WO2022121211A1 - 一种用于陶瓷板生产的间歇式连续成型方法及设备 - Google Patents

一种用于陶瓷板生产的间歇式连续成型方法及设备 Download PDF

Info

Publication number
WO2022121211A1
WO2022121211A1 PCT/CN2021/089511 CN2021089511W WO2022121211A1 WO 2022121211 A1 WO2022121211 A1 WO 2022121211A1 CN 2021089511 W CN2021089511 W CN 2021089511W WO 2022121211 A1 WO2022121211 A1 WO 2022121211A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
pressing
ceramic
mold core
intermittent continuous
Prior art date
Application number
PCT/CN2021/089511
Other languages
English (en)
French (fr)
Inventor
温怡彰
邓耀顺
陈延林
谈建豪
梁超寰
周性聪
苏龙保
丁亚辉
温证钧
招俊杰
Original Assignee
佛山市恒力泰机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011419230.3A external-priority patent/CN112589969A/zh
Priority claimed from CN202011418283.3A external-priority patent/CN112757449A/zh
Application filed by 佛山市恒力泰机械有限公司 filed Critical 佛山市恒力泰机械有限公司
Publication of WO2022121211A1 publication Critical patent/WO2022121211A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B15/00General arrangement or layout of plant ; Industrial outlines or plant installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B5/00Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping
    • B28B5/02Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type

