WO2024066508A1 - 多输入电源电路及电子设备 - Google Patents

多输入电源电路及电子设备 Download PDF

Info

Publication number
WO2024066508A1
WO2024066508A1 PCT/CN2023/101491 CN2023101491W WO2024066508A1 WO 2024066508 A1 WO2024066508 A1 WO 2024066508A1 CN 2023101491 W CN2023101491 W CN 2023101491W WO 2024066508 A1 WO2024066508 A1 WO 2024066508A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
voltage
circuit
power supply
switch
Prior art date
Application number
PCT/CN2023/101491
Other languages
English (en)
French (fr)
Inventor
黄金亮
赵东升
于春伟
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024066508A1 publication Critical patent/WO2024066508A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output

Definitions

  • the present application relates to the field of power supply technology, and in particular to a multi-input power supply circuit and electronic equipment.
  • the electronic device includes a power supply circuit and a load.
  • the power supply circuit is used to receive an input voltage provided by an external power supply, and after processing the input voltage, provide an output voltage to the load to drive the load to work.
  • a multi-input power supply circuit is a power supply circuit that can receive multiple input voltages at the same time.
  • the multi-input power supply circuit receives multiple input voltages through multiple input interfaces respectively, and provides an output voltage to the load according to one of the input voltages.
  • the multi-input power supply circuit also includes a sampling circuit and a control circuit.
  • the sampling circuit includes isolation devices such as optocouplers and an isolation power supply that supplies power to the isolation devices.
  • the isolation device can sample the voltage values of the multiple input voltages and send a feedback signal to the control circuit.
  • the control circuit controls the input interface of one input voltage to be connected to the power conversion circuit according to the feedback signal, so that the power conversion circuit processes the input voltage and provides an output voltage to the load.
  • the present application provides a multi-input power supply circuit and an electronic device, which are used to solve the technical problem of high structural complexity of the multi-input power supply circuit in the prior art.
  • the present application provides a multi-input power supply circuit, comprising a plurality of input interfaces, a first switch, a power conversion circuit, a sampling circuit and a control circuit.
  • the sampling circuit comprises at least one resistor, and the at least one resistor is used to provide a voltage feedback signal to the control circuit according to the voltage value of the input voltage of the plurality of input interfaces, and to provide an isolation function between the input interface and the control circuit.
  • the control circuit controls the first switch according to the voltage feedback signal. For example, the control circuit controls one input terminal of the first switch to be connected to the output terminal, so that the power conversion circuit provides an output voltage to the load according to the input voltage provided by the input interface.
  • the sampling circuit can realize the functions of input voltage sampling and isolation through at least one resistor, so the circuit structure complexity of the sampling circuit is relatively low, thereby reducing the complexity and cost of the circuit structure of the multi-input power supply circuit.
  • at least one resistor in the sampling circuit will not introduce much interference, and can also improve the overall reliability of the multi-input power supply circuit.
  • the sampling circuit specifically includes a plurality of sampling subcircuits, and each sampling subcircuit includes a plurality of resistors connected in series.
  • the input end of the plurality of resistors connected in series can be used to connect the positive or negative pole of an input interface, and the output end is connected to the control circuit.
  • the plurality of resistors can be used to provide a voltage feedback signal to the control circuit according to the voltage value of the connected positive or negative pole.
  • the sampling circuit can realize sampling and isolation functions through a plurality of resistors connected in series. Even if the multi-input power supply circuit has a large number of input interfaces, it is only necessary to increase the resistor in the sampling circuit, thereby greatly reducing the structural complexity of the multi-input power supply circuit.
  • a multi-input power supply circuit is arranged between a plurality of sampling sub-circuits and a control circuit, and can be used to amplify a voltage feedback signal provided by the sampling sub-circuit, and provide the amplified voltage feedback signal to the control circuit.
  • the sampling circuit can provide the control circuit with a voltage feedback signal that is more suitable for the control circuit to process, thereby improving the processing efficiency and stability of the control circuit.
  • the multi-input power supply circuit also includes a second switch.
  • the control circuit can control the second switch to connect the input end corresponding to an input interface to the output end of the second switch, so that the sampling circuit can provide a voltage feedback signal to the control circuit according to the input voltage of the input interface through the second switch, and the control circuit can determine the voltage value of the input voltage of the input interface according to the voltage feedback signal. Therefore, in the multi-input power supply circuit provided by this embodiment, only two sampling sub-circuits need to be set up, and the sampling sub-circuits are controlled by the second switch to be connected to different input interfaces.
  • the sampling circuit specifically includes a plurality of variable resistors.
  • the sampling circuit provides a voltage feedback signal to the control circuit according to the input voltage of the input interface through the plurality of variable resistors, and provides an isolation function between the input interface and the control circuit.
  • the sampling circuit greatly reduces the complexity of the circuit structure on the basis of having the same sampling and isolation functions. Even if the multi-input power supply circuit has a large number of input interfaces, it is only necessary to add a variable resistor to the sampling circuit.
  • variable resistor can be adjusted according to the input voltage of its input end, which improves the flexibility of the multi-input power supply circuit, so that the multi-input power supply circuit can be applied to more different scenarios such as variable input voltage, enriching the functions and application scenarios of the multi-input power supply circuit.
  • control circuit can specifically respond to the voltage value of the input voltage of the first input interface among the multiple input interfaces being within the working voltage range required by the load, and then the control circuit controls the first input end of the first switch corresponding to the first input interface to be connected with the output end of the first switch.
  • the control circuit can specifically respond to the voltage value of the input voltage of the first input interface among multiple input interfaces being not within the operating voltage range required by the load, and then the control circuit controls the second input end of the first switch corresponding to the second input interface to be connected with the output end of the first switch.
  • the control circuit can specifically respond to the fact that the voltage values of the input voltages of all the multiple input interfaces are not within the operating voltage range required by the load, and then the control circuit controls the multiple input ends of the first switch to be disconnected from the output end of the first switch. Therefore, when the input voltages provided by the multiple power supplies cannot drive the load to work normally, the input voltages provided by all the power supplies can be disconnected in time by controlling the first switch, thereby providing protection for the multi-input power supply circuit and subsequent loads, and improving the safety of the multi-input power supply circuit.
  • the control circuit can specifically respond to the fact that the voltage values of the input voltages of all the multiple input interfaces are not within the operating voltage range required by the load, and the sum of the voltage values of multiple target input interfaces among the multiple input interfaces is within the operating voltage range required by the load, and then the control circuit controls the input terminals of the first switch corresponding to the multiple target input interfaces to be connected in series, and then connects the multiple target input interfaces obtained in series to the output terminal of the first switch.
  • the load can still achieve continuous and normal operation.
  • the power conversion circuit of the multi-input power supply circuit specifically includes: a power factor correction circuit and a DC conversion circuit.
  • control circuit can be integrated into a power factor correction circuit or a DC conversion circuit, so that the multi-input power supply circuit has a higher degree of integration and further reduces the structural complexity of the multi-input power supply circuit.
  • the input voltage of the multi-input power supply circuit is alternating current or direct current.
  • the multi-input power supply circuit provided in this embodiment has strong flexibility and can be applied to different scenarios.
  • the second aspect of the present application provides an electronic device, comprising a load and a multi-input power supply circuit as provided in any one of the first aspects of the present application.
  • the multi-input power supply circuit is connected to multiple power supplies, and can be used to obtain an input voltage provided by any one of the multiple power supplies, and after processing the input voltage, provide an output voltage to the load.
  • FIG1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG2 is a schematic structural diagram of another embodiment of an electronic device provided by the present application.
  • FIG3 is a schematic structural diagram of an embodiment of a multi-input power supply circuit provided by the present application.
  • FIG4 is a schematic structural diagram of an embodiment of a multi-input power supply circuit provided by the present application.
  • FIG5 is a schematic structural diagram of an embodiment of a multi-input power supply circuit provided by the present application.
  • FIG. 6 is a schematic diagram of the structure of an embodiment of a multi-input power supply circuit provided in the present application.
  • connection relationship described in this application refers to direct or indirect connection.
  • a and B are connected, which can be either A and B directly connected, or A and B are indirectly connected through one or more other electrical components.
  • a and C can be directly connected, and C and B can be directly connected, so that A and B are connected through C.
  • a connects B described in this application can be A and B directly connected, or A and B can be indirectly connected through one or more other electrical components.
  • FIG1 is a schematic diagram of the structure of an embodiment of an electronic device provided by the present application.
  • the electronic device 1 shown in FIG1 includes a multi-input power supply circuit 10 and a load 20.
  • the multi-input power supply 10 is used to power the load 20 inside the electronic device 1.
  • the electronic device shown in FIG1 can be a network device, a mobile phone, a laptop computer, a computer case, a television, a smart tablet, an interactive tablet, an electric car, a smart furniture device, a smart watch or a wearable device and other electrical devices.
  • FIG2 is a schematic diagram of the structure of another embodiment of the electronic device provided by the present application, and the electronic device 1 shown in FIG2 includes a multi-input power supply circuit 10.
  • the multi-input power supply circuit 10 is used to supply power to a load 20 outside the electronic device 1.
  • the electronic device 1 shown in FIG2 can be a power supply device such as a power adapter, a charger, a car charging station, a mobile power supply, etc.
  • the multi-input power supply circuit 10 can be used to receive input voltages provided by multiple power supplies. For example, in the examples shown in FIG. 1 and FIG. 2 , the multi-input power supply circuit 10 can be used to receive an input voltage VA provided by power supply A , an input voltage VB provided by power supply B , ..., an input voltage VN provided by power supply N , etc.
  • the multi-input power supply circuit 10 can perform power factor correction, voltage conversion, etc. on one input voltage provided by one power supply, and then provide an output voltage Vo to the load 20 to power the load 20.
