WO2022161184A1 - 电源模块及电源系统 - Google Patents

电源模块及电源系统 Download PDF

Info

Publication number
WO2022161184A1
WO2022161184A1 PCT/CN2022/071869 CN2022071869W WO2022161184A1 WO 2022161184 A1 WO2022161184 A1 WO 2022161184A1 CN 2022071869 W CN2022071869 W CN 2022071869W WO 2022161184 A1 WO2022161184 A1 WO 2022161184A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
control
circuit
output
electrically connected
Prior art date
Application number
PCT/CN2022/071869
Other languages
English (en)
French (fr)
Inventor
袁庆民
范杨平
吕剑
王立
雷艳婷
孙利辉
刘亚飞
Original Assignee
西安领充创享新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安领充创享新能源科技有限公司 filed Critical 西安领充创享新能源科技有限公司
Priority to DE112022000890.3T priority Critical patent/DE112022000890T5/de
Publication of WO2022161184A1 publication Critical patent/WO2022161184A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter

Definitions

  • the present application relates to the technical field of power electronics, and in particular, to a power supply module and a power supply system.
  • Switching power supplies are widely used in aerospace, civil, industrial and other occasions. With the development of power electronics technology, higher requirements have been put forward in terms of volume, reliability and cost of power supply products.
  • the flyback topology As a common basic topology, the flyback topology has the characteristics of simple topology, few components, and input and output isolation, but it is mainly used in low-power applications and cannot be used in high-power applications. For larger power requirements, a parallel flyback topology, a power topology with multiple isolated converters, can be used.
  • the present application provides a power supply module and a power supply system to solve the problem that the control cost of the power supply module in the related art is relatively high, and the parallel connection of multiple independent converters is not supported.
  • a power supply module which may include: a main power topology, a digital controller, and a plurality of analog control circuits; wherein the main power topology includes: a plurality of isolation converters, each isolated converter The input terminal of the isolation converter is electrically connected to a DC input source, and the output terminals of the plurality of isolation converters are all electrically connected to the DC bus;
  • the output end of the digital controller is respectively electrically connected to the control end of each analog control circuit, so as to input a control signal to each analog control circuit;
  • each analog control circuit is electrically connected to the primary side control end of one isolation converter, so that each analog control circuit controls the one isolation converter to work based on the control signal.
  • the DC input source may be a photovoltaic DC input source, a battery DC input source or a combustion battery DC input source.
  • each isolation converter may be a direct current (DC/DC) isolation converter, and each isolation converter converts the energy of a DC input source connected to each isolation converter. output onto the output bus of each of the isolation converters.
  • DC/DC direct current
  • the power module may further include: a plurality of given circuits, the input terminal of each given circuit is electrically connected to the output terminal of the digital controller, and the output terminal of each given circuit is electrically connected to one The control terminal of the analog control circuit, so that each given circuit adjusts the control signal and outputs it to the one analog control circuit.
  • the digital controller may be a digital controller or a digital control chip, the digital controller may have a digital control function, and the digital controller converts an input digital signal based on a preconfigured control rule to generate the A control signal, wherein the control signal is a DC given signal or a pulse control signal.
  • each analog control circuit may have an analog control function, and each analog control circuit may generate a primary side control signal based on a control signal from the digital controller, and output it to the corresponding isolation converter.
  • the primary side control terminal enables the isolation converter to be controlled based on the primary side control signal.
  • the output terminal that outputs the control signal on the digital controller may be a pulse output terminal, and the pulse output terminal of the digital controller terminals are electrically connected to the output terminals of each given circuit.
  • each analog control circuit may include: a control chip and a current inner loop control circuit; the control end of each analog control circuit includes: a first input end of the control chip;
  • the current inner loop control circuit is electrically connected between the first input end and the output end of the control chip, and the output end of the control chip is electrically connected to the primary side control end of the one isolation converter, so that all Under the control of the current inner loop control circuit, the control chip generates a current control signal according to the current given signal input from the first input terminal, and outputs it to the primary side control terminal of the one isolation converter, so as to controlling the input current of the input side of the one isolation converter;
  • the current given signal is a DC given signal of the input current corresponding to the control signal.
  • the power supply module may further include: a plurality of input current sampling circuits, the input end of each input current sampling circuit is electrically connected to the input current sampling point of the one isolation converter, and the plurality of input current sampling circuits The output terminal is electrically connected to the input terminal of the digital controller;
  • the output end of an input current sampling circuit electrically connected to the input current sampling point of the one isolation converter is also electrically connected to the first input end of the control chip, so that the control chip loops the control circuit in the current inner loop. Under the control of the current control signal, the current control signal is generated and output according to the current given signal and the collected input current.
  • each analog control circuit may further include: a voltage limiting loop circuit, and the voltage limiting loop circuit is also electrically connected between the second input end and the output end of the control chip, so that the Under the control of the voltage limiting loop circuit, the control chip generates a voltage control signal according to the voltage given signal input from the second input terminal, and outputs it to the primary side control terminal of the one isolation converter to The output voltage of the output side of the one isolation converter is subjected to analog voltage limiting control.
  • the power module may further include: an output voltage sampling circuit;
  • the input end of the output voltage sampling circuit is electrically connected to the voltage sampling point of the DC bus; the output end of the output voltage sampling circuit is electrically connected to the input end of the digital controller;
  • the output end of the output voltage sampling circuit is also electrically connected to the second input end, so that the control chip can, under the control of the voltage limiting loop circuit, provide the voltage according to the given voltage signal and the sampled output voltage
  • the voltage control signal is generated and output.
  • the power supply module may further include: an output current sampling circuit, the input end of the output current sampling circuit is electrically connected to the current sampling point of the DC bus, and the output end of the output current sampling circuit is electrically connected the input of the digital controller.
  • the power module may further include: an auxiliary power supply, an input side capacitor and two output side capacitors;
  • a plurality of DC input sources are respectively electrically connected to the input side capacitors through a diode, the input side capacitors are electrically connected to the input terminals of the auxiliary power supply, and the output terminals of the auxiliary power supply are electrically connected to the two output side capacitors respectively.
  • the primary side power circuit is a power circuit that is electrically connected to the primary side of the plurality of isolation converters
  • the secondary side power circuit is a secondary side that is electrically connected to the plurality of isolation converters side power circuit.
  • the power supply module may further include: an input voltage sampling circuit, the control terminal of the input voltage sampling circuit is electrically connected to the input and output ports of the digital controller, and the multiple input terminals of the input voltage sampling circuit are respectively A plurality of DC input sources are electrically connected, and the output end of the input voltage sampling circuit is electrically connected to the input end of the digital controller.
  • the input voltage sampling circuit may be a multi-channel analog gating chip, the address terminal of the multi-channel analog gating chip is the control terminal of the input voltage sampling circuit, and the multiple The input terminals are multiple analog input terminals of the multi-channel analog gating chip, and the output terminal of the input voltage sampling circuit is the analog output terminal of the multi-channel analog gating chip.
  • the power module may further include: an output current sampling circuit;
  • the input end of the output current sampling circuit is electrically connected to the current sampling point of the DC bus; the output end of the output current sampling circuit is electrically connected to the input end of the digital controller.
  • the power module may further include: a temperature detection circuit, an output end of the temperature detection circuit is electrically connected to the input end of the digital controller.
  • the temperature detection circuit may be a temperature sensor, the temperature detection circuit is provided inside the housing of the power module, and the temperature detection circuit is configured to measure the ambient temperature inside the power module. Detecting and transmitting the detected ambient temperature to the digital controller so that the digital controller sets a temperature control strategy based on the ambient temperature.
  • a power supply system which may include: a plurality of DC input sources and the power supply module according to any one of the first aspect above, wherein the multiple DC input sources are respectively connected to the power supply module Inputs of multiple isolated converters.
  • the power supply module and power supply system may include: a main power topology, a digital controller, and a plurality of analog control circuits;
  • the main power topology includes: a plurality of isolation converters, and the input terminal of each isolation converter is electrically powered A DC input source is connected, the output terminals of the multiple isolation converters are all electrically connected to the DC bus, and the output terminals of the digital controller are respectively electrically connected to the control terminals of each analog control circuit, so as to input control signals to each analog control circuit, and each The output terminals of the analog control circuits are electrically connected to the primary side control terminal of an isolation converter, so that each analog control circuit controls an isolation converter to work based on a control signal.
  • the power module can control multiple isolation converters through the cooperation of a digital controller and multiple analog control circuits, and realizes the analog-digital hybrid control of the main power topology including multiple isolation converters.
  • the digital controller is flexibly compatible with and self-adaptive control algorithm to realize the functions of DC input source self-adaptation and current control, effectively reducing the control cost required for energy control of the main power topology, and using low-cost analog control circuits to share the resources of the digital controller. Contradictions, effectively support the flexible control of multiple independent parallel occasions.
  • FIG. 1 is a first schematic circuit diagram of a power supply module provided by an embodiment of the present application
  • FIG. 2 is a second schematic circuit diagram of a power supply module provided by an embodiment of the present application.
  • FIG. 3 is a schematic circuit diagram of a given circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram 1 of an analog control circuit in a power module provided by an embodiment of the present application.
  • FIG. 5 is a second schematic diagram of an analog control circuit in a power module provided by an embodiment of the present application.
  • FIG. 6 is a schematic circuit diagram of an isolation converter provided by an embodiment of the present application.
  • FIG. 7 is a schematic circuit diagram of an auxiliary power module provided by an embodiment of the present application.
  • FIG. 8 is a third schematic circuit diagram of a power supply module provided by an embodiment of the present application.
  • FIG. 9 is a fourth schematic circuit diagram of a power module provided by an embodiment of the present application.
  • FIG. 10 is a schematic circuit diagram of a multi-channel analog gating chip provided by an embodiment of the present application.
  • FIG. 11 is a fifth schematic circuit diagram of a power supply module provided by an embodiment of the present application.
  • FIG. 12 is a sixth schematic circuit diagram of a power supply module provided by an embodiment of the present application.
  • FIG. 13 is a schematic circuit diagram of a power supply system provided by an embodiment of the present application.
  • the power supply modules and power supply systems provided by the following embodiments of the present application can be applied to occasions where there are multiple DC input sources, and the input sources and outputs need to be isolated, especially suitable for medium power input low voltage output high voltage, multi-input independent controlled digital scene.
  • the multiple DC input sources may be multiple photovoltaic DC input sources such as photovoltaic panels, multiple battery input sources or multiple fuel cell input sources.
  • the multiple DC input sources may also be other forms of DC input sources.
  • a digital controller can be combined with an analog control circuit to support the function control of a power supply module with an interleaved parallel flyback circuit, making full use of the advantages of good digital information interaction, good design flexibility, and good stability.
  • the low-cost analog control circuit shares the contradiction of insufficient resources of the digital controller, realizes the digital controller and the analog control circuit cooperate to control multiple isolation converters, and realizes the analog-to-digital control of the main power topology including multiple isolation converters.
  • the hybrid control realizes the flexible control function of the main power topology.
  • the digital controller realizes the functions of DC input source self-adaptation and current control through flexible, compatible and self-adaptive control algorithms.
