WO2022127815A1 - 信号采样方法、信号采样装置及计算机可读存储介质 - Google Patents

信号采样方法、信号采样装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2022127815A1
WO2022127815A1 PCT/CN2021/138278 CN2021138278W WO2022127815A1 WO 2022127815 A1 WO2022127815 A1 WO 2022127815A1 CN 2021138278 W CN2021138278 W CN 2021138278W WO 2022127815 A1 WO2022127815 A1 WO 2022127815A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
signal
temperature
preset
phase
Prior art date
Application number
PCT/CN2021/138278
Other languages
English (en)
French (fr)
Inventor
马育
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022127815A1 publication Critical patent/WO2022127815A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/08Clock generators with changeable or programmable clock frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a signal sampling method, a signal sampling device, and a computer-readable storage medium.
  • the signal When the signal propagates on the transmission path, its propagation speed will be affected by the properties of the signal carrier and the surrounding medium, so that there is a delay when the signal arrives at the sampling point, especially when sampling the signal of a high-speed circuit. If the delay calculation is inaccurate, the sampled signal data will be inaccurate. For example, temperature changes will cause the clock to drift, causing the clock and data to be misaligned during data transmission, resulting in signal data acquisition errors.
  • an embodiment of the present disclosure provides a signal sampling method, including: obtaining a current temperature at a preset sampling point; obtaining a set of sampling positions corresponding to a signal to be sampled within one clock cycle; Obtain the corresponding optimal sampling position in the sampling position set; and move the sampling clock to the optimal sampling position to perform signal sampling.
  • an embodiment of the present disclosure further provides a signal sampling device, the signal sampling device includes a memory and a processor; the memory is configured to store a computer-executable signal sampling program; the processor is configured to call the A computer-executable signal sampling program is used to implement the signal sampling method provided by the embodiments of the present disclosure.
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored, and the computer program is loaded by a processor to execute the signal sampling method provided by the embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a signal sampling method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a sampling position set acquisition step of the signal sampling method shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a scenario of a signal sampling method provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another scenario of a signal sampling method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of the best sampling position acquisition step of the signal sampling method shown in FIG. 1;
  • FIG. 6 is a schematic diagram of another scenario of a signal sampling method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic block diagram of the structure of a signal sampling apparatus provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a signal sampling method provided by an embodiment of the present disclosure.
  • the signal sampling method is applied to a signal sampling device, and the signal sampling device can be installed at a signal receiving end or a signal transmitting end, which is not limited here.
  • the signal sampling method includes steps S101 to S104.
  • Step S101 acquiring the current temperature of the preset sampling point.
  • This embodiment is described by taking as an example that the signal sampling method is applied to a signal sampling device, and the signal sampling device is installed at a signal receiving end.
  • the signal to be sampled is a high-speed signal, that is, the frequency of the signal is greater than the preset frequency value, and the preset frequency value is set as required. For example, if the frequency of the signal is greater than or equal to 50MHz, the set preset frequency value is 50MHz.
  • the preset sampling point can be set as required.
  • the preset sampling point is the sampling point correspondingly set in the signal receiving end, and the signal receiving end is equipped with a temperature sensor at the preset sampling point. By reading the temperature of the temperature sensor value to obtain the current temperature of the preset sampling point, and use the current temperature as the current working environment temperature of the signal receiving end.
  • the obtaining the current temperature of the preset sampling point includes: periodically obtaining the temperature value of the preset sampling point to obtain a temperature set corresponding to the preset sampling point; judging the temperature set Whether the difference between the maximum temperature and the minimum temperature is less than a preset difference; and when the difference is less than the preset difference, use the temperature value obtained for the last time in the temperature set as the preset sampling point the current temperature.
  • the temperature value of the temperature sensor at the preset sampling point is obtained and recorded, and after the temperature value of the preset number of times is obtained, all the recorded temperature values are used as the temperature set, and then the temperature set is calculated. If the difference is less than the preset difference, it means that when the temperature set is obtained, the temperature of the preset sampling point is in a stable state and there is no error in obtaining the temperature value, then the The temperature value obtained for the last time in the temperature set is used as the current temperature of the preset sampling point.
  • the preset difference is 3 degrees Celsius, and the temperature value of the temperature sensor is read and recorded every 1 second. After 10 consecutive readings, a temperature set containing 10 temperature values is obtained.
  • the maximum temperature is 32 degrees Celsius
  • the minimum temperature is 32 degrees Celsius. is 30 degrees Celsius
  • the last read temperature is 30 degrees Celsius
  • the difference between the maximum temperature and the minimum temperature is 2 degrees Celsius, which is less than the preset difference of 3 degrees Celsius, so the last acquired temperature value is used as the preset sampling point.
  • the current temperature that is, the current temperature of the preset sampling point is 30 degrees Celsius.
  • Step S102 Obtain a set of sampling positions corresponding to the signal to be sampled within one clock cycle.
  • FIG. 2 is a schematic flowchart of a sampling position set acquisition step of the signal sampling method shown in FIG. 1.
  • the signal sampling is performed by moving the position of the sampling clock, and the signal transmission is obtained by analyzing the sampled signal.
  • step S102 may include steps S1021 to S1025 .
  • Step S1021 acquiring the clock period of the signal to be sampled transmitted by the signal transmitting end.
  • acquiring the clock period of the signal to be sampled transmitted by the signal transmitting end includes: acquiring a signal frequency corresponding to the signal to be sampled transmitted by the signal transmitting end, so as to acquire the clock period according to the signal frequency . Because the frequencies of the signals at the signal transmitting end and the signal receiving end are the same, and one clock period is equal to the inverse of the frequency, the corresponding clock period can be calculated from the frequency of the signal transmitting end.
