WO2013170808A1 - 电源及电源调压方法 - Google Patents

电源及电源调压方法 Download PDF

Info

Publication number
WO2013170808A1
WO2013170808A1 PCT/CN2013/077938 CN2013077938W WO2013170808A1 WO 2013170808 A1 WO2013170808 A1 WO 2013170808A1 CN 2013077938 W CN2013077938 W CN 2013077938W WO 2013170808 A1 WO2013170808 A1 WO 2013170808A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch
power supply
source device
current source
Prior art date
Application number
PCT/CN2013/077938
Other languages
English (en)
French (fr)
Inventor
王林国
张滨
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/436,173 priority Critical patent/US20150288192A1/en
Priority to EP13790135.1A priority patent/EP2911282B1/en
Priority to JP2015537116A priority patent/JP6434913B2/ja
Publication of WO2013170808A1 publication Critical patent/WO2013170808A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs

Definitions

  • the present invention relates to the field of communications, and in particular to a power supply and power supply voltage regulation method. Background technique
  • the power supply in order to minimize the power consumption, there are various occasions requiring the power supply to have a fast voltage regulation function, such as a central processing unit (CPU) power supply, a power supply for the RF power amplifier, etc. More typical is the power supply of the RF power amplifier.
  • CPU central processing unit
  • the modulation method of the communication system becomes more and more complicated.
  • One of the outstanding problems is the inefficiency of the RF power amplifier, which becomes a bottleneck for improving the efficiency of the entire communication system.
  • the supply voltage needs to be higher than the peak voltage of the RF signal.
  • the output voltage of the power supply is designed according to the maximum power output of the power amplifier. This will result in the power amplifier when the power amplifier outputs lower power. Inefficient, power is wasted. Therefore, reducing the power amplifier loss has become the key to energy saving and emission reduction in communication systems.
  • the power supply voltage is generally adjusted accordingly, that is, when the power output of the power amplifier is large, a higher power supply voltage is used, and when the output power of the power amplifier is small, the power is used.
  • Lower supply voltage Due to the slower voltage regulation of the existing power supply technology, the current power amplifier voltage regulation power supply technology is only suitable for the output power change over a long period of time. For example, when the communication service is busy during the day, the output power of the power amplifier is close to the maximum, and the higher voltage is adopted. Power supply, when the business volume is small in the middle of the night, the power output of the power amplifier is low, and the power is supplied at a lower voltage. Limited by the voltage regulation speed of the existing power supply technology, the above scheme has a relatively limited improvement in the efficiency of the power amplifier.
  • figure 1 It is a schematic structural diagram of a conventional power supply according to the related art. As shown in FIG. 1, the power supply is typical and thus has the advantages of low loss and high efficiency.
  • the working principle is that the input power source 101 is chopped by the complementary connection of the switch 102 and the switch 103. According to the width of the chopping pulse signal, the subsequent output 104 and the capacitor 105 are filtered to obtain different output voltages, but limited by the inductance. Low-frequency filtering of the capacitor, such power supply has a slower regulation speed. In order to increase the voltage regulation speed of the power supply, it is necessary to increase the chopping frequency.
  • FIG. 2 is a schematic structural diagram of a fast voltage regulating power supply according to the related art. As shown in FIG. 2, a voltage regulation is performed on a plurality of independent input power sources 201, 202, and 203, that is, when the switch 204 is turned on. , strobe input power source 201 to the output voltage (i.e.
  • the output voltage of the whole power source is strobe input power source 202 when the switch 205 is turned on (i.e., the output voltage of the whole power source is V 2), strobe input power source 203 when the switch 206 is turned on ( That is, the output voltage of the entire power supply is V 3 ), and the voltage regulation does not need to charge and discharge the output capacitor, thereby improving the speed and efficiency of the voltage regulation, but since multiple independent input power sources are required, and usually each is independent.
  • the input power sources 201, 202, and 203 include at least one set of two switching devices, one inductor, one capacitor, and the like as shown in FIG. 1, so there is a problem that the power source is large in volume, high in cost, and low in efficiency.
  • the embodiment of the invention provides a power supply and power supply voltage regulation method, so as to at least solve the problem that the voltage regulation power supply has a slow voltage regulation speed and low efficiency in the related art.
