 22.
  • the second heater 42 is provided between the hood 40 and the inner wall of the reaction chamber 10.
  • the second heater 42 heats the wafer W held by the susceptor 14 from above.
  • the second heater 42 is, for example, a resistance heating heater.
  • the hood 40 has, for example, a cylindrical shape.
  • the hood 40 has a function of preventing the process gas from coming into contact with the second heater 42.
  • the hood 40 is formed of a highly heat-resistant material such as carbon coated with SiC.
  • the gas discharge port 44 is provided at the bottom of the reaction chamber 10.
  • the gas discharge port 44 discharges the surplus reaction product after the source gas reacts on the surface of the wafer W and the surplus process gas to the outside of the reaction chamber 10.
  • the gas outlet 44 is connected to, for example, a vacuum pump (not shown).
  • reaction chamber 10 is provided with a wafer inlet / outlet and a gate valve (not shown).
  • the wafer W can be carried in and out of the reaction chamber 10 by the wafer inlet / outlet and the gate valve.
  • the gas introduction unit 12 is provided above the reaction chamber 10.
  • the gas introduction unit 12 is provided with a source gas introduction port 81 for introducing the source gas G1 into the gas introduction unit 12.
  • the source gas G1 which is the first source gas, is introduced into the source gas region 51 from the source gas introduction port 81.
  • the gas introduction unit 12 is provided with a source gas introduction port 82 for introducing the source gas G2 into the gas introduction unit 12.
  • the source gas G2 which is the second source gas, is introduced into the source gas region 52 from the source gas introduction port 82.
  • the gas introduction unit 12 is provided with purge gas introduction ports 83, 84, 85 for introducing the purge gas G3 into the gas introduction unit 12.
  • the purge gas G3 is introduced into the purge gas region 53 from the purge gas introduction port 83.
  • the purge gas G3 is introduced into the purge gas region 54 from the purge gas introduction port 84. Further, the purge gas G3 is introduced into the purge gas region 55 from the purge gas introduction port 85.
  • the purge gas G3 introduced into the purge gas regions 53, 54, 55 from the purge gas introduction ports 83, 84, and 85, respectively, is a gas that does not contain the source gas. Further, the purge gas G3 introduced into the purge gas regions 53, 54, 55 from the purge gas introduction ports 83, 84, and 85, respectively, is represented by the same reference numerals in FIG. 1, but the flow rates of the assist gas, the carrier gas, and the like are represented by the same reference numerals. May be controlled independently.
  • the source gas G1 is a silicon (Si) source gas.
  • the source gas G1 contains silicon (Si) and chlorine (Cl).
  • the source gas G1 is, for example, a mixed gas of silane (SiH 4 ), hydrogen chloride (HCl), and hydrogen gas (H 2 ).
  • Hydrogen chloride is an assist gas that suppresses the clustering of silicon. Further, hydrogen chloride has a function of etching by-products containing silicon deposited in the flow path of the source gas G1.
  • Hydrogen gas (H 2 ) is a carrier gas.
  • the carrier gas for example, argon gas (Ar) can also be used.
  • the source gas G2 is a carbon (C) source gas.
  • the source gas G2 contains carbon (C).
  • the source gas G2 contains, for example, a hydrocarbon.
  • the source gas G2 is, for example, a mixed gas of propane (C 3 H 8 ) and hydrogen gas (H 2 ).
  • the source gas G2 contains, for example, a dopant gas of an n-type impurity.
  • the dopant gas of the n-type impurity is, for example, nitrogen gas.
  • the purge gas G3 has a function of suppressing the source gas supplied to the reaction chamber 10 from wrapping around inside the purge gas conduits 73, 74, 75 from the reaction chamber 10 side. That is, by supplying the purge gas G3, the source gas wraps around the inside of the purge gas conduits 73, 74, 75 from the reaction chamber 10 side, and the formation of deposits inside the purge gas conduits 73, 74, 75 is suppressed. .. Further, the purge gas G3 contains chlorine (Cl). The purge gas G3 contains, for example, hydrogen chloride (HCl). The purge gas G3 is, for example, a mixed gas of hydrogen chloride (HCl) and hydrogen gas ( H2).
  • Hydrogen chloride (HCl) is an etching gas for by-products containing silicon.
  • argon gas (Ar) can be used instead of hydrogen gas (H 2 ).
  • the atomic concentration of chlorine in the purge gas G3 is, for example, lower than the atomic concentration of chlorine in the first source gas.
  • the atomic concentration of chlorine in the purge gas G3 is, for example, one-fifth or less of the atomic concentration of chlorine in the first source gas.
  • the purge gas G3 may use different mixing ratios and different gas types in the purge gas regions 53, 54, and 55, respectively.
  • the source gas G1 is introduced into the source gas region 51.
  • the source gas region 51 is provided between the purge gas region 54 and the purge gas region 55.
  • the source gas G2 is introduced into the source gas region 52.
  • the source gas region 52 is provided between the source gas region 51 and the reaction chamber 10. Further, the source gas region 52 is provided between the purge gas region 53 and the purge gas region 54.
  • Purge gas G3 is introduced into the purge gas region 53.
  • the purge gas region 53 is provided between the purge gas region 54 and the reaction chamber 10. Further, the purge gas region 53 is provided between the source gas region 52 and the reaction chamber 10.
  • Purge gas G3 is introduced into the purge gas region 54.
  • the purge gas region 54 is provided between the source gas region 51 and the reaction chamber 10. Further, the purge gas region 54 is provided between the source gas region 51 and the source gas region 52.
  • Purge gas G3 is introduced into the purge gas region 55.
  • a source gas region 51 is provided between the purge gas region 55 and the reaction chamber 10.
  • the straightening vane 60 is provided between the reaction chamber 10 and the purge gas region 53.
  • the straightening vane 60 has a plurality of holes 60a and a plurality of holes 60b.
  • the partition plate 61 is provided between the purge gas region 53 and the source gas region 52.
  • the partition plate 61 has a plurality of holes 61a.
  • the partition plate 62 is provided between the purge gas region 54 and the reaction chamber 10.
  • the partition plate 62 is provided between the source gas region 52 and the purge gas region 54.
  • the partition plate 62 has a plurality of holes 62a.
  • the partition plate 63 is provided between the source gas region 51 and the purge gas region 54.
  • the partition plate 63 has a hole 63a.
  • the partition plate 64 is provided between the purge gas region 55 and the source gas region 51.
  • the partition plate 64 has a plurality of holes 64a.
  • the top plate 65 is provided on the purge gas region 55.
  • FIG. 2 is an enlarged schematic cross-sectional view of a part of the gas introduction portion of the gas phase growth apparatus of the first embodiment.
  • FIG. 2 is a cross-sectional view including a source gas conduit 71 and a purge gas conduit 74.
  • the source gas conduit 71 supplies the source gas G1 to the reaction chamber.
  • the source gas conduit 71 is inserted into the holes 60a, 61a, 62a, 63a.
  • the source gas conduit 71 penetrates the straightening vane 60 and the partition plates 61, 62, 63.
  • the source gas conduit 71 has an annular flange 71a at the upper end.
  • the source gas conduit 71 is removable with respect to the partition plate 63.
  • the source gas conduit 71 supports its own weight by placing the flange 71a on the partition plate 63.
  • the source gas conduit 71 and the partition plate 63 thermally expand due to the heat input from the reaction chamber 10 to the gas introduction portion 12, the source gas conduit 71 and the partition plate 63 are not fixed by screws or the like. If the source gas conduit 71 and the partition plate 63 are fixed by screws or the like, the source gas conduit 71 and the partition plate 63 may be cracked due to the difference in thermal expansion and strain, which is not preferable. Therefore, it is not possible to obtain complete airtightness between the source gas region 51 and the purge gas region 54 at the contact surface between the flange 71a and the partition plate 63.
  • the outer wall of the source gas conduit 71 is separated from the partition plate 63. There is a gap between the source gas conduit 71 and the partition plate 63.
  • the distance between the outer wall of the source gas conduit 71 and the partition plate 63 (d1 in FIG. 2) is, for example, 100 ⁇ m or more and 1 mm or less.
  • the distance d1 is a distance when the central axis of the source gas conduit 71 and the center of the hole 63a coincide with each other.
  • the region between the outer wall of the source gas conduit 71 and the partition plate 63, and the contact surface between the flange 71a and the partition plate 63 may function as a leak path for the process gas.
  • the source gas G1 leaks from the source gas region 51 to the purge gas region 54 through the contact surface between the flange 71a and the partition plate 63 and the region between the outer wall of the source gas conduit 71 and the partition plate 63.
  • the source gas G1 is mixed in the purge gas region 54.
  • the purge gas conduit 74 supplies the purge gas G3 to the reaction chamber 10.
  • the purge gas conduit 74 is inserted into the holes 60a, 61a, 62a.
  • the purge gas conduit 74 penetrates the straightening vane 60 and the partition plates 61 and 62.
  • the purge gas conduit 74 has an annular flange 74a at the upper end.
  • the purge gas conduit 74 is removable with respect to the partition plate 62.
  • the purge gas conduit 74 supports its own weight by placing the flange 74a on the partition plate 62.
  • the outer wall of the purge gas conduit 74 is separated from the partition plate 62.
  • the purge gas conduit 74 and the partition plate 62 thermally expand due to the heat input from the reaction chamber 10 to the gas introduction portion 12, the purge gas conduit 74 and the partition plate 62 are not fixed by screws or the like. If the purge gas conduit 74 and the partition plate 62 are fixed by screws or the like, the purge gas conduit 74 and the partition plate 62 may be cracked due to the difference in thermal expansion and strain, which is not preferable. Therefore, it is not possible to obtain complete airtightness between the source gas region 52 and the purge gas region 54 at the contact surface between the flange 74a and the partition plate 62.
  • the source gas conduit 71 is inserted inside the purge gas conduit 74.
  • the purge gas conduit 74 and the source gas conduit 71 are separated from each other. There is a gap between the purge gas conduit 74 and the source gas conduit 71.
  • the gap between the purge gas conduit 74 and the source gas conduit 71 serves as a flow path for the purge gas G3.
  • the gas cap 76 is inserted into the hole 64a and closes the hole 64a.
  • the gas cap 76 suppresses the movement of process gas between the purge gas region 55 and the source gas region 51.
  • the gas cap 76 has an annular flange 76a at the upper end. Since the gas cap 76 does not have a conduit leading to the reaction chamber 10, the amount of heat input from the reaction chamber 10 to the gas introduction portion 12 is difficult to transfer, and the thermal expansion is small. Therefore, the gas cap 76 may be fixed by a fixing portion (not shown) provided on the gas cap 76 so that airtightness can be obtained on the contact surface between the flange 76a and the partition plate 64. The gas cap 76 is removable.
  • FIG. 3 is an enlarged schematic cross-sectional view of a part of the gas introduction portion of the gas phase growth apparatus of the first embodiment.
  • FIG. 3 is a cross-sectional view including a source gas conduit 72 and a purge gas conduit 73.
  • the source gas conduit 72 supplies the source gas G2 to the reaction chamber.
  • the source gas conduit 72 is inserted into the holes 60a and 61a.
  • the source gas conduit 72 penetrates the straightening vane 60 and the partition plate 61.
  • the source gas conduit 72 has an annular flange 72a at the upper end.
  • the source gas conduit 72 is removable with respect to the partition plate 61.
  • the source gas conduit 72 supports its own weight by placing the flange 72a on the partition plate 61.
  • the outer wall of the source gas conduit 72 is separated from the partition plate 61.
  • the source gas conduit 72 and the partition plate 61 thermally expand due to the heat input from the reaction chamber 10 to the gas introduction portion 12, the source gas conduit 72 and the partition plate 61 are not fixed by screws or the like. If the source gas conduit 72 and the partition plate 61 are fixed by screws or the like, the source gas conduit 72 and the partition plate 61 may be cracked due to the difference in thermal expansion and strain, which is not preferable. Therefore, it is not possible to obtain complete airtightness between the source gas region 52 and the purge gas region 53 at the contact surface between the flange 72a and the partition plate 61.
  • the purge gas conduit 73 supplies the purge gas G3 to the reaction chamber 10.
  • the purge gas conduit 73 is inserted into the hole 60a.
  • the purge gas conduit 73 penetrates the straightening vane 60.
  • the purge gas conduit 73 has an annular flange 73a at the upper end.
  • the purge gas conduit 73 is removable with respect to the straightening vane 60.
  • the purge gas conduit 73 supports its own weight by placing the flange 73a on the straightening vane 60.
  • the outer wall of the purge gas conduit 73 is separated from the straightening vane 60.
  • the source gas conduit 72 is inserted inside the purge gas conduit 73.
  • the purge gas conduit 73 and the source gas conduit 72 are separated from each other.
  • the flow path of the purge gas G3 is between the purge gas conduit 73 and the source gas conduit 72.
  • the purge gas conduit 73 can also be replaced with a hole 60a of the straightening vane 60.
  • FIG. 4 is an enlarged schematic cross-sectional view of a part of the gas introduction portion of the gas phase growth apparatus of the first embodiment.
  • FIG. 4 is a cross-sectional view including a purge gas conduit 75 and a purge gas conduit 74.
  • the purge gas conduit 75 supplies the purge gas G3 to the reaction chamber.
  • the purge gas conduit 75 is inserted into the holes 60a, 61a, 62a, 63a, 64a.
  • the purge gas conduit 75 penetrates the straightening vane 60 and the partition plates 61, 62, 63, 64.
  • the purge gas conduit 75 has an annular flange 75a at the upper end.
  • the purge gas conduit 75 is removable with respect to the partition plate 64.
  • the purge gas conduit 75 supports its own weight by placing the flange 75a on the partition plate 64.
  • the purge gas conduit 75 and the partition plate 64 are thermally expanded by the heat input from the reaction chamber 10 to the gas introduction portion 12, the purge gas conduit 75 and the partition plate 64 are not fixed by screws or the like. If the purge gas conduit 75 and the partition plate 64 are fixed by screws or the like, the purge gas conduit 75 and the partition plate 64 may be cracked due to the difference in thermal expansion and strain, which is not preferable. Therefore, it is not possible to obtain complete airtightness between the purge gas region 55 and the source gas region 51 at the contact surface between the flange 75a and the partition plate 64.
  • the outer wall of the purge gas conduit 75 is separated from the partition plate 63 and the partition plate 64.
  • the distance between the outer wall of the purge gas conduit 75 and the partition plate 63 (d2 in FIG. 4) and the distance between the outer wall of the purge gas conduit 75 and the partition plate 64 (d2 in FIG. 4) are, for example, 100 ⁇ m or more and 1 mm. It is as follows.
  • the distance d2 is a distance when the central axis of the purge gas conduit 75 and the center of the hole 63a coincide with each other.
  • the distance d2 is a distance when the central axis of the purge gas conduit 75 and the center of the hole 64a coincide with each other.
  • the region between the outer wall of the purge gas conduit 75 and the partition plate 64 and the contact surface between the flange 75a and the partition plate 64 may function as a leak path for the process gas.
  • the source gas G1 introduced into the source gas region 51 passes through the contact surface between the flange 75a and the partition plate 64 and the region between the outer wall of the purge gas conduit 75 and the partition plate 64, and the source gas region 51. May leak to the purge gas region 55.
  • the source gas G1 leaks to the purge gas region 55, the source gas G1 is mixed in the purge gas region 55.
  • the purge gas conduit 75 is inserted inside the purge gas conduit 74.
  • the purge gas conduit 74 and the purge gas conduit 75 are separated from each other. There is a gap between the purge gas conduit 74 and the purge gas conduit 75.
  • the gap between the purge gas conduit 74 and the purge gas conduit 75 serves as a flow path for the purge gas G3.
  • the source gas conduits 71, 72, purge gas conduits 73, 74, 75, and gas cap 76 are formed of a highly heat-resistant material, for example, carbon coated with SiC. Further, the straightening vane 60 and the partition plates 61, 62, 63, 64 are formed of a material having high heat resistance, for example, carbon coated with SiC.
  • the reaction chamber, the holder provided in the reaction chamber on which the substrate is placed, the source gas flow path for supplying the source gas into the reaction chamber, and the purge gas are reacted.
  • the vapor phase growth method of the first embodiment uses the vapor phase growth apparatus 100 shown in FIG. A case where a single crystal SiC film 11 (silicon carbide film) is formed on the surface of a single crystal SiC wafer W will be described as an example.
  • FIGS. 5, 6 and 7 are explanatory views of the vapor phase growth method of the first embodiment.
  • Wafer W is single crystal SiC.
  • the wafer W is rotated at a rotation speed of 300 rpm or more by the rotation drive mechanism 20. Then, the wafer W is heated by the first heater 22 and the second heater 42.
  • the source gas G1 is introduced into the source gas region 51 from the source gas introduction port 81. Further, the source gas G2 is introduced into the source gas region 52 from the source gas introduction port 82. Further, the purge gas G3 is introduced into the purge gas regions 53, 54, 55 from the purge gas introduction ports 83, 84, 85.
  • the source gas G1 is a mixed gas of silane (SiH 4 ), hydrogen chloride (HCl), and hydrogen gas (H 2 ), and the source gas G2 is a mixed gas of propane (C 3 H 8 ) and hydrogen gas (H 2 ).
  • the purge gas G3 is a mixed gas of hydrogen chloride (HCl) and hydrogen gas ( H2) will be described as an example.
  • the purge gas region 54 is a source from the source gas region 51 via the region between the outer wall of the source gas conduit 71 and the partition plate 63 and the contact surface between the flange 71a and the partition plate 63.
  • Gas G1 is easy to mix.
  • the source gas G1 is mixed from the source gas region 51 via the region between the outer wall of the purge gas conduit 75 and the partition plate 64 and the contact surface between the flange 75a and the partition plate 64. It's easy to do. Therefore, the purge gas regions 54 and 55 are likely to contain a small amount of silane. That is, the purge gas regions 54 and 55 may contain a small amount of silicon.
  • the atomic concentration of silicon in the purge gas G3 in the purge gas regions 54 and 55 is lower than the atomic concentration of silicon in the source gas G1 in the source gas region 51.
  • the atomic concentration of silicon in the purge gas G3 in the purge gas regions 54 and 55 is, for example, 1/100 or less of the atomic concentration of silicon in the source gas G1 in the source gas region 51.
  • the mixed gas of silane, hydrogen chloride, and hydrogen gas supplied as the source gas G1 is supplied from the source gas region 51 to the reaction chamber 10 through the source gas conduit 71.
  • the source gas region 51 and the source gas conduit 71 form a source gas flow path for the source gas G1.
  • the source gas flow path of the source gas G1 is an example of the first source gas flow path.
  • the mixed gas of hydrogen chloride and hydrogen gas which is the purge gas G3 is supplied from the purge gas region 54 to the reaction chamber 10 through the purge gas conduit 74.
  • the purge gas G3 is supplied to the reaction chamber 10 through the gap between the purge gas conduit 74 and the source gas conduit 71.
  • the purge gas region 54 and the purge gas conduit 74 form a purge gas flow path for the purge gas G3.