  • the input voltage may be provided by an external power supply of the electronic device 1 , or may also be provided by an internal power supply of the electronic device 1 .
  • the multi-input power supply circuit 10 can simultaneously receive input voltages provided by multiple power supplies, when one of the multiple power supplies fails, the multi-input power supply circuit 10 can also continue to supply power to the load 20 according to the input voltages provided by other power supplies that have not failed.
  • the multi-input power supply circuit 10 has high reliability and can ensure that the load 20 operates continuously and stably.
  • FIG3 is a schematic diagram of a structure of an embodiment of a multi-input power supply circuit provided by the present application.
  • FIG3 shows a specific implementation of the multi-input power supply circuit 10 shown in FIG1 and FIG2.
  • the multi-input power supply circuit 10 includes: multiple input interfaces 101, a first switch 102, a power conversion circuit 103, a sampling circuit 104 and a control circuit 105.
  • the multiple input terminals of the first switch 102 are respectively connected to the multiple input interfaces 101.
  • the input terminal a of the first switch 102 provided in FIG. 3 is connected to the input interface 101A.
  • the first switch 102 can receive the input voltage VA provided by the power supply A through the input interface 101A.
  • the input terminal b of the first switch 102 is connected to the input interface 101B.
  • the first switch 102 can receive the input voltage VB provided by the power supply B through the input interface 101B. And so on.
  • FIG. 3 takes the example that the first switch 102 has n input terminals, and the n input terminals can be used to be connected to N input interfaces 101A-101N respectively.
  • the embodiment of the present application does not limit the number of input terminals of the first switch 102, the number of input interfaces 101 connected to the first switch 102, and the number of power supplies connected to the first switch 102 through the input interface 101.
  • the multiple input voltages of the multi-input power supply circuit 10 may be direct current, and the output voltage of the multi-input power supply circuit may be direct current.
  • the input voltage of the multi-input power supply circuit 10 may be alternating current.
  • the multi-input power supply circuit 10 may also perform voltage conversion on the alternating current to provide an output voltage Vo in the form of direct current.
  • the output end o of the first switch 102 is connected to the input end of the power conversion circuit 103.
  • the first switch 102 can be used to conduct one input end with its output end o, so that the power conversion circuit 103 can be connected to the input interface 101 through the output end o of the first switch 102 and the one input end that is conducted, and the power conversion circuit 103 can receive the input voltage through the first switch 102 and the input interface 101.
  • the power conversion circuit 103 can receive the input voltage VA provided by the power supply A through the input interface 101A connected to the output end o of the first switch 102 and the input end a of the first switch 102.
  • the power conversion circuit 103 can be used to provide an output voltage Vo after performing power factor correction, voltage conversion and other processing on the input voltage.
  • the power conversion circuit 103 includes a power factor correction (PFC) circuit and a direct current-direct current (DC-DC) conversion circuit.
  • the power factor correction circuit is used to adjust the power factor (PF) of the input voltage
  • the direct current conversion circuit is used to perform voltage conversion processing on the input voltage to obtain the output voltage Vo, so that the voltage value of the input voltage of the multi-input power supply circuit 10 is different from the voltage value of the output voltage Vo.
  • the multiple input terminals of the sampling circuit 104 are respectively connected to the multiple output interfaces 101, and the output terminals are connected to the control circuit 105.
  • the sampling circuit 104 is used to send a voltage feedback signal to the control circuit 105 according to the voltage values of the input voltages of the multiple input interfaces 101.
  • the voltage feedback signal is used to indicate the voltage values of the multiple input voltages of the multi-input power supply circuit 10.
  • the control circuit 105 is connected to the sampling circuit 104 and the first switch 102.
  • the control circuit 105 can be used to control the first switch 102.
  • the control circuit 105 can receive a voltage feedback signal sent by the sampling circuit 104, and control one input terminal of the first switch 102 to be connected to the output terminal o of the first switch 102 according to the voltage feedback signal.
  • control circuit 105 is also connected to the power conversion circuit 103.
  • the control circuit 105 can be used to control the power conversion circuit 103.
  • control circuit 105 can be used to control the switching tube in the power conversion circuit 103 to turn on and off, so that the power conversion circuit 103 performs voltage conversion and other processing on the input voltage received at its input end to obtain the output voltage Vo.
  • control circuit 105 can be a pulse-width modulation (PWM) controller, a central processing unit (CPU), other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, etc.
  • PWM pulse-width modulation
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • control circuit 105 may be dedicated to controlling the first switch 102.
  • control circuit 105 may also be integrated in a power factor correction circuit, and the control circuit 105 may be used to control the first switch 102 and the power factor correction circuit.
  • control circuit 105 may also be integrated in a DC conversion circuit, and the control circuit 105 may be used to control the first switch 102 and the DC conversion circuit.
  • control circuit 105 may also be integrated in a power conversion circuit 103, and the control circuit 105 may be used to control the first switch 102 and the power conversion circuit 103.
  • the sampling circuit 104 since the voltage value of the input voltage of the input interface 101 of the multi-input power supply circuit 10 is relatively high and the voltage value of the voltage range of the voltage signal that can be processed by the control circuit 105 is relatively low, the sampling circuit 104 also has an isolation function, which can improve the safety and reliability of the control circuit 105 and the multi-input power supply circuit 10 in which it is located.
  • the voltage value of the input voltage received by the input end of the sampling circuit 104 is relatively high, and the sampling circuit 104 can be used to perform voltage conversion processing on the input voltage to obtain a voltage feedback signal with a relatively low voltage value, and send the voltage feedback signal with a relatively low voltage value to the control circuit 105, so that the control circuit 105 can process the voltage feedback signal within a relatively safe voltage range.
  • the sampling circuit 104 includes isolation devices such as optocouplers, and also includes an isolated power supply for powering the isolation devices.
  • the optocoupler in the sampling circuit 104 can simultaneously realize the following functions: the function of sampling and processing the input voltage of the input interface 101 to obtain a voltage feedback signal, and the isolation function between the input interface 101 and the control circuit 105.
  • the sampling circuit 104 also needs to set corresponding isolation devices and isolated power supplies for each input interface 101, which greatly increases the structural complexity of the multi-input power supply circuit 10 and increases the cost of the multi-input power supply circuit 10.
  • the complexity of the connection lines is high when the multi-input power supply circuit 10 is specifically implemented, and more interference will be generated between the connection lines.
  • the isolation device of the sampling circuit 104 is powered by an isolated power supply and is an active device, which will also generate more electromagnetic interference, thereby reducing the overall reliability of the multi-input power supply circuit 10.
  • the present application provides a multi-input power supply circuit 10, which can reduce the structural complexity of the multi-input power supply circuit 10.
  • the technical solution of the present application is described in detail with specific embodiments below. The following specific embodiments can be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments.
  • FIG4 is a schematic diagram of a structure of an embodiment of a multi-input power supply circuit provided by the present application.
  • the multi-input power supply circuit 10 comprises: multiple input interfaces 101 , a first switch 102 , a power conversion circuit 103 , a sampling circuit 104 and a control circuit 105 .
  • a multi-input power supply circuit 10 includes two input interfaces 101A and 101B as an example.
  • the two input terminals of the input interface 101A are respectively used to receive the positive electrode VA + and the negative electrode VA- of the input voltage VA provided by the power supply A.
  • the two input terminals of the input interface 101B are respectively used to receive the positive electrode VB + and the negative electrode VB- of the input voltage VB provided by the power supply B.
  • the input terminal a+ and the input terminal a- of the first switch 102 are connected to the input interface 101A.
  • the first switch 102 can be connected to the input interface 101A.
  • the input terminal b+ and the input terminal b- of the first switch are connected to the input interface 101B, and the first switch 102 can receive the input voltage VB provided by the power source B through the input interface 101B.
  • the positive output terminal o+ and the negative output terminal o- of the first switch 102 are connected to the input terminal of the power conversion circuit 103 respectively.
  • the first switch 102 can be used to connect the input terminal a+ to the positive output terminal o+, and connect the input terminal a- to the negative output terminal o-, so that the power conversion circuit 103 can receive the input voltage VA through the first switch 102 and the input interface 101A.
  • the first switch 102 can be used to connect the input terminal b+ to the positive output terminal o+, and connect the input terminal b- to the negative output terminal o-, so that the power conversion circuit 103 can receive the input voltage VB through the first switch 102 and the input interface 101B.
  • the power conversion circuit 103 may be used to provide an output voltage Vo after performing power factor correction, voltage conversion, etc. on the received input voltage VA or the input voltage VB .
  • the sampling circuit 104 includes a plurality of sampling subcircuits.
  • Each sampling subcircuit includes a plurality of resistors connected in series. The input ends of the plurality of resistors connected in series are connected to a positive electrode or a negative electrode of an input interface 101, and the output ends of the plurality of resistors are connected to the control circuit 105 respectively.
  • the multi-input power supply circuit 10 further includes a plurality of operational amplifiers, and the positive input terminal and the negative input terminal of each operational amplifier are connected to the positive electrode and the negative electrode corresponding to the same input interface through a sampling subcircuit respectively.
  • the sampling circuit 104 includes four sampling subcircuits, which are recorded as a first sampling subcircuit 1041, a second sampling subcircuit 1042, a third sampling subcircuit 1043, and a fourth sampling subcircuit 1044.
  • the first sampling subcircuit 1041 includes four resistors R1-R4 connected in series, and the first sampling subcircuit 1041 uses one end of the resistor R1 as an input end and one end of the resistor R4 as an output end.
  • the input end of the first sampling subcircuit 1041 is connected to the positive electrode VA + of the input interface 101A, and the output end is connected to the positive electrode of the first operational amplifier C1.
  • the input end of the second sampling subcircuit 1042 is connected to the negative electrode VA- of the input interface 101A, and the output end is connected to the negative electrode of the first operational amplifier C1.
  • the output end of the first operational amplifier C1 is connected to the control circuit 105.
  • the input end of the third sampling subcircuit 1043 is connected to the positive electrode VB + of the input interface 101B, and the output end is connected to the positive electrode of the first operational amplifier C2.