Definitions

  • the invention relates to a ceramic plate forming method, in particular to a batch continuous forming method and equipment for producing ceramic plates.
  • the mold 1' is fixed on the working table of the press, the lower mold core 2' is connected with the ejector 3', and the ejector 3' can drive the lower mold
  • the mould core 2' moves up and down; the upper mould core 4' is fixed on the moving beam 5' and is driven by the main oil cylinder 6', and presses the powder 7' into bricks.
  • the current process is that the distribution device directly extends into the working space of the press, and fills the powder in the mold frame, and at the same time pushes the formed brick to the conveying line.
  • the embodiment of the present invention provides an intermittent continuous forming method for the production of ceramic plates, which can produce ceramic plates of any length and size, and cooperates with a cutting device, Online flexible production switching of any product specification can be realized.
  • the embodiment of the present invention provides a batch continuous forming method for the production of ceramic plates, comprising the following steps:
  • the material area is divided into a pre-pressing area with a length of L1.
  • the powder area corresponding to the length of the molding plane close to the discharge end L3 to the discharge end is the transition area.
  • the powder area corresponding to the forming plane is the forming area after removing the transition area. is L2;
  • the mold core rises to a high position, and the conveyor belt drives the powder to transport L2 distance forward;
  • the length of the L2 is greater than the length of the L1.
  • the length of the L3 is smaller than the length of the L1.
  • the edge of the bottom surface of the mold core is provided with edge-holding ledges, and in the pressing process of S002, the side-edge of the powder is compacted and fixed by the edge-holding ledges.
  • a transition arc surface is set at the intersection of the forming plane and the pre-pressing inclined surface, so that the blanks in the forming zone and the pre-pressing zone in step S002 have a smooth transition.
  • the mold core is fixed on the main cylinder of the press through the moving beam
  • the main cylinder is provided on the upper part of the frame of the press
  • the backing plate is provided on the frame of the press
  • the conveyor belt is arranged between the mold core and the backing plate.
  • step S002-1 is added between steps S001 and S002: setting a material blocking mechanism on both sides of the powder, the material blocking mechanism has a baffle that can move in the width direction of the powder, The baffle of the mechanism organizes the powder into a predetermined width.
  • step S002-2 is added between steps S002 and S003: applying constant pressure to the front and back sides of the pressed powder through a clamping mechanism.
  • the present invention provides an intermittent continuous forming equipment for ceramic plate production, including a conveyor belt, a frame, a master cylinder, a moving beam, a backing plate and a mold core, the master cylinder is located in the machine the upper part of the frame, the moving beam is arranged at the lower end of the master cylinder, the mold core is arranged at the lower end of the moving beam; the backing plate is arranged at the lower part of the frame, and the conveying belt is arranged above the backing plate;
  • the bottom surface of the mold core has a pre-pressing slope and a forming plane.
  • the conveyor belt is provided with powders arranged continuously, and can drive the powders to translate relative to the mold core; the mold core can move up and down to cooperate with the backing plate to press the powder on the conveyor belt , forming a ceramic slab of any length.
  • the pre-pressing inclined surface is close to the feed side, and the pre-pressing inclined surface is gradually inclined upward from the intersection with the forming plane.
  • a transition arc surface is provided at the intersection of the forming plane and the pre-pressing inclined surface.
  • the edge of the two sides of the bottom surface of the mold core is further provided with a pressing edge.
  • the material blocking mechanism is arranged on the backing plate, located on both sides of the powder, and includes a transverse oil cylinder and a baffle, and the transverse oil cylinder is connected with the baffle,
  • the baffle can be driven to move along the width direction of the powder
  • the clamping mechanism is arranged above the backing plate and on the discharge side of the conveyor belt, and includes a fixed support beam, a longitudinal oil cylinder arranged in the support beam, and a The pressure plate connected to the longitudinal cylinder.
  • the baffle is connected to the piston rod of the lateral oil cylinder, and the lateral oil cylinder can drive its piston rod to extend and retract, so as to drive the baffle to extend and retract.
  • the pressure plate is connected to the piston rod of the longitudinal oil cylinder, and the longitudinal oil cylinder can drive the piston rod to expand and contract, so as to fix the pressure plate at a predetermined height above the conveyor belt during the pressing process;
  • the material blocking mechanism further includes a support, and the support is formed with a piston cavity of the transverse oil cylinder.
  • the material blocking mechanism further includes a support, the support is provided with an accommodating groove, and two or more of the transverse oil cylinders are arranged in the accommodating groove at a predetermined distance from each other.
  • the bottom of the horizontal oil cylinder is in abutment with the bottom of the accommodating groove, and the upper and lower sides of the horizontal oil cylinder are in abutment with the upper and lower groove surfaces of the accommodating groove.
  • the powder is continuously conveyed on the conveyor belt, and the mold core presses the powder into a pre-pressing area, a forming area and a transition area in one pressing process, and then conveys a distance of the forming area through the conveyor belt, and then carries out After the second pressing, ceramic plates of any length and size can be produced, and with the cutting device, online flexible production switching of any product specification can be realized.
  • the pre-pressing zone can gradually pre-press the powder, and at the same time play the role of connecting the powder zone and the forming zone, so that the powder forms a gradual state from loose to dense.
  • the powder in the forming zone is pressed by a predetermined pressure to form a finished ceramic slab.
  • the powder in the transition zone plays the role of connecting the formed slab and the slab being formed.
  • 1-3 are schematic diagrams of the existing ceramic plate forming process
  • Fig. 4 is the first embodiment structural schematic diagram of a kind of intermittent continuous molding equipment for ceramic plate production of the present invention
  • Fig. 5 is the structural representation of the mold core of the present invention.
  • Fig. 6 is the structural representation of the A direction of Fig. 4;
  • FIG. 7 is a schematic structural diagram of the second embodiment of a batch type continuous forming equipment used for the production of ceramic plates according to the present invention.
  • Fig. 8 is the structural representation of the A direction of Fig. 7;
  • Fig. 9 is the structural representation of the material blocking mechanism of the present invention.
  • Fig. 10 is the FF surface sectional view of Fig. 9;
  • FIG. 11 is a schematic structural diagram of the clamping mechanism of the present invention.
  • Fig. 12 is the EE plane sectional view of Fig. 11;
  • Figure 13 is a schematic diagram of a batch continuous forming method for ceramic plate production of the present invention.
  • Fig. 14 is the BB plane sectional view of Fig. 13;
  • 15 is a schematic diagram of the powder transfer distance of a batch-type continuous molding method for the production of ceramic plates according to the present invention.
  • Figure 16 is a schematic diagram of a preferred arrangement of a batch continuous forming method for ceramic plate production of the present invention.
  • FIG. 17 is a cross-sectional view taken along the CC plane of FIG. 16 .
  • the first embodiment of the present invention provides an intermittent continuous forming equipment for the production of ceramic plates, including a conveyor belt 1, a frame 2, a master cylinder 3, a moving beam 4, a backing plate 5 and the mould core 6, the master cylinder 3 is arranged on the upper part of the frame 2, the moving beam 4 is arranged at the lower end of the master cylinder 3, the mould core 6 is arranged at the lower end of the moving beam 4;
  • the conveyor belt 1 is arranged above the backing plate 5 ;
  • the bottom surface of the mold core 6 has a pre-pressing slope 61 and a forming plane 62 .
  • the conveyor belt 1 is provided with continuously arranged powders 7, and can drive the powders 7 to translate relative to the mold core 6; Pressed to form ceramic slabs of any length.
  • the pre-pressing inclined surface 61 is close to the feed side, and the pre-pressing inclined surface 61 is gradually inclined upward from the intersection with the forming plane 62 .
  • the transmission belt 1 may be a belt or a steel belt.
