WO2017031798A1 - 一种处理及回收铝电解固体废料的装置 - Google Patents

一种处理及回收铝电解固体废料的装置 Download PDF

Info

Publication number
WO2017031798A1
WO2017031798A1 PCT/CN2015/089836 CN2015089836W WO2017031798A1 WO 2017031798 A1 WO2017031798 A1 WO 2017031798A1 CN 2015089836 W CN2015089836 W CN 2015089836W WO 2017031798 A1 WO2017031798 A1 WO 2017031798A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
wall
refractory
alkali metal
lining
Prior art date
Application number
PCT/CN2015/089836
Other languages
English (en)
French (fr)
Inventor
冯乃祥
Original Assignee
沈阳北冶冶金科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520637590.9U external-priority patent/CN204959051U/zh
Priority claimed from CN201510519831.4A external-priority patent/CN105088274B/zh
Application filed by 沈阳北冶冶金科技有限公司 filed Critical 沈阳北冶冶金科技有限公司
Publication of WO2017031798A1 publication Critical patent/WO2017031798A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium

Definitions

  • the invention belongs to the technical field of metallurgical environment, and particularly relates to a device for treating and recycling aluminum electrolytic solid waste.
  • aluminum is produced by electrolysis at a temperature of 950 to 980 ⁇ using a cryolite-alumina electrolyte system.
  • the following four types of solid waste are produced:
  • Waste cathode carbon block refers to the bottom cathode carbon block and the side carbon block, which also includes the side carbon, which are taken out from the damaged electrolytic cell after the electrolytic cell has been damaged for a period of time.
  • a small portion of sodium fluoride is also electrochemically reduced to metallic sodium. The electrolyte and sodium metal will continue to penetrate into the carbonaceous cathode material throughout the life of the cell.
  • the aluminum cathode scrap cathode carbon block which is planed from the damage groove generally contains about 30% of an electrolyte and about 10% of metal sodium.
  • the average life of the electrolytic cell used in China's electrolytic aluminum plant is about 5 years.
  • the annual waste cathode carbon block produced is about 10,000 tons. That is to say, for every 100 tons of electrolytic aluminum produced in the electrolytic aluminum plant, 1 ton of waste cathode carbon block is produced.
  • the refractory lining of the waste electrolytic cell is that the electrolyte penetrates into the lower part of the carbon cathode bottom block through the pores of the cathode carbon block and the crack of the cathode bottom block and the crack formed by the tamping paste between the cathode bottom block and the bottom block during the electrolysis process. Formed in a refractory material and reacted with a refractory material.
  • the refractory lining of the waste electrolytic cell is mainly composed of a compound formed by reacting an electrolyte, an electrolyte and a refractory material, and an unreacted refractory material, wherein the compound formed by the reaction of the electrolyte with the refractory material is mainly composed of Na 2 O, Al 2 O 3 .
  • a compound formed with SiO 2 is also included, and the silicon nitride-bonded silicon carbide refractory lining is only applied to the large electrolytic cell. Side.
  • the 70-100kg/t-Al which is consumed more is mainly the air and the CO 2 in the electrolytic tank. Oxidation and loss, and a considerable part of the consumption is that some of the charcoal is detached from the anode into the electrolytic cell into carbon residue during the electrolysis process.
  • the carbon residue has fine powder and granular shape, and is mixed or suspended in the electrolyte, which not only affects the physical and chemical properties of the aluminum electrolyte, such as electrical conductivity and viscosity, but also the working state of the electrolytic cell and the current efficiency of the electrolytic cell. Make an impact. Therefore, the electrolysis workers need to regularly remove the carbon residue from the electrolytic cell, and the extracted carbon residue adheres to a large amount of electrolyte, accounting for about 70%.
  • the electrolytic aluminum plant discards the carbon residue, and also has The large carbon residue containing the electrolyte component is broken and returned to the electrolytic cell, and the fine carbon residue is still discarded, thereby causing the loss of carbon and electrolyte and polluting the environment.
  • about 3 to 5 kg of carbon residue is produced per ton of aluminum produced in an industrial electrolytic cell, and an electrolytic aluminum plant with an annual output of 500,000 tons of metal aluminum has a carbon residue of about 1,500 to 2,000 tons per year.
  • the aluminum slag which is usually extracted from the aluminum mixing furnace of the electrolytic aluminum foundry, and the slag which is broken during the casting process of the aluminum ingot (rod or plate), and the slag which is adhered to the aluminum lining lining are collectively referred to as aluminum slag.
  • the main component of the aluminum slag is powdered alumina formed by oxidation of aluminum and a small amount of agglomerated aluminum metal coated with powdered alumina. After the aluminum slag is sieved by ball milling, the agglomerated metal aluminum can be sieved out, and the powder under the sieve is called aluminum ash.
  • the aluminum ash is composed of fine granular metal aluminum and aluminum oxide, and inevitably, a trace amount of electrolyte fluoride is present. At present, whether it is an electrolytic aluminum plant or an aluminum slag recycling small workshop, this part of "aluminum ash" is discarded as garbage, which has a great impact on the environment.
  • the Al-Fe alloy produced by the broken aluminum melted cathode steel rod at the bottom of the electrolytic cell although not in principle, is not a solid waste, but because of its small amount, the alloy composition It is not fixed and is often discarded by the electrolytic aluminum plant as waste along with the lining of the electrolytic cell.
  • waste cathode carbon blocks and carbon residue produced by aluminum electrolysis cells are no more than three types: 1 is used as an additive in other chemical production processes, such as The waste cathode carbon block is ground into powder as an additive for cement production, but this part is used in a small amount. Because it is used too much, the fluoride in the waste cathode carbon block will affect the quality of the cement, so it is not welcomed by cement manufacturers.
  • 2,858,198 discloses a method for separating the electrolyte component in the waste cathode carbon block of an aluminum electrolytic cell by distillation, but the device used in this method is a tower structure, and the heating method is external heating, probably due to The reasons for the complexity of the device, the difficulty of operation, and the high energy consumption have not been applied in the industry until now.
  • the present invention provides a device for treating and recovering aluminum electrolytic solid waste, and using the conductive property of the solid cathode block of the aluminum electrolytic cell to form a high temperature vacuum resistor using the waste cathode carbon block as a resistance heating body. Furnace; using the resistance heat of the waste cathode carbon block to generate high temperature, the waste material of the waste cathode carbon block is heated to 1000-1400 ° C under vacuum conditions, and the electrolyte component in the waste cathode carbon block is evaporated.
  • the alkali metal (Na or Na-K alloy) in the scrap cathode carbon block is evaporated and condensed onto the alkali metal crystallizer in the alkali metal crystallization chamber, while using the heated spent cathode
  • the high-temperature heat of the carbon block will be mixed with the anode carbon residue material in the auxiliary material chamber adjacent to the resistance heating body or the refractory material lining abrasive powder of the waste electrolytic cell and the aluminum ash or Al-Fe alloy grinding material.
  • the compacted material is heated to 900-1200 ° C to evaporate the electrolyte component in the anode carbon residue or the waste refractory material, and condense in the electrolyte crystallization chamber, so that the electrolytic waste tank waste refractory material is lined with the abrasive powder and aluminum ash or Al- Fe alloy grinding Briquetting material made of a material mixed alkali metal (sodium or sodium-potassium alloy) at high temperature produced by the reaction is vacuum evaporated onto the alkali metal condensed out crystallization chamber alkali metal mold.
  • the apparatus for treating and recovering aluminum electrolytic solid waste of the present invention comprises a furnace shell, a furnace cover, a furnace lining, a furnace wall refractory wall, a furnace bottom refractory lining, a resistance heating body, a refractory wall in the middle of the furnace, An alkali metal crystallizer, a heat insulating cover, a metal cover, an electrode and a secondary chamber, an electrolyte crystallization chamber, and an alkali metal crystallization chamber;
  • the furnace shell is a box metal shell made of a steel metal material; the outer edge of the furnace shell has a flange structure, and the outer wall of a section of the furnace shell below the flange structure is provided with a cooling water jacket.
  • a vacuum suction pipe is welded to the furnace shell at the lower part of the blue structure; an air tube for filling the furnace with argon gas or other inert gas and a vacuum for displaying the pressure and vacuum in the furnace are welded to the lower edge of the flange structure of the top of the furnace shell.
  • the furnace cover is made of a steel metal material, and a vacuum gasket is arranged between the flange structure on the upper edge of the furnace shell and the furnace cover;
  • the furnace lining is composed of a furnace side lining and a furnace bottom lining, and the inner wall of the furnace side lining is a wall made of refractory material, which is called a furnace wall refractory wall, and the bottom of the furnace lining.
  • the layer is a lining made of refractory material, called the refractory lining of the furnace bottom, and the lining of the refractory wall and the side hull of the furnace wall is made of a heat insulating material, which is called a furnace wall insulation material lining.
  • Between the furnace bottom refractory lining and the furnace bottom furnace shell is made of insulation material, called the furnace bottom insulation material lining;
  • the furnace wall refractory wall body is higher than the furnace wall insulation material lining body, and the furnace wall refractory wall has a groove type opening at the top thereof, and the electrolyte crystallization chamber is connected to the alkali metal crystallization chamber through the groove type opening;
  • the refractory wall in the middle of the furnace is a wall which is located above the refractory lining of the furnace bottom, is perpendicular to the refractory lining of the furnace bottom, and is close to the inner side of the resistance heating body;
  • the height of the inner middle refractory wall is equal to or lower than the height of the refractory wall of the furnace wall.
  • the refractory wall of the middle part of the furnace The top is provided with a slotted opening through which the upper part of the secondary chamber is electrolyzed
  • the crystallization chamber is in communication with the electrolyte crystallization chamber above the resistance heating body;
  • the heat insulating cover plate is made of refractory material and is located at the top of the refractory wall of the furnace wall; the outer edge of the heat insulation cover plate is larger than the outer edge of the refractory wall of the furnace wall;