  • a power supply including a current source device, a voltage source device, and a voltage selection device, wherein the current source device is configured to provide a current signal to the voltage source device; the voltage source device is connected to a current source device comprising a plurality of voltage sources configured to The current signal from the current source device is converted into a voltage signal; the voltage selection device is coupled to the voltage source device and configured to select one of the voltage signals from the plurality of voltage sources as the output voltage signal.
  • the current source device includes: a first input power source, a first switch, a second switch, and a first inductor, wherein a negative pole of the first input power source is grounded, and a positive pole is connected to one end of the first switch; One end is connected to the second switch and the first inductor, and the second switch is grounded; the other end of the first inductor is the output of the current source device.
  • the current source device further includes an isolation circuit, and the isolation circuit includes one of the following: a forward, a flyback, a bridge circuit, a push-pull circuit, and the isolation device in the isolation circuit is a transformer.
  • the current source device further includes a third switch, wherein one end of the primary side of the transformer is connected to the positive pole of the first input power source, the other end is connected to one end of the third switch, and the other end of the third switch is connected to the first end.
  • a third switch wherein one end of the primary side of the transformer is connected to the positive pole of the first input power source, the other end is connected to one end of the third switch, and the other end of the third switch is connected to the first end.
  • Input the negative pole of the power supply one end of the secondary side of the transformer is connected to the first switch, and the other end is connected to the grounded end of the second switch.
  • the current source device includes: a second input power source, a second inductor, and a fourth switch, wherein a negative pole of the second input power source is grounded, a positive pole is connected to one end of the second inductor; and the other end of the inductor is a current source device The output terminal is connected to one end of the fourth switch, and the other end of the fourth switch is grounded.
  • the current source device comprises: a third input power source, an isolation circuit and a fifth switch, wherein the isolation circuit comprises one of the following: a forward excitation, a flyback, a bridge circuit, a push-pull circuit, an isolation device in the isolation circuit It is a transformer.
  • the anode of the third input power source is grounded, the anode is connected to one end of the primary side of the transformer, the other end of the primary side is connected to one end of the fifth switch, and the other end of the fifth switch is connected to the cathode of the third input power source;
  • One end of the secondary side is the output of the current source device, and the other end is grounded.
  • the voltage source includes: a sixth switch and a capacitor, wherein one end of the sixth switch is connected to the current source device, and the other end is an output end of the voltage source, and is connected to one end of the capacitor, The other end of the capacitor is grounded.
  • the voltage selection means comprises a plurality of switches respectively connected to a plurality of voltage sources in the voltage source means.
  • the above switch comprises at least one of the following: a triode, a metal oxide semiconductor
  • MOS Metal-Oxide-Semiconductor
  • JFET Junction Field Effect Transistor
  • a power supply voltage regulation method which employs any of the above power supplies, the method comprising: a current source device inputting a current signal to a voltage source device; and a plurality of voltages in the voltage source device The source respectively converts the current signal into a voltage signal; the voltage selecting device selects one of the plurality of voltage signals as the output voltage signal.
  • the voltage selecting means selects one of the plurality of voltage signals as the output voltage signal.
  • the voltage selecting means obtains different voltage amplitudes as the output voltage signals by turning on the different switches.
  • the voltage selection device obtains different voltage amplitudes by turning on different switches, including: turning on a switch in a voltage source connected to a switch that is turned on in the voltage selection device, and a capacitance and current source device in the voltage source A regulated DC power supply is formed to maintain the output of the voltage source under voltage regulation.
  • the inputting of the current signal by the current source device to the voltage source device comprises: controlling an input power source in the current source device to charge the inductor; and when the switch in the voltage source is turned on, the current of the inductor charges the capacitor in the voltage source.
  • the output voltage of the voltage source is maintained by the capacitance in the voltage source when the voltage source and the switch in the voltage selection device connected thereto are in the off state.
  • a plurality of voltage sources in the voltage source device are respectively powered by a current source device to maintain the stability of the output voltage (V ⁇ VN) of each voltage source, and the voltage selection device selects according to the actual voltage regulation requirement.
  • the output of one voltage source as the final output voltage (v. ut ), which greatly simplifies the structure of multiple input power supplies, thereby reducing power supply size, reducing costs, and improving efficiency.
  • FIG. 1 is a schematic structural view of a conventional power source according to the related art
  • FIG. 2 is a schematic structural view of a quick-adjustable power supply according to the related art
  • FIG. 3 is a schematic structural view of a power supply according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a power supply according to a preferred embodiment 1 of the present invention.