  • the input end of the fourth sampling sub-circuit 1044 is connected to the negative electrode VB- of the input interface 101B, and the output end is connected to the negative electrode of the second operational amplifier C2.
  • the output end of the second operational amplifier C2 is connected to the control circuit 105.
  • the positive voltage V A + at the input end of the first sampling sub-circuit 1041 is divided by four resistors R1-R4 to obtain a first voltage feedback signal, and the input end of the first sampling sub-circuit 1041 outputs the first voltage feedback signal to the positive electrode of the first operational amplifier C1.
  • the negative voltage V A - at the input end of the second sampling sub-circuit 1042 is divided by four resistors R1-R4 to obtain a second voltage feedback signal, and the input end of the second sampling sub-circuit 1042 outputs the second voltage feedback signal to the negative electrode of the first operational amplifier C1.
  • the first operational amplifier C1 provides the control circuit 105 with a voltage feedback signal of the amplified input voltage V A according to the first voltage feedback signal and the second voltage feedback signal, and the voltage feedback signal is used to indicate the voltage value of the input voltage V A provided by the power supply A.
  • the second operational amplifier C2 provides the control circuit 105 with a voltage feedback signal of the amplified input voltage V B , and the voltage feedback signal is used to indicate the voltage value of the input voltage V B provided by the power supply B.
  • the voltage value of the input voltage VA can be determined according to the received voltage feedback signal of the input voltage VA
  • the voltage value of the input voltage VB can be determined according to the received voltage feedback signal of the input voltage VB .
  • the control circuit 105 can control the first switch 102 according to the voltage value of the input voltage VA and the voltage value of the input voltage VB .
  • the control circuit can control the power conversion circuit 103, etc. according to the voltage value of the input voltage VA and the voltage value of the input voltage VB .
  • the multiple resistors in series in the sampling circuit 104 can also provide an isolation function between the input interface 101 and the control circuit 105.
  • the specific number and resistance value of the multiple resistors in series in the sampling circuit 104 can be set accordingly according to the voltage value of the input end and the voltage value of the output end of the multiple resistors, so that the multiple resistors can meet the voltage requirements of isolation.
  • the control circuit 105 when the voltage value of the input voltage at the input end of the multiple resistors is high, a larger number of resistors can be set in series, and when the voltage value of the input voltage at the input end of the multiple resistors is low, a smaller number of resistors can be set in series, etc., to ensure that the voltage value of the voltage feedback signal provided by the output end of the multiple resistors can meet the voltage range of the signal that the control circuit 105 can process.
  • the multi-input power supply circuit 10 is taken as an example with two input interfaces.
  • the sampling circuit is correspondingly provided with sampling sub-circuits, and the number of sampling sub-circuits is twice the number of input interfaces.
  • the control circuit 105 can determine the voltage values of the multiple input voltages respectively according to the voltage feedback signals corresponding to the multiple input voltages.
  • the sampling circuit 104 includes a plurality of resistors connected in series.
  • the plurality of resistors connected in series can provide a voltage feedback signal to the control circuit 105 according to the input voltage of the input interface 101, and at the same time provide an isolation function between the input interface 101 and the control circuit 105.
  • the sampling and isolation functions can be realized simultaneously only by a plurality of resistors connected in series, thereby greatly reducing the complexity of the circuit structure of the sampling circuit 104 on the basis of realizing the sampling and isolation functions.
  • the multi-input power supply circuit 10 Even if the input interfaces 101 of the multi-input power supply circuit 10 are more, it is only necessary to increase the resistors in the sampling circuit 104. Therefore, the multi-input power supply circuit 10 provided in the present embodiment has a low structural complexity and low cost. At the same time, the resistors used for sampling and isolation in the multi-input power supply circuit 10 are all passive devices, and the complexity of the connection line of the resistors when they are set is low. The interference generated by the plurality of resistors connected in series is less, and the overall reliability of the multi-input power supply circuit 10 can also be improved.
  • FIG5 is a schematic diagram of the structure of an embodiment of a multi-input power supply circuit provided by the present application.
  • the multi-input power supply circuit shown in FIG5 includes: multiple input interfaces 101, a first switch 102, a second switch 107, a power conversion circuit 103, a sampling circuit 104, and a control circuit 105.
  • the specific implementation of the multiple input interfaces 101, the first switch 102, and the power conversion circuit 103 is the same as that shown in FIG4, and will not be repeated.
  • the sampling circuit 104 shown in FIG. 5 includes a first sampling sub-circuit 1041 and a second sampling sub-circuit 1042 , and each sampling sub-circuit includes four resistors connected in series.
  • the second switch 107 includes four input terminals.
  • the input terminal p+ is connected to the positive electrode VA + of the input interface 101A
  • the input terminal p- is connected to the negative electrode VA- of the input interface 101A
  • the input terminal q+ is connected to the positive electrode VB + of the input interface 101B
  • the input terminal q- is connected to the negative electrode VB- of the input interface 101B.
  • the second switch 107 includes two output terminals.
  • the output terminal r is connected to the input terminal of the first sampling subcircuit 1041, and the output terminal s is connected to the input terminal of the second sampling subcircuit 1042.
  • the output terminal of the first sampling subcircuit 1041 is connected to the positive electrode of the first operational amplifier C1, and the output terminal of the second sampling subcircuit 1042 is connected to the negative electrode of the first operational amplifier C1.
  • the output terminal of the first operational amplifier C1 is connected to the control circuit 105.
  • the control circuit 105 is also connected to the control end of the second switch 107 .
  • the control circuit 105 can be used to control an input end of the second switch 107 to be conductive with its output end.
  • the sampling circuit 104 can be used to sample the input voltage VA received by the input interface 101A through the second switch 107, and provide a voltage feedback signal to the control circuit 105 through the first power amplifier C1.
  • the sampling circuit 104 is also used to provide an isolation function between the input interface 101A and the control circuit 105.
  • the control circuit 105 can determine the voltage value of the input voltage VA of the input interface 101A according to the voltage feedback signal.
  • the sampling circuit 104 can be used to sample the input voltage VB received by the input interface 101B through the second switch 107, and provide a voltage feedback signal to the control circuit 105 through the first power amplifier C1.
  • the sampling circuit 104 is also used to provide an isolation function between the input interface 101B and the control circuit 105.
  • the control circuit 105 can determine the voltage value of the input voltage VB of the input interface 101B according to the voltage feedback signal.
  • the multi-input power supply circuit 10 has two input interfaces as an example.
  • the second switch 107 may be provided with other numbers of input terminals, and the number of input terminals is twice the number of input interfaces.
  • the control circuit 105 may control the second switch 107 to be connected to the input terminal and the output terminal corresponding to any input interface 101, so that the sampling circuit 104 can provide a voltage feedback signal to the control circuit 105 according to the input voltage of the input interface 101.
  • the control circuit 105 may determine the voltage value of the input voltage of any input interface 101 according to the received voltage feedback signal.
  • control circuit 105 can control all input terminals of the second switch 107 to be connected to the output terminal in sequence.
  • the sampling circuit 104 can provide a voltage feedback signal to the control circuit 105 according to the input voltage of the input interface connected to the input terminal.
  • the control circuit 105 can sequentially receive multiple voltage feedback signals corresponding to the input power sources received by all multiple input interfaces, and the control circuit 105 can determine the voltage values of multiple input voltages of the multi-input power supply circuit 10 according to the multiple voltage feedback signals.
  • the multi-input power supply circuit 10 also includes a second switch.
  • the control circuit 105 can control the second switch 107 to connect the input end corresponding to an input interface with the output end of the second switch 107, so that the sampling circuit 104 can provide a voltage feedback signal to the control circuit 105 according to the input voltage of the input interface through the second switch 107, and the control circuit 105 can determine the voltage value of the input voltage of the input interface according to the voltage feedback signal. If it is necessary to determine the voltage value of the input voltage of other input interfaces, the control circuit 105 can control the second switch 107 to connect the input end and the output end corresponding to the other input interfaces.
  • the multi-input power supply circuit 10 provided in this embodiment, only two sampling sub-circuits need to be set, and the sampling sub-circuits are controlled by the second switch 107 to connect to different input interfaces 101. Even if the multi-input power supply circuit 10 has more input interfaces 101, it is not necessary to increase the number of resistors, but only to increase the number of input terminals of the second switch 107, thereby further reducing the structural complexity of the multi-input power supply circuit 10 and further reducing the cost of the multi-input power supply circuit 10.
  • FIG6 is a schematic diagram of the structure of an embodiment of a multi-input power supply circuit provided by the present application.
  • the multi-input power supply circuit shown in FIG6 includes: multiple input interfaces 101, a first switch 102, a second switch 107, a power conversion circuit 103, a sampling circuit 104, and a control circuit 105.
  • the specific implementation of the multiple input interfaces 101, the first switch 102, and the power conversion circuit 103 is the same as that shown in FIG4, and will not be repeated.
  • the sampling circuit 104 shown in FIG5 includes a plurality of variable resistors.
  • the input ends of the variable resistors are respectively connected to the positive or negative electrodes of the plurality of input interfaces 101, and the output ends are respectively connected to the control circuit 105 through the operational amplifier 106.
  • the control end of the variable resistor is connected to the control circuit 105, and the control circuit 105 can be used to control the resistance values of the plurality of variable resistors.
  • the sampling circuit 104 includes four variable resistors.
  • the input end of the first variable resistor 1045 is connected to the positive electrode VA + of the input interface 101A, and the output end is connected to the positive electrode of the first operational amplifier C1.
  • the input end of the second variable resistor 1046 is connected to the negative electrode VA- of the input interface 101A, and the output end is connected to the negative electrode of the first operational amplifier C1.
  • the output end of the first operational amplifier C1 is connected to the control circuit 105.
  • the input end of the third variable resistor 1047 is connected to the positive electrode VB + of the input interface 101B, and the output end is connected to the positive electrode of the first operational amplifier C2.
  • the input end of the fourth variable resistor 1048 is connected to the negative electrode VB- of the input interface 101B, and the output end is connected to the negative electrode of the second operational amplifier C2.
  • the output end of the second operational amplifier C2 is connected to the control circuit 105.
  • the positive voltage V A + at the input end of the first variable resistor 1045 is divided to output a first voltage feedback signal to the first operational amplifier C1