  • the powder is continuously conveyed on the conveyor belt 1, and the mold core 6 presses the powder into the pre-pressing area, the forming area and the transition area in one pressing process, and then conveys the distance of one forming area through the conveyor belt 1 , and then the second pressing is performed to produce ceramic plates of any length and size, and with the cutting device 10 , online flexible production switching of any product specification can be realized.
  • the pre-pressing zone can gradually pre-press the powder, and at the same time play the role of connecting the powder zone and the forming zone, so that the powder forms a gradual state from loose to dense.
  • the powder in the forming zone is pressed by a predetermined pressure to form a finished ceramic slab.
  • the powder in the transition zone plays the role of connecting the formed slab and the slab being formed.
  • a transition arc surface 63 is provided at the intersection of the forming plane 62 and the pre-pressing inclined surface 61, and the transition arc surface 63 may be a circular arc surface or other optimized curves, so that the powder in the forming area and the pre-pressing forming area is Has smooth transitions.
  • edges on both sides of the bottom surface of the mold core 6 are further provided with edge pressing edges 64 .
  • edge pressing edges 64 By arranging the blank holder 64, it can resist the expansion and deformation of powder or slab in the lateral direction on both sides during pressing, so that the slab forming quality is higher, uniform and dense, and the occurrence of defects can be reduced.
  • the difference from the first embodiment is that it further includes a material blocking mechanism 8 and a clamping mechanism 9;
  • the material blocking mechanism 8 is provided on the backing plate 5 , Located on both sides of the powder, it includes a transverse oil cylinder 81 and a baffle 82, the transverse oil cylinder 81 is connected with the baffle 82, and can drive the baffle 82 to move along the width direction of the powder;
  • the clamping mechanism 9 is provided at Above the backing plate 5 and on the discharge side of the conveyor belt 1 , it includes a fixed support beam 91 , a longitudinal oil cylinder 92 arranged in the support beam 91 , and a pressing plate 93 connected to the longitudinal oil cylinder 92 .
  • the baffle 82 is connected with the piston rod of the transverse oil cylinder 81 , and the transverse oil cylinder 81 can drive its piston rod to extend and retract, so as to drive the baffle 82 to extend and retract.
  • the support beam 91 extends along the width direction of the powder, and two or more of the longitudinal oil cylinders 92 are arranged in the support beam 91 at a predetermined distance from each other.
  • the baffle plate 82 extends to block the powder or slab; when unloading and feeding, the pressing plate 93 withdraws.
  • the piston of the transverse oil cylinder 81 drives the baffle plate 82 to resist the powder or the slab, so as to resist the lateral expansion and deformation of the powder or the slab.
  • the feeding end of the conveyor belt 1 is further provided with a distribution mechanism 11 , and the distribution mechanism 11 is used to evenly arrange the powder on the conveyor belt 1 .
  • the pressing plate 93 is connected with the piston rod of the longitudinal oil cylinder 92, and the longitudinal oil cylinder 92 can drive its piston rod to extend and retract, so as to fix the pressing plate 93 at a predetermined height above the conveyor belt 1 during the pressing process.
  • the piston of the longitudinal oil cylinder 92 drives the pressing plate 93 to clamp the formed slab, so as to generate a clamping force to resist the forward expansion and deformation of the powder or the slab in the forming area.
  • the material blocking mechanism 8 further includes a support 83, and the support 83 is formed with a piston cavity of the transverse oil cylinder 81 (the structure of the piston cavity and The setting position is similar to the accommodating groove 831 in the second specific embodiment), and the piston and the piston rod of the transverse oil cylinder 81 are placed in the piston cavity.
  • the support 83 is directly machined to form the piston cavity of the lateral oil cylinder 81, that is, the support 83 is used as the casing of the lateral oil cylinder 81, and the integration is stronger. It can save material and reduce processing cost.
  • the material blocking mechanism 8 further includes a support 83, and the support 83 is provided with a receiving groove 831, two The above-mentioned lateral oil cylinders 81 are arranged in the accommodating groove 831 at a predetermined distance from each other.
  • the bottom of the lateral oil cylinder 81 is in contact with the bottom of the accommodating groove 831 , and the upper and lower sides of the lateral oil cylinder 81 are in abutment with the upper and lower groove surfaces of the accommodating groove 831 .
  • the third embodiment of the present invention provides an intermittent continuous molding method for the production of ceramic plates, which can use the above-mentioned intermittent continuous molding equipment to press and shape the powder, wherein the The mold core 6 is fixed on the main cylinder 3 of the press through the movable beam 4, the master cylinder 3 is arranged on the upper part of the frame 2 of the press, and the backing plate 5 is arranged on the frame 2 of the press. In the lower part, the conveyor belt 1 is arranged between the mold core 6 and the backing plate 5 .
  • the powder is continuously conveyed on the conveyor belt 1, and the mold core 6 presses the powder into the pre-pressing area, the forming area and the transition area in one pressing process, and then conveys the distance of one forming area through the conveyor belt 1 , and then the second pressing is performed to produce ceramic plates of any length and size, and with the cutting device 10 , online flexible production switching of any product specification can be realized.
  • the pre-compression zone can make the powder material pre-compressed gradually, and at the same time play the role of connecting the powder material zone and the forming zone, so that the powder material can form a gradual state from loose to dense.
  • the powder in the forming zone is pressed by a predetermined pressure to form a finished ceramic slab.
  • the powder in the transition zone plays the role of connecting the formed slab and the slab being formed.
  • the length of L2 is greater than the length of L1, that is, the length of the forming area is greater than the length of the pre-pressing area, the forming area is the main working area, and the length of this area is the longest, which can maximize the pressing efficiency.
  • the length of the L3 is smaller than the length of the L1, that is, the length of the transition region is the shortest.
  • the powder in the transition zone plays the role of connecting the formed slab and the slab being formed, and appropriately shortening the length of the transition zone can further improve the pressing efficiency.
  • the pre-pressing slope 61 and the forming plane 62 have an included angle ⁇ .
  • blanking flanges 64 may be further provided at the edges on both sides of the bottom surface of the mold core 6 .
  • the pressing edge 64 first compacts and fixes the side edges of the powder, and can resist the expansion and deformation of the powder or the slab in the lateral direction on both sides during pressing, so that the slab molding quality is higher. And uniform and dense, and can reduce the generation of defects.
  • a transition arc surface 63 may be provided at the intersection of the forming plane 62 and the pre-pressing inclined surface 61, so that the powder in the forming zone and the pre-pressing zone in step S002 has a smooth transition.
  • step S005 may also be included: cutting the blank of predetermined length by the cutting device 10 provided at the discharge end.
  • the width of the cloth By controlling the width of the cloth, the finished product width of the brick can be controlled, and by controlling the cut length of the brick, the finished length of the brick can be controlled. Therefore, through the above settings, the size of the brick can be adjusted online without changing the mold to meet flexible production requirements. needs.
  • step S002-1 may be added between steps S001 and S002: setting a material blocking mechanism 8 on both sides of the powder, and the material blocking mechanism 8 has a baffle plate that can move in the width direction of the powder 82. Arrange the powder into a predetermined width through the baffle plate 82 of the material blocking mechanism 8.
  • the baffle plate 82 extends to block the powder or slab; when unloading and feeding, the pressing plate 93 withdraws.
  • the piston of the transverse oil cylinder 81 drives the baffle plate 82 to resist the powder or the slab, so as to resist the lateral expansion and deformation of the powder or the slab.
  • step S002-2 may be added between steps S002 and S003: applying constant pressure to the front and back sides of the pressed powder through the clamping mechanism 9 .
  • the piston of the longitudinal oil cylinder 92 drives the pressing plate 93 to clamp the formed slab, so as to generate a clamping force to resist the forward expansion and deformation of the powder or the slab in the forming area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