  • the power supply module provided by the present application will be exemplified and explained through a plurality of examples in conjunction with the circuit diagram as follows.
  • FIG. 1 is a schematic circuit diagram 1 of a power supply module provided by an embodiment of the present application.
  • the power supply module may include: a main power topology 11 , a digital controller 12 , and a plurality of analog control circuits 13 .
  • the main power topology 11 includes: a plurality of isolation converters 111 , and each isolation converter 111 is a flyback circuit such as an interleaved parallel flyback circuit.
  • the input end of each isolation converter 111 is electrically connected to a DC input source 20 , and the output ends of the plurality of isolation converters 111 are all electrically connected to the DC bus bar 112 ;
  • the output terminal of the digital controller 12 is electrically connected to the control terminal of each analog control circuit 13 to input a control signal to each analog control circuit 13 .
  • a power module having the plurality of isolation converters 111 may be referred to as a flyback power module.
  • each analog control circuit 13 is electrically connected to the primary side control terminal of one isolation converter 111 , so that each analog control circuit 13 controls one isolation converter 111 to work based on the control signal.
  • the multiple DC input sources 20 in the power module may be photovoltaic DC input sources, battery DC input sources, combustion battery DC input sources, or other forms of DC input sources.
  • Each isolated converter 111 in the main power topology 11 is electrically connected to one DC input source 20 , that is, the main power topology 11 is a parallel solution for a plurality of DC input sources 20 .
  • the plurality of DC input sources 20 are independent of each other.
  • Each DC input source is electrically connected to the input end of an isolation converter 111, which can output high voltage through high-frequency isolation, and can also realize reinforced isolation of input and output, such as reinforced insulation magnetic isolation of input and output, which is more secure and reliable.
  • the power module Compared with the traditional series scheme of multiple DC input sources 20 , the power module provided by the present application is a scheme with multiple DC input sources 20 in parallel, and each isolation converter 111 operates independently without uniform control, which is safe and reliable.
  • the power module can also be called a power optimizer.
  • the multiple DC input sources 20 are multiple photovoltaic DC input sources
  • the possible product form corresponding to the power module can be a photovoltaic power module or a photovoltaic power module. optimizer.
  • Each isolation converter 111 may be a direct current (DC/DC) isolation converter, that is, a DC converter whose input and output are isolated from each other. Each isolation converter 111 can convert the energy of a DC input source connected to it and output it to the output bus of each isolation converter 111 .
  • the output bus bars of the plurality of isolation converters 111 are all connected to the DC bus bar 112 , and the DC bus bar 112 may be a total DC bus bar inside the power module.
  • the DC bus 112 may be electrically connected to the output load through an output capacitor to provide a DC input to the output load.
  • the output load may be, for example, other power electronic devices at the rear stage of the power module.
  • the plurality of isolation converters 111 can be integrated inside the power module.
  • the specific quantity of the isolation converters inside the power module can be flexibly planned and configured according to the preset product planning and actual application occasions.
  • the number of DC input sources 20 connected to the power module is not limited.
  • the isolation converters 111 in the power module can be adapted to various forms of DC input sources.
  • Each isolation converter 111 has an independent maximum power tracking (Maximum Power). Point Tracking, MPPT). In this way, the power module with multiple isolation converters 111 can also implement the MPPT function of multiple DC input sources.
  • the digital controller 12 can be a digital controller or a digital control chip, the digital controller 12 can have a digital control function, and can convert the input digital signal to generate a control signal based on a pre-configured control rule, and the control signal can be a direct current to the control signal. It can also be a pulse control signal such as a pulse width modulation (Pulse Width Modulation, PWM) signal.
  • PWM pulse width modulation
  • each analog control circuit 13 can also have an analog control function, and can generate a primary side control signal based on the control signal from the digital controller 12, and output it to the primary side control terminal of the corresponding isolation converter 111, so that the The isolation converter 111 can be controlled based on the primary side control signal, thereby realizing the analog inner loop control of the isolation converter 111 by the analog control circuit 13 .
  • the flyback circuit usually operates in the peak current mode, the power supply module with multiple isolation converters 111 can realize the average current control of the primary side of the multiple isolation converters 111 by means of analog-digital hybrid control. The power size of the main power topology is adjusted, and then the energy control of the power module is performed.
  • the power supply module may include: a main power topology, a digital controller, and multiple analog control circuits; the main power topology includes: multiple isolation converters, and the input end of each isolation converter is electrically connected to a DC input source, the output ends of the plurality of isolation converters are all electrically connected to the DC bus, and the output ends of the digital controller are respectively electrically connected to the control ends of each analog control circuit, so as to input control signals to each analog control circuit, and each analog control circuit The output end of the is electrically connected to the primary side control end of an isolation converter, so that each analog control circuit controls an isolation converter to work based on the control signal.
  • the power module can control multiple isolation converters through the cooperation of a digital controller and multiple analog control circuits, and realizes the analog-digital hybrid control of the main power topology including multiple isolation converters.
  • the digital controller is flexibly compatible with and self-adaptive control algorithm to realize the functions of DC input source self-adaptation and current control, effectively reducing the control cost required for energy control of the main power topology, and using low-cost analog control circuits to share the resources of the digital controller. Contradictions, effectively support the flexible control of multiple independent parallel occasions.
  • FIG. 2 is a second schematic circuit diagram of a power supply module provided by an embodiment of the present application.
  • the power supply module may further include: a plurality of given circuits 14 , The input terminal of each given circuit 14 is electrically connected to the output terminal of the digital controller 12 , and the output terminal of each given circuit 14 is electrically connected to the control terminal of an analog control circuit 13 , so that each given circuit 14 is capable of controlling the control signal. is adjusted and output to an analog control circuit 13 .
  • FIG. 1 is a second schematic circuit diagram of a power supply module provided by an embodiment of the present application.
  • the power supply module may further include: a plurality of given circuits 14 , The input terminal of each given circuit 14 is electrically connected to the output terminal of the digital controller 12 , and the output terminal of each given circuit 14 is electrically connected to the control terminal of an analog control circuit 13 , so that each given circuit 14 is capable of controlling the control signal. is adjusted and output to an analog control circuit 13 .
  • FIG. 1 is a second schematic circuit diagram
  • connection path between the digital controller 12 , a given circuit 14 and an analog control circuit 13 is used as an example for illustration, and in an actual application scenario, the number of the given circuit 14 and the analog control circuit 13 is The same, they can be connected one by one.
  • the output terminal of the digital controller 12 outputting the control signal may be a pulse output terminal, that is, the pulse output terminal of the digital controller 12 is electrically connected to each given circuit 14 outputs.
  • the pulse control signal can be used as the inner loop given signal, and each given circuit 14 can adjust the pulse control signal to restore the pulse control signal to a DC given signal such as input current The DC given signal Iin_ref.
  • the adjustment processing of the pulse control signal by each given circuit 14 may include, for example, filtering processing, duty cycle adjustment processing, and the like.
  • the power supply module provided by this embodiment can use a given circuit for adjustment processing through the pulse control signal output from the pulse output terminal of the digital controller when the digital-to-analog conversion (DA) resources of the digital controller are insufficient, so as to It is restored to a DC given signal, and a DC given signal is provided for the control end of each analog control circuit to ensure the accuracy of the analog control circuit's control of the isolation converter based on the adjusted control signal.
  • DA digital-to-analog conversion
  • control signal output by the digital controller 12 is a DC given signal
  • the digital controller 12 and the plurality of analog control circuits 13 do not need to set a given circuit, the DC given signal It can be directly output to the plurality of analog control circuits 13 .
  • the DA resources of the digital controller are sufficient, it is not necessary to output the pulse control signal through the pulse control terminal of the digital controller, but output the DC given signal through the DC output terminal of the digital controller.
  • the output terminal of the digital controller mentioned above can be a DC output terminal, and the output control signal is a DC given signal; the output terminal of the digital controller can also be a pulse output terminal, and the output control signal of the digital controller can be a pulse output terminal. It is the pulse control signal.
  • FIG. 3 is a schematic circuit diagram of a given circuit according to an embodiment of the present application.
  • a given circuit 14 may include, for example, a filter circuit 141 and an operational amplifier 142 .
  • the filter circuit 141 may be, for example, an RC filter circuit, that is, it includes a filter resistor and a filter capacitor.
  • the input terminal of the filter circuit 141 is used as the input terminal of the given circuit 14, and is electrically connected to the pulse output terminal of the digital controller 12 to receive the pulse control signal output by the digital controller 12, such as a PWM signal, for example, a PWM signal of 100 kHz.
  • the bandwidth of the filter circuit 141 in the given circuit 14 needs to be greater than or equal to the preset bandwidth threshold, that is, not too low, so as to avoid too much influence on the control loop.
  • the output end of the filter circuit 141 is electrically connected to the non-inverting input end of the operational amplifier 142, the inverse input end of the operational amplifier 142 is electrically connected to the output end of the operational amplifier 142, and the output end of the operational amplifier 142 can be used as the output end of the given circuit 14, It is electrically connected to a control terminal of an analog control circuit 13 to output the processed DC given signal to it.
  • the given circuit provided by this embodiment can perform low-pass filtering on the pulse control signal through the filter circuit 141 under the condition that the digital-to-analog conversion resources of the digital controller are insufficient, and through the follower circuit of the operational amplifier 142, through the adjustment signal to restore the pulse control signal to the DC value, that is, the DC given signal, and output the DC given signal obtained after adjustment to the control terminal of the analog control circuit 13 for the analog control circuit 13 to use according to the input DC Given a signal, the isolation converter 111 is controlled.
  • FIG. 4 is a schematic diagram 1 of an analog control circuit in a power module according to an embodiment of the present application.
  • each analog control circuit 13 shown above includes: a control chip 131 and a current inner loop control circuit 132 .
  • the control terminal of each analog control circuit 13 may include: the first input terminal of the control chip 131 .
  • the first input terminal of the control chip 131 can be used as a control terminal of each analog control circuit 13 to receive the input current given signal, and the first input terminal and the output terminal of the control chip 131 are electrically connected to the current inner loop control In the circuit 132, the output terminal of the control chip 131 is used as the output terminal of each analog control circuit 13, and is electrically connected to the primary side control terminal of an isolated converter 111, so that the control chip 131 is controlled by the current inner loop control circuit 132 according to the
  • the current given signal Iin_ref inputted to the first input terminal generates a current control signal, which is output to the primary side control terminal of an isolation converter to control the input current of the input side of an isolation converter 111 .
  • the current given signal is a DC given signal of the input current corresponding to the control signal output by the digital controller 12 , and may also be a DC given signal after restoration by the given circuit.
  • the first input terminal of the control chip 131 can be electrically connected to the first DC output terminal of the digital controller 12 to receive a DC given signal of the input current output by the digital controller 12 . That is to say, the DC given signal of the input current may be a control signal directly output by the DC output terminal of the digital controller 12 .
  • the first input terminal of the control chip may be electrically connected to the output terminal of the given circuit to receive a given signal of the input current obtained after processing the control signal output by the given circuit to the digital controller. That is to say, the DC given signal of the input current may be the control signal output by the pulse output terminal of the digital controller 12, and the signal processed by the given circuit.
  • the current inner loop control circuit 132 is connected across the first input terminal and the output terminal of the control chip 131, so that the control chip 131 generates current control based on the DC given signal of the input current under the control of the current inner loop control circuit 132. signal, and control the input current of the isolated converter 111 connected to it according to the current control signal, so that the isolated converter 111 can work based on the input current given amount corresponding to the current control signal, thereby realizing the main power topology.