  • the mixed gas of hydrogen chloride and hydrogen gas which is the purge gas G3, is supplied from the purge gas region 53 to the reaction chamber 10 through the hole 60b of the straightening vane 60.
  • the mixed gas of propane and hydrogen gas which is the source gas G2 is supplied from the source gas region 52 to the reaction chamber 10 through the source gas conduit 72.
  • the source gas region 52 and the source gas conduit 72 form a source gas flow path of the source gas G2.
  • the source gas flow path of the source gas G2 is an example of the second source gas flow path.
  • the mixed gas of hydrogen chloride and hydrogen gas which is the purge gas G3, is supplied from the purge gas region 53 to the reaction chamber 10 through the purge gas conduit 73.
  • the mixed gas of hydrogen chloride and hydrogen gas which is the purge gas G3 is supplied from the purge gas region 55 to the reaction chamber 10 through the purge gas conduit 75.
  • the purge gas region 55 and the purge gas conduit 75 form a purge gas flow path of the purge gas G3.
  • the mixed gas of hydrogen chloride and hydrogen gas, which is the purge gas G3 is supplied from the purge gas region 54 to the reaction chamber 10 through the purge gas conduit 74.
  • the purge gas region 54 and the purge gas conduit 74 form a purge gas flow path of the purge gas G3.
  • the source gas G1, the source gas G2, and the purge gas G3 supplied from the gas introduction unit 12 to the reaction chamber 10 become a gas flow toward the surface of the wafer W.
  • the Si atom contained in the source gas G1 and the C atom contained in the source gas G2 react on the surface of the wafer W to form a single crystal SiC film 11 on the surface of the wafer W.
  • the heating by the first heater 22 and the second heater 42 is stopped, and the temperature of the wafer W is lowered. Then, the wafer W is carried out from the reaction chamber 10 together with the susceptor 14.
  • the source gas conduit 71 is inserted inside the purge gas conduit 74.
  • the source gas conduit 71 and the purge gas conduit 74 have a double vessel structure.
  • the purge gas G3 is supplied to the reaction chamber 10 from the purge gas conduit 74 so as to surround the source gas G1.
  • the source gas conduit 72 is inserted inside the purge gas conduit 73.
  • the source gas conduit 72 and the purge gas conduit 73 have a double vessel structure.
  • the purge gas G3 is supplied from the purge gas conduit 73 to the reaction chamber 10 so as to surround the source gas G2.
  • the outer wall of the source gas conduit 71 is separated from the partition plate 63 by a distance d1. Therefore, for example, even if the source gas conduit 71 is heated by the heater 42 from the end on the reaction chamber 10 side and thermally expands, the source gas conduit 71 or the partition plate 63 is prevented from being damaged.
  • the outer wall of the purge gas conduit 75 is separated from the partition plates 63 and 64 by a distance d2, respectively. Therefore, for example, even if the purge gas conduit 75 is heated from the end on the reaction chamber 10 side by the second heater 42 and thermally expands, the purge gas conduit 75 and the partition plates 63 and 64 are prevented from being damaged.
  • FIG. 8 and 9 are explanatory views of the operation and effect of the vapor phase growth apparatus of the first embodiment.
  • FIG. 8 is a diagram corresponding to FIG.
  • FIG. 9 is a diagram corresponding to FIG.
  • the configuration shown in FIG. 8 is different from the vapor phase growth apparatus 100 of the first embodiment in that the purge gas G3 does not contain chlorine.
  • the purge gas G3 is, for example, hydrogen gas.
  • the contact surface between the flange 71a and the partition plate 63, and the region between the outer wall of the source gas conduit 71 and the partition plate 63 may function as a gas leak path. That is, the source gas G1 may leak from the source gas region 51 to the purge gas region 54 through the region between the outer wall of the source gas conduit 71 and the partition plate 63, as shown by the dotted arrow in FIG. .. When the source gas G1 leaks to the purge gas region 54, the source gas G1 is mixed in the purge gas region 54.
  • silicon is formed between the source gas conduit 71 and the purge gas conduit 74 as shown in FIG.
  • the containing by-product 90 is deposited.
  • the accumulation of the by-product 90 containing silicon between the source gas conduit 71 and the purge gas conduit 74 reduces the atomic concentration of silicon contained in the gas supplied to the reaction chamber 10 via the purge gas conduit 74. Means that. That is, the amount of silicon supplied to the reaction chamber 10 is reduced. Therefore, the amount of silicon supplied to the surface of the wafer W is also reduced. Further, when the by-product 90 containing silicon is deposited between the source gas conduit 71 and the purge gas conduit 74, the silicon contained in the gas supplied to the reaction chamber 10 via the purge gas conduit 74 and the silicon-containing secondary product 90 are deposited.
  • the reaction with the product 90 is accelerated, and the atomic concentration of silicon contained in the gas supplied to the reaction chamber 10 via the purge gas conduit 74 decreases with time. Therefore, the reproducibility of the characteristics of the SiC film 11 formed on the surface of the wafer W is lowered. For example, the reproducibility of the film thickness of the SiC film 11 and the reproducibility of the carrier concentration are lowered.
  • the configuration of FIG. 9 is different from the vapor phase growth apparatus 100 of the first embodiment in that the purge gas G3 does not contain chlorine.
  • the purge gas G3 is, for example, hydrogen gas.
  • the contact surface between the flange 75a and the partition plate 64 and the region between the outer wall of the purge gas conduit 75 and the partition plate 64 may function as a gas leak path.
  • the region between the outer wall of the purge gas conduit 75 and the partition plate 63 may function as a gas leak path. That is, the source gas G1 passes through the region between the outer wall of the purge gas conduit 75 and the partition plate 64 and the region between the outer wall of the purge gas conduit 75 and the partition plate 63, as shown by the dotted arrow in FIG. , The source gas region 51 may leak to the purge gas regions 54 and 55. As the source gas G1 leaks to the purge gas regions 54 and 55, the source gas G1 is mixed with the purge gas regions 54 and 55.
  • the purge gas conduit 75 has a flange 75a in contact with the partition plate 64, it is not possible to provide a flange in contact with the partition plate 63 at the same time due to the influence of processing accuracy and thermal deformation. Therefore, for example, the amount of leakage is larger than that shown in FIG. 8, and the amount of source gas G1 mixed in the purge gas region 54 is large.
  • the amount of silicon supplied to the reaction chamber 10 decreases. Therefore, the amount of silicon supplied to the surface of the wafer W is also reduced. Further, when the by-product 90 containing silicon is deposited inside the purge gas conduit 75 or between the purge gas conduit 75 and the purge gas conduit 74, the gas supplied to the reaction chamber 10 via the purge gas conduit 75 and the purge gas conduit 74. The reaction between the silicon contained in the silicon and the by-product 90 containing silicon is accelerated, and the atomic concentration of silicon contained in the gas supplied to the reaction chamber 10 via the purge gas conduit 75 and the purge gas conduit 74 decreases with time. do. Therefore, the reproducibility of the characteristics of the SiC film 11 formed on the surface of the wafer W is lowered. For example, the reproducibility of the film thickness of the SiC film 11 and the reproducibility of the carrier concentration are lowered.
  • the purge gas G3 contains chlorine.
  • the purge gas G3 is, for example, a mixed gas of hydrogen chloride (HCl) and hydrogen gas ( H2).
  • the purge gas G3 contains chlorine
  • the silicon by-product is etched by chlorine even if the gas containing silicon is mixed in the purge gas regions 54 and 55 due to the leakage of the source gas G1. Therefore, the by-product 90 containing silicon is suppressed from being deposited in the gas flow path to the reaction chamber 10. Therefore, the reproducibility of the characteristics of the SiC film 11 formed on the surface of the wafer W is improved. For example, the reproducibility of the film thickness of the SiC film 11 and the reproducibility of the carrier concentration are improved.
  • the atomic concentration of silicon in the purge gas G3 in the purge gas regions 54 and 55 after the source gas G1 is mixed is lower than the atomic concentration of silicon in the source gas G1. Further, the atomic concentration of chlorine in the purge gas G3 after the source gas G1 is mixed is lower than the atomic concentration of chlorine in the source gas G1.
  • the atomic concentration of chlorine in the source gas G1 is preferably twice or more, more preferably 5 times or more, the atomic concentration of silicon in the source gas G1.
  • the atomic concentration of chlorine in the purge gas G3 is preferably lower than the atomic concentration of chlorine in the source gas G1.
  • the atomic concentration of chlorine in the purge gas G3 is preferably one-half or less, more preferably one-fifth or less, the atomic concentration of chlorine in the source gas G1.
  • the atomic concentration of chlorine in the purge gas G3 is preferably 1/100 or more, preferably 1/50 or more of the atomic concentration of chlorine in the source gas G1. It is more preferable to have.
  • the distance d1 between the outer wall of the source gas conduit 71 and the partition plate 63 is preferably 100 ⁇ m or more, and preferably 250 ⁇ m or more. More preferred.
  • the distance d1 between the outer wall of the source gas conduit 71 and the third partition plate 63 is preferably 1 mm or less, preferably 750 ⁇ m or less. Is more preferable.
  • FIG. 10 is an enlarged schematic cross-sectional view of a part of the gas introduction portion of the modified example of the vapor phase growth apparatus of the first embodiment.
  • FIG. 10 is a cross-sectional view including purge gas conduits 75 and 74.
  • FIG. 10 is a cross section corresponding to FIG.
  • the purge gas conduit 75 supplies the purge gas G3 to the reaction chamber.
  • the purge gas conduit 75 is inserted into the holes 60a, 61a, 62a, 63a, 64a.
  • the purge gas conduit 75 penetrates the straightening vane 60 and the partition plates 61, 62, 63, 64.
  • the purge gas conduit 75 has an annular flange 75a between the upper end and the lower end.
  • the purge gas conduit 75 is removable with respect to the partition plate 63.
  • the purge gas conduit 75 supports its own weight by placing the flange 75a on the partition plate 63.
  • the outer wall of the purge gas conduit 75 is separated from the partition plates 63 and 64. There is a gap between the purge gas conduit 75 and the partition plates 63 and 64.
  • the purge gas conduit 75 is inserted inside the purge gas conduit 74.
  • the purge gas conduit 74 and the purge gas conduit 75 are separated from each other.
  • the gap between the purge gas conduit 74 and the purge gas conduit 75 serves as a flow path for the purge gas G3.
  • FIG. 11 is an explanatory diagram of a modified example of the vapor phase growth method of the first embodiment.
  • the mixed gas of hydrogen chloride and hydrogen gas which is the purge gas G3 passes from the purge gas region 55 to the reaction chamber 10 through the purge gas conduit 75. Will be supplied. Further, the mixed gas of hydrogen chloride and hydrogen gas, which is the purge gas G3, is supplied from the purge gas region 54 to the reaction chamber 10 through the purge gas conduit 74.
  • FIG. 12 is an explanatory diagram of the operation and effect of a modified example of the vapor phase growth apparatus of the first embodiment.
  • FIG. 12 is a diagram corresponding to FIG. 11.
  • FIG. 12 is different from the modified example of the vapor phase growth apparatus 100 of the first embodiment in that the purge gas G3 does not contain chlorine.
  • the purge gas G3 is, for example, hydrogen gas.
  • the contact surface between the flange 75a and the partition plate 63, and the region between the outer wall of the purge gas conduit 75 and the partition plate 63 may function as a gas leak path.
  • the region between the outer wall of the purge gas conduit 75 and the partition plate 64 may function as a gas leak path. That is, the source gas G1 passes through the region between the outer wall of the purge gas conduit 75 and the partition plate 63 and the region between the outer wall of the purge gas conduit 75 and the partition plate 64, as shown by the dotted arrow in FIG. , The source gas region 51 may leak to the purge gas regions 54 and 55. As the source gas G1 leaks to the purge gas regions 54 and 55, the source gas G1 is mixed with the purge gas regions 54 and 55.
  • the purge gas conduit 75 has a flange 75a in contact with the partition plate 63, it is not possible to provide a flange in contact with the partition plate 64 at the same time due to the influence of processing accuracy and thermal deformation. Therefore, for example, the amount of the source gas G1 mixed with the purge gas G3 in the purge gas region 55 is larger than that in the case shown in FIG.
  • the amount of silicon supplied to the reaction chamber 10 decreases. Therefore, the amount of silicon supplied to the surface of the wafer W is also reduced. Further, when the by-product 90 containing silicon is deposited inside the purge gas conduit 75 or between the purge gas conduit 75 and the purge gas conduit 74, the gas supplied to the reaction chamber 10 via the purge gas conduit 75 and the purge gas conduit 74. The reaction between the silicon contained in the silicon and the by-product 90 containing silicon is accelerated, and the atomic concentration of silicon contained in the gas supplied to the reaction chamber 10 via the purge gas conduit 75 and the purge gas conduit 74 decreases with time. do. Therefore, the reproducibility of the characteristics of the SiC film 11 formed on the surface of the wafer W is lowered.
  • the purge gas G3 contains chlorine.
  • the purge gas G3 is, for example, a mixed gas of hydrogen chloride (HCl) and hydrogen gas ( H2).
  • the purge gas G3 contains chlorine
  • the silicon by-product is etched by chlorine even if the gas containing silicon is mixed in the purge gas regions 54 and 55 due to the leakage of the source gas G1. Therefore, the accumulation of the by-product 90 containing silicon in the gas flow path is suppressed. Therefore, the reproducibility of the characteristics of the SiC film 11 formed on the surface of the wafer W is improved. For example, the reproducibility of the film thickness of the SiC film 11 and the reproducibility of the carrier concentration are improved.
  • the deposition of by-products containing silicon in the gas flow path can be suppressed. Therefore, according to the vapor phase growth apparatus and the vapor phase growth method of the first embodiment, it is possible to improve the reproducibility of the characteristics of the film.
  • the gas phase growth apparatus and the vapor phase growth method of the second embodiment are different from the Kii phase growth apparatus and the vapor phase growth method of the first embodiment in that the source gas is one kind.
  • the source gas is one kind.
  • FIG. 13 is a schematic cross-sectional view of the vapor phase growth apparatus of the second embodiment.
  • the vapor phase growth apparatus 200 of the second embodiment is, for example, a single-wafer type epitaxial growth apparatus in which a single crystal SiC film is epitaxially grown on a single crystal SiC substrate.
  • the vapor phase growth apparatus 200 of the second embodiment is a vertical vapor phase growth apparatus in which a process gas is vertically supplied to the surface of a SiC substrate.
  • the vapor phase growth apparatus 200 of the second embodiment includes a reaction chamber 10 and a gas introduction unit 12.
  • the reaction chamber 10 includes a susceptor 14 (holder), a rotating body 16, a rotating shaft 18, a rotating drive mechanism 20, a first heater 22, a reflector 28, a support column 30, a fixed base 32, a fixed shaft 34, a hood 40, and a second. Includes a heater 42 and a gas outlet 44.
  • the gas introduction unit 12 includes a source gas region 56, a purge gas region 57, a rectifying plate 60, a partition plate 66, a top plate 65, a source gas conduit 77, a purge gas conduit 78, a source gas introduction port 86, and a purge gas introduction port 87.
  • the susceptor 14 is an example of a holder.
  • the straightening vane 60 is an example of a second partition plate.
  • the partition plate 66 is an example of the first partition plate.
  • the source gas region 56 and the source gas conduit 77 form a first source gas flow path.
  • the purge gas region 57 and the purge gas conduit 78 form a purge gas flow path.
  • the gas introduction unit 12 is provided above the reaction chamber 10.
  • the gas introduction unit 12 is provided with a source gas introduction port 86 for introducing the source gas Gx into the gas introduction unit 12.
  • the source gas Gx is introduced into the source gas region 56 from the source gas introduction port 86.
  • the gas introduction unit 12 is provided with a purge gas introduction port 87 for introducing the purge gas Gy into the gas introduction unit 12.
  • the purge gas Gy is introduced into the purge gas region 57 from the purge gas introduction port 87.
  • Source gas Gx is an example of the first source gas.
  • the source gas Gx contains silicon (Si), carbon (C), and chlorine (Cl).
  • the source gas Gx is, for example, a mixed gas of silane (SiH 4 ), propane (C 3 H 8 ), hydrogen chloride (HCl), and hydrogen gas (H 2 ).
  • Hydrogen chloride is an assist gas that suppresses the clustering of silicon. Further, hydrogen chloride has a function of etching by-products containing silicon deposited in the gas flow path of the source gas Gx.
  • Hydrogen gas (H 2 ) is a carrier gas.
  • the carrier gas for example, argon gas (Ar) can also be used.
  • the source gas Gx contains, for example, a dopant gas of an n-type impurity.
  • the dopant gas of the n-type impurity is, for example, nitrogen gas.
  • the purge gas Gy has a function of stabilizing the flow of the source gas Gx in the reaction chamber 10.
  • the purge gas Gy contains chlorine (Cl).
  • the purge gas Gy contains, for example, hydrogen chloride (HCl).
  • the purge gas Gy is, for example, a mixed gas of hydrogen chloride (HCl) and hydrogen gas (H 2 ).
  • Hydrogen chloride (HCl) is an etching gas for by-products containing silicon.
  • argon gas (Ar) can be used instead of hydrogen gas (H 2 ).
  • the atomic concentration of chlorine in the purge gas Gy is lower than, for example, the atomic concentration of chlorine in the source gas Gx.
  • the atomic concentration of chlorine in the purge gas Gy is, for example, one-fifth or less of the atomic concentration of chlorine in the source gas Gx.
  • Source gas Gx is introduced into the source gas region 56.
  • Purge gas Gy is introduced into the purge gas region 57.
  • the purge gas region 57 is provided between the source gas region 56 and the reaction chamber 10.
  • FIG. 14 is an enlarged schematic cross-sectional view of a part of the gas introduction portion of the gas phase growth apparatus of the second embodiment.
  • FIG. 14 is a cross-sectional view including a source gas conduit 77 and a purge gas conduit 78.
  • the straightening vane 60 is provided between the reaction chamber 10 and the purge gas region 57.
  • the straightening vane 60 has a plurality of holes 60a and a plurality of holes 60b.
  • a purge gas conduit 78 and a source gas conduit 77 are provided inside the hole 60a.
  • the purge gas conduit 78 can also be replaced with a hole 60a in the straightening vane 60.
  • the partition plate 66 is provided between the purge gas region 57 and the source gas region 56.
  • the partition plate 66 has a plurality of holes 66a.
  • a source gas conduit 77 is provided inside the hole 66a.
  • the source gas conduit 77 supplies the source gas Gx to the reaction chamber 10.
  • the source gas conduit 77 is inserted into the holes 60a and 66a.
  • the source gas conduit 77 penetrates the straightening vane 60 and the partition plate 66.
  • the source gas conduit 77 has an annular flange 77a at the upper end.
  • the source gas conduit 77 is removable with respect to the partition plate 66.
  • the outer wall of the source gas conduit 77 is separated from the partition plate 66. There is a gap between the source gas conduit 77 and the partition plate 66.
  • the distance between the outer wall of the source gas conduit 77 and the partition plate 66 (d3 in FIG. 14) is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the distance d3 is a distance when the central axis of the source gas conduit 77 and the center of the hole 66a coincide with each other.
  • the purge gas conduit 78 supplies the purge gas Gy to the reaction chamber 10.
