WO2022122022A1 - 一种废线路板光板裂解渣制备碳化硅的方法 - Google Patents

一种废线路板光板裂解渣制备碳化硅的方法 Download PDF

Info

Publication number
WO2022122022A1
WO2022122022A1 PCT/CN2021/137128 CN2021137128W WO2022122022A1 WO 2022122022 A1 WO2022122022 A1 WO 2022122022A1 CN 2021137128 W CN2021137128 W CN 2021137128W WO 2022122022 A1 WO2022122022 A1 WO 2022122022A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
silicon carbide
waste circuit
crushing
powder
Prior art date
Application number
PCT/CN2021/137128
Other languages
English (en)
French (fr)
Inventor
吴玉锋
袁浩然
Original Assignee
北京工业大学
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学, 中国科学院广州能源研究所 filed Critical 北京工业大学
Publication of WO2022122022A1 publication Critical patent/WO2022122022A1/zh
Priority to US17/843,934 priority Critical patent/US11667532B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/984Preparation from elemental silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to a recovery technology for high-value utilization of waste circuit board cracking residues, in particular to a new method for preparing silicon carbide by using non-metallic components in waste circuit board cracking residues and epoxy resin cracking residues as matrix materials.
  • silicon carbide is widely used in abrasives, photovoltaic raw materials, and new ceramic materials, known as "industrial teeth" .
  • the use of silicon carbide is the largest in the metallurgical field.
  • black silicon carbide with a purity of 90% is often used as an additive.
  • the countries with the largest silicon carbide production in the world are China, Norway, Brazil, the Netherlands, Japan and the United States.
  • the raw materials used are high-purity silica sand and anthracite, and salt is added as an additive. At present, anthracite is widely used as the raw material of silicon carbide in China.
  • the purpose of the present invention is mainly to solve the problem of high-value utilization of the residue of the cracked slag of the waste circuit board, and creatively propose a new method for preparing silicon carbide by using the non-metallic components in the cracked slag of the waste circuit board as the matrix material.
  • the high-value utilization of coke and silica in the non-metallic components of the cracked slag of the circuit board has the characteristics of simple and easy process, low manufacturing cost, high resource utilization rate, wide adaptability of raw materials and environmental friendliness, which is conducive to improving the production of enterprises. economic and social benefits.
  • the method for preparing silicon carbide from a waste circuit board light board cracking residue according to the present invention is carried out in the following steps:
  • Roll crushing Roll the waste circuit board cracking slag with a particle size of 3 to 5 cm to obtain crushed materials with a particle size of 0.5 to 1 mm.
  • the two smooth pressing rollers used in the roller press are of the same size and placed up and down. , the diameter of the pressure roller is 200-300mm, the width of the pressure roller is 300-500mm, the distance between the two rollers is 0.2-0.8mm during the working process, the upper roller rotates counterclockwise and the two rollers run in opposite directions, and the speed of the roller surface is 0.1-0.5m /s.
  • Vibration sorting the material obtained by rolling and crushing in step (1) is vibrated and sieved to obtain copper-containing metal flakes and non-metallic particles.
  • the non-metallic powder obtained in step (3) is added with common hardwood sawdust for papermaking, sodium chloride, and water to be mixed uniformly to obtain a mixed material. It is convenient for the chlorination and volatilization of volatile impurities of aluminum, iron and copper, among which the common hardwood for papermaking refers to one or more of elm, birch and poplar, and sawdust and sawdust account for 2% to 5% of the total mass of the mixture. Sodium accounts for 3% to 6%, and water accounts for 1% to 2%.
  • step (4) microwave sintering: the mixture material obtained in step (4) is put into an alumina crucible for microwave heating, after a certain period of time, the griddle is cooled to obtain coarse silicon carbide, and the CO gas produced in the reaction process is returned to the water gas preparation process, wherein The temperature is raised to 1300 to 1800° C. in 60 to 90 minutes, and the holding time is 30 to 90 minutes.
  • the present invention adopts roller crushing instead of traditional shear crushing to pretreat the cracked slag of waste circuit boards, which has the functions of simple operation, energy saving and consumption reduction, and microwave sintering is used instead of traditional Acheson smelting in the implementation process.
  • the furnace shortens the smelting time, reduces the smelting temperature, greatly improves the production efficiency and reduces the production cost.