  • the metal cover is a bottomed and uncovered rectangular barrel, which is buckled on the heat insulation board and inserts the barrel wall of the metal cover into the alkali metal crystallizer; above the metal cover, the heat insulation is arranged under the furnace cover board;
  • the alkali metal crystallizer is made of a stainless steel plate, the outer wall of the alkali metal crystallizer is closely attached to the inner wall of the furnace shell with the cooling water jacket, and the lower part of the alkali metal crystallizer is a groove type design; the bottom of the alkali metal crystallizer is located at the bottom The upper surface of the furnace wall insulation material liner;
  • the resistance heating body is composed of fragments of waste cathode carbon block having a particle diameter of less than 10 cm; the fragments of the waste cathode carbon block are placed on the refractory wall of the furnace wall, the refractory wall in the middle of the furnace, and the two electrodes a long strip-shaped space enclosed by the graphite conductor forms a resistance heating body; the resistance heating body is higher than the graphite conductor 0 to 30 cm;
  • the electrode is composed of two parts of electric conductors, and the electric conductor in the portion where the inner side of the furnace is in contact with the electric resistance heating body is a graphite electric conductor; the cross-sectional shape of the graphite electric conductor is a rectangular shape; and the electric conductor connected to the graphite electric conductor is a metal electric conductor. It is called a metal electrode, and its cross section is circular; the cross-sectional area of the metal electrode is smaller than the cross-sectional area of the graphite conductor; the metal electrode is provided with cooling water; and the metal electrode and the furnace shell have an insulating sealing device;
  • the auxiliary material chamber is a refractory wall located in the middle of the furnace and a furnace wall refractory wall between the two electrodes, and the height of the auxiliary material chamber is the same as the height of the resistance heating body. space.
  • electrolyte crystallization chambers There are two kinds of electrolyte crystallization chambers, one is located above the resistance heating body, and the refractory wall of the furnace wall and the middle part of the furnace are higher than the resistance heating body under the heat insulation cover. a space enclosed; another electrolyte crystallization chamber is located above the material level of the secondary chamber, between the refractory wall and the two electrodes in the middle of the furnace above the heat-insulating body below the heat-insulating cover The space formed by the refractory wall of the furnace wall;
  • the alkali metal crystallization chamber is located above the furnace wall insulation material lining, and is surrounded by a space between the furnace wall refractory wall and the alkali metal crystallizer which is higher than the resistance heating body; in the alkali metal crystallization chamber, The wall of the metal cover that is buckled over the insulating cover extends from top to bottom into the alkali metal crystallization chamber.
  • each of the independent resistance heating bodies has one electrode at both ends, one of which is an input electrode and the other is a discharge electrode; when the resistance heating body is U-shaped or ⁇ -type, the resistance heating body The two electrodes are on the same side of the furnace shell; when the resistance heating body is designed as two linear bodies which are parallel and independent of each other, the two electrodes of each of the independent resistance heating bodies are respectively located on two corresponding sides of the furnace shell, At this time, the two electrodes on the same side are connected to the power supply, and the two electrodes on the other side are connected by a metal conductor, so that the heating current flows from one resistance heating body to the other resistance heating body in the same furnace; After the two electrodes on the other side are connected by a metal conductor, the heating current of the device is input.
  • the resistance heating body made of the aluminum cathode electrolytic cell waste cathode carbon block is a heat source body for generating resistance heat in the furnace, and is also an aluminum electrolytic cell solid to be
  • the above-mentioned auxiliary chamber is used for filling the compressed material prepared by mixing the anode carbon residue or the electrolytic waste refractory ground material to be treated and recovered with aluminum ash or Al-Fe alloy ground material.
  • the distance between the barrel wall of the metal cover and the bottom of the alkali metal crystallizer is 5 to 30 cm.
  • a method of using the apparatus for treating and recovering aluminum electrolytic solid waste of the present invention is carried out as follows:
  • the height of the compressed aggregate is the same as the height of the resistance heating body; the compressed aggregate is pressed by the anode carbon residue, or is waste refractory material in the electrolytic tank
  • the lining abrasive powder is mixed with aluminum ash, or is formed by mixing the abrasive powder lining the waste refractory material of the electrolytic cell with the Al-Fe alloy powder;
  • the groove opening at the top of the body or the gap between the top of the refractory wall and the insulating cover in the middle of the furnace and the groove opening at the top of the refractory wall of the furnace wall enter the alkali metal crystallization chamber, and then in the alkali metal crystallizer Condensation on the inner wall.
  • the alkali metal is a sodium or sodium potassium alloy, or a sodium or sodium potassium alloy containing lithium.
  • the mixing ratio of the abrasive material of the waste refractory material of the electrolytic cell to the aluminum ash depends on the aluminum content in the aluminum ash and the content of the alkali metal oxide in the ground powder of the waste refractory material of the waste electrolytic cell, and in principle, the The aluminum in the aluminum ash to be mixed is used to reduce the alkali metal oxide in the ground refractory material of the electrolytic cell to the alkali metal as the batching criterion;
  • the ratio of powder to Al-Fe alloy powder is also compounded according to this criterion, wherein the particle size of the powder pulverized material, the aluminum ash and the Al-Fe alloy powder of the waste refractory material of the electrolytic cell are all less than 100 mesh.
  • the heating temperature of the resistance heating body in the step (4) is 1000 to 1300 °C.
  • the device for treating and recovering aluminum electrolytic solid waste of the invention can completely separate the carbon, alkali metal and electrolyte in the waste cathode carbon block and the carbon lining, and the electrolyte and alkali metal in the waste cathode lining refractory material
  • the complete separation of the refractory components, as well as the separation of the electrolyte and char in the anode carbon residue, also enables efficient use of the aluminum ash and the Al-Fe alloy formed by the molten aluminum cathode rod.
  • the whole process is free from waste residue, waste gas and waste water. It is an energy-saving and environmentally-friendly aluminum electrolytic solid waste treatment device, which is very suitable for large-scale application in industry.
  • FIG. 1 is a cross-sectional view of the A-A plane when the resistance heating element of the example 1 of the present invention is of a ⁇ type design;
  • FIG. 2 is a cross-sectional view taken along line B-B of the resistive heating element of the first embodiment of the present invention in a ⁇ type design;
  • FIG. 3 is a cross-sectional view showing the C-C plane of the resistance heating body and the electrode structure in the case where the resistance heating element is of the ⁇ type in the example 1 of the present invention
  • FIG. 4 is a cross-sectional view showing the U-shaped resistance heating body and the electrode structure of the U-shaped design of the resistance heating element in the second embodiment of the present invention
  • Figure 5 is a cross-sectional view showing the C-C plane when the resistance heating body is designed as two independent and parallel linear bodies in Example 3 of the present invention
  • Example 6 is a cross-sectional view of the A-A plane in the design of only a single resistance heating element in Example 4 of the present invention
  • Figure 7 is a cross-sectional view of the B-B surface of the fourth embodiment of the present invention in which only a single resistance heating element is designed;
  • Figure 8 is a cross-sectional view of the C-C plane in the design of only a single resistance heating element in Example 4 of the present invention.
  • An apparatus embodiment of the present invention for treating and recovering aluminum electrolytic solid waste is illustrated by the following examples.
  • the furnace shell of the present invention is a box-shaped metal casing made of a steel metal material; the furnace cover is made of a steel metal material.
  • the heat insulating cover of the present invention is made of a refractory material.
  • the refractory material of the present invention is refractory concrete.
  • the alkali metal crystallizer of the present invention is made of a stainless steel plate.
  • the structure of the device for treating and recovering the solid waste of the aluminum electrolytic cell is shown in Fig. 1, Fig. 2 and Fig. 3; the resistance heating body is of the ⁇ type design;
  • furnace shell 1 Including furnace shell 1, furnace cover 2, furnace lining, furnace wall refractory wall 4, resistance heating body 3, refractory wall 5 in the middle of furnace, alkali metal crystallizer 11, heat insulation cover 8, metal cover 9.
  • an electrode Including furnace shell 1, furnace cover 2, furnace lining, furnace wall refractory wall 4, resistance heating body 3, refractory wall 5 in the middle of furnace, alkali metal crystallizer 11, heat insulation cover 8, metal cover 9.
  • an electrode a secondary chamber 12, an electrolyte crystallization chamber and an alkali metal crystallization chamber 13;
  • the furnace shell 1 is a box-shaped metal shell made of a steel metal material; the top outer edge of the furnace shell 1 has a flange structure, and the outer wall of a section of the furnace shell 1 below the flange structure is provided with a cooling water jacket 27, A vacuum suction pipe 16 is welded to the furnace shell 1 at the lower part of the flange structure; an air tube 17 for filling the furnace with argon gas or other inert gas is also welded at the lower edge of the top flange structure of the furnace shell 1 and the pressure inside the furnace is displayed. Vacuum gauge 18 with vacuum condition;
  • the furnace cover 2 is made of a steel metal material, and a vacuum gasket 25 is disposed between the flange structure on the upper edge of the furnace shell 1 and the furnace cover 2;
  • the furnace lining is composed of a furnace side lining and a furnace bottom lining, the inner wall of the furnace side lining is a furnace wall refractory wall 4, and the inner layer of the furnace bottom lining is a furnace bottom refractory lining 28 , between the furnace wall refractory wall 4 and the furnace fireplace shell 1 is a furnace wall insulation material lining body 6, between the furnace bottom refractory lining body 28 and the furnace bottom furnace shell is a furnace bottom insulation material lining 29;