  • Figure 5 is a schematic diagram of a waveform according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a power supply having an isolation function corresponding to FIG. 4 according to a preferred embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a power supply according to a preferred embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural view of a power supply having an isolation function corresponding to FIG. 7 according to a preferred embodiment 2 of the present invention
  • FIG. 9 is a flow chart of a power supply voltage regulation method according to an embodiment of the present invention. detailed description
  • FIG. 3 is a schematic diagram of the structure of a power supply according to an embodiment of the present invention.
  • the power supply includes a current source device 32, a voltage source device 34, and a voltage selecting device 36.
  • the structure is described in detail below.
  • the current source device 32 is configured to provide a current signal to the voltage source device 34.
  • the voltage source device 34 is coupled to the current source device 32 and includes a plurality of voltage sources 342 configured to convert the current signal from the current source device 32 into a voltage signal.
  • the voltage selection device 36 is connected to the voltage source device 34 and configured to select one of the voltage signals from the plurality of voltage sources 342 as the output voltage signal. number.
  • the voltage regulating power supply has a slow voltage regulation speed and low efficiency.
  • a plurality of voltage sources in the voltage source device are respectively powered by a current source device to maintain the stability of the output voltage (V ⁇ VN) of each voltage source, and the voltage selection device selects according to the actual voltage regulation requirement.
  • the output of one voltage source is used as the final output voltage (V. ut ), which greatly simplifies the structure of the multi-input power supply, thereby reducing the power supply volume, reducing costs, and improving efficiency.
  • the current source device 32 can have at least two implementations as follows:
  • the current source device 32 includes a first input power source, a first switch, a second switch, and a first inductor, wherein a negative pole of the first input power source is grounded, a positive pole is connected to one end of the first switch; and the other end of the first switch Connected to the second switch and the first inductor, and the second switch is grounded; the other end of the first inductor is the output of the current source device 32;
  • the current source device 32 may further include an isolation circuit for implementing an isolation function, that is, an output voltage and a reference ground of the input power source. different.
  • the above isolation circuit includes but is not limited to one of the following: forward, flyback, bridge circuit, push-pull circuit, and the isolation device in the isolation circuit is a transformer.
  • the current source device 32 further includes a transformer and a third switch, wherein one end of the primary side of the transformer is connected to the positive pole of the first input power source, and the other end is connected to the third switch. At one end, the other end of the third switch is connected to the negative pole of the first input power source; one end of the secondary side of the transformer is connected to the first switch, and the other end is connected to one end of the second switch grounded.
  • the current source device 32 includes a second input power source, a second inductor, and a fourth switch, wherein a negative pole of the second input power source is grounded, and a positive pole is connected to one end of the second inductor; and the other end of the inductor is a current source device 32 An output end connected to one end of the fourth switch, the other end of the fourth switch being grounded;
  • the current source device 32 also includes a third input.
  • connection relationship of each component is as follows: The negative pole of the third input power supply is grounded, the positive pole is connected to one end of the primary side of the transformer, the other end of the primary side is connected to one end of the fifth switch, and the other end of the fifth switch One end is connected to the negative pole of the third input power source; one end of the secondary side of the transformer is the output end of the current source device 32, and the other end is grounded.
  • the voltage source 342 includes: a sixth switch and a capacitor, wherein one end of the sixth switch is connected to the current source device 32, and the other end is an output end of the voltage source, and is connected to one end of the capacitor, and the other end of the capacitor is grounded.
  • the voltage source 342 has a simple structure and saves the cost of the power source.
  • the voltage selection means 36 comprises a plurality of switches respectively connected to a plurality of voltage sources in the voltage source means.
  • the above switch includes but is not limited to at least one of the following: a triode, a MOS transistor, a diode, and a JFET tube.
  • the switch may be composed of a triode, a MOS transistor, a diode or a combination of the above three devices; in order to prevent a short circuit of the voltage source caused by a unidirectional blocking switching device such as a triode or a MOS transistor, the switch may also be bidirectional by a JFET or the like. A switching device that blocks the characteristics.
  • other types of switches are also suitable for use in the present invention.
  • the above power supply has a fast voltage regulation function and can be applied to a power supply device of a radio frequency power amplifier.