  • the purge gas conduit 78 is inserted into the hole 60a.
  • the purge gas conduit 78 penetrates the straightening vane 60.
  • the purge gas conduit 78 has an annular flange 78a at the upper end.
  • the purge gas conduit 78 is removable with respect to the straightening vane 60.
  • the outer wall of the purge gas conduit 78 is separated from the straightening vane 60.
  • the source gas conduit 77 is inserted inside the purge gas conduit 78.
  • the purge gas conduit 78 and the source gas conduit 77 are separated from each other.
  • the gap between the purge gas conduit 78 and the source gas conduit 77 serves as a flow path for the purge gas Gy.
  • FIG. 15 is an explanatory diagram of the vapor phase growth method of the second embodiment.
  • the source gas Gx is a mixed gas of silane (SiH 4 ), propane (C 3 H 8 ), hydrogen chloride (HCl), and hydrogen gas (H 2 ), and the purge gas Gy is hydrogen chloride (HCl) and hydrogen gas (H).
  • the mixed gas of 2 will be described as an example.
  • a mixed gas of silane, propane, hydrogen chloride, and hydrogen gas which is the source gas Gx, is supplied from the source gas region 56 to the reaction chamber 10 through the source gas conduit 77.
  • the mixed gas of hydrogen chloride and hydrogen gas which is the purge gas Gy, is supplied from the purge gas region 57 to the reaction chamber 10 through the purge gas conduit 78.
  • FIG. 16 is an explanatory diagram of the operation and effect of the vapor phase growth apparatus of the second embodiment.
  • FIG. 16 is a diagram corresponding to FIG.
  • the configuration shown in FIG. 16 is different from the vapor phase growth apparatus 200 of the second embodiment in that the purge gas Gy does not contain chlorine.
  • the purge gas Gy is, for example, hydrogen gas.
  • the contact surface between the flange 77a and the partition plate 66, and the region between the outer wall of the source gas conduit 77 and the partition plate 66 may function as a gas leak path. That is, the source gas Gx may leak from the source gas region 56 to the purge gas region 57 through the region between the outer wall of the source gas conduit 77 and the partition plate 66, as indicated by the dotted arrow in FIG. ..
  • the source gas Gx leaks to the purge gas region 57, the source gas Gx is mixed in the purge gas region 57.
  • the accumulation of the by-product 90 containing silicon between the source gas conduit 77 and the purge gas conduit 78 reduces the atomic concentration of silicon contained in the gas supplied to the reaction chamber 10 via the purge gas conduit 78. Means that. That is, the amount of silicon supplied to the reaction chamber 10 is reduced. Therefore, the amount of silicon supplied to the surface of the wafer W is also reduced. Further, when the by-product 90 containing silicon is deposited between the source gas conduit 77 and the purge gas conduit 78, the silicon contained in the gas supplied to the reaction chamber 10 via the purge gas conduit 78 and the silicon-containing by-product 90 are deposited.
  • the reaction with the product 90 is accelerated, and the atomic concentration of silicon contained in the gas supplied to the reaction chamber 10 via the purge gas conduit 78 decreases with time. Therefore, the reproducibility of the characteristics of the SiC film 11 formed on the surface of the wafer W is lowered. For example, the reproducibility of the film thickness of the SiC film 11 and the reproducibility of the carrier concentration are lowered.
  • the atomic concentration of silicon in the purge gas Gy in the purge gas region 57 after the source gas Gx is mixed is lower than the atomic concentration of silicon in the source gas Gx. Further, the atomic concentration of chlorine in the purge gas Gy after the source gas Gx is mixed is lower than the atomic concentration of chlorine in the source gas Gx.
  • the atomic concentration of chlorine in the source gas Gx is preferably 2 times or more, more preferably 5 times or more the atomic concentration of silicon in the source gas Gx.
  • the atomic concentration of chlorine in the purge gas Gy is preferably lower than the atomic concentration of chlorine in the source gas Gx.
  • the atomic concentration of chlorine in the purge gas Gy is preferably one-half or less, more preferably one-fifth or less, the atomic concentration of chlorine in the source gas Gx.
  • the atomic concentration of chlorine in the purge gas Gy is preferably 1/100 or more, preferably 1/50 or more of the atomic concentration of chlorine in the source gas Gx. It is more preferable to have.
  • the distance d3 between the outer wall of the source gas conduit 77 and the partition plate 66 is preferably 100 ⁇ m or more, and more preferably 250 ⁇ m or more. preferable.
  • the distance d3 between the outer wall of the source gas conduit 77 and the partition plate 66 is preferably 1 mm or less, preferably 750 ⁇ m or less. Is more preferable.
  • the deposition of by-products containing silicon in the gas flow path can be suppressed. Therefore, according to the vapor phase growth apparatus and the vapor phase growth method of the second embodiment, it is possible to improve the reproducibility of the characteristics of the film.
  • the vapor phase growth apparatus and the vapor phase growth method of the third embodiment are different from the vapor phase growth apparatus and the vapor phase growth method of the second embodiment in that the vapor phase growth apparatus is a horizontal vapor phase growth apparatus. ..
  • some descriptions may be omitted with respect to the contents overlapping with the first embodiment or the second embodiment.
  • FIG. 17 is a schematic cross-sectional view of the vapor phase growth apparatus of the third embodiment.
  • the vapor phase growth apparatus 300 of the third embodiment is, for example, an epitaxial growth apparatus for epitaxially growing a single crystal SiC film on a single crystal SiC substrate.
  • the vapor phase growth apparatus 200 of the third embodiment is a horizontal vapor phase growth apparatus in which a process gas is laterally supplied to the surface of the SiC substrate and the process gas to the surface of the SiC substrate.
  • the vapor phase growth apparatus 300 of the third embodiment includes a reaction chamber 10 and a gas introduction unit 12.
  • the reaction chamber 10 includes a susceptor 14 (holder), a rotary shaft 18, a rotary drive mechanism 20, a heater 23, and a gas discharge port 44.
  • the gas introduction unit 12 includes a source gas region 56, a purge gas region 57, a partition plate 66, 67, a top plate 65, a source gas conduit 77, a purge gas conduit 78, a source gas introduction port 86, and a purge gas introduction port 87.
  • the susceptor 14 is an example of a holder.
  • the partition plate 67 is an example of the second partition plate.
  • the partition plate 66 is an example of the first partition plate.
  • the source gas region 56 and the source gas conduit 77 form a first source gas flow path.
  • the purge gas region 57 and the purge gas conduit 78 form a purge gas flow path.
  • the susceptor 14 is provided in the reaction chamber 10. A plurality of wafers W can be placed on the susceptor 14 at the same time.
  • the susceptor 14 is fixed to the rotating shaft 18.
  • the rotation drive mechanism 20 makes it possible to rotate the susceptor 14 by rotating the rotation shaft 18. It is also possible to configure the plurality of wafers W placed on the susceptor 14 to rotate on their own axes.
  • the heater 23 is provided under the susceptor 14.
  • the heater 23 is, for example, a resistance heating heater. Further, the heater 23 may be an induction heating type coil.
  • the gas discharge port 44 is provided on the side surface of the reaction chamber 10.
  • the gas discharge port 44 discharges the surplus reaction product after the source gas reacts on the surface of the wafer W and the surplus process gas from the side surface of the reaction chamber 10 to the outside.
  • the gas introduction unit 12 is provided above the reaction chamber 10.
  • the configuration of the gas introduction unit 12 is the same as that of the gas phase growth apparatus 200 of the second embodiment.
  • the partition plate 67 may have a structure in which a hole corresponding to the purge gas conduit 78 and a plurality of other gas holes are provided, but a structure in which only a hole corresponding to the purge gas conduit 78 is provided may be used.
  • the source gas Gx and the purge gas Gy supplied from the gas introduction unit 12 to the reaction chamber 10 are supplied from the horizontal direction on the surface of the wafer W.
  • the deposition of by-products containing silicon in the gas flow path can be suppressed as in the second embodiment. Therefore, according to the vapor phase growth apparatus and the vapor phase growth method of the third embodiment, it is possible to improve the reproducibility of the characteristics of the film.
  • the gas phase growth apparatus of the fourth embodiment is different from the gas phase growth apparatus of the first embodiment in that the gas introduction unit further includes a conductance adjusting mechanism attached to the source gas conduit.
  • the gas introduction unit further includes a conductance adjusting mechanism attached to the source gas conduit.
  • FIG. 18 is an enlarged schematic cross-sectional view of a part of the gas introduction portion of the gas phase growth apparatus of the fourth embodiment.
  • FIG. 18 is a cross-sectional view including a source gas conduit 71 and a purge gas conduit 74.
  • FIG. 18 is a diagram corresponding to FIG. 2 of the first embodiment.
  • FIG. 18 schematically shows a mass flow controller (MFC) and a control unit provided outside the reaction chamber 10.
  • MFC mass flow controller
  • a conductance adjustment mechanism 79 is attached to the upper part of the source gas conduit 71.
  • the conductance adjusting mechanism 79 has a function of making the combined conductance of the source gas conduit 71 and the conductance adjusting mechanism 79 smaller than that of the source gas conduit 71.
  • the conductance adjusting mechanism 79 is, for example, an annular member having a predetermined inner diameter. A part of the conductance adjusting mechanism 79 is inserted into, for example, the source gas conduit 71.
  • the conductance adjustment mechanism 79 has, for example, an annular flange at the upper end.
  • the conductance adjusting mechanism 79 is removable with respect to the source gas conduit 71.
  • the conductance adjusting mechanism 79 supports its own weight by, for example, mounting the flange on the flange 71a of the source gas conduit 71.
  • the source gas region 51 and the purge gas region 54 each have pressure sensors 91 and 92, respectively.
  • the pressure sensors 91 and 92 can independently measure the internal pressure of the source gas region 51 and the internal pressure of the purge gas region 54.
  • FIG. 19 is an explanatory diagram of the vapor phase growth method of the fourth embodiment.
  • the mixed gas of silane, hydrogen chloride, and hydrogen gas supplied as the source gas G1 passes from the source gas region 51 through the source gas conduit 71 to which the conduction adjustment mechanism 79 is attached, and the reaction chamber 10. Is supplied to.
  • the source gas region 51 and the source gas conduit 71 form a source gas flow path for the source gas G1.
  • the source gas flow path of the source gas G1 is an example of the first source gas flow path.
  • the mixed gas of hydrogen chloride and hydrogen gas which is the purge gas G3 is supplied from the purge gas region 54 to the reaction chamber 10 through the purge gas conduit 74.
  • the purge gas G3 is supplied to the reaction chamber 10 through the gap between the purge gas conduit 74 and the source gas conduit 71.
  • the purge gas region 54 and the purge gas conduit 74 form a purge gas flow path for the purge gas G3.
  • the mixed gas of hydrogen chloride and hydrogen gas which is the purge gas G3, is supplied from the purge gas region 53 to the reaction chamber 10 through the hole 60b of the straightening vane 60.
  • the mass flow controller 94 adjusts the supply amount of hydrogen gas in the purge gas G3 supplied to the purge gas region 54 by the control unit 93.
  • the control unit 93 By adjusting the supply amount of hydrogen gas of the purge gas G3 supplied to the purge gas region 54, the internal pressure of the purge gas region 54 can be adjusted.
  • the supply amount of hydrogen gas in the purge gas G3 supplied to the purge gas region 54 the difference between the internal pressure of the purge gas region 54 and the internal pressure of the source gas region 51 can be adjusted.
  • the internal pressure of the purge gas region 54 can be equal to or higher than the internal pressure of the source gas region 51.
  • the hydrogen gas flow rate of the source gas G1 may be adjusted by the mass flow controller 95.
  • FIG. 20 is an enlarged schematic cross-sectional view of a part of the gas introduction portion of the gas phase growth apparatus of the fourth embodiment.
  • FIG. 20 is a diagram corresponding to FIG.
  • the inner diameter of the conductance adjusting mechanism 79 is adjusted.
  • the combined conductance between the source gas conduit 71 and the conductance adjusting mechanism 79 can be adjusted.
  • the internal pressure of the source gas region 51 can be adjusted.
  • the combined conductance between the source gas conduit 71 and the conductance adjusting mechanism 79 the difference between the internal pressure of the purge gas region 54 and the internal pressure of the source gas region 51 can be adjusted.
  • the inner diameter of the conductance adjusting mechanism 79 shown in FIG. 20 is larger than the inner diameter of the conductance adjusting mechanism 79 shown in FIG.
  • the inner diameter of the conductance adjusting mechanism 79 By increasing the inner diameter of the conductance adjusting mechanism 79, the combined conductance between the source gas conduit 71 and the conductance adjusting mechanism 79 can be increased.
  • the internal pressure in the source gas region 51 By increasing the combined conductance between the source gas conduit 71 and the conductance adjusting mechanism 79, the internal pressure of the purge gas region 54 can be equal to or higher than the internal pressure of the source gas region 51.
  • the internal pressure of the purge gas region 54 and the internal pressure of the source gas region 51 are set based on the internal pressure of the source gas region 51 and the internal pressure of the purge gas region 54 that are independently measured. Adjust the difference. It was
  • the difference between the internal pressure of the purge gas region 54 and the internal pressure of the source gas region 51 is adjusted based on the amount of silicon-containing particles supplied to the surface of the wafer W.
  • the amount of hydrogen gas supplied in the purge gas G3 supplied to the purge gas region 54 and the amount of hydrogen gas supplied in the source gas G1 supplied to the source gas region 51 so that the density of silicon-containing particles is reduced. Since the amount of hydrogen gas supplied, the inner diameter of the conductance adjusting mechanism 79, and the like may be adjusted, each of the source gas region 51 and the purge gas region 54 may not be provided with the pressure sensors 91 and 92, respectively.
  • the density of the silicon-containing particles supplied to the surface of the wafer W is determined by, for example, introducing the wafer W into the vapor phase growth apparatus 100, then raising the temperature of the wafer W to near the growth temperature of the SiC film, and further forming the SiC film.
  • the wafer W carried out from the vapor phase growth apparatus 100 without being grown can be evaluated by performing measurements such as Raman spectroscopy or an optical microscope.
  • the density of the silicon-containing particles supplied to the surface of the wafer W is preferably 100 particles / cm 2 or less, more preferably 10 particles / cm 2 or less, and 1.0 particle / cm 2 or less. Is even more desirable.
  • small pits or bumps may be formed on the single crystal SiC film formed on the surface of the wafer W.
  • FIG. 21 is an explanatory diagram of the actions and effects of the vapor phase growth apparatus and the vapor phase growth method of the fourth embodiment.
  • FIG. 21 is a diagram corresponding to FIG.
  • the contact surface between the flange 71a and the partition plate 63, and the region between the outer wall of the source gas conduit 71 and the partition plate 63 may function as a gas leak path. That is, the source gas G1 may leak from the source gas region 51 to the purge gas region 54 through the region between the outer wall of the source gas conduit 71 and the partition plate 63, as shown by the dotted arrow in FIG. .. When the source gas G1 leaks to the purge gas region 54, the source gas G1 is mixed in the purge gas region 54.
  • silicon is formed between the source gas conduit 71 and the purge gas conduit 74 as shown in FIG.
  • the containing by-product 90 is deposited.
  • the by-product of silicon is etched by chlorine. Will be done. Therefore, the by-product 90 containing silicon is suppressed from being deposited in the gas flow path to the reaction chamber 10.
  • the conductance adjusting mechanism 79 when the conductance adjusting mechanism 79 is attached to the source gas conduit 71, the internal pressure of the source gas region 51 becomes high, and the difference between the internal pressure of the purge gas region 54 and the internal pressure of the source gas region 51 becomes large, so that the source The amount of source gas G1 leaking from the gas region 51 to the purge gas region 54 increases. Therefore, the effect of suppressing the deposition of the by-product 90 containing silicon by chlorine in the purge gas G3 becomes insufficient, and a large amount of the by-product 90 may be formed.
  • silicon-containing particles may be formed by a gas phase reaction between the source gas conduit 71 and the purge gas conduit 74 due to the increase in the concentration of the source gas G1 in the purge gas G3.
  • the silicon-containing particles supplied to the surface of the wafer W adhere to it, which may cause small pits or bumps generated in the single crystal SiC film.
  • the source gas region 51 leaks to the purge gas region 54 by adjusting the difference between the internal pressure of the purge gas region 54 and the internal pressure of the source gas region 51. Suppress the amount of source gas G1.
  • the internal pressure of the purge gas region 54 equal to or higher than the internal pressure of the source gas region 51
  • the amount of the source gas G1 leaking from the source gas region 51 to the purge gas region 54 is suppressed. Therefore, the by-product 90 containing silicon is suppressed from being deposited in the gas flow path to the reaction chamber 10.
  • the gas phase reaction that occurs between the source gas conduit 71 and the purge gas conduit 74 is suppressed. Therefore, the silicon-containing particles supplied to the surface of the wafer W are reduced, and the formation of small pits and bumps in the single crystal SiC film is suppressed.
  • the deposition of by-products containing silicon in the gas flow path can be suppressed as in the first embodiment. Therefore, according to the vapor phase growth apparatus and the vapor phase growth method of the fourth embodiment, it is possible to improve the reproducibility of the characteristics of the film. In addition, the formation of small pits and bumps on the SiC film is suppressed.
  • the present invention can also be applied to the formation of a polycrystalline or amorphous SiC film.
  • the wafer of single crystal SiC has been described as an example of the substrate, but the substrate is not limited to the wafer of single crystal SiC.
  • nitrogen has been described as an example of the n-type impurity, but for example, phosphorus (P) can be applied as the n-type impurity. It is also possible to apply p-type impurities as impurities.
  • the case where the conduit has a cylindrical shape has been described as an example, but the shape of the conduit is not limited to the cylindrical shape and may be any other shape.
  • the case where the opening cross section of the conduit is circular has been described as an example, but the opening cross section of the conduit is not limited to the circular shape, and may have other shapes such as an ellipse, a square, and a rectangle.
  • the present invention can be used to improve the reproducibility of the characteristics of the film. Further, for example, the present invention can be used when it is desired to improve the uniformity of the characteristics of the film with the same vapor phase growth apparatus.
  • the leak path is formed by providing the removable gas pipe
  • the present invention is also applied to other gas phase growth devices in which the leak path exists in the gas introduction portion. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