  • Step S1022 Shift the phase of the sampling clock within the clock cycle according to a preset phase shift precision.
  • the preset phase shift accuracy is determined according to the clock period, and then the phase of the sampling clock is shifted according to the preset phase shift accuracy, and the preset phase shift accuracy should be as small as possible.
  • the clock period is T
  • the preset phase shift precision is T/n.
  • n may be greater than or equal to 40.
  • Step S1023 Sampling the signal to be sampled according to the shifted phase of the sampling clock to obtain a sampling signal corresponding to the phase.
  • the sampling clock performs a phase-shift operation according to the preset phase-shift precision. After the sampling clock is shifted by a phase with the preset phase-shift precision, the to-be-sampled signal is sampled at the shifted phase to obtain a sampled signal corresponding to the phase.
  • Step S1024 Determine whether the phase point corresponding to the moved phase is an effective phase point according to the sampling signal.
  • the judging whether the phase point corresponding to the moved phase is an effective phase point according to the sampling signal includes: judging whether the sampling signal is a hopping signal; when the sampling signal is When hopping signals, determine whether the number of phase points between adjacent hopping signals is greater than the preset number of phases; and when the number of phase points between adjacent hopping signals is greater than the preset number of phases, determine whether the number of phase points between adjacent hopping signals is greater than the preset number of phases.
  • the phase point of is the effective phase point.
  • the sampling signal obtained by sampling is a hopping signal, that is, whether it is a signal edge.
  • the obtained sampling signal is a hopping signal
  • record the corresponding phase point after the phase of the subsequent sampling clock is shifted, and judge whether the sampling signal sampled at the corresponding phase point is a hopping signal, and when the sampled signal obtained by re-sampling is a hopping signal
  • the number of phase points recorded between adjacent hopping signals is greater than the preset number of phases, when the number of phase points is greater than the preset number of phases, the phase points recorded between adjacent hopping signals are all valid. phase point.
  • FIG. 3 is a schematic diagram of a scene of a signal sampling method provided by an embodiment of the present disclosure.
  • the sampling clock is moved with a preset phase shift precision T/n, and the to-be-sampled signal is sampled every time the T/n phase is shifted.
  • the sampled signal obtained by sampling is a hopping signal, that is, a low-level signal A is sampled and then a high-level signal B is sampled, then the signal B is a hopping signal, and the corresponding phase after the phase shift of the subsequent sampling clock is recorded. point, and determine whether the sampling signal sampled at the corresponding phase point is a hopping signal.
  • the sampling signal obtained by re-sampling is a hopping signal, that is, the high-level signal C is sampled and then the low-level D is sampled, then D is the hopping signal, the number of phase points recorded between adjacent hopping signals B and D is 50, and the preset phase number is 5, so the number of phase points recorded between adjacent hopping signals is greater than the preset phase number, that is, the phase points recorded between the hopping signals B and D are all valid phase points.
  • Step S1025 Construct the sampling position set according to the valid phase points.
  • phase of the sampling clock moves the phase of the sampling clock according to the preset phase-shifting accuracy, and after sampling the signal to be sampled at the shifted phase to obtain the sampling signal of the phase, it is judged whether the sampling signal obtained by sampling is a stable signal.
  • the sampling signal is a stable signal
  • the phase point corresponding to the sampled signal is the effective phase point.
  • a plurality of valid phase points are selected at a preset position within one clock cycle to construct a sampling position set, that is, a stable signal can be sampled at all sampling positions in the sampling position set.
  • the constructing the set of sampling positions according to the valid phase points includes: determining a screening position of the valid phase points; selecting a plurality of adjacent valid phase points according to the screening positions to construct the set of sampling positions set of sampling locations.
  • the sampling clock is moved according to the preset phase-shifting accuracy T/n, and the signal to be sampled is sampled once every time the phase is moved by T/n, and all valid phase points in a clock cycle are recorded, and the screening position is specifically in the middle of a clock cycle. , that is, the effective phase point in the middle position in the sampling set is also in the middle position of the clock cycle.
  • the effective phase point in the middle position in the sampling set is also in the middle position of the clock cycle.
  • there are 50 valid phase points in one clock cycle all valid phase points are sorted according to the sampling sequence, and the 21st to 29th valid phase points are selected to construct the sampling position set, and the 25th valid phase point is in the sampling position at the same time.
  • the middle position of the set of positions and the middle position of this clock cycle By selecting an effective phase point in the middle of the clock cycle to construct a sampling position set, all sampling positions in the sampling position set are far away from the signal edge, which increases the fault tolerance of the subsequent moving sampling clock.
  • Step S103 according to the current temperature, obtain a corresponding optimal sampling position from the sampling position set.
  • FIG. 4 is a schematic diagram of a scenario of clock offset caused by temperature changes.
  • Clock2 is used as the reference clock, that is, Clock2 has no clock offset phenomenon.
  • the delay of the signal will increase relative to the sampling clock, which will cause the sampling position to move to the left, that is, Clock3 will shift to the left compared to Clock2; when the temperature decreases, the delay of the signal will be relative to the sampling clock. Decrease, it will cause the sampling position to move to the right, that is, Clock1 is shifted to the right compared to Clock2.
  • FIG. 5 is a schematic flowchart of the optimal sampling position acquisition step of the signal sampling method shown in FIG. 1.
  • each sampling position in the sampling position set corresponds to a temperature value, and then according to the The current temperature and the temperature value corresponding to each sampling position are obtained to obtain the best sampling position corresponding to the current temperature.
  • step S103 may include steps S1031 to S1033 .
  • Step S1031 Acquire a set of working environment temperatures of the preset sampling points, where multiple working environment temperatures in the set of working environment temperatures correspond to multiple sampling locations in the set of sampling locations.
  • Each sampling position in the sampling position set corresponds to a temperature value.