  • the negative voltage V A - at the input end of the second variable resistor 1046 is divided to output a second voltage feedback signal to the first operational amplifier C1.
  • the first operational amplifier C1 provides a voltage feedback signal of the amplified input voltage V A to the control circuit 105 according to the first voltage feedback signal and the second voltage feedback signal.
  • the second operational amplifier C2 provides a voltage feedback signal of the amplified input voltage V B to the control circuit 105.
  • the control circuit 105 can determine the voltage value of the input voltage VA according to the received voltage feedback signal of the input voltage VA , and determine the voltage value of the input voltage VB according to the received voltage feedback signal of the input voltage VB .
  • the control circuit 105 can also adjust the resistance value of each variable resistor. For example, when the voltage value of the input voltage at the input end of the variable resistor is high, the control circuit 105 can control the variable resistor to increase the resistance value, and when the voltage value of the input voltage at the input end of the variable resistor is low, the control circuit 105 can control the variable resistor to reduce the resistance value, etc., to ensure that the voltage value of the voltage feedback signal provided by the output end of the variable resistor can meet the voltage range of the signal that the control circuit 105 can process, thereby ensuring the stability of the control circuit 105.
  • the sampling circuit 104 provides a voltage feedback signal to the control circuit 105 according to the input voltage of the input interface 101 through a plurality of variable resistors, and provides an isolation function between the input interface 101 and the control circuit 105.
  • the sampling circuit 104 provided in the present embodiment has the same sampling and isolation functions, and compared with the isolation device and the isolated power supply provided in the sampling circuit 104 of the multi-input power supply circuit 10 provided in the prior art, the complexity of the circuit structure is greatly reduced. Even if the multi-input power supply circuit 10 has more input interfaces 101, it is only necessary to add a variable resistor to the sampling circuit 104.
  • variable resistor can be adjusted according to the input voltage of its input end, which improves the flexibility of the multi-input power supply circuit 10, so that the multi-input power supply circuit 10 can be applied to more different scenarios such as variable input voltage, enriching the functions and application scenarios of the multi-input power supply circuit 10.
  • control circuit 105 provided in the embodiment of the present application can control the first switch 102 according to the voltage feedback signal. It is understandable that the control circuit 105 in the same multi-input power supply circuit can control the first switch 102 in one or more of the following ways.
  • control circuit 105 in response to the voltage value of the input voltage of the first input interface among the multiple input interfaces 101 being within the working voltage range required by the load 20, controls the first input end of the first switch 102 corresponding to the first input interface to be connected with the output end of the first switch 102.
  • the control circuit 105 determines the voltage value of the input voltage VA and the voltage value of the input voltage VB according to the voltage feedback signal, it is determined that the voltage value of the input voltage VA is within the working voltage range required by the load 20, and the voltage value of the input voltage VB is not within the working voltage range required by the load 20, indicating that the multi-input power supply circuit 10 can provide the load 20 with an output voltage Vo that meets the working requirements of the load 20 according to the input voltage VA .
  • the control circuit 105 can control the input end a+ of the first switch 102 to be connected with the output end o+, and the input end a- to be connected with the output end o-, so that the power conversion circuit 103 receives the input voltage VA through the first switch 102, and provides the output voltage Vo to the load 20 after voltage conversion of the input voltage VA .
  • the control circuit 105 of the multi-input power supply circuit 10 can determine the input voltage provided by the power supply that meets the working requirements of the load 20 from among the input voltages provided by the multiple power supplies to supply power to the load, thereby ensuring stable operation of the load 20.
  • the control circuit 105 in response to the voltage value of the input voltage of the first input interface among the multiple input interfaces 101 not being within the working voltage range required by the load 20, the control circuit 105 controls the second input terminal corresponding to the second input interface among the multiple input interfaces 101 in the first switch 102 to be connected to the output terminal.
  • the control circuit 105 determines that the voltage value of the input voltage VA is not within the working voltage range required by the load 20, it means that the multi-input power supply circuit 10 cannot provide the output voltage Vo that meets the working requirements of the load 20 to the load 20 according to the input voltage VA .
  • the control circuit 105 can control the input terminal b+ of the first switch 102 to be connected to the output terminal o+, and the input terminal b- to be connected to the output terminal o-.
  • the power conversion circuit 103 can receive the input voltage VB through the first switch 102, and provide the output voltage Vo to the load 20 after voltage conversion of the input voltage VB .
  • the control circuit 105 of the multi-input power supply circuit 10 can timely switch the input voltage provided by other power supplies to power the load 20 when the input voltage provided by one power supply cannot drive the load 20 to work normally, thereby ensuring the continuous and stable operation of the load 20.
  • the control circuit 105 in response to the voltage values of the input voltages of all the multiple input interfaces 101 not being within the operating voltage range required by the load 20, the control circuit 105 controls the multiple input terminals of the first switch 102 to be disconnected from the output terminal of the first switch 102.
  • the control circuit 105 of the multi-input power supply circuit 10 can timely control the first switch 102 to disconnect the input voltages provided by all the power supplies, thereby providing protection for the multi-input power supply circuit 10 and subsequent loads, and improving the safety of the multi-input power supply circuit 10.
  • the control circuit 105 in response to the fact that the voltage values of the input voltages of all the multiple input interfaces 101 are not within the working voltage range required by the load 20, and the sum of the voltage values of the multiple target input interfaces in the multiple input interfaces 101 is within the required working voltage range, the control circuit 105 controls the input terminals of the first switch 102 corresponding to the multiple target input interfaces to be connected in series, and then connects the multiple target input interfaces obtained in series to the output terminal of the first switch 102.
  • the control circuit 105 shown in FIG3 can determine the voltage value of the input voltage VA , the voltage value of the input voltage VB ...the voltage value of the input voltage VN according to the voltage feedback signal.
  • the control circuit 105 determines that the voltage values of the input voltage VA , the voltage value of the input voltage VB ...the voltage value of the input voltage VN are all not within the working voltage range required by the load 20, indicating that the multi-input power supply circuit 10 cannot provide the load 20 with an output voltage Vo that meets the working requirements of the load 20 according to any single input voltage. If at this time, the control circuit 105 can determine that the sum V1+V2 of the voltage value V1 of the input voltage VA and the voltage value V2 of the input voltage VB is within the working voltage range required by the load 20.
  • control circuit 105 controls the input terminal a and the input terminal b of the first switch 102 to be connected in series, and obtains an equivalent power supply between the input terminal a and the output terminal b, and the voltage value that the equivalent power supply can provide is the sum V1+V2 of the voltage value V1 of the input voltage VA and the voltage value V2 of the input voltage VB .
  • control circuit 105 also controls the entirety of the series-connected input terminal a and the input terminal b of the first switch 102 to be connected to the output terminal o of the first switch 102, so that the equivalent power supply between the input terminal a and the output terminal b of the first switch 102 provides the input voltage to the power conversion circuit 103 through the first switch 102, and the voltage value of the input voltage is V1+V2.
  • the power conversion circuit 103 can provide the output voltage Vo that meets the working requirements of the load 20 to the load 20 after voltage conversion of the input voltage.
  • the control circuit 105 of the multi-input power supply circuit 10 can also control the input terminals corresponding to some target input interfaces in the first switch 102 to be connected in series and be turned on with the output interface of the first switch 102, so that the multi-input power supply circuit 10 can supply power to the load 20 together according to the sum of the voltage values of the input voltages provided by the power supplies connected to these target input interfaces, thereby ensuring that the load 20 can still achieve continuous and normal operation when the input voltages provided by all power supplies are out of the working voltage range.
  • the method executed by the control circuit 105 in the multi-input power supply circuit 10 provided in the embodiment of the present application is introduced.
  • the control circuit 105 as the execution subject may include a hardware structure and/or a software module, and the above functions are realized in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function of the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • modules of the above device is only a division of logical functions, and can be fully or partially integrated into a physical entity or physically separated in actual implementation.
  • these modules can all be implemented in the form of software calling a processing element; they can also be all implemented in the form of hardware; some modules can also be implemented in the form of software calling a processing element, and some modules can be implemented in the form of hardware. It can be a separate processing element, or it can be integrated in a chip of the above device.
  • it can also be stored in the memory of the above device in the form of program code, and a processing element of the above device calls and executes the function of the above-mentioned determined module.
  • the implementation of other modules is similar.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules can be one or more integrated circuits configured to implement the above method, such as: One or more application specific integrated circuits (ASIC), or one or more digital signal processors (DSP), or one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call a program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the steps performed by the control circuit 105 can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a DVD
  • a semiconductor medium e.g., a solid state disk (SSD)
  • the present application also provides a computer-readable storage medium, which stores computer instructions. When the computer instructions are executed, they can be used to execute any method performed by the control circuit 105 in any of the aforementioned embodiments of the present application.
  • An embodiment of the present application also provides a chip for executing instructions, wherein the chip is used to execute any of the methods executed by the control circuit 105 as described above in the present application.
  • An embodiment of the present application also provides a computer program product, which includes a computer program.
  • the computer program is stored in a storage medium.
  • At least one processor can read the computer program from the storage medium.
  • the at least one processor executes the computer program, it can implement any of the methods performed by the control circuit 105 as described above in the present application.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the steps of the above method embodiments are executed; and the aforementioned storage medium includes various media that can store program codes, such as ROM, magnetic disk or optical disk.

