WO2022120662A1 - 电源变换器及其驱动方法 - Google Patents

电源变换器及其驱动方法 Download PDF

Info

Publication number
WO2022120662A1
WO2022120662A1 PCT/CN2020/135033 CN2020135033W WO2022120662A1 WO 2022120662 A1 WO2022120662 A1 WO 2022120662A1 CN 2020135033 W CN2020135033 W CN 2020135033W WO 2022120662 A1 WO2022120662 A1 WO 2022120662A1
Authority
WO
WIPO (PCT)
Prior art keywords
full
bridge
power conversion
conversion device
circuit
Prior art date
Application number
PCT/CN2020/135033
Other languages
English (en)
French (fr)
Inventor
潘丽雯
冯辉
王德源
金新宇
王勇
余瑶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20964602.5A priority Critical patent/EP4250548A4/en
Priority to PCT/CN2020/135033 priority patent/WO2022120662A1/zh
Priority to CN202080004459.2A priority patent/CN112689948B/zh
Publication of WO2022120662A1 publication Critical patent/WO2022120662A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • H02M3/015Resonant DC/DC converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuit

Definitions

  • the present application relates to the field of power electronics, and more particularly, to a power converter and a method of driving the same.
  • a power supply is the source of energy for the operation of active devices in an electronic system.
  • the performance of the power supply directly affects the performance of the electronic system.
  • the power supply can be said to be the "heart" of the electronic system.
  • the present application provides a power conversion device, a driving method of the power conversion device, and a related driving device, which can increase the gain range of the output voltage of the power conversion device.
  • the present application provides a power conversion device.
  • the power conversion device includes a first full-bridge converter, a transformer, and a second full-bridge converter, wherein the transformer is respectively connected to the first full-bridge converter and the second full-bridge converter.
  • the power converter further includes a first sub-circuit and a second sub-circuit, the first sub-circuit includes a first switch tube and a first capacitor connected in series, and the second sub-circuit includes a second switch tube connected in series and a second capacitor, the first sub-circuit and the second sub-circuit are respectively connected in parallel with two switch tubes in a bridge arm circuit of the first full-bridge converter.
  • the power conversion device in this application includes, in addition to the two full-bridge converters and transformers, the first full-bridge converter and the second full-bridge converter, and the first full-bridge converter and the second full-bridge converter.
  • the two switch tubes are connected in parallel with two sub-circuits, respectively, so the following functions can be realized: when the first full-bridge converter is a full-bridge converter connected to the input power supply, when driving When the first full-bridge converter works in the half-bridge mode, the capacitors in the two sub-circuits can be driven to charge by driving the switches in the two sub-circuits to be turned on, so that the power conversion device can output an output with a smaller gain. voltage, such as the power conversion device shown in FIG.
  • the capacitors in the two sub-circuits can be driven to charge by driving the switches in the two sub-circuits to be turned on, so that the power conversion device can output an output voltage with a larger gain, such as the power conversion shown in Figure 4 or Figure 17. device.
  • the gain range of the output voltage of the power conversion device can be finally increased.
  • the first sub-circuit and the second sub-circuit are respectively connected in parallel with two switches in a bridge arm circuit of the first full-bridge converter, which can be understood as a bridge arm of the first full-bridge converter.
  • One switch tube in the circuit (called the first bridge arm circuit) is connected in parallel with the first sub-circuit, and the other switch tube is connected in parallel with the second sub-circuit.
  • the power conversion device further includes a driving device, and the driving device is configured to: drive the first full-bridge converter to work in a half-bridge mode and drive the When the second full-bridge converter operates in the full-bridge mode, the first switch transistor and the second switch transistor are driven to be turned on.
  • the power conversion device further includes a third sub-circuit and a fourth sub-circuit
  • the third sub-circuit includes a third switch tube and a third capacitor connected in series
  • the fourth sub-circuit includes a fourth switch tube and a fourth capacitor connected in series
  • the third sub-circuit and the fourth sub-circuit are respectively connected to two of one bridge arm circuit of the second full-bridge converter. The switches are connected in parallel.
  • the power conversion device in this implementation mode also includes two sub-circuits connected in parallel with the two switches in a bridge arm circuit of the second full-bridge circuit, the following functions can be realized: the first full-bridge converter is connected to the In the case of a full-bridge converter connected to the input power supply, while driving the second full-bridge converter to work in the half-bridge mode, it can be driven by turning on the switches in the two sub-circuits associated with the second full-bridge converter.
  • the capacitors in the two circuits are charged, so that the power conversion device can output an output voltage with a larger gain; in the case where the first full-bridge converter is a full-bridge converter connected to the load, when driving the first full-bridge converter
  • the capacitors in the two sub-circuits can be driven to charge by driving the switches in the two sub-circuits associated with the first full-bridge converter to be turned on, so that the power conversion device can output the gain smaller output voltage.
  • the power conversion device shown in FIG. 11 or FIG. 19 the power conversion device shown in FIG. 11 or FIG. 19 .
  • the output voltage of the power conversion device can be further increased in the end. gain range.
  • the third sub-circuit and the fourth sub-circuit are respectively connected in parallel with two switches in a bridge arm circuit of the second full-bridge converter, which can be understood as a bridge arm of the second full-bridge converter.
  • One switch tube in the circuit (called the second bridge arm circuit) is connected in parallel with the third sub-circuit, and the other switch tube is connected in parallel with the fourth sub-circuit.
  • the power conversion device further includes a driver.
  • the driver is used for: driving the first full-bridge converter to work in a half-bridge mode and driving the second full-bridge converter to work in a full-bridge mode, while driving the first switch and the second The switch tube is turned on; or, while driving the second full-bridge converter to work in a half-bridge mode and driving the first full-bridge converter to work in a full-bridge mode, the third switch tube and the fourth switch tube are driven at the same time.
  • the switch is turned on.
  • the first full-bridge converter is used to connect to a load
  • the second full-bridge converter is used to connect to an input power supply.
  • the second full-bridge converter is used to connect to a load
  • the first full-bridge converter is used to connect to an input power supply.
  • the power conversion device may be a DAB converter.
  • the power conversion device may further include a resonant network, and the resonant network is located between the full-bridge converter for connecting the input power supply and the transformer.
  • the first full-bridge converter when used to connect the input power supply, the first full-bridge converter, the resonant network, the transformer and the second full-bridge network are connected in sequence to form an LLC converter.
  • the second full-bridge converter when used to connect the input power supply, the second full-bridge converter, the resonant network, the transformer and the first full-bridge network are connected in sequence to form an LLC converter.
  • the present application provides a method for driving a power conversion device
  • the power conversion device includes a first full-bridge converter, a transformer, and a second full-bridge converter
  • the transformer and the first full-bridge converter are respectively connected with the second full-bridge converter.
  • the power converter further includes a first sub-circuit and a second sub-circuit, the first sub-circuit includes a first switch tube and a first capacitor connected in series, and the second sub-circuit includes a second switch tube connected in series and a second capacitor, the first sub-circuit and the second sub-circuit are respectively connected in parallel with two switch tubes in a bridge arm circuit of the first full-bridge converter.
  • the method includes: driving the first full-bridge converter to work in a half-bridge mode and driving the second full-bridge converter to work in a full-bridge mode, while driving the first switch tube and the second switch Tube closes.
  • the switch in the sub-circuit associated with the first full-bridge converter can be driven to turn on to drive the switch in the sub-circuit.
  • Capacitor charging in the case that the first full-bridge converter is a full-bridge converter connected to the input power supply, so that the power conversion device can output a smaller gain of the output voltage with a smaller gain.
  • the power conversion device In the first full-bridge converter In the case of a full-bridge converter connected to a load, the power conversion device can output an output voltage with a larger gain, which ultimately increases the gain range of the output voltage of the power conversion device. For example, the driving method shown in FIG. 10 .
  • the first sub-circuit and the second sub-circuit are respectively connected in parallel with two switches in a bridge arm circuit of the first full-bridge converter, which can be understood as a bridge arm of the first full-bridge converter.
  • One switch tube in the circuit (called the first bridge arm circuit) is connected in parallel with the first sub-circuit, and the other switch tube is connected in parallel with the second sub-circuit.
  • the power conversion device further includes a third sub-circuit and a fourth sub-circuit
  • the third sub-circuit includes a third switch tube and a third capacitor connected in series
  • the fourth sub-circuit includes a fourth switch tube and a fourth capacitor connected in series
  • the third sub-circuit and the fourth sub-circuit are respectively connected to two of one bridge arm circuit of the second full-bridge converter. The switches are connected in parallel.
  • the method further includes: while driving the second full-bridge converter to work in a half-bridge mode and driving the first full-bridge converter to work in a full-bridge mode, driving the third switch and all The fourth switch tube is turned off.
  • the capacitors in the sub-circuits can be driven to charge by driving the switches in the sub-circuits associated with the second full-bridge converter to be turned on, thereby
  • the power conversion device can output an output voltage with a larger gain
  • the first full-bridge converter is a full-bridge converter connected to the load.
  • the power conversion device can output an output voltage with a smaller gain, and ultimately the gain of the output voltage of the power conversion device can be increased.
  • the driving method shown in FIG. 15 the driving method shown in FIG. 15 .
  • the third sub-circuit and the fourth sub-circuit are respectively connected in parallel with two switches in a bridge arm circuit of the second full-bridge converter, which can be understood as a bridge arm of the second full-bridge converter.
  • One switch tube in the circuit (called the second bridge arm circuit) is connected in parallel with the third sub-circuit, and the other switch tube is connected in parallel with the fourth sub-circuit.
  • the first full-bridge converter is used for connecting a load
  • the second full-bridge converter is used for connecting an input power supply
  • the second full-bridge converter is used for connecting a load
  • the first full-bridge converter is used for connecting an input power supply.
  • the power conversion device may be a DAB converter.
  • the power conversion device may further include a resonant network, and the resonant network is located between the full-bridge converter for connecting the input power supply and the transformer.
  • the first full-bridge converter when used to connect the input power supply, the first full-bridge converter, the resonant network, the transformer and the second full-bridge network are connected in sequence to form an LLC converter.
  • the second full-bridge converter when used to connect the input power supply, the second full-bridge converter, the resonant network, the transformer and the first full-bridge network are connected in sequence to form an LLC converter.
  • the power conversion device in the first aspect or the second aspect may be a power converter.
  • the present application provides a drive device for a power conversion device, the drive device may include a processor coupled with a memory.
  • the memory is used for storing program codes
  • the processor is used for executing the program codes in the memory, so as to implement the method in the second aspect or any one of the implementation manners.
  • the drive device may further include the memory.
  • the driving device may further include a communication interface for communicating with the power converting device in the power converter, for example, for transmitting data to the power converting device drive signal.
  • the present application provides a computer-readable storage medium, where the computer-readable medium stores a program code for execution by a drive device of a power conversion device, the program code including a program code for implementing the second aspect or any one of them A directive to implement a method in a method.
  • the present application provides a computer program product containing instructions, when the computer program product is run on a drive device of a power conversion device, the drive device is made to implement the second aspect or any one of the possible implementations.
  • the present application provides a power converter, which includes the power converter in the first aspect or any of the possible implementations thereof and the corresponding driving device in the third aspect.
  • FIG. 1 is a schematic diagram of an application system of a power converter in various embodiments of the present application
  • Fig. 2 is a kind of schematic structure diagram of existing DAB converter
  • Fig. 3 is a kind of schematic structure diagram of existing LLC converter
  • FIG. 4 is a schematic structural diagram of a power conversion device according to an embodiment of the present application.
  • FIG. 5 is a schematic circuit topology diagram of the power conversion device 400 in a working state
  • FIG. 6 is a schematic circuit topology diagram of the power conversion device 400 in another working state
  • FIG. 7 is a schematic structural diagram of a power conversion device according to another embodiment of the present application.
  • FIG. 8 is a schematic circuit topology diagram of the power conversion device 700 in a working state
  • FIG. 9 is a schematic circuit topology diagram of the power conversion device 700 in another working state.
  • FIG. 10 is a schematic flowchart of a driving method of a power conversion device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a power conversion device according to still another embodiment of the present application.
  • FIG. 12 is a schematic circuit topology diagram of the power conversion device 1100 in a working state
  • FIG. 13 is a schematic circuit topology diagram of the power conversion device 1100 in another working state
  • FIG. 14 is a schematic circuit topology diagram of the power conversion device 1100 in another working state
  • FIG. 15 is a schematic flowchart of a driving method of a power conversion device according to another embodiment of the present application.
  • FIG. 16 is a schematic diagram of the working condition of the power conversion device 1100
  • FIG. 17 is a schematic structural diagram of an LLC power conversion device according to an embodiment of the application.
  • FIG. 19 is a schematic structural diagram of an LLC power conversion device according to another embodiment of the application.
  • FIG. 20 is a schematic diagram of a working condition of the power conversion device 1900.
  • 21 is a schematic structural diagram of a driving device according to an embodiment of the application.
  • 22 is a schematic structural diagram of a driving device according to still another embodiment of the application.
  • FIG. 23 is a schematic structural diagram of a power converter according to an embodiment of the application.
  • FIG. 1 is a schematic diagram of an application system of a power converter according to an embodiment of the present application.
  • the application system may include a power source 101 , a power converter 102 and a load 103 .
  • the power source 101 provides DC power