本发明公开了一种用于陶瓷板生产的间歇式连续成型方法,包括以下步骤:S001、通过布料机构将粉料布置在传输带上;S002、驱动底面具有预压斜面和成型平面的模芯下降,将其正下方的粉料压在传输带和垫板上,并保持预定压力和预定时间;将压制过程中预压斜面对应的粉料区域划分为预压区长度为L1,过渡区长度为L3,成型区长度为L2;S003、模芯上升到高位,传输带带动粉料向前输送L2距离;S004、重复步骤S002和S003,以压制成型任意长度的陶瓷板坯。本发明还公开了一种用于陶瓷板生产的间歇式连续成型设备。采用本发明,可生产任意长度尺寸的陶瓷板,配合切割装置,可以实现任意产品规格的在线柔性生产切换。

Description

一种用于陶瓷板生产的间歇式连续成型方法及设备 技术领域
本发明涉及陶瓷板成型方法,尤其涉及一种用于陶瓷板生产的间歇式连续成型方法及设备。
背景技术
如图1-图3所示,目前公知的陶瓷砖成型设备,模具1’固定于压机工作台面上,下模芯2’与顶出装置3’连接,且顶出装置3’可以带动下模芯2’上下移动;上模芯4’固定于动梁5’上,并由主油缸6’驱动,及对粉料7’施压成砖。
现工艺为,布料装置直接伸进压机工作空间内,并将粉料填于模框内,同时将已成型的砖坯推至传送线上。
缺点为,此工艺不太适用于大规格陶瓷板坯的成型,更无法实现任意长度规格的陶瓷板(砖)坯的柔性生产切换。现技术方案,需要通过更换模具的方式,以实现砖坯生产规格的变换。对于大规格的陶瓷板,模具的重量大,更换需要停机操作,费时费力。
发明内容
本发明实施例为了解决陶瓷板成型方法只能压制预定规格的板坯的技术问题,提供一种用于陶瓷板生产的间歇式连续成型方法,可生产任意长度尺寸的陶瓷板,配合切割装置,可以实现任意产品规格的在线柔性生产切换。
为了解决上述技术问题,本发明实施例提供了一种用于陶瓷板生产的间歇式连续成型方法,包括以下步骤:
S001、通过布料机构将粉料布置在传输带上;
S002、驱动底面具有预压斜面和成型平面的模芯下降,将其正下方的粉料压在传输带和垫板上,并保持预定压力和预定时间;将压制过程中预压斜面对应的粉料区域划分为预压区长度为L1,成型平面靠近出料端L3长度到出料端之间对应的粉料区域为过渡区,成型平面对应的粉料区域除去过渡区后为成型区, 长度为L2;
S003、模芯上升到高位,传输带带动粉料向前输送L2距离;
S004、重复步骤S002和S003,以压制成型任意长度的陶瓷板坯。
作为上述方案的改进,所述L2的长度大于L1的长度。
作为上述方案的改进,所述L3的长度小于L1的长度。
作为上述方案的改进,在模芯的底面两侧边沿处设置压边凸沿,在S002的压制过程中,所述压边凸沿先将粉料侧边边沿压实固定。
作为上述方案的改进,所述成型平面和预压斜面的交接处设置过渡弧面,使步骤S002的成型区和预压区的坯料具有平滑过渡。
作为上述方案的改进,还包括S005:通过设于出料端的切割装置对预定长度坯料进行切断。
作为上述方案的改进,所述模芯通过动梁固定于压机的主缸上,所述主缸设于所述压机的机架上部,所述垫板设于所述压机的机架下部,所述传输带设于所述模芯和垫板之间。
作为上述方案的改进,在步骤S001和S002之间加入步骤S002-1:在粉料两侧设置挡料机构,所述挡料机构具有能够向粉料的宽度方向移动的挡板,通过挡料机构的挡板将粉料整理成预定宽度。
作为上述方案的改进,在步骤S002和S003之间加入步骤S002-2:通过夹持机构对经过压制的粉料的正反面施加恒定压力。
为了解决上述技术问题,本发明提供了一种用于陶瓷板生产的间歇式连续成型设备,包括传输带、机架、主缸、动梁、垫板和模芯,所述主缸设于机架上部,所述动梁设于主缸下端,所述模芯设于所述动梁下端;所述垫板设于所述机架下部,所述传输带设于所述垫板上方;所述模芯底面具有预压斜面和成型平面。
作为上述方案的改进,所述传输带上设有连续布置的粉料,并能够带动粉料相对模芯平移;所述模芯能够上下移动,以配合垫板对传输带上的粉料进行压制,形成任意长度的陶瓷板坯。
作为上述方案的改进,其特征在于,所述预压斜面靠近进料侧,所述预压斜面从与所述成型平面的交接处逐渐向上倾斜。
作为上述方案的改进,所述成型平面和预压斜面的交接处设有过渡弧面。
作为上述方案的改进,所述模芯的底面两侧边沿处还设有压边凸沿。
作为上述方案的改进,包括挡料机构和夹持机构;所述挡料机构设于垫板上、位于粉料的两侧,其包括横向油缸和挡板,所述横向油缸与挡板连接,能够驱动挡板沿粉料的宽度方向移动;所述夹持机构设于垫板上方、位于传输带的出料侧,包括固定设置的支梁,设于支梁中的纵向油缸,以及与所述纵向油缸连接的压板。
作为上述方案的改进,所述挡板与横向油缸的活塞杆连接,所述横向油缸能够驱动其活塞杆伸缩,以驱动挡板伸出和缩回。