Abstract

一种多输入电源电路及电子设备,其中,多输入电源电路(10)的采样电路(104)包括至少一个电阻。至少一个电阻根据多输入电源电路(10)的输入接口(101)的输入电压为多输入电源电路(10)的控制电路(105)提供电压反馈信号,并为输入接口(101)和控制电路(105)之间提供隔离功能。多输入电源电路(10)的采样电路(104)在实现输入电压采样和隔离的基础上,具有电路结构的复杂度较低的有益效果。

Description

多输入电源电路及电子设备
本申请要求于2022年09月28日提交中国专利局、申请号为202211190839.7、申请名称为“多输入电源电路及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电源技术领域,尤其涉及一种多输入电源电路及电子设备。
背景技术
电子设备包括电源电路和负载,电源电路用于接收外部电源提供的输入电压,并对输入电压进行处理后,为负载提供输出电压从而驱动负载工作。
多输入电源电路是一种能够同时接收多路输入电压的电源电路,多输入电源电路通过多个输入接口分别接收多路输入电压,并根据其中一路输入电压为负载提供输出电压。多输入电源电路中还包括采样电路和控制电路,采样电路包括光耦等隔离器件和给隔离器件供电的隔离电源等。隔离器件可以对多路输入电压的电压值进行采样,并向控制电路发送反馈信号。控制电路根据反馈信号控制一路输入电压的输入接口与功率变换电路导通,使功率变换电路对该一路输入电压进行处理后为负载提供输出电压。
但是,现有技术中多输入电源电路的结构复杂度较高。
发明内容
本申请提供一种多输入电源电路及电子设备,用于解决现有技术中多输入电源电路的结构复杂度较高的技术问题。
本申请第一方面提供一种多输入电源电路,包括多个输入接口、第一开关、功率变换电路、采样电路和控制电路。其中,采样电路包括至少一个电阻,该至少一个电阻用于根据多个输入接口的输入电压的电压值为控制电路提供电压反馈信号,并为输入接口和控制电路之间提供隔离功能。控制电路根据电压反馈信号控制第一开关。例如,控制电路控制第一开关中的一个输入端与输出端导通,使功率变换电路根据输入接口提供的输入电压向负载提供输出电压。本实施例提供的多输入电源电路中,采样电路通过至少一个电阻即可实现输入电压采样和隔离的功能,因此采样电路的电路结构复杂度较低,从而降低了多输入电源电路的电路结构的复杂度和成本。同时,本实施例提供的多输入电源电路中,采样电路中的至少一个电阻还不会引入较多的干扰,还能够提高多输入电源电路的整体可靠性。
在本申请第一方面一实施例中,采样电路具体包括多个采样子电路,每个采样子电路包括串联的多个电阻。其中,串联的多个电阻的输入端可用于连接一个输入接口的正极或者负极,输出端连接控制电路。多个电阻可用于根据连接的正极或者负极的电压值,向控制电路提供电压反馈信号。本实施例提供的多输入电源电路中,采样电路通过串联的多个电阻可以实现采样和隔离功能,即使多输入电源电路的输入接口的较多,也只需要在采样电路中增加电阻即可,进而极大地降低了多输入电源电路的结构复杂度。
在本申请第一方面一实施例中,多输入电源电路设置在多个采样子电路和控制电路之间,可用于对采样子电路提供的电压反馈信号进行放大处理,并向控制电路提供放大处理后的电压反馈信号。本实施例提供的多输入电源电路中,采样电路能够给控制电路提供更合适控制电路处理的电压反馈信号,提高了控制电路的处理效率和稳定性。
在本申请第一方面一实施例中,多输入电源电路还包括第二开关。其中,控制电路可以控制第二开关与一个输入接口对应的输入端与第二开关的输出端连接,使得采样电路能够通过第二开关根据输入接口的输入电压向控制电路提供电压反馈信号,控制电路即可根据电压反馈信号确定该输入接口的输入电压的电压值。因此,本实施例提供的多输入电源电路中,只需要设置2个采样子电路,并通过第二开关控制采样子电路与不同的输入接口连接。即使多输入电源电路的输入接口的较多,也只需要增加第二开关的输入端,从而进一步降低了多输入电源电路的结构复杂度,进一步降低了多输入电源电路的成 本。
在本申请第一方面一实施例中,采样电路具体包括多个可变电阻。其中,采样电路通过多个可变电阻根据输入接口的输入电压为控制电路提供电压反馈信号,并为输入接口和控制电路之间提供隔离功能。本实施例提供的多输入电源电路中,采样电路在同样具有采样和隔离功能基础上,极大地降低了电路结构的复杂度。即使多输入电源电路的输入接口的较多,也只需要在采样电路中增加可变电阻即可。且可变电阻的阻值可以根据其输入端的输入电压进行调整,提高了多输入电源电路的灵活性,使得多输入电源电路能够应用在输入电压可变等更多不同的场景中,丰富了多输入电源电路的功能和应用场景。
在本申请第一方面一实施例中,控制电路具体可以响应于多个输入接口中,第一输入接口的输入电压的电压值在负载所需的工作电压范围内,则控制电路控制该第一输入接口对应的第一开关的第一输入端与第一开关的输出端导通。从而能够从多个电源提供的输入电压中,确定符合负载工作要求电源提供的输入电压为负载供电,能够保证负载的稳定工作。
在本申请第一方面一实施例中,控制电路具体可以响应于多个输入接口中,第一输入接口的输入电压的电压值不在负载所需的工作电压范围内,则控制电路控制该第二输入接口对应的第一开关的第二输入端与第一开关的输出端导通。从而能够在多个电源提供输入电压,在一个电源提供的输入电压不能驱动负载正常工作时,及时切换其他电源提供的输入电压为负载供电,能保证负载的持续稳定工作。
在本申请第一方面一实施例中,控制电路具体可以响应于多个输入接口中,所有多个输入接口的输入电压的电压值不在负载所需的工作电压范围内,则控制电路控制第一开关的多个输入端均与第一开关的输出端断开。从而能够在多个电源提供的输入电压均不能驱动负载正常工作时,及时通过控制第一开关断开所有电源提供的输入电压,对多输入电源电路及后续的负载提供保护,提高了多输入电源电路的安全性。
在本申请第一方面一实施例中,控制电路具体可以响应于多个输入接口中,所有多个输入接口的输入电压的电压值不在负载所需的工作电压范围内,且多个输入接口中多个目标输入接口的电压值之和在负载所需的工作电压范围内,则控制电路控制多个目标输入接口对应的第一开关中的输入端串联后,再将串联得到的多个目标输入接口与第一开关的输出端导通。从而在负载在所有电源提供的输入电压均不在工作电压范围内的情况下,依然能够实现持续、正常的工作。
在本申请第一方面一实施例中,多输入电源电路的功率变换电路具体包括:功率因数校正电路和直流变换电路。
在本申请第一方面一实施例中,控制电路可以集成在功率因数校正电路或者直流变换电路中,使多输入电源电路具有更高的集成度,进一步降低了多输入电源电路的结构复杂度。
在本申请第一方面一实施例中,多输入电源电路的输入电压为交流电或者直流电。本实施例提供的多输入电源电路具有较强的灵活性,能够应用于不同的场景中。
本申请第二方面提供一种电子设备,包括负载和如本申请第一方面任一项提供的多输入电源电路。其中,多输入电源电路连接多个电源,可用于获取多个电源中任一个电源提供的输入电压,并对输入电压进行处理后,向负载提供输出电压。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的电子设备一实施例的结构示意图;
图2为本申请提供的电子设备另一实施例的结构示意图;
图3为本申请提供的多输入电源电路一实施例的结构示意图;
图4为本申请提供的多输入电源电路一实施例的结构示意图;
图5为本申请提供的多输入电源电路一实施例的结构示意图;
图6为本申请提供的多输入电源电路一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请中所描述的连接关系指的是直接或间接连接。例如,A与B连接,既可以是A与B直接连接,也可以是A与B之间通过一个或多个其它电学元器件间接连接,例如可以是A与C直接连接,C与B直接连接,从而使得A与B之间通过C实现了连接。还可理解的,本申请中所描述的“A连接B”可以是A与B直接连接,也可以是A与B通过一个或多个其它电学元器件间接连接。
图1为本申请提供的电子设备一实施例的结构示意图。如图1所示的电子设备1包括多输入电源电路10和负载20。多输入电源10用于为电子设备1内部的负载20供电。如图1所示的电子设备可以是网络设备、移动电话、笔记本电脑、电脑机箱、电视、智慧平板、交互平板、电动汽车、智能家具设备、智能手表或可穿戴设备等用电设备。
图2为本申请提供的电子设备另一实施例的结构示意图,如图2所示的电子设备1包括多输入电源电路10。多输入电源电路10用于为电子设备1外部的负载20供电。如图2所示的电子设备1可以是电源适配器、充电器、汽车充电站、移动电源等供电设备。
多输入电源电路10可用于接收多个电源提供的输入电压,例如,在图1和图2所示的示例中,多输入电源电路10可用于接收电源A提供的输入电压VA、电源B提供的输入电压VB……电源N提供的输入电压VN等。多输入电源电路10可以对一个电源提供的一路输入电压进行功率因数校正、电压变换等处理后,向负载20提供输出电压Vo为负载20供电。
在一种实施例中,输入电压可以是电子设备1的外部电源提供的,或者还可以是电子设备1的内部电源提供的。
由于多输入电源电路10能够同时接收多个电源提供的输入电压,因此当多个电源中有电源发生故障,多输入电源电路10也能够根据其他没有发生故障的电源提供的输入电压继续向负载20供电。多输入电源电路10具有较高的可靠性,能够保证负载20持续、稳定地运行。
图3为本申请提供的多输入电源电路一实施例的结构示意图。如图3示出了如图1和图2所示的多输入电源电路10的一种具体实现方式。其中,多输入电源电路10包括:多个输入接口101、第一开关102、功率变换电路103、采样电路104和控制电路105。
第一开关102的多个输入端分别连接多个输入接口101。例如,图3提供的第一开关102的输入端a连接输入接口101A。第一开关102可以通过输入接口101A接收电源A提供的输入电压VA。第一开关102的输入端b连接输入接口101B。第一开关102可以通过输入接口101B接收电源B提供的输入电压VB。以此类推。需要说明的是,图3中以第一开关102具有n个输入端,且n个输入端可用于分别与N个输入接口101A-101N连接作为示例。本申请实施例对第一开关102具有的输入端的数量、第一开关102连接的输入接口101的数量,以及第一开关102通过输入接口101连接的电源的数量不做限定。
在一种实施例中,多输入电源电路10的多个输入电压可以是直流电,多输入电源电路的输出电压可以是直流电。或者,多输入电源电路10的输入电压可以是交流电。当多输入电源电路10的输入电压是交流电,多输入电源电路10还可以对交流电进行电压变换后,提供直流电形式的输出电压Vo。
第一开关102的输出端o连接功率变换电路103的输入端。第一开关102可用于将一个输入端与其输出端o导通,使得功率变换电路103可以通过第一开关102的输出端o和导通的一个输入端连接的输入接口101,功率变换电路103可以通过第一开关102和输入接口101接收输入电压。例如,当第一开关102的输入端a与其输出端o导通。功率变换电路103可以通过第一开关102的输出端o、第一开关102的输入端a连接的输入接口101A,从而接收电源A提供的输入电压VA
功率变换电路103可用于对输入电压进行功率因数校正、电压变换等处理后,提供输出电压Vo。在一种实施例中,功率变换电路103包括功率因数校正(power factor correction,PFC)电路和直流变换(Direct Current-Direct Current,DC-DC)电路。其中,功率因数校正电路用于调整输入电压的功率因数(power factor,PF),直流变换电路用于对输入电压进行电压变换处理得到输出电压Vo,使多输入电源电路10的输入电压的电压值和输出电压Vo的电压值不同。
采样电路104的多个输入端分别连接多个输出接口101,输出端连接控制电路105。采样电路104用于根据多个输入接口101的输入电压的电压值,向控制电路105发送电压反馈信号。其中,电压反馈信号用于指示多输入电源电路10的多个输入电压的电压值。
控制电路105连接采样电路104和第一开关102。控制电路105可用于控制第一开关102。例如,控制电路105可以接收采样电路104发送的电压反馈信号,并根据电压反馈信号控制第一开关102的一个输入端与第一开关102的输出端o导通。
在一种实施例中,控制电路105还连接功率变换电路103。控制电路105可以用于控制功率变换电路103。例如,控制电路105可用于控制功率变换电路103中开关管导通和关断,使功率变换电路103将其输入端接收到的输入电压进行电压变换等处理后,得到输出电压Vo。
在一种实施例中,控制电路105可以是脉冲宽度调制(Pulse-width modulation,PWM)控制器、中央处理单元(central processing unit,CPU)、其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件等。