  • the furnace wall refractory wall 4 is higher than the furnace wall insulation material lining 6, and the furnace wall refractory wall 4 has a slot-shaped opening 7 at the top thereof, through which the electrolyte crystallization chamber 14 and the alkali metal crystallization chamber are made. 13 connected;
  • the refractory wall 5 in the middle of the furnace is a wall which is located above the refractory lining of the furnace bottom, is perpendicular to the refractory lining of the furnace bottom, and is close to the inner side of the resistance heating body 3
  • the top of the refractory wall 5 in the middle of the furnace also has a slotted opening 24 and has the same height as the refractory wall 4 of the furnace wall; the slotted opening 24 at the top of the refractory wall 5 in the middle of the furnace will be a secondary material
  • the electrolyte crystallizer chamber 15 at the upper portion of the chamber 12 is in communication with the electrolyte crystallization chamber 14 above the resistance heating body 3;
  • the heat insulating cover 8 is made of refractory material, and is located at the top of the furnace wall refractory wall 4 and the refractory wall 5 in the middle of the furnace; the outer edge of the heat insulating cover 8 is larger than the furnace wall refractory wall 4 Outer edge
  • the metal cover 9 is a bottomed and uncovered rectangular barrel, which is buckled on the heat insulating cover 8 and inserts the barrel wall of the metal cover 9 into the alkali metal crystallizer 11; above the metal cover 9, the furnace cover 2 is provided with insulation board 10;
  • the alkali metal crystallizer 11 is made of a stainless steel plate, and the outer wall of the alkali metal crystallizer 11 is closely attached to the cooling water jacket 27
  • the inner wall of the furnace shell 1, the lower part of the alkali metal crystallizer 11 is a groove type design; the groove of the lower part of the alkali metal crystallizer 11 is located on the upper surface of the furnace wall insulation material liner 6;
  • the resistance heating body 3 is composed of fragments of waste cathode carbon blocks having a particle diameter of less than 10 cm; the fragments of the waste cathode carbon block are placed on the refractory wall 4 of the furnace wall and the refractory wall 5 in the middle of the furnace And a space surrounded by the graphite conductor 19 of the two electrodes, forming a resistance heating body 3; the resistance heating body 3 is 10 cm higher than the graphite conductor 19;
  • the electrode is composed of two parts of electrical conductors, and the electrical conductor of the inner portion of the furnace contacting the resistance heating body 3 is a graphite conductor 19, the graphite conductor has a rectangular cross section; and the electrical conductor connected to the graphite conductor 19 is metal conductive.
  • the body referred to as a metal electrode 20, has a circular cross section; the cross-sectional area of the metal electrode 20 is smaller than the cross-sectional area of the graphite conductor 19, and the metal electrode 20 is provided with cooling water; the metal electrode 20 and the furnace shell 1 are insulated and sealed.
  • the auxiliary material chamber 12 is a space height and resistance heat generated by the refractory wall 5 in the middle of the furnace and the furnace wall refractory wall 4 between the two electrodes on the refractory lining of the furnace bottom.
  • Body 3 has the same height;
  • electrolyte crystallization chambers There are two kinds of electrolyte crystallization chambers, one electrolyte crystallization chamber 14 is located above the resistance heating body, and the furnace wall refractory wall 4 and the middle portion of the furnace are higher than the resistance heating body 3 under the heat insulation cover.
  • the alkali metal crystallization chamber 13 is located above the furnace wall insulation material liner 6, and is surrounded by a space between the furnace wall refractory wall 4 and the alkali metal crystallizer 11 which is higher than the resistance heating body 3; In the metal crystallization chamber 13, the wall of the metal cover 9 which is reversely fastened on the heat insulating cover 8 extends from the top to the bottom into the alkali metal crystallization chamber 13;
  • the resistance heating body 3 has an electrode at both ends thereof, one of which is a feeding electrode and the other is a discharging electrode; the resistance heating body 3 is of a ⁇ type, and the two electrodes are on the same side of the furnace shell 1;
  • the distance between the barrel wall of the metal cover 9 and the bottom of the alkali metal crystallizer 11 is 15 cm;
  • the method of use is:
  • the temperature of the dough reaches 1100 ° C;
  • the electrolyte component in the resistance heating body and the electrolyte component in the anode carbon residue in the secondary material are evaporated and condensed in the electrolyte crystallization chamber under the temperature and vacuum conditions; and the alkali metal in the resistance heating body is distilled out,
  • the groove-shaped opening at the top of the refractory wall of the furnace wall enters the alkali metal crystallization chamber and condenses on the inner wall of the alkali metal crystallizer;
  • the XRD analysis of the waste cathode carbon block recovered by distillation using the apparatus and the operation method of the present example did not reveal the electrolyte component and the metal sodium, leaving only pure carbon, the recovery rate of sodium and electrolyte reached 100%; anode carbon residue The electrolyte in the middle is completely separated, and the recovery rate of the electrolyte in the anode carbon residue reaches 100%.
  • FIG. 4 is a cross-sectional view showing a U-shaped resistance heating element and an electrode structure C-C when the resistance heating element of the present invention is U-shaped;
  • the resistance heating body is U-shaped structural design
  • the resistance heating body is 10 cm higher than the graphite conductor
  • the compacted material is prepared by mixing the abrasive material lining the waste refractory material of the electrolytic cell with the aluminum ash; the waste refractory material lining the waste material of the electrolytic cell contains 5% of the Na 2 O component, the electrolyte
  • the composition is 10%; the aluminum ash is 15% of the elemental aluminum, and the aluminum in the aluminum ash can be used to completely reduce the Na 2 O in the waste refractory lining to the batching criterion; the waste refractory of the electrolytic cell
  • the material lining of the milled material and the aluminum ash has a particle size of less than 100 mesh;
  • the temperature of the resistance heating element rises to 1400 ° C, and the temperature of the reaction material in the auxiliary material chamber is 1200 ° C; the abrasive lining of the waste refractory material of the electrolytic cell and the Na 2 O component in the aluminum ash are in the aluminum ash.
  • the aluminum is reduced to metallic sodium and is distilled out through the trough opening at the top of the refractory wall in the middle of the furnace and the trough opening at the top of the refractory wall of the furnace wall, and then enters the alkali metal crystallization chamber and condenses on the inner wall of the alkali metal crystallizer. ;
  • the XRD analysis of the waste cathode carbon block recovered by distillation using the apparatus and the operation method of the present example did not reveal the electrolyte component and the metal sodium, leaving only pure carbon, the recovery rate of sodium and electrolyte reached 100%;
  • the electrolyte and alkali metal of the ground lining of the waste refractory material are all separated, and the recovery rate of sodium and electrolyte reaches 100%.
  • Figure 5 is a cross-sectional view showing the C-C of the resistance heating element of the present embodiment in the form of two independent and parallel linear bodies;
  • Embodiment 2 The difference from Embodiment 2 is:
  • the resistance heating body is designed as two independent and parallel linear body structures, and the two electrodes of each independent resistance heating body are respectively located on two sides of the electric furnace; at this time, the two electrodes on the same side, and the power supply Power connection, the two electrodes on the other side are connected by metal conductors;
  • the resistance heating body is 20 cm higher than the graphite conductor
  • the method differs from Embodiment 2 in that:
  • the compacted material is prepared by mixing the abrasive powder lining the waste refractory material of the electrolytic cell with the Al-Fe alloy powder, wherein the Al-Fe alloy has a metal aluminum content of 67%, a particle size of 100 mesh or less, and electrolysis.
  • the waste refractory lining of the tank is composed of 5% Na 2 O component and 8% fluoride.
  • the amount of Al-Fe alloy added in the batch can be used in the waste refractory material by aluminum in the Al-Fe alloy. lining the complete reduction of the Na 2 O ingredient criterion;
  • the temperature of the resistance heating element rises to 1400 ° C, and the temperature of the reaction material in the auxiliary material chamber is 1250 ° C;
  • the Na 2 O component in the ground powder of the waste refractory material of the electrolytic cell is aluminum in the Al-Fe alloy Reduction to metallic sodium;
  • the XRD analysis of the waste cathode carbon block recovered by distillation using the apparatus and the operation method of the present example did not reveal the electrolyte component and the metal sodium, leaving only pure carbon, the recovery rate of sodium and electrolyte reached 100%;
  • the electrolyte and alkali metal in the ground lining of the waste refractory material were all separated, and the recovery of sodium and electrolyte reached 100%.
  • FIG. 7, and FIG. 8 are a cross-sectional view taken along line A-A, a cross-sectional view taken along line B-B, and a cross-sectional view taken along line C-C of the single-resistance heating element of the present embodiment;
  • the resistance heating body is designed as a single resistance heating body, and there is no auxiliary chamber in the furnace, and the two electrodes of the resistance heating body are disposed on two corresponding faces in the longitudinal direction of the furnace body;
  • the resistance heating body is the same height as the graphite conductor
  • the XRD analysis of the waste cathode carbon block recovered by distillation using the apparatus and the operation method of the present example did not reveal the electrolyte component, the metal sodium and the potassium, and the carbon in the cathode carbon block after distillation was pure carbon, and the distilled alkali metal was The Na-K alloy, the sodium-potassium fluoride-containing electrolyte recovery rate was 100%.
  • the apparatus and operation method for treating and recovering aluminum electrolytic solid waste in this embodiment are basically the same as those in the first embodiment, and the difference is:
  • the top of the refractory wall in the middle of the furnace has no slotted opening, and its height is lower than the height of the wall of the furnace wall by 10 cm;
  • the auxiliary chamber is not filled with pressurized aggregates or any other reactive materials
  • Embodiment 1 The method differs from Embodiment 1 in that:
  • the temperature rise temperature of the waste cathode carbon block as the resistance heating element is 1200 ° C;
  • the spent cathode carbon block recovered by the apparatus and method of the present example contained only a small amount of CaF 2 in addition to carbon.