  • the power converter 102 is used to convert the DC power provided by the power source 101 , wherein the power converter 102 boosts or bucks the DC power provided by the power source, and provides a high voltage to the load 103 Small current or low voltage and high current are provided, and the power converter 102 transmits energy through the transformer, so that the power supply side and the load side are electrically isolated, and the system power supply is more secure and reliable; the load 103 works after receiving the DC power output by the power converter 102 .
  • the power converter 103 can be used for a mobile phone adapter, a low-voltage bus power supply for an electric vehicle, a power battery, a notebook adapter, a desktop host power supply, a server power supply, or a communication power supply, and the like.
  • an example of the power converter 103 is a DAB converter, and an exemplary structure diagram of the DAB converter is shown in FIG. 2 ; another example of the power converter 103 is an LLC converter , an exemplary structure diagram of the LLC converter is shown in FIG. 3 .
  • the DAB power converter 200 may include switching transistors Q1 to Q8 , an inductor Lr and a transformer.
  • the switch tubes Q1 to Q4 constitute a full-bridge converter
  • the switch tubes Q5 to Q5 constitute another full-bridge converter.
  • the full-bridge converter composed of switches Q1 to Q4 is referred to as full-bridge converter 1
  • the full-bridge converter composed of switches Q5 to Q5 is referred to as full-bridge converter 2 .
  • the switches Q1 and Q3 constitute one bridge arm circuit of the full-bridge converter 1
  • the switches Q2 and Q4 constitute the other bridge arm circuit of the full-bridge converter 1
  • the switches Q2 and Q4 constitute a bridge arm circuit of the full-bridge converter 2
  • the switches Q3 and Q5 constitute another bridge arm circuit of the full-bridge converter 2 .
  • the parallel port of the two bridge arm circuits of the full-bridge converter 1 is used as the input port of the full-bridge converter 1 for connecting the input power Vin; the midpoint of the two bridge arm circuits of the full-bridge converter 1 is used as the full-bridge converter.
  • the output port of 1 is used to connect the primary winding of transformer 1.
  • any bridge arm circuit of any full-bridge converter mentioned in the various embodiments of the present application is not limited to the physical midpoint of the bridge arm circuit, but refers to two points in the bridge arm circuit. Any point on the connection line of the switch tube.
  • the transformer includes a primary winding and a secondary winding, and the transformation ratio of the transformer 202 can be denoted as K.
  • the midpoint of the two bridge arm circuits of the full-bridge converter 2 is used as the input port of the full-bridge converter 2 to connect the secondary winding of the transformer; the parallel port of the two bridge arm circuits of the full-bridge converter 2 is used as the full bridge
  • the output port of the converter 2 is used for connecting the load and serving as the power supply of the load.
  • the full-bridge converter 1 may also be referred to as an input full-bridge converter, and the full-bridge converter 2 may also be referred to as an output full-bridge converter.
  • the full-bridge converter 1 and the full-bridge converter 2 in the DAB converter can respectively work in the full-bridge mode.
  • the full-bridge converter 1 works in the half-bridge mode
  • the full-bridge converter 2 works in the full-bridge mode.
  • the rated gain of the DC power output by the full-bridge converter 2 is 1K.
  • the gain range is 0.7K to 1.4K
  • the efficiency of the DAB converter is better
  • K is the transformation ratio of the transformer.
  • the LLC power converter 300 may include switching transistors Q1 to Q8 , a capacitor Cr, an inductor Lr and a transformer.
  • the switch tubes Q1 to Q4 constitute a full-bridge converter
  • the switch tubes Q5 to Q8 constitute another full-bridge converter
  • the inductor Lr and the capacitor Cr constitute a resonant network.
  • the full-bridge converter composed of switches Q1 to Q4 is referred to as full-bridge converter 1
  • the full-bridge converter composed of switches Q5 to Q8 is referred to as full-bridge converter 2 .
  • the parallel port of the two bridge arm circuits of the full-bridge converter 1 serves as the input port of the full-bridge converter 1 for connecting the power supply Vin; the midpoint of the two bridge arm circuits of the full-bridge converter 1 serves as the full-bridge converter 1
  • One of the output ports is connected to one port of the primary winding of the transformer through a resonant network, and the other is the output port connected to the other port of the primary winding of the transformer.
  • the transformer includes the primary winding and the secondary winding, and the transformation ratio of the transformer can be recorded as K.
  • the midpoint of the two bridge arm circuits of the full-bridge converter 2 is used as the input port of the full-bridge converter 2 to connect the secondary winding of the transformer; the parallel port of the two bridge arm circuits of the full-bridge converter 2 is used as the full bridge.
  • the output port of the converter 2 is used for connecting the load R, and outputs direct current to the load R as a power source.
  • the full-bridge converter 1 may also be referred to as an input full-bridge converter, and the full-bridge converter 2 may also be referred to as an output full-bridge converter.
  • the full-bridge converter 1 and the full-bridge converter 2 in the LLC converter can respectively work in the full-bridge mode.
  • the full-bridge converter 1 and the full-bridge converter 2 work in the full-bridge mode.
  • the rated gain of the DC output from the full-bridge converter 2 is 1K, and when the gain range is 0.5K to 1.4K, the efficiency of the LLC converter is better, and K is the transformation ratio of the transformer.
  • the gain range of the output voltage of the existing power converter is relatively small.
  • the gain range of the DAB converter shown in Figure 2 is 0.7K to 1.4K
  • the gain range of the LLC converter shown in Figure 3 is 0.5K to 1.4 K
  • the electronic system field has higher and higher requirements on the gain range of the same power converter, that is, the gain range of the power converter is required to be larger.
  • the present application proposes a power conversion device that can provide a wider gain range.
  • a new circuit is connected in parallel at the two switch tubes of one bridge arm and two circuits of each converter in at least one of the input converter and the output converter, and the circuit includes a switch. tubes and energy storage components, an example of which is a capacitor.
  • FIG. 4 is a schematic structural diagram of a power conversion device according to an embodiment of the present application.
  • the power conversion device 400 includes switch tubes Q1 to Q10, an inductor Lr, a converter, a capacitor C1 and a capacitor C2.
  • the switch tubes Q1 to Q4 constitute a full-bridge converter
  • the switch tubes Q5 to Q8 constitute another full-bridge converter.
  • the full-bridge converter composed of switches Q5 to Q8 is referred to as the first full-bridge converter
  • the full-bridge converter composed of switches Q1 to Q4 is referred to as the second full-bridge converter .
  • the second full-bridge converter can also be called an input full-bridge converter, that is, a full-bridge converter used to connect to the power supply
  • the first full-bridge converter can also be called an output full-bridge converter, that is, it is used to connect the load to the power supply.
  • the circuit formed by the switch tube Q9 and the capacitor C1 in series is called the first sub-circuit, and the circuit formed by the switch tube Q10 and the capacitor C2 in series is called the second sub-circuit.
  • one bridge arm circuit includes switch tubes Q1 and Q3, and the other bridge arm circuit includes switch tubes Q2 and Q4.
  • one bridge arm circuit includes switch tubes Q5 and Q7, and the other bridge arm circuit includes switch tubes Q6 and Q8; and switch tube Q6 is connected in parallel with the first sub-circuit; switch tube Q8 is connected in parallel with the second sub-circuit .
  • the circuit topology diagram when Q1 to Q8 are connected and Q9 and Q10 are turned off is shown in FIG. 5 . It can be seen from FIG. 5 that both the output full-bridge converter and the input full-bridge converter work in the full-bridge mode, and because the capacitors C1 and C2 cannot be charged, the voltage Vout output by the power conversion device 400 and the input voltage Vin are different.
  • the rated gain is K, when the gain is in the range of 0.7K to 1.4K, the power conversion device 400 has better efficiency, and K is the transformation ratio of the transformer.
  • the circuit topology diagram when Q1 to Q4 , Q5 , Q7 , Q9 and Q10 are connected, and when Q6 and Q8 are turned off is shown in FIG. 6 .
  • the input full-bridge converter works in full-bridge mode
  • the output full-bridge converter works in half-bridge mode.
  • the capacitors C1 and C2 will divide the output voltage Vout of the power conversion device 400 into two, so that the voltage applied to the output port of the transformer is half of Vout.
  • the input The voltage Vin is balanced with half of the output voltage Vout, so the rated gain of the power conversion device 400 is 2K, and when the gain is in the range of 1.4K to 2.8K, the power conversion device 400 has better efficiency, and K is the transformer's Transformer ratio.
  • the power conversion device 400 shown in FIG. 4 can provide gains in different ranges under different operating modes. Therefore, the power conversion device can be driven according to the corresponding relationship between the gain requirements and the respective operating modes of the power conversion device 400.
  • Each switch tube in 400 is turned on and off, so that the power conversion device can output a voltage that meets the gain requirement.
  • FIG. 10 A flowchart of an exemplary driving method of the power conversion device 400 is shown in FIG. 10 .
  • FIG. 7 is a schematic structural diagram of a power conversion device according to another embodiment of the present application.
  • the power conversion device 700 includes switch transistors Q1 to Q8 , switch transistor Q11 , switch transistor Q12 , inductor Lr, converter, capacitor C3 and capacitor C4 .
  • connection relationship between the switches Q1 to Q8, the inductor Lr and the converter in the power conversion device 700 is the same as the connection relationship between the switch tubes Q1 to Q8, the inductor Lr and the converter in the power conversion device 400, and is not used here. Repeat.
  • the input full-bridge converter composed of the switches Q1 to Q4 is called the first full-bridge converter
  • the output full-bridge converter composed of the switches Q5 to Q8 is called the first full-bridge converter
  • the switch Q11 is called the first switch
  • the switch Q12 is called the second switch
  • the capacitor C3 is called the first capacitor
  • the capacitor C4 is called the second capacitor
  • the switch Q9 and the capacitor C3 are connected in series
  • the circuit formed together is called the first sub-circuit
  • the circuit formed by the switch Q12 and the capacitor C4 in series is called the second sub-circuit
  • the switch Q2 in the input full-bridge converter is connected in parallel with the first sub-circuit
  • the switch tube Q4 of the input full-bridge converter is connected in parallel with the second sub-circuit.
  • the circuit topology diagram when Q1 to Q8 are connected and Q11 and Q12 are turned off is shown in FIG. 8 . It can be seen from FIG. 8 that both the output full-bridge converter and the input full-bridge converter work in the full-bridge mode, and because the capacitors C3 and C4 cannot be charged, the voltage Vout output by the power conversion device 700 and the input voltage Vin are different.
  • the rated gain is K, when the gain is in the range of 0.7K to 1.4K, the power conversion device 700 has better working efficiency, and K is the transformation ratio of the transformer.
  • FIG. 9 the circuit topology diagram when Q5 to Q8 , Q1 , Q3 , Q11 and Q12 are connected and Q2 and Q4 are off is shown in FIG. 9 .
  • the output full-bridge converter works in full-bridge mode
  • the input full-bridge converter works in half-bridge mode.
  • the series-connected capacitors C3 and C4 will divide the input voltage Vin into two, so that the voltage applied to the auxiliary inductance port of the transformer is half of the input voltage Vin.
  • the power conversion device 700 When the circuit works at the rated point, the power conversion device The output voltage Vout of 700 is balanced with half of the input voltage Vin, so the rated gain of 700 is 0.5K, and when the gain is in the range of 0.35K to 0.7K, the power conversion device 700 has better working efficiency, and K is Transformer ratio.
  • the power conversion device 700 shown in FIG. 7 can provide gains in different ranges under different operating modes. Therefore, the power conversion device can be driven according to the corresponding relationship between the gain requirements and the respective operating modes of the power conversion device 700 .
  • Each switch in 700 is turned on and off, so that the power conversion device can output a voltage that meets the gain requirement.
  • a flowchart of an exemplary driving method of the power conversion device 700 is shown in FIG. 10 .
  • FIG. 10 is a schematic flowchart of a driving method of a power conversion device according to an embodiment of the present application.
  • the power conversion device includes a first full-bridge converter, a transformer, and a second full-bridge converter, and the transformer is respectively connected to the first full-bridge converter and the second full-bridge converter.
  • the power converter further includes a first sub-circuit and a second sub-circuit, the first sub-circuit includes a first switch tube and a first capacitor connected in series, the second sub-circuit includes a second switch tube and a second capacitor connected in series, and the first sub-circuit includes a series-connected second switch tube and a second capacitor.
  • a sub-circuit and a second sub-circuit are respectively connected in parallel with two switch tubes in a bridge arm circuit of the first full-bridge converter.
  • the driving method may include S1001, and optionally, may further include S1002.
  • the driving method may be performed by a driving device, and the driving device may be implemented by a processor.
  • the driving device can be integrated with the power conversion device driven by it, and can also be connected to the power conversion device driven by the driving device through a signal interface.
  • the driving device may drive the first full-bridge converter in the power conversion device to work in the half-bridge mode, drive the second full-bridge converter to work in the full-bridge mode based on the gain requirement, and based on the gain It is required to drive the communication between the first switch tube and the second switch tube in the power conversion device.
  • the driving device can send a driving signal to the switching transistors Q1 to Q4 to connect the switching transistors Q1 to Q4 respectively; Q5 and Q7 send signals that make the switches Q5 and Q7 connected respectively; send signals to the switches Q6 and Q8 to turn off the switches Q6 and Q8; and send signals to the switches Q9 and Q10 to make the switches Q9 and Q10 connect.
  • FIG. 6 an equivalent circuit topology diagram of the power conversion device 400 is shown in FIG. 6 .
  • the power conversion device 400 can provide an output voltage with a gain range of 1.4K to 2.8K.
  • the driving device can send the driving signals to the switching tubes Q5 to Q8 to make the switching tubes Q5 to Q8 connected respectively;
  • the switches Q1 and Q3 send signals that make the switches Q1 and Q3 connect respectively; send signals to the switches Q2 and Q4 to close the switches Q2 and Q4; and send to the switches Q11 and Q12 a signal that makes the switches Q11 and Q12 connected.
  • FIG. 9 an equivalent circuit topology diagram of the power conversion device 700 is shown in FIG. 9 .
  • the power conversion device 700 can provide an output voltage with a gain range of 0.35K to 0.7K.
  • the driving device may drive the first full-bridge converter and the second full-bridge converter in the power conversion device to work in a full-bridge mode based on the gain requirement, and drive the power conversion device based on the gain requirement
  • the first switch tube and the second switch tube are turned off.
  • the driving device can send a driving signal to the switching transistors Q1 to Q8 to connect the switching transistors Q1 to Q8 respectively;
  • the switches Q9 and Q10 send a signal to turn off the switches Q9 and Q10.
  • FIG. 5 an equivalent circuit topology diagram of the power conversion device 400 is shown in FIG. 5 .
  • the input full-bridge converter composed of switches Q1 to Q4 and the output full-bridge converter composed of switches Q5 to Q8 work in full-bridge mode, and capacitors C1 and C2 cannot be charged, so the power conversion Device 400 can provide output voltages with gains ranging from 0.7K to 1.4K.
  • the driving device can send the driving signals to the switching transistors Q5 to Q8 so that the switching transistors Q5 to Q8 are connected respectively; Send a signal to the switch tubes Q1 to Q4 to make the switch tubes Q1 to Q4 connected; and send a signal to the switch tubes Q11 and Q12 to turn off the switch tubes Q11 and Q12.