  • the invention adopts the non-metallic component pyrolysis coke and silicon dioxide generated in the recovery process of the waste circuit board light plate cracking slag as the matrix material, it can partially replace the primary resources anthracite and quartz sand to produce silicon carbide, save the mineral resources and reduce the economic cost , and no other impurities are introduced in the implementation process, the obtained silicon carbide meets the production quality requirements, fully realizes the high-value utilization of the valuable components of the waste circuit board cracking residue, and has the advantages of simple and easy process, wide adaptability of raw materials, and resources It has the characteristics of high utilization rate and environmental friendliness.
  • Fig. 1 shows the process flow chart of the preparation of silicon carbide from the cracked slag of the waste circuit board light board
  • Roll crushing The waste circuit board cracking slag with a particle size of 3cm is rolled, and the two smooth pressure rollers used in the roller press are of the same size and placed up and down.
  • the diameter of the roller is 200mm and the width of the roller is 300mm.
  • the distance between the two rolls is 0.2mm, the upper roll runs counterclockwise and the two rolls run in opposite directions, and the speed of the roll surface is 0.1m/s to obtain crushed materials with a particle size of 0.5mm.
  • Vibration sorting the material obtained by rolling and crushing in step (1) is vibrated and sieved to obtain copper-containing metal flakes and non-metallic particles.
  • step (3) the non-metallic powder obtained in step (3) is added with poplar sawdust for ordinary papermaking, sodium chloride, and water to mix uniformly to obtain a mixed material. It is convenient for the chlorination and volatilization of volatile impurities of aluminum, iron and copper, among which poplar sawdust and sawdust for ordinary papermaking account for 2% of the total mass of the mixture, 3% for sodium chloride, and 1% for water.
  • microwave sintering put the mixture material obtained in step (4) into the alumina crucible and carry out microwave heating, wherein 60min is warming up to 1300 DEG C, and the holding time is 30min, and the roasting finishes the cooling griddle to obtain coarse silicon carbide, and the reaction
  • the CO gas produced in the process is returned to the water gas preparation process.
  • the SiC content in the obtained crude silicon carbide was 90%.
  • Roll crushing The waste circuit board cracking slag with a particle size of 5cm is rolled, and the two smooth pressure rollers used in the roller press are of the same size and placed up and down.
  • the diameter of the roller is 300mm and the width of the roller is 500mm.
  • the distance between the two rolls is 0.8mm, the upper roll runs counterclockwise and the two rolls run in opposite directions, and the speed of the roll surface is 0.5m/s to obtain crushed materials with a particle size of 1mm.
  • Vibration sorting the material obtained by rolling and crushing in step (1) is vibrated and sieved to obtain copper-containing metal flakes and non-metallic particles.
  • step (3) the non-metallic powder obtained in step (3) is added with elm wood sawdust, sodium chloride, and water to be mixed to obtain a mixture, wherein the elm sawdust and sawdust for ordinary paper accounts for the total amount of the mixture. 5% by mass, 6% sodium chloride, and 2% water.
  • microwave sintering put the mixture material obtained in step (4) into the alumina crucible and carry out microwave heating, wherein 90min is warming up to 1800 DEG C, the holding time is 90min, and the roasting finishes the cooling griddle to obtain coarse silicon carbide, and the reaction The CO gas produced in the process is returned to the water gas preparation process.
  • the SiC content in the obtained crude silicon carbide was 95%.
  • Roll crushing The waste circuit board cracking slag with a particle size of 4cm is rolled, and the two smooth pressure rollers used in the roller press are of the same size and placed up and down.
  • the diameter of the roller is 250mm and the width of the roller is 350mm.
  • the distance between the two rolls is 0.3mm, the upper roll runs counterclockwise and the running directions of the two rolls are opposite.
  • Vibration sorting the material obtained by rolling and crushing in step (1) is vibrated and sieved to obtain copper-containing metal flakes and non-metallic particles.
  • step (3) the non-metallic powder obtained in step (3) is added with birch sawdust and sawdust for ordinary papermaking, sodium chloride, and water to be mixed to obtain a mixture, wherein the birch sawdust and sawdust for ordinary papermaking accounts for 10% of the total mass of the mixture. 3%, 4% sodium chloride, and 1.5% water.