  • the preferred embodiment 1 will be combined with the following.
  • the current source device 402 is a possible specific implementation circuit of the current source device 32 of FIG.
  • the method includes: an input power source 4021, a first switch 4022, a second switch 4023, and an inductor 4024.
  • the input power source 4021 charges the inductor 4024, and the inductor current increases;
  • the second switch 4023 When turned on, the inductor is charged; ⁇ is reduced.
  • Voltage source 404 is one possible implementation of voltage source 342 in voltage source device 34 of FIG. 3, including third switch 4042 and capacitor 4044.
  • the third switch 4042 When the third switch 4042 is turned on, the inductor current charges the capacitor 4044, and the output voltage V ⁇ of the voltage source 404 is maintained stable. Accordingly, other voltage sources maintain the stability of the respective output voltages V 2 VV N through the inductor current.
  • the voltage selection circuit 406 is a possible implementation circuit of the voltage selection device 36 of FIG. 3.
  • the strobe input voltage Vi is the output voltage V.
  • Ut correspondingly, when a certain switch is turned on, the output voltage (V ⁇ VN) of its corresponding voltage source is taken as the output voltage V out of the entire power supply.
  • 501 is the output voltage of the fast voltage regulating power supply
  • 502 is the load current (for example, taking the resistive load as an example)
  • 503 is the current.
  • FIG. 6 is a schematic structural view of a power supply having an isolation function corresponding to FIG. 4 according to a preferred embodiment of the present invention.
  • the isolation function that is, the output voltage and the reference ground of the input power source may be different.
  • the current source device 402 is a possible implementation circuit with an isolation function of the current source device 32 of FIG. 3, and the isolation function of the input and output is implemented by the transformer 4025.
  • the isolation function in the preferred embodiment may also be implemented by other extension circuits, such as dual-switch forward, flyback, bridge circuits, push-pull circuits, and the like, which are commonly used in the field of isolated power supplies.
  • FIG. 7 is a schematic structural diagram of a power supply according to a preferred embodiment 2 of the present invention.
  • the current source device 702 is another possible implementation circuit of the current source device 32 of FIG. 3, and the first switch 7023 leads When the power is turned on, the input power source 7021 charges the inductor 7022, and the inductor current increases; When switch 7023 is turned off, the inductor current charges the subsequent voltage source. The rest is identical to the structure shown in Figure 4 and will not be described here.
  • FIG. 8 is a schematic structural view of a power supply having an isolation function corresponding to FIG. 7 according to a preferred embodiment 2 of the present invention.
  • the current source device 702 is another type of isolation of the current source device 32 of FIG.
  • the possible implementation circuit of the function, its input and output isolation function is realized by the transformer 7024.
  • the second switch 7025 When the second switch 7025 is turned on, the input power source 7021 charges the primary side magnetizing inductance of the transformer 7024; when the second switch 7025 is turned off, the primary side magnetizing inductor current is reversely excited to the secondary side through the transformer 7024 to form an output of the current source device 702. Current, charging the subsequent voltage source.
  • FIG. 9 is a flow chart of a power supply voltage regulation method according to an embodiment of the present invention. As shown in FIG. 9, the following steps S902 to S906 are included.
  • Step S902 the current source device inputs a current signal to the voltage source device.
  • Step S904 the plurality of voltage sources in the voltage source device respectively convert the current signal into a voltage signal.
  • Step S906 the voltage selecting means selects one of the plurality of voltage signals as the output voltage signal.
  • Step S906 includes: the voltage selection device obtains different voltage amplitudes by turning on different switches as an output voltage signal.
  • the voltage selection device obtains different voltage amplitudes by turning on different switches, including: turning on a switch in a voltage source connected to a switch that is turned on in the voltage selection device, and a capacitance and current source device in the voltage source It is composed of a regulated DC power supply (for example, a DC power supply of a Buck structure or other fully-regulated DC power supply) to maintain the output of the voltage source under load.
  • a regulated DC power supply for example, a DC power supply of a Buck structure or other fully-regulated DC power supply
  • the current source device inputs the current signal to the voltage source device, including: controlling the input power source in the current source device to charge the inductor; when the switch in the voltage source is turned on, the inductor current Charge the capacitor in the voltage source.
  • the output voltage of the voltage source can be maintained by the capacitance in the voltage source due to no load.