  • FIG. 8 an equivalent circuit topology diagram of the power conversion device 700 is shown in FIG. 8 .
  • the power conversion device 700 can provide an output voltage with a gain range of 0.7K to 1.4K.
  • the gain requirement of the power conversion device may be fixed.
  • the method for the driving device to drive each component in the power conversion device may also be preset, instead of dynamically learning the gain requirement and dynamically driving the power conversion device based on the gain requirement.
  • the switch tubes and the capacitor can be connected in parallel at the two switch tubes on a bridge arm circuit of the first full-bridge converter of the power conversion device, respectively, and the method for driving the power conversion device to increase the power supply.
  • the gain range of the output voltage of the converter The power conversion device with a wider gain range proposed by the present application will be described below with reference to Fig. 11 to Fig. 15 .
  • the switch tubes and the capacitor connected in parallel at the two switch tubes on the bridge arm circuit of the first full-bridge converter, but also a switch tube and a capacitor are connected in parallel in one of the second full-bridge converter.
  • the capacitors of the switch tubes are respectively connected in parallel at the two switch tubes on the bridge arm circuit.
  • the power conversion device 1100 includes switch tubes Q1 to Q12 , an inductor Lr, a converter, and capacitors C1 to C4 .
  • the switches Q5 to Q8 form a full-bridge converter, and for the convenience of description, the full-bridge converter is called the first full-bridge converter or the output full-bridge converter.
  • the full-bridge converter In the first full-bridge converter, switches Q5 and Q7 form one bridge arm circuit, and switch tubes Q6 and Q8 form another bridge arm circuit.
  • the first full-bridge converter is used to connect the load and output the voltage Vout to the load.
  • the switches Q1 to Q4 constitute a full-bridge converter, which is called a second full-bridge converter or an input full-bridge converter for the convenience of description.
  • switches Q1 and Q3 form one bridge arm circuit
  • switch tubes Q2 and Q4 form another bridge arm circuit.
  • the second full-bridge converter is used to connect the power source Vin.
  • the circuit formed by the switch tube Q9 and the capacitor C1 in series is called the first sub-circuit, and the capacitor C1 is called the first capacitor; the circuit formed by the switch tube Q10 and the capacitor C2 in series is called the second sub-circuit, and the capacitor C2 is called the second capacitor;
  • the circuit formed by the switch tube Q11 and the capacitor C3 in series is called the third sub-circuit, and the capacitor C3 is called the third capacitor; the circuit formed by the switch tube Q12 and the capacitor C4 in series is called the fourth sub-circuit, and the capacitor C4 is called the fourth capacitor.
  • connection relationship between the first full-bridge converter, the inductor Lr, the converter, and the second full-bridge converter in the power conversion device 1100 is the same as that of the first full-bridge converter, the inductor Lr, the converter, and the second full-bridge converter in the power conversion device 400 .
  • the connection relationship between the second full-bridge converters is the same, which is not repeated here.
  • the switch Q6 in the first full-bridge converter is connected in parallel with the first sub-circuit, and the switch Q8 is connected in parallel with the second sub-circuit.
  • the switch Q2 in the second full-bridge converter is connected in parallel with the third sub-circuit, and the switch Q4 is connected in parallel with the fourth sub-circuit.
  • the circuit topology diagram when Q5 to Q8 , Q1 , Q3 , Q11 and Q12 are connected and Q2 , Q4 , Q9 and Q10 are off is shown in FIG. 12 .
  • the output full-bridge converter works in full-bridge mode
  • the input full-bridge converter works in half-bridge mode
  • C3 and C4 can be charged.
  • the capacitors C3 and C4 will divide the input voltage Vin into two, so that the voltage applied to the auxiliary inductance port of the transformer is half of the input voltage Vin.
  • the voltage of the power conversion device 700 When the circuit works at the rated point, the voltage of the power conversion device 700 The output voltage Vout is balanced with half of the input voltage Vin, so the rated gain of 700 is 0.5K, and when the gain is in the range of 0.35K to 0.7K, the power conversion device 700 has better working efficiency, K is the transformer's Transformer ratio.
  • the circuit topology diagram when Q1 to Q8 are connected and Q9 to Q12 are turned off is shown in FIG. 13 .
  • the input full-bridge converter and the output full-bridge converter operate in full-bridge mode, and C1 to C4 cannot be charged.
  • the gain range of the power converter 1100 is 0.7K to 1.4K.
  • FIG. 14 the circuit topology diagram when Q1 to Q4 , Q5 , Q7 , Q9 and Q10 are connected and Q6 , Q8 , Q11 and Q12 are off is shown in FIG. 14 .
  • the input full-bridge converter works in full-bridge mode
  • the output full-bridge converter works in half-bridge mode
  • C1 and C2 can be charged
  • C3 and C4 are not charged.
  • the capacitors C1 and C2 will divide the output voltage Vout of the power conversion device 400 into two, so that the voltage applied to the output port of the transformer is half of Vout.
  • the input The voltage Vin is balanced with half of the output voltage Vout, so the rated gain of the power conversion device 400 is 2K, and when the gain is in the range of 1.4K to 2.8K, the power conversion device 400 has better efficiency, and K is the transformer's Transformer ratio.
  • the power conversion device 1100 shown in FIG. 11 can provide gains in different ranges under different operating modes. Therefore, the power conversion device can be driven according to the corresponding relationship between the gain requirements and the various operating modes of the power conversion device 1100. Each switch tube in 1100 is turned on and off, so that the power conversion device can output a voltage that meets the gain requirement.
  • a flowchart of an exemplary driving method of the power conversion device 1100 is shown in FIG. 15 .
  • FIG. 15 is another schematic flowchart of a method for driving a power conversion device according to an embodiment of the present application.
  • the power conversion device includes a first full-bridge converter, a transformer, and a second full-bridge converter, and the transformer is respectively connected to the first full-bridge converter and the second full-bridge converter.
  • the first full-bridge converter is used to connect the load and output voltage to the load; the second full-bridge converter is used to connect the power supply.
  • the power converter further includes a first sub-circuit, a second sub-circuit, a third sub-circuit and a fourth sub-circuit, the first sub-circuit includes a first switch tube and a first capacitor connected in series, and the second sub-circuit includes a series-connected first switch tube and a first capacitor.
  • the second switch tube and the second capacitor, the third sub-circuit includes the third switch tube and the third capacitor connected in series, the fourth sub-circuit includes the fourth switch tube and the fourth capacitor connected in series, the first sub-circuit and the second sub-circuit are respectively connected in parallel with two switches in a bridge arm circuit of the first full-bridge converter, and the third sub-circuit and the fourth sub-circuit are respectively connected in parallel with two switches in a bridge arm circuit of the second full-bridge converter .
  • the driving method may include S1501 and/or S1502, and optionally, may also include S1503.
  • the driving method may be performed by a driving device, and the driving device may be implemented by a processor.
  • the driving device can be integrated with the power conversion device driven by it, and can also be connected to the power conversion device driven by the driving device through a signal interface.
  • the driving device may drive the first full-bridge converter in the power conversion device to work in the full-bridge mode and the second full-bridge converter to work in the half-bridge mode based on the gain requirement, and based on the gain It is required to drive the first switch tube and the second switch tube in the power conversion device to close, and drive the third switch tube and the fourth switch tube in the power conversion device to connect.
  • the driving device can send a driving signal to the switching tubes Q5 to Q8 to make the switching tubes Q5 to Q8 connected respectively; Q1 and Q3 send signals that make the switches Q1 and Q3 connected respectively; send signals to the switches Q2 and Q4 to turn off the switches Q2 and Q4; send signals to the switches Q11 and Q12 to make the switches Q11 and Q12 connect; The switches Q9 and Q10 send a signal to turn off the switches Q9 and Q10.
  • FIG. 12 an equivalent circuit topology diagram of the power conversion device 1100 is shown in FIG. 12 .
  • the driving device may drive the first full-bridge converter in the power conversion device to work in the half-bridge mode, drive the second full-bridge converter to work in the full-bridge mode based on the gain requirement, and based on the gain It is required to drive the first switch tube and the second switch tube in the power conversion device to turn on, and drive the third switch tube and the fourth switch tube to turn off.
  • the driving device can send a driving signal to the switching transistors Q1 to Q4 to connect the switching transistors Q1 to Q4 respectively;
  • Q5 and Q7 send signals that make switches Q5 and Q7 connected respectively; send signals to make switches Q6 and Q8 close to switches Q6 and Q8; send signals to make switches Q9 and Q10 connect to switches Q9 and Q10;
  • the switches Q11 and Q12 send a signal to turn off the switches Q11 and Q12.
  • FIG. 14 an equivalent circuit topology diagram of the power conversion device 1100 is shown in FIG. 14 .
  • the driving device may drive the first full-bridge converter and the second full-bridge converter in the power conversion device to work in a full-bridge mode based on the gain requirement, and drive the power conversion device based on the gain requirement
  • the first switch tube, the second switch tube, the third switch tube and the fourth switch tube are turned off.
  • the driving device can send a driving signal to the switching transistors Q1 to Q8 to connect the switching transistors Q1 to Q8 respectively; Q9 to Q12 send signals that turn off the switches Q9 to Q12.
  • FIG. 13 an equivalent circuit topology diagram of the power conversion device 1100 is shown in FIG. 13 .
  • the gain requirement of the power conversion device may be fixed.
  • the method for the driving device to drive each component in the power conversion device may also be preset, instead of dynamically learning the gain requirement and dynamically driving the power conversion device based on the gain requirement.
  • FIG. 16 is a schematic diagram of an input current
  • (b) in FIG. 16 is a schematic diagram of an output current.
  • the power conversion device shown in any one of FIG. 4 , FIG. 7 and FIG. 11 of the present application may be referred to as a modified DAB power conversion device.
  • a capacitor Cr may also be added, so that the capacitor Cr and the inductor Lr form a resonant network.
  • the power conversion device including the resonant network can be referred to as a retrofit LLC power conversion device.
  • Three exemplary structures of the modified LLC power conversion device are shown in Fig. 17, Fig. 18 and Fig. 19, respectively.
  • the gain range of the power conversion device 1700 shown in FIG. 17 is 0.7K to 2.8K.
  • the driving method of the power conversion device 1700 reference may be made to the driving method shown in FIG. 10 .
  • S1001 can be executed to drive the power conversion device 1700;
  • S1002 can be executed to drive the power conversion device 1700.
  • the gain range of the power conversion device 1800 shown in FIG. 18 is 0.35K to 1.4K.
  • the driving method of the power conversion device 1800 reference may be made to the driving method shown in FIG. 10 .
  • S1001 can be executed to drive the power conversion device 1800; when the gain requirement is in the range of 0.7K to 1.4K, S1002 can be executed to drive the power conversion device 1800.
  • the gain range of the power conversion device 1900 shown in FIG. 19 is 0.35K to 2.8K.
  • the driving method of the power conversion device 1900 reference may be made to the driving method shown in FIG. 15 .
  • S1501 can be executed to drive the power conversion device 1900;
  • S1502 can be executed to drive the power conversion device 1900;
  • the gain requirement is in the range of 0.7K to 0.7K In the 1.4K range,
  • S1503 can be executed to drive the power conversion device 1900.
  • FIG. 20 (a) in FIG. 20 is a schematic diagram of an output voltage, and (b) in FIG. 20 is a schematic diagram of an output current. It can be seen from FIG. 20 that the conversion efficiency of the power conversion device 1900 of the present application is also very good when the gain is 2.
  • FIG. 21 is a schematic structural diagram of a driving device according to an embodiment of the application.
  • the apparatus 2100 may include a driving module 2101 .
  • the driving module 2101 may also be referred to as a driving unit 2101 .
  • the functions that the driver module 2101 can perform can be implemented by a processor.
  • the apparatus 2100 may be used to implement the method shown in FIG. 10 .
  • the driver module 2101 can be used to implement the functions in S1001 and S1002.
  • the apparatus 2100 may be used to implement the method shown in FIG. 15 .
  • the driving module 2101 can be used to implement the functions in S1501, S1502 and S1503.
  • FIG. 22 is a schematic structural diagram of a driving device according to another embodiment of the present application.
  • the apparatus 2200 shown in FIG. 22 can be used to perform the method described in FIG. 10 or FIG. 15 .
  • the apparatus 2200 in this embodiment includes: a memory 2201 , a processor 2202 , a communication interface 2203 , and a bus 2204 .
  • the memory 2201 , the processor 2202 , and the communication interface 2203 are connected to each other through the bus 2204 for communication.
  • the memory 2201 may be a read only memory (ROM), a static storage device, a dynamic storage device or a random access memory (RAM).
  • the memory 2201 may store programs, and when the programs stored in the memory 2201 are executed by the processor 2202, the processor 2202 may be used to execute various steps of the method shown in FIG. 10 or FIG. 15 .
  • the processor 2202 can use a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for executing related programs to The methods in the method embodiments of the present application are implemented.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the processor 2202 may also be an integrated circuit chip with signal processing capability.
  • each step of the method of each embodiment of the present application may be completed by an integrated logic circuit of hardware in the processor 2202 or an instruction in the form of software.
  • the above-mentioned processor 2202 can also be a general-purpose processor, a digital signal processor (digital signal processing, DSP), an application-specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, Discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 2201, and the processor 2202 reads the information in the memory 2201, and performs the functions required to be performed by each method in the embodiments of the present application in combination with its hardware. For example, each of the embodiments shown in FIG. 10 or FIG. 15 can be executed. steps/functions.
  • the communication interface 2203 can use, but is not limited to, a transceiver device such as a transceiver to implement communication between the device 2200 and other devices.
  • a transceiver device such as a transceiver to implement communication between the device 2200 and other devices.
  • the bus 2204 may include a pathway for transferring information between the various components of the apparatus 2200 (eg, the memory 2201, the processor 2202, the communication interface 2203).
  • the apparatus 2200 shown in this embodiment of the present application may be an electronic device, or may also be a chip configured in the electronic device.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the present application also proposes a power converter 2300 .
  • the power converter 2300 may include a power conversion device 2301 and a driving device 2302 .
  • the power conversion device 2301 may be the power conversion device shown in any one of FIG. 4 , FIG. 7 , FIG. 17 and FIG. 18 , and correspondingly, the driving device 2302 may be used to realize the driving shown in FIG. 10 . method drive.
  • the power conversion device 2301 may be the power conversion device shown in FIG. 11 or FIG. 19
  • the driving device 2302 may be a driving device for implementing the driving method shown in FIG. 15 .
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提出了新的电源变换装置及其驱动方法。本申请提出的电源变换装置中,输入变换器的一条桥臂电路上的两个开关管分别并联由开关管和电容串联而成的电路,和/或,输出变换器的一条桥臂电路的两个开关管分别并联由开关管和电容串联而成的电路。本申请提出电源变换装置在相应的驱动方法的驱动下,输出电压的增益范围更大。