Abstract

一种处理及回收铝电解固体废料的装置,包括炉壳(1)、炉盖(2)、炉内衬、炉壁耐火材料墙体(4)、炉底耐火材料衬体(28)、电阻发热体(3)、炉内中部的耐火材料墙体(5)、碱金属结晶器(11)、隔热盖板(8)、金属罩(9)、电极以及副料室(12)、电解质结晶室和碱金属结晶室(13);所述的电阻发热体(3)由粒径小于10cm的废阴极炭块的碎块组成。该装置可实现废阴极炭块和炭内衬中的炭、碱金属和电解质的彻底分离,是一种节能环保的铝电解固体废料处理装置,非常适合在工业上大规模推广应用。

Description

一种处理及回收铝电解固体废料的装置 技术领域
本发明属于冶金环境技术领域,特别涉及一种处理及回收铝电解固体废料的装置。
背景技术
工业中铝是采用冰晶石-氧化铝电解质体系,在950~980□的温度条件下电解生产,在铝电解生产过程中,产生以下4种固体废料:
1、废阴极炭块。铝电解槽废阴极炭块是指铝电解槽在经过一段时间的电解,出现槽底破损后,从破损的电解槽中取出的槽底阴极炭块和侧部炭块,其中也包括侧部炭块与底部阴极炭块之间的由捣固糊形成的炭块,以及阴极炭块之间的捣固糊在电解温度条件下形成的炭块。在铝电解生产过程中,少部分氟化钠也会被电化学还原为金属钠。在电解槽的整个使用周期内,电解质和金属钠会一直向炭质阴极材料中渗透。因此,在从破损槽刨出的铝电解废阴极炭块一般含有约30%左右的电解质和约10%左右的金属钠。目前我国电解铝厂所使用的电解槽的平均寿命在5年左右,以一个年产100万吨/年的电解铝厂为例,每年所产生的废阴极炭块约在1万吨左右,也就是说电解铝厂每生产100吨电解铝,就要产生1吨的废阴极炭块。
2、废电解槽耐火材料内衬。废电解槽耐火材料内衬是电解质在电解过程中通过阴极炭块的孔隙和阴极底块的裂缝以及阴极底块与底块之间的捣固糊所形成的裂缝渗入到炭阴极底块下部的耐火材料中,并与耐火材料反应而形成的。因此,废电解槽耐火材料内衬主要由电解质、电解质与耐火材料反应生成的化合物,以及未反应的耐火材料组成,其中电解质与耐火材料反应生成的化合物主要为由Na2O,Al2O3和SiO2形成的化合物。在铝电解槽废耐火材料内衬中,还包括一种由氮化硅结合的碳化硅耐火材料内衬,这种由氮化硅结合的碳化硅耐火材料内衬,只应用在大型电解槽的侧部。
3、阳极炭渣。冰晶石-氧化铝电解质体系的阳极使用煅烧后的石油焦破碎成不同的粒级与煤沥青混合、混捏成型,再经焙烧后制成。在铝电解的生产过程,炭阳极不断消耗,理论上每电解生产一吨金属铝需要消耗0.334吨炭阳极,而实际上每生产一吨金属铝,炭阳极消耗在0.4吨以上,即实际炭阳极消耗要比理论炭阳极消耗多70kg/t-Al左右,有的高达100kg/t-Al以上,这多消耗的70~100kg/t-Al主要是空气和电解槽中的CO2对炭阳极进行氧化而损失掉,还有相当大的一部分消耗是电解过程中部分炭从阳极上脱落进入电解槽中成为炭渣。这种炭渣有细粉状和颗粒状,混熔于或悬浮于电解质中不仅会影响铝电解质的物理化学性能,如电导率、粘度等,还对电解槽的工作状态和电解槽的电流效率造成影响。因而需要电解工人定期将这些炭渣从电解槽中捞出,而捞出的炭渣中又粘附了大量的电解质,比例约占70%, 电解铝厂将这种炭渣弃之不用,也有的将大块的含电解质成分过高的炭渣炭块破碎后,返回到电解槽中,而细小的炭渣仍被弃掉,进而造成炭和电解质的损耗并对环境造成污染。通常工业电解槽中每生产1吨铝约产生3~5kg炭渣,一个年产50万吨金属铝的电解铝厂,一年的炭渣量约为1500~2000吨。
4、铝灰。通常将从电解铝铸造车间的铝混合炉中扒出的铝渣,和铝锭(棒或板)铸造过程中打下来的渣,以及出铝抬包内衬粘附的渣料统称为铝渣。铝渣的主要成分为铝氧化后形成的粉状氧化铝以及粉状氧化铝所包覆的少量团聚状金属铝。铝渣经球磨后筛分,可筛出团聚状的金属铝,筛下的粉体被称为铝灰。铝灰由细小的颗粒状的金属铝和氧化铝组成,其中也不可避免地会有微量的电解质氟化物存在。目前无论是电解铝厂还是铝渣回收小作坊,都将这部分“铝灰”作为垃圾弃之,对环境造成较大影响。
除了上述4种铝电解生产产生的固体废料外,由电解槽底部破损漏铝熔化阴极钢棒而产生的Al-Fe合金,虽然原则上并不属于固体废料,但由于其量不大,合金成分又不固定,因而常被电解铝厂当作垃圾随同电解槽的内衬丢弃。
目前,尚无一个技术上和经济上都可行的方法将铝电解固体废料进行有效处理及回收。但是探索处理和回收铝电解槽生产产生的固体废料的方法,将其变废为宝一直是人们的愿望和研究课题。这其中,备受人们关注和研究最多的是铝电解槽废阴极炭块和阳极炭渣的处理和回收利用,这是因为废阴极炭块和阳极炭渣中的炭、电解质组分和炭的化合物组分均是具有非常大的回收价值的组分,且量大,如果弃之,不仅其中的有价组分得不到回收利用,而且其中的氟化物组分对环境会造成很大的影响。相对而言,对电解槽的废耐火材料内衬的回收利用则研究的不多。早在上世纪50年代,人们就开始研究如何处理和回收利用铝电解槽生产产生的废阴极炭块和炭渣,这些方法不外乎三种:1是作为其它化工生产过程中的添加剂,如将废阴极炭块磨成粉作为水泥生产的添加剂,但这部分用量很少,因为用的太多,其废阴极炭块中的氟化物会影响水泥的质量,因此并不被水泥厂家所欢迎;2是作为燃料,但是作为燃料也存在着二次污染问题;3是回收其中的电解质,这其中研究最多的是采用浮选的方法将阳极炭渣和废阴极炭块中的炭和电解质组分分离,但直到现在为止,这一方法尚未成功地应用在工业上,因为采用浮选法不能完全地将电解质从废阴极炭块中分离出来,且浮选过程产生的废水也容易造成二次污染。1958年,US2858198的专利中提出了一种采用蒸馏法分离铝电解槽废阴极炭块中电解质组分的方法,但这种方法所采用的装置为塔式结构,加热方法为外加热,大概由于装置复杂、操作困难、能耗较高等原因直到现在也未能在工业上得到应用。
发明内容
针对上述问题,本发明提供一种处理及回收铝电解固体废料的装置,利用铝电解槽废阴极炭块固体碎块的导电性质制成以废阴极炭块碎块作为电阻发热体的高温真空电阻炉;利用废阴极炭块碎块的电阻热产生高温,使废阴极炭块的碎块状料在真空条件下被加热到1000-1400℃,使废阴极炭块碎块中的电解质成分蒸发出来凝结在电解质结晶室中,废阴极碳块碎块中的碱金属(Na或Na-K合金)蒸发出来凝结到碱金属结晶室中的碱金属结晶器上,同时利用这种被加热的废阴极炭块碎块的高温热量将与电阻发热体相邻的副料室内的阳极炭渣物料或废电解槽耐火材料内衬磨粉料与铝灰或Al-Fe合金的磨细料混合制成的压团料加热到900-1200℃,使阳极炭渣或废耐火材料中的电解质组分蒸发出来,凝结在电解质结晶室中,使电解槽废耐火材料内衬磨粉料与铝灰或Al-Fe合金的磨细料混合制成的压团料在高温真空条件下反应生成的碱金属(钠或钠钾合金等)被蒸发出来后凝结到碱金属结晶室中的碱金属结晶器上。
本发明的处理及回收铝电解固体废料的装置包括炉壳、炉盖、炉内衬、炉壁耐火材料墙体、炉底耐火材料衬体、电阻发热体、炉内中部的耐火材料墙体、碱金属结晶器、隔热盖板、金属罩、电极以及副料室、电解质结晶室和碱金属结晶室;
所述的炉壳为一个箱式金属壳体,由钢制金属材料制成;炉壳的顶部外沿具有法兰结构,法兰结构之下的一段炉壳的外壁设有冷却水套,法兰结构下部的炉壳上焊有真空抽气管;炉壳顶部法兰结构下沿处还焊有可以向炉内充入氩气或其它惰性气体的充气管和显示炉内压力和真空情况的真空压力表;
所述的炉盖用钢质金属材料制成,炉壳上沿的法兰结构与炉盖之间设有真空垫圈;
所述的炉内衬由炉侧部内衬和炉底内衬组成,炉侧部内衬的内壁为耐火材料制成的墙体,称为炉壁耐火材料墙体,炉底内衬的内层为由耐火材料制成的衬体,称为炉底耐火材料衬体,炉壁耐火材料墙体与侧壁炉壳之间是由保温材料制成的衬体,称为炉壁保温材料衬体;炉底耐火材料衬体与炉底炉壳之间为由保温材料制成的衬体,称为炉底保温材料衬体;
所述的炉壁耐火材料墙体高于炉壁保温材料衬体,炉壁耐火材料墙体的顶部有槽型开口,通过此槽型开口使电解质结晶室与碱金属结晶室连通;
所述的炉内中部的耐火材料墙体是坐落在炉底耐火材料衬体之上的,与炉底耐火材料衬体垂直的,且紧靠电阻发热体的内侧面垂直向上的墙体;炉内中部耐火材料墙体的高度等于或低于炉壁耐火材料墙体的高度,当炉内中部耐火材料墙体的高度等于炉壁耐火材料墙体的高度时,炉内中部耐火材料墙体的顶部设有槽型开口,通过此槽型开口将副料室上部的电解 质结晶室与电阻发热体上面的电解质结晶室连通;