実施形態の気相成長装置は、反応室と、反応室の中に設けられ基板を載置するホルダと、シリコンと塩素を含む第1のソースガスを反応室の中に供給する第1のソースガス流路と、シリコンと塩素を含み、第1のソースガスのシリコンの原子濃度よりもシリコンの原子濃度が低いパージガスを反応室の中に供給するパージガス流路と、を備える。

Description

気相成長装置及び気相成長方法
 本発明は、基板にガスを供給して膜の形成を行う気相成長装置及び気相成長方法に関する。
 高品質な半導体膜を形成する方法として、基板の表面に気相成長により単結晶膜を形成するエピタキシャル成長技術がある。エピタキシャル成長技術を用いる気相成長装置では、常圧又は減圧に保持された反応室の中のホルダに基板を載置する。
 そして、基板を加熱しながら、膜の原料を含むプロセスガスを、反応室の上部のガス導入部を経由して反応室に供給する。基板の表面ではプロセスガスの熱反応が生じ、基板の表面にエピタキシャル単結晶膜が形成される。
 このような気相成長装置では、同一プロセス条件で形成する膜の特性の再現性が得られない場合がある。この原因として、例えば、ウェハ上に供給されるプロセスガスの中の膜の原料の濃度の経時変化があげられる。
特開2016-162921号公報
 本発明が解決しようとする課題は、膜の特性の再現性を向上させることが可能な気相成長装置を提供することにある。
 本発明の一態様の気相成長装置は、反応室と、前記反応室の中に設けられ基板を載置するホルダと、シリコンと塩素を含む第1のソースガスを前記反応室の中に供給する第1のソースガス流路と、シリコンと塩素を含み、前記第1のソースガスのシリコンの原子濃度よりもシリコンの原子濃度が低いパージガスを前記反応室の中に供給するパージガス流路と、を備える。
 本発明の一態様の気相成長装置は、反応室と、前記反応室の中に設けられ基板を載置するホルダと、前記反応室の上に設けられたガス導入部であって、シリコンと塩素を含むソースガスが導入されるソースガス領域と、前記ソースガス領域と前記反応室との間に設けられ、塩素を含むパージガスが導入されるパージガス領域と、前記ソースガス領域と前記パージガス領域との間に設けられる第1の仕切り板と、前記パージガス領域と前記反応室との間に設けられる第2の仕切り板と、前記第1の仕切り板と前記第2の仕切り板とを貫通し、前記ソースガスを前記反応室に供給するソースガス導管と、前記第2の仕切り板を貫通し、前記ソースガス導管が挿入され、前記ソースガス導管との間隙から前記ソースガスのシリコンの原子濃度よりも低い原子濃度のシリコンを含む前記パージガスを前記反応室に供給するパージガス導管と、を含み、前記ソースガス導管と前記第1の仕切り板との間に間隙を有するガス導入部と、を備える。
 本発明の一態様の気相成長方法は、反応室と、前記反応室の中に設けられ基板を載置するホルダと、ソースガスを前記反応室の中に供給するソースガス流路と、パージガスを前記反応室の中に供給するパージガス流路と、を備える気相成長装置を用いた気相成長方法であって、前記ソースガス流路から、シリコンと塩素を含むソースガスを前記反応室に供給し、前記パージガス流路から、シリコンと塩素を含み、前記ソースガスよりもシリコンの原子濃度が低いパージガスを前記反応室に供給し、前記基板の表面に炭化珪素膜を形成する。
 本発明によれば、膜の特性の再現性を向上させることが可能な気相成長装置が実現できる。
第1の実施形態の気相成長装置の模式断面図。 第1の実施形態の気相成長装置のガス室の一部の拡大模式断面図。 第1の実施形態の気相成長装置のガス室の一部の拡大模式断面図。 第1の実施形態の気相成長装置のガス室の一部の拡大模式断面図。 第1の実施形態の気相成長方法の説明図。 第1の実施形態の気相成長方法の説明図。 第1の実施形態の気相成長方法の説明図。 第1の実施形態の気相成長装置の作用及び効果の説明図。 第1の実施形態の気相成長装置の作用及び効果の説明図。 第1の実施形態の気相成長装置の変形例のガス室の一部の拡大模式断面図。 第1の実施形態の気相成長方法の変形例の説明図。 第1の実施形態の気相成長装置の変形例の作用及び効果の説明図。 第2の実施形態の気相成長装置の模式断面図。 第2の実施形態の気相成長装置のガス室の一部の拡大模式断面図。 第2の実施形態の気相成長方法の説明図。 第2の実施形態の気相成長装置の作用及び効果の説明図。 第3の実施形態の気相成長装置の模式断面図。 第4の実施形態の気相成長装置のガス室の一部の拡大模式断面図。 第4の実施形態の気相成長方法の説明図。 第4の実施形態の気相成長装置のガス室の一部の拡大模式断面図。 第4の実施形態の気相成長装置の作用及び効果の説明図。
 以下、本発明の実施形態について図面を参照しつつ説明する。
 本明細書中、同一又は類似の部材について、同一の符号を付す場合がある。
 本明細書中、気相成長装置が膜の形成が可能に設置された状態での重力方向を「下」と定義し、その逆方向を「上」と定義する。したがって、「下部」とは、基準に対し重力方向の位置、「下方」とは基準に対し重力方向を意味する。そして、「上部」とは、基準に対し重力方向と逆方向の位置、「上方」とは基準に対し重力方向と逆方向を意味する。また、「縦方向」とは重力方向である。
 また、本明細書中、「プロセスガス」とは、膜の形成のために用いられるガスの総称であり、例えば、ソースガス、アシストガス、ドーパントガス、キャリアガス、パージガス、及び、それらの混合ガスを含む概念とする。
(第1の実施形態)
 第1の実施形態の気相成長装置は、反応室と、反応室の中に設けられ基板を載置するホルダと、シリコンと塩素を含む第1のソースガスを反応室の中に供給する第1のソースガス流路と、シリコンと塩素を含み、第1のソースガスのシリコンの原子濃度よりもシリコンの原子濃度が低いパージガスを反応室の中に供給するパージガス流路と、を備える。
 また、第1の実施形態の気相成長装置は、反応室と、反応室の中に設けられ基板を載置するホルダと、反応室の上に設けられたガス導入部であって、シリコンと塩素を含むソースガスが導入されるソースガス領域と、ソースガス領域と反応室との間に設けられ、塩素を含むパージガスが導入されるパージガス領域と、ソースガス領域とパージガス領域との間に設けられる第1の仕切り板と、パージガス領域と反応室との間に設けられる第2の仕切り板と、第1の仕切り板と第2の仕切り板とを貫通し、ソースガスを反応室に供給するソースガス導管と、第2の仕切り板を貫通し、ソースガス導管が挿入され、ソースガス導管との間隙からソースガスのシリコンの原子濃度よりも低い原子濃度のシリコンを含むパージガスを反応室に供給するパージガス導管と、を含み、ソースガス導管と第1の仕切り板との間に間隙を有するガス導入部と、を備える。
 図1は、第1の実施形態の気相成長装置の模式断面図である。第1の実施形態の気相成長装置100は、例えば、単結晶のSiC基板上に単結晶のSiC膜をエピタキシャル成長させる枚葉型のエピタキシャル成長装置である。第1の実施形態の気相成長装置100は、SiC基板の表面に、プロセスガスが縦方向に供給される縦型の気相成長装置である。
 第1の実施形態の気相成長装置100は、反応室10、ガス導入部12を備える。反応室10は、サセプタ14(ホルダ)、回転体16、回転軸18、回転駆動機構20、第1のヒータ22、リフレクタ28、支持柱30、固定台32、固定軸34、フード40、第2のヒータ42、及びガス排出口44を含む。ガス導入部12は、ソースガス領域51、52、パージガス領域53、54、55、整流板60、仕切り板61、62、63、64、天板65、ソースガス導管71、72、パージガス導管73、74、75、ガスキャップ76、ソースガス導入口81、82、パージガス導入口83、84、85を含む。
 サセプタ14は、ホルダの一例である。仕切り板63は、第1の仕切り板の一例である。仕切り板62は、第2の仕切り板の一例である。
 ソースガス領域51及びソースガス導管71は、ソースガスG1の第1のソースガス流路を形成する。ソースガス領域52及びソースガス導管72は、ソースガスG2の第2のソースガス流路を形成する。パージガス領域53及びパージガス導管73、パージガス領域54及びパージガス導管74、パージガス領域55及びパージガス導管75は、それぞれパージガスG3のパージガス流路を形成する。
 ソースガスG1は、第1のソースガスの一例である。ソースガスG2は、第2のソースガスの一例である。
 反応室10は、例えば、ステンレス製である。反応室10は、円筒形状の壁を有する。反応室10内で、ウェハW上にSiC膜を形成する。ウェハWは基板の一例である。
 サセプタ14は、反応室10の中に設けられる。サセプタ14には、ウェハWが載置可能である。サセプタ14には、中心部に開口部が設けられていても構わない。サセプタ14は、ホルダの一例である。
 サセプタ14は、例えば、SiCやカーボン、又は、SiCやTaCでコートしたカーボン等の耐熱性の高い材料で形成される。
 サセプタ14は、回転体16の上部に固定される。回転体16は、回転軸18に固定される。サセプタ14は、間接的に回転軸18に固定される。
 回転軸18は、回転駆動機構20によって回転可能である。回転駆動機構20により、回転軸18を回転させることによりサセプタ14を回転させることが可能である。サセプタ14を回転させることにより、サセプタ14に載置されたウェハWを回転させることが可能である。
 回転駆動機構20により、例えば、ウェハWを300rpm以上3000rpm以下の回転速度で回転させることが可能である。回転駆動機構20は、例えば、モータとベアリングで構成される。
 第1のヒータ22は、サセプタ14の下に設けられる。第1のヒータ22は、回転体16内に設けられる。第1のヒータ22は、サセプタ14に保持されたウェハWを下方から加熱する。第1のヒータ22は、例えば、抵抗加熱ヒータである。第1のヒータ22は、例えば、櫛形のパターンが施された円板状である。なお、第1のヒータ22は、ウェハの外周部を加熱する外周ヒータと、ウェハの内周部を加熱する内周ヒータとに分割されていてもよい(不図示)。
 リフレクタ28は、第1のヒータ22の下に設けられる。リフレクタ28とサセプタ14との間に、第1のヒータ22が設けられる。
 リフレクタ28は、第1のヒータ22から下方に放射される熱を反射し、ウェハWの加熱効率を向上させる。また、リフレクタ28は、リフレクタ28より下方の部材が加熱されるのを防止する。リフレクタ28は、例えば、円板状である。リフレクタ28は、例えば、SiCで被覆したカーボン等の耐熱性の高い材料で形成される。
 リフレクタ28は、例えば、複数の支持柱30によって、固定台32に固定される。固定台32は、例えば、固定軸34によって支持される。
 回転体16内には、サセプタ14を回転体16から脱着させるために、突き上げピン(図示せず)が設けられる。突き上げピンは、例えば、リフレクタ28、及び、第1のヒータ22を貫通する。
 第2のヒータ42は、フード40と反応室10の内壁との間に設けられる。第2のヒータ42は、サセプタ14に保持されたウェハWを上方から加熱する。ウェハWを第1のヒータ22に加えて第2のヒータ42で加熱することにより、ウェハWをSiC膜の成長に必要とされる温度、例えば、1500℃以上の温度に加熱することが可能となる。第2のヒータ42は、例えば、抵抗加熱ヒータである。
 フード40は、例えば、円筒形状である。フード40は、第2のヒータ42にプロセスガスが接することを防ぐ機能を備える。フード40は、例えば、SiCで被覆したカーボン等の耐熱性の高い材料で形成される。
 ガス排出口44は、反応室10の底部に設けられる。ガス排出口44は、ウェハW表面でソースガスが反応した後の余剰の反応生成物、及び、余剰のプロセスガスを反応室10の外部に排出する。ガス排出口44は、例えば、図示しない真空ポンプに接続される。
 また、反応室10には、図示しないウェハ出入口及びゲートバルブが設けられている。ウェハ出入口及びゲートバルブにより、ウェハWを反応室10内に搬入したり、反応室10外に搬出したりすることが可能である。
 ガス導入部12は、反応室10の上に設けられる。
 ガス導入部12には、ソースガスG1をガス導入部12の中に導入するための、ソースガス導入口81が設けられる。第1のソースガスであるソースガスG1は、ソースガス導入口81からソースガス領域51に導入される。
 ガス導入部12には、ソースガスG2をガス導入部12の中に導入するための、ソースガス導入口82が設けられる。第2のソースガスであるソースガスG2は、ソースガス導入口82からソースガス領域52に導入される。
 ガス導入部12には、パージガスG3をガス導入部12の中に導入するための、パージガス導入口83、84、85が設けられる。パージガスG3は、パージガス導入口83からパージガス領域53に導入される。パージガスG3は、パージガス導入口84からパージガス領域54に導入される。また、パージガスG3は、パージガス導入口85からパージガス領域55に導入される。
 なお、パージガス導入口83、84、85から、それぞれ、パージガス領域53、54、55に導入されるパージガスG3は、ソースガスを含まないガスである。また、パージガス導入口83、84、85から、それぞれ、パージガス領域53、54、55に導入されるパージガスG3は、図1において同一の符号で表されているが、アシストガスやキャリアガスなどの流量が独立に制御されてもよい。
 ソースガスG1は、シリコン(Si)のソースガスである。ソースガスG1は、シリコン(Si)及び塩素(Cl)を含む。ソースガスG1は、例えば、シラン(SiH)、塩化水素(HCl)、及び水素ガス(H)の混合ガスである。
 塩化水素(HCl)は、シリコンのクラスター化を抑制するアシストガスである。また、塩化水素は、ソースガスG1の流路に堆積するシリコンを含む副生成物をエッチングする機能を有する。
 水素ガス(H)は、キャリアガスである。キャリアガスとして、例えば、アルゴンガス(Ar)を用いることも可能である。
 ソースガスG2は、炭素(C)のソースガスである。ソースガスG2は、炭素(C)を含む。ソースガスG2は、例えば、炭化水素を含む。ソースガスG2は、例えば、プロパン(C)及び水素ガス(H)の混合ガスである。
 ソースガスG2は、例えば、n型不純物のドーパントガスを含む。n型不純物のドーパントガスは、例えば、窒素ガスである。
 パージガスG3は、反応室10に供給されたソースガスが、パージガス導管73、74、75の内部に反応室10側から回り込むことを抑制する機能を有する。すなわち、パージガスG3を供給することによって、パージガス導管73、74、75の内部に反応室10側からソースガスが回り込み、パージガス導管73、74、75の内部に堆積物が形成されることを抑制する。また、パージガスG3は、塩素(Cl)を含む。パージガスG3は、例えば、塩化水素(HCl)を含む。パージガスG3は、例えば、塩化水素(HCl)と水素ガス(H)の混合ガスである。
 塩化水素(HCl)は、シリコンを含む副生成物のエッチングガスである。水素ガス(H)にかえて、例えば、アルゴンガス(Ar)を用いることも可能である。
 パージガスG3の塩素の原子濃度は、例えば、第1のソースガスの塩素の原子濃度よりも低い。パージガスG3の塩素の原子濃度は、例えば、第1のソースガスの塩素の原子濃度の5分の1以下である。なお、パージガスG3は、パージガス領域53、54、55で、それぞれ異なる混合比、異なるガス種を用いてもよい。
 ソースガス領域51には、ソースガスG1が導入される。ソースガス領域51は、パージガス領域54とパージガス領域55との間に設けられる。
 ソースガス領域52には、ソースガスG2が導入される。ソースガス領域52は、ソースガス領域51と反応室10との間に設けられる。また、ソースガス領域52は、パージガス領域53とパージガス領域54との間に設けられる。
 パージガス領域53には、パージガスG3が導入される。パージガス領域53は、パージガス領域54と反応室10との間に設けられる。また、パージガス領域53は、ソースガス領域52と反応室10との間に設けられる。
 パージガス領域54には、パージガスG3が導入される。パージガス領域54は、ソースガス領域51と反応室10との間に設けられる。また、パージガス領域54は、ソースガス領域51とソースガス領域52との間に設けられる。
 パージガス領域55には、パージガスG3が導入される。パージガス領域55と反応室10との間に、ソースガス領域51が設けられる。
 整流板60は、反応室10とパージガス領域53との間に設けられる。整流板60は、複数の穴60aと複数の穴60bを有する。
 仕切り板61は、パージガス領域53とソースガス領域52の間に設けられる。仕切り板61は、複数の穴61aを有する。
 仕切り板62は、パージガス領域54と反応室10との間に設けられる。仕切り板62は、ソースガス領域52とパージガス領域54との間に設けられる。仕切り板62は、複数の穴62aを有する。
 仕切り板63は、ソースガス領域51とパージガス領域54との間に設けられる。仕切り板63は、穴63aを有する。
 仕切り板64は、パージガス領域55とソースガス領域51との間に設けられる。仕切り板64は、複数の穴64aを有する。
 天板65は、パージガス領域55の上に設けられる。
 図2は、第1の実施形態の気相成長装置のガス導入部の一部の拡大模式断面図である。図2は、ソースガス導管71及びパージガス導管74を含む断面図である。