Description

电源变换器及其驱动方法 技术领域
本申请涉及电力电子领域,并且更具体地,涉及电源变换器及其驱动方法。
背景技术
电源是电子系统中有源器件工作的能量来源。电源的性能直接影响电子系统的性能。电源可以说是电子系统的“心脏”。
大多数情况下,一个电子系统需要用到多种不同电压或不同电流的电源。如果为每一种需求都单独设计一个电源,往往会增加电子系统的电路复杂度、体积和成本。
为了降低电子系统的电路复杂度、体积和成本,本领域提出了能够将输入的恒定交流电或直流电变换为输出可调的直流电或交流电的电源变换器。
但是,随着电子系统对电源变换器的输出电压的增益范围的需求的提高,目前常用的电源变换器,例如现有的双有源桥(dual active bridge)变换器或LLC谐振网络变换器,其增益范围已不能满足需求。
因此,如何提高电源变换器的输出电压的增益范围,称为亟待解决的技术问题。
发明内容
本申请提供了电源变换装置、该电源变换装置的驱动方法以及相关驱动装置,可以增大电源变换装置的输出电压的增益范围。
第一方面,本申请提供了一种电源变换装置。该电源变换装置包括第一全桥变换器、变压器、第二全桥变换器,所述变压器与所述第一全桥变换器和所述第二全桥变换器分别相连。此外,所述电源变换器还包括第一子电路和第二子电路,所述第一子电路包括串联的第一开关管和第一电容,所述第二子电路包括串联的第二开关管和第二电容,所述第一子电路和所述第二子电路分别与所述第一全桥变换器的一条桥臂电路中的两个开关管并联。
本申请中的电源变换装置,因为除了包含第一全桥变换器和第二全桥变换器这两个全桥变换器和变压器之外,还包括与这两个全桥变换器中的第一全桥变换器的一条桥臂电路中两个开关管分别并联的两个子电路,所以可以实现如下功能:在第一全桥变换器为与输入电源相连的全桥变换器的情况下,在驱动第一全桥变换器工作在半桥模式的同时,可以通过驱动这两个子电路中的开关管开通来驱动这两个子电路中的电容充电,从而使得该电源变换装置可以输出增益更小的输出电压,例如图7或图18所示的电源变换装置;在第一全桥变换器为与负载相连的全桥变换器的情况下,在驱动第一全桥变换器工作在半桥模式的同时,可以通过驱动这两个子电路中的开关管开通来驱动这两个子电路中的电容充电,从而使得该电源变换装置可以输出增益更大的输出电压,例如图4或图17所示的电源变换装置。
因为两个子电路的加入,不管该电源变换装置是能够输出增益更小的输出电压, 还是能够输出增益更大的输出电压,最终都能增加该电源变换装置的输出电压的增益范围。
所述第一子电路和所述第二子电路分别与所述第一全桥变换器的一条桥臂电路中的两个开关管并联,可以理解为,第一全桥变换器的一条桥臂电路(称为第一桥臂电路)中的一个开关管与第一子电路并联,另一个开关管与第二子电路并联。
结合第一方面,在第一种可能的实现方式中,所述电源变换装置还包括驱动装置,所述驱动装置用于:驱动所述第一全桥变换器工作在半桥模式和驱动所述第二全桥变换器工作在全桥模式的同时,驱动所述第一开关管和所述第二开关管开通。
结合第一方面,在第二种可能的实现方式中,所述电源变换装置还包括第三子电路和第四子电路,所述第三子电路包括串联的第三开关管和第三电容,所述第四子电路包括串联的第四开关管和第四电容,所述第三子电路和所述第四子电路分别与所述第二全桥变换器的一条桥臂电路中的两个开关管并联。
本实现方式中的电源变换装置,因为还包含了与第二全桥电路的一条桥臂电路中两个开关管并联的两个子电路,所以可以实现如下功能:在第一全桥变换器为与输入电源相连的全桥变换器的情况下,在驱动第二全桥变换器工作在半桥模式的同时,可以通过驱动与第二全桥变换器关联的两个子电路中的开关管开通来驱动这两个电路中的电容充电,从而使得该电源变换装置可以输出增益更大的输出电压;在第一全桥变换器为与负载相连的全桥变换器的情况下,在驱动第一全桥变换器工作在半桥模式的同时,可以通过驱动与第一全桥变换器关联的两个子电路中的开关管开通来驱动这两个子电路中的电容充电,从而使得该电源变换装置可以输出增益更小的输出电压。例如图11或图19所示的电源变换装置。
因为第三子电路和第四子电路的加入,不管该电源变换装置是能够输出增益更大的输出电压,还是能够输出增益更小的输出电压,最终都能进一步增加该电源变换装置的输出电压的增益范围。
所述第三子电路和所述第四子电路分别与所述第二全桥变换器的一条桥臂电路中的两个开关管并联,可以理解为,第二全桥变换器的一条桥臂电路(称为第二桥臂电路)中的一个开关管与第三子电路并联,另一个开关管与第四子电路并联。
结合第二种可能的实现方式,在第三种可能的实现方式中,所述电源变换装置还包括驱动器。所述驱动器用于:驱动所述第一全桥变换器工作在半桥模式和驱动所述第二全桥变换器工作在全桥模式的同时,驱动所述第一开关管和所述第二开关管开通;或,驱动所述第二全桥变换器工作在半桥模式和驱动所述第一全桥变换器工作在全桥模式的同时,驱动所述第三开关管和所述第四开关管开通。
结合第一方面或其中任意一种可能的实现方式,在第四种可能的实现方式中,所述第一全桥变换器用于连接负载,所述第二全桥变换器用于连接输入电源。
结合第一方面或其中任意一种可能的实现方式,在第五种可能的实现方式中,所述第二全桥变换器用于连接负载,所述第一全桥变换器用于连接输入电源。
第一方面的一些可能的实现方式中,该电源变换装置可以是DAB变换器。
在另一些可能的实现方式中,该电源变换装置中还可以包括谐振网络,该谐振网络位于用于连接输入电源的全桥变换器与变压器之间。
例如,第一全桥变换器用于连接输入电源时,第一全桥变换器、谐振网络、变压器和第二全桥网络依次相连,构成LLC变换器。
又如,第二全桥变换器用于连接输入电源时,第二全桥变换器、谐振网络、变压器和第一全桥网络依次相连,构成LLC变换器。
第二方面,本申请提供了一种电源变换装置的驱动方法,该电源变换装置包括第一全桥变换器、变压器、第二全桥变换器,所述变压器与所述第一全桥变换器和所述第二全桥变换器分别相连。此外,所述电源变换器还包括第一子电路和第二子电路,所述第一子电路包括串联的第一开关管和第一电容,所述第二子电路包括串联的第二开关管和第二电容,所述第一子电路和所述第二子电路分别与所述第一全桥变换器的一条桥臂电路中的两个开关管并联。
所述方法包括:驱动所述第一全桥变换器工作在半桥模式和驱动所述第二全桥变换器工作在全桥模式的同时,驱动所述第一开关管和所述第二开关管关闭。
本申请中驱动电源变换装置时,在驱动第一全桥变换器工作在半桥模式的同时,可以通过驱动第一全桥变换器关联的子电路中的开关管开通来驱动该子电路中的电容充电,这在第一全桥变换器为与输入电源相连的全桥变换器的情况下,使得该电源变换装置可以输出增益更小的输出电压的增益更小,在第一全桥变换器为与负载相连的全桥变换器的情况下使得该电源变换装置可以输出增益更大的输出电压,最终均增大了该电源变换装置的输出电压的增益范围。例如图10所示的驱动方法。
所述第一子电路和所述第二子电路分别与所述第一全桥变换器的一条桥臂电路中的两个开关管并联,可以理解为,第一全桥变换器的一条桥臂电路(称为第一桥臂电路)中的一个开关管与第一子电路并联,另一个开关管与第二子电路并联。
结合第二方面,在第一种可能的实现方式中,所述电源变换装置还包括第三子电路和第四子电路,所述第三子电路包括串联的第三开关管和第三电容,所述第四子电路包括串联的第四开关管和第四电容,所述第三子电路和所述第四子电路分别与所述第二全桥变换器的一条桥臂电路中的两个开关管并联。
相应地,所述方法还包括:驱动所述第二全桥变换器工作在半桥模式和驱动所述第一全桥变换器工作在全桥模式的同时,驱动所述第三开关管和所述第四开关管关闭。
该实现方式中,在驱动第二全桥变换器工作在半桥模式的同时,可以通过驱动第二全桥变换器关联的子电路中的开关管开通来驱动这些子电路中的电容充电,从而在第一全桥变换器为与输入电源相连的全桥变换器的情况下,使得该电源变换装置可以输出增益更大的输出电压,在第一全桥变换器为与负载相连的全桥变换器的情况下,使得该电源变换装置可以输出增益更小的输出电压,最终均可以增大该电源变换装置的输出电压的增益。例如图15所示的驱动方法。
所述第三子电路和所述第四子电路分别与所述第二全桥变换器的一条桥臂电路中的两个开关管并联,可以理解为,第二全桥变换器的一条桥臂电路(称为第二桥臂电路)中的一个开关管与第三子电路并联,另一个开关管与第四子电路并联。
结合第二方面或第一种可能的实现方式,在第二种可能的实现方式中,所述第一全桥变换器用于连接负载,所述第二全桥变换器用于连接输入电源。
结合第二方面或第一种可能的实现方式,在第三种可能的实现方式中,所述第二 全桥变换器用于连接负载,所述第一全桥变换器用于连接输入电源。
第二方面的一些可能的实现方式中,该电源变换装置可以是DAB变换器。
在另一些可能的实现方式中,该电源变换装置中还可以包括谐振网络,该谐振网络位于用于连接输入电源的全桥变换器与变压器之间。
例如,第一全桥变换器用于连接输入电源时,第一全桥变换器、谐振网络、变压器和第二全桥网络依次相连,构成LLC变换器。
又如,第二全桥变换器用于连接输入电源时,第二全桥变换器、谐振网络、变压器和第一全桥网络依次相连,构成LLC变换器。
在一些可能的实现方式中,第一方面或第二方面中的电源变换装置可以是电源变换器。
第三方面,本申请提供了一种电源变换装置的驱动装置,该驱动装置可以包括与存储器耦合的处理器。其中,该存储器用于存储程序代码,该处理器用于执行该存储器中的程序代码,以实现第二方面或其中任意一种实现方式中的方法。
可选地,该驱动装置还可以包括该存储器。
该驱动装置为应用于电源变换器中的芯片时,在一些实现方式中,该驱动装置还可以包括通信接口,用于与电源变换器中的电源变换装置通信,例如用于向电源变换装置传输驱动信号。
第四方面,本申请提供了一种计算机可读存储介质,该计算机可读介质存储用于电源变换装置的驱动装置执行的程序代码,该程序代码包括用于实现第二方面或其中任意一种实现方式中的方法的指令。
第五方面,本申请提供一种包含指令的计算机程序产品,当该计算机程序产品在电源变换装置的驱动装置上运行时,使得该驱动装置实现第二方面或其中任意一种可能的实现方式中的方法。
第六方面,本申请提供一种电源变换器,该电源变换器中包括第一方面或其中任意一种可能的实现方式中的电源变换器和第三方面中对应的驱动装置。
附图说明
图1为本申请各个实施例中的电源变换器的应用系统示意图;
图2为现有DAB变换器的一种示意性结构图;
图3为现有LLC变换器的一种示意性结构图;
图4为本申请一个实施例的电源变换装置的示意性结构图;
图5为电源变换装置400在一种工作状态下的示意性电路拓扑图;
图6为电源变换装置400在另一种工作状态下的示意性电路拓扑图;
图7为本申请另一个实施例的电源变换装置的示意性结构图;
图8为电源变换装置700在一种工作状态下的示意性电路拓扑图;
图9为电源变换装置700在另一种工作状态下的示意性电路拓扑图;
图10为本申请一个实施例的电源变换装置的驱动方法的示意性流程图;
图11为本申请又一个实施例的电源变换装置的示意性结构图;
图12为电源变换装置1100在一种工作状态下的示意性电路拓扑图;
图13为电源变换装置1100在另一种工作状态下的示意性电路拓扑图;