  • the average control of the input currents of the plurality of isolated converters 111 in the middle of the present invention realizes the control of the plurality of isolated converters 111 based on the average current mode.
  • control chip 131 may be a TL494 control chip, and by configuring a corresponding peripheral circuit, a current inner loop control circuit is obtained, so as to realize the control of the current inner loop.
  • the control chip 131 integrates two operational amplifiers, and the control chip 131 can have two sets of input terminals.
  • the first input terminal involved in this embodiment can be any of the two sets of input terminals.
  • the two sets of input terminals may be one set of 1-pin, 2-pin input terminals, and another set of 15-pin and 16-pin input terminals.
  • the output end of the control chip 131 may be 3 pins, that is, the common output end of the two operational amplifiers, and the output logic of the two operational amplifiers is a two-way amplification process.
  • the control chip 131 can amplify the DC given signal of the input current under the control of the current inner loop control circuit 132 to obtain the current control signal.
  • control chip 131 has a power supply, a reference voltage, an oscillator, and two configurable drive outputs, through which a 180-degree staggered output form or a parallel output form can be realized.
  • a current inner loop control circuit 132 is configured around the two operational amplifiers.
  • the input current given signal is amplified by the op amp in the control chip 131, and then a current control signal is generated and output, so as to control the primary side control terminal of the corresponding isolation converter 111 according to the current control signal.
  • the input current of 111 is controlled so that the input currents of the primary sides of the plurality of isolation converters 111 are averaged, that is, the average current of the primary sides.
  • the power supply module provided by this embodiment can realize the control of the current on the input side of the isolation converter, that is, the input current on the primary side based on the DC given signal of the input current through the cooperation of the control chip and the current inner loop control circuit. , so that the input currents of the multiple isolation converters 111 are averaged, and the control of the multiple isolation converters 111 based on the average current mode is realized.
  • FIG. 5 is a second schematic diagram of an analog control circuit in a power module according to an embodiment of the present application. As shown in FIG.
  • each analog control circuit 13 further includes a voltage limiting loop circuit 133 , and the voltage limiting loop circuit 133 is electrically connected between the second input end and the output end of the control chip 131 , so that the control chip Under the control of the voltage limiting loop circuit 133, the voltage control signal 131 generates a voltage control signal according to the voltage given signal input from the second input terminal, and outputs it to the primary side control terminal of an isolation converter 111, so as to control an isolation converter 111 The output voltage of the output side is controlled by analog voltage limiter.
  • the voltage given signal U_ref may be a DC given signal of the output voltage.
  • the control chip 131 can obtain and output a voltage control signal after operational amplifying the input voltage given signal.
  • control terminal of each analog control circuit 13 further includes: a second input terminal of the control chip 131 .
  • the second input terminal of the control chip 131 can be used as another control terminal of each analog control circuit 13, and is electrically connected to the second DC output terminal of the digital controller 12 to receive the DC given signal of the output voltage output by the digital controller 12. , that is, the DC given signal.
  • the given value of the output voltage corresponding to the given voltage signal is determined by the digital controller.
  • the second input terminal of the control chip 131 may be electrically connected to a predetermined voltage dividing connection point of the voltage dividing circuit, so as to receive the resistance voltage division signal of the voltage dividing connection point, and use the resistance voltage division signal as The DC given signal of the output voltage.
  • the given value of the output voltage corresponding to the given voltage signal is a fixed voltage value corresponding to the voltage dividing connection point.
  • the voltage limiting loop circuit 133 is connected across the second input terminal and the output terminal of the control chip 131, so that the control chip 131 generates a voltage control signal based on a given voltage signal under the control of the voltage limiting loop circuit 133, and generates a voltage control signal.
  • the output voltage of the isolated converter 111 to which it is connected is given given control, so that the isolated converter 111 can work based on the given amount of the output voltage corresponding to the given voltage control signal, so as to realize the multi-function in the main power topology.
  • Analog voltage limiting control of the output voltage of the isolated converters 111 Analog voltage limiting control of the output voltage of the isolated converters 111 .
  • a voltage limiting loop circuit 133 is also configured around the two operational amplifiers on the periphery of the control chip 131 .
  • the second input terminal of the control chip 131 may be another set of input terminals between the two sets of input terminals.
  • a voltage control signal is generated, and the voltage control signal is output to the primary side control terminal of the isolation converter 111 to control the corresponding isolation converter based on the voltage control signal
  • the output voltage of 111 is subjected to voltage limiting control.
  • analog voltage limit value corresponding to the voltage control signal may exceed the preset voltage range of the digital voltage limit value of the voltage given signal.
  • the voltage limiting loop circuit in each analog control circuit and the output voltage limiting loop of the digital controller work together to realize the control of the output voltage of the isolation converter. Double voltage limiting protection, through the digital and analog two lines of defense to prevent the uncontrollable voltage caused by sudden load changes.
  • the output end of the control chip 131 in each analog control circuit can output the current control signal under the control of the current inner loop control circuit 132, and can also output the current control signal under the control of the voltage limit Under the control of the pressure loop circuit 133, a voltage control signal is output.
  • the two control signals generated in the control chip 131 that is, the current control signal and the voltage control signal, can be determined in a predetermined manner to determine which control signal is finally output.
  • the signal with the smaller amplitude among the current control signal and the voltage control signal can be output as the target control signal to the primary side controller of the isolation converter through the output end of the control chip 131, Control the isolation converter 111 to implement corresponding control.
  • the current control signal is the target control signal
  • the input current of the isolation converter 111 may be controlled based on the current control signal
  • the voltage control signal is the target control signal
  • the output voltage of the isolation converter 111 may be controlled.
  • FIG. 6 is a schematic circuit diagram of an isolation converter according to an embodiment of the present application.
  • the isolation converter 111 may include: an input capacitor Cin, a first switch transistor Q1, a second switch transistor Q2, a first high-frequency transformer LA, a second high-frequency transformer LB, two transformers, four A diode such as a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, and two output capacitors such as a first output capacitor Co1 and a second output capacitor Co2.
  • Two ends of the input capacitor Cin are respectively electrically connected to two ends of a DC input voltage Vin, and the positive pole of the DC input voltage Vin is respectively connected to a primary input end of the two transformers;
  • the first switch tube Q1 and the second switch tube Q2 are metal insulators Semiconductor field effect transistor (Metal Oxide Semiconductor, MOS), such as NMOS tube.
  • MOS Metal Oxide Semiconductor
  • the source stage of the first switch tube Q1 and the source stage of the second switch tube Q2 are respectively electrically connected to the other primary input ends of the two transformers.
  • the gate of the first switch transistor Q1 and the gate of the second switch transistor Q2 can be used as the primary side control end of the isolation converter 111.
  • the first control signal PWMA and the second control signal PWMB It can be output to the gates of the first and second switching transistors Q1 and the gates of the second switching transistors Q2, respectively.
  • the drain of the first switching transistor Q1 and the drain of the second switching transistor Q2 are further connected to the primary input terminal of the first high frequency transformer LA and the primary input terminal of the second high frequency transformer LB, respectively.
  • the other primary input end of the first high frequency transformer LA and the other primary input end of the second high frequency transformer LB are both grounded. In this way, the primary sides of the two transformers are alternately connected in parallel.
  • the first high-frequency transformer LA and the second high-frequency transformer LB may be, for example, 1:200 high-frequency transformers.
  • Each transformer has two secondary output terminals connected in series, and the two secondary output terminals of each transformer are respectively electrically connected with a diode and an output capacitor.
  • two secondary output terminals of a transformer are electrically connected to the first output capacitor Co1 and the second output capacitor Co2 through the first diode D1 and the second diode D2 respectively.
  • the two secondary output terminals of the other transformer are respectively electrically connected to the first output capacitor Co1 and the second output capacitor Co2 through the third diode D3 and the fourth diode D4.
  • the two output terminals are connected in series, and different transformers and output capacitors are connected in parallel.
  • the secondary sides of the two transformers are first connected in series and then staggered in parallel.
  • the staggered 180 degrees is equivalent to double the frequency. , can reduce the input and output device stress.
  • the isolation converter 111 can automatically achieve voltage equalization through two output capacitors.
  • the isolation converter can be implemented to operate at a preset duty cycle, such as a duty cycle It operates in discontinuous conduction mode (DCM) less than 0.5, and can also work in other modes.
  • the preset duty cycle may be, for example, the duty cycle of the control signal output by the analog control circuit 13 to the isolation converter 111 .
  • the input capacitor Cin, the first output capacitor Co1 and the second output capacitor Co2 in an isolated converter 111 can all be film capacitors, which have high safety and reliability and long service life.
  • the output voltage only depends on the load resistance and input power.
  • the low-voltage side current is large, and multiple switches are used in parallel to reduce the on-state resistance.
  • the output side voltage is high and the current is small, and the oscillation amplitude is large.
  • Silicon carbide diodes or fast recovery diodes with excellent performance can be used.
  • FIG. 7 is a schematic circuit diagram of an auxiliary power module according to an embodiment of the present application.
  • the power module shown above may further include: an auxiliary power module 15 .
  • the auxiliary power supply module 15 may include an auxiliary power supply 151 , an input side capacitor 152 and two output side capacitors 153 .
  • the auxiliary power supply 151 may be an auxiliary power supply chip, or may be an auxiliary power supply of other forms.
  • the plurality of DC input sources 20 are respectively electrically connected to the input side capacitor 152 through a diode, the input side capacitor 152 is electrically connected to the input end of the auxiliary power supply 151, and the output end of the auxiliary power supply 151 is electrically connected to the primary side through two output side capacitors 153 respectively. Electrical circuit and secondary side electrical circuit.
  • the primary side power circuit is the power circuit that electrically connects the primary side of the plurality of isolation converters 111
  • the secondary side power circuit is the power circuit that electrically connects the secondary side of the plurality of isolation converters 111 .
  • the multiple DC input sources 20 are respectively electrically connected to the input side capacitor 152 through a diode, so that the multiple DC input sources 20 are connected in parallel in an "OR" manner, and the DC input of the maximum voltage among the multiple DC input sources 20 is realized.
  • the source provides input for the auxiliary power supply 151 , and as long as any one of the multiple DC input sources 20 has power, the normal operation of the auxiliary power supply 151 can be guaranteed.
  • the voltage on both sides of the input side capacitor 152 is the input voltage of the auxiliary power supply 151 , which is the maximum voltage among the plurality of DC input sources 20 .
  • the two output terminals of the auxiliary power supply 151 are respectively connected to the two output side capacitors 153 to realize the isolation of the two output voltages.
  • the first voltage V1 output by the auxiliary power supply 151 may be the voltage on both sides of one output side capacitor 153
  • the second voltage V2 output by the auxiliary power supply 151 may be the voltage on both sides of the other output side capacitor 153 .
  • the two output side capacitors 153 can be electrically connected to the primary side power circuit and the secondary side power circuit respectively, and provide independent power supply for the primary side power circuit and the secondary side power circuit in an isolated manner.
  • the main power topology The isolation converter is divided into the primary side and the secondary side, and the power supply on the primary side and the secondary side is also isolated.
  • the first voltage V1 can be output to the primary side power circuit
  • the second voltage V2 can be output to the secondary side power circuit.
  • the power circuit on the primary side is the power circuit on the primary side that is electrically connected to the plurality of isolation converters 111 , for example, the digital controller 12 , the analog control circuit 13 and the sampling circuit on the primary side are connected to the primary side, such as the input current Sampling circuit, input voltage sampling circuit, etc.
  • the secondary side power circuit is a power circuit that is electrically connected to the secondary side of the plurality of isolation converters 111 , for example, the output voltage sampling circuit and the output current sampling circuit of the primary side are connected.