作为上述方案的改进,所述压板与纵向油缸的活塞杆连接,所述纵向油缸能够驱动其活塞杆伸缩,以在压制过程中将压板固定在所述传输带上方预定高度处;所述支梁沿粉料的宽度方向延伸,两个以上的所述纵向油缸相互间隔预定距离地设于所述支梁中。
作为上述方案的改进,所述挡料机构还包括支座,所述支座形成有所述横向油缸的活塞腔。
作为上述方案的改进,所述挡料机构还包括支座,所述支座设有容纳槽,两个以上的所述横向油缸相互间隔预定距离设于所述容纳槽中。
作为上述方案的改进,所述横向油缸的底部与所述容纳槽的底部抵接,所述横向油缸的上下两侧与所述容纳槽的上下槽面抵接。
实施本发明实施例,具有如下有益效果:
采用本方案,粉料在传输带上被连续输送,模芯在一次压制过程中,将粉料压制成预压区、成型区和过渡区,然后通过传输带输送一个成型区的距离,继而进行第二次压制,即可生产任意长度尺寸的陶瓷板,配合切割装置,可以实现任意产品规格的在线柔性生产切换。在压制过程中,所述预压区可使粉料渐变地预压成型,同时起到衔接粉料区和成型区的作用,使粉料形成从疏松到致密的渐变状态。所述成型区的粉料受到预定压力的压制,形成成品的陶瓷板坯。所述过渡区的粉料起到衔接已成型板坯和正在成型板坯的作用。
附图说明
图1-图3是现有的陶瓷板成型工艺的原理图;
图4是本发明一种用于陶瓷板生产的间歇式连续成型设备的第一实施例结 构示意图;
图5是本发明的模芯的结构示意图;
图6是图4的A向的结构示意图;
图7是本发明一种用于陶瓷板生产的间歇式连续成型设备的第二实施例结构示意图;
图8是图7的A向的结构示意图;
图9是本发明的挡料机构的结构示意图;
图10是图9的FF面剖视图;
图11是本发明的夹持机构的结构示意图;
图12是图11的EE面剖视图;
图13是本发明一种用于陶瓷板生产的间歇式连续成型方法的原理图;
图14是图13的BB面剖视图;
图15是本发明一种用于陶瓷板生产的间歇式连续成型方法的粉料移送距离示意图;
图16是本发明一种用于陶瓷板生产的间歇式连续成型方法的优选设置的原理图;
图17是图16的CC面剖视图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。仅此声明,本发明在文中出现或即将出现的上、下、左、右、前、后、内、外等方位用词,仅以本发明的附图为基准,其并不是对本发明的具体限定。
如图4-图6所示,本发明第一实施例提供了一种用于陶瓷板生产的间歇式连续成型设备,包括传输带1、机架2、主缸3、动梁4、垫板5和模芯6,所述主缸3设于机架2上部,所述动梁4设于主缸3下端,所述模芯6设于所述动梁4下端;所述垫板5设于所述机架2下部,所述传输带1设于所述垫板5上方;所述模芯6底面具有预压斜面61和成型平面62。所述传输带1上设有连续布置的粉料7,并能够带动粉料7相对模芯6平移;所述模芯6能够上下移动,以配合垫板5对传输带1上的粉料进行压制,形成任意长度的陶瓷板坯。所述 预压斜面61靠近进料侧,所述预压斜面61从与所述成型平面62的交接处逐渐向上倾斜。其中,所述传输带1可以是皮带,也可以是钢带。
采用本方案,粉料在传输带1上被连续输送,模芯6在一次压制过程中,将粉料压制成预压区、成型区和过渡区,然后通过传输带1输送一个成型区的距离,继而进行第二次压制,即可生产任意长度尺寸的陶瓷板,配合切割装置10,可以实现任意产品规格的在线柔性生产切换。在压制过程中,所述预压区可使粉料渐变地预压成型,同时起到衔接粉料区和成型区的作用,使粉料形成从疏松到致密的渐变状态。所述成型区的粉料受到预定压力的压制,形成成品的陶瓷板坯。所述过渡区的粉料起到衔接已成型板坯和正在成型板坯的作用。
优选地,所述成型平面62和预压斜面61的交接处设有过渡弧面63,所述过渡弧面63可以是圆弧面或其它优化曲线,使得成型区和预压成型区的粉料具有平滑的过渡。
为了提高压制后砖坯侧边的质量,所述模芯6的底面两侧边沿处还设有压边凸沿64。通过设置所述压边凸沿64,压制时能抵抗粉料或板坯在两侧横向的膨胀变形,使板坯成型质量更高,且均匀致密,及可减少缺陷的产生。
结合图7-图12,根据本发明第二实施例,与第一实施例的不同之处在于,还包括挡料机构8和夹持机构9;所述挡料机构8设于垫板5上、位于粉料的两侧,其包括横向油缸81和挡板82,所述横向油缸81与挡板82连接,能够驱动挡板82沿粉料的宽度方向移动;所述夹持机构9设于垫板5上方、位于传输带1的出料侧,包括固定设置的支梁91,设于支梁91中的纵向油缸92,以及与所述纵向油缸92连接的压板93。所述挡板82与横向油缸81的活塞杆连接,所述横向油缸81能够驱动其活塞杆伸缩,以驱动挡板82伸出和缩回。所述支梁91沿粉料的宽度方向延伸,两个以上的所述纵向油缸92相互间隔预定距离地设于所述支梁91中。压制成型时,挡板82伸出抵挡粉料或板坯;出坯及进料时,压板93撤回。压制成型时,横向油缸81的活塞驱动挡板82抵挡粉料或板坯,以抵抗粉料或板坯在侧向的膨胀变形。所述传输带1的进料端还设有布料机构11,所述布料机构11用于将粉料平均布置于传输带1上。