  • microwave sintering put the mixture material obtained in step (4) into the alumina crucible and carry out microwave heating, wherein 40min is warming up to 1500 DEG C, and the holding time is 70min, and the roasting finishes the rear cooling griddle to obtain coarse silicon carbide, and the reaction
  • the CO gas produced in the process is returned to the water gas preparation process.
  • the SiC content in the obtained crude silicon carbide was 92%.
  • Roll crushing The waste circuit board cracking slag with a particle size of 5cm is rolled, and the two smooth pressure rollers used in the roller press are of the same size and placed up and down.
  • the diameter of the roller is 275mm and the width of the roller is 375mm.
  • the distance between the two rolls is 0.6mm, the upper roll runs counterclockwise and the running directions of the two rolls are opposite, and the speed of the roll surface is 0.4m/s, and the crushed material with a particle size of 0.8mm is obtained.
  • Vibration sorting the material obtained by rolling and crushing in step (1) is vibrated and sieved to obtain copper-containing metal flakes and non-metallic particles.
  • step (3) the non-metallic powder obtained in step (3) is added with poplar sawdust and sawdust for common papermaking, sodium chloride, and water to be mixed uniformly to obtain a mixed material, wherein poplar sawdust and sawdust for common papermaking accounts for the mixed material. 3.5% of the total mass, 5% sodium chloride, and 2% water.
  • microwave sintering put the mixture material obtained in step (4) into the alumina crucible and carry out microwave heating, wherein 80min is warmed up to 1600 DEG C, and the holding time is 75min, and the roasting finishes the cooling griddle to obtain coarse silicon carbide, and the reaction
  • the CO gas produced in the process is returned to the water gas preparation process.
  • the SiC content in the obtained crude silicon carbide was 94%.
  • Roll crushing The waste circuit board cracking slag with a particle size of 3.5cm is rolled, and the two smooth pressure rollers used in the roller press are of the same size and placed up and down.
  • the diameter of the roller is 265mm and the width of the roller is 450mm.
  • the distance between the two rolls is 0.4mm, the upper roll runs counterclockwise and the two rolls run in opposite directions, and the speed of the roll surface is 0.2m/s, and the crushed material with a particle size of 0.6mm is obtained.
  • Vibration sorting the material obtained by rolling and crushing in step (1) is vibrated and sieved to obtain copper-containing metal flakes and non-metallic particles.
  • step (3) the non-metallic powder obtained in step (3) is added with birch sawdust and sawdust for ordinary papermaking, sodium chloride, and water to be mixed to obtain a mixture, wherein the birch sawdust and sawdust for ordinary papermaking accounts for 10% of the total mass of the mixture. 4.5%, sodium chloride 3.5%, and water 1.5%.
  • microwave sintering put the mixture material obtained in step (4) into the alumina crucible and carry out microwave heating, wherein 65min is heated to 1450 °C, and the holding time is 45min, and the roasting finishes the cooling griddle to obtain coarse silicon carbide, and the reaction
  • the CO gas produced in the process is returned to the water gas preparation process.
  • the SiC content in the obtained crude silicon carbide was 92%.
  • Roll crushing The waste circuit board cracking slag with a particle size of 3.8cm is rolled, and the two smooth pressure rollers used in the roller press are of the same size and placed up and down.
  • the diameter of the roller is 280mm and the width of the roller is 455mm.
  • the distance between the two rolls is 0.3mm
  • the upper roll runs counterclockwise and the running directions of the two rolls are opposite
  • the speed of the roll surface is 0.4m/s, and the crushed material with a particle size of 0.5mm is obtained.
  • Vibration sorting the material obtained by rolling and crushing in step (1) is vibrated and sieved to obtain copper-containing metal flakes and non-metallic particles.
  • step (3) the non-metallic powder obtained in step (3) is added with elm wood sawdust, sodium chloride, and water to be mixed to obtain a mixture, wherein the elm sawdust and sawdust for ordinary paper accounts for the total amount of the mixture. 4.2% by mass, 3.3% sodium chloride, and 1.1% water.
  • microwave sintering put the mixture material obtained in step (4) into the alumina crucible and carry out microwave heating, wherein 70min is warming up to 1460 DEG C, and the holding time is 50min, and the roasting finishes the cooling griddle to obtain coarse silicon carbide, and the reaction
  • the CO gas produced in the process is returned to the water gas preparation process.
  • the SiC content in the obtained crude silicon carbide was 91.5%.