在一种实施例中,控制电路105可以专用于控制第一开关102。或者,控制电路105还可以集成在功率因数校正电路中,则控制电路105可用于控制第一开关102和功率因数校正电路。或者,控制电路105还可以集成在直流变换电路中,则控制电路105可用于控制第一开关102和直流变换电路。或者,控制电路105还可以集成在功率变换电路103中,则控制电路105可用于控制第一开关102和功率变换电路103。
在一种实施例中,由于多输入电源电路10的输入接口101的输入电压的电压值较高、控制电路105所能够处理的电压信号的电压范围的电压值较低,因此采样电路104还具有隔离的功能,可以提高控制电路105及其所在多输入电源电路10的安全性和可靠性。例如,采样电路104的输入端接收到的输入电压的电压值较高,采样电路104可用于对输入电压进行电压变换处理得到电压值较低的电压反馈信号,并向控制电路105发送电压值较低的电压反馈信号,使控制电路105能够在较为安全的电压范围内对电压反馈信号进行处理。
在现有技术提供的多输入电源电路10中,采样电路104包括光耦等隔离器件,还包括为隔离器件供电的隔离电源等。采样电路104中的光耦可以同时实现如下功能:对输入接口101的输入电压进行采样处理得到电压反馈信号的功能,以及在输入接口101和控制电路105之间的隔离功能。但是,当多输入电源电路10的输入接口101的数量较多时,采样电路104也就需要为每一个输入接口101设置对应的隔离器件和隔离电源,极大地增加了多输入电源电路10的结构复杂度,提高了多输入电源电路10的成本。同时,由于多输入电源电路10内设置的隔离器件及隔离电源等器件数量较多,多输入电源电路10具体实现时连接线路的复杂度较高,连接线路之间会产生更多的干扰。且采样电路104的隔离器件有隔离电源供电属于有源器件,也会产生更多的电磁干扰从而降低多输入电源电路10的整体可靠性。
基于上述现有技术中多输入电源电路10存在的电路复杂度较高的技术问题,本申请提供一种多输入电源电路10,能够降低多输入电源电路10的结构复杂度。下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图4为本申请提供的多输入电源电路一实施例的结构示意图。如图4所示的多输入电源电路10包括:多个输入接口101、第一开关102、功率变换电路103、采样电路104和控制电路105。
图4中以多输入电源电路10包括2个输入接口101A和101B作为示例。输入接口101A的2个输入端分别用于接收电源A提供的输入电压VA的正极VA+和负极VA-。输入接口101B的2个输入端分别用于接收电源B提供的输入电压VB的正极VB+和负极VB-。
第一开关102的输入端a+和输入端a-与输入接口101A连接,第一开关102可以通过输入接口101A 接收电源A提供的输入电压VA。第一开关的输入端b+和输入端b-与输入接口101B连接,第一开关102可以通过输入接口101B接收电源B提供的输入电压VB。第一开关102的正极输出端o+和负极输出端o-分别连接功率变换电路103的输入端。
第一开关102可用于将输入端a+与正极输出端o+导通、将输入端a-与负极输出端o-导通,使得功率变换电路103可以通过第一开关102和输入接口101A接收输入电压VA。或者,第一开关102可用于将输入端b+与正极输出端o+导通、将输入端b-与负极输出端o-导通,使得功率变换电路103可以通过第一开关102和输入接口101B接收输入电压VB
功率变换电路103可用于对接收到的输入电压VA或者输入电压VB进行功率因数校正、电压变换等处理后,提供输出电压Vo。
在一种实施例中,采样电路104包括多个采样子电路。每个采样子电路包括串联的多个电阻。且串联的多个电阻的输入端连接一个输入接口101的正极或者负极,多个电阻的输出端均分别连接控制电路105。
在一种实施例中,多输入电源电路10还包括多个运算放大器,每个运算放大器的正极输入端和负极输入端分别通过一个采样子电路,连接同一个输入接口对应的正极和负极。
例如,在如图4所示的实施例中,采样电路104包括4个采样子电路,记为第一采样子电路1041、第二采样子电路1042、第三采样子电路1043和第四采样子电路1044。其中,第一采样子电路1041包括串联的4个电阻R1-R4,第一采样子电路1041以电阻R1的一端为输入端、电阻R4的一端为输出端。第一采样子电路1041的输入端连接输入接口101A的正极VA+,输出端连接第一运算放大器C1的正极。相应地,第二采样子电路1042的输入端连接输入接口101A的负极VA-,输出端连接第一运算放大器C1的负极。第一运算放大器C1的输出端连接控制电路105。同时,第三采样子电路1043的输入端连接输入接口101B的正极VB+,输出端连接第一运算放大器C2的正极。第四采样子电路1044的输入端连接输入接口101B的负极VB-,输出端连接第二运算放大器C2的负极。第二运算放大器C2的输出端连接控制电路105。
第一采样子电路1041的输入端的正极电压VA+经过4个电阻R1-R4的分压处理得到第一电压反馈信号,第一采样子电路1041的输入端向第一运算放大器C1的正极输出第一电压反馈信号。第二采样子电路1042的输入端的负极电压VA-经过4个电阻R1-R4的分压处理得到第二电压反馈信号,第二采样子电路1042的输入端向第一运算放大器C1的负极输出第二电压反馈信号。第一运算放大器C1根据第一电压反馈信号和第二电压反馈信号向控制电路105提供放大后的输入电压VA的电压反馈信号,该电压反馈信号用于指示电源A提供的输入电压VA的电压值。同理,第二运算放大器C2向控制电路105提供放大后的输入电压VB的电压反馈信号,该电压反馈信号用于指示电源B提供的输入电压VB的电压值。
对于控制电路105,可以根据接收到的输入电压VA的电压反馈信号确定输入电压VA的电压值,并根据接收到的输入电压VB的电压反馈信号确定输入电压VB的电压值。控制电路105可以根据输入电压VA的电压值和输入电压VB的电压值控制第一开关102。或者,控制电路可以根据输入电压VA的电压值和输入电压VB的电压值控制功率变换电路103等。
同时,采样电路104中多个串联的电阻输入端接收到的输入电压经过分压后,多个串联的电阻的输出端提供的电压反馈信号的电压值与输入电压的电压值相比产生了变化。因此,采样电路104中的多个串联的电阻还能够为输入接口101和控制电路105之间提供隔离功能。在具体的实现过程中,采样电路104中串联的多个电阻的具体数量和阻值大小等参数,可以根据多个电阻的输入端的电压值和输出端的电压值进行相应的设置,使多个电阻能够满足隔离的电压要求。例如,当多个电阻的输入端的输入电压的电压值较高时,可以设置更多数量的电阻串联,当多个电阻的输入端的输入电压的电压值较低时,可以设置更少数量的电阻串联等,来保证多个电阻输出端提供的电压反馈信号的电压值,均能够符合控制电路105所能够处理的信号的电压范围。
需要说明的是,如图4所示的示例中,以多输入电源电路10具有2个输入接口为例。当多输入电源电路10具有其他数量的输入接口时,采样电路对应地设置有采样子电路,采样子电路的数量为输入接口的2倍。控制电路105可以根据多个输入电压对应的电压反馈信号,分别确定多个输入电压的电压值。
综上,本实施例提供的多输入电源电路10中,采样电路104包括多个串联的电阻。多个串联的电阻可以根据输入接口101的输入电压为控制电路105提供电压反馈信号,并同时为输入接口101和控制电路105之间提供隔离功能。本实施例提供的采样电路104中,仅通过多个串联的电阻就可以同时实现采样和隔离功能,从而在实现采样和隔离功能的基础上极大地降低了采样电路104的电路结构的复杂度。即使多输入电源电路10的输入接口101的较多,也只需要在采样电路104中增加电阻即可。因此,本实施例提供的多输入电源电路10的结构复杂度较低、成本较低。同时,多输入电源电路10中用于采样和隔离的电阻均属于无源器件,且电阻在设置时连接线路的复杂度较低,因多个串联的电阻所产生的干扰较少,还能够提高多输入电源电路10的整体可靠性。
图5为本申请提供的多输入电源电路一实施例的结构示意图。如图5所示的多输入电源电路包括:多个输入接口101、第一开关102、第二开关107、功率变换电路103、采样电路104和控制电路105。其中,多个输入接口101、第一开关102、功率变换电路103的具体实现方式与图4所示相同,不再赘述。
如图5所示的采样电路104包括第一采样子电路1041和第二采样子电路1042,每个采样子电路包括串联的4个电阻。
第二开关107包括4个输入端。其中,输入端p+连接输入接口101A的正极VA+、输入端p-连接输入接口101A的负极VA-、输入端q+连接输入接口101B的正极VB+、输入端q-连接输入接口101B的负极VB-。第二开关107包括2个输出端。其中,输出端r连接第一采样子电路1041的输入端,输出端s连接第二采样子电路1042的输入端。第一采样子电路1041的输出端连接第一运算放大器C1的正极,第二采样子电路1042的输出端连接第一运算放大器C1的负极。第一运算放大器C1的输出端连接控制电路105。
控制电路105还连接第二开关107的控制端,控制电路105可用于控制第二开关107的一个输入端与其输出端导通。
例如,当控制电路105控制输入接口101A对应的输入端p+与输出端r导通、并控制输入端p-与输出端s导通时,采样电路104可用于通过第二开关107对输入接口101A接收到的输入电压VA进行采样,并通过第一功率放大器C1向控制电路105提供电压反馈信号。同时,采样电路104还用于提供输入接口101A与控制电路105之间的隔离功能。控制电路105可以根据电压反馈信号确定输入接口101A的输入电压VA的电压值。
又例如,当控制电路105控制输入接口101B对应的输入端q+与输出端r导通、并控制输入端q-与输出端s导通时,采样电路104可用于通过第二开关107对输入接口101B接收到的输入电压VB进行采样,并通过第一功率放大器C1向控制电路105提供电压反馈信号。同时,采样电路104还用于提供输入接口101B与控制电路105之间的隔离功能。控制电路105可以根据电压反馈信号确定输入接口101B的输入电压VB的电压值。
需要说明的是,如图5所示的示例中,以多输入电源电路10具有2个输入接口为例。当多输入电源电路10具有其他数量的输入接口时,第二开关107可以设置有其他数量的输入端,且输入端的数量为输入接口的2倍。控制电路105可以控制第二开关107与任一输入接口101对应的输入端与输出端导通,使得采样电路104能够根据该输入接口101的输入电压向控制电路105提供电压反馈信号。控制电路105可以根据接收到的电压反馈信号,确定该任一输入接101口的输入电压的电压值。
在一种实施例中,控制电路105可以控制第二开关107的所有输入端依次与输出端导通,当每个输入端与输出端导通时,采样电路104即可根据输入端连接的输入接口的输入电压,向控制电路105提供电压反馈信号。控制电路105可以依次接收到所有多个输入接口接收到的输入电源对应的多个电压反馈信号,控制电路105可以根据多个电压反馈信号确定多输入电源电路10的多个输入电压的电压值。
综上,本实施例提供的多输入电源电路10中还包括第二开关,控制电路105可以控制第二开关107与一个输入接口对应的输入端与第二开关107的输出端连接,使得采样电路104能够通过第二开关107根据输入接口的输入电压向控制电路105提供电压反馈信号,控制电路105即可根据电压反馈信号确定该输入接口的输入电压的电压值。如果需要确定其他输入接口的输入电压的电压值,控制电路105可以控制第二开关107与其他输入接口对应的输入端与输出端连接。因此,本实施例提供的多输入电源电路10中,只需要设置2个采样子电路,并通过第二开关107控制采样子电路与不同的输入接口101连 接。即使多输入电源电路10的输入接口101的较多,也不需要增加电阻的数量,而只需要增加第二开关107的输入端的数量,从而进一步降低了多输入电源电路10的结构复杂度,进一步降低了多输入电源电路10的成本。
图6为本申请提供的多输入电源电路一实施例的结构示意图。如图6所示的多输入电源电路包括:多个输入接口101、第一开关102、第二开关107、功率变换电路103、采样电路104和控制电路105。其中,多个输入接口101、第一开关102、功率变换电路103的具体实现方式与图4所示相同,不再赘述。
如图5所示的采样电路104包括多个可变电阻。可变电阻的输入端分别连接多个输入接口101的正极或者负极,输出端分别通过运算放大器106连接控制电路105。可变电阻的控制端连接控制电路105,控制电路105可用于控制多个可变电阻的阻值。
例如,在图6所示的实施例中,采样电路104包括4个可变电阻。第一可变电阻1045的输入端连接输入接口101A的正极VA+,输出端连接第一运算放大器C1的正极。第二可变电阻1046的输入端连接输入接口101A的负极VA-,输出端连接第一运算放大器C1的负极。第一运算放大器C1的输出端连接控制电路105。第三可变电阻1047的输入端连接输入接口101B的正极VB+,输出端连接第一运算放大器C2的正极。第四可变电阻1048的输入端连接输入接口101B的负极VB-,输出端连接第二运算放大器C2的负极。第二运算放大器C2的输出端连接控制电路105。