优选地,所述压板93与纵向油缸92的活塞杆连接,所述纵向油缸92能够驱动其活塞杆伸缩,以在压制过程中将压板93固定在所述传输带1上方预定高度处。压制成型时,纵向油缸92的活塞驱动压板93夹持已成型的板坯,使产 生夹持力,以抵抗成型区的粉料或板坯在前向的膨胀变形。
作为所述挡料机构8的第一种具体实施方式,所述挡料机构8还包括支座83,所述支座83形成有所述横向油缸81的活塞腔(所述活塞腔的结构和设置位置与第二种具体实施方式中的容纳槽831类似),所述横向油缸81的活塞和活塞杆置于所述活塞腔中。采用本实施方式,所述支座83通过机加工的方式,直接加工出所述横向油缸81的活塞腔,即所述支座83作为所述横向油缸81的壳体使用,一体性更强,能够节省材料,降低加工成本。
作为所述挡料机构8的第二种具体实施方式,为了提高挡料机构8的整体强度,所述挡料机构8还包括支座83,所述支座83设有容纳槽831,两个以上的所述横向油缸81相互间隔预定距离设于所述容纳槽831中。所述横向油缸81的底部与所述容纳槽831的底部抵接,所述横向油缸81的上下两侧与所述容纳槽831的上下槽面抵接。
结合图13和图14,本发明第三实施例提供了一种用于陶瓷板生产的间歇式连续成型方法,可利用上文所述的间歇式连续成型设备对粉料压制成型,其中,所述模芯6通过动梁4固定于压机的主缸3上,所述主缸3设于所述压机的机架2上部,所述垫板5设于所述压机的机架2下部,所述传输带1设于所述模芯6和垫板5之间。包括以下步骤:
S001、通过布料机构将粉料布置在传输带1上;
S002、驱动底面具有预压斜面61和成型平面62的模芯6下降,将其正下方的粉料压在传输带1和垫板5上,并保持预定压力和预定时间;将压制过程中预压斜面61对应的粉料区域划分为预压区a长度为L1,成型平面62靠近出料端L3长度到出料端之间对应的粉料区域为过渡区b,成型平面62对应的粉料区域除去过渡区后为成型区c长度为L2;
S003、如图15所示,模芯6上升到高位,传输带1带动粉料向前输送L2距离;
S004、重复步骤S002和S003,以压制成型任意长度的陶瓷板坯。
采用本方案,粉料在传输带1上被连续输送,模芯6在一次压制过程中,将粉料压制成预压区、成型区和过渡区,然后通过传输带1输送一个成型区的距离,继而进行第二次压制,即可生产任意长度尺寸的陶瓷板,配合切割装置10,可以实现任意产品规格的在线柔性生产切换。在压制过程中,所述预压区 可使粉料渐变地预压成型,同时起到衔接粉料区和成型区的作用,使粉料形成从疏松到致密的渐变状态。所述成型区的粉料受到预定压力的压制,形成成品的陶瓷板坯。所述过渡区的粉料起到衔接已成型板坯和正在成型板坯的作用。
优选地,所述L2的长度大于L1的长度,即成型区的长度大于预压区的长度,成型区为主要工作区域,此区域的长度最长,可以最大程度提高压制效率。所述L3的长度小于L1的长度,即过渡区的长度最短。所述过渡区的粉料起到衔接已成型板坯和正在成型板坯的作用,适当缩短过渡区的长度,可以进一步提高压制效率。预压斜面61和成型平面62具有夹角α。
优选地,在压制过程中,可以在模芯6的底面两侧边沿处还设置压边凸沿64。在S002的压制过程中,所述压边凸沿64先将粉料侧边边沿压实固定,压制时能抵抗粉料或板坯在两侧横向的膨胀变形,使板坯成型质量更高,且均匀致密,及可减少缺陷的产生。
优选地,可以在所述成型平面62和预压斜面61的交接处设置过渡弧面63,使步骤S002的成型区和预压区的粉料具有平滑过渡。
优选地,还可以包括步骤S005:通过设于出料端的切割装置10对预定长度坯料进行切断。通过控制布料宽度,可以控制砖坯的成品宽度,通过对砖坯的切断长度进行控制,可以控制砖坯的成品长度,因此通过上述设置,可以在不更换模具的情况下在线调节砖坯的尺寸,满足柔性生产的需要。
优选地,结合图17,在步骤S001和S002之间可以加入步骤S002-1:在粉料两侧设置挡料机构8,所述挡料机构8具有能够向粉料的宽度方向移动的挡板82,通过挡料机构8的挡板82将粉料整理成预定宽度。压制成型时,挡板82伸出抵挡粉料或板坯;出坯及进料时,压板93撤回。压制成型时,横向油缸81的活塞驱动挡板82抵挡粉料或板坯,以抵抗粉料或板坯在侧向的膨胀变形。
优选地,结合图16,步骤S002和S003之间可以加入步骤S002-2:通过夹持机构9对经过压制的粉料的正反面施加恒定压力。压制成型时,纵向油缸92的活塞驱动压板93夹持已成型的板坯,使产生夹持力,以抵抗成型区的粉料或板坯在前向的膨胀变形。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (17)