  • the voltage selection method is adopted to realize the voltage regulation, the efficiency is high, and the operation is performed by using one independent input power source at the same time, the structure is simple, the volume and the cost are reduced, no no-load power supply is operated, the efficiency is higher, and the voltage is regulated. The response is faster.
  • a power supply and power supply voltage regulation method is provided.
  • a plurality of voltage sources in the voltage source device are respectively supplied with power by a current source device to maintain the stability of the output voltage (V ⁇ VN) of each voltage source, and the voltage selection device selects one of the voltages according to the actual voltage regulation requirement.
  • the output of the source acts as the final output voltage (V. ut ), which greatly simplifies the structure of the multi-input power supply, thereby reducing the power supply size, reducing costs, and improving efficiency.
  • modules or steps of the embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple of these modules or steps are fabricated as a single integrated circuit module. Thus, embodiments of the invention are not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种电源及电源调压方法,该电源包括:电流源装置、电压源装置和电压选择装置,其中,电流源装置,配置为向电压源装置提供电流信号;电压源装置,连接至电流源装置,包括多个电压源,配置为将来自电流源装置的电流信号转换成电压信号;电压选择装置,连接至电压源装置,配置为在来自多个电压源的电压信号中选择一路作为输出电压信号。通过本发明,利用一个电流源装置分别给电压源装置中的多个电压源供电,以维持各个电压源输出电压(V1~VN)的稳定,电压选择装置根据实际调压的需求选择其中一路电压源的输出作为最终的输出电压(Vout),可大大简化多路输入电源的结构,进而减小电源体积,降低成本,提高效率。

Description

电源及电源调压方法 技术领域
本发明涉及通信领域, 具体而言, 涉及一种电源及电源调压方法。 背景技术
在电子装置中, 为了最大限度地降低能耗, 有多种场合要求电源具有 快速调压功能, 如中央处理器(Central Processing Unit, 简称为 CPU )供电 电源、 射频功率放大器的供电电源等, 其中较为典型的是射频功率放大器 的供电装置。
为了应对用户对带宽需求的不断提高, 通讯系统的调制方式变得越来 越复杂, 其中带来的一个突出问题就是射频功率放大器的效率低下, 这成 为提高整个通讯系统效率的瓶颈。 对于线性功率放大器, 为保证其线性度, 供电电压需高于射频信号峰值电压, 在传统直流供电方式下, 电源输出电 压按功放输出最大功率设计, 这会导致在功放输出较低功率时, 功放效率 低下, 电能浪费严重。 因此, 降低功放损耗成了通讯系统节能减排的关键。