Abstract

一种废线路板光板裂解渣制备碳化硅的方法,属于废线路板裂解产物综合利用领域,特别涉及废线路板光板基材裂解渣非金属组分高值化利用的新方法。主要步骤如下:辊压破碎、振动分选、超细粉碎电选分离、定量配料、微波烧结和出炉分级。与现有技术相比,本发明采用辊压破碎代替传统剪切破碎、采用微波烧结代替传统艾奇逊冶炼炉,具有操作简单、节能降耗的作用,大大提高了生产效率,降低了生产成本。采用废线路板光板或环氧树脂裂解渣中的裂解焦炭及二氧化硅部分替代无烟煤及石英砂得到高纯度的碳化硅的全新方法,实现了废弃物的资源高值化利用。本发明具有工艺简单易行、制造成本低、适应性广的特点,有利于提高企业生产的经济效益和社会效益。

Description

一种废线路板光板裂解渣制备碳化硅的方法 技术领域
本发明涉及废线路板光板裂解残余物高值化利用的回收技术,特别是涉及利用废线路板光板及环氧树脂裂解渣中的非金属组分为基体材料制备碳化硅的全新方法。
背景技术
碳化硅由于其稳定的化学性质,较高的导热系数,较小的热膨胀系数,以及优良的耐磨性能,被广泛用于磨料、光伏原料、以及新型陶瓷材料,被称为“工业的牙齿”。据统计,冶金领域碳化硅使用量最大,在钢铁生产中,纯度为90%的黑色碳化硅常用作添加剂。全世界碳化硅产量最大的国家有中国、挪威、巴西、荷兰、日本以及美国等。常规的碳化硅在生产时,使用的原料是高纯度硅砂、无烟煤,添加食盐作为添加剂,目前国内普遍采用无烟煤做碳化硅的原料,由于无烟煤价格昂贵且资源有限,导致碳化硅生产成本较高,许多生产厂家积极寻找替代原料以期在不降低碳化硅化学性能前提下,降低生产成本,进而解决供需矛盾、调整我国能源产业结构。寻找能够生产成本低廉、性能优异的SiC材料制备方法的需求越来越广泛和迫切。废线路板光板裂解渣中的非金属成分以及废线路板机械分选后环氧树脂粉末裂解渣残余物均具有制备碳化硅所需的炭及二氧化硅等成分,具有资源广泛、杂质含量少的特点,理论上可作为替代石英砂和无烟煤制备高值化碳化硅的理想材料,节约了矿产资源,降低了经济成本。当前废线路板光板以及环氧树脂粉末裂解渣非金属成分的回收利用没有得到足够的重视,且废线路板裂解渣在碳化硅生产领域未见报道。
发明内容
本发明的目的主要解决废线路板光板裂解渣残余物高值化利用的问题,创造性地提出一种利用废线路板裂解渣中的非金属成分为基体材料制备碳化硅的全新方法,实现了废线路板光板裂解渣非金属成分中焦炭及二氧化硅的高值化利用,具有工艺简单易行、制造成本低、资源利用率高、原料适应性广及环境友好等特点,有利于提高企业生产的经济效益和社会效益。
本发明所述的一种废线路板光板裂解渣制备碳化硅的方法如下步骤进行:
(1)辊压破碎:将颗粒大小3~5cm的废线路板裂解渣进行辊压,得到粒度为0.5~1mm的破碎物料,其中辊压机使用的两个光面压辊大小相同,上下放置,压辊直径为200~300mm,压辊宽度300~500mm,工作过程中,两辊间距0.2~0.8mm,其中上辊逆时针运转且两辊运转方向相反,辊面速度均为0.1~0.5m/s。
(2)振动分选:将步骤(1)辊压破碎得到物料采用振动筛分得到含铜金属薄片和非金属颗粒。
(3)超细粉碎电选分离:将步骤(2)得到的非金属颗粒与环氧树脂粉末裂解渣按质量比5:1~1:1混合,采用超细粉碎机破碎至粒径为0.05~0.2mm,然后采用电选分离,得到非金属粉体和金属粉末,金属粉末与步骤(2)得到的金属薄片混合,进入金属回收系统。
(4)定量配料:将步骤(3)得到的非金属粉体添加普通造纸用阔叶树材锯末木屑、氯化钠、水混合均匀后得到混合物料,木屑便于烧结过程CO气体的挥发,氯化钠便于铝、铁、铜挥发分杂质的氯化挥发,其中普通造纸用阔叶树材指榆木、桦木和杨木中的一种或多种,锯末木屑占混合物料总质量的2%~5%、氯化钠占3%~6%、以及水占1%~2%。
(5)微波烧结:将步骤(4)得到的混合物料放入氧化铝坩埚中进行微波加热,一定时间后,冷却扒炉,得到粗碳化硅,反应过程产生的CO气体返水煤气制备工序,其中60~90min升温至1300~1800℃,保温时间为30~90min。