  • FIG. 6 is a schematic diagram of a scenario of a signal sampling method provided by an embodiment of the present disclosure.
  • the working environment temperature set includes 9 working environment temperatures Temp1 to Temp9 from small to large.
  • the highest working environment temperature Temp9 corresponds to the sampling position 1
  • the lowest working environment temperature Temp1 corresponds to the sampling position 9
  • the middle working environment temperature corresponds to the sampling position in turn.
  • the acquiring the set of working environment temperatures of the preset sampling points includes: determining a preset working environment temperature interval; according to the number of sampling locations in the set of sampling locations and the preset working environment temperature interval , determining a working environment temperature interval; and acquiring the working environment temperature set according to the working environment temperature interval and the preset working environment temperature interval.
  • the preset working environment temperature interval can be obtained by testing, and then the working environment temperature interval can be calculated according to (T a -T 1 )/(a-1), where T a is the maximum temperature of the preset working environment temperature interval, and T 1 is the preset working environment temperature interval.
  • a is the number of sampling locations in the sampling location set, for example, test the working environment temperature of the central processing unit (Central Processing Unit, CPU), and obtain the working environment temperature range of -20 Celsius to 60 degrees Celsius, and then the number of sampling locations in the sampling location set is 9, then the working environment temperature interval is 10 degrees Celsius, that is, the obtained working environment temperature set includes -20 degrees Celsius, -10 degrees Celsius, 0 degrees Celsius, 10 degrees Celsius , 20°C, 30°C, 40°C, 50°C and 60°C.
  • CPU Central Processing Unit
  • Step S1032 making the difference between the current temperature and a plurality of the working environment temperatures respectively to obtain corresponding temperature difference values, and selecting the working environment temperature corresponding to the minimum temperature difference value as the reference temperature.
  • the current temperature is 42 degrees Celsius
  • the working environment temperature set includes -20 degrees Celsius, -10 degrees Celsius, 0 degrees Celsius, 10 degrees Celsius, 20 degrees Celsius, 30 degrees Celsius, 40 degrees Celsius, 50 degrees Celsius, and 60 degrees Celsius
  • the current temperature and the plurality of said The working environment temperature is respectively made difference
  • the minimum temperature difference obtained is 2 degrees Celsius
  • the corresponding working environment temperature is 40 degrees Celsius
  • the reference temperature is 40 degrees Celsius.
  • Step S1033 Acquire a sampling position corresponding to the reference temperature according to the reference temperature, as an optimal sampling position.
  • sampling position 3 is the best sampling position.
  • Step S104 Move the sampling clock to the optimal sampling position, and perform signal sampling.
  • the sampling clock is moved to the optimal sampling position for subsequent signal sampling.
  • the signal sampling method provided by the above embodiments solves the problem of inaccurate sampling caused by clock shift caused by temperature change by performing a phase-shift operation on the sampling clock according to the temperature change.
  • the delay of the signal will increase relative to the sampling clock, which will cause the sampling position to move to the left, that is, Clock3 is shifted to the left compared to Clock2; when the temperature decreases, the signal's delay The delay will be reduced relative to the sampling clock, which will cause the sampling position to move to the right, that is, Clock1 is shifted to the right compared to Clock2.
  • FIG. 7 is a schematic block diagram of the structure of a signal sampling apparatus provided by an embodiment of the present disclosure.
  • the signal sampling apparatus 300 may specifically include a processor 301, a memory 302, a temperature sensor 303, and a sampler 304,
  • the processor 301, the memory 302, the temperature sensor 303 and the sampler 304 are connected through a bus 305, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 301 provides computing and control capabilities to support the operation of the entire signal sampling device.
  • the processor 301 can be a central processing unit (Central Processing Unit, CPU), and the processor 301 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 302 is configured to store a computer-executable signal sampling program.
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, and the like.
  • the temperature sensor 303 is configured to acquire the ambient temperature of the signal sampling device.
  • the sampler 304 is configured to sample the signal to be sampled and to phase shift the sampling clock.
  • the sampler 304 may be a field programmable gate array (Field Programmable Gate Array, FPGA), or may be an application specific integrated circuit (Application Specific, ASIC).
  • FIG. 7 is only a block diagram of a part of the structure related to the solution of the embodiment of the present disclosure, and does not constitute a limitation to the signal sampling device applying the solution of the embodiment of the present disclosure.
  • An apparatus may include more or fewer components than those shown in the figures, or combine certain components, or have a different arrangement of components.
  • the processor 301 is configured to run a computer program stored in the memory 302, and implement the following steps when executing the computer program:
  • the processor 301 obtains the current temperature of the temperature sensor 303 at the preset sampling point, including:
  • the processor 301 obtains a set of sampling positions corresponding to the signal to be sampled within one clock cycle, including:
  • the sampler 304 moves the phase of the sampling clock within the clock cycle; according to the shifted phase of the sampling clock, the sampler 304 304 Sampling the to-be-sampled signal to obtain a sampling signal corresponding to the phase; judging whether the phase point corresponding to the moved phase is an effective phase point according to the sampling signal; and constructing a set of sampling locations.
  • the processor 301 obtains the clock cycle of the signal to be sampled transmitted by the signal transmitter, including:
  • the signal frequency corresponding to the signal to be sampled transmitted by the signal transmitting end is obtained, so as to obtain the clock period according to the signal frequency.
  • the processor 301 determines whether the phase point corresponding to the phase is a valid phase point according to the sampled signal, including:
  • the processor 301 constructs the sampling position set according to the valid phase points, including:
  • a plurality of adjacent valid phase points are selected according to the screening positions to construct the sampling position set.