  1. 一种用于陶瓷板生产的间歇式连续成型方法,其特征在于,包括以下步骤:
    S001、通过布料机构将粉料布置在传输带上;
    S002、驱动底面具有预压斜面和成型平面的模芯下降,将其正下方的粉料压在传输带和垫板上,并保持预定压力和预定时间;将压制过程中预压斜面对应的粉料区域划分为预压区长度为L1,成型平面靠近出料端L3长度到出料端之间对应的粉料区域为过渡区,成型平面对应的粉料区域除去过渡区后为成型区,长度为L2;
    S003、模芯上升到高位,传输带带动粉料向前输送L2距离;
    S004、重复步骤S002和S003,以压制成型任意长度的陶瓷板坯。
  2. 如权利要求1所述的于陶瓷板生产的间歇式连续成型方法,其特征在于,在模芯的底面两侧边沿处设置压边凸沿,在S002的压制过程中,所述压边凸沿先将粉料侧边边沿压实固定。
  3. 如权利要求1所述的于陶瓷板生产的间歇式连续成型方法,其特征在于,所述成型平面和预压斜面的交接处设置过渡弧面,使步骤S002的成型区和预压区的坯料具有平滑过渡。
  4. 如权利要求1所述的于陶瓷板生产的间歇式连续成型方法,其特征在于,还包括S005:通过设于出料端的切割装置对预定长度坯料进行切断。
  5. 如权利要求1所述的于陶瓷板生产的间歇式连续成型方法,其特征在于,所述模芯通过动梁固定于压机的主缸上,所述主缸设于所述压机的机架上部,所述垫板设于所述压机的机架下部,所述传输带设于所述模芯和垫板之间。
  6. 如权利要求1所述的于陶瓷板生产的间歇式连续成型方法,其特征在于,在步骤S001和S002之间加入步骤S002-1:在粉料两侧设置挡料机构,所述挡料机构具有能够向粉料的宽度方向移动的挡板,通过挡料机构的挡板将粉 料整理成预定宽度。
  7. 如权利要求1所述的于陶瓷板生产的间歇式连续成型方法,其特征在于,在步骤S002和S003之间加入步骤S002-2:通过夹持机构对经过压制的粉料的正反面施加恒定压力。
  8. 一种用于陶瓷板生产的间歇式连续成型设备,其特征在于,包括传输带、机架、主缸、动梁、垫板和模芯;
    所述主缸设于机架上部,所述动梁设于主缸下端,所述模芯设于所述动梁下端;
    所述垫板设于所述机架下部,所述传输带设于所述垫板上方;
    所述模芯底面具有预压斜面和成型平面。
  9. 如权利要求8所述的用于陶瓷板生产的间歇式连续成型设备,其特征在于,所述传输带上设有连续布置的粉料,并能够带动粉料相对模芯平移;所述模芯能够上下移动,以配合垫板对传输带上的粉料进行压制,形成任意长度的陶瓷板坯。
  10. 如权利要求8所述的用于陶瓷板生产的间歇式连续成型设备,其特征在于,所述预压斜面靠近进料侧,所述预压斜面从与所述成型平面的交接处逐渐向上倾斜。
  11. 如权利要求8所述的用于陶瓷板生产的间歇式连续成型设备,其特征在于,所述成型平面和预压斜面的交接处设有过渡弧面。
  12. 如权利要求8所述的用于陶瓷板生产的间歇式连续成型设备,其特征在于,所述模芯的底面两侧边沿处还设有压边凸沿。
  13. 如权利要求8所述的用于陶瓷板生产的间歇式连续成型设备,其特征在于,包括挡料机构和夹持机构;所述挡料机构设于垫板上、位于粉料的两侧, 其包括横向油缸和挡板,所述横向油缸与挡板连接,能够驱动挡板沿粉料的宽度方向移动;所述夹持机构设于垫板上方、位于传输带的出料侧,包括固定设置的支梁,设于支梁中的纵向油缸,以及与所述纵向油缸连接的压板;所述挡板与横向油缸的活塞杆连接,所述横向油缸能够驱动其活塞杆伸缩,以驱动挡板伸出和缩回。
  14. 如权利要求13所述的用于陶瓷板生产的间歇式连续成型设备,其特征在于,所述压板与纵向油缸的活塞杆连接,所述纵向油缸能够驱动其活塞杆伸缩,以在压制过程中将压板固定在所述传输带上方预定高度处;所述支梁沿粉料的宽度方向延伸,两个以上的所述纵向油缸相互间隔预定距离地设于所述支梁中。
  15. 如权利要求13所述的用于陶瓷板生产的间歇式连续成型设备,其特征在于,所述挡料机构还包括支座,所述支座形成有所述横向油缸的活塞腔。
  16. 如权利要求13所述的用于陶瓷板生产的间歇式连续成型设备,其特征在于,所述挡料机构还包括支座,所述支座设有容纳槽,两个以上的所述横向油缸相互间隔预定距离设于所述容纳槽中。
  17. 如权利要求16所述的用于陶瓷板生产的间歇式连续成型设备,其特征在于,所述横向油缸的底部与所述容纳槽的底部抵接,所述横向油缸的上下两侧与所述容纳槽的上下槽面抵接。
PCT/CN2021/089511 2020-12-07 2021-04-25 一种用于陶瓷板生产的间歇式连续成型方法及设备 WO2022121211A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011419230.3 2020-12-07
CN202011418283.3 2020-12-07
CN202011419230.3A CN112589969A (zh) 2020-12-07 2020-12-07 一种用于陶瓷板生产的间歇式连续成型设备
CN202011418283.3A CN112757449A (zh) 2020-12-07 2020-12-07 一种用于陶瓷板生产的间歇式连续成型方法