 ソースガス導管71は、反応室にソースガスG1を供給する。ソースガス導管71は、穴60a、61a、62a、63aに挿入される。ソースガス導管71は、整流板60、仕切り板61、62、63を貫通する。
 ソースガス導管71は、上端に環状のフランジ71aを有する。ソースガス導管71は、仕切り板63に対して取り外し可能である。ソースガス導管71は、フランジ71aが仕切り板63に載置されることで自重を支える。
 反応室10からガス導入部12への入熱によって、ソースガス導管71や仕切り板63は熱膨張するため、ソースガス導管71と仕切り板63とは、ねじ等によって固定されていない。ソースガス導管71と仕切り板63とをねじ等によって固定してしまうと、熱膨張や歪の違いによって、ソースガス導管71や仕切り板63が割れることがあり、好ましくない。したがって、フランジ71aと仕切り板63との接触面において、ソースガス領域51とパージガス領域54との間の、完全な気密性を得ることができない。
 ソースガス導管71の外壁は、仕切り板63と離間する。ソースガス導管71と仕切り板63との間に間隙がある。ソースガス導管71の外壁と仕切り板63との間の距離(図2中のd1)は、例えば、100μm以上1mm以下である。距離d1は、ソースガス導管71の中心軸と、穴63aの中心とが一致する場合の距離である。
 ソースガス導管71の外壁と仕切り板63との間の領域、及び、フランジ71aと仕切り板63との接触面は、プロセスガスのリーク経路として機能することがある。例えば、ソースガスG1が、フランジ71aと仕切り板63との接触面、及び、ソースガス導管71の外壁と仕切り板63との間の領域を通って、ソースガス領域51からパージガス領域54にリークすることがある。ソースガスG1がパージガス領域54にリークすることにより、パージガス領域54にソースガスG1が混合する。
 パージガス導管74は、反応室10にパージガスG3を供給する。パージガス導管74は、穴60a、61a、62aに挿入される。パージガス導管74は、整流板60、仕切り板61、62を貫通する。
 パージガス導管74は、上端に環状のフランジ74aを有する。パージガス導管74は、仕切り板62に対して取り外し可能である。パージガス導管74は、フランジ74aが仕切り板62に載置されることで自重を支える。パージガス導管74の外壁は、仕切り板62と離間する。
 反応室10からガス導入部12への入熱によって、パージガス導管74や仕切り板62は熱膨張するため、パージガス導管74と仕切り板62とは、ねじ等によって固定されていない。パージガス導管74と仕切り板62とをねじ等によって固定してしまうと、熱膨張や歪の違いによって、パージガス導管74や仕切り板62が割れることがあり、好ましくない。したがって、フランジ74aと仕切り板62との接触面において、ソースガス領域52とパージガス領域54との間の、完全な気密性を得ることができない。
 パージガス導管74の内側には、ソースガス導管71が挿入される。パージガス導管74とソースガス導管71は離間する。パージガス導管74とソースガス導管71との間に間隙がある。パージガス導管74とソースガス導管71との間の間隙が、パージガスG3の流路となる。
 ガスキャップ76は、穴64aに挿入され、穴64aを塞ぐ。ガスキャップ76はパージガス領域55とソースガス領域51との間のプロセスガスの移動を抑制する。
 ガスキャップ76は、上端に環状のフランジ76aを有する。ガスキャップ76は、反応室10へ向かう導管を有さないことから、反応室10からガス導入部12へ入熱する熱量が伝わりにくく、熱膨張も小さい。このためガスキャップ76は、ガスキャップ76に備えられた図示しない固定部によって、フランジ76aと仕切り板64との接触面における気密性が得られるよう、固定されてもよい。ガスキャップ76は取り外し可能である。
 図3は、第1の実施形態の気相成長装置のガス導入部の一部の拡大模式断面図である。図3は、ソースガス導管72及びパージガス導管73を含む断面図である。
 ソースガス導管72は、反応室にソースガスG2を供給する。ソースガス導管72は、穴60a、穴61aに挿入される。ソースガス導管72は、整流板60及び仕切り板61を貫通する。
 ソースガス導管72は、上端に環状のフランジ72aを有する。ソースガス導管72は、仕切り板61に対して取り外し可能である。ソースガス導管72は、フランジ72aが仕切り板61に載置されることで自重を支える。ソースガス導管72の外壁は、仕切り板61と離間する。
 反応室10からガス導入部12への入熱によって、ソースガス導管72や仕切り板61は熱膨張するため、ソースガス導管72と仕切り板61とは、ねじ等によって固定されていない。ソースガス導管72と仕切り板61とをねじ等によって固定してしまうと、熱膨張や歪の違いによって、ソースガス導管72や仕切り板61が割れることがあり、好ましくない。したがって、フランジ72aと仕切り板61との接触面において、ソースガス領域52とパージガス領域53との間の、完全な気密性を得ることができない。
 パージガス導管73は、反応室10にパージガスG3を供給する。パージガス導管73は、穴60aに挿入される。パージガス導管73は、整流板60を貫通する。
 パージガス導管73は、上端に環状のフランジ73aを有する。パージガス導管73は、整流板60に対して取り外し可能である。パージガス導管73は、フランジ73aが整流板60に載置されることで自重を支える。パージガス導管73の外壁は、整流板60と離間する。
 パージガス導管73の内側には、ソースガス導管72が挿入される。パージガス導管73とソースガス導管72は離間する。パージガス導管73とソースガス導管72との間が、パージガスG3の流路となる。なお、パージガス導管73は、整流板60の穴60aで置き換えることもできる。
 図4は、第1の実施形態の気相成長装置のガス導入部の一部の拡大模式断面図である。図4は、パージガス導管75及びパージガス導管74を含む断面図である。
 パージガス導管75は、反応室にパージガスG3を供給する。パージガス導管75は、穴60a、61a、62a、63a、64aに挿入される。パージガス導管75は、整流板60、仕切り板61、62、63、64を貫通する。
 パージガス導管75は、上端に環状のフランジ75aを有する。パージガス導管75は、仕切り板64に対して取り外し可能である。パージガス導管75は、フランジ75aが仕切り板64に載置されることで自重を支える。
 反応室10からガス導入部12への入熱によって、パージガス導管75や仕切り板64は熱膨張するため、パージガス導管75と仕切り板64とは、ねじ等によって固定されていない。パージガス導管75と仕切り板64とをねじ等によって固定してしまうと、熱膨張や歪の違いによって、パージガス導管75や仕切り板64が割れることがあり、好ましくない。したがって、フランジ75aと仕切り板64との接触面において、パージガス領域55とソースガス領域51との間の、完全な気密性を得ることができない。
 パージガス導管75の外壁は、仕切り板63及び仕切り板64と離間する。パージガス導管75の外壁と仕切り板63との間の距離(図4中のd2)、パージガス導管75の外壁と仕切り板64との間の距離(図4中のd2)は、例えば、100μm以上1mm以下である。距離d2は、パージガス導管75の中心軸と、穴63aの中心とが一致する場合の距離である。距離d2は、パージガス導管75の中心軸と、穴64aの中心とが一致する場合の距離である。
 パージガス導管75の外壁と仕切り板64との間の領域、及び、フランジ75aと仕切り板64との接触面は、プロセスガスのリーク経路として機能することがある。例えば、ソースガス領域51に導入されたソースガスG1が、フランジ75aと仕切り板64との接触面、及び、パージガス導管75の外壁と仕切り板64との間の領域を通って、ソースガス領域51からパージガス領域55にリークすることがある。ソースガスG1がパージガス領域55にリークすることにより、パージガス領域55にソースガスG1が混合する。
 パージガス導管74の内側には、パージガス導管75が挿入される。パージガス導管74とパージガス導管75は離間する。パージガス導管74とパージガス導管75との間に間隙がある。パージガス導管74とパージガス導管75との間の間隙が、パージガスG3の流路となる。
 ソースガス導管71、72、パージガス導管73、74、75、及びガスキャップ76は、耐熱性の高い材料、例えば、SiCで被覆したカーボンで形成される。また、整流板60、仕切り板61、62、63、64は、耐熱性の高い材料、例えば、SiCで被覆したカーボンで形成される。
 次に、第1の実施形態の気相成長方法について説明する。第1の実施形態の気相成長方法は、反応室と、反応室の中に設けられ基板を載置するホルダと、ソースガスを反応室の中に供給するソースガス流路と、パージガスを反応室の中に供給するパージガス流路と、を備える気相成長装置を用いた気相成長方法であって、ソースガス流路から、シリコンと塩素を含むソースガスを反応室に供給し、パージガス流路から、シリコンと塩素を含み、ソースガスよりもシリコンの原子濃度が低いパージガスを反応室に供給し、基板の表面に炭化珪素膜を形成する。
 第1の実施形態の気相成長方法は、図1に示す気相成長装置100を用いる。単結晶SiCのウェハWの表面に、単結晶のSiC膜11(炭化珪素膜)を形成する場合を例に説明する。
 図5、図6、及び図7は、第1の実施形態の気相成長方法の説明図である。
 最初に、ウェハWを載置したサセプタ14を、反応室10内に搬入する。ウェハWは、単結晶SiCである。
 次に、ウェハWを回転駆動機構20により300rpm以上の回転速度で回転させる。そして、ウェハWを第1のヒータ22、及び、第2のヒータ42により加熱する。
 次に、ソースガス導入口81からソースガスG1をソースガス領域51に導入する。また、ソースガス導入口82からソースガスG2をソースガス領域52に導入する。また、パージガス導入口83、84、85からパージガスG3を、パージガス領域53、54、55に導入する。
 以下、ソースガスG1がシラン(SiH)、塩化水素(HCl)、及び水素ガス(H)の混合ガス、ソースガスG2がプロパン(C)及び水素ガス(H)の混合ガス、パージガスG3が塩化水素(HCl)と水素ガス(H)の混合ガスの場合を例に説明する。
 後述するように、パージガス領域54には、ソースガス導管71の外壁と仕切り板63との間の領域、及び、フランジ71aと仕切り板63との接触面を介して、ソースガス領域51から、ソースガスG1が混合しやすい。また、パージガス領域55には、パージガス導管75の外壁と仕切り板64との間の領域、及び、フランジ75aと仕切り板64との接触面を介して、ソースガス領域51から、ソースガスG1が混合しやすい。したがって、パージガス領域54、55には、シランが少量含まれやすい。すなわち、パージガス領域54、55には、シリコンが少量含まれることがある。
 パージガス領域54、55の中のパージガスG3のシリコンの原子濃度は、ソースガス領域51の中のソースガスG1のシリコンの原子濃度よりも低い。パージガス領域54、55の中のパージガスG3のシリコンの原子濃度は、例えば、ソースガス領域51のソースガスG1のシリコンの原子濃度の100分の1以下である。
 図5に示すように、ソースガスG1として供給するシラン、塩化水素、及び水素ガスの混合ガスは、ソースガス領域51からソースガス導管71を通って、反応室10に供給される。ソースガス領域51及びソースガス導管71がソースガスG1のソースガス流路を形成する。ソースガスG1のソースガス流路は、第1のソースガス流路の一例である。
 また、図5に示すように、パージガスG3である塩化水素と水素ガスの混合ガスは、パージガス領域54からパージガス導管74を通って、反応室10に供給される。パージガスG3は、パージガス導管74とソースガス導管71との間の間隙を通って、反応室10に供給される。パージガス領域54とパージガス導管74がパージガスG3のパージガス流路を形成する。
 また、図5に示すように、パージガスG3である塩化水素と水素ガスの混合ガスは、パージガス領域53から整流板60の穴60bを通って、反応室10に供給される。
 図6に示すように、ソースガスG2であるプロパン及び水素ガスの混合ガスは、ソースガス領域52からソースガス導管72を通って、反応室10に供給される。ソースガス領域52及びソースガス導管72がソースガスG2のソースガス流路を形成する。ソースガスG2のソースガス流路は、第2のソースガス流路の一例である。
 また、図6に示すように、パージガスG3である塩化水素と水素ガスの混合ガスは、パージガス領域53からパージガス導管73を通って、反応室10に供給される。
 図7に示すように、パージガスG3である塩化水素と水素ガスの混合ガスは、パージガス領域55からパージガス導管75を通って、反応室10に供給される。パージガス領域55及びパージガス導管75がパージガスG3のパージガス流路を形成する。また、パージガスG3である塩化水素と水素ガスの混合ガスは、パージガス領域54からパージガス導管74を通って、反応室10に供給される。パージガス領域54及びパージガス導管74がパージガスG3のパージガス流路を形成する。
 ガス導入部12から反応室10に供給されたソースガスG1、ソースガスG2、及びパージガスG3は、ウェハWの表面に向かうガス流となる。ソースガスG1に含まれるSi原子とソースガスG2に含まれるC原子とが、ウェハWの表面で反応することにより、ウェハWの表面に単結晶のSiC膜11が形成される。
 SiC膜11を形成した後、第1のヒータ22、及び、第2のヒータ42による加熱を停止し、ウェハWの温度を下げる。その後、サセプタ14とともにウェハWを反応室10から搬出する。
 次に、第1の実施形態の気相成長装置、及び、気相成長方法の作用及び効果について説明する。
 第1の実施形態の気相成長装置100は、図5に示すように、パージガス導管74の内側に、ソースガス導管71が挿入される。ソースガス導管71とパージガス導管74が二重管構造を備える。
 ソースガス導管71から反応室10にソースガスG1を供給する際に、ソースガスG1を囲むように、パージガス導管74からパージガスG3が反応室10に供給される。
 第1の実施形態の気相成長装置100は、図6に示すように、パージガス導管73の内側に、ソースガス導管72が挿入される。ソースガス導管72とパージガス導管73が二重管構造を備える。
 ソースガス導管72から反応室10にソースガスG2を供給する際に、ソースガスG2を囲むように、パージガス導管73からパージガスG3が反応室10に供給される。
 第1の実施形態の気相成長装置100において、図2に示すように、ソースガス導管71の外壁は、仕切り板63と距離d1だけ離間している。このため、例えば、ソースガス導管71が反応室10側の端部からヒータ42により加熱され、熱膨張したとしても、ソースガス導管71又は仕切り板63が破損することが抑制される。
 また、第1の実施形態の気相成長装置100において、図4に示すように、パージガス導管75の外壁は、仕切り板63、64とそれぞれ距離d2だけ離間している。このため、例えば、パージガス導管75が反応室10側の端部から第2のヒータ42により加熱され、熱膨張したとしても、パージガス導管75、仕切り板63、64が破損することが抑制される。
 図8及び図9は、第1の実施形態の気相成長装置の作用及び効果の説明図である。図8は、図5に対応する図である。図9は、図6に対応する図である。
 図8に示す構成は、パージガスG3が塩素を含まない点で、第1の実施形態の気相成長装置100と異なる。パージガスG3は、例えば、水素ガスである。
 図8に示すように、フランジ71aと仕切り板63の接触面、及び、ソースガス導管71の外壁と仕切り板63との間の領域は、ガスのリーク経路として機能することがある。すなわち、ソースガスG1が、図8において点線矢印で示すように、ソースガス導管71の外壁と仕切り板63との間の領域を通って、ソースガス領域51からパージガス領域54にリークすることがある。ソースガスG1がパージガス領域54にリークすることにより、パージガス領域54にソースガスG1が混合する。
 パージガス領域54に、ソースガスG1であるシラン、塩化水素、及び水素ガスの混合ガスが混合されることにより、図8に示すように、ソースガス導管71とパージガス導管74との間に、シリコンを含む副生成物90が堆積する。
 ソースガス導管71とパージガス導管74との間に、シリコンを含む副生成物90が堆積することは、パージガス導管74を介して反応室10へ供給されるガスに含まれるシリコンの原子濃度が減少することを意味する。すなわち、反応室10に供給されるシリコンの量が減少する。したがって、ウェハWの表面に供給されるシリコンの量も減少する。また、ソースガス導管71とパージガス導管74との間に、シリコンを含む副生成物90が堆積すると、パージガス導管74を介して反応室10へ供給されるガスに含まれるシリコンと、シリコンを含む副生成物90との反応が加速され、パージガス導管74を介して反応室10へ供給されるガスに含まれるシリコンの原子濃度が経時的に減少する。よって、ウェハWの表面に形成されるSiC膜11の特性の再現性が低下する。例えば、SiC膜11の膜厚の再現性や、キャリア濃度の再現性が低下する。
 図9の構成は、パージガスG3が塩素を含まない点で、第1の実施形態の気相成長装置100と異なる。パージガスG3は、例えば、水素ガスである。