与现有技术相比,本发明采用辊压破碎代替传统剪切破碎对废线路板裂解渣进行预处理,具有操作简单、节能降耗的作用,实施过程中采用微波烧结代替传统艾奇逊冶炼炉,缩短了冶炼时间,降低了冶炼温度,大大提高了生产效率,降低了生产成本。由于本发明采用废线路板光板裂解渣回收过程中产生的非金属成分裂解焦炭及二氧化硅作为基体材料,可部分替代一次资源无烟煤和石英砂生产碳化硅,节约了矿产资源,降低了经济成本,并且实施过程中不会引入其他杂质,得到的碳化硅满足生产质量要求,充分实现了废线路板裂解残渣有价组分的高值化利用,具有工艺简单易行、原料适应性广、资源利用率高、环境友好等特点。
附图说明
图1表示废线路板光板裂解渣制备碳化硅的工艺流程图
具体实施方式
以下结合实例旨在进一步说明本发明,而非限制本发明。
实施例1
按照如下步骤进行实施:
(1)辊压破碎:将颗粒大小3cm的废线路板裂解渣进行辊压,其中辊压机使用的两个光面压辊大小相同,上下放置,压辊直径为200mm,压辊宽度300mm,工作过程中,两辊间距0.2mm,其中上辊逆时针运转且两辊运转方向相反,辊面速度均为0.1m/s,得到粒度为0.5mm的破碎物料。
(2)振动分选:将步骤(1)辊压破碎得到物料采用振动筛分得到含铜金属薄片和非金属颗粒。
(3)超细粉碎电选分离:将步骤(2)得到的非金属颗粒与环氧树脂粉末裂解渣按质量比2:1混合,采用超细粉碎机破碎至粒径为0.05mm,然后采用电选分离,得到非金属粉体和金属粉末,金属粉末与步骤(2)得到的金属颗粒混合,进入金属回收系统。
(4)定量配料:将步骤(3)得到的非金属粉体添加普通造纸用杨木锯末木屑、氯化钠、水混合均匀后得到混合物料,木屑便于烧结过程CO气体的挥发,氯化钠便于铝、铁、铜挥发分杂质的氯化挥发,其中普通造纸用杨木锯末木屑占混合物料总质量的2%、氯化钠占3%、以及水占1%。
(5)微波烧结:将步骤(4)得到的混合物料放入氧化铝坩埚中进行微波加热,其中60min升温至1300℃,保温时间为30min,焙烧结束后冷却扒炉,得到粗碳化硅,反应过程产生的CO气体返水煤气制备工序。
得到的粗碳化硅中SiC含量为90%。
实施例2
按照如下步骤进行实施:
(1)辊压破碎:将粒度大小5cm的废线路板裂解渣进行辊压,其中辊压机使用的两个光面压辊大小相同,上下放置,压辊直径为300mm,压辊宽度500mm,工作过程中,两辊间距0.8mm,其中上辊逆时针运转且两辊运转方向相反,辊面速度均为0.5m/s,得到 粒度为1mm的破碎物料。
(2)振动分选:将步骤(1)辊压破碎得到物料采用振动筛分得到含铜金属薄片和非金属颗粒。
(3)超细粉碎电选分离:将步骤(2)得到的非金属颗粒与环氧树脂粉末裂解渣按质量比3:1混合,采用超细粉碎机破碎至粒径为0.2mm,然后采用电选分离,得到非金属粉体和金属粉末,金属粉末与步骤(2)得到的金属颗粒混合,进入金属回收系统。
(4)定量配料:将步骤(3)得到的非金属粉体添加普通造纸用榆木锯末木屑、氯化钠、水混合均匀后得到混合物料,其中普通造纸用榆木锯末木屑占混合物料总质量的5%、氯化钠占6%、以及水占2%。
(5)微波烧结:将步骤(4)得到的混合物料放入氧化铝坩埚中进行微波加热,其中90min升温至1800℃,保温时间为90min,焙烧结束后冷却扒炉,得到粗碳化硅,反应过程产生的CO气体返水煤气制备工序。
得到的粗碳化硅中SiC含量为95%。
实施例3
按照如下步骤进行实施:
(1)辊压破碎:将粒度大小4cm的废线路板裂解渣进行辊压,其中辊压机使用的两个光面压辊大小相同,上下放置,压辊直径为250mm,压辊宽度350mm,工作过程中,两辊间距0.3mm,其中上辊逆时针运转且两辊运转方向相反,辊面速度均为0.2m/s,得到粒度为0.6mm的破碎物料。
(2)振动分选:将步骤(1)辊压破碎得到物料采用振动筛分得到含铜金属薄片和非金属颗粒。
(3)超细粉碎电选分离:将步骤(2)得到的非金属颗粒与环氧树脂粉末裂解渣按质量比4:1混合,采用超细粉碎机破碎至粒径为0.1mm,然后采用电选分离,得到非金属粉体和金属粉末,金属粉末与步骤(2)得到的金属颗粒混合,进入金属回收系统。
(4)定量配料:将步骤(3)得到的非金属粉体添加普通造纸用桦木锯末木屑、氯化钠、水混合均匀后得到混合物料,其中普通造纸用桦木锯末木屑占混合物料总质量的3%、氯化钠占4%、以及水占1.5%。