所述的隔热盖板用耐火材料制作,位于炉壁耐火材料墙体的顶部;隔热盖板的外沿大于炉壁耐火材料墙体的外沿;
所述的金属罩为一个有底无盖的长方形桶,反扣在隔热板上,并使金属罩的桶壁插入到碱金属结晶器内;金属罩之上,炉盖之下设置有保温板;
所述的碱金属结晶器由不锈钢板制成,碱金属结晶器外壁紧贴带有冷却水套的炉壳的内壁,碱金属结晶器的下部为一沟槽型设计;碱金属结晶器底部位于炉壁保温材料衬体的上表面;
所述的电阻发热体由粒径小于10cm的废阴极炭块的碎块组成;将废阴极炭块的碎块置于由炉壁耐火材料墙体、炉内中部的耐火材料墙体和两电极的石墨导电体之间所围成的长条形的空间中,形成电阻发热体;电阻发热体高于石墨导电体0~30cm;
所述的电极由两部分导电体组成,炉内侧与电阻发热体相接触部分的导电体为石墨导电体;石墨导电体的断面形状为矩形;与石墨导电体连接的导电体为金属导电体,称为金属电极,其断面为圆形;金属电极的断面面积小于石墨导电体的断面面积,金属电极内通有冷却水;金属电极与炉壳之间有绝缘密封装置;
所述的副料室是位于炉底耐火材料衬体之上的由炉内中部的耐火材料墙体与两电极间的炉壁耐火材料墙体所围成的其高度与电阻发热体高度相同的空间。
所述的电解质结晶室有两种,一种是位于电阻发热体之上,隔热盖板之下的由高于电阻发热体的炉壁耐火材料墙体和炉内中部的耐火材料墙体所围成的空间;另一种电解质结晶室是位于副料室料面位置之上,隔热盖板之下的由高于电阻发热体的炉内中部的耐火材料墙体和两电极之间的炉壁耐火材料墙体所形成的空间;
所述的碱金属结晶室位于炉壁保温材料衬体之上的,由高于电阻发热体的炉壁耐火材料墙体与碱金属结晶器之间所围成的空间;在碱金属结晶室内,反扣在隔热盖板上面的金属罩的桶壁从上向下伸入到碱金属结晶室中。
上述装置中,每个独立电阻发热体的两端都有一个电极,其中一个为进电电极,另一个为出电电极;当电阻发热体为U型设计或П型设置时,电阻发热体的两个电极在炉壳的同一侧面;当电阻发热体为两个相互平行且相互独立的直线体设计时,每个独立电阻发热体的两个电极分别位于炉壳的两个对应的侧面上,此时,同一侧面的两个电极与供电电源连接,另一侧面的两个电极之间用金属导体连接,使加热电流从一个电阻发热体流入同一个炉内的另一个电阻发热体;也可以将另一侧的两个电极用金属导体连接后,将该装置的加热电流输入 到与其结构相同的另一个装置中;由铝电解槽废阴极炭块做成的电阻发热体即是使炉内产生电阻热的热源体,又是一种被处理和要回收的铝电解槽固体废料。
上述的副料室用于装填所要处理和回收的阳极炭渣或电解槽废耐火材料磨细料与铝灰或Al-Fe合金磨细料混合制成的压团料。
上述的金属罩的桶壁与碱金属结晶器的底部的距离在5~30cm。
本发明的一种处理及回收铝电解固体废料的装置的使用方法按以下步骤进行:
(1)将铝电解槽废阴极炭块破碎成粒径小于10cm的碎块,置于炉底耐火材料衬体之上,由炉壁耐火材料墙体、炉中部的耐火材料墙体和两电极的石墨导电体所形成的空间内,形成电阻发热体;
(2)将压团料置于副料室中;压团料的高度与电阻发热体的高度相同;所述的压团料由阳极炭渣压制而成,或者由电解槽的废耐火材料内衬的磨粉料与铝灰混合压制而成,或者由电解槽的废耐火材料内衬的磨粉料与Al-Fe合金粉混合压制而成;
(3)安放入碱金属结晶器,盖上隔热盖板,放上金属罩,再放上保温板,之后盖上炉盖;
(4)将炉体内抽真空到100Pa以下,向冷却水套中通入冷却水,再给金属电极通入冷却水,然后通电,使电阻发热体的温度升至1000~1400℃,使副料室内压团料的温度达到900~1200℃;在此温度和真空条件下电阻发热体内的电解质组分、副料室内阳极炭渣中的电解质组分或电解槽的废耐火材料内衬的磨粉料中的电解质组分被蒸发出来,并凝结在电解质结晶室内;而电阻发热体中的碱金属被蒸馏出来后,经炉壁耐火材料墙体顶部的槽型开口进入碱金属结晶室,然后在碱金属结晶器内壁上凝结;而电解槽的废耐火材料内衬的磨粉料与铝灰或Al-Fe合金粉中的铝反应生成的碱金属被蒸馏出来后,经由炉内中部耐火材料墙体顶部的槽型开口或炉内中部耐火材料墙体顶部与隔热盖板之间的间隙和炉壁耐火材料墙体顶部的槽型开口进入碱金属结晶室,然后在碱金属结晶器内壁上凝结。
(5)维持此温度和真空条件大于0.5小时,使装置内全部的冶金过程完成后断电,关闭真空,然后向装置内通入氩气,保持装置内正压力,待温度降至室温后,打开炉盖,从炉内取出电解质,凝结有碱金属的碱金属结晶器,以及分离出了电解质、碱金属的废阴极炭块碎块,分离出了电解质或除掉了碱金属和电解质的压团料。
所述的碱金属为钠或钠钾合金,或者为含有锂的钠或钠钾合金。
电解槽的废耐火材料的磨粉料与铝灰的混合比例视铝灰中的铝含量和废电解槽的废耐火材料的磨粉料中碱金属氧化物的含量而定,原则上要让所配入的铝灰中的铝将电解槽的废耐火材料的磨粉料中的碱金属氧化物全部被还原成碱金属为配料准则;电解槽废耐火材料磨细 粉与Al-Fe合金粉的配比也按此准则进行配料,其中电解槽的废耐火材料的磨粉料、铝灰和Al-Fe合金粉的粒度均小于100目。
当副料室内不装填压团料或其它物料时,步骤(4)中电阻发热体的加热温度为1000~1300℃。
本发明的一种处理及回收铝电解固体废料的装置,可实现废阴极炭块和炭内衬中的炭、碱金属和电解质的彻底分离,以及废阴极内衬耐火材料中电解质、碱金属与耐火材料组分的彻底分离,以及阳极炭渣中电解质和炭的分离,也使铝灰和被铝熔化的阴极钢棒所形成的Al-Fe合金得到有效利用。整个过程无废渣、废气、废水产生,是一种节能环保的铝电解固体废料处理装置,非常适合在工业上大规模推广应用。
附图说明
图1为本发明实例1中电阻发热体为П型设计时的A-A面剖视图;
图2为本发明实例1中电阻发热体为П型设计时的B-B面剖视图;
图3为本发明实例1中电阻发热体为П型设计时的电阻发热体及电极结构的C-C面剖视图;
图4为本发明实例2中电阻发热体为U型设计时的U型电阻发热体及电极结构的C-C面剖视图;
图5为本发明实例3中电阻发热体为两个独立且互相平行的直线体设计时C-C面剖视图;
图6为本发明实例4中只有单一电阻发热体设计时的A-A面剖面图;
图7为本发明实例4中只有单一电阻发热体设计时的B-B面剖面图;
图8为本发明实例4中只有单一电阻发热体设计时的C-C面剖面图;
图中,1-炉壳,2-炉盖,3-电阻发热体,4-炉壁耐火材料墙体,5-炉内中部的耐火材料墙体,6-炉壁保温材料衬体,7-炉壁耐火材料墙体顶部的槽型开口,8-隔热盖板,9-金属罩,10-保温板,11-碱金属结晶器,12-副料室,13-碱金属结晶室,14-电阻发热体上部的电解质结晶室,15-副料室上部的电解质结晶室,16-真空抽气管,17-充气管,18-真空压力表,19-石墨导电体,20-金属电极,21-绝缘密封装置,22-电极冷却水进水管,23-电极冷却水出水管,24-炉内中部的耐火材料墙体顶部的槽型开口,25-真空垫圈,26-金属导体,27-冷却水套,28-炉底耐火材料衬体,29-炉底保温材料衬体。
具体实施方式
本发明的一种处理及回收铝电解固体废料的装置实施方式以如下实例说明。
本发明的炉壳为一个箱式金属壳体,由钢制金属材料制成;炉盖用钢质金属材料制成。
本发明的隔热盖板用耐火材料制作。
本发明的耐火材料选用耐火混凝土。
本发明的碱金属结晶器由不锈钢板制成。
实施例1
处理及回收铝电解槽固体废料的装置结构如图1、图2和图3所示;电阻发热体为П型设计;
包括炉壳1、炉盖2、炉内衬、炉壁耐火材料墙体4、电阻发热体3、炉内中部的耐火材料墙体5、碱金属结晶器11、隔热盖板8、金属罩9、电极、副料室12、电解质结晶室和碱金属结晶室13;
炉壳1为一个箱式金属壳体,由钢制金属材料制成;炉壳1的顶部外沿具有法兰结构,法兰结构之下的一段炉壳1的外壁设有冷却水套27,法兰结构下部的炉壳1上焊有真空抽气管16;炉壳1顶部法兰结构下沿处还焊有可以向炉内充入氩气或其它惰性气体的充气管17和显示炉内压力和真空情况的真空压力表18;
炉盖2用钢质金属材料制成,炉壳1上沿的法兰结构与炉盖2之间设有真空垫圈25;