相关技术中, 为了提高功放在不同输出功率下的效率, 通常采用对供 电电源电压进行相应调整的方式, 即在功放输出功率大的时候采用较高的 供电电压, 在功放输出功率小的时候采用较低的供电电压。 由于现有的电 源技术调压速度较慢, 目前的功放调压供电技术仅适用于较长时间内的输 出功率变化情况, 如在白天通讯业务繁忙时, 功放输出功率接近最大, 采 用较高电压供电, 在深夜业务量较小时, 功放输出功率较低, 采用较低电 压供电。 受限于现有电源技术的调压速度, 上述方案对功放的效率提高比 较有限。
为了进一步提高功放的效率, 需要进一步提高电源的调压速度。 图 1 是根据相关技术的常规电源的结构示意图, 如图 1 所示, 该电源是典型的 因此具有损耗低、 效率高的优点。 其工作原理是通过开关 102 和开关 103 互补导通, 对输入电源 101进行斩波, 根据斩波脉冲信号的宽度, 经后续 电感 104、 电容 105滤波后得到不同的输出电压, 但受限于电感电容的低频 滤波作用, 此类电源调压速度较慢。 想要提高该电源的调压速度, 需要提 高斩波频率, 此时开关器件 102和 103的开关损耗随之增大; 另外由于调 压时需要对电容 105充放电, 较高的调压速度需要较大的充放电电流, 导 致导通损耗随之增大, 电源转换效率也随之降低, 因此图 1 所示的电源不 适用于快速调压应用。
图 2是根据相关技术的可快速调压电源的结构示意图, 如图 2所示, 采用对多个独立输入电源 201、 202、 203选通输出的方式进行快速调压, 即开关 204导通时, 选通输入电源 201到输出电压 (即整个电源的输出电 压是 开关 205导通时选通输入电源 202 (即整个电源的输出电压是 V2 ), 开关 206导通时选通输入电源 203 (即整个电源的输出电压是 V3 ), 调压不需要对输出电容进行充放电, 因此提高了调压的速度和效率, 但是, 由于需要多个独立的输入电源, 且通常情况下每个独立输入电源 201、 202、 203至少包含一组如图 1所示的两个开关器件、 一个电感、 一个电容等, 所 以存在电源体积较大、 成本较高、 效率较低的问题。 发明内容
本发明实施例提供了一种电源及电源调压方法, 以至少解决相关技术 中, 调压电源调压速度慢, 效率较低的问题。
根据本发明实施例的一个方面, 提供了一种电源, 包括电流源装置、 电压源装置和电压选择装置, 其中, 电流源装置, 配置为向电压源装置提 供电流信号; 电压源装置, 连接至电流源装置, 包括多个电压源, 配置为 将来自电流源装置的电流信号转换成电压信号; 电压选择装置, 连接至电 压源装置, 配置为在来自多个电压源的电压信号中选择一路作为输出电压 信号。
优选地, 上述电流源装置包括: 第一输入电源、 第一开关、 第二开关 和第一电感, 其中, 第一输入电源的负极接地, 正极连接至第一开关的一 端; 第一开关的另一端连接至第二开关和第一电感, 且第二开关接地; 第 一电感的另一端是电流源装置的输出端。
优选地, 上述电流源装置还包括隔离电路, 隔离电路包括以下之一: 正激、 反激、 桥式电路、 推挽电路, 隔离电路中的隔离器件是变压器。
优选地, 上述电流源装置还包括第三开关, 其中, 变压器的原边的一 端连接至第一输入电源的正极, 另一端连接至第三开关的一端, 第三开关 的另一端连接至第一输入电源的负极; 变压器的副边的一端连接至第一开 关, 另一端连接至第二开关接地的一端。
优选地, 上述电流源装置包括: 第二输入电源、 第二电感和第四开关, 其中, 第二输入电源的负极接地, 正极连接至第二电感的一端; 电感的另 一端是电流源装置的输出端, 并连接至第四开关的一端, 第四开关的另一 端接地。
优选地, 上述电流源装置包括: 第三输入电源、 隔离电路和第五开关, 其中, 隔离电路包括以下之一: 正激、 反激、 桥式电路、 推挽电路, 隔离 电路中的隔离器件是变压器。
优选地, 第三输入电源的负极接地, 正极连接至变压器的原边的一端, 原边的另一端连接至第五开关的一端, 第五开关的另一端连接至第三输入 电源的负极; 变压器的副边一端是电流源装置的输出端, 另一端接地。
优选地, 上述电压源包括: 第六开关和电容, 其中, 第六开关的一端 连接至电流源装置, 另一端是电压源的输出端, 并连接至电容的一端, 电 容的另一端接地。
优选地, 上述电压选择装置包括多个开关, 分别连接至电压源装置中 的多个电压源。
优选地, 上述开关包括以下至少之一: 三极管、 金属氧化物半导体
( Metal-Oxide-Semiconductor, 简称为 MOS ) 管、 二极管、 结晶型场效应 晶体管 ( Junction Field Effect Transistor, 简称为 JFET )。
根据本发明实施例的另一方面, 提供了一种电源调压方法, 采用上述 任一种的电源, 该方法包括: 电流源装置向电压源装置输入电流信号; 电 压源装置中的多个电压源分别将电流信号转换成电压信号; 电压选择装置 在多个电压信号中选择一路作为输出电压信号。