图14为电源变换装置1100在另一种工作状态下的示意性电路拓扑图;
图15为本申请另一个实施例的电源变换装置的驱动方法的示意性流程图;
图16为电源变换装置1100的工况示意图;
图17为本申请一个实施例的LLC电源变换装置的示意性结构图;
图18为本申请又一个实施例的LLC电源变换装置的示意性结构图;
图19为本申请另一个实施例的LLC电源变换装置的示意性结构图;
图20为电源变换装置1900的工况示意图;
图21为本申请一个实施例的驱动装置的示意性结构图;
图22为本申请又一个实施例的驱动装置的示意性结构图;
图23为本申请一个实施例的电源变换器的示意性结构图。
具体实施方式
图1为本申请实施例的电源变换器的应用系统示意图。如图1所示,该应用系统中可以包含电源101、电源变换器102和负载103。
作为一种示例,电源101提供直流电;电源变换器102用于对电源101提供的直流电进行变换,其中,电源变换器102对电源提供的直流电进行了升压或降压转换,向负载103提供高压小电流或者提供低压大电流,并且电源变换器102通过变压器传输能量,使得电源侧和负载侧电气隔离,系统供电更加安全可靠;负载103接收到电源变换器102输出的直流电之后进行工作。
例如,电源变换器103可以用于手机适配器、电动车低压总线供电、动力电池、笔记本适配器、台式主机电源、服务器电源或通信电源等。
本实施例的应用系统中,电源变换器103的一种示例为DAB变换器,DAB变换器的一种示例性结构图如图2所示;电源变换器103的另一种示例为LLC变换器,LLC变换器的一种示例性结构图如图3所示。
如图2所示,DAB电源变换器200可以包含开关管Q1至Q8、电感Lr和变压器。其中,开关管Q1至Q4构成一个全桥变换器,开关管Q5至Q5构成另一个全桥变换器。为了描述方便,本实施例中将开关管Q1至Q4构成的全桥变换器称为全桥变换器1,将开关管Q5至Q5构成的全桥变换器称为全桥变换器2。
开关管Q1和Q3构成全桥变换器1的一条桥臂电路,开关管Q2和Q4构成全桥变换器1的另一条桥臂电路。开关管Q2和Q4构成全桥变换器2的一条桥臂电路,开关管Q3和Q5构成全桥变换器2的另一条桥臂电路。
全桥变换器1的两个桥臂电路的并联端口作为全桥变换器1的输入端口,用于接连输入电源Vin;全桥变换器1的两个桥臂电路的中点作为全桥变换器1的输出端口,用于连接变压器1的原边绕组。
可以理解的是,本申请各个实施例中所说的任意全桥变换器的任意桥臂电路的中点并不限定为该桥臂电路的物理中点,而是指该桥臂电路中的两个开关管的连接线上的任一点。
变压器包括原边绕组和副边绕组,变压器202的变比可以记为K。
全桥变换器2的两个桥臂电路的中点作为全桥变换器2的输入端口,用于连接变压器的副边绕组;全桥变换器2的两个桥臂电路的并联端口作为全桥变换器2的输出端口,用于接连负载,并作为负载的电源。
本实施例中,全桥变换器1也可以称为输入全桥变换器,全桥变换器2也可以称为输出全桥变换器。
DAB变换器中的全桥变换器1和全桥变换器2可以分别工作在全桥模式。例如,开关管Q1至Q8均开通时,全桥变换器1工作在半桥模式,全桥变换器2工作在全桥模式。该示例中,全桥变换器2输出的直流电的额定增益为1K,在增益范围为0.7K至1.4K时,DAB变换器的效率较好,K为变压器的变比。
如图3所示,LLC电源变换器300可以包含开关管Q1至Q8、电容Cr、电感Lr和变压器。
其中,开关管Q1至Q4构成一个全桥变换器,开关管Q5至Q8构成另一个全桥变换器,电感Lr和电容Cr构成谐振网络。为了描述方便,本实施例中将开关管Q1至Q4构成的全桥变换器称为全桥变换器1,将开关管Q5至Q8构成的全桥变换器称为全桥变换器2。
全桥变换器1的两个桥臂电路的并联端口作为全桥变换器1的输入端口,用于接连电源Vin;全桥变换器1的两个桥臂电路的中点作为全桥变换器1的输出端口,其中一个输出端口通过谐振网络连接变压器的原边绕组的一个端口,另一个是输出端口连接变压器的原边绕组的另一个端口。
变压器包括原边绕组和副边绕组,变压器的变比可以记为K。
全桥变换器2的两个桥臂电路的中点作为全桥变换器2的输入端口,用于连接变压器的副边绕组;全桥变换器2的两个桥臂电路的并联端口作为全桥变换器2的输出端口,用于接连负载R,作为电源向负载R输出直流电。
本实施例中,全桥变换器1也可以称为输入全桥变换器,全桥变换器2也可以称为输出全桥变换器。
LLC变换器中的全桥变换器1和全桥变换器2可以分别工作在全桥模式。例如,开关管Q1至Q8全都开通时,全桥变换器1和全桥变换器2工作在全桥模式。该示例中,全桥变换器2输出的直流电的额定增益为1K,增益范围为0.5K至1.4K时,LLC变换器的效率较好,K为变压器的变比。
现有的电源变换器的输出电压的增益范围较小,例如图2所示的DAB变换器的增益范围为0.7K至1.4K,图3所示的LLC变换器的增益范围为0.5K至1.4K;而电子系统领域对同一个电源变换器的增益范围的要求越来越高,即需要电源变换器的增益范围更大。
针对上述问题,本申请提出了能够提供更大增益范围的电源变换装置。本申请提出的电源变换装置中,在输入变换器和输出变换器中至少一个变换器中的每个变换器的一条桥臂两路的两个开关管处分别并联新的电路,该电路包括开关管和储能元器件,该储能元器件的一种示例为电容。
下面结合附图介绍本申请提出的电源变换装置及其这些电源变换装置的驱动方法。
图4为本申请一个实施例的电源变换装置的示意性结构图。如图4所示,该电源 变换装置400包括开关管Q1至Q10、电感Lr、变换器、电容C1和电容C2。
其中,开关管Q1至Q4构成一个全桥变换器,开关管Q5至Q8构成另一个全桥变换器。为了描述方便,本实施例中,将开关管Q5至Q8构成的全桥变换器称为第一全桥变换器,将开关管Q1至Q4构成的全桥变换器称为第二全桥变换器。第二全桥变换器也可以称为输入全桥变换器,即用于连接电源的全桥变换器;第一全桥变换器也可以称为输出全桥变换器,即用于连接负载并向负载提供电源的全桥变换器。
开关管Q9和电容C1串联在一起构成的电路称为第一子电路,开关管Q10和电容C2串联在一起构成的电路称为第二子电路。
输入全桥变换器中,一个桥臂电路包括开关管Q1和Q3,另一个桥臂电路包括开关管Q2和Q4。
输出全桥变换器中,一个桥臂电路包括开关管Q5和Q7,另一个桥臂电路包括开关管Q6和Q8;且开关管Q6与第一子电路并联;开关管Q8与第二子电路并联。
电源变换装置400中,Q1至Q8连通并且Q9和Q10关闭时的电路拓扑结构图如图5所示。由图5可知,输出全桥变换器和输入全桥变换器均工作在全桥模式,且因为电容C1和C2没法充电,所以电源变换装置400输出的电压Vout与输入的电压Vin之间的额定增益为K,增益位于0.7K至1.4K范围内时,电源变换装置400有较好的效率,K为变压器的变压比。
电源变换装置400中,Q1至Q4、Q5、Q7、Q9和Q10连通,并且Q6和Q8关闭时的电路拓扑结构图如图6所示。由图6所知,输入全桥变换器工作在全桥模式,输出全桥变换器工作在半桥模式。此时,电容C1和C2会将电源变换装置400的输出电压Vout一分为二,使得加载在变压器输出端口的电压为Vout的二分之一,当电源变换装置400在额定点工作时,输入电压Vin与输出电压Vout的二分之一平衡,故电源变换装置400的额定增益为2K,且增益位于1.4K至2.8K范围内时,电源变换装置400有较好的效率,K为变压器的变压比。
经过上述分析可知,图4所示的电源变换装置400在不同的工作模式下可以提供不同范围内的增益,因此可以根据增益需求与电源变换装置400的各个工作模式的对应关系,驱动电源变换装置400中的各个开关管的开和关,以使得电源变换装置可以输出满足增益需求的电压。电源变换装置400的一种示例性驱动方法的流程图如图10所示。
图7为本申请另一个实施例的电源变换装置的示意性结构图。如图7所示,该电源变换装置700包括开关管Q1至Q8、开关管Q11、开关管Q12、电感Lr、变换器、电容C3和电容C4。
电源变换装置700中的开关管Q1至Q8、电感Lr和变换器之间的连接关系与电源变换装置400中的开关管Q1至Q8、电感Lr和变换器之间的连接关系相同,此处不再赘述。
与电源变换装置400不同的是,电源变换装置700中,开关管Q1至Q4构成的输入全桥变换器称为第一全桥变换器,开关管Q5至Q8构成的输出全桥变换器称为第二全桥变换器,开关管Q11称为第一开关管,开关管Q12称为第二开关管,电容C3称为第一电容,电容C4称为第二电容,开关管Q9和电容C3串联在一起构成的电路称 为第一子电路,开关管Q12和电容C4串联在一起构成的电路称为第二子电路,并且,输入全桥变换器中的开关管Q2与第一子电路并联,输入全桥变换器的开关管Q4与第二子电路并联。
电源变换装置700中,Q1至Q8连通并且Q11和Q12关闭时的电路拓扑结构图如图8所示。由图8可知,输出全桥变换器和输入全桥变换器均工作在全桥模式,且因为电容C3和C4没法充电,所以电源变换装置700输出的电压Vout与输入的电压Vin之间的额定增益为K,增益位于0.7K至1.4K范围内时,电源变换装置700有较好的工作效率,K为变压器的变压比。
电源变换装置700中,Q5至Q8、Q1、Q3、Q11和Q12连通,并且Q2和Q4关闭时的电路拓扑结构图如图9所示。由图9所知,输出全桥变换器工作在全桥模式,输入全桥变换器工作在半桥模式。此时,串联的电容C3和C4会将输入电压Vin一分为二,使得加在变压器的辅助电感端口的电压为输入电压Vin的二分之一,当电路在额定点工作时,电源变换装置700的输出电压Vout与输入电压Vin的二分之一平衡,故700的额定增益为0.5K,并且增益位于0.35K至0.7K范围内时,电源变换装置700具有较好的工作效率,K为变压器的变压比。
经过上述分析可知,图7所示的电源变换装置700在不同的工作模式下可以提供不同范围内的增益,因此可以根据增益需求与电源变换装置700的各个工作模式的对应关系,驱动电源变换装置700中的各个开关管的开和关,以使得电源变换装置可以输出满足增益需求的电压。电源变换装置700的一种示例性驱动方法的流程图如图10所示。
图10为本申请实施例的电源变换装置的驱动方法的一种示意性流程图。该电源变换装置包括第一全桥变换器、变压器、第二全桥变换器,变压器与第一全桥变换器和第二全桥变换器分别相连。此外,电源变换器还包括第一子电路和第二子电路,第一子电路包括串联的第一开关管和第一电容,第二子电路包括串联的第二开关管和第二电容,第一子电路和第二子电路分别与第一全桥变换器的一条桥臂电路中的两个开关管并联。该驱动方法可以包括S1001,可选地,还可以包括S1002。
该驱动方法可以由驱动装置执行,该驱动装置可以通过处理器来实现。该驱动装置可以与被其驱动的电源变换装置集成在一起,也可以通过信号接口与其驱动的电源变换装置相连。
S1001,驱动电源变换装置中的第一全桥变换器工作在半桥模式,驱动该电源变换装置中的第二全桥变换器工作在全桥模式,并且,驱动该电源变换装置中的第一开关管和第二开关管开通。
在一些可能的实现方式中,驱动装置可以基于增益需求来驱动电源变换装置中的第一全桥变换器工作在半桥模式,驱动第二全桥变换器工作在全桥模式,并基于该增益需求来驱动电源变换装置中的第一开关管和第二开关管的连通。