所述的炉内衬由炉侧部内衬和炉底内衬组成,炉侧部内衬的内壁为炉壁耐火材料墙体4,炉底内衬的内层为炉底耐火材料衬体28,炉壁耐火材料墙体4与炉壁炉壳1之间为炉壁保温材料衬体6,炉底耐火材料衬体28与炉底炉壳之间为炉底保温材料衬体29;
所述的炉壁耐火材料墙体4高于炉壁保温材料衬体6,炉壁耐火材料墙体4的顶部有槽型开口7,通过此槽型开口使电解质结晶室14与碱金属结晶室13连通;
所述的炉内中部的耐火材料墙体5是坐落在炉底耐火材料衬体之上的,与炉底耐火材料衬体垂直的,且紧靠电阻发热体3的内侧面垂直向上的墙体;炉内中部的耐火材料墙体5的顶部也有槽型开口24,并具有与炉壁耐火材料墙体4相同的高度;炉内中部的耐火材料墙体5顶部的槽型开口24将副料室12上部的电解质结晶器室15与电阻发热体3上面的电解质结晶室14连通;
所述的隔热盖板8用耐火材料制作,位于炉壁耐火材料墙体4和炉内中部的耐火材料墙体5的顶部;隔热盖板8的外沿大于炉壁耐火材料墙体4的外沿;
所述金属罩9为一个有底无盖的长方形桶,反扣在隔热盖板8上,并使金属罩9的桶壁插入到碱金属结晶器11中;金属罩9之上,炉盖2之下设置有保温板10;
所述的碱金属结晶器11由不锈钢板制成,碱金属结晶器11外壁紧贴带有冷却水套27的 炉壳1的内壁,碱金属结晶器11的下部为一沟槽型设计;碱金属结晶器11下部的沟槽位于炉壁保温材料衬体6的上表面;
所述的电阻发热体3由粒径小于10cm的废阴极炭块的碎块组成;将废阴极炭块的碎块置于由炉壁耐火材料墙体4、炉内中部的耐火材料墙体5和两电极的石墨导电体19所围成的空间中,形成电阻发热体3;电阻发热体3比石墨导电体19高出10cm;
所述的电极由两部分导电体组成,炉内侧与电阻发热体3相接触部分的导电体为石墨导电体19,石墨导电体的断面为矩形;与石墨导电体19连接的导电体为金属导电体,称为金属电极20,其断面为圆形;金属电极20的断面面积小于石墨导电体19的断面面积,金属电极20内通有冷却水;金属电极20与炉壳1之间有绝缘密封装置21;
所述的副料室12是位于炉底耐火材料衬体之上的由炉内中部的耐火材料墙体5与两电极间的炉壁耐火材料墙体4所围成的其空间高度与电阻发热体3高度相同的空间;
所述的电解质结晶室有两种,一种电解质结晶室14是位于电阻发热体之上,隔热盖板之下的由高于电阻发热体3的炉壁耐火材料墙体4和炉内中部的耐火材料墙体5所围成的空间;另一种电解质结晶室15是位于副料室料面位置之上,隔热盖板之下的由高于电阻发热体的炉内中部耐火材料墙体5和两电极之间的炉壁耐火材料墙体4所形成的空间;
所述的碱金属结晶室13位于炉壁保温材料衬体6之上,由高于电阻发热体3的炉壁耐火材料墙体4与碱金属结晶器11之间所围成的空间;在碱金属结晶室13内,反扣在隔热盖板8上面的金属罩9的桶壁从上向下伸入到碱金属结晶室13中;
电阻发热体3的两端都有一个电极,其中一个为进电电极,另一个为出电电极;电阻发热体3为П型设置,两个电极在炉壳1的同一侧面;
金属罩9的桶壁与碱金属结晶器11的底部的距离在15cm;
使用方法为:
(1)将铝电解槽废阴极炭块破碎成粒径小于10cm的碎块,置于炉底耐火材料衬体之上,由炉壁耐火材料墙体、炉中部的耐火材料墙体和两电极的石墨导电体所形成的空间内,形成电阻发热体;
(2)将压团料置于副料室中;压团料的高度与电阻发热体的高度相同;所述的压团料由阳极炭渣压制而成;
(3)安放入碱金属结晶器,盖上隔热盖板,放上金属罩,再放上保温板,之后盖上炉盖;
(4)将炉体内抽真空到100Pa以下,向冷却水套中通入冷却水,再给金属电极通入冷却水,然后通电,使电阻发热体的温度升至1350℃,使副料室内压团料的温度达到1100℃;在 此温度和真空条件下电阻发热体内的电解质组分、副料室内阳极炭渣中的电解质组分被蒸发出来,并凝结在电解质结晶室内;而电阻发热体中的碱金属被蒸馏出来后,经炉壁耐火材料墙体顶部的槽型开口进入碱金属结晶室,在碱金属结晶器内壁上凝结;
(5)维持此温度和真空条件大于0.5小时,使装置内全部的冶金过程完成后断电,关闭真空,然后向装置内通入氩气,保持装置内正压力,待温度降至室温后,打开炉盖,从炉内取出电解质,凝结有碱金属的碱金属结晶器,以及分离出了电解质、碱金属的废阴极炭块碎块,分离出了电解质的压团料;
利用本实施例装置和操作方法蒸馏后所回收的废阴极炭块的XRD分析没有发现有电解质组分和金属钠,只剩下纯的炭,钠和电解质的回收率达到100%;阳极炭渣中的电解质全部被分离出来,阳极炭渣中电解质的回收率达到100%。
实施例2
图4为本发明的电阻发热体为U型设计时的U型电阻发热体及电极结构C-C剖面图;
装置结构与实施例1的不同点在于:
(1)电阻发热体为U型结构设计;
(2)电阻发热体比石墨导电体高出10cm;
方法与实施例1的不同点在于:
(1)压团料由电解槽的废耐火材料内衬的磨粉料与铝灰混合压制而成;电解槽的废耐火材料内衬的磨粉料中Na2O组分为5%,电解质组分为10%;铝灰中单质铝为15%,配料按所加入铝灰以铝灰中的铝能将废耐火材料内衬中的Na2O完全还原为配料准则;电解槽的废耐火材料内衬的磨粉料和铝灰的粒度小于100目;
(2)电阻发热体的温度升至1400℃,副料室内反应料的温度1200℃;电解槽的废耐火材料内衬的磨粉料和铝灰中的Na2O组分被铝灰中的铝还原为金属钠,并被蒸馏出来经炉中部的耐火材料墙体顶部的槽型开口和炉壁耐火材料墙体顶部的槽型开口后进入碱金属结晶室后在碱金属结晶器内壁上凝结;
(3)维持此温度和真空条件大于2小时;
利用本实施例装置和操作方法蒸馏后所回收的废阴极炭块的XRD分析没有发现有电解质组分和金属钠,只剩下纯的炭,钠和电解质的回收率达到100%;电解槽的废耐火材料内衬的磨粉料的电解质和碱金属全部被分离出来,钠和电解质的回收率达到100%。
实施例3
图5是本实施例的电阻发热体为两个独立且相互平行的直线体型设计时C-C剖面图;
与实施例2不同点在于:
(1)电阻发热体为两个独立且相互平行的直线体型结构设计,每个独立的电阻发热体的两个电极分别位于电炉的两个侧面上;此时同一侧面的两个电极,与供电电源连接,另一个侧面的两个电极用金属导体连接;
(2)电阻发热体比石墨导电体高出20cm;
方法与实施例2的不同点在于:
(1)压团料由电解槽的废耐火材料内衬的磨粉料与Al-Fe合金粉混合压制而成,其中Al-Fe合金中金属铝含量为67%,粒度为100目以下,电解槽的废耐火材料内衬的磨粉料中Na2O组分为5%,氟化物为8%,配料中所加入Al-Fe合金量以Al-Fe合金中的铝能将废耐火材料内衬中的Na2O完全还原为配料准则;
(2)电阻发热体的温度升至1400℃,副料室内反应料的温度1250℃;电解槽的废耐火材料内衬的磨粉料中的Na2O组分被Al-Fe合金中的铝还原为金属钠;
利用本实施例装置和操作方法蒸馏后所回收的废阴极炭块的XRD分析没有发现有电解质组分和金属钠,只剩下纯的炭,钠和电解质的回收率达到100%;电解槽的废耐火材料内衬的磨粉料中的电解质和碱金属全部被分离出来,钠和电解质的回收率达到了100%。
实施例4
图6、图7、图8是本实施例的只有单一电阻发热体设计时的A-A剖视图、B-B剖面图和C-C剖面图;
装置结构与实施例1的不同点在于:
(1)电阻发热体为单一电阻发热体设计,炉内没有副料室,电阻发热体的两个电极设置在炉体长度方向的两个对应面上;
(2)废阴极炭块含钠、钾金属以及钠钾的氟化物电解质;
(3)电阻发热体与石墨导电体高度相同;
(4)金属罩的桶壁与碱金属结晶器的底部的距离在20cm;
方法与实施例1的不同点在于:
(1)不使用压团料;
(2)电阻发热体的温度升至1200℃;
利用本实施例装置和操作方法蒸馏后所回收的废阴极炭块的XRD分析没有发现有电解质组分、金属钠和钾,蒸馏后阴极炭块中的炭为纯炭,蒸馏出来的碱金属为Na-K合金,含钠钾氟化物的电解质回收率为100%。
实施例5
本实施例的一种处理及回收铝电解固体废料的装置及操作方法与实施例1基本相同,所不同的是:
(1)炉内中部的耐火材料墙体的顶部没有槽型开口,其高度低于炉壁耐火材料墙体的高度10cm;
(2)在操作时,副料室不装填压团料或其它任何反应物料;
方法同与实施例1的不同点在于:
(1)以废阴极炭块作为电阻发热体的升温温度为1200℃;
经XRD物相分析发现,利用本实施例的装置和方法所回收的废阴极炭块除了炭之外,只含有少量的CaF2