  • the power supply voltage required by the primary side power circuit and the secondary side power circuit may not be the same voltage.
  • the power supply voltage of one power circuit is 12V
  • the power supply voltage of another power circuit is 5V
  • the power supply voltage of another power circuit is 3.3V. Therefore, a corresponding power conversion circuit can also be connected between each output side capacitor 153 and the corresponding power circuit to convert the voltage output by the output side capacitor 153 into a corresponding power supply voltage to meet the power supply demand.
  • the power supply module provided by this embodiment can connect multiple DC input sources 20 in parallel in an "OR" manner, and the DC input source with the largest voltage among the multiple DC input sources can provide input for the auxiliary power supply, as long as there is Any one of the DC input sources has power to ensure the normal operation of the auxiliary power supply.
  • FIG. 8 is a third circuit schematic diagram of a power module provided by an embodiment of the present application.
  • the power supply module may further include: a plurality of input current sampling circuits 16 , the input end of each input current sampling circuit 16 is electrically connected to an input current sampling point of the isolation converter 111 , and the plurality of input current sampling circuits The output terminal of 16 is electrically connected to the input terminal of the digital controller 12 .
  • the output terminal of the input current sampling circuit 16 to which the input current sampling point of an isolated converter 111 is electrically connected is electrically connected to the first input terminal of the control chip 131, so that the control chip 131 is controlled by the current inner loop control circuit 132 according to the The current given signal Iin_ref and the collected input current Iin generate and output a current control signal.
  • the control chip generates and outputs a current control signal based on the input current given signal and the collected input current, which can realize loop control of the input current of the corresponding isolation converter 111 , so that the analog control circuit 13 can control the input current of the isolation converter 111 .
  • the control of the input current is more accurate.
  • FIG. 8 a connection path between the digital controller 12, an input current sampling circuit 16, and an analog control circuit 13 is used as an example for illustration, but in an actual application scenario, for multiple input
  • the current sampling circuit 16 and the isolation converter 111 have the same number, the input terminal is electrically connected to the input current sampling point corresponding to the isolation converter 111 , and the output terminal is electrically connected to the input terminal of the analog control circuit 13 corresponding to the isolation converter 111 . .
  • the input current sampling point of each isolation converter 111 may be the current sampling point on the primary side of each isolation converter 111 in the main power topology 11 , that is, the current sampling point of the primary side of the isolation converter 111 .
  • the current sampling points are, for example, the secondary output terminal Ip_A of the first high frequency transformer LA and the secondary output terminal Ip_B of the second high frequency transformer LB in the isolation converter 111 shown in FIG. 6 .
  • the input end of each input current sampling circuit 16 is electrically connected to an input current sampling point of the isolation converter 111 , which can implement sampling of the currents of the first switch Q1 and the second switch Q2 on the primary side of the isolation converter 111 .
  • each isolation converter 111 is electrically connected through the input terminal of the input current sampling circuit 16, such as the secondary side output terminal Ip_A of the first high frequency transformer LA and the secondary side output terminal of the second high frequency transformer LB.
  • the side output terminal Ip_B can realize the DC pulse sampling of the switch tube current in the isolation converter 111 .
  • the input currents on the primary side of the multiple isolation converters are sampled respectively by the multiple input current sampling circuits 16 and output to the analog control circuit 13 and the digital controller 12, which can facilitate the analog control circuit 13 and the digital controller 12 to monitor the power supply.
  • the power of the module is accurately controlled.
  • each of the above-mentioned input current sampling circuits 16 may include: two first diodes and a sampling resistor, the input terminals of each input current sampling circuit 16 are the anodes of the two first diodes, and each isolated conversion The input current sampling point of the converter 111 is the current sampling point of the two switches in each isolation converter 111;
  • the anodes of the two first diodes are electrically connected to the current sampling points of the two switching tubes, respectively, the cathodes of the two first diodes are electrically connected to one end of the sampling resistor, and the other end of the sampling resistor is the source of each input current sampling circuit. output.
  • the current sampling point of the two switching tubes in each isolation converter 111 can be converted into a voltage signal through the sampling resistor, and the pulse triangular wave current signal output by the diode is converted into a voltage signal, and the sampling voltage is two
  • the frequency-multiplied interleaved triangular wave, after filtering such as RC low-frequency filtering, is approximately DC, and sent to the input end of the analog control circuit and digital controller to ensure the accurate control of the input power supply.
  • FIG. 9 is a fourth schematic circuit diagram of a power module provided by an embodiment of the present application.
  • the power supply module may further include: an input voltage sampling circuit 17 , the control terminal of the input voltage sampling circuit 17 is electrically connected to the input and output ports of the digital controller 12 , and a plurality of input terminals of the input voltage sampling circuit 17 are respectively electrically connected to each other.
  • a plurality of DC input sources 20 are connected, and the output terminal of the input voltage sampling circuit 17 is electrically connected to the input terminal of the digital controller 12 .
  • the input voltage sampling circuit 17 may have multiple input terminals and one output terminal, and implement voltage sampling of the multiple DC input sources 20 by means of time-division sampling.
  • the digital controller 12 can output a gating control signal to the control terminal of the input voltage sampling circuit 17 through an input and output port (IO port), and the input voltage sampling circuit 17 can control the input terminal connected to the target DC input source to be connected to the input voltage sampling circuit 17 based on the gating control signal.
  • the output terminals are connected to realize the voltage sampling of the target DC input source.
  • the gating control signal may be, for example, an address gating signal corresponding to the target DC input source.
  • FIG. 10 is a schematic circuit diagram of a multi-channel analog gating chip provided by an embodiment of the present application.
  • the address terminal of the multiplex analog gating chip 171 is the control terminal of the input voltage sampling circuit 17
  • the multiple input terminals of the input voltage sampling circuit 17 are multiple analog input terminals of the multiplex analog gating chip 171 .
  • the output terminal of the input voltage sampling circuit 17 is the analog output terminal of the multi-channel analog gating chip 171 .
  • a multi-channel analog gating chip 171 is used as the input voltage sampling circuit, and 8-channel analog gating chips are used as an example in FIG. 10 .
  • the number of analog input terminals of the multi-channel analog gating chip 171 may be at least greater than or equal to the number of DC input sources connected to the power module.
  • the address pin S0S1S2 of the multi-channel analog gating chip 171 can be used as the control terminal of the input voltage sampling circuit 17 to receive the digital gating address output by the digital controller 12, and can realize a total of 8 gating from address 000 to address 111.
  • Each address can correspond to a DC input source.
  • the analog input terminal A1 in the multi-channel analog gating chip 171 can be connected to the analog output terminal A, and the sampled voltage Vinx is the DC input source of the DC input source connected to the analog input terminal A1.
  • Vin2 input voltage Such as Vin2 input voltage.
  • the input voltage sampling circuit 17 can sample the voltages of multiple DC input sources in a time-division multiplexing manner, so as to realize the time-division sampling of multiple input voltages and effectively solve the problem of digital control. Insufficient digital-to-analog conversion (DA) resources for the device or the high cost of external analog-to-digital converters. Since it takes a certain time to sample the voltage of one DC input source, the holding time of the interval between two adjacent DC input sources can be determined in advance based on the control time precision of the power module.
  • DA digital-to-analog conversion
  • FIG. 11 is a fifth schematic circuit diagram of a power module provided by an embodiment of the present application.
  • the power module further includes: an output voltage sampling circuit 18 .
  • the input end of the output voltage sampling circuit 18 is electrically connected to the voltage sampling point of the DC bus; the output end of the output voltage sampling circuit 18 is electrically connected to the input end of the digital controller 12;
  • the output terminal of the output voltage sampling circuit 18 is also electrically connected to the second input terminal of the control chip 131 , so that the control chip 131 generates the output voltage Vdc according to the given voltage signal U_ref and the sampled output voltage Vdc under the control of the voltage limiting loop circuit 133 . And output voltage control signal.
  • the output terminal of the output voltage sampling circuit 18 is also electrically connected to the second input terminal of the control chip 131, so that the control chip 131 in the analog control circuit 13 can set the signal based on the voltage, and the sampled output voltage can be used for the corresponding isolation converter.
  • the output voltage of the isolation converter 111 is controlled, so that the analog control circuit 13 can control the output voltage of the isolation converter 111 more accurately.
  • the power module further includes: an output current sampling circuit 19 .
  • the input terminal of the output current sampling circuit 19 is electrically connected to the current sampling point of the DC bus.
  • the output terminal of the output current sampling circuit 19 is electrically connected to the input terminal of the digital controller 12 .
  • the voltage sampling point of the DC bus can be the two ends of the output capacitor on the DC bus as DC+ and DC- in Figure 1
  • the current sampling point of the DC bus can be the positive output terminal of the output capacitor on the DC bus, such as DC+.
  • the output voltage Vdc and output current Io of the main power topology in the power module can be sampled through the output voltage sampling circuit and the output current sampling circuit, and then transmitted to the digital controller, effectively ensuring that the digital controller Accurate control of the input current and output voltage of the power module.
  • FIG. 12 is a sixth schematic circuit diagram of a power module provided by an embodiment of the present application.
  • the power module further includes: a temperature detection circuit 200 , and the output end of the temperature detection circuit 200 is also electrically connected to the input end of the digital controller 12 .
  • the temperature detection circuit 200 can be a temperature sensor, which can be arranged inside the casing of the power module, and can be used to detect the ambient temperature inside the power module, and transmit the detected ambient temperature to the digital controller 12, so that the digital controller 12 Setting a temperature control strategy based on the ambient temperature, such as a temperature limit strategy under high temperature, facilitates accurate control of the power module under abnormal temperature conditions and ensures the normal operation of the power module.
  • the power module further includes: a communication interface 201 .
  • the input terminal of the communication interface 201 is also electrically connected to the output terminal of the digital controller 12 .
  • the communication interface 201 may be a communication interface supporting at least one communication mode, for example, a serial communication interface such as an RS485 interface, or a controller area network (Controller Area Network, CAN) interface.
  • the power module can exchange information with the host computer or the data exchange unit through the communication interface 201, and has the function of uploading sampling information, so as to realize the functions of remote sensing, remote signaling and remote control of the power module.
  • the embodiments of the present application may further provide a power supply system including the above-mentioned power supply module.
  • FIG. 13 is a schematic circuit diagram of a power supply system provided by an embodiment of the present application.
  • the power system may include: a plurality of DC input sources 20 and the power module 10 shown in any of the above embodiments, and the plurality of DC input sources 20 are respectively connected to the inputs of the plurality of isolation converters 111 in the power module 10 . end.
  • the power module 10 For the specific structure and description of the power module 10, reference may be made to the above description, and details are not repeated here.
  • the application provides a power module and a power system, which relate to the technical field of power electronics.
  • the power supply module includes: a main power topology, a digital controller, and a plurality of analog control circuits; wherein, the main power topology includes: a plurality of isolation converters, the input end of each isolation converter is electrically connected to a DC input source, and a plurality of isolated converters are connected.
  • the output ends of the converters are all electrically connected to the DC bus; the output ends of the digital controller are electrically connected to the control ends of each analog control circuit; the output ends of each analog control circuit are electrically connected to the primary side control end of an isolated converter.
  • the present application can reduce the control cost of the power module, and can support the parallel connection of multiple independent converters.
  • the power modules and power systems of the present application are reproducible and can be used in a variety of industrial applications.
  • the power module and power system of the present application can be used in the field of power electronics technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供一种电源模块及电源系统,涉及电力电子技术领域。该电源模块包括:主功率拓扑、数字控制器、多个模拟控制电路;其中,主功率拓扑包括:多个隔离变换器,每个隔离变换器的输入端电连接一个直流输入源,多个隔离变换器的输出端均电连接直流母线;数字控制器的输出端电连接每个模拟控制电路的控制端;每个模拟控制电路的输出端电连接一个隔离变换器的原边控制端。本申请可减小电源模块控制成本,且可支持多路独立的变换器并联场合。