例如,该电源变换装置为电源变换装置400、且增益需求位于1.4K至2.8K范围内时,驱动装置可以向开关管Q1至Q4发送使得开关管Q1至Q4分别连通的驱动信号;向开关管Q5和Q7发送使得开关管Q5和Q7分别连通的信号;向开关管Q6和Q8发送使得开关管Q6和Q8关闭的信号;并且向开关管Q9和Q10发送使得开关管 Q9和Q10连通的信号。此时,电源变换装置400的等效电路拓扑结构图如图6所示。
这种情况下,开关管Q1至Q4构成的输入全桥变换器工作在全桥模式,开关管Q5至Q8构成的输出全桥变换器工作在半桥模式,且电容C1和电容C2可以充电,因此电源变换装置400可以提供增益范围为1.4K至2.8K的输出电压。
又如,该电源变换装置为电源变换装置700时,且增益需求位于0.35K至0.7K范围内时,驱动装置可以向开关管Q5至Q8发送使得开关管Q5至Q8分别连通的驱动信号;向开关管Q1和Q3发送使得开关管Q1和Q3分别连通的信号;向开关管Q2和Q4发送使得开关管Q2和Q4关闭的信号;并且向开关管Q11和Q12发送使得开关管Q11和Q12连通的信号。此时,电源变换装置700的等效电路拓扑结构图如图9所示。
这种情况下,开关管Q5至Q8构成的输出全桥变换器工作在全桥模式,开关管Q1至Q4构成的输入全桥变换器工作在半桥模式,且电容C3和电容C4可以充电,因此电源变换装置700可以提供增益范围为0.35K至0.7K的输出电压。
S1002,驱动电源变换装置中的第一全桥变换器和第二全桥变换器工作在全桥模式,驱动该电源变换装置中的第一开关管和第二开关管关闭。
在一些可能的实现方式中,驱动装置可以基于增益需求来驱动电源变换装置中的第一全桥变换器和第二全桥变换器工作在全桥模式,并基于该增益需求来驱动电源变换装置中的第一开关管和第二开关管关闭。
例如,该电源变换装置为电源变换装置400、且增益需求为位于0.7K至1.4K范围内时,驱动装置可以向开关管Q1至Q8发送使得开关管Q1至Q8分别连通的驱动信号;并且向开关管Q9和Q10发送使得开关管Q9和Q10关闭的信号。此时,电源变换装置400的等效电路拓扑结构图如图5所示。
这种情况下,开关管Q1至Q4构成的输入全桥变换器和开关管Q5至Q8构成的输出全桥变换器均工作在全桥模式,且电容C1和电容C2不可以充电,因此电源变换装置400可以提供增益范围为0.7K至1.4K的输出电压。
又如,该电源变换装置为电源变换装置700时,且增益需求为位于0.7K至1.4K范围内时,驱动装置可以向开关管Q5至Q8发送使得开关管Q5至Q8分别连通的驱动信号;向开关管Q1至Q4发送使得开关管Q1至Q4连通的信号;并且向开关管Q11和Q12发送使得开关管Q11和Q12关闭的信号。此时,电源变换装置700的等效电路拓扑结构图如图8所示。
这种情况下,开关管Q5至Q8构成的输出全桥变换器工作在全桥模式,开关管Q1至Q4构成的输入全桥变换器工作在全桥模式,且电容C3和电容C4不充电,因此电源变换装置700可以提供增益范围为0.7K至1.4K的输出电压。
可以理解的是,电源变换装置的增益需求可以是固定的。这种情况下,驱动装置驱动电源变换装置中各个元器件的方法也可以是预先设置好的,而不用动态获知增益需求以及动态基于增益需求驱动电源变换装置。
前面的实施例介绍了可以在电源变换装置的第一全桥变换器的一条桥臂电路上的两个开关管处分别并联开关管和电容,以及驱动该电源变换装置的方法,以增大电源变换器的输出电压的增益范围。下面结合图11至图15介绍本申请提出的增益范围更 大的电源变换装置。
本申请提出的增益范围更大的电源变换装置中,不仅在第一全桥变换器的桥臂电路上的两个开关管处分别并联开关管和电容,还在第二全桥变换器的一条桥臂电路上的两个开关管处分别并联开关管的电容。
如图11所示,该电源变换装置1100包括开关管Q1至Q12、电感Lr、变换器、电容C1至电容C4。
开关管Q5至Q8构成一个全桥变换器,为了描述方便,该全桥变换器称为第一全桥变换器或输出全桥变换器。第一全桥变换器中,开关管Q5和Q7构成一条桥臂电路,开关管Q6和Q8构成另一条桥臂电路。第一全桥变换器用于接连负载,并向负载输出电压Vout。
开关管Q1至Q4构成一个全桥变换器,为了描述方便,该全桥变换器称为第二全桥变换器或输入全桥变换器。第二全桥变换器中,开关管Q1和Q3构成一条桥臂电路,开关管Q2和Q4构成另一条桥臂电路。第二全桥变换器用于连接电源Vin。
开关管Q9和电容C1串联构成的电路称为第一子电路,电容C1称为第一电容;开关管Q10和电容C2串联构成的电路称为第二子电路,电容C2称为第二电容;开关管Q11和电容C3串联构成的电路称为第三子电路,电容C3称为第三电容;开关管Q12和电容C4串联构成的电路称为第四子电路,电容C4称为第四电容。
电源变换装置1100中的第一全桥变换器、电感Lr、变换器和第二全桥变换器之间的连接关系与电源变换装置400中的第一全桥变换器、电感Lr、变换器和第二全桥变换器之间的连接关系相同,此处不再赘述。
电源变换装置1100中,第一全桥变换器中的开关管Q6与第一子电路并联,开关管Q8与第二子电路并联。
电源变换装置1100中,第二全桥变换器中的开关管Q2与第三子电路并联,开关管Q4与第四子电路并联。
电源变换装置1100中,Q5至Q8、Q1、Q3、Q11和Q12连通,并且Q2、Q4、Q9和Q10关闭时的电路拓扑结构图如图12所示。由图12所知,输出全桥变换器工作在全桥模式,输入全桥变换器工作在半桥模式,且C3和C4可以充电。此时,电容C3和C4会将输入电压Vin一分为二,使得加在变压器的辅助电感端口的电压为输入电压Vin的二分之一,当电路在额定点工作时,电源变换装置700的输出电压Vout与输入电压Vin的二分之一平衡,故700的额定增益为0.5K,并且增益位于0.35K至0.7K范围内时,电源变换装置700具有较好的工作效率,K为变压器的变压比。
电源变换装置1100中,Q1至Q8连通,并且Q9至Q12关闭时的电路拓扑结构图如图13所示。由图13所知,输入全桥变换器和输出全桥变换器工作在全桥模式,并且C1至C4不能充电。此时,电源变换器1100的增益范围为0.7K至1.4K。
电源变换装置1100中,Q1至Q4、Q5、Q7、Q9和Q10连通,并且Q6、Q8、Q11和Q12关闭时的电路拓扑结构图如图14所示。由图14可知,输入全桥变换器工作在全桥模式,输出全桥变换器工作在半桥模式,C1和C2可以充电,C3和C4不充电。此时,电容C1和C2会将电源变换装置400的输出电压Vout一分为二,使得加载在变压器输出端口的电压为Vout的二分之一,当电源变换装置400在额定点工作时,输 入电压Vin与输出电压Vout的二分之一平衡,故电源变换装置400的额定增益为2K,且增益位于1.4K至2.8K范围内时,电源变换装置400有较好的效率,K为变压器的变压比。
经过上述分析可知,图11所示的电源变换装置1100在不同的工作模式下可以提供不同范围内的增益,因此可以根据增益需求与电源变换装置1100的各个工作模式的对应关系,驱动电源变换装置1100中的各个开关管的开和关,以使得电源变换装置可以输出满足增益需求的电压。电源变换装置1100的一种示例性驱动方法的流程图如图15所示。
图15为本申请实施例的电源变换装置的驱动方法的另一种示意性流程图。该电源变换装置包括第一全桥变换器、变压器、第二全桥变换器,变压器与第一全桥变换器和第二全桥变换器分别相连。第一全桥变换器用于连接负载,向负载输出电压;第二全桥变换器用于连接电源。
此外,电源变换器还包括第一子电路、第二子电路、第三子电路和第四子电路,第一子电路包括串联的第一开关管和第一电容,第二子电路包括串联的第二开关管和第二电容,第三子电路包括串联的第三开关管和第三电容,第四子电路包括串联的第四开关管和第四电容,第一子电路和第二子电路分别与第一全桥变换器的一条桥臂电路中的两个开关管并联,第三子电路和第四子电路分别与第二全桥变换器的一条桥臂电路中的两个开关管并联。
该驱动方法可以包括S1501和/或S1502,可选地,还可以包括S1503。
该驱动方法可以由驱动装置执行,该驱动装置可以通过处理器来实现。该驱动装置可以与被其驱动的电源变换装置集成在一起,也可以通过信号接口与其驱动的电源变换装置相连。
S1501,驱动电源变换装置中的第一全桥变换器工作在全桥模式,驱动该电源变换装置中的第二全桥变换器工作在半桥模式,并且,驱动该电源变换装置中的第一开关管和第二开关管关闭,驱动该电源变换装置中的第三开关管和第四开关管连通。
在一些可能的实现方式中,驱动装置可以基于增益需求来驱动电源变换装置中的第一全桥变换器工作在全桥模式,驱动第二全桥变换器工作在半桥模式,并基于该增益需求来驱动该电源变换装置中的第一开关管和第二开关管关闭,驱动该电源变换装置中的第三开关管和第四开关管连通。
例如,该电源变换装置为电源变换装置1100、且增益需求位于0.35K至0.7K之间时,驱动装置可以向开关管Q5至Q8发送使得开关管Q5至Q8分别连通的驱动信号;向开关管Q1和Q3发送使得开关管Q1和Q3分别连通的信号;向开关管Q2和Q4发送使得开关管Q2和Q4关闭的信号;向开关管Q11和Q12发送使得开关管Q11和Q12连通的信号;向开关管Q9和Q10发送使得开关管Q9和Q10关闭的信号。此时,电源变换装置1100的等效电路拓扑结构图如图12所示。
S1502,驱动第一全桥变换器工作在半桥模式,驱动第二全桥变换器工作在全桥模式,驱动第一开关管和第二开关管开通,驱动第三开关管和第四开关管关闭。
在一些可能的实现方式中,驱动装置可以基于增益需求来驱动电源变换装置中的第一全桥变换器工作在半桥模式,驱动第二全桥变换器工作在全桥模式,并基于该增 益需求来驱动电源变换装置中的第一开关管和第二开关管开通,驱动第三开关管和第四开关管关闭。
例如,该电源变换装置为电源变换装置1100、且增益需求位于1.4K至2.8K范围内时,驱动装置可以向开关管Q1至Q4发送使得开关管Q1至Q4分别连通的驱动信号;向开关管Q5和Q7发送使得开关管Q5和Q7分别连通的信号;向开关管Q6和Q8发送使得开关管Q6和Q8关闭的信号;向开关管Q9和Q10发送使得开关管Q9和Q10连通的信号;向开关管Q11和Q12发送使得开关管Q11和Q12关闭的信号。此时,电源变换装置1100的等效电路拓扑结构图如图14所示。
S1503,驱动第一全桥变换器和第二全桥变换器工作在全桥模式,驱动第一开关管、第二开关管、第三开关管和第四开关管关闭。
在一些可能的实现方式中,驱动装置可以基于增益需求来驱动电源变换装置中的第一全桥变换器和第二全桥变换器工作在全桥模式,并基于该增益需求来驱动电源变换装置中的第一开关管、第二开关管、第三开关管和第四开关管关闭。
例如,该电源变换装置为电源变换装置1100,且增益需求位于0.7K至1.4K范围内时,驱动装置可以向开关管Q1至Q8发送使得开关管Q1至Q8分别连通的驱动信号;向开关管Q9至Q12发送使得开关管Q9至Q12关闭的信号。此时,电源变换装置1100的等效电路拓扑结构图如图13所示。
可以理解的是,电源变换装置的增益需求可以是固定的。这种情况下,驱动装置驱动电源变换装置中各个元器件的方法也可以是预先设置好的,而不用动态获知增益需求以及动态基于增益需求驱动电源变换装置。