(5)微波烧结:将步骤(4)得到的混合物料放入氧化铝坩埚中进行微波加热,其中40min升温至1500℃,保温时间为70min,焙烧结束后冷却扒炉,得到粗碳化硅,反应过程产生的CO气体返水煤气制备工序。
得到的粗碳化硅中SiC含量为92%。
实施例4
按照如下步骤进行实施:
(1)辊压破碎:将粒度大小5cm的废线路板裂解渣进行辊压,其中辊压机使用的两个光面压辊大小相同,上下放置,压辊直径为275mm,压辊宽度375mm,工作过程中,两辊间距0.6mm,其中上辊逆时针运转且两辊运转方向相反,辊面速度均为0.4m/s,得到粒度为0.8mm的破碎物料。
(2)振动分选:将步骤(1)辊压破碎得到物料采用振动筛分得到含铜金属薄片和非金属颗粒。
(3)超细粉碎电选分离:将步骤(2)得到的非金属颗粒与环氧树脂粉末裂解渣按质量比1:1混合,采用超细粉碎机破碎至粒径为0.15mm,然后采用电选分离,得到非金属粉体和金属粉末,金属粉末与步骤(2)得到的金属颗粒混合,进入金属回收系统。
(4)定量配料:将步骤(3)得到的非金属粉体添加普通造纸用杨木锯末木屑、氯化钠、水混合均匀后得到混合物料,其中普通造纸用杨木锯末木屑占混合混合物料总质量的3.5%、氯化钠占5%、以及水占2%。
(5)微波烧结:将步骤(4)得到的混合物料放入氧化铝坩埚中进行微波加热,其中80min升温至1600℃,保温时间为75min,焙烧结束后冷却扒炉,得到粗碳化硅,反应过程产生的CO气体返水煤气制备工序。
得到的粗碳化硅中SiC含量为94%。
实施例5
按照如下步骤进行实施:
(1)辊压破碎:将粒度大小3.5cm的废线路板裂解渣进行辊压,其中辊压机使用的两个光面压辊大小相同,上下放置,压辊直径为265mm,压辊宽度450mm,工作过程中,两辊间距0.4mm,其中上辊逆时针运转且两辊运转方向相反,辊面速度均为0.2m/s,得到 粒度为0.6mm的破碎物料。
(2)振动分选:将步骤(1)辊压破碎得到物料采用振动筛分得到含铜金属薄片和非金属颗粒。
(3)超细粉碎电选分离:将步骤(2)得到的非金属颗粒与环氧树脂粉末裂解渣按质量比5:1混合,采用超细粉碎机破碎至粒径为0.1mm,然后采用电选分离,得到非金属粉体和金属粉末,金属粉末与步骤(2)得到的金属颗粒混合,进入金属回收系统。
(4)定量配料:将步骤(3)得到的非金属粉体添加普通造纸用桦木锯末木屑、氯化钠、水混合均匀后得到混合物料,其中普通造纸用桦木锯末木屑占混合物料总质量的4.5%、氯化钠占3.5%、以及水占1.5%。
(5)微波烧结:将步骤(4)得到的混合物料放入氧化铝坩埚中进行微波加热,其中65min升温至1450℃,保温时间为45min,焙烧结束后冷却扒炉,得到粗碳化硅,反应过程产生的CO气体返水煤气制备工序。
得到的粗碳化硅中SiC含量为92%。
实施例6
按照如下步骤进行实施:
(1)辊压破碎:将粒度大小3.8cm的废线路板裂解渣进行辊压,其中辊压机使用的两个光面压辊大小相同,上下放置,压辊直径为280mm,压辊宽度455mm,工作过程中,两辊间距0.3mm,其中上辊逆时针运转且两辊运转方向相反,辊面速度均为0.4m/s,得到粒度为0.5mm的破碎物料。
(2)振动分选:将步骤(1)辊压破碎得到物料采用振动筛分得到含铜金属薄片和非金属颗粒。
(3)超细粉碎电选分离:将步骤(2)得到的非金属颗粒与环氧树脂粉末裂解渣按质量比4:1混合,采用超细粉碎机破碎至粒径为0.15mm,然后采用电选分离,得到非金属粉体和金属粉末,金属粉末与步骤(2)得到的金属颗粒混合,进入金属回收系统。
(4)定量配料:将步骤(3)得到的非金属粉体添加普通造纸用榆木锯末木屑、氯化钠、水混合均匀后得到混合物料,其中普通造纸用榆木锯末木屑占混合物料总质量的4.2%、氯化钠占3.3%、以及水占1.1%。
(5)微波烧结:将步骤(4)得到的混合物料放入氧化铝坩埚中进行微波加热,其中70min升温至1460℃,保温时间为50min,焙烧结束后冷却扒炉,得到粗碳化硅,反应过程产生的CO气体返水煤气制备工序。
得到的粗碳化硅中SiC含量为91.5%。
以上实施例仅用于说明本发明的优选实施方式,但本发明并不限于上述实施方式,在所述领域技术人员所具备的知识范围,在不违背科学及本发明思想情况下,在本发明的精神和原则之内所作的修改、等同替代及改进等,均应视为本申请的保护范围。