第一可变电阻1045的输入端的正极电压VA+经过分压向第一运算放大器C1输出第一电压反馈信号,第二可变电阻1046的输入端的负极电压VA-经过分压向第一运算放大器C1输出第二电压反馈信号。第一运算放大器C1根据第一电压反馈信号和第二电压反馈信号向控制电路105提供放大后的输入电压VA的电压反馈信号。同理,第二运算放大器C2向控制电路105提供放大后的输入电压VB的电压反馈信号。
控制电路105可以根据接收到的输入电压VA的电压反馈信号确定输入电压VA的电压值,并根据接收到的输入电压VB的电压反馈信号确定输入电压VB的电压值。
控制电路105还可以对每个可变电阻的阻值进行调整。例如,当可变电阻的输入端的输入电压的电压值较高时,控制电路105可以控制可变电阻提高阻值,当可变电阻的输入端的输入电压的电压值较低时,控制电路105可以控制可变电阻降低阻值等,来保证可变电阻输出端提供的电压反馈信号的电压值,均能够符合控制电路105所能够处理的信号的电压范围,保证控制电路105的稳定性。
综上,本实施例提供的多输入电源电路10中,采样电路104通过多个可变电阻根据输入接口101的输入电压为控制电路105提供电压反馈信号,并为输入接口101和控制电路105之间提供隔离功能。本实施例提供的采样电路104在同样具有采样和隔离功能基础上,与现有技术提供的多输入电源电路10的采样电路104中设置的隔离器件和隔离电源相比,极大地降低了电路结构的复杂度。即使多输入电源电路10的输入接口101的较多,也只需要在采样电路104中增加可变电阻即可。且可变电阻的阻值可以根据其输入端的输入电压进行调整,提高了多输入电源电路10的灵活性,使得多输入电源电路10能够应用在输入电压可变等更多不同的场景中,丰富了多输入电源电路10的功能和应用场景。
下面以对本申请实施例提供的控制电路105能够根据电压反馈信号,对第一开关102进行的控制进行说明。可以理解的是,同一个多输入电源电路中的控制电路105可以通过以下的一种或者多种方式对第一开关102进行控制。
在一种实施例中,控制电路105响应于多个输入接口101中,第一输入接口的输入电压的电压值在负载20所需的工作电压范围内,则控制电路105控制该第一输入接口对应的第一开关102的第一输入端与第一开关102的输出端导通。以图4所示的多输入电源电路10为例,当控制电路105根据电压反馈信号确定输入电压VA的电压值和输入电压VB的电压值后,确定输入电压VA的电压值在负载20所需的工作电压范围内、输入电压VB的电压值不在负载20所需的工作电压范围内,说明多输入电源电路10可以根据输入电压VA向负载20提供符合负载20工作要求的输出电压Vo。控制电路105可以控制第一开关102的输入端a+与输出端o+导通、输入端a-与输出端o-导通,使功率变换电路103通过第一开关102接收输入电压VA,并对输入电压VA进行电压变换后向负载20提供输出电压Vo。本实施例中,多输入电源电路10的控制电路105能够从多个电源提供的输入电压中,确定符合负载20工作要求的电源提供的输入电压为负载供电,因此能够保证负载20的稳定工作。
在一种实施例中,控制电路105响应于多个输入接口101中,第一输入接口的输入电压的电压值不在负载20所需的工作电压范围内,则控制电路105控制第一开关102中,与多个输入接口101中的第二输入接口对应的第二输入端与输出端导通。以图4所示的多输入电源电路10为例,当控制电路105确定输入电压VA的电压值不在负载20所需的工作电压范围内,说明多输入电源电路10无法根据输入电压VA向负载20提供符合负载20工作要求的输出电压Vo。控制电路105可以控制第一开关102的输入端b+与输出端o+导通、输入端b-与输出端o-导通。此时,功率变换电路103可以通过第一开关102接收输入电压VB,并对输入电压VB进行电压变换后向负载20提供输出电压Vo。本实施例中,多输入电源电路10的控制电路105能够在一个电源提供的输入电压不能驱动负载20正常工作时,及时切换其他电源提供的输入电压为负载20供电,因此能保证负载20的持续稳定工作。
在一种实施例中,控制电路105响应于多个输入接口101中,所有多个输入接口的输入电压的电压值不在负载20所需的工作电压范围内,则控制电路105控制第一开关102的多个输入端均与第一开关102的输出端断开。本实施例中,多输入电源电路10的控制电路105能够在多个电源提供的输入电压均不能驱动负载20正常工作时,及时通过控制第一开关102断开所有电源提供的输入电压,对多输入电源电路10及后续的负载提供保护,提高了多输入电源电路10的安全性。
在一种实施例中,控制电路105响应于多个输入接口101中,所有多个输入接口101的输入电压的电压值不在负载20所需的工作电压范围内,且多个输入接口101中多个目标输入接口的电压值之和在所需的工作电压范围内,则控制电路105控制多个目标输入接口对应的第一开关102中的输入端串联后,再将串联得到的多个目标输入接口与第一开关102的输出端导通。以图3所示的多输入电源电路10为例,如图3所示的控制电路105可以根据电压反馈信号,确定输入电压VA的电压值、输入电压VB的电压值……输入电压VN的电压值。控制电路105确定输入电压VA的电压值、输入电压VB的电压值……输入电压VN的电压值均不在负载20所需的工作电压范围内,说明多输入电源电路10无法根据任一路单独的输入电压向负载20提供符合负载20工作要求的输出电压Vo。若此时,控制电路105可以确定输入电压VA的电压值V1与输入电压VB的电压值V2之和V1+V2在负载20所需的工作电压范围内。则控制电路105控制第一开关102的输入端a和输入端b串联,得到一个输入端a和输出端b之间的等效电源,该等效电源能够提供的电压值为输入电压VA的电压值V1与输入电压VB的电压值V2之和V1+V2。同时,控制电路105还控制第一开关102的串联后的输入端a和输入端b的整体与第一开关102的输出端o连接,使第一开关102的输入端a和输出端b之间的等效电源通过第一开关102向功率变换电路103提供输入电压,且输入电压的电压值为V1+V2。功率变换电路103可以对输入电压进行电压变换后向负载20提供符合负载20工作要求的输出电压Vo。本实施例中,多输入电源电路10的控制电路105能够在多个电源提供的输入电压均不能驱动负载20正常工作时,还能够控制第一开关102中的部分目标输入接口对应的输入端串联,并与第一开关102的输出接口导通,使多输入电源电路10能够根据这部分目标输入接口连接的电源提供的输入电压的电压值之和,共同向负载20供电,从而保证了负载20在所有电源提供的输入电压均不在工作电压范围内的情况下,依然能够实现持续、正常的工作。
在前述实施例中,对本申请实施例提供的多输入电源电路10中的控制电路105所执行的方法进行了介绍,而为了实现上述本申请实施例提供的方法中的各功能,作为执行主体的控制电路105可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如: 一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调用程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,控制电路105所执行的步骤可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
本申请还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令被执行时可用于执行如本申请前述实施例中任一由控制电路105执行的方法。
本申请实施例还提供一种运行指令的芯片,所述芯片用于执行如本申请前述任一由控制电路105执行的方法。
本申请实施例还提供一种计算机程序产品,所述程序产品包括计算机程序,所述计算机程序存储在存储介质中,至少一个处理器可以从所述存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序时可实现如本申请前述任一由控制电路105执行的方法。
本领域普通技术人员可以理解:实现上述实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括ROM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解:为便于说明本申请技术方案,本申请实施例中通过功能模块进行分别描述,各个模块中的电路器件可能存在部分或全部重叠,不作为对本申请保护范围的限定。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种多输入电源电路,其特征在于,包括:
    多个输入接口、第一开关、功率变换电路、采样电路和控制电路;所述第一开关的多个输入端分别连接所述多个输入接口,所述第一开关的输出端连接所述功率变换电路的输入端;所述采样电路的多个输入端分别连接所述多个输入接口,所述采样电路的输出端连接所述控制电路;
    所述采样电路包括至少一个电阻;所述至少一个电阻用于根据所述多个输入接口的输入电压的电压值,向所述控制电路提供电压反馈信号,所述控制电路用于根据所述电压反馈信号控制所述第一开关。
  2. 根据权利要求1所述的多输入电源电路,其特征在于,所述采样电路包括:
    多个采样子电路,包括串联的多个电阻;所述多个电阻的输入端分别连接所述多个输入接口的正极和负极,所述多个电阻的输出端连接所述控制电路。
  3. 根据权利要求2所述的多输入电源电路,其特征在于,还包括:
    多个运算放大器,所述运算放大器的正极输入端和负极输入端分别通过一个所述采样子电路,连接同一个所述输入接口的正极和负极;所述运算放大器用于对所述采样子电路提供的电压反馈信号进行放大处理后,向所述控制电路提供放大处理后的所述电压反馈信号。
  4. 根据权利要求1所述的多输入电源电路,其特征在于,还包括:
    第二开关,所述第二开关的多个输入端分别连接所述多个输入接口,所述第二开关的输出端连接所述采样电路;所述第二开关的控制端连接所述控制电路,所述控制电路用于控制所述第二开关的一个输入端与所述第二开关的输出端导通,所述采样电路用于采集所述输入端连接的所述输入接口的输入电压的电压值。
  5. 根据权利要求1所述的多输入电源电路,其特征在于,所述采样电路包括:
    多个可变电阻,所述多个可变电阻的输入端分别连接所述多个输入接口的正极和负极,所述多个可变电阻的输出端分别连接所述控制电路,所述多个可变电阻的控制端分别连接所述控制电路;所述控制电路用于控制所述多个可变电阻的阻值。
  6. 根据权利要求1-5任一项所述的多输入电源电路,其特征在于,所述控制电路根据所述电压反馈信号控制所述第一开关,包括以下的一项或多项:
    所述控制电路根据所述电压反馈信号,响应于第一输入接口的输入电压的电压值在负载所需的工作电压范围内,控制所述第一输入接口对应的所述第一开关的第一输入端与所述第一开关的输出端导通;
    所述控制电路根据所述电压反馈信号,响应于第一输入接口的输入电压的电压值不在所述负载所需的工作电压范围内,控制第二输入接口对应的所述第一开关的第二输入端与所述第一开关的输出端导通;
    所述控制电路根据所述电压反馈信号,响应于所述多个输入接口的输入电压的电压值不在所述负载所需的工作电压范围内,控制所述第一开关的多个输入端均与所述第一开关的输出端断开;
    所述控制电路根据所述电压反馈信号,响应于所述多个输入接口的输入电压的电压值不在所述负载所需的工作电压范围内,且所述多个输入接口中多个目标输入接口的电压值之和在负载所需的工作电压范围内,控制所述多个目标输入接口对应的所述第一开关中的输入端串联后,与所述第一开关的输出端导通。
  7. 根据权利要求1-6任一项所述的多输入电源电路,其特征在于,所述功率变换电路包括:功率因数校正电路和直流变换电路。
  8. 根据权利要求7所述的多输入电源电路,其特征在于,
    所述控制电路集成在所述功率因数校正电路中,所述控制电路还用于控制所述功率因数校正电路;或者,所述控制电路集成在所述直流变换电路中,所述控制电路还用于控制所述直流变换电路。
  9. 根据权利要求1-8任一项所述的多输入电源电路,其特征在于,
    所述输入电压为交流电;或者,所述输入电压为直流电。
  10. 一种电子设备,其特征在于,包括:负载和如权利要求1-9任一项所述的多输入电源电路;所述多输入电源电路连接多个电源,用于通过所述多个电源中的任一个电源提供的输入电压向所述负载提供输出电压。
PCT/CN2023/101491 2022-09-28 2023-06-20 多输入电源电路及电子设备 WO2024066508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211190839.7A CN115549220A (zh) 2022-09-28 2022-09-28 多输入电源电路及电子设备
CN202211190839.7 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024066508A1 true WO2024066508A1 (zh) 2024-04-04