  • the processor 301 obtains the corresponding optimal sampling position from the sampling position set according to the current temperature, including:
  • the processor 301 obtains the set of working ambient temperatures of the preset sampling points, including:
  • determining a preset working environment temperature interval determining a working environment temperature interval according to the number of sampling locations in the sampling location set and the preset working environment temperature interval; and according to the working environment temperature interval and the preset working environment temperature The interval obtains the working environment temperature set.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, where the computer-readable storage medium stores one or more computer programs, and the one or more computer programs can be executed by one or more processors to implement The steps of the signal sampling method provided by the embodiments of the present disclosure.
  • the storage medium may be an internal storage unit of the signal sampling device described in the foregoing embodiments, for example, a hard disk or a memory of the signal sampling device.
  • the storage medium may also be an external storage device of the signal sampling device, for example, a plug-in hard disk equipped on the signal sampling device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, Flash Card, etc.
  • the signal sampling method, the signal sampling device, and the computer-readable storage medium that can implement the signal sampling method provided by the embodiments of the present disclosure effectively solve the problem of sampling caused by temperature changes by shifting the sampling clock according to the current temperature of the sampling point.
  • the problem of inaccurate sampling caused by clock offset can be more accurately sampled for the signal to be sampled.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

一种信号采样方法、一种信号采样装置及一种计算机可读存储介质,所述信号采样方法包括:获取预设采样点的当前温度(S101);获取待采样信号在一个时钟周期内对应的采样位置集合(S102);根据所述当前温度,从所述采样位置集合内获取对应的最佳采样位置(S103);以及移动采样时钟到所述最佳采样位置,进行信号采样(S104)。

Description

信号采样方法、信号采样装置及计算机可读存储介质
相关申请的交叉引用
本申请要求于2020年12月17日提交的中国专利申请No.202011497740.2的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本公开涉及通信技术领域,尤其涉及信号采样方法、信号采样装置及计算机可读存储介质。
背景技术
信号在传输路径上传播时,其传播速度会受到信号载体以及周围媒质属性的影响,从而使信号到达采样点时存在时延,特别是对高速电路的信号进行采样,如果对信号传播过程的时延计算不准确,会导致采样到的信号数据不准确。比如温度变化会让时钟发生偏移,使数据在传输过程中产生时钟与数据不对齐的现象,导致信号数据采集错误。
公开内容
第一方面,本公开实施例提供一种信号采样方法,包括:获取预设采样点的当前温度;获取待采样信号在一个时钟周期内对应的采样位置集合;根据所述当前温度,从所述采样位置集合内获取对应的最佳采样位置;以及移动采样时钟到所述最佳采样位置,进行信号采样。
第二方面,本公开实施例还提供一种信号采样装置,所述信号采样装置包括存储器以及处理器;所述存储器配置为存储计算机可执行的信号采样程序;所述处理器配置为调用所述计算机可执行的信号 采样程序以实现本公开实施例提供的信号采样方法。
第三方面,本公开实施例还提供一种计算机可读存储介质,其上储存有计算机程序,所述计算机程序被处理器加载以执行本公开实施例提供的信号采样方法。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的信号采样方法的流程示意图;
图2为图1所示的信号采样方法的采样位置集合获取步骤的流程示意图;
图3为本公开实施例提供的信号采样方法的一场景示意图;
图4为本公开实施例提供的信号采样方法的另一场景示意图;
图5为图1所示的信号采样方法的最佳采样位置获取步骤的流程示意图;
图6为本公开实施例提供的信号采样方法的另一场景示意图;以及
图7为本公开实施例提供的信号采样装置的结构示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行更清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据 实际情况改变。
应当理解,在本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