Claims (4)

  1. 一种废线路板光板裂解渣制备碳化硅的方法,其特征在于,包括以下步骤:
    (1)辊压破碎:将颗粒大小3~5cm的废线路板裂解渣进行辊压,得到粒度为0.5~1mm的破碎物料,其中辊压机使用的两个光面压辊大小相同,上下放置,压辊直径为200~300mm,压辊宽度300~500mm,工作过程中,两辊间距0.2~0.8mm,其中上辊逆时针运转且两辊运转方向相反,辊面速度均为0.1~0.5m/s;
    (2)振动分选:将步骤(1)辊压破碎得到物料采用振动筛分得到含铜金属薄片和非金属颗粒;
    (3)超细粉碎电选分离:将步骤(2)得到的非金属颗粒与环氧树脂粉末裂解渣按质量比5:1~1:1混合,采用超细粉碎机破碎至粒径为0.05~0.2mm,然后采用电选分离,得到非金属粉体和金属粉末;
    (4)定量配料:将步骤(3)得到的非金属粉体添加普通造纸用阔叶树材锯末木屑、氯化钠、水混合均匀后得到混合物料,其中普通造纸用阔叶树材锯末木屑占混合物料总质量的2%~5%、氯化钠占3%~6%、以及水占1%~2%。
    (5)微波烧结:将步骤(4)得到的混合物料放入氧化铝坩埚中进行微波加热,60~90min升温至1300~1800℃,保温30~90min后,冷却扒炉,得到粗碳化硅。
  2. 根据权利要求1所述的方法,其特征在于:金属粉末与步骤(2)得到的含铜金属薄片进入金属回收系统。
  3. 根据权利要求1所述的方法,其特征在于:造纸用阔叶树材为榆木、桦木和杨木中的一种或多种。
  4. 根据权利要求1所述的方法,其特征在于:反应过程产生的CO气体返水煤气制备工序。
PCT/CN2021/137128 2020-12-11 2021-12-10 一种废线路板光板裂解渣制备碳化硅的方法 WO2022122022A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/843,934 US11667532B2 (en) 2020-12-11 2022-06-17 Method for producing silicon carbide from waste circuit board cracking residue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011458206.0 2020-12-11
CN202011458206.0A CN112678827B (zh) 2020-12-11 2020-12-11 一种废线路板光板裂解渣制备碳化硅的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/843,934 Continuation US11667532B2 (en) 2020-12-11 2022-06-17 Method for producing silicon carbide from waste circuit board cracking residue

Publications (1)

Publication Number Publication Date
WO2022122022A1 true WO2022122022A1 (zh) 2022-06-16

Family

ID=75449191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137128 WO2022122022A1 (zh) 2020-12-11 2021-12-10 一种废线路板光板裂解渣制备碳化硅的方法

Country Status (3)