Description

电源模块及电源系统
相关申请的交叉引用
本申请要求于2021年01月29日提交中国国家知识产权局的申请号为202110133345.4、名称为“电源模块及电源系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,具体而言,涉及一种电源模块及电源系统。
背景技术
开关电源广泛应用于航天、民用、工业等场合,随着电力电子技术的发展,电源产品的体积、可靠性、成本等方面提出了更高的要求。
反激拓扑作为一种常用的基本拓扑结构,具备拓扑简单、器件少、输入输出隔离等特点,但其主要应用在小功率场合,不能适用于大功率场合。为满足更大的功率需求,可使用并联反激拓扑,即具有多个隔离变换器的功率拓扑。
但是针对并联反激拓扑的控制芯片非常少,价格也比较昂贵,成本很难控制。再者,数字化作为新的方向,但数字控制器的资源不足,很难支持多路独立的变换器并联场合。
发明内容
本申请提供了一种电源模块及电源系统,以解决相关技术的电源模块控制成本较高,且不支持多路独立的变换器并联场合的问题。
本申请实施例采用的技术方案如下:
本申请的一些实施例提供了一种电源模块,可以包括:主功率拓扑、数字控制器、多个模拟控制电路;其中,所述主功率拓扑包括:多个隔离变换器,每个隔离变换器的输入端电连接一个直流输入源,所述多个隔离变换器的输出端均电连接直流母线;
所述数字控制器的输出端分别电连接每个模拟控制电路的控制端,以向所述每个模拟控制电路输入控制信号;
所述每个模拟控制电路的输出端电连接一个隔离变换器的原边控制端,以使得所述每个模拟控制电路基于所述控制信号控制所述一个隔离变换器进行工作。
可选的,所述直流输入源可以为光伏直流输入源、蓄电池直流输入源或者燃烧电池直流输入源。
可选的,所述每个隔离变换器可以为一个直流(DC/DC)隔离变换器,所述每个隔离变换器将所述每个隔离变换器连接的一个直流输入源的能量进行转换后输出到所述每个隔离变换器的输出母线上。
可选的,所述电源模块还可以包括:多个给定电路,每个给定电路的输入端电连接所述数字控制器的输出端,所述每个给定电路的输出端电连接一个模拟控制电路的控制端,以使得所述每个给定电路对所述控制信号的进行调整后输出至所述一个模拟控制电路。
可选的,所述数字控制器可以为数字控制器或者数字控制芯片,所述数字控制器可以具有数字控制功能,所述数字控制器基于预先配置的控制规则将输入的数字信号转换生成所述控制信号,其中,所述控制信号为直流给定信号或者脉冲控制信号。
可选的,所述每个模拟控制电路可以具有模拟控制功能,所述每个模拟控制电路可以基于来自所述数字控制器的控制信号产生原边控制信号,并输出至对应的隔离变换器的原边控制端,使得所述隔离变换器基于原边控制信号进行控制。
可选的,在所述数字控制器输出的控制信号为脉冲控制信号的情况下,所述数字控制器上输出所述控制信号的输出端可以为脉冲输出端,所述数字控制器的脉冲输出端电连接所述每个给定电路的输出端。
可选的,所述每个模拟控制电路可以包括:控制芯片、电流内环控制电路;所述每个模拟控制电路的控制端包括:所述控制芯片的第一输入端;
其中,所述控制芯片的第一输入端和输出端之间电连接所述电流内环控制电路,所述控制芯片的输出端电连接所述一个隔离变换器的原边控制端,以使得所述控制芯片在所述电流内环控制电路的控制下,根据所述第一输入端输入的电流给定信号,产生电流控制信号,并输出至所述一个隔离变换器的原边控制端,以对所述一个隔离变换器的输入侧的输入电流进行控制;
其中,所述电流给定信号为所述控制信号对应的输入电流的直流给定信号。
可选的,所述电源模块还可以包括:多个输入电流采样电路,每个输入电流采样电路的输入端电连接所述一个隔离变换器的输入电流采样点,所述多个输入电流采样电路的输出端电连接所述数字控制器的输入端;
所述一个隔离变换器的输入电流采样点所电连接的一个输入电流采样电路的输出端还电连接所述控制芯片的第一输入端,以使得所述控制芯片在所述电流内环控制电路的控制下,根据所述电流给定信号和采集到的输入电流产生并输出所述电流控制信号。
可选的,所述每个模拟控制电路还可以包括:电压限压环电路,所述控制芯片的第二输入端和输出端之间还电连接所述电压限压环电路,以使得所述控制芯片在所述电压限压环电路的控制下,根据所述第二输入端输入的电压给定信号,产生电压控制信号,并输出至所述一个隔离变换器的原边控制端,以对所述一个隔离变换器的输出侧的输出电压进行模拟限压控制。
可选的,所述电源模块还可以包括:输出电压采样电路;
所述输出电压采样电路的输入端电连接所述直流母线的电压采样点;所述输出电压采样电路的输出端电连接所述数字控制器的输入端;
所述输出电压采样电路的输出端还电连接所述第二输入端,以使得所述控制芯片在所述电压限压环电路的控制下,根据所述电压给定信号和采样到的输出电压产生并输出所述电压控制信号。
可选的,所述电源模块还可以包括:输出电流采样电路,所述输出电流采样电路的输入端电连接所述直流母线的电流采样点,所述输出电流采样电路的所述输出端电连接所述数字控制器的所述输入端。
可选的,所述电源模块还可以包括:辅助电源、输入侧电容和两个输出侧电容;
多个直流输入源分别通过一个二极管电连接所述输入侧电容,所述输入侧电容电连接所述辅助电源的输入端,所述辅助电源的输出端分别通过所述两个输出侧电容电连接原边侧用电电路和副边侧用电电路;
其中,所述原边侧用电电路为电连接所述多个隔离变换器的原边侧的用电电路,所述副边侧用电电路为电连接所述多个隔离变换器的副边侧的用电电路。
可选的,所述电源模块还可以包括:输入电压采样电路,所述输入电压采样电路的控制端电连接所 述数字控制器的输入输出端口,所述输入电压采样电路的多个输入端分别电连接多个直流输入源,所述输入电压采样电路的输出端电连接所述数字控制器的输入端。
可选的,所述输入电压采样电路可以为多路模拟选通芯片,所述多路模拟选通芯片的地址端为所述输入电压采样电路的控制端,所述输入电压采样电路的多个输入端为所述多路模拟选通芯片的多个模拟输入端,所述输入电压采样电路的输出端为所述多路模拟选通芯片的模拟输出端。
可选的,所述电源模块还可以包括:输出电流采样电路;
所述输出电流采样电路的输入端电连接所述直流母线的电流采样点;所述输出电流采样电路的输出端电连接所述数字控制器的输入端。
可选的,所述电源模块还可以包括:温度检测电路,所述温度检测电路的输出端电连接所述数字控制器的输入端。
可选的,所述温度检测电路可以为温度传感器,所述温度检测电路设置在所述电源模块的壳体内部,所述温度检测电路被配置成用于对所述电源模块内部的环境温度进行检测,并将检测到的环境温度传输至所述数字控制器,使得所述数字控制器基于环境温度设置温度控制策略。
本申请的另一些实施例还提供一种电源系统,可以包括:多个直流输入源和上述第一方面中任一所述的电源模块,所述多个直流输入源分别连接所述电源模块中多个隔离变换器的输入端。
本申请的有益效果至少包括:
本申请实施例所提供的电源模块及电源系统,可包括:主功率拓扑、数字控制器、多个模拟控制电路;主功率拓扑包括:多个隔离变换器,每个隔离变换器的输入端电连接一个直流输入源,多个隔离变换器的输出端均电连接直流母线,数字控制器的输出端分别电连接每个模拟控制电路的控制端,以向每个模拟控制电路输入控制信号,每个模拟控制电路的输出端电连接一个隔离变换器的原边控制端,以使得每个模拟控制电路基于控制信号控制一个隔离变换器进行工作。该电源模块,可通过数字控制器与多个模拟控制电路配合对多个隔离变换器进行控制,实现了对包括多个隔离变换器的主功率拓扑的模数混合控制,数字控制器通过灵活兼容和自适应的控制算法,实现直流输入源自适应以及电流控制等功能,有效减少了对主功率拓扑的能量控制所需的控制成本,采用价格低廉的模拟控制电路分担数字控制器的资源不足的矛盾,有效支持多路独立的并联场合的灵活控制。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的电源模块的电路示意图一;
图2为本申请实施例提供的电源模块的电路示意图二;
图3为本申请实施例提供的一种给定电路的电路示意图;
图4为本申请实施例提供的一种电源模块中模拟控制电路的示意图一;
图5为本申请实施例提供的一种电源模块中模拟控制电路的示意图二;
图6为本申请实施例提供的一种隔离变换器的电路示意图;
图7为本申请实施例提供的一种辅助电源模块的电路示意图;
图8为本申请实施例提供的电源模块的电路示意图三;
图9为本申请实施例提供的电源模块的电路示意图四;
图10为本申请实施例提供的多路模拟选通芯片的电路示意图;
图11为本申请实施例提供的电源模块的电路示意图五;
图12为本申请实施例提供的电源模块的电路示意图六;
图13为本申请实施例提供的一种电源系统的电路示意图。
附图标记:
11-主功率拓扑;12-数字控制器;13-模拟控制电路;111-隔离变换器;20-直流输入源;112-直流母线;131-控制芯片;132-电流内环控制电路;Iin_ref-电流给定信号;133-电压限压环电路;U_ref-电压给定信号;14-给定电路;141-滤波电路;142-运算放大器;Cin-输入电容;Q1-第一开关管;Q2-第二开关管;LA-第一高频互感器;LB-第二高频互感器;D1-第一二极管;D2-第二二极管;D3-第三二极管;D4-第四二极管;Co1-第一输出电容;Co2-第二输出电容;15-辅助电源模块;151-辅助电源;152-输入侧电容;153-输出侧电容;16-输入电流采样电路;Iin-输入电流;Ip_A-副边输出端;Ip_B-副边输出端;Vin-直流输入电压;17-输入电压采样电路;171-多路模拟选通芯片;18-输出电压采样电路;Vdc-输出电压;19-输出电流采样电路;Io-输出电流;200-温度检测电路;201-通信接口;10-电源模块。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
本申请下述各实施例提供的电源模块和电源系统可应用于存在多个直流输入源,且,输入源和输出需要隔离的场合,尤其适用于输入低压输出高压的中等功率、多路输入独立控制的数字化场景中。例如,可应用于光伏、蓄电池、燃料电池等场合。相应的,多个直流输入源可以为多个光伏直流输入源如光伏电池板、多个蓄电池输入源或者多个燃料电池输入源。在其它的一些应用场合中,该多个直流输入源也可以为其它形式的直流输入源。
本申请实施例提供可将数字控制器与模拟控制电路结合,支持具有交错并联反激电路的电源模块的功能控制,充分利用了数字化信息交互好、设计灵活型好、稳定好的优点,采用价格低廉的模拟控制电路分担数字控制器的资源不足的矛盾,实现数字控制器与模拟控制电路配合控制对多个隔离变换器进行控制,实现了对包括多个隔离变换器的主功率拓扑的模数混合控制,实现了主功率拓扑的灵活控制功能,数字控制器通过灵活兼容和自适应的控制算法,实现直流输入源自适应以及电流控制等功能。
如下结合电路图通过多个实例对本申请所提供的电源模块进行示例解释说明。
图1为本申请实施例提供的电源模块的电路示意图一,如图1所示,该电源模块可包括:主功率拓扑11、数字控制器12、多个模拟控制电路13。其中,主功率拓扑11包括:多个隔离变换器111,每个隔离变换器111为一个反激电路如交错并联反激电路。每个隔离变换器111的输入端电连接一个直流输入源20,多个隔离变换器111的输出端均电连接直流母线112;
数字控制器12的输出端电连接每个模拟控制电路13的控制端,以向每个模拟控制电路13输入控制信号。具有该多个隔离变换器111的电源模块可以称为反激电源模块。
每个模拟控制电路13的输出端电连接一个隔离变换器111的原边控制端,以使得每个模拟控制电路13基于控制信号控制一个隔离变换器111进行工作。
该电源模块中多个直流输入源20可以为光伏直流输入源、蓄电池直流输入源或者燃烧电池直流输入源,又或者其它形式的直流输入源。该主功率拓扑11中的每个隔离变换器111电连接一个直流输入源20,即,主功率拓扑11为针对多个直流输入源20的并联方案。该多个直流输入源20彼此之间相互独立。每个直流输入源电连接一个隔离变换器111的输入端,即可通过高频隔离输出高压,还可实现输入和输出的加强隔离,如输入输出的加强绝缘磁隔离,更加安全可靠。相比较传统的多个直流输入源20的串联方案,本申请所提供的电源模块为多个直流输入源20并联的方案,各个隔离变换器111独立运行,无需均匀控制,安全可靠。该电源模块,还可称为一种功率优化器,示例的,若该多个直流输入源20为多个光伏直流输入源,则该电源模块对应的可能产品形态可以为光伏电源模块或者光伏功率优化器。
每个隔离变换器111可以为一个直流(DC/DC)隔离变换器,即输入和输出相互隔离的直流变换器。每个隔离变换器111可将其连接的一个直流输入源的能量进行转换后输出到该每个隔离变换器111的输出母线上。多个隔离变换器111的输出母线均连接至直流母线112,该直流母线112可以为电源模块内部的总直流母线。直流母线112可通过输出电容电连接至输出负载,以为输出负载提供直流输入。该输出负载例如可以为该电源模块后级的其它电力电子设备。
该多个隔离变换器111可集成在电源模块内部。该电源模块内部的隔离变换器的具体数量,可根据预设的产品规划以及实际应用场合进行灵活规划和配置。接入电源模块的直流输入源20的数量不限制,该电源模块中的隔离变换器111可自适应各种形式的直流输入源,每个隔离变换器111均具备独立的最大功率跟踪(Maximum Power Point Tracking,MPPT)。如此,具有多个隔离变换器111的电源模块还可实现多个直流输入源的MPPT功能。