下面结合附图,对本公开的一些实施例作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参照图1,图1为本公开实施例提供的信号采样方法的流程示意图,该信号采样方法应用于信号采样装置,该信号采样装置可以安装于信号接收端或信号发射端,在此不做限定,如图1所示,所述信号采样方法包括步骤S101至步骤S104。
步骤S101、获取预设采样点的当前温度。
本实施例以所述信号采样方法应用于信号采样装置,且所述信号采样装置安装于信号接收端为例进行说明。
本实施例中,待采样信号为高速信号,即信号的频率大于预设频率值,该预设频率值根据需要设定,如,信号的频率大于或等于50MHz,设定的预设频率值为50MHz。
预设采样点可以根据需要设定,本实施例中,预设采样点为信号接收端内对应设置的采样点,信号接收端在预设采样点配置有温度传感器,通过读取温度传感器的温度值来获取预设采样点的当前温度,以该当前温度作为信号接收端当前的工作环境温度。
在一些实施方式中,所述获取预设采样点的当前温度,包括:周期性获取所述预设采样点的温度值,以获取所述预设采样点对应的温度集合;判断所述温度集合的最高温度和最低温度的差值是否小于预设差值;以及当所述差值小于所述预设差值时,将所述温度集合中最后一次获取的温度值作为所述预设采样点的当前温度。
具体的,每经过一个预设时间间隔,获取并记录一次预设采样点温度传感器的温度值,在获取到预设次数的温度值后将记录的所有温度值作为温度集合,然后计算该温度集合中的最高温度和最低温度的差值,如果该差值小于预设差值,则表明获取该温度集合时,预设 采样点的温度处于稳定状态且没有出现错误获取温度值的情况,则将该温度集合中最后一次获取的温度值作为预设采样点的当前温度。例如,预设差值为3摄氏度,每隔1秒读取并记录一次温度传感器的温度值,连续读取10次后得到一个包含10个温度值的温度集合,最高温度为32摄氏度,最低温度为30摄氏度,最后一次读取的温度为30摄氏度,则最高温度和最低温度的差值为2摄氏度,即小于预设差值3摄氏度,所以将最后一次获取的温度值作为预设采样点的当前温度,即预设采样点的当前温度为30摄氏度。
步骤S 102、获取待采样信号在一个时钟周期内对应的采样位置集合。
获取待采样信号在一个时钟周期内的采样位置集合,该采样位置集合内的所有采样位置都远离信号边沿,通过在远离信号边沿的采样位置对待采样信号进行采样,可以确保采样更加准确。
参照图2,图2为图1所示的信号采样方法的采样位置集合获取步骤的流程示意图,在一些实施方式中,移动采样时钟的位置进行信号采样,通过分析采样到的信号来获取信号发射端发射的信号在一个时钟周期内对应的采样位置集合,具体地,如图2所示,步骤S102可包括:步骤S1021至步骤S1025。
步骤S1021,获取信号发射端发射的待采样信号的时钟周期。
在一些实施方式中,获取所述信号发射端发射的待采样信号的时钟周期,包括:获取所述信号发射端发射的待采样信号对应的信号频率,以根据所述信号频率获取所述时钟周期。因为信号发射端和信号接收端的信号的频率一致,且一个时钟周期等于频率的倒数,所以通过信号发射端的频率可以计算出对应的时钟周期。
步骤S1022、根据预设移相精度在所述时钟周期内移动所述采样时钟的相位。
获取到时钟周期后,根据时钟周期确定预设移相精度,然后根据预设移相精度来移动采样时钟的相位,预设移相精度要尽量小。例如,得到时钟周期为T,预设移相精度为T/n,为了使预设移相精度足够小,n可大于或等于40。
步骤S1023、根据移动后的所述采样时钟的相位对所述待采样信号进行采样,以获取对应相位的采样信号。
采样时钟根据预设移相精度进行移相操作,在采样时钟每移动一个预设移相精度的相位后,便在移动后的相位对待采样信号进行采样,以获取对应相位的采样信号。
步骤S1024、根据所述采样信号判断进行移动后的所述相位对应的相位点是否为有效相位点。
在一些实施方式中,所述根据所述采样信号判断进行移动后的所述相位对应的相位点是否为有效相位点,包括:判断所述采样信号是否为跳变信号;当所述采样信号为跳变信号时,判断相邻跳变信号之间的相位点数是否大于预设相位数;以及当相邻跳变信号之间的相位点数大于预设相位数时,判断相邻跳变信号之间的相位点为有效相位点。
根据预设移相精度移动采样时钟的相位,在移动后的相位对待采样信号进行采样得到该相位的采样信号后,判断采样得到的采样信号是否为跳变信号,即是否为信号边沿,当采样得到的采样信号为跳变信号时,记录后续采样时钟移动相位后的对应相位点,并判断在对应相位点所采样到的采样信号是否为跳变信号,当再次采样得到的采样信号为跳变信号时,判断相邻的跳变信号之间记录的相位点数是否大于预设相位数,当该相位点数大于预设相位数时,那么相邻的跳变信号之间记录的相位点都为有效相位点。通过上述方法判断两个信号边沿之间的间隔是否足够,过滤掉了信号在边沿出现状态不稳定的情况,使得到的采样位置集合中的采样位置更优。
例如,图3为本公开实施例提供的信号采样方法的一场景示意图,如图3所示,以预设移相精度T/n移动采样时钟,每移动T/n相位,便对待采样信号采样一次,当采样得到的采样信号为跳变信号时,即采样到低电平信号A后又采样到高电平信号B,那么信号B为跳变信号,记录后续采样时钟移动相位后的对应相位点,并判断对应相位点所采样到的采样信号是否为跳变信号,当再次采样得到的采样信号为跳变信号时,即采样到高电平信号C后又采样到低电平D,那 么D为跳变信号,得到相邻的跳变信号B和D之间记录的相位点数为50,而预设相位数为5,所以相邻的跳变信号之间记录的相位点数大于预设相位数,即跳变信号B和D之间记录的相位点都为有效相位点。
步骤S1025、根据所述有效相位点构建所述采样位置集合。
根据预设移相精度移动采样时钟的相位,在移动后的相位对待采样信号进行采样得到该相位的采样信号后,判断采样得到的采样信号是否为稳定信号,当采样信号为稳定信号时,那么该采样信号所对应的相位点就是有效相位点。在一个时钟周期内的预设位置选取多个有效相位点构建采样位置集合,即在该采样位置集合内的所有采样位置都可以采样到稳定信号。
在一些实施方式中,所述根据所述有效相位点构建所述采样位置集合,包括:确定所述有效相位点的筛选位置;根据所述筛选位置选取相邻的多个有效相位点以构建所述采样位置集合。
根据预设移相精度T/n移动采样时钟,每移动T/n相位,便对待采样信号采样一次,记录在一个时钟周期内的所有有效相位点,筛选位置具体处于一个时钟周期内的中间位置,即采样集合中处于中间位置的有效相位点同时处于该时钟周期的中间位置。例如,在一个时钟周期内有50个有效相位点,根据采样的先后顺序对所有有效相位点排序,选取第21到第29的有效相位点构建采样位置集合,第25的有效相位点同时处于采样位置集合的中间位置和该时钟周期的中间位置。通过选取处于时钟周期中间位置的有效相位点构建采样位置集合,使采样位置集合中的所有采样位置都远离信号边沿,增大了后续移动采样时钟的容错能力。
步骤S103、根据所述当前温度,从所述采样位置集合内获取对应的最佳采样位置。
具体的,根据当前温度的值,在采样位置集合中选取一个对应的采样位置作为最佳采样位置。图4是温度变化造成的时钟偏移的场景示意图,如图4所示,以Clock2为基准时钟,即Clock2没有出现时钟偏移现象。当温度升高时,信号的延迟相对于采样时钟会增加,便会造成采样位置向左移动,也即Clock3相较于Clock2向左偏移; 当温度降低时,信号的延迟相对于采样时钟会减少,便会造成采样位置向右移动,也即Clock1相较于Clock2向右偏移。通过根据当前温度在采样位置集合中选取一个对应的采样位置作为最佳采样位置,补偿了温度变化造成的时钟偏移,保证了信号采样的准确性。