 図9に示すように、フランジ75aと仕切り板64の接触面、及び、パージガス導管75の外壁と仕切り板64との間の領域は、ガスのリーク経路として機能することがある。また、パージガス導管75の外壁と仕切り板63との間の領域は、ガスのリーク経路として機能することがある。すなわち、ソースガスG1が、図9において点線矢印で示すように、パージガス導管75の外壁と仕切り板64との間の領域や、パージガス導管75の外壁と仕切り板63との間の領域を通って、ソースガス領域51からパージガス領域54、55にリークすることがある。ソースガスG1がパージガス領域54、55にリークすることにより、パージガス領域54、55にソースガスG1が混合する。
 特に、パージガス導管75は、仕切り板64と接するフランジ75aを有しているため、加工精度や熱変形の影響で、仕切り板63とも同時に接するフランジを備えることができない。したがって、例えば、図8で示した場合と比較してリーク量が大きくなり、パージガス領域54に混合するソースガスG1の量が多くなる。
 パージガス領域54、55に、ソースガスG1であるシラン、塩化水素、及び水素ガスの混合ガスが混合されることにより、図9に示すように、パージガス導管75の内部、及び、パージガス導管75とパージガス導管74との間に、シリコンを含む副生成物90が堆積する。
 パージガス導管75の内部や、パージガス導管75とパージガス導管74との間に、シリコンを含む副生成物90が堆積すると、反応室10に供給されるシリコンの量が減少する。したがって、ウェハWの表面に供給されるシリコンの量も減少する。また、パージガス導管75の内部や、パージガス導管75とパージガス導管74との間に、シリコンを含む副生成物90が堆積すると、パージガス導管75やパージガス導管74を介して反応室10へ供給されるガスに含まれるシリコンと、シリコンを含む副生成物90との反応が加速され、パージガス導管75やパージガス導管74を介して反応室10へ供給されるガスに含まれるシリコンの原子濃度が経時的に減少する。よって、ウェハWの表面に形成されるSiC膜11の特性の再現性が低下する。例えば、SiC膜11の膜厚の再現性や、キャリア濃度の再現性が低下する。
 第1の実施形態の気相成長装置100及び気相成長方法では、パージガスG3が塩素を含む。パージガスG3は、例えば、塩化水素(HCl)と水素ガス(H)の混合ガスである。
 パージガスG3が塩素を含むことにより、ソースガスG1のリークにより、パージガス領域54、55にシリコンを含むガスが混在しても、シリコンの副生成物は塩素によりエッチングされる。したがって、シリコンを含む副生成物90が反応室10へのガス流路に堆積することが抑制される。よって、ウェハWの表面に形成されるSiC膜11の特性の再現性が向上する。例えば、SiC膜11の膜厚の再現性や、キャリア濃度の再現性が向上する。
 ソースガスG1が混合した後のパージガス領域54、55におけるパージガスG3のシリコンの原子濃度は、ソースガスG1のシリコンの原子濃度よりも低い。また、ソースガスG1が混合した後のパージガスG3の塩素の原子濃度は、ソースガスG1の塩素の原子濃度よりも低い。
 シリコンのクラスター化を抑制する観点から、ソースガスG1の塩素の原子濃度はソースガスG1のシリコンの原子濃度の2倍以上であることが好ましく、5倍以上であることがより好ましい。
 また、SiC膜11の成長速度の低下を抑制する観点からパージガスG3の塩素の原子濃度は、ソースガスG1の塩素の原子濃度よりも低いことが好ましい。パージガスG3の塩素の原子濃度は、ソースガスG1の塩素の原子濃度の2分の1以下であることが好ましく、5分の1以下であることがより好ましい。
 シリコンを含む副生成物90の形成を抑制する観点から、パージガスG3の塩素の原子濃度は、ソースガスG1の塩素の原子濃度の100分の1以上であることが好ましく、50分の1以上であることがより好ましい。
 ソースガス導管71又は仕切り板63が破損することを抑制する観点から、ソースガス導管71の外壁と仕切り板63との間の距離d1は、100μm以上であることが好ましく、250μm以上であることがより好ましい。
 ソースガス導管71とパージガス導管74との中心軸のずれを抑制する観点から、ソースガス導管71の外壁と第3の仕切り板63との間の距離d1は、1mm以下であることが好ましく750μm以下であることがより好ましい。
(変形例)
 図10は、第1の実施形態の気相成長装置の変形例のガス導入部の一部の拡大模式断面図である。図10は、パージガス導管75、74を含む断面図である。図10は、図4に対応する断面である。
 パージガス導管75は、反応室にパージガスG3を供給する。パージガス導管75は、穴60a、61a、62a、63a、64aに挿入される。パージガス導管75は、整流板60、仕切り板61、62、63、64を貫通する。
 パージガス導管75は、上端と下端の間に環状のフランジ75aを有する。パージガス導管75は、仕切り板63に対して取り外し可能である。パージガス導管75は、フランジ75aが仕切り板63に載置されることで自重を支える。
 パージガス導管75の外壁は、仕切り板63、64と離間する。パージガス導管75と仕切り板63、64との間に間隙がある。
 パージガス導管74の内側には、パージガス導管75が挿入される。パージガス導管74とパージガス導管75は離間する。パージガス導管74とパージガス導管75との間の間隙は、パージガスG3の流路となる。
 図11は、第1の実施形態の気相成長方法の変形例の説明図である。
 ウェハWの表面にSiC膜11を形成する際に、図11に示すように、パージガスG3である塩化水素と水素ガスの混合ガスは、パージガス領域55からパージガス導管75を通って、反応室10に供給される。また、パージガスG3である塩化水素と水素ガスの混合ガスは、パージガス領域54からパージガス導管74を通って、反応室10に供給される。
 図12は、第1の実施形態の気相成長装置の変形例の作用及び効果の説明図である。図12は、図11に対応する図である。
 図12は、パージガスG3が塩素を含まない点で、第1の実施形態の気相成長装置100の変形例と異なる。パージガスG3は、例えば、水素ガスである。
 図12に示すように、フランジ75aと仕切り板63の接触面、及び、パージガス導管75の外壁と仕切り板63との間の領域は、ガスのリーク経路として機能することがある。また、パージガス導管75の外壁と仕切り板64との間の領域は、ガスのリーク経路として機能することがある。すなわち、ソースガスG1が、図12において点線矢印で示すように、パージガス導管75の外壁と仕切り板63との間の領域や、パージガス導管75の外壁と仕切り板64との間の領域を通って、ソースガス領域51からパージガス領域54、55にリークすることがある。ソースガスG1がパージガス領域54、55にリークすることにより、パージガス領域54、55にソースガスG1が混合する。
 特に、パージガス導管75は、仕切り板63と接するフランジ75aを有しているため、加工精度や熱変形の影響で、仕切り板64とも同時に接するフランジを備えることができない。したがって、例えば、図9で示した場合と比較して、パージガス領域55のパージガスG3に混合するソースガスG1の量が多くなる。
 パージガス領域54、55に、ソースガスG1であるシラン、塩化水素、及び水素ガスの混合ガスが混合されることにより、図12に示すように、パージガス導管75の内部、及び、パージガス導管75とパージガス導管74との間に、シリコンを含む副生成物90が堆積する。
 パージガス導管75の内部や、パージガス導管75とパージガス導管74との間に、シリコンを含む副生成物90が堆積すると、反応室10に供給されるシリコンの量が減少する。したがって、ウェハWの表面に供給されるシリコンの量も減少する。また、パージガス導管75の内部や、パージガス導管75とパージガス導管74との間に、シリコンを含む副生成物90が堆積すると、パージガス導管75やパージガス導管74を介して反応室10へ供給されるガスに含まれるシリコンと、シリコンを含む副生成物90との反応が加速され、パージガス導管75やパージガス導管74を介して反応室10へ供給されるガスに含まれるシリコンの原子濃度が経時的に減少する。よって、ウェハWの表面に形成されるSiC膜11の特性の再現性が低下する。
 第1の実施形態の気相成長装置100及び気相成長方法の変形例では、パージガスG3が塩素を含む。パージガスG3は、例えば、塩化水素(HCl)と水素ガス(H)の混合ガスである。
 パージガスG3が塩素を含むことにより、ソースガスG1のリークにより、パージガス領域54、55にシリコンを含むガスが混在しても、シリコンの副生成物は塩素によりエッチングされる。したがって、シリコンを含む副生成物90がガス流路に堆積することが抑制される。よって、ウェハWの表面に形成されるSiC膜11の特性の再現性が向上する。例えば、SiC膜11の膜厚の再現性や、キャリア濃度の再現性が向上する。
 以上、第1の実施形態の気相成長装置及び気相成長方法及び変形例によれば、ガス流路におけるシリコンを含む副生成物の堆積を抑制できる。したがって、第1の実施形態の気相成長装置及び気相成長方法によれば、膜の特性の再現性を向上させることが可能となる。
(第2の実施形態)
 第2の実施形態の気相成長装置及び気相成長方法は、ソースガスが1種類である点で第1の実施形態の紀伊相成長装置及び気相成長方法と異なる。以下、第1の実施形態と重複する内容については、一部記述を省略する場合がある。
 図13は、第2の実施形態の気相成長装置の模式断面図である。第2の実施形態の気相成長装置200は、例えば、単結晶のSiC基板上に単結晶のSiC膜をエピタキシャル成長させる枚葉型のエピタキシャル成長装置である。第2の実施形態の気相成長装置200は、SiC基板の表面に、プロセスガスが縦方向に供給される縦型の気相成長装置である。
 第2の実施形態の気相成長装置200は、反応室10、ガス導入部12を備える。反応室10は、サセプタ14(ホルダ)、回転体16、回転軸18、回転駆動機構20、第1のヒータ22、リフレクタ28、支持柱30、固定台32、固定軸34、フード40、第2のヒータ42、及びガス排出口44を含む。ガス導入部12は、ソースガス領域56、パージガス領域57、整流板60、仕切り板66、天板65、ソースガス導管77、パージガス導管78、ソースガス導入口86、パージガス導入口87を含む。
 サセプタ14は、ホルダの一例である。整流板60は、第2の仕切り板の一例である。仕切り板66は、第1の仕切り板の一例である。
 ソースガス領域56及びソースガス導管77は、第1のソースガス流路を形成する。パージガス領域57及びパージガス導管78は、パージガス流路を形成する。
 ガス導入部12は、反応室10の上に設けられる。
 ガス導入部12には、ソースガスGxをガス導入部12の中に導入するための、ソースガス導入口86が設けられる。ソースガスGxは、ソースガス導入口86からソースガス領域56に導入される。
 ガス導入部12には、パージガスGyをガス導入部12の中に導入するための、パージガス導入口87が設けられる。パージガスGyは、パージガス導入口87からパージガス領域57に導入される。
 ソースガスGxは、第1のソースガスの一例である。
 ソースガスGxは、シリコン(Si)、炭素(C)、及び塩素(Cl)を含む。ソースガスGxは、例えば、シラン(SiH)、プロパン(C)、塩化水素(HCl)、及び水素ガス(H)の混合ガスである。
 塩化水素(HCl)は、シリコンのクラスター化を抑制するアシストガスである。また、塩化水素は、ソースガスGxのガス流路に堆積するシリコンを含む副生成物をエッチングする機能を有する。
 水素ガス(H)は、キャリアガスである。キャリアガスとして、例えば、アルゴンガス(Ar)を用いることも可能である。
 ソースガスGxは、例えば、n型不純物のドーパントガスを含む。n型不純物のドーパントガスは、例えば、窒素ガスである。
 パージガスGyは、反応室10の中の、ソースガスGxの流れを安定化させる機能を有する。パージガスGyは、塩素(Cl)を含む。パージガスGyは、例えば、塩化水素(HCl)を含む。パージガスGyは、例えば、塩化水素(HCl)と水素ガス(H)の混合ガスである。
 塩化水素(HCl)は、シリコンを含む副生成物のエッチングガスである。水素ガス(H)にかえて、例えば、アルゴンガス(Ar)を用いることも可能である。
 パージガスGyの塩素の原子濃度は、例えば、ソースガスGxの塩素の原子濃度よりも低い。パージガスGyの塩素の原子濃度は、例えば、ソースガスGxの塩素の原子濃度の5分の1以下である。
 ソースガス領域56には、ソースガスGxが導入される。
 パージガス領域57には、パージガスGyが導入される。パージガス領域57は、ソースガス領域56と反応室10との間に設けられる。
 図14は、第2の実施形態の気相成長装置のガス導入部の一部の拡大模式断面図である。図14は、ソースガス導管77及びパージガス導管78を含む断面図である。
 整流板60は、反応室10とパージガス領域57との間に設けられる。整流板60は、複数の穴60aと複数の穴60bを有する。穴60aの内側に、パージガス導管78及びソースガス導管77が設けられる。パージガス導管78は、整流板60の穴60aで置き換えることもできる。
 仕切り板66は、パージガス領域57とソースガス領域56との間に設けられる。仕切り板66は、複数の穴66aを有する。穴66aの内側に、ソースガス導管77が設けられる。
 ソースガス導管77は、反応室10にソースガスGxを供給する。ソースガス導管77は、穴60a、66aに挿入される。ソースガス導管77は、整流板60及び仕切り板66を貫通する。
 ソースガス導管77は、上端に環状のフランジ77aを有する。ソースガス導管77は、仕切り板66に対して取り外し可能である。
 ソースガス導管77の外壁は、仕切り板66と離間する。ソースガス導管77と仕切り板66との間に間隙がある。ソースガス導管77の外壁と仕切り板66との間の距離(図14中のd3)は、例えば、10μm以上100μm以下である。距離d3は、ソースガス導管77の中心軸と、穴66aの中心とが一致する場合の距離である。
 パージガス導管78は、反応室10にパージガスGyを供給する。パージガス導管78は、穴60aに挿入される。パージガス導管78は、整流板60を貫通する。
 パージガス導管78は、上端に環状のフランジ78aを有する。パージガス導管78は、整流板60に対して取り外し可能である。パージガス導管78の外壁は、整流板60と離間する。
 パージガス導管78の内側には、ソースガス導管77が挿入される。パージガス導管78とソースガス導管77は離間する。パージガス導管78とソースガス導管77との間の間隙が、パージガスGyの流路となる。
 図15は、第2の実施形態の気相成長方法の説明図である。
 以下、ソースガスGxがシラン(SiH)、プロパン(C)、塩化水素(HCl)、及び水素ガス(H)の混合ガス、パージガスGyが塩化水素(HCl)と水素ガス(H)の混合ガスの場合を例に説明する。
 図15に示すように、ソースガスGxであるシラン、プロパン、塩化水素、及び水素ガスの混合ガスは、ソースガス領域56からソースガス導管77を通って、反応室10に供給される。
 また、図15に示すように、パージガスGyである塩化水素と水素ガスの混合ガスは、パージガス領域57からパージガス導管78を通って、反応室10に供給される。
 図16は、第2の実施形態の気相成長装置の作用及び効果の説明図である。図16は、図15に対応する図である。
 図16に示す構成は、パージガスGyが塩素を含まない点で、第2の実施形態の気相成長装置200と異なる。パージガスGyは、例えば、水素ガスである。
 図16に示すように、フランジ77aと仕切り板66の接触面、及び、ソースガス導管77の外壁と仕切り板66との間の領域は、ガスのリーク経路として機能することがある。すなわち、ソースガスGxが、図16において点線矢印で示すように、ソースガス導管77の外壁と仕切り板66との間の領域を通って、ソースガス領域56からパージガス領域57にリークすることがある。ソースガスGxがパージガス領域57にリークすることにより、パージガス領域57にソースガスGxが混合する。
 パージガス領域57に、ソースガスGxであるシラン、プロパン、塩化水素、及び水素ガスの混合ガスが混合されることにより、図16に示すように、ソースガス導管77とパージガス導管78との間に、シリコンを含む副生成物90が堆積する。
 ソースガス導管77とパージガス導管78との間に、シリコンを含む副生成物90が堆積することは、パージガス導管78を介して反応室10へ供給されるガスに含まれるシリコンの原子濃度が減少することを意味する。すなわち、反応室10に供給されるシリコンの量が減少する。したがって、ウェハWの表面に供給されるシリコンの量も減少する。また、ソースガス導管77とパージガス導管78との間に、シリコンを含む副生成物90が堆積すると、パージガス導管78を介して反応室10へ供給されるガスに含まれるシリコンと、シリコンを含む副生成物90との反応が加速され、パージガス導管78を介して反応室10へ供給されるガスに含まれるシリコンの原子濃度が経時的に減少する。よって、ウェハWの表面に形成されるSiC膜11の特性の再現性が低下する。例えば、SiC膜11の膜厚の再現性や、キャリア濃度の再現性が低下する。
 ソースガスGxが混合した後のパージガス領域57におけるパージガスGyのシリコンの原子濃度は、ソースガスGxのシリコンの原子濃度よりも低い。また、ソースガスGxが混合した後のパージガスGyの塩素の原子濃度は、ソースガスGxの塩素の原子濃度よりも低い。