数字控制器12可以为一个数字控制器或者数字控制芯片,该数字控制器12可具有数字控制功能,可基于预先配置的控制规则将输入的数字信号转换生成控制信号,该控制信号可以为直流给定信号,也可以为脉冲控制信号如脉冲宽度调制(Pulse Width Modulation,PWM)信号。
相应的,每个模拟控制电路13也可具有模拟控制功能,可基于来自数字控制器12的控制信号,产生原边控制信号,并输出至对应的隔离变换器111的原边控制端,使得该隔离变换器111可基于该原边控制信号进行控制,实现了模拟控制电路13对隔离变换器111的模拟内环控制。由于反激电路通常动作在峰值电流模式下,而具有多个隔离变换器111的电源模块,可通过模数混合控制的方式,实现了多个隔离变换器111的原边平均电流控制,实现对主功率拓扑的功率大小调节,继而进行电源模块的能量控制。
本实施例所提供的电源模块,可包括:主功率拓扑、数字控制器、多个模拟控制电路;主功率拓扑包括:多个隔离变换器,每个隔离变换器的输入端电连接一个直流输入源,多个隔离变换器的输出端均电连接直流母线,数字控制器的输出端分别电连接每个模拟控制电路的控制端,以向每个模拟控制电路输入控制信号,每个模拟控制电路的输出端电连接一个隔离变换器的原边控制端,以使得每个模拟控制电路基于控制信号控制一个隔离变换器进行工作。该电源模块,可通过数字控制器与多个模拟控制电路配合对多个隔离变换器进行控制,实现了对包括多个隔离变换器的主功率拓扑的模数混合控制,数字控制器通过灵活兼容和自适应的控制算法,实现直流输入源自适应以及电流控制等功能,有效减少了对主 功率拓扑的能量控制所需的控制成本,采用价格低廉的模拟控制电路分担数字控制器的资源不足的矛盾,有效支持多路独立的并联场合的灵活控制。
在上述图1所示的电源模块的基础上,本申请实施例还可提供一种电源模块可能示例。图2为本申请实施例提供的电源模块的电路示意图二,如图2所示,在上述图1所示的电源模块的基础上,该电源模块中还可包括:多个给定电路14,每个给定电路14的输入端电连接数字控制器12的输出端,每个给定电路14的输出端电连接一个模拟控制电路13的控制端,以使得每个给定电路14对控制信号的进行调整后输出至一个模拟控制电路13。该图2中以数字控制器12、一个给定电路14和一个模拟控制电路13之间的一个连接通路进行示例说明,而在实际的应用场景中,给定电路14和模拟控制电路13的数量相同,其一一对应连接即可。
若数字控制器12输出的控制信号为脉冲控制信号,该数字控制器12上输出该控制信号的输出端可以为脉冲输出端,即该数字控制器12的脉冲输出端电连接每个给定电路14的输出端。在该实施例中,可将脉冲控制信号可作为内环给定信号,每个给定电路14可通过对脉冲控制信号进行调整处理,以将该脉冲控制信号还原为直流给定信号如输入电流的直流给定信号Iin_ref。其中,每个给定电路14对脉冲控制信号的调整处理例如可以包括滤波处理以及占空比调节处理等。
该实施例提供的电源模块,可在数字控制器的数模转换(DA)资源不足的情况下,通过数字控制器的脉冲输出端输出的脉冲控制信号,并采用给定电路进行调整处理,以将其还原至直流给定信号,为每个模拟控制电路的控制端,提供直流给定信号,保证模拟控制电路基于调整后的控制信号对隔离变换器的控制的准确度。
需要说明的是,若该数字控制器12输出的控制信号为直流给定信号,则该电源模块中,数字控制器12和多个模拟控制电路13可无需设置给定电路,该直流给定信号可直接输出至该多个模拟控制电路13。
若数字控制器的DA资源充足的情况下,可无需通过数字控制器的脉冲控制端输出脉冲控制信号,通过数字控制器的直流输出端输出直流给定信号即可。
也就是说,如上提及的数字控制器的输出端可以为直流输出端,其输出的控制信号即为直流给定信号;数字控制器的输出端也可以为脉冲输出端,其输出的控制信号即为脉冲控制信号。
示例的,如下还提供一种给定电路的可能实现方式。图3为本申请实施例提供的一种给定电路的电路示意图。如图3所示,给定电路14例如可包括:滤波电路141和运算放大器142。其中,滤波电路141例如可以为RC滤波电路,即包括:滤波电阻和滤波电容。滤波电路141的输入端作为给定电路14的输入端,电连接数字控制器12的脉冲输出端,以接收数字控制器12输出的脉冲控制信号,如PWM信号例如可以为100kHz的PWM信号。需要指出的是,在该给定电路14中滤波电路141的带宽需大于或等于预设的带宽阈值,即不能太低,以避免对控制环路带来的太大的影响。
滤波电路141的输出端电连接运算放大器142的同向输入端,运算放大器142的反向输入端电连接运算放大器142的输出端,运算放大器142的输出端可作为给定电路14的输出端,与一个模拟控制电路13的控制端电连接,以向其输出处理后的直流给定信号。
该实施例提供的给定电路,可在数字控制器的数模转换资源不足的情况下,通过滤波电路141,对 脉冲控制信号进行低通滤波,通过运算放大器142的跟随器电路,通过调整信号的占空比,以将脉冲控制信号还原至直流量即直流给定信号,并将调节之后得到的直流给定信号输出至模拟控制电路13的控制端,以供模拟控制电路13根据输入的直流给定信号,对隔离变换器111进行控制。
在上述实施例提供的电源模块的基础上,本申请实施例还提供一种模拟控制电路的内部结构,以实现隔离变换器的输入电流的内环控制。图4为本申请实施例提供的一种电源模块中模拟控制电路的示意图一。如图4所示,如上所示的每个模拟控制电路13包括:控制芯片131、电流内环控制电路132。每个模拟控制电路13的控制端可包括:控制芯片131的第一输入端。
其中,控制芯片131的第一输入端可作为每个模拟控制电路13的一个控制端,接收输入的电流给定信号,控制芯片131的第一输入端和输出端之间电连接电流内环控制电路132,控制芯片131的输出端作为每个模拟控制电路13的输出端,电连接一个隔离变换器111的原边控制端,以使得控制芯片131在电流内环控制电路132的控制下,根据第一输入端输入的电流给定信号Iin_ref,产生电流控制信号,并输出至一个隔离变换器的原边控制端,以对一个隔离变换器111的输入侧的输入电流进行控制。
其中,电流给定信号为数字控制器12输出的控制信号对应的输入电流的直流给定信号,也可以为经过上述给定电路还原之后的直流给定信号。
在一种示例中,控制芯片131的第一输入端可电连接数字控制器12的第一直流输出端,以接收数字控制器12输出的输入电流的直流给定信号。也就是说,该输入电流的直流给定信号可以为数字控制器12的直流输出端直接输出的控制信号。
在另一种示例中,控制芯片的第一输入端可电连接上述给定电路的输出端,以接收给定电路对该数字控制器输出的控制信号处理之后得到的输入电流的给定信号。也就是说,该输入电流的直流给定信号可以为数字控制器12的脉冲输出端输出的控制信号,经过给定电路处理之后的信号。
电流内环控制电路132跨接在控制芯片131的第一输入端和输出端之间,使得控制芯片131在电流内环控制电路132的控制下,基于输入电流的直流给定信号,产生电流控制信号,并根据该电流控制信号对其连接的隔离变换器111的输入电流进行给定控制,使得隔离变换器111可基于该电流控制信号对应的输入电流给定量进行工作,从而实现了主功率拓扑中多个隔离变换器111的输入电流的平均控制,实现了基于平均电流模式对多个隔离变换器111的控制。
示例的,控制芯片131可以为TL494控制芯片,通过配置对应的外围电路,得到电流内环控制电路,以实现电流内环的控制。
以TL494控制芯片为例,控制芯片131内部集成了两个运放,控制芯片131可具有两组输入端,该实施例中所涉及的第一输入端,可以为该两组输入端中的任一组输入端。该两组输入端可以为1引脚、2引脚的一组输入端,以及15引脚和16引脚的另一组输入端。控制芯片131的输出端可以为3引脚,即两个运放共同的输出端,该两个运放的输出逻辑为两路放大处理。控制芯片131可在电流内环控制电路132的控制下,对输入电流的直流给定信号进行放大,得到电流控制信号。
此外,控制芯片131内还有供电、参考电压、振荡器,以及两路可配置的驱动输出,通过该两路可配置的驱动输出可实现交错180度的输出形式,或者,并联输出形式。
该控制芯片131的外围,围绕两个运放配置电流内环控制电路132。输入的电流给定信号,通过控制芯片131中的运放进行放大之后,产生并输出电流控制信号,以根据电流控制信号,控制对应隔离变 换器111的原边控制端,实现了对隔离变换器111的输入电流的控制,使得多个隔离变换器111的原边的输入电流平均,即原边的平均电流。
该实施例提供的电源模块,可通过控制芯片和电流内环控制电路的配合,基于输入电流的直流给定信号,实现了对隔离变换器的输入侧的电流,也就是原边输入电流的控制,使得多个隔离变换器111的输入电流平均,实现了基于平均电流模式对多个隔离变换器111的控制。
可选的,本申请实施例还可提供一种模型控制电路的内部结构,以实现隔离变换器的输出电压进行限压控制。图5为本申请实施例提供的一种电源模块中模拟控制电路的示意图二。如图5所示,该每个模拟控制电路13还包括:电压限压环电路133,控制芯片131的第二输入端和输出端之间还电连接电压限压环电路133,以使得控制芯片131在电压限压环电路133的控制下,根据第二输入端输入的电压给定信号,产生电压控制信号,并输出至一个隔离变换器111的原边控制端,以对一个隔离变换器111的输出侧的输出电压进行模拟限压控制。
其中,该电压给定信号U_ref可以为输出电压的直流给定信号。控制芯片131可在电压限压环电路133的控制下,将输入的电压给定信号进行运放后,得到并输出电压控制信号。
在一种示例中,每个模拟控制电路13的控制端还包括:控制芯片131的第二输入端。控制芯片131的第二输入端可作为每个模拟控制电路13的另一个控制端,电连接数字控制器12的第二直流输出端,以接收数字控制器12输出的输出电压的直流给定信号,即该直流给定信号。在该示例中,该电压给定信号对应的输出电压的给定值是由数字控制器决定的。
在另一种示例中,控制芯片131的第二输入端可电连接预设的分压电路的分压连接点,以接收分压连接点的电阻分压信号,并将该电阻分压信号作为输出电压的直流给定信号。在该另一种示例中,该电压给定信号对应的输出电压的给定值是为该分压连接点对应的固定电压值。
电压限压环电路133跨接在控制芯片131的第二输入端和输出端之间,使得控制芯片131在电压限压环电路133的控制下,基于电压给定信号,产生电压控制信号,并根据该电压给定信号对其连接的隔离变换器111的输出电压进行给定控制,使得隔离变换器111可基于该电压控制信号对应的输出电压给定量进行工作,从而实现了主功率拓扑中多个隔离变换器111的输出电压的模拟限压控制。
继续以TL494控制芯片为例,该控制芯片131的外围,围绕两个运放还配置有电压限压环电路133。控制芯片131的第二输入端可以为两组输入端之间的另外一组输入端。
输入的电压给定信号,通过控制芯片131进行放大之后,产生电压控制信号,并将该电压控制信号,输出至隔离变换器111的原边控制端,以基于该电压控制信号控制对应隔离变换器111的输出电压进行限压控制。
需要说明的是,电压控制信号对应的模拟限压值可超出电压给定信号的数字限压值预设电压范围。
该实施例提供的电源模块中,在每个模拟控制电路中的电压限压环电路和数字控制器的输出限压环(文中未进行详细说明)共同作用,实现对隔离变换器的输出电压的双重限压保护,通过数字和模拟两道防线防止负载突然变化造成的电压不可控。
需要指出的是,由于该实施例提供的电源模块中,每个模拟控制电路中控制芯片131的输出端即可在电流内环控制电路132的控制下,输出电流控制信号,也可在电压限压环电路133的控制下,输出电压控制信号。控制芯片131中产生的两路控制信号,即电流控制信号和电压控制信号,可以预设的取决 方式决定最终输出哪一路控制信号。示例的,以取小的取决方式为例,该电流控制信号和电压控制信号中幅值小的信号,可作为目标控制信号通过控制芯片131的输出端输出至隔离变换器的原边控制器,控制隔离变换器111实现对应的控制。例如若电流控制信号为目标控制信号,则可基于该电流控制信号,控制隔离变换器111的输入电流;若电压控制信号为目标控制信号,则可控制隔离变换器111中的输出电压。
在另外一种示例中,本申请实施例还可提供一种隔离变换器的可能实现方式。图6为本申请实施例提供的一种隔离变换器的电路示意图。如图6所示,隔离变换器111可包括:输入电容Cin、第一开关管Q1、第二开关管Q2、第一高频互感器LA、第二高频互感器LB、两个变压器、四个二极管如第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4,以及两个输出电容如第一输出电容Co1和第二输出电容Co2。
输入电容Cin的两端分别电连接一个直流输入电压Vin的两端,直流输入电压Vin的正极分别连接两个变压器的一个原边输入端;第一开关管Q1和第二开关管Q2为金属绝缘体半导体场效应晶体管(Metal Oxide Semiconductor,MOS),例如NMOS管。该第一开关管Q1的源级和第二开关管Q2的源级分别电连接两个变压器的另一个原边输入端。第一开关管Q1的栅极和第二开关管Q2的栅极可作为隔离变换器111的原边控制端,模拟控制电路13输出的信号中,第一控制信号PWMA和第二控制信号PWMB,可分别输出至第一一开关管Q1的栅极和第二开关管Q2的栅极。
第一开关管Q1的漏极和第二开关管Q2的漏极还分别连接第一高频互感器LA的原边输入端和第二高频互感器LB的原边输入端。第一高频互感器LA的另一原边输入端和第二高频互感器LB的另一原边输入端均接地。如此,对于两个变压器的原边交错并联。第一高频互感器LA和第二高频互感器LB例如可以为1:200的高频互感器。