参照图5,图5为图1所示的信号采样方法的最佳采样位置获取步骤的流程示意图,在一些实施方式中,采样位置集合中的每个采样位置分别对应一个温度值,然后根据所述当前温度和每个采样位置对应的温度值,获取所述当前温度对应的最佳采样位置,具体地,如图5所示,步骤S103可包括:步骤S1031至步骤S1033。
步骤S1031、获取所述预设采样点的工作环境温度集合,所述工作环境温度集合中的多个工作环境温度和所述采样位置集合中的多个采样位置对应。
将采样位置集合内的每个采样位置对应一个温度值,例如,图6为本公开实施例提供的信号采样方法的一场景示意图,如图6所示,采样位置集合包括根据采样先后顺序排序的9个采样位置1到9,工作环境温度集合包括从小到大的9个工作环境温度Temp1到Temp9。最高的工作环境温度Temp9对应采样位置1,最低的工作环境温度Temp1对应采样位置9,中间的工作环境温度和采样位置依次对应。
在一些实施方式中,所述获取所述预设采样点的工作环境温度集合,包括:确定预设工作环境温度区间;根据采样位置集合中的采样位置个数及所述预设工作环境温度区间,确定工作环境温度间隔;以及根据所述工作环境温度间隔及所述预设工作环境温度区间获取所述工作环境温度集合。
预设工作环境温度区间可经过测试得到,然后根据(T a-T 1)/(a-1)计算得到工作环境温度间隔,T a为预设工作环境温度区间的最高温度,T 1为预设工作环境温度区间的最低温度,a为采样位置集合中采样位置的个数,例如,对中央处理单元(Central Processing Unit,CPU)的工作环境温度进行测试,得到其工作环境温度区间为-20摄氏度到60摄氏度,然后获取采样位置集合中的采样位置个数有9个,那么工作环境温度间隔为10摄氏度,即得到的工作环境温度集合包括-20 摄氏度、-10摄氏度、0摄氏度、10摄氏度、20摄氏度、30摄氏度、40摄氏度、50摄氏度及60摄氏度。
步骤S1032、将所述当前温度和多个所述工作环境温度分别做差得到对应的温度差值,并选取最小温度差值对应的工作环境温度作为基准温度。
例如,当前温度为42摄氏度,工作环境温度集合包括-20摄氏度、-10摄氏度、0摄氏度、10摄氏度、20摄氏度、30摄氏度、40摄氏度、50摄氏度及60摄氏度,那么当前温度和多个所述工作环境温度分别做差,得到的最小温度差值为2摄氏度,其对应的工作环境温度为40摄氏度,则基准温度为40摄氏度。
步骤S1033、根据所述基准温度获取所述基准温度对应的采样位置,作为最佳采样位置。
例如,基准温度为40摄氏度,如图6所示,40摄氏度为Temp7,则对应的采样位置为采样位置3,即采样位置3为最佳采样位置。
步骤S104、移动采样时钟到所述最佳采样位置,进行信号采样。
根据上述计算出的最佳采样位置,将采样时钟移动到最佳采样位置进行后续的信号采样。
上述实施例提供的信号采样方法,通过根据温度的变化对采样时钟进行移相操作,解决了因为温度变化造成时钟偏移而导致的采样不准确的问题。如图4所示,当温度升高时,信号的延迟相对于采样时钟会增加,便会造成采样位置向左移动,也即Clock3相较于Clock2向左偏移;当温度降低时,信号的延迟相对于采样时钟会减少,便会造成采样位置向右移动,也即Clock1相较于Clock2向右偏移,如图6所示,通过根据当前温度对采样时钟进行对应的移相操作,对因为温度变化造成的信号时延通过移动采样位置进行补偿,有效地解决了因为温度变化造成时钟偏移而导致的采样不准确的问题,且通过在时钟周期中的采样位置集合内选取最佳采样位置,使最佳采样位置远离信号边沿,进一步保证了采样时钟移相后所采样到的信号的准确。
参阅图7,图7为本公开实施例提供的信号采样装置的结构示意性框图,如图7所示,信号采样装置300具体可包括处理器301、存 储器302、温度传感器303和采样器304,处理器301、存储器302、温度传感器303和采样器304通过总线305连接,该总线305比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器301提供计算和控制能力,支撑整个信号采样装置的运行。处理器301可以是中央处理单元(Central Processing Unit,CPU),该处理器301还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器302配置为存储计算机可执行的信号采样程序。存储器302可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
温度传感器303配置为获取信号采样装置的环境温度。
采样器304配置为对待采样信号进行采样和对采样时钟进行移相。采样器304可以是现场可编程门阵列(Field Programmable Gate Array,FPGA),还可以是专用集成电路(Application Specific,ASIC)。
本领域技术人员可以理解,图7中示出的结构仅仅是与本公开实施例方案相关的部分结构的框图,并不构成对应用本公开实施例方案的信号采样装置的限定,具体的信号采样装置可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一些实施方式中,所述处理器301配置为运行存储在存储器302中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取预设采样点的温度传感器303的当前温度;获取待采样信号在一个时钟周期内对应的采样位置集合;根据所述当前温度,从所述采样位置集合内获取对应的最佳采样位置;以及采样器304移动采样时钟到所述最佳采样位置,进行信号采样。
在一些实施方式中,处理器301获取预设采样点的温度传感器 303的当前温度,包括:
周期性获取所述预设采样点的温度传感器303的温度值,以获取所述预设采样点对应的温度集合;判断所述温度集合的最高温度和最低温度的差值是否小于预设差值;以及当所述差值小于所述预设差值时,将所述温度集合中最后一次获取的温度值作为所述当前温度。
在一些实施方式中,处理器301获取待采样信号在一个时钟周期内对应的采样位置集合,包括:
获取信号发射端发射的待采样信号的时钟周期;根据预设移相精度,采样器304在所述时钟周期内移动所述采样时钟的相位;根据移动后的所述采样时钟的相位,采样器304对所述待采样信号进行采样,以获取对应相位的采样信号;根据所述采样信号判断进行移动后的所述相位对应的相位点是否为有效相位点;以及根据所述有效相位点构建所述采样位置集合。
在一些实施方式中,处理器301获取所述信号发射端发射的待采样信号的时钟周期,包括:
获取所述信号发射端所发射待采样信号对应的信号频率,以根据所述信号频率获取所述时钟周期。
在一些实施方式中,处理器301根据所述采样信号判断所述相位对应的相位点是否为有效相位点,包括:
判断所述采样信号是否为跳变信号;当所述采样信号为跳变信号时,判断相邻跳变信号之间的相位点数是否大于预设相位数;以及当相邻跳变信号之间的相位点数大于预设相位数时,判断相邻跳变信号之间的相位点为有效相位点。
在一些实施方式中,处理器301根据所述有效相位点构建所述采样位置集合,包括:
确定所述有效相位点的筛选位置;以及
根据所述筛选位置选取相邻的多个有效相位点以构建所述采样位置集合。
在一些实施方式中,处理器301根据所述当前温度,从所述采样位置集合内获取对应的最佳采样位置,包括:
获取所述预设采样点的工作环境温度集合,所述工作环境温度集合中的多个工作环境温度和所述采样位置集合中的多个采样位置对应;将所述当前温度和多个所述工作环境温度分别做差得到对应的温度差值,并选取最小温度差值对应的工作环境温度作为基准温度;以及根据所述基准温度获取所述基准温度对应的采样位置,作为最佳采样位置。
在一些实施方式中,处理器301获取所述预设采样点的工作环境温度集合,包括:
确定预设工作环境温度区间;根据采样位置集合中的采样位置个数及所述预设工作环境温度区间,确定工作环境温度间隔;以及根据所述工作环境温度间隔及所述预设工作环境温度区间获取所述工作环境温度集合。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的信号采样装置的具体工作过程,可以参考前述信号采样方法实施例中的对应过程,在此不再赘述。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个计算机程序,所述一个或者多个计算机程序可被一个或者多个处理器执行,以实现如本公开实施例提供的信号采样方法的步骤。
所述存储介质可以是前述实施例所述的信号采样装置的内部存储单元,例如所述信号采样装置的硬盘或内存。所述存储介质也可以是所述信号采样装置的外部存储设备,例如所述信号采样装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本公开实施例提供的信号采样方法、信号采样装置及可实现所述信号采样方法的计算机可读存储介质,通过根据采样点的当前温度对采样时钟进行移相,有效解决了因为温度变化引起采样时钟偏移而导致的采样不准确的问题,能够对待采样信号进行更准确的采样。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、装置中的功能模块/单元可以被实施为软件、固件、硬件 及其适当的组合。在硬件实施例中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器(如中央处理器、数字信号处理器或微处理器)执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
应当理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还可能包括没有明确列出的其他要素,或者是还可包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本公开实施例仅用于描述,没有优劣区分。而且,以上所述,仅为本公开的示例性实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保 护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种信号采样方法,包括:
    获取预设采样点的当前温度;
    获取待采样信号在一个时钟周期内对应的采样位置集合;
    根据所述当前温度,从所述采样位置集合内获取对应的最佳采样位置;以及
    移动采样时钟到所述最佳采样位置,进行信号采样。
  2. 根据权利要求1所述的方法,其中,所述获取预设采样点的当前温度包括:
    周期性获取所述预设采样点的温度值,以获取所述预设采样点对应的温度集合;
    判断所述温度集合的最高温度和最低温度的差值是否小于预设差值;以及
    当所述差值小于所述预设差值时,将所述温度集合中最后一次获取的温度值作为所述预设采样点的当前温度。
  3. 根据权利要求1所述的方法,其中,所述获取待采样信号在一个时钟周期内对应的采样位置集合包括:
    获取信号发射端发射的所述待采样信号的时钟周期;
    根据预设移相精度在所述时钟周期内移动所述采样时钟的相位;
    根据移动后的所述采样时钟的相位对所述待采样信号进行采样,以获取对应相位的采样信号;
    根据所述采样信号判断进行移动后的所述相位对应的相位点是否为有效相位点;以及
    根据所述有效相位点构建所述采样位置集合。
  4. 根据权利要求3所述的方法,其中,所述获取信号发射端发射的待采样信号的时钟周期包括:
    获取所述信号发射端所发射待采样信号对应的信号频率,以根据所述信号频率获取所述时钟周期。
  5. 根据权利要求3所述的方法,其中,所述根据所述采样信号判断进行移动后的所述相位对应的相位点是否为有效相位点包括:
    判断所述采样信号是否为跳变信号;
    当所述采样信号为跳变信号时,判断相邻跳变信号之间的相位点数是否大于预设相位数;以及
    当相邻跳变信号之间的相位点数大于预设相位数时,判断相邻跳变信号之间的相位点为有效相位点。
  6. 根据权利要求3所述的方法,其中,所述根据所述有效相位点构建所述采样位置集合包括:
    确定所述有效相位点的筛选位置;
    根据所述筛选位置选取相邻的多个有效相位点以构建所述采样位置集合。
  7. 根据权利要求1所述的方法,其中,所述根据所述当前温度,从所述采样位置集合内获取对应的最佳采样位置包括:
    获取所述预设采样点的工作环境温度集合,所述工作环境温度集合中的多个工作环境温度和所述采样位置集合中的多个采样位置对应;
    将所述当前温度和多个所述工作环境温度分别做差得到对应的温度差值,并选取最小温度差值对应的工作环境温度作为基准温度;以及
    根据所述基准温度获取所述基准温度对应的采样位置,作为最佳采样位置。
  8. 根据权利要求7所述的方法,其中,所述获取所述预设采样点的工作环境温度集合包括:
    确定预设工作环境温度区间;
    根据采样位置集合中的采样位置个数及所述预设工作环境温度区间,确定工作环境温度间隔;以及
    根据所述工作环境温度间隔及所述预设工作环境温度区间获取所述工作环境温度集合。
  9. 一种信号采样装置,包括:
    存储器以及处理器;
    所述存储器配置为存储计算机可执行的信号采样程序;
    所述处理器配置为调用所述计算机可执行的信号采样程序以实现如权利要求1至8中任一项所述的信号采样方法。
  10. 一种计算机可读存储介质,其上储存有计算机程序,所述计算机程序被处理器加载以执行如权利要求1至8中任一项所述的信号采样方法。
PCT/CN2021/138278 2020-12-17 2021-12-15 信号采样方法、信号采样装置及计算机可读存储介质 WO2022127815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011497740.2A CN114706448A (zh) 2020-12-17 2020-12-17 信号采样方法、信号采样装置及存储介质
CN202011497740.2 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022127815A1 true WO2022127815A1 (zh) 2022-06-23

Family