输入电压Vin为300伏特(V),变压比K=1,增益为2K,即电源变换装置1100的等效电路拓扑结构如图14所示时,电压变换装置1100的工况如图16所示。该工况下,输出电压为600V。
图16中的(a)为输入电流的示意图,图16中的(b)为输出电流的示意图。
由图16可知,开关管关断电流最大为45安培(A),输入电流有效值将近30A,输出电流有效值仅14A。可见,本申请电源变换装置输出600V的电流时,该电流的有效值和峰值都较理想。
本申请图4、图7和图11中任意一个所示的电源变换装置,可以称为改造后DAB电源变换装置。
可选地,在图4、图7和图11中任意一个所示的电源变换装置中,还可以添加电容Cr,使得该电容Cr和电感Lr形成谐振网络。该包含了谐振网络的电源变换装置可以称为改造后LLC电源变换装置。改造后LLC电源变换装置的三种示例性结构分别如图17、图18和图19所示。
图17所示的电源变换装置1700的增益范围为0.7K至2.8K。电源变换装置1700的驱动方法可以参考图10所示的驱动方法。例如,增益需求位于1.4K至2.8K范围时,可以执行S1001来驱动电源变换装置1700;增益需求位于0.7K至1.4K范围时,可以执行S1002来驱动电源变换装置1700。
图18所示的电源变换装置1800的增益范围为0.35K至1.4K。电源变换装置1800的驱动方法可以参考图10所示的驱动方法。例如,增益需求位于0.35K至0.7K范围 时,可以执行S1001来驱动电源变换装置1800;增益需求位于0.7K至1.4K范围时,可以执行S1002来驱动电源变换装置1800。
图19所示的电源变换装置1900的增益范围为0.35K至2.8K。电源变换装置1900的驱动方法可以参考图15所示的驱动方法。例如,增益需求位于1.4K至2.8K范围时,可以执行S1501来驱动电源变换装置1900;增益需求位于0.35K至0.7K范围时,可以执行S1502来驱动电源变换装置1900;增益需求位于0.7K至1.4K范围时,可以执行S1503来驱动电源变换装置1900。
输入电压Vin为300伏特(V),变压比K=1,增益为2K时,电压变换装置1900的工况如图20所示。该工况下,输出电压为600V。
图20中的(a)为输出电压的示意图,图20中的(b)为输出电流的示意图。由图20可知,本申请电源变换装置1900增益为2时的变换效率也很好。
图21为本申请一个实施例的驱动装置的示意性结构图。如图21所示,装置2100可以包括驱动模块2101。驱动模块2101也可以称为驱动单元2101。驱动模块2101可以的功能可以通过处理器来实现。
在一种实现方式中,装置2100可以用于实现图10所示的方法。例如,驱动模块2101可以用于实现S1001和S1002中的功能。
在一种实现方式中,装置2100可以用于实现图15所示的方法。例如,驱动模块2101可以用于实现S1501、S1502和S1503中的功能。
图22为本申请另一个实施例的驱动装置的示意性结构图。图22所示的装置2200可以用于执行图10或图15所述的方法。
如图22所示,本实施例的装置2200包括:存储器2201、处理器2202、通信接口2203以及总线2204。其中,存储器2201、处理器2202、通信接口2203通过总线2204实现彼此之间的通信连接。
存储器2201可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器2201可以存储程序,当存储器2201中存储的程序被处理器2202执行时,处理器2202可以用于执行图10或图15所示的方法的各个步骤。
处理器2202可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本申请方法实施例中的方法。
处理器2202还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请各个实施例的方法的各个步骤可以通过处理器2202中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器2202还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2201,处理器2202读取存储器2201中的信息,结合其硬件完成本申请实施例中各个方法所需执行的功能,例如,可以执行图10或图15所示实施例的各个步骤/功能。
通信接口2203可以使用但不限于收发器一类的收发装置,来实现装置2200与其他装置之间的通信。
总线2204可以包括在装置2200各个部件(例如,存储器2201、处理器2202、通信接口2203)之间传送信息的通路。
应理解,本申请实施例所示的装置2200可以是电子设备,或者,也可以是配置于电子设备中的芯片。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
如图23所示,本申请还提出了一种电源变换器2300。电源变换器2300可以包括电源变换装置2301和驱动装置2302。
在一些实现方式中,电源变换装置2301可以是图4、图7、图17和图18中任意一个所示的电源变换装置,相应地,驱动装置2302可以是用于实现图10所示的驱动方法的驱动装置。
在另一些实现方式中,电源变换装置2301可以是图11或图19所示的电源变换装置,相应地,驱动装置2302可以是用于实现图15所示的驱动方法的驱动装置。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行 所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以 是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种电源变换装置,所述电源变换装置包括第一全桥变换器、变压器和第二全桥变换器,所述变压器与所述第一全桥变换器和所述第二全桥变换器分别相连,其特征在于,所述电源变换装置还包括第一子电路和第二子电路,所述第一子电路包括串联的第一开关管和第一电容,所述第二子电路包括串联的第二开关管和第二电容;
    并且,所述第一全桥变换器中的第一桥臂电路上的一个开关管与所述第一子电路并联,所述第一桥臂电路上的另一个开关管与所述第二子电路并联。
  2. 根据权利要求1所述的电源变换装置,其特征在于,所述电源变换装置还包括驱动装置,所述驱动装置用于:
    驱动所述第一全桥变换器工作在半桥模式和驱动所述第二全桥变换器工作在全桥模式的同时,驱动所述第一开关管和所述第二开关管开通。
  3. 根据权利要求1所述的电源变换装置,其特征在于,所述电源变换装置还包括第三子电路和第四子电路,所述第三子电路包括串联的第三开关管和第三电容,所述第四子电路包括串联的第四开关管和第四电容,并且,所述第二全桥变换器的第二桥臂电路上的一个开关管与所述第三子电路并联,所述第二桥臂电路上的另一个开关管与所述第四子电路并联。
  4. 根据权利要求3所述的电源变换装置,其特征在于,所述电源变换装置还包括驱动器,所述驱动器用于:
    驱动所述第一全桥变换器工作在半桥模式和驱动所述第二全桥变换器工作在全桥模式的同时,驱动所述第一开关管和所述第二开关管开通;或
    驱动所述第二全桥变换器工作在半桥模式和驱动所述第一全桥变换器工作在全桥模式的同时,驱动所述第三开关管和所述第四开关管开通。
  5. 根据权利要求1至4中任一项所述的电源变换装置,其特征在于,所述第二全桥变换器用于连接输入电源。
  6. 根据权利要求1至4中任一项所述的电源变换装置,其特征在于,所述第一全桥变换器用于连接输入电源。
  7. 一种电源变换装置的驱动方法,所述电源变换装置包括第一全桥变换器、变压器和第二全桥变换器,所述变压器与所述第一全桥变换器和所述第二全桥变换器分别相连,其特征在于,所述电源变换装置还包括第一子电路和第二子电路,所述第一子电路包括串联的第一开关管和第一电容,所述第二子电路包括串联的第二开关管和第二电容,所述第一全桥变换器中的第一桥臂电路上的一个开关管与所述第一子电路并联,所述第一桥臂电路上的另一个开关管与所述第二子电路并联,所述方法包括:
    驱动所述第一全桥变换器工作在半桥模式和驱动所述第二全桥变换器工作在全桥模式的同时,驱动所述第一开关管和所述第二开关管开通。
  8. 根据权利要求7所述的方法,其特征在于,所述电源变换装置还包括第三子电路和第四子电路,所述第三子电路包括串联的第三开关管和第三电容,所述第四子电路包括串联的第四开关管和第四电容,并且,所述第二全桥变换器的第二桥臂电路上的一个开关管与所述第三子电路并联,所述第二桥臂电路上的另一个开关管与所述第四子电路并联;
    相应地,所述方法还包括:
    驱动所述第二全桥变换器工作在半桥模式和驱动所述第一全桥变换器工作在全桥模式的同时,驱动所述第三开关管和所述第四开关管开通。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第二全桥变换器用于连接输入电源。
  10. 根据权利要求7或8所述的方法,其特征在于,所述第一全桥变换器用于连接输入电源。
  11. 一种电源变换装置的驱动装置,其特征在于,包括用于实现如权利要求7至10中任一项所述的方法的模块。
  12. 一种电源变换装置的驱动装置,其特征在于,包括与存储器耦合的处理器;
    所述存储器用于存储指令;
    所述处理器用于执行所述存储器中的指令,以实现如权利要求7至10中任一项所述的方法。
  13. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算装置执行时,实现如权利要求7至10中任一项所述的方法。
  14. 一种计算机程序产品,其特征在于,包括用于实现如权利要求7至10中任一项所述的方法的指令。
  15. 一种电源变换器,其特征在于,包括如权利要求1至6中任一项所述的电源变换装置,以及如权利要求12所述的驱动装置。
PCT/CN2020/135033 2020-12-09 2020-12-09 电源变换器及其驱动方法 WO2022120662A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20964602.5A EP4250548A4 (en) 2020-12-09 2020-12-09 CURRENT TRANSFORMER AND CONTROL METHOD THEREOF
PCT/CN2020/135033 WO2022120662A1 (zh) 2020-12-09 2020-12-09 电源变换器及其驱动方法
CN202080004459.2A CN112689948B (zh) 2020-12-09 2020-12-09 电源变换器及其驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135033 WO2022120662A1 (zh) 2020-12-09 2020-12-09 电源变换器及其驱动方法