 シリコンのクラスター化を抑制する観点から、ソースガスGxの塩素の原子濃度はソースガスGxのシリコンの原子濃度の2倍以上であることが好ましく、5倍以上であることがより好ましい。
 SiC膜11の欠陥密度を低減し、SiC膜11の成長速度の低下を抑制する観点からパージガスGyの塩素の原子濃度は、ソースガスGxの塩素の原子濃度よりも低いことが好ましい。パージガスGyの塩素の原子濃度は、ソースガスGxの塩素の原子濃度の2分の1以下であることが好ましく、5分の1以下であることがより好ましい。
 シリコンを含む副生成物90の形成を抑制する観点から、パージガスGyの塩素の原子濃度は、ソースガスGxの塩素の原子濃度の100分の1以上であることが好ましく、50分の1以上であることがより好ましい。
 ソースガス導管77又は仕切り板66が破損することを抑制する観点から、ソースガス導管77の外壁と仕切り板66との間の距離d3は、100μm以上であることが好ましく250μm以上であることがより好ましい。
 ソースガス導管77とパージガス導管78との中心軸のずれを抑制する観点から、ソースガス導管77の外壁と仕切り板66との間の距離d3は、1mm以下であることが好ましく750μm以下であることがより好ましい。
 以上、第2の実施形態の気相成長装置及び気相成長方法によれば、ガス流路におけるシリコンを含む副生成物の堆積を抑制できる。したがって、第2の実施形態の気相成長装置及び気相成長方法によれば、膜の特性の再現性を向上させることが可能となる。
(第3の実施形態)
 第3の実施形態の気相成長装置及び気相成長方法は、気相成長装置が横型の気相成長装置である点で、第2の実施形態の気相成長装置及び気相成長方法と異なる。以下、第1の実施形態又は第2の実施形態と重複する内容については、一部記述を省略する場合がある。
 図17は、第3の実施形態の気相成長装置の模式断面図である。第3の実施形態の気相成長装置300は、例えば、単結晶のSiC基板上に単結晶のSiC膜をエピタキシャル成長させるエピタキシャル成長装置である。第3の実施形態の気相成長装置200は、SiC基板の表面に、プロセスガスがSiC基板の表面に横方向から供給される横型の気相成長装置である。
 第3の実施形態の気相成長装置300は、反応室10、ガス導入部12を備える。反応室10は、サセプタ14(ホルダ)、回転軸18、回転駆動機構20、ヒータ23、及びガス排出口44を含む。ガス導入部12は、ソースガス領域56、パージガス領域57、仕切り板66、67、天板65、ソースガス導管77、パージガス導管78、ソースガス導入口86、パージガス導入口87を含む。
 サセプタ14は、ホルダの一例である。仕切り板67は、第2の仕切り板の一例である。仕切り板66は、第1の仕切り板の一例である。
 ソースガス領域56及びソースガス導管77は、第1のソースガス流路を形成する。パージガス領域57及びパージガス導管78は、パージガス流路を形成する。
 サセプタ14は、反応室10の中に設けられる。サセプタ14には、複数のウェハWが同時に載置可能である。
 サセプタ14は、回転軸18に固定される。回転駆動機構20により、回転軸18を回転させることによりサセプタ14を回転させることが可能である。サセプタ14の上に載置された複数のウェハWが、それぞれ自転する構成とすることも可能である。
 ヒータ23は、サセプタ14の下に設けられる。ヒータ23は、例えば、抵抗加熱ヒータである。また、ヒータ23は誘導加熱式のコイルであってもよい。
 ガス排出口44は、反応室10の側面に設けられる。ガス排出口44は、ウェハW表面でソースガスが反応した後の余剰の反応生成物、及び、余剰のプロセスガスを反応室10の側面から外部に排出する。
 ガス導入部12は、反応室10の上に設けられる。ガス導入部12の構成は第2の実施形態の気相成長装置200と同様である。ただし、仕切り板67は、パージガス導管78に対応する穴と、それ以外の複数のガス穴を設けた構造であっても良いが、パージガス導管78に対応する穴だけを設けた構造でも良い。
 複数のウェハWの表面にSiC膜11を形成する際、ガス導入部12から反応室10に供給されるソースガスGx及びパージガスGyは、ウェハWの表面の水平方向から供給される。
 以上、第3の実施形態の気相成長装置及び気相成長方法によれば、第2の実施形態と同様、ガス流路におけるシリコンを含む副生成物の堆積を抑制できる。したがって、第3の実施形態の気相成長装置及び気相成長方法によれば、膜の特性の再現性を向上させることが可能となる。
(第4の実施形態)
 第4の実施形態の気相成長装置は、ガス導入部は、ソースガス導管に取り付けられるコンダクタンス調整機構を、更に含む点で、第1の実施形態の気相成長装置と異なる。以下、第1の実施形態と重複する内容については、一部記述を省略する場合がある。
 図18は、第4の実施形態の気相成長装置のガス導入部の一部の拡大模式断面図である。図18は、ソースガス導管71及びパージガス導管74を含む断面図である。図18は、第1の実施形態の図2に対応する図である。図18には、反応室10の外に設けられるマスフローコントローラ(MFC)及び制御部も模式的に図示している。
 ソースガス導管71は、上部にコンダクタンス調整機構79が取り付けられる。コンダクタンス調整機構79は、ソースガス導管71とコンダクタンス調整機構79との合成コンダクタンスを、ソースガス導管71に比べて小さくする機能を有する。ソースガス導管71にコンダクタンス調整機構79が取り付けられることで、ソースガス導管71を通って反応室10に供給されるソースガスG1の供給量が低減する。
 コンダクタンス調整機構79は、例えば、所定の内径を有する環状部材である。コンダクタンス調整機構79の一部は、例えば、ソースガス導管71に挿入される。
 コンダクタンス調整機構79は、例えば、上端に環状のフランジを有する。コンダクタンス調整機構79は、ソースガス導管71に対して取り外し可能である。コンダクタンス調整機構79は、例えば、フランジがソースガス導管71のフランジ71aに載置されることで自重を支える。
 第4の実施形態の気相成長装置は、例えば、ソースガス領域51及びパージガス領域54のそれぞれが、圧力センサ91、92を有する。圧力センサ91、92により、ソースガス領域51の内圧及びパージガス領域54の内圧を独立して計測することが可能である。
 図19は、第4の実施形態の気相成長方法の説明図である。
 図19に示すように、ソースガスG1として供給するシラン、塩化水素、及び水素ガスの混合ガスは、ソースガス領域51からコンダクタンス調整機構79が取り付けられたソースガス導管71を通って、反応室10に供給される。ソースガス領域51及びソースガス導管71がソースガスG1のソースガス流路を形成する。ソースガスG1のソースガス流路は、第1のソースガス流路の一例である。
 また、図19に示すように、パージガスG3である塩化水素と水素ガスの混合ガスは、パージガス領域54からパージガス導管74を通って、反応室10に供給される。パージガスG3は、パージガス導管74とソースガス導管71との間の間隙を通って、反応室10に供給される。パージガス領域54とパージガス導管74がパージガスG3のパージガス流路を形成する。
 また、図19に示すように、パージガスG3である塩化水素と水素ガスの混合ガスは、パージガス領域53から整流板60の穴60bを通って、反応室10に供給される。
 第4の実施形態の気相成長方法では、例えば、制御部93によりパージガス領域54に供給するパージガスG3の中の水素ガスの供給量をマスフローコントローラ94で調整する。パージガス領域54に供給するパージガスG3の水素ガスの供給量を調整することで、パージガス領域54の内圧を調整することができる。パージガス領域54に供給するパージガスG3の中の水素ガスの供給量を調整することで、パージガス領域54の内圧と、ソースガス領域51の内圧との差を調整することができる。例えば、パージガス領域54に供給するパージガスG3の水素ガスの供給量を増加させることで、パージガス領域54の内圧を、ソースガス領域51の内圧と等しく又は高くすることができる。なお、ソースガスG1の水素ガス流量をマスフローコントローラ95で調整してもよい。
 図20は、第4の実施形態の気相成長装置のガス導入部の一部の拡大模式断面図である。図20は、図18に対応する図である。
 第4の実施形態の気相成長方法では、例えば、コンダクタンス調整機構79の内径を調整する。コンダクタンス調整機構79の内径を調整することで、ソースガス導管71とコンダクタンス調整機構79との合成コンダクタンスを調整することができる。ソースガス導管71とコンダクタンス調整機構79との合成コンダクタンスを調整することで、ソースガス領域51の内圧を調整することができる。ソースガス導管71とコンダクタンス調整機構79との合成コンダクタンスを調整することで、パージガス領域54の内圧と、ソースガス領域51の内圧との差を調整することができる。
 図20に示すコンダクタンス調整機構79の内径は、図18に示すコンダクタンス調整機構79の内径よりも大きい。コンダクタンス調整機構79の内径を大きくすることで、ソースガス導管71とコンダクタンス調整機構79との合成コンダクタンスを大きくすることができる。ソースガス導管71とコンダクタンス調整機構79との合成コンダクタンスを大きくすることで、ソースガス領域51の内圧を低くすることができる。ソースガス導管71とコンダクタンス調整機構79との合成コンダクタンスを大きくすることで、パージガス領域54の内圧を、ソースガス領域51の内圧と等しく又は高くすることができる。
 第4の実施形態の気相成長方法では、例えば、独立して計測されるソースガス領域51の内圧及びパージガス領域54の内圧に基づき、パージガス領域54の内圧と、ソースガス領域51の内圧との差を調整する。 
 第4の実施形態の気相成長方法では、例えば、ウェハWの表面に供給されるシリコン含有パーティクルの量に基づき、パージガス領域54の内圧と、ソースガス領域51の内圧との差を調整する。このような調整を行う場合、シリコン含有パーティクルの密度が少なくなるように、パージガス領域54に供給するパージガスG3の中の水素ガスの供給量や、ソースガス領域51に供給するソースガスG1の中の水素ガスの供給量、コンダクタンス調整機構79の内径などを調整すればよいので、ソースガス領域51及びパージガス領域54のそれぞれが、圧力センサ91、92を備えてなくても良い。ウェハWの表面に供給されるシリコン含有パーティクルの密度は、例えば、気相成長装置100にウェハWを導入し、その後、ウェハWをSiC膜の成長温度付近まで昇温させ、更に、SiC膜を成長させずに気相成長装置100から搬出したウェハWに対して、ラマン分光法や光学顕微鏡などの測定を行うことで評価することができる。ウェハWの表面に供給されるシリコン含有パーティクルの密度は、100個/cm以下であることが望ましく、10個/cm以下であることがより望ましく、1.0個/cm以下であることが更に望ましい。
 ソースガス導管71にコンダクタンス調整機構79が取り付けられた場合、ウェハWの表面に形成された単結晶のSiC膜に、小さなピットやバンプが生じるおそれがある。
 図21は、第4の実施形態の気相成長装置及び気相成長方法の作用及び効果の説明図である。図21は、図18に対応する図である。
 図21に示すように、フランジ71aと仕切り板63の接触面、及び、ソースガス導管71の外壁と仕切り板63との間の領域は、ガスのリーク経路として機能することがある。すなわち、ソースガスG1が、図21において点線矢印で示すように、ソースガス導管71の外壁と仕切り板63との間の領域を通って、ソースガス領域51からパージガス領域54にリークすることがある。ソースガスG1がパージガス領域54にリークすることにより、パージガス領域54にソースガスG1が混合する。
 パージガス領域54に、ソースガスG1であるシラン、塩化水素、及び水素ガスの混合ガスが混合されることにより、図21に示すように、ソースガス導管71とパージガス導管74との間に、シリコンを含む副生成物90が堆積する。
 第1の実施形態で説明したように、パージガスG3に塩素を含めることで、ソースガスG1のリークにより、パージガス領域54にシリコンを含むガスが混在しても、シリコンの副生成物は塩素によりエッチングされる。したがって、シリコンを含む副生成物90が反応室10へのガス流路に堆積することが抑制される。
 しかし、ソースガス導管71にコンダクタンス調整機構79が取り付けられた場合、ソースガス領域51の内圧が高くなり、パージガス領域54の内圧と、ソースガス領域51の内圧との差が大きくなることで、ソースガス領域51からパージガス領域54にリークするソースガスG1の量が大きくなる。このため、パージガスG3の中の塩素による、シリコンを含む副生成物90の堆積の抑制効果が不十分となり、多量の副生成物90が形成されるおそれがある。
 ガス流路に堆積した多量の副生成物90の一部が、気相中に放出されることで、ウェハWの表面に供給されるシリコン含有パーティクルとなると考えられる。また、パージガスG3の中のソースガスG1の濃度が高くなることにより、シリコン含有パーティクルが、ソースガス導管71とパージガス導管74との間で、気相反応により形成される場合もあると考えられる。
 SiC膜の成長前に、ウェハWの表面に供給されるシリコン含有パーティクルが付着することで、単結晶のSiC膜に生ずる小さなピットやバンプの原因になることがある。
 第4の実施形態の気相成長装置及び気相成長方法では、パージガス領域54の内圧と、ソースガス領域51の内圧との差を調整することで、ソースガス領域51からパージガス領域54にリークするソースガスG1の量を抑制する。パージガス領域54の内圧を、ソースガス領域51の内圧と等しく又は高くすることで、ソースガス領域51からパージガス領域54にリークするソースガスG1の量を抑制する。したがって、シリコンを含む副生成物90が反応室10へのガス流路に堆積することが抑制される。また、ソースガス導管71とパージガス導管74との間で生ずる気相反応が抑制される。よって、ウェハWの表面に供給されるシリコン含有パーティクルが減少し、単結晶のSiC膜に小さなピットやバンプが生ずることが抑制される。
 以上、第4の実施形態の気相成長装置及び気相成長方法によれば、第1の実施形態と同様、ガス流路におけるシリコンを含む副生成物の堆積を抑制できる。したがって、第4の実施形態の気相成長装置及び気相成長方法によれば、膜の特性の再現性を向上させることが可能となる。また、SiC膜に小さなピットやバンプが生ずることが抑制される。
 以上、具体例を参照しつつ本発明の実施形態について説明した。上記、実施形態はあくまで、例として挙げられているだけであり、本発明を限定するものではない。また、各実施形態の構成要素を適宜組み合わせてもかまわない。
 実施形態では、単結晶のSiC膜を形成する場合を例に説明したが、多結晶又はアモルファスのSiC膜の形成にも本発明を適用することが可能である。
 また、実施形態では、単結晶SiCのウェハを基板の一例として説明したが、基板は単結晶SiCのウェハに限定されるものではない。
 また、実施形態では、n型不純物として窒素を例に説明したが、n型不純物として、例えば、リン(P)を適用することも可能である。また、不純物としてp型不純物を適用することも可能である。
 また、実施形態では、導管が円筒形状の場合を例に説明したが、導管の形状は円筒形状に限られず、その他の形状であっても構わない。また、実施形態では、導管の開口断面が円形の場合を例に説明したが、導管の開口断面は、円形に限られず、楕円、正方形、長方形など、その他の形状であっても構わない。
 実施形態では、同一仕様の異なる気相成長装置の間で、同一プロセス条件で形成する膜の特性の再現性を向上させる場合を例に説明した。しかし、例えば、同一の気相成長装置で、膜の特性に経時変化が生じるような場合に、本発明を用いて、膜の特性の再現性を向上させることも可能である。また、例えば、同一の気相成長装置で、膜の特性の均一性を向上させたい場合に、本発明を用いることも可能である。
 実施形態では、取り外し可能なガス管を設けることによりリーク経路が形成される場合を例に説明したが、ガス導入部内にリーク経路が存在するその他の気相成長装置にも、本発明を適用することが可能である。
 実施形態では、装置構成や製造方法等、本発明の説明に直接必要としない部分等については記載を省略したが、必要とされる装置構成や製造方法等を適宜選択して用いることができる。その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての気相成長装置は、本発明の範囲に包含される。本発明の範囲は、特許請求の範囲及びその均等物の範囲によって定義されるものである。
10   反応室
11   SiC膜(炭化珪素膜)
12   ガス導入部
14   サセプタ(ホルダ)
51、56   ソースガス領域
53、54、55   パージガス領域
60   整流板(仕切り板)
57   パージガス領域
60a、60b、62a、63a、64a   穴
62、63、64、67   仕切り板
71、77   ソースガス導管
74、75、78   パージガス導管
79   コンダクタンス調整機構
100  気相成長装置
200  気相成長装置
300  気相成長装置
G1   ソースガス
G2   ソースガス
G3   パージガス
Gx   ソースガス
Gy   パージガス
W    ウェハ(基板)
 