每个变压器分别具有串联的两个副边输出端,每个变压器的两个副边输出端分别电连接一个二极管和一个输出电容。例如,一个变压器的两个副边输出端分别通过第一二极管D1的和第二二极管D2电连接第一输出电容Co1和第二输出电容Co2。另一个变压器的两个副边输出端分别通过第三二极管D3的和第四二极管D4电连接第一输出电容Co1和第二输出电容Co2。
对于每个变压器的副边,两个输出端之间串联,不同变压器与输出电容之间并联,如此,对于两个变压器的副边先串联后交错并联,其交错180度,等效2倍频,可减小输入输出的器件应力。
隔离变换器111中通过两个输出电容,可自动实现均压。通过输入至第一开关管Q1的栅极和第二开关管Q2的栅极的第一控制信号PWMA和第二控制信号PWMB可实现隔离变换器在预设占空比进行工作,例如占空比小于0.5的断续导通模式(Discontinuous Conduction Mode,DCM)进行动作,也可工作在其他模式。该预设占空比例如可以为模拟控制电路13输出至隔离变换器111的控制信号的占空比。
该主功率拓扑11中,一个隔离变换器111中的输入电容Cin、第一输出电容Co1和第二输出电容Co2均可采用薄膜电容,安全可靠性高,寿命长。例如,交错并联反激电路的隔离变换器,在DCM模式下,输出电压只取决于负载电阻和输入功率,通过设计合适的变压器变比参数在满足应力情况下,因此可以轻松输出高压。低压侧电流大,采用多个开关管并联降低通态电阻,输出侧电压高电流小,震荡幅度大,可采用碳化硅二极管或者性能极好的快恢复二极管。
在其他的一些可能实现方式中,本申请实施例还可提供一种电源模块的实现示例,如下配合辅助电源对电源模块中电路的供电进行示例说明。图7为本申请实施例提供的一种辅助电源模块的电路示意图。如图7所示,如上所示的电源模块还可包括:辅助电源模块15。该辅助电源模块15可包括:辅助电源151、输入侧电容152和两个输出侧电容153。其中,辅助电源151可以为一个辅助电源芯片,也可以为其他形态的辅助电源。
多个直流输入源20分别通过一个二极管电连接输入侧电容152,输入侧电容152电连接辅助电源151的输入端,辅助电源151的输出端分别通过两个输出侧电容153电连接原边侧用电电路和副边侧用电电路。
其中,原边侧用电电路为电连接多个隔离变换器111的原边侧的用电电路,副边侧用电电路为电连接多个隔离变换器111的副边侧的用电电路。
多个直流输入源20分别通过一个二极管电连接输入侧电容152,实现了多个直流输入源20以“或”的方式,并联在一起,由多个直流输入源20中的最大电压的直流输入源为辅助电源151提供输入,只要多个直流输入源20中存在任何一个直流输入源有电,可保证辅助电源151的正常工作。输入侧电容152两侧的电压,即为辅助电源151的输入电压,其为该多个直流输入源20中的最大电压。
辅助电源151的两个输出端分别连接两个输出侧电容153,实现了两个输出电压的隔离。该辅助电源151输出的第一电压V1可以为一个输出侧电容153两侧电压,该辅助电源151输出的第二电压V2可以为另一个输出侧电容153两侧的电压。
该两个输出侧电容153可分别电连接原边侧用电电路和副边侧用电电路,以隔离的方式为原边侧用电电路和副边侧用电电路进行独立供电,主功率拓扑通过隔离变换器划分为原边侧和副边侧,进而原边侧和副边侧的供电也要隔离。例如,第一电压V1可输出至原边侧用电电路,第二电压V2可输出至副边侧用电电路。
原边侧用电电路为电连接多个隔离变换器111的原边侧的用电电路,例如连接原边侧的数字控制器12、模拟控制电路13以及原边侧的采样电路,如输入电流采样电路、输入电压采样电路等。
副边侧用电电路为电连接多个隔离变换器111的副边侧的用电电路,例如连接原边侧的输出电压采样电路、输出电流采样电路等。
当然,原边侧用电电路和副边侧用电电路所需的供电电压可能不是一个电压。例如原边侧用电电路中一个用电电路的供电电压为12V,另一个用电电路的供电电压为5V,又一个用电电路的供电电压为3.3V。因此,每个输出侧电容153与对应的用电电路之间还可连接有对应的电源转换电路,以将输出侧电容153输出的电压转换为对应的供电电压,满足供电需求。
该实施例提供的电源模块,可通过将多个直流输入源20以“或”的方式,并联在一起,由多个直流输入源中的最大电压的直流输入源为辅助电源提供输入,只要存在任何一个直流输入源有电,即可保证辅助电源的正常工作。
可选的,本申请实施例还可提供电源模块的可能实现方式。图8为本申请实施例提供的电源模块的电路示意图三。如图8所示,该电源模块还可包括:多个输入电流采样电路16,每个输入电流采样电路16的输入端电连接一个隔离变换器111的输入电流采样点,多个输入电流采样电路16的输出端电连接数字控制器12的输入端。
一个隔离变换器111的输入电流采样点所电连接的输入电流采样电路16的输出端电连接控制芯片131的第一输入端,以使得控制芯片131在电流内环控制电路132的控制下,根据电流给定信号Iin_ref和采集到的输入电流Iin产生并输出电流控制信号。
控制芯片基于输入的电流给定信号和采集到的输入电流产生并输出电流控制信号,可实现对对应的隔离变换器111的输入电流进行环路控制,使得模拟控制电路13对隔离变换器111的输入电流的控制更准确。
需要说明的是,图8中以数字控制器12、一个输入电流采样电路16,和一个模拟控制电路13之间的一个连接通路进行示例说明,而在实际的应用场景中,对于,多个输入电流采样电路16和隔离变换器111的数量相同,其输入端和对应隔离变换器111的输入电流采样点电连接,输出端和对应隔离变换器111的模拟控制电路13的输入端电连接即可。
每个隔离变换器111的输入电流采样点可以为该主功率拓扑11中的每个隔离变换器111的原边侧的电流采样点,即可以为该隔离变换器111的原边的开关管的电流采样点,例如图6所示的隔离变换器111中第一高频互感器LA的副边输出端Ip_A、第二高频互感器LB的副边输出端Ip_B。每个输入电流采样电路16的输入端电连接一个隔离变换器111的输入电流采样点,可实现对隔离变换器111中原边侧的第一开关管Q1、第二开关管Q2的电流进行采样。
通过输入电流采样电路16的输入端电连接每个隔离变换器111的原边侧的电流采样点,如第一高频互感器LA的副边输出端Ip_A、第二高频互感器LB的副边输出端Ip_B,可实现了对隔离变换器111中的开关管电流的直流脉冲采样。
通过多个输入电流采样电路16分别对多个隔离变换器的原边侧的输入电流进行采样,输出至模拟控制电路13和数字控制器12,可便于模拟控制电路13和数字控制器12对电源模块的功率进行准确控制。
示例的,上述每个输入电流采样电路16可包括:两个第一二极管和采样电阻,每个输入电流采样电路16的输入端为两个第一二极管的阳极,每个隔离变换器111的输入电流采样点为每个隔离变换器111中两个开关管的电流采样点;
两个第一二极管的阳极分别电连接两个开关管的电流采样点,两个第一二极管的阴极电连接采样电阻的一端,采样电阻的另一端为每个输入电流采样电路的输出端。
该实施例提供的输入电流采样电路中,可通过采样电阻,将每个隔离变换器111中两个开关管的电流采样点通过二极管输出的脉冲三角波电流信号转换成电压信号,其采样电压为两倍频的交错三角波,再进行滤波如RC低频滤波后,近似为直流,输送至模拟控制电路和数字控制器的输入端,以保证输入电源的准确控制。
可选的,本申请实施例还可提供电源模块的可能实现方式。图9为本申请实施例提供的电源模块的电路示意图四。如图9所示,该电源模块还可包括:输入电压采样电路17,输入电压采样电路17的控制端电连接数字控制器12的输入输出端口,输入电压采样电路17的多个输入端分别电连接多个直流输入源20,输入电压采样电路17的输出端电连接数字控制器12的输入端。
输入电压采样电路17可具有多个输入端,一个输出端,通过分时采样的方式,实现对多个直流输入源20的电压采样。数字控制器12可通过输入输出端口(IO端口)向输入电压采样电路17的控制端 输出选通控制信号,输入电压采样电路17可基于该选通控制信号控制目标直流输入源连接的输入端与输出端之间连通,以实现对目标直流输入源的电压采样。其中,该选通控制信号例如可以为目标直流输入源对应的地址选通信号。
如下通过输入电压采样电路的一个可能示例进行解释说明,例如,该多路模拟选通芯片。图10为本申请实施例提供的多路模拟选通芯片的电路示意图。如图10所示,多路模拟选通芯片171的地址端为输入电压采样电路17的控制端,输入电压采样电路17的多个输入端为多路模拟选通芯片171的多个模拟输入端,输入电压采样电路17的输出端为多路模拟选通芯片171的模拟输出端。
在该示例中,采用多路模拟选通芯片171作为输入电压采样电路,图10中以8路模拟选通芯片为例。多路模拟选通芯片171的模拟输入端的路数可至少大于或等于电源模块所连接的直流输入源的个数。
多路模拟选通芯片171的地址引脚S0S1S2可作为输入电压采样电路的17的控制端,接收数字控制器12输出的数字选通地址,可实现从地址000-地址111共8路选通。每个地址可对应一个直流输入源。以地址001为例,可使得多路模拟选通芯片171中模拟输入端A1,与模拟输出端A连通,该采样得到的电压Vinx即为模拟输入端A1连接到的直流输入源的直流输入源如Vin2的输入电压。
该实施例提供的电源模块中,可通过输入电压采样电路17以分时复用的方式对多个直流输入源的电压进行采样,实现了对多个输入电压的分时采样,有效解决数字控制器的数模转换(DA)资源不足或者外配模数转换器成本高的矛盾。由于每采样一个直流输入源的电压需要一定时间,因此相邻两个直流输入源之间的间隔的保持时间,可预先基于电源模块的控制时间精度来确定。
可选的,本申请实施例还可提供电源模块的可能实现方式。图11为本申请实施例提供的电源模块的电路示意图五。如图11所示,电源模块还包括:输出电压采样电路18。输出电压采样电路18的输入端电连接直流母线的电压采样点;输出电压采样电路18的输出端电连接数字控制器12的输入端;
输出电压采样电路18的输出端还电连接控制芯片131的第二输入端,以使得控制芯片131在电压限压环电路133的控制下,根据电压给定信号U_ref和采样到的输出电压Vdc产生并输出电压控制信号。
输出电压采样电路18的输出端还电连接控制芯片131的第二输入端,可使得模拟控制电路13中的控制芯片131可基于电压给定信号,以及采样得到的输出电压对对应的隔离变换器111的输出电压进行控制,使得模拟控制电路13对隔离变换器111的输出电压的控制更准确。
可选的,电源模块还包括:输出电流采样电路19。
输出电流采样电路19的输入端电连接直流母线的电流采样点。输出电流采样电路19的输出端电连接数字控制器12的输入端。
其中,直流母线的电压采样点可以为直流母线上输出电容的两端如图1中的DC+和DC-,该直流母线的电流采样点可以为直流母线上输出电容的正输出端如DC+。
该实施例提供的方法中,可通过输出电压采样电路和输出电流采样电路,对电源模块中主功率拓扑的输出电压Vdc和输出电流Io进行采样,并传输至数字控制器,有效保证数字控制器对电源模块的输入电流和输出电压的准确控制。
可选的,本申请实施例还可提供电源模块的又一可能实现方式。图12为本申请实施例提供的电源模块的电路示意图六。如图12所示,电源模块还包括:温度检测电路200,温度检测电路200的输出端还电连接数字控制器12的输入端。
温度检测电路200可以为温度传感器,可设置在电源模块的壳体内部,可用于对电源模块内部的环境温度进行检测,并将检测到的环境温度传输至数字控制器12,使得数字控制器12基于该环境温度设置温度控制策略,如高温下的温度限制策略等,便于对电源模块在异常温度情况进行准确控制,保证电源模块的正常工作。
可选的,该电源模块还包括:通信接口201。通信接口201的输入端还电连接数字控制器12的输出端。通信接口201可以为支持至少一种通信方式的通信接口,例如串行通信接口如RS485接口,或者控制器局域网(Controller Area Network,CAN)接口。
电源模块可通过通信接口201可与上位机或者数据交互单元进行信息交互,具备采样信息的上传功能,从而实现对电源模块的遥感、遥信以及遥控等功能。
在其他的一些可能实现方式,本申请实施例还可提供一种包括上述电源模块的电源系统。图13为本申请实施例提供的一种电源系统的电路示意图。如图13所示,电源系统可包括:多个直流输入源20和上述任一实施例所示的电源模块10,多个直流输入源20分别连接电源模块10中多个隔离变换器111的输入端。对于电源模块10的具体结构以及描述,可参见上述描述,在此不再赘述。
上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以本申请的保护范围为准。
工业实用性
本申请提供了一种电源模块及电源系统,涉及电力电子技术领域。该电源模块包括:主功率拓扑、数字控制器、多个模拟控制电路;其中,主功率拓扑包括:多个隔离变换器,每个隔离变换器的输入端电连接一个直流输入源,多个隔离变换器的输出端均电连接直流母线;数字控制器的输出端电连接每个模拟控制电路的控制端;每个模拟控制电路的输出端电连接一个隔离变换器的原边控制端。本申请可减小电源模块控制成本,且可支持多路独立的变换器并联场合。
此外,可以理解的是,本申请的电源模块及电源系统是可以重现的,并且可以用在多种工业应用中。例如,本申请的电源模块及电源系统可以用于电力电子技术领域。