Claims (8)

  1. 一种处理及回收铝电解固体废料的装置,其特征在于包括炉壳、炉盖、炉内衬、炉壁耐火材料墙体、炉底耐火材料衬体、电阻发热体、炉内中部的耐火材料墙体、碱金属结晶器、隔热盖板、金属罩、电极以及副料室、电解质结晶室和碱金属结晶室;
    所述的炉壳为一个箱式金属壳体,由钢制金属材料制成;炉壳的顶部外沿具有法兰结构,法兰结构之下的一段炉壳的外壁设有冷却水套,法兰结构下部的炉壳上焊有真空抽气管;炉壳顶部法兰结构下沿处还焊有可以向炉内充入氩气或其它惰性气体的充气管和显示炉内压力和真空情况的真空压力表;
    所述的炉盖用钢质金属材料制成,炉壳上沿的法兰结构与炉盖之间设有真空垫圈;
    所述的炉内衬由炉侧部内衬和炉底内衬组成,炉侧部内衬的内壁为耐火材料制成的墙体,称为炉壁耐火材料墙体,炉底内衬的内层为由耐火材料制成的衬体,称为炉底耐火材料衬体,炉壁耐火材料墙体与侧壁炉壳之间是由保温材料制成的衬体,称为炉壁保温材料衬体;炉底耐火材料衬体与炉底炉壳之间为由保温材料制成的衬体,称为炉底保温材料衬体;
    所述的炉壁耐火材料墙体高于炉壁保温材料衬体,炉壁耐火材料墙体的顶部有槽型开口,通过此槽型开口使电解质结晶室与碱金属结晶室连通;
    所述的炉内中部的耐火材料墙体是坐落在炉底耐火材料衬体之上的,与炉底耐火材料衬体垂直的,且紧靠电阻发热体的内侧面垂直向上的墙体;炉内中部耐火材料墙体的高度等于或低于炉壁耐火材料墙体的高度,当炉内中部耐火材料墙体的高度等于炉壁耐火材料墙体的高度时,炉内中部耐火材料墙体顶部设有槽型开口,通过此槽型开口将副料室上部的电解质结晶室与电阻发热体上面的电解质结晶室连通;
    所述的隔热盖板用耐火材料制作,位于炉壁耐火材料墙体的顶部;隔热盖板的外沿大于炉壁耐火材料墙体的外沿;
    所述的金属罩为一个有底无盖的长方形桶,反扣在隔热板上,并使金属罩的桶壁插入到碱金属结晶器内;金属罩之上,炉盖之下设置有保温板;
    所述的碱金属结晶器由不锈钢板制成,碱金属结晶器外壁紧贴带有冷却水套的炉壳的内壁,碱金属结晶器的下部为一沟槽型设计;碱金属结晶器底部位于炉壁保温材料衬体的上表面;
    所述的电阻发热体由粒径小于10cm的废阴极炭块的碎块组成;将废阴极炭块的碎块置于由炉壁耐火材料墙体、炉内中部的耐火材料墙体和两电极的石墨导电体之间所围成的长条形的空间中,形成电阻发热体;电阻发热体高于石墨导电体0~30cm;
    所述的电极由两部分导电体组成,炉内侧与电阻发热体相接触部分的导电体为石墨导电 体;石墨导电体的断面形状为矩形;与石墨导电体连接的导电体为金属导电体,称为金属电极,其断面为圆形;金属电极的断面面积小于石墨导电体的断面面积,金属电极内通有冷却水;金属电极与炉壳之间有绝缘密封装置;
    所述的副料室是位于炉底耐火材料衬体之上的,由炉内中部的耐火材料墙体与两电极间的炉壁耐火材料墙体所围成的,其高度与电阻发热体高度相同的空间;
    所述的电解质结晶室有两种,一种是位于电阻发热体之上,隔热盖板之下的由高于电阻发热体的炉壁耐火材料墙体和炉内中部的耐火材料墙体所围成的空间;另一种电解质结晶室是位于副料室料面位置之上,隔热盖板之下的由高于电阻发热体的炉内中部的耐火材料墙体和两电极之间的炉壁耐火材料墙体所形成的空间;
    所述的碱金属结晶室位于炉壁保温材料衬体之上的,由高于电阻发热体的炉壁耐火材料墙体与碱金属结晶器之间所围成的空间;在碱金属结晶室内,反扣在隔热盖板上面的金属罩的桶壁从上向下伸入到碱金属结晶室中。
  2. 根据权利要求1所述的一种处理及回收铝电解固体废料的装置,其特征在于每个独立电阻发热体的两端都有一个电极,其中一个为进电电极,另一个为出电电极;当电阻发热体为U型设计或П型设置时,电阻发热体的两个电极在炉壳的同一侧面;当电阻发热体为两个相互平行且相互独立的直线体设计时,每个独立电阻发热体的两个电极分别位于炉壳的两个对应的侧面上,此时,同一侧面的两个电极与供电电源连接,另一侧面的两个电极之间用金属导体连接,使加热电流从一个电阻发热体流入同一个炉内的另一个电阻发热体;也可以将另一侧的两个电极用金属导体连接后,将该装置的加热电流输入到与其结构相同的另一个装置中;由铝电解槽废阴极炭块做成的电阻发热体即是使炉内产生电阻热的热源体,又是一种被处理和要回收的铝电解槽固体废料。
  3. 根据权利要求1所述的一种处理及回收铝电解固体废料的装置,其特征在于所述的副料室用于装填阳极炭渣制成的压团料,或电解槽废耐火材料磨细料与铝灰或Al-Fe合金磨细料混合制成的压团料。
  4. 根据权利要求1所述的一种处理及回收铝电解固体废料的装置,其特征在于所述的金属罩的桶壁与碱金属结晶器的底部的距离在5~30cm。
  5. 权利要求1所述的一种处理及回收铝电解固体废料的装置的使用方法,其特征在于按以下步骤进行:
    (1)将铝电解槽废阴极炭块破碎成粒径小于10cm的碎块,置于炉底耐火材料衬体之上,由炉壁耐火材料墙体、炉中部耐火材料墙体和两电极的石墨导电体之间所形成的空间内,形 成电阻发热体;
    (2)将压团料置于副料室中;压团料的高度与电阻发热体的高度相同;所述的压团料由阳极炭渣压制而成,或者由电解槽的废耐火材料内衬的磨粉料与铝灰混合压制而成,或者由电解槽的废耐火材料内衬的磨粉料与Al-Fe合金粉混合压制而成;
    (3)安放入碱金属结晶器,盖上隔热盖板,放上金属罩,再放上保温板,之后盖上炉盖;
    (4)将炉体内抽真空到100Pa以下,向冷却水套中通入冷却水,再给金属电极通入冷却水,然后通电,使电阻发热体的温度升至1000~1400℃,使副料室内压团料的温度达到900~1200℃;在此温度和真空条件下电阻发热体内的电解质组分、副料室内阳极炭渣中的电解质组分或电解槽的废耐火材料内衬的磨粉料中的电解质组分被蒸发出来,并凝结在电解质结晶室内;而电阻发热体中的碱金属被蒸馏出来后,经炉壁耐火材料墙体顶部的槽型开口进入碱金属结晶室,然后在碱金属结晶器内壁上凝结;而电解槽的废耐火材料内衬的磨粉料与铝灰或Al-Fe合金粉中的铝反应生成的碱金属被蒸馏出来后,经由炉内中部耐火材料墙体顶部的槽型开口或炉内中部耐火材料墙体顶部与隔热盖板之间的间隙和炉壁耐火材料墙体顶部的槽型开口进入碱金属结晶室,然后在碱金属结晶器内壁上凝结;
    (5)维持此温度和真空条件大于0.5小时,使装置内全部的冶金过程完成后断电,关闭真空,然后向装置内通入氩气,保持装置内正压力,待温度降至室温后,打开炉盖,从炉内取出电解质,凝结有碱金属的碱金属结晶器,以及分离出了电解质、碱金属的废阴极炭块碎块,分离出了电解质或除掉了碱金属和电解质的压团料。
  6. 根据权利要求5所述的一种处理及回收铝电解固体废料的装置的使用方法,其特征在于所述的碱金属为钠或钠钾合金,或者为含有锂的钠或钠钾合金。
  7. 根据权利要求5所述的一种处理及回收铝电解固体废料的装置的使用方法,其特征在于所述的电解槽的废耐火材料的磨粉料与铝灰的混合比例视铝灰中的铝含量和废电解槽的废耐火材料的磨粉料中碱金属氧化物的含量而定,原则上要让所配入的铝灰中的铝将电解槽的废耐火材料的磨粉料中的碱金属氧化物全部被还原成碱金属为配料准则;电解槽废耐火材料磨细粉与Al-Fe合金粉的配比也按此准则进行配料,其中电解槽的废耐火材料的磨粉料、铝灰和Al-Fe合金粉的粒度均小于100目。
  8. 根据权利要求5所述的一种处理及回收铝电解固体废料的装置的使用方法,其特征在于当副料室内不装填压团料或其它物料时,步骤(4)中电阻发热体的加热温度为1000~1300℃。
PCT/CN2015/089836 2015-08-24 2015-09-17 一种处理及回收铝电解固体废料的装置 WO2017031798A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520637590.9U CN204959051U (zh) 2015-08-24 2015-08-24 一种处理及回收铝电解固体废料的装置
CN2015206375909 2015-08-24
CN2015105198314 2015-08-24
CN201510519831.4A CN105088274B (zh) 2015-08-24 2015-08-24 一种处理及回收铝电解固体废料的装置