Claims (19)

  1.  反応室と、
     前記反応室の中に設けられ基板を載置するホルダと、
     シリコンと塩素を含む第1のソースガスを前記反応室の中に供給する第1のソースガス流路と、
     シリコンと塩素を含み、前記第1のソースガスのシリコンの原子濃度よりもシリコンの原子濃度が低いパージガスを前記反応室の中に供給するパージガス流路と、
    を備える気相成長装置。
  2.  前記パージガスの塩素の原子濃度は、前記第1のソースガスの塩素の原子濃度よりも低い請求項1記載の気相成長装置。
  3.  前記第1のソースガス流路と前記パージガス流路との間に設けられたガスのリーク経路を、更に備える請求項1記載の気相成長装置。
  4.  炭素を含む第2のソースガスを前記反応室の中に供給する第2のソースガス流路を、更に備える請求項1記載の気相成長装置。
  5.  前記パージガスは、水素ガスを含む請求項1記載の気相成長装置。
  6.  反応室と、
     前記反応室の中に設けられ基板を載置するホルダと、
     前記反応室の上に設けられたガス導入部であって、
     シリコンと塩素を含むソースガスが導入されるソースガス領域と、前記ソースガス領域と前記反応室との間に設けられ、塩素を含むパージガスが導入されるパージガス領域と、前記ソースガス領域と前記パージガス領域との間に設けられる第1の仕切り板と、前記パージガス領域と前記反応室との間に設けられる第2の仕切り板と、前記第1の仕切り板と前記第2の仕切り板とを貫通し、前記ソースガスを前記反応室に供給するソースガス導管と、前記第2の仕切り板を貫通し、前記ソースガス導管が挿入され、前記ソースガス導管との間隙から前記ソースガスのシリコンの原子濃度よりも低い原子濃度のシリコンを含む前記パージガスを前記反応室に供給するパージガス導管と、を含み、前記ソースガス導管と前記第1の仕切り板との間に間隙を有するガス導入部と、
    を備える気相成長装置。
  7.  前記ガス導入部は、前記ソースガス導管に取り付けられるコンダクタンス調整機構を、更に含む請求項6記載の気相成長装置。
  8.  前記パージガスの塩素の原子濃度は、前記ソースガスの塩素の原子濃度よりも低い請求項6記載の気相成長装置。
  9.  前記パージガスは、水素ガスを含む請求項6記載の気相成長装置。
  10.  反応室と、前記反応室の中に設けられ基板を載置するホルダと、ソースガスを前記反応室の中に供給するソースガス流路と、パージガスを前記反応室の中に供給するパージガス流路と、を備える気相成長装置を用いた気相成長方法であって、
     前記ソースガス流路から、シリコンと塩素を含む前記ソースガスを前記反応室に供給し、
     前記パージガス流路から、シリコンと塩素を含み、前記ソースガスよりもシリコンの原子濃度が低いパージガスを前記反応室に供給し、
     前記基板の表面に炭化珪素膜を形成する気相成長方法。
  11.  前記パージガスの塩素の原子濃度は、前記ソースガスの塩素の原子濃度よりも低い請求項10記載の気相成長方法。
  12.  前記ソースガス流路と前記パージガス流路との間に設けられたガスのリーク経路を、更に備える請求項10記載の気相成長方法。
  13.  前記パージガスは、水素ガスを含む請求項10記載の気相成長方法。
  14. 前記ソースガス流路は、前記ソースガスが導入されるソースガス領域と前記ソースガス領域から前記反応室に前記ソースガスを供給するソースガス導管を備え、
     前記パージガス流路は、前記パージガスが導入されるパージガス領域と前記パージガス領域から前記反応室に前記パージガスを供給するパージガス導管を備え、
     前記パージガス領域の内圧は、前記ソースガス領域の内圧以上とする請求項10記載の気相成長方法。
  15.  前記ソースガスは水素ガスを含み、前記パージガスは水素ガスを含み、前記ソースガス領域に導入される水素ガス又は前記パージガス領域に導入される水素ガスの供給量を調整して前記パージガス領域の内圧又は前記ソースガス領域の内圧を調整する請求項14記載の気相成長方法。
  16.  前記ソースガス導管又は前記パージガス導管のコンダクタンスを調整して前記パージガス領域の内圧又は前記ソースガス領域の内圧を調整する請求項14記載の気相成長方法。
  17.  前記ソースガス流路は、前記ソースガスが導入されるソースガス領域と前記ソースガス領域から前記反応室に前記ソースガスを供給するソースガス導管を備え、
     前記パージガス流路は、前記パージガスが導入されるパージガス領域と前記パージガス領域から前記反応室に前記パージガスを供給するパージガス導管を備え、
     前記ソースガスは水素ガスを含み、前記パージガスは水素ガスを含み、前記基板の表面に供給されるシリコン含有パーティクルの密度が、100個/cm以下となるように、前記ソースガス領域に導入される水素ガス又は前記パージガス領域に導入される水素ガスの供給量を調整する請求項10記載の気相成長方法。
  18.  前記ソースガス流路は、前記ソースガスが導入されるソースガス領域と前記ソースガス領域から前記反応室に前記ソースガスを供給するソースガス導管を備え、
     前記パージガス流路は、前記パージガスが導入されるパージガス領域と前記パージガス領域から前記反応室に前記パージガスを供給するパージガス導管を備え、
     前記ソースガスは水素ガスを含み、前記パージガスは水素ガスを含み、前記基板の表面に供給されるシリコン含有パーティクルの密度が、10個/cm以下となるように、前記ソースガス領域に導入される水素ガス又は前記パージガス領域に導入される水素ガスの供給量を調整する請求項10記載の気相成長方法。
  19.  前記ソースガス流路は、前記ソースガスが導入されるソースガス領域と前記ソースガス領域から前記反応室に前記ソースガスを供給するソースガス導管を備え、
     前記パージガス流路は、前記パージガスが導入されるパージガス領域と前記パージガス領域から前記反応室に前記パージガスを供給するパージガス導管を備え、
     前記ソースガスは水素ガスを含み、前記パージガスは水素ガスを含み、前記基板の表面に供給されるシリコン含有パーティクルの密度が、1.0個/cm以下となるように、前記ソースガス領域に導入される水素ガス又は前記パージガス領域に導入される水素ガスの供給量を調整する請求項10記載の気相成長方法。

     
PCT/JP2021/043169 2020-12-14 2021-11-25 気相成長装置及び気相成長方法 WO2022130926A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237023295A KR102678091B1 (ko) 2020-12-14 2021-11-25 기상 성장 장치 및 기상 성장 방법
EP21906289.0A EP4261870A1 (en) 2020-12-14 2021-11-25 Vapor-phase growth apparatus and vapor-phase growth method
JP2022569820A JP7440666B2 (ja) 2020-12-14 2021-11-25 気相成長装置及び気相成長方法
TW110145446A TWI806273B (zh) 2020-12-14 2021-12-06 氣相成長裝置以及氣相成長方法
CN202111526029.XA CN114622181B (zh) 2020-12-14 2021-12-14 气相生长装置及气相生长方法
US18/332,032 US20230313411A1 (en) 2020-12-14 2023-06-09 Vapor phase growth apparatus and vapor phase growth method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-206807 2020-12-14
JP2020206807 2020-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/332,032 Continuation US20230313411A1 (en) 2020-12-14 2023-06-09 Vapor phase growth apparatus and vapor phase growth method

Publications (1)

Publication Number Publication Date
WO2022130926A1 true WO2022130926A1 (ja) 2022-06-23

Family

ID=82059083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043169 WO2022130926A1 (ja) 2020-12-14 2021-11-25 気相成長装置及び気相成長方法

Country Status (1)

Country Link
WO (1) WO2022130926A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162921A (ja) 2015-03-03 2016-09-05 昭和電工株式会社 SiC化学気相成長装置
WO2017150400A1 (ja) * 2016-03-01 2017-09-08 株式会社ニューフレアテクノロジー 成膜装置
WO2019044440A1 (ja) * 2017-09-01 2019-03-07 株式会社ニューフレアテクノロジー 気相成長装置、及び、気相成長方法
JP2020031200A (ja) * 2018-08-24 2020-02-27 株式会社ニューフレアテクノロジー 気相成長装置
WO2020179272A1 (ja) * 2019-03-01 2020-09-10 株式会社ニューフレアテクノロジー 気相成長装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162921A (ja) 2015-03-03 2016-09-05 昭和電工株式会社 SiC化学気相成長装置
WO2017150400A1 (ja) * 2016-03-01 2017-09-08 株式会社ニューフレアテクノロジー 成膜装置
WO2019044440A1 (ja) * 2017-09-01 2019-03-07 株式会社ニューフレアテクノロジー 気相成長装置、及び、気相成長方法
JP2020031200A (ja) * 2018-08-24 2020-02-27 株式会社ニューフレアテクノロジー 気相成長装置
WO2020179272A1 (ja) * 2019-03-01 2020-09-10 株式会社ニューフレアテクノロジー 気相成長装置

Similar Documents

Publication Publication Date Title
KR100272848B1 (ko) 화학증착장치
JP5732284B2 (ja) 成膜装置および成膜方法
JP6792083B2 (ja) 気相成長装置、及び、気相成長方法
JP5562409B2 (ja) 半導体装置の製造方法及び基板製造方法及び基板処理装置
JP7365761B2 (ja) 気相成長装置
US20230313411A1 (en) Vapor phase growth apparatus and vapor phase growth method
US20210381128A1 (en) Vapor phase growth apparatus
KR20130047620A (ko) 성막 방법 및 성막 장치
WO2019044392A1 (ja) 気相成長方法
WO2022097456A1 (ja) 気相成長装置
TWI754765B (zh) 用於磊晶沉積製程之注入組件
TW201929050A (zh) 磊晶成長裝置及使用此裝置的半導體磊晶晶圓的製造方法
WO2022130926A1 (ja) 気相成長装置及び気相成長方法
US6194030B1 (en) Chemical vapor deposition velocity control apparatus
JPS6090894A (ja) 気相成長装置
JP2012175072A (ja) 基板処理装置
JP2004134625A (ja) 半導体装置の製造方法と製造装置
TW202418467A (zh) 具有可互換支撐元件的基座及其應用
JP2022130057A (ja) 気相成長装置
JPH05243161A (ja) 気相成長装置及びエピタキシャル膜の成長方法
JP2010034113A (ja) 気相成長装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569820

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237023295

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906289

Country of ref document: EP

Effective date: 20230714