Publications (1)

Publication Number Publication Date
WO2022120662A1 true WO2022120662A1 (zh) 2022-06-16

Family

ID=75457677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135033 WO2022120662A1 (zh) 2020-12-09 2020-12-09 电源变换器及其驱动方法

Country Status (3)

Country Link
EP (1) EP4250548A4 (zh)
CN (1) CN112689948B (zh)
WO (1) WO2022120662A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147527A (ja) * 2011-01-07 2012-08-02 Fuji Electric Co Ltd 電源装置
CN108258910A (zh) * 2017-12-25 2018-07-06 浙江大学 一种全桥llc谐振变换电路及其宽范围输出控制方法
CN110829855A (zh) * 2019-12-25 2020-02-21 国网江苏省电力有限公司宿迁供电分公司 一种基于交流开关切换宽电压范围llc变流器
CN110995011A (zh) * 2019-12-25 2020-04-10 南京工程学院 一种基于交流开关切换的双向dc-dc变流器
CN111064359A (zh) * 2019-12-23 2020-04-24 南京航空航天大学 宽范围双向变换电路及控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2529443Y (zh) * 2002-01-08 2003-01-01 浙江大学 直流-直流电源变换装置
EP2348626A3 (en) * 2005-07-29 2017-04-19 TDK Corporation Switching power supply with surge voltage suppression
CN102299649B (zh) * 2010-06-24 2015-11-25 盛飞 电源变换器
CN102201739B (zh) * 2011-05-27 2014-07-09 华北电力大学(保定) 一种对称半桥llc谐振式双向直流-直流变换器
CN105515353B (zh) * 2016-01-27 2018-06-19 东南大学 基于混合型模块化多电平变换器的四端口电力电子变压器
KR101884686B1 (ko) * 2016-05-23 2018-08-30 숭실대학교산학협력단 능동 클램프 풀브릿지 컨버터 및 그 구동방법
CN106411120A (zh) * 2016-11-21 2017-02-15 华中科技大学 一种开关组件及其应用、控制方法
CN107612340A (zh) * 2017-09-18 2018-01-19 电子科技大学 一种低电压应力隔离全桥变换器电路装置
CN107863884A (zh) * 2017-11-07 2018-03-30 清华大学 一种多重模块化直流变压器
CN110011538B (zh) * 2019-01-30 2020-09-08 深圳供电局有限公司 基于离散化开关电容的模块化直流变压器及其调制方法
US10819244B1 (en) * 2019-06-20 2020-10-27 Abb Power Electronics Inc. Single-stage isolated DC-DC converters with interleaved arms
CN110677026B (zh) * 2019-07-25 2021-04-20 西安交通大学 基于双有源桥结构的固态变压器故障电流限流拓扑及限流方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147527A (ja) * 2011-01-07 2012-08-02 Fuji Electric Co Ltd 電源装置
CN108258910A (zh) * 2017-12-25 2018-07-06 浙江大学 一种全桥llc谐振变换电路及其宽范围输出控制方法
CN111064359A (zh) * 2019-12-23 2020-04-24 南京航空航天大学 宽范围双向变换电路及控制方法
CN110829855A (zh) * 2019-12-25 2020-02-21 国网江苏省电力有限公司宿迁供电分公司 一种基于交流开关切换宽电压范围llc变流器
CN110995011A (zh) * 2019-12-25 2020-04-10 南京工程学院 一种基于交流开关切换的双向dc-dc变流器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4250548A4 *

Also Published As

Publication number Publication date
EP4250548A1 (en) 2023-09-27
EP4250548A4 (en) 2023-12-27
CN112689948A (zh) 2021-04-20
CN112689948B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
JP6302095B2 (ja) スイッチング電源及び該スイッチング電源を制御する方法
US20190272001A1 (en) Reconfigurable dickson star switched capacitor voltage regulator
US9257848B2 (en) Method for controlling single-phase DC/AC converters and converter arrangement
US6538906B1 (en) Energy storage circuit for DC-DC converter
CN109586572B (zh) 转换器和电源管理集成电路系统
Zhu et al. A multi-phase cascaded series-parallel (CaSP) hybrid converter for direct 48 V to point-of-load applications
US20140085943A1 (en) Controller with Quasi-Resonant Mode and Continuous Conduction Mode and Operating Method Thereof
WO2024066508A1 (zh) 多输入电源电路及电子设备
TW201937329A (zh) 電源供應裝置及其控制方法
US20240113631A1 (en) Control Method of ZVS Flyback Using Transformer Auxiliary Winding
US11509218B2 (en) Wireless power receiver
CN115498874A (zh) 一种基于耦合电感的叠加型变换器及其控制方法
WO2022120662A1 (zh) 电源变换器及其驱动方法
US11652420B2 (en) Isolated converter with high boost ratio
Chiu et al. High‐efficiency battery charger with cascode output design
JP2001309659A (ja) ゼロ電圧スイッチングのための高効率コンバータ
EP3161953A1 (en) Synchronous rectifier circuit and llc resonance converter having the same
US12132319B2 (en) Partial-resonant converters for PV applications
Santra et al. Isolated soft‐switched boost DC–DC converter with low‐voltage stress and high step‐up ratio
Do Analysis and implementation of a high‐efficiency zero‐voltage‐zero‐current‐switching DC–DC converter
CN210273868U (zh) 功率放大器、发射器及无线电力传输系统
Hwu et al. Non‐isolated large step‐down voltage conversion ratio converter with non‐pulsating output current
WO2020037291A1 (en) Composite dc-dc converter
CN113474984A (zh) 直流-直流变换器
CN219643800U (zh) Dc-dc变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020964602

Country of ref document: EP

Effective date: 20230621

NENP Non-entry into the national phase

Ref country code: DE