Publications (1)

Publication Number Publication Date
WO2017031798A1 true WO2017031798A1 (zh) 2017-03-02

Family

ID=58099543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089836 WO2017031798A1 (zh) 2015-08-24 2015-09-17 一种处理及回收铝电解固体废料的装置

Country Status (1)

Country Link
WO (1) WO2017031798A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970031A (zh) * 2019-05-06 2019-07-05 广西大学 一种氢氟酸的制备方法
CN110040687A (zh) * 2018-05-23 2019-07-23 刘基建 废旧阴极炭块处理系统及其处理方法
CN110775955A (zh) * 2019-11-06 2020-02-11 东北大学 一种利用NaOH熔盐法处理铝电解槽阳极炭渣的方法
CN111498840A (zh) * 2020-04-26 2020-08-07 国家电投集团宁夏能源铝业科技工程有限公司 一种利用电阻炉无害化处理电解铝废阴极碳块的工艺方法
CN113249576A (zh) * 2021-04-20 2021-08-13 沈阳铝镁设计研究院有限公司 废阴极碳块及氟化物和金属钠的回收处理设备及使用方法
CN113247927A (zh) * 2021-04-27 2021-08-13 中铝中州铝业有限公司 一种资源化利用电解铝灰的方法
CN114031099A (zh) * 2021-11-19 2022-02-11 东北大学 一种高效处理铝电解固体废弃物的酸化焙烧方法
CN114774992A (zh) * 2022-05-18 2022-07-22 中国铝业股份有限公司 一种铝电解生产方法
CN116136362A (zh) * 2023-04-04 2023-05-19 沈阳铝镁设计研究院有限公司 一种锂电池负极材料生产用石墨化炉
CN116515328A (zh) * 2023-05-06 2023-08-01 遵义铝业股份有限公司 氧化铝基铝电解用阳极防氧化涂料、制备方法及装置
CN116515328B (zh) * 2023-05-06 2024-05-03 遵义铝业股份有限公司 氧化铝基铝电解用阳极防氧化涂料、制备方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858198A (en) * 1954-10-19 1958-10-28 Aluminium Lab Ltd Recovery of material from aluminum reduction cell lining
US4889695A (en) * 1985-02-20 1989-12-26 Aluminum Company Of America Reclaiming spent potlining
CN102992298A (zh) * 2012-12-04 2013-03-27 贵州铝城铝业原材料研究发展有限公司 一种电解槽大修槽渣废阴极炭块的回收利用方法
CN103851632A (zh) * 2014-03-12 2014-06-11 郑州经纬科技实业有限公司 电解铝废阴极碳块资源化处理系统及处理方法
CN104204306A (zh) * 2011-10-07 2014-12-10 英菲纽姆股份有限公司 用氧化物电解有效生产金属和蒸馏的方法和设备
CN104894601A (zh) * 2015-06-12 2015-09-09 沈阳北冶冶金科技有限公司 一种处理及回收铝电解固体废料的装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858198A (en) * 1954-10-19 1958-10-28 Aluminium Lab Ltd Recovery of material from aluminum reduction cell lining
US4889695A (en) * 1985-02-20 1989-12-26 Aluminum Company Of America Reclaiming spent potlining
CN104204306A (zh) * 2011-10-07 2014-12-10 英菲纽姆股份有限公司 用氧化物电解有效生产金属和蒸馏的方法和设备
CN102992298A (zh) * 2012-12-04 2013-03-27 贵州铝城铝业原材料研究发展有限公司 一种电解槽大修槽渣废阴极炭块的回收利用方法
CN103851632A (zh) * 2014-03-12 2014-06-11 郑州经纬科技实业有限公司 电解铝废阴极碳块资源化处理系统及处理方法
CN104894601A (zh) * 2015-06-12 2015-09-09 沈阳北冶冶金科技有限公司 一种处理及回收铝电解固体废料的装置及方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040687A (zh) * 2018-05-23 2019-07-23 刘基建 废旧阴极炭块处理系统及其处理方法
CN110040687B (zh) * 2018-05-23 2024-03-29 刘基建 废旧阴极炭块处理系统及其处理方法
CN109970031A (zh) * 2019-05-06 2019-07-05 广西大学 一种氢氟酸的制备方法
CN110775955A (zh) * 2019-11-06 2020-02-11 东北大学 一种利用NaOH熔盐法处理铝电解槽阳极炭渣的方法
CN110775955B (zh) * 2019-11-06 2023-04-07 东北大学 一种利用NaOH熔盐法处理铝电解槽阳极炭渣的方法
CN111498840A (zh) * 2020-04-26 2020-08-07 国家电投集团宁夏能源铝业科技工程有限公司 一种利用电阻炉无害化处理电解铝废阴极碳块的工艺方法
CN113249576B (zh) * 2021-04-20 2022-11-11 沈阳铝镁设计研究院有限公司 废阴极碳块及氟化物和金属钠的回收处理设备及使用方法
CN113249576A (zh) * 2021-04-20 2021-08-13 沈阳铝镁设计研究院有限公司 废阴极碳块及氟化物和金属钠的回收处理设备及使用方法
CN113247927A (zh) * 2021-04-27 2021-08-13 中铝中州铝业有限公司 一种资源化利用电解铝灰的方法
CN113247927B (zh) * 2021-04-27 2023-11-10 中铝中州铝业有限公司 一种资源化利用电解铝灰的方法
CN114031099A (zh) * 2021-11-19 2022-02-11 东北大学 一种高效处理铝电解固体废弃物的酸化焙烧方法
CN114774992A (zh) * 2022-05-18 2022-07-22 中国铝业股份有限公司 一种铝电解生产方法
CN114774992B (zh) * 2022-05-18 2023-08-08 中国铝业股份有限公司 一种铝电解生产方法
CN116136362A (zh) * 2023-04-04 2023-05-19 沈阳铝镁设计研究院有限公司 一种锂电池负极材料生产用石墨化炉
CN116515328A (zh) * 2023-05-06 2023-08-01 遵义铝业股份有限公司 氧化铝基铝电解用阳极防氧化涂料、制备方法及装置
CN116515328B (zh) * 2023-05-06 2024-05-03 遵义铝业股份有限公司 氧化铝基铝电解用阳极防氧化涂料、制备方法及装置

Similar Documents

Publication Publication Date Title
WO2017031798A1 (zh) 一种处理及回收铝电解固体废料的装置
CN104894600B (zh) 一种从铝熔盐电解含炭固体废料中分离回收炭和电解质组分的方法
CN105088274B (zh) 一种处理及回收铝电解固体废料的装置
CN106247340B (zh) 一种电解铝碳渣的处理方法及装置
Yang et al. Silicon recycling and iron, nickel removal from diamond wire saw silicon powder waste: synergistic chlorination with CaO smelting treatment
WO2017143697A1 (zh) 铝工业固体废料回收/石油焦高温脱硫装置及其使用方法
CN105603216B (zh) 铝工业固体废料回收/石油焦高温脱硫装置及其使用方法
CN103343363B (zh) 一种电解铝用电解质的生产方法
CN104894601A (zh) 一种处理及回收铝电解固体废料的装置及方法
CN110129506B (zh) 废耐火材料预处理碳热还原制取铝硅铁合金的方法
CN104894382A (zh) 一种电解铝铝灰和耐火材料内衬废料的回收处理方法
CN111187924B (zh) 一种含锂物料连续炼锂装置及方法
Habashi Extractive metallurgy of aluminum
CN110144457B (zh) 铝灰预处理碳热还原制取铝硅铁合金的方法
KR20100073266A (ko) 마그네슘 제조 장치 및 이를 이용한 마그네슘 제조 방법
CN110016557A (zh) 以铝灰为原料电弧炉冶炼制取铝硅铁的方法
CN107857263A (zh) 一种超声波碱浸和加压酸浸联合处理电解铝废阴极炭块的方法
CN107604383A (zh) 一种熔炼法提取碳渣中电解质的方法
CN106756082A (zh) 一种电子束冷床炉回收重熔tc11屑料的工艺
CN110117718B (zh) 以废耐火材料为原料电弧炉冶炼制取铝硅铁的方法
CN204959051U (zh) 一种处理及回收铝电解固体废料的装置
CN106517209A (zh) 一种铝电解槽废槽衬废阴极的处理方法
CN112522741A (zh) 一种封闭式稀土氯化物体系电解槽
CN114231743B (zh) 一种高温还原ito废靶制备铟锡合金的方法
CN205556753U (zh) 铝工业固体废料回收/石油焦高温脱硫装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15902069

Country of ref document: EP

Kind code of ref document: A1