Publications (1)

Publication Number Publication Date
WO2022121211A1 true WO2022121211A1 (zh) 2022-06-16

Family

ID=81973896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089511 WO2022121211A1 (zh) 2020-12-07 2021-04-25 一种用于陶瓷板生产的间歇式连续成型方法及设备

Country Status (1)

Country Link
WO (1) WO2022121211A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116373079A (zh) * 2023-04-07 2023-07-04 南通鑫常泓石业有限公司 一种用于陶瓷压砖机的模具装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH512303A (fr) * 1969-01-16 1971-09-15 Carborundum Co Procédé et appareil de moulage d'une matière pulvérulente du granulaire
CN200942554Y (zh) * 2006-08-21 2007-09-05 阎海军 一种瓷砖生产成型设备的辅助送料装置
CN103495732A (zh) * 2013-09-25 2014-01-08 淮海工学院 喷射沉积多孔板材致密化用压头、装置及应用
CN203418625U (zh) * 2013-08-27 2014-02-05 东莞市恒和节能科技有限公司 一种无机防火绝热板生产装置
CN211806791U (zh) * 2019-12-06 2020-10-30 广东科达洁能股份有限公司 一种上浮动模框压砖模具
CN111906918A (zh) * 2020-09-02 2020-11-10 科达制造股份有限公司 陶瓷压制模具、压制装置以及运用该装置的陶瓷生产工艺
CN112589969A (zh) * 2020-12-07 2021-04-02 佛山市恒力泰机械有限公司 一种用于陶瓷板生产的间歇式连续成型设备
CN112757449A (zh) * 2020-12-07 2021-05-07 佛山市恒力泰机械有限公司 一种用于陶瓷板生产的间歇式连续成型方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH512303A (fr) * 1969-01-16 1971-09-15 Carborundum Co Procédé et appareil de moulage d'une matière pulvérulente du granulaire
CN200942554Y (zh) * 2006-08-21 2007-09-05 阎海军 一种瓷砖生产成型设备的辅助送料装置
CN203418625U (zh) * 2013-08-27 2014-02-05 东莞市恒和节能科技有限公司 一种无机防火绝热板生产装置
CN103495732A (zh) * 2013-09-25 2014-01-08 淮海工学院 喷射沉积多孔板材致密化用压头、装置及应用
CN211806791U (zh) * 2019-12-06 2020-10-30 广东科达洁能股份有限公司 一种上浮动模框压砖模具
CN111906918A (zh) * 2020-09-02 2020-11-10 科达制造股份有限公司 陶瓷压制模具、压制装置以及运用该装置的陶瓷生产工艺
CN112589969A (zh) * 2020-12-07 2021-04-02 佛山市恒力泰机械有限公司 一种用于陶瓷板生产的间歇式连续成型设备
CN112757449A (zh) * 2020-12-07 2021-05-07 佛山市恒力泰机械有限公司 一种用于陶瓷板生产的间歇式连续成型方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116373079A (zh) * 2023-04-07 2023-07-04 南通鑫常泓石业有限公司 一种用于陶瓷压砖机的模具装置
CN116373079B (zh) * 2023-04-07 2024-03-15 阳城县众利陶瓷有限公司 一种用于陶瓷压砖机的模具装置

Similar Documents

Publication Publication Date Title
CN103770034B (zh) 一种陶瓷结合剂超硬材料砂轮磨料层高效制备工艺
WO2022121211A1 (zh) 一种用于陶瓷板生产的间歇式连续成型方法及设备
CN112757449A (zh) 一种用于陶瓷板生产的间歇式连续成型方法
JP4348750B2 (ja) 粉末成形装置及びその駆動方法
WO2020168684A1 (zh) 一种大规格压砖模具及压砖方法
CN215038524U (zh) 一种瓷砖二次布料二次施压快速成型模具
CN114889028A (zh) 一种鼓式刹车片热压成型模具
CN107263674B (zh) 一种乐高砖成型机
CN208118034U (zh) 一种木板成型热压机
CN112589969A (zh) 一种用于陶瓷板生产的间歇式连续成型设备
CN101104287A (zh) 一种制造模压刨花板的生产方法及其专用成型模具
CN211467543U (zh) 一种石英合成石板材的制备生产线
CN215282463U (zh) 一种用于陶瓷板生产的间歇式连续成型设备
CN209577853U (zh) 一种汽车零配件加工的裁切模具
CN114823119B (zh) 一种e型磁芯的成型装置及其成型方法
CN215202543U (zh) 一种用于陶瓷板生产的间歇式连续成型辅助设备
CN109808051A (zh) 一种改善瓷砖尺寸差的布料补偿器
CN113278506B (zh) 一种双面成型提浆制曲装置及其方法
CN210820137U (zh) 一种移动式布料压坯装置
KR101633749B1 (ko) 인조석 성형장치
JP2000071220A (ja) レンガプレス装置
CN207288601U (zh) 一种五金模具的脱模结构
CN110479848A (zh) 一种基于平整脱模的金属板材冲压模具
KR101696614B1 (ko) 상부금형이 없는 수평형 사형 제조장치 및 그를 이용한 사형 제조방법
CN214526644U (zh) 一种液压送料机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901926

Country of ref document: EP

Kind code of ref document: A1