ID=82060071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138278 WO2022127815A1 (zh) 2020-12-17 2021-12-15 信号采样方法、信号采样装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN114706448A (zh)
WO (1) WO2022127815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116578166A (zh) * 2023-07-12 2023-08-11 国仪量子(合肥)技术有限公司 同步触发数据的采集方法及存储介质、采集设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877914B (zh) * 2023-01-17 2024-02-20 北京象帝先计算技术有限公司 信号控制方法、采样方法、装置、系统及电子设备
CN117407346B (zh) * 2023-12-13 2024-04-05 芯能量集成电路(上海)有限公司 一种车规级芯片外部flash的采样点调整系统及方法
CN117767846B (zh) * 2024-02-22 2024-04-19 上海利氪科技有限公司 汽车线控制动电机定子温度估测方法、系统及汽车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567767A (zh) * 2009-05-19 2009-10-28 华为技术有限公司 一种窗口采样控制方法及装置
US20170166217A1 (en) * 2015-12-15 2017-06-15 Octo Telematics Spa Systems and methods for controlling sensor-based data acquisition and signal processing in vehicles
CN107832246A (zh) * 2016-09-16 2018-03-23 瑞萨电子株式会社 半导体装置
CN108121619A (zh) * 2016-11-29 2018-06-05 三星电子株式会社 依据通信条件调整延迟的电子电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567767A (zh) * 2009-05-19 2009-10-28 华为技术有限公司 一种窗口采样控制方法及装置
US20170166217A1 (en) * 2015-12-15 2017-06-15 Octo Telematics Spa Systems and methods for controlling sensor-based data acquisition and signal processing in vehicles
CN107832246A (zh) * 2016-09-16 2018-03-23 瑞萨电子株式会社 半导体装置
CN108121619A (zh) * 2016-11-29 2018-06-05 三星电子株式会社 依据通信条件调整延迟的电子电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116578166A (zh) * 2023-07-12 2023-08-11 国仪量子(合肥)技术有限公司 同步触发数据的采集方法及存储介质、采集设备
CN116578166B (zh) * 2023-07-12 2023-09-22 国仪量子(合肥)技术有限公司 同步触发数据的采集方法及存储介质、采集设备

Also Published As

Publication number Publication date
CN114706448A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2022127815A1 (zh) 信号采样方法、信号采样装置及计算机可读存储介质
CN109387776B (zh) 测量时钟抖动的方法、时钟抖动测量电路和半导体装置
EP2026469A1 (en) Circuit device and method of measuring clock jitter
US9337887B2 (en) Phase-alignment between clock signals
JP2020525761A (ja) 時間測定回路、時間測定チップ、レーザー検出・測距システム、自動化装置、および時間測定方法
CN109213703B (zh) 一种数据检测方法及数据检测装置
JP2012054715A (ja) サンプリング位相を補正するホストコントローラ及び方法
CN220207786U (zh) 延迟偏差测量电路
US10797984B1 (en) Systems and methods for timestamping a data event
US20150008940A1 (en) Clock jitter and power supply noise analysis
US11178036B2 (en) Systems and methods for measuring latency in a network device
US10680792B1 (en) Systems and methods for timing a signal
US9817047B2 (en) Duty cycle measurement
JP5221609B2 (ja) Dllを共用してサンプリング位相設定を行うホストコントローラ
WO2018002717A1 (en) Signal processing apparatus and method, and electronic device comprising the apparatus
CN113468095B (zh) 高速串行传输数据相位对齐方法、存储介质及终端设备
CN109085492B (zh) 集成电路信号相位差确定方法及装置、介质和电子设备
US20230006903A1 (en) Systems and methods for timing a signal
US11483007B1 (en) Multiple clock domain alignment circuit
US6904579B2 (en) Reducing time to measure constraint parameters of components in an integrated circuit
US11088684B2 (en) Calibrating internal pulses in an integrated circuit
US11157036B2 (en) Monitoring delay across clock domains using dynamic phase shift
CN109101691B (zh) 一种双倍速率数据传输接口的数据采样方法
JP2023509036A (ja) 検出回路及び検出方法
KR101956126B1 (ko) 병렬 신호의 위상 정렬 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.10.2023)