Family

ID=84729255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101491 WO2024066508A1 (zh) 2022-09-28 2023-06-20 多输入电源电路及电子设备

Country Status (2)

Country Link
CN (1) CN115549220A (zh)
WO (1) WO2024066508A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549220A (zh) * 2022-09-28 2022-12-30 华为数字能源技术有限公司 多输入电源电路及电子设备
CN116015048B (zh) * 2023-03-27 2023-05-30 杭州顺元微电子有限公司 一种电磁辐射均衡器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864707A (ja) * 1994-08-25 1996-03-08 Hitachi Ltd バイポーラcmos複合論理回路
CN203691236U (zh) * 2014-01-09 2014-07-02 惠州天能源科技有限公司 一种电源变换器
CN215817607U (zh) * 2021-08-31 2022-02-11 深圳市正浩创新科技股份有限公司 供电电路及遥控装置
CN115549220A (zh) * 2022-09-28 2022-12-30 华为数字能源技术有限公司 多输入电源电路及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864707A (ja) * 1994-08-25 1996-03-08 Hitachi Ltd バイポーラcmos複合論理回路
CN203691236U (zh) * 2014-01-09 2014-07-02 惠州天能源科技有限公司 一种电源变换器
CN215817607U (zh) * 2021-08-31 2022-02-11 深圳市正浩创新科技股份有限公司 供电电路及遥控装置
CN115549220A (zh) * 2022-09-28 2022-12-30 华为数字能源技术有限公司 多输入电源电路及电子设备

Also Published As

Publication number Publication date
CN115549220A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2024066508A1 (zh) 多输入电源电路及电子设备
US9490644B2 (en) Reconfigurable compensator with large-signal stabilizing network
US11749829B2 (en) Series-parallel switching device and battery pack including series-parallel switching device
EP3780322A1 (en) Flying capacitor charging method and device
TW202034615A (zh) 自適應組合電源電路和充電架構
US20230042691A1 (en) Charging circuit, charging chip, and electronic device
US20180019599A1 (en) General Control Circuit for Active Balance
US20220337078A1 (en) Battery management circuit for a mobile device
WO2022161184A1 (zh) 电源模块及电源系统
US20210249870A1 (en) Battery control circuit, battery and unmanned aerial vehicle
US9627965B2 (en) Power converter and power supplying method thereof
US10284083B2 (en) DC/DC converter with a flying capacitor
EP4187748A1 (en) Circuit for controlling cell, and electronic device
WO2024078002A1 (zh) 电子设备、电源电路及其控制电路
US20150171663A1 (en) Uninterruptible power systems using current source rectifiers and methods of operating the same
WO2023151364A1 (zh) 充电电路、充电方法、电子设备及存储介质
WO2021208811A1 (zh) 移动终端
JP2003008366A (ja) ディジタル電力増幅器
KR102132633B1 (ko) 지능형 반도체 변압기 시스템의 전력 균형 제어 장치
CN113474984A (zh) 直流-直流变换器
CN217693058U (zh) 一种新型高效功率分配电路
WO2023082108A1 (zh) 电气系统及用电装置
EP4329173A1 (en) Totem-pole power factor correction circuit and power supply module
CN112689948B (zh) 电源变换器及其驱动方法
US20240072650A1 (en) Power module, totem-pole power factor correction circuit, and control circuit thereof