Claims (18)

  1. 一种电源模块,其特征在于,包括:主功率拓扑、数字控制器、多个模拟控制电路;其中,所述主功率拓扑包括:多个隔离变换器,每个隔离变换器的输入端电连接一个直流输入源,所述多个隔离变换器的输出端均电连接直流母线;
    所述数字控制器的输出端分别电连接每个模拟控制电路的控制端,以向所述每个模拟控制电路输入控制信号;
    所述每个模拟控制电路的输出端电连接一个隔离变换器的原边控制端,以使得所述每个模拟控制电路基于所述控制信号控制所述一个隔离变换器进行工作。
  2. 根据权利要求1所述的电源模块,其特征在于,所述直流输入源为光伏直流输入源、蓄电池直流输入源或者燃烧电池直流输入源。
  3. 根据权利要求1或2所述的电源模块,其特征在于,所述每个隔离变换器为一个直流(DC/DC)隔离变换器,所述每个隔离变换器将所述每个隔离变换器连接的一个直流输入源的能量进行转换后输出到所述每个隔离变换器的输出母线上。
  4. 根据权利要求1至3中任一项所述的电源模块,其特征在于,所述电源模块还包括:多个给定电路,每个给定电路的输入端电连接所述数字控制器的输出端,所述每个给定电路的输出端电连接一个模拟控制电路的控制端,以使得所述每个给定电路对所述控制信号的进行调整后输出至所述一个模拟控制电路。
  5. 根据权利要求1至4中任一项所述的电源模块,其特征在于,所述数字控制器为数字控制器或者数字控制芯片,所述数字控制器具有数字控制功能,所述数字控制器基于预先配置的控制规则将输入的数字信号转换生成所述控制信号,其中,所述控制信号为直流给定信号或者脉冲控制信号。
  6. 根据权利要求1至5中任一项所述的电源模块,其特征在于,所述每个模拟控制电路具有模拟控制功能,所述每个模拟控制电路基于来自所述数字控制器的控制信号产生原边控制信号,并输出至对应的隔离变换器的原边控制端,使得所述隔离变换器基于原边控制信号进行控制。
  7. 根据权利要求5所述的电源模块,其特征在于,在所述数字控制器输出的控制信号为脉冲控制信号的情况下,所述数字控制器上输出所述控制信号的输出端为脉冲输出端,所述数字控制器的脉冲输出端电连接所述每个给定电路的输出端。
  8. 根据权利要求1至7中任一项所述的电源模块,其特征在于,所述每个模拟控制电路包括:控制芯片、电流内环控制电路;所述每个模拟控制电路的控制端包括:所述控制芯片的第一输入端;
    其中,所述控制芯片的第一输入端和输出端之间电连接所述电流内环控制电路,所述控制芯片的输出端电连接所述一个隔离变换器的原边控制端,以使得所述控制芯片在所述电流内环控制电路的控制下,根据所述第一输入端输入的电流给定信号,产生电流控制信号,并输出至所述一个隔离变换器的原边控 制端,以对所述一个隔离变换器的输入侧的输入电流进行控制;
    其中,所述电流给定信号为所述控制信号对应的输入电流的直流给定信号。
  9. 根据权利要求8所述的电源模块,其特征在于,所述电源模块还包括:多个输入电流采样电路,每个输入电流采样电路的输入端电连接所述一个隔离变换器的输入电流采样点,所述多个输入电流采样电路的输出端电连接所述数字控制器的输入端;
    所述一个隔离变换器的输入电流采样点所电连接的一个输入电流采样电路的输出端还电连接所述控制芯片的第一输入端,以使得所述控制芯片在所述电流内环控制电路的控制下,根据所述电流给定信号和采集到的输入电流产生并输出所述电流控制信号。
  10. 根据权利要求8所述的电源模块,其特征在于,所述每个模拟控制电路还包括:电压限压环电路,所述控制芯片的第二输入端和输出端之间还电连接所述电压限压环电路,以使得所述控制芯片在所述电压限压环电路的控制下,根据所述第二输入端输入的电压给定信号产生电压控制信号,并输出至所述一个隔离变换器的原边控制端,以对所述一个隔离变换器的输出侧的输出电压进行模拟限压控制。
  11. 根据权利要求10所述的电源模块,其特征在于,所述电源模块还包括:输出电压采样电路;
    所述输出电压采样电路的输入端电连接所述直流母线的电压采样点;所述输出电压采样电路的输出端电连接所述数字控制器的输入端;
    所述输出电压采样电路的输出端还电连接所述第二输入端,以使得所述控制芯片在所述电压限压环电路的控制下,根据所述电压给定信号和采样到的输出电压产生并输出所述电压控制信号。
  12. 根据权利要求1至11中任一项所述的电源模块,其特征在于,所述电源模块还包括:辅助电源、输入侧电容和两个输出侧电容;
    多个直流输入源分别通过一个二极管电连接所述输入侧电容,所述输入侧电容电连接所述辅助电源的输入端,所述辅助电源的输出端分别通过所述两个输出侧电容电连接原边侧用电电路和副边侧用电电路;
    其中,所述原边侧用电电路为电连接所述多个隔离变换器的原边侧的用电电路,所述副边侧用电电路为电连接所述多个隔离变换器的副边侧的用电电路。
  13. 根据权利要求1至12中任一所述的电源模块,其特征在于,所述电源模块还包括:输入电压采样电路,所述输入电压采样电路的控制端电连接所述数字控制器的输入输出端口,所述输入电压采样电路的多个输入端分别电连接多个直流输入源,所述输入电压采样电路的输出端电连接所述数字控制器的输入端。
  14. 根据权利要求13所述的电源模块,其特征在于,所述输入电压采样电路为多路模拟选通芯片,所述多路模拟选通芯片的地址端为所述输入电压采样电路的控制端,所述输入电压采样电路的多个输入端为所述多路模拟选通芯片的多个模拟输入端,所述输入电压采样电路的输出端为所述多路模拟选通芯片的模拟输出端。
  15. 根据权利要求11所述的电源模块,其特征在于,所述电源模块还包括:输出电流采样电路,所述输出电流采样电路的输入端电连接所述直流母线的电流采样点,所述输出电流采样电路的所述输出端电连接所述数字控制器的所述输入端。
  16. 根据权利要求1至15中任一项所述的电源模块,其特征在于,所述电源模块还包括:温度检测电路,所述温度检测电路的输出端电连接所述数字控制器的输入端。
  17. 根据权利要求16所述的电源模块,其特征在于,所述温度检测电路为温度传感器,所述温度检测电路设置在所述电源模块的壳体内部,所述温度检测电路被配置成用于对所述电源模块内部的环境温度进行检测,并将检测到的环境温度传输至所述数字控制器,使得所述数字控制器基于环境温度设置温度控制策略。
  18. 一种电源系统,其特征在于,包括:多个直流输入源和上述权利要求1至17中任一所述的电源模块,所述多个直流输入源分别连接所述电源模块中多个隔离变换器的输入端。
PCT/CN2022/071869 2021-01-29 2022-01-13 电源模块及电源系统 WO2022161184A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022000890.3T DE112022000890T5 (de) 2021-01-29 2022-01-13 Leistungsmodul und Leistungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110133345.4 2021-01-29
CN202110133345.4A CN112803778A (zh) 2021-01-29 2021-01-29 电源模块及电源系统

Publications (1)

Publication Number Publication Date
WO2022161184A1 true WO2022161184A1 (zh) 2022-08-04

Family

ID=75813227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071869 WO2022161184A1 (zh) 2021-01-29 2022-01-13 电源模块及电源系统

Country Status (3)

Country Link
CN (1) CN112803778A (zh)
DE (1) DE112022000890T5 (zh)
WO (1) WO2022161184A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116526866A (zh) * 2023-06-15 2023-08-01 上海奔曜科技有限公司 机器人电源的拓扑结构及机器人

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803778A (zh) * 2021-01-29 2021-05-14 西安领充创享新能源科技有限公司 电源模块及电源系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201072438Y (zh) * 2007-05-15 2008-06-11 北京索英电气技术有限公司 多输入通道模块化高频隔离单相电能回馈型电子负载
CN101895200A (zh) * 2010-07-01 2010-11-24 浙江昱能光伏科技集成有限公司 轮替主从分路的交错并联反激变换器
JP2013090519A (ja) * 2011-10-21 2013-05-13 Nippon Soken Inc 電源システム
US20130188399A1 (en) * 2012-01-20 2013-07-25 Bel Fuse (Macao Commercial Offshore) Limited Dc-to-dc converter having secondary-side digital sensing and control
CN103248231A (zh) * 2013-04-02 2013-08-14 浙江大学 多相均流控制的并联调整电路及控制方法
CN103997215A (zh) * 2014-05-13 2014-08-20 重庆大学 数字控制的功率可调dc/dc变换器
CN104868743A (zh) * 2015-06-16 2015-08-26 重庆邮电大学 一种电动车辅助电源系统
CN206099800U (zh) * 2016-09-29 2017-04-12 西安科技大学 基于arm控制的高功率因数ac‑dc恒流源电源系统
CN111585450A (zh) * 2020-06-24 2020-08-25 安徽省金屹电源科技有限公司 一种大功率高频开关电源模块及装置
CN112803778A (zh) * 2021-01-29 2021-05-14 西安领充创享新能源科技有限公司 电源模块及电源系统
CN214154345U (zh) * 2021-01-29 2021-09-07 西安领充创享新能源科技有限公司 电源模块及电源系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201072438Y (zh) * 2007-05-15 2008-06-11 北京索英电气技术有限公司 多输入通道模块化高频隔离单相电能回馈型电子负载
CN101895200A (zh) * 2010-07-01 2010-11-24 浙江昱能光伏科技集成有限公司 轮替主从分路的交错并联反激变换器
JP2013090519A (ja) * 2011-10-21 2013-05-13 Nippon Soken Inc 電源システム
US20130188399A1 (en) * 2012-01-20 2013-07-25 Bel Fuse (Macao Commercial Offshore) Limited Dc-to-dc converter having secondary-side digital sensing and control
CN103248231A (zh) * 2013-04-02 2013-08-14 浙江大学 多相均流控制的并联调整电路及控制方法
CN103997215A (zh) * 2014-05-13 2014-08-20 重庆大学 数字控制的功率可调dc/dc变换器
CN104868743A (zh) * 2015-06-16 2015-08-26 重庆邮电大学 一种电动车辅助电源系统
CN206099800U (zh) * 2016-09-29 2017-04-12 西安科技大学 基于arm控制的高功率因数ac‑dc恒流源电源系统
CN111585450A (zh) * 2020-06-24 2020-08-25 安徽省金屹电源科技有限公司 一种大功率高频开关电源模块及装置
CN112803778A (zh) * 2021-01-29 2021-05-14 西安领充创享新能源科技有限公司 电源模块及电源系统
CN214154345U (zh) * 2021-01-29 2021-09-07 西安领充创享新能源科技有限公司 电源模块及电源系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116526866A (zh) * 2023-06-15 2023-08-01 上海奔曜科技有限公司 机器人电源的拓扑结构及机器人

Also Published As

Publication number Publication date
DE112022000890T5 (de) 2023-11-16
CN112803778A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022161184A1 (zh) 电源模块及电源系统
US10491255B2 (en) Wakeup circuit with an optocoupler for battery sampling integrated chip and battery energy storage system
TWI475349B (zh) 電壓調節器、包絡追蹤電源系統、傳輸模組、及集成電路設備
WO2013170808A1 (zh) 电源及电源调压方法
CN107294391B (zh) 一种功率转换模块及由该功率转换模块组成的电源系统
CN107370387B (zh) 一种功率转换模块及由该功率转换模块串并联组成的电源系统
JP6691191B2 (ja) 異常エネルギー保護付き電源変換システム及びその動作方法
EP3487054A1 (en) Single-board power supply structure and method for providing power supply
CN110535333B (zh) 开关电源输出并联均流控制电路及开关电源系统
US20150070945A1 (en) Controller providing protection function and frequency-reduction function using a single pin and system using same
TW201931720A (zh) 具低待機功耗之充電電源系統及其控制方法
WO2024066508A1 (zh) 多输入电源电路及电子设备
US8269461B2 (en) Hybrid battery charger and control circuit and method thereof
US20140284997A1 (en) Current regulation circuit, power over ethernet system, and method
CN214154345U (zh) 电源模块及电源系统
CN212518763U (zh) 一种电源均流控制器
CN106655774B (zh) 一种多输入高增益dc/dc变换器
WO2016192299A1 (zh) 一种控制输入电流的均流方法及电路
CN106877646A (zh) 适用于输入串联/输出并联系统的无线电压前馈控制系统及方法
CN108512397B (zh) 一种电源模块、由其组成的电源系统及该电源系统的控制方法
CN110677027A (zh) 一种嵌位型升压功率变换电路
TW202404221A (zh) 高效率多接口電源供應系統
CN109765960B (zh) 最大功率追踪的发电装置与系统
CN110739918A (zh) 一种射频放大器
CN108767967B (zh) 一种通信设备、电源模块及其处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000890

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745061

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22745061

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.2024)