Country Link
US (1) US11667532B2 (zh)
CN (1) CN112678827B (zh)
WO (1) WO2022122022A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112678827B (zh) 2020-12-11 2022-07-19 北京工业大学 一种废线路板光板裂解渣制备碳化硅的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472136A (zh) * 2003-07-15 2004-02-04 中国科学院理化技术研究所 一种制备碳化硅的方法
CN106882806A (zh) * 2015-12-12 2017-06-23 天津榛发科技有限责任公司 一种碳化硅微粉的制备方法
CN108160665A (zh) * 2017-12-14 2018-06-15 北京工业大学 废集成线路板热质协同绿色资源化方法
CN109748281A (zh) * 2019-03-20 2019-05-14 东北大学 一种利用废弃硅微粉制备高品质碳化硅的方法
CN111960420A (zh) * 2020-09-03 2020-11-20 上海第二工业大学 一种微波辐照电子废弃物快速生产纳米碳化硅的方法
CN111977657A (zh) * 2020-09-11 2020-11-24 辽宁科技大学 一种利用微波处理燃煤锅炉飞灰制备碳化硅纳米线的方法
CN112678827A (zh) * 2020-12-11 2021-04-20 北京工业大学 一种废线路板光板裂解渣制备碳化硅的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008395A3 (en) * 1998-12-11 2003-05-02 Matsushita Electric Industrial Co., Ltd. Method for separating metallic material from waste printed circuit boards, and dry distilation apparatus used for waste treatment
US6089479A (en) * 1999-09-28 2000-07-18 Cleanenv' Engineeering Consultant Co., Ltd. Method for treating waste printed circuit boards with molten mixture of inorganic salts
JP2001107152A (ja) * 1999-10-06 2001-04-17 Seikyo Kotei Komon Kofun Yugenkoshi 廃棄プリント配線板の処理方法
US9051186B2 (en) * 2012-04-11 2015-06-09 The United States Of America, As Represented By The Secretary Of The Navy Silicon carbide synthesis from agricultural waste
CN102671916B (zh) * 2012-05-21 2014-05-28 宁波天地回珑再生资源科技有限公司 废线路板处理回收工艺
CN106345794A (zh) * 2016-11-03 2017-01-25 四川长虹电器股份有限公司 一种废线路板微波无氧裂解处理方法
CN109420666A (zh) * 2017-09-04 2019-03-05 中节能(汕头)循环经济有限公司 一种分选废旧线路板资源的方法
CN109092847B (zh) * 2018-07-11 2022-04-05 中山大学 一种对废线路板非金属组分预处理并回收利用的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472136A (zh) * 2003-07-15 2004-02-04 中国科学院理化技术研究所 一种制备碳化硅的方法
CN106882806A (zh) * 2015-12-12 2017-06-23 天津榛发科技有限责任公司 一种碳化硅微粉的制备方法
CN108160665A (zh) * 2017-12-14 2018-06-15 北京工业大学 废集成线路板热质协同绿色资源化方法
CN109748281A (zh) * 2019-03-20 2019-05-14 东北大学 一种利用废弃硅微粉制备高品质碳化硅的方法
CN111960420A (zh) * 2020-09-03 2020-11-20 上海第二工业大学 一种微波辐照电子废弃物快速生产纳米碳化硅的方法
CN111977657A (zh) * 2020-09-11 2020-11-24 辽宁科技大学 一种利用微波处理燃煤锅炉飞灰制备碳化硅纳米线的方法
CN112678827A (zh) * 2020-12-11 2021-04-20 北京工业大学 一种废线路板光板裂解渣制备碳化硅的方法

Also Published As

Publication number Publication date
CN112678827B (zh) 2022-07-19
CN112678827A (zh) 2021-04-20
US20220315430A1 (en) 2022-10-06
US11667532B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
CN102161049B (zh) 铝电解槽废旧阴极炭块的综合利用方法
CN102643997B (zh) 一种高效回收镍资源的红土镍矿处理方法
CN109704774B (zh) 一种代替碳砖的高炉炉底炉缸高导热率浇注料的制备方法
CN102146570A (zh) 一种铝电解槽废阴极炭块生产铝用阳极的方法
WO2017031798A1 (zh) 一种处理及回收铝电解固体废料的装置
CN107651690A (zh) 一种金刚线切割废料制备高品质碳化硅的方法
CN107011624B (zh) 一种低碳含碳耐火材料用酚醛树脂基微纳米石墨薄片混合料的制备方法
CN107651691A (zh) 一种晶体硅切割废料制备高品质碳化硅的方法
WO2022122022A1 (zh) 一种废线路板光板裂解渣制备碳化硅的方法
CN101823889B (zh) 一种无水炮泥及其制备方法
CN106747452A (zh) 一种电阻炉生产碳化硼结晶块的方法
CN1807350A (zh) 一种由煤矸石制备Al2O3/SiC复相粉体的方法及其产物
CN109400166A (zh) 晶体硅金刚线切割废料制备碳化硼碳化硅复合陶瓷的方法
CN105502404A (zh) 一种高品质碳化硼结晶块的冶炼制备方法
CN102851427A (zh) 利用钢渣余热在线生成海绵铁的方法
CN112210634B (zh) 一种利用低品位镍钼矿制备镍钼铁合金的方法及装置
CN100480431C (zh) 石墨化阴极生产工艺
CN102190300A (zh) 一种煤矸石综合利用方法
TW201400624A (zh) 利用鎳、鉻礦生產沃斯田鐵系不銹鋼的方法
CN115491523A (zh) 一种废钼靶的回收利用方法及其钼钛合金的制备方法
CN115159960A (zh) 一种高电阻率ito靶材的制备方法
CN103962568A (zh) 一种微波加热制备还原铬粉的方法
CN101724860A (zh) 一种铝电解槽侧墙用免烧型Si3N4-SiC-C耐火砖及其制备方法
CN109824299A (zh) 一种制备棕刚玉的电极材料
CN103274611B (zh) 利用低品位氧化镁及菱镁矿生产高纯氧化镁的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902727

Country of ref document: EP

Kind code of ref document: A1