优选地, 电压选择装置在多个电压信号中选择一路作为输出电压信号 包括: 电压选择装置通过导通不同的开关, 得到不同的电压幅值, 作为输 出电压信号。
优选地, 电压选择装置通过导通不同的开关, 得到不同的电压幅值包 括: 将与电压选择装置中导通的开关连接的电压源中的开关导通, 电压源 中的电容与电流源装置组成稳压直流电源, 维持电压源的输出在带负载下 的稳压。
优选地, 电流源装置向电压源装置输入电流信号包括: 控制电流源装 置中的输入电源对电感进行充电; 当电压源中的开关导通时, 电感的电流 对电压源中的电容充电。
优选地, 当电压源以及与其连接的电压选择装置中的开关处于断开状 态时, 电压源的输出电压由电压源中的电容维持。
通过本发明实施例, 利用一个电流源装置分别给电压源装置中的多个 电压源供电, 以维持各个电压源输出电压(V^VN )的稳定, 电压选择装置 根据实际调压的需求选择其中一路电压源的输出作为最终的输出电压 ( v。ut ), 可大大简化多路输入电源的结构, 进而减小电源体积, 降低成本, 提高效率。 附图说明
图 1是根据相关技术的常规电源的结构示意图;
图 2是根据相关技术的可快速调压电源的结构示意图;
图 3是根据本发明实施例的电源的结构示意图;
图 4是根据本发明优选实施例一的电源的结构示意图;
图 5是根据本发明优选实施例一的波形示意图;
图 6是才艮据本发明优选实施例一的对应于图 4的具有隔离功能的电源 的结构示意图;
图 7是根据本发明优选实施例二的电源的结构示意图;
图 8是才艮据本发明优选实施例二的对应于图 7的具有隔离功能的电源 的结构示意图;
图 9是根据本发明实施例的电源调压方法的流程图。 具体实施方式
需要说明的是, 在不冲突的情况下, 本发明实施例及实施例中的特征 可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。
本发明实施例提供了一种电源, 图 3是根据本发明实施例的电源的结 构示意图, 如图 3所示, 该电源包括电流源装置 32、 电压源装置 34和电压 选择装置 36。 下面对其结构进行详细描述。
电流源装置 32, 配置为向电压源装置 34提供电流信号; 电压源装置 34, 连接至电流源装置 32, 包括多个电压源 342, 配置为将来自电流源装 置 32 的电流信号转换成电压信号; 电压选择装置 36, 连接至电压源装置 34, 配置为在来自多个电压源 342 的电压信号中选择一路作为输出电压信 号。
相关技术中, 调压电源调压速度慢, 效率较低。 本发明实施例中, 利 用一个电流源装置分别给电压源装置中的多个电压源供电, 以维持各个电 压源输出电压(V^VN )的稳定, 电压选择装置根据实际调压的需求选择其 中一路电压源的输出作为最终的输出电压 (V。ut ), 可大大简化多路输入电 源的结构, 进而减小电源体积, 降低成本, 提高效率。
上述电流源装置 32至少可以有如下两种实现方式:
( 1 ) 电流源装置 32 包括第一输入电源、 第一开关、 第二开关和第一 电感, 其中, 第一输入电源的负极接地, 正极连接至第一开关的一端; 第 一开关的另一端连接至第二开关和第一电感, 且第二开关接地; 第一电感 的另一端是该电流源装置 32的输出端;
优选地, 除了上述第一输入电源、 第一开关、 第二开关和第一电感之 外, 电流源装置 32还可以包括隔离电路, 用于实现隔离功能, 即, 输出电 压与输入电源的参考地不同。 上述隔离电路包括但不限于以下之一: 正激、 反激、 桥式电路、 推挽电路, 隔离电路中的隔离器件是变压器。
下面以变压器为例进行说明, 为了实现隔离功能, 电流源装置 32还包 括变压器和第三开关, 其中, 变压器的原边的一端连接至第一输入电源的 正极, 另一端连接至第三开关的一端, 第三开关的另一端连接至第一输入 电源的负极; 变压器的副边的一端连接至第一开关, 另一端连接至第二开 关接地的一端。
( 2 ) 电流源装置 32包括第二输入电源、 第二电感和第四开关, 其中, 第二输入电源的负极接地, 正极连接至第二电感的一端; 电感的另一端是 电流源装置 32的输出端, 并连接至第四开关的一端, 第四开关的另一端接 地;
在这种实现方式中, 为了实现隔离功能, 电流源装置 32还包括第三输 入电源、 隔离电路和第五开关, 其中, 隔离电路包括但不限于以下之一: 正激、 反激、 桥式电路、 推挽电路, 隔离电路中的隔离器件是变压器。
以变压器为例进行说明, 各个部件的连接关系如下: 第三输入电源的 负极接地, 正极连接至变压器的原边的一端, 原边的另一端连接至第五开 关的一端, 第五开关的另一端连接至第三输入电源的负极; 变压器的副边 一端是电流源装置 32的输出端, 另一端接地。
上述电压源 342 包括: 第六开关和电容, 其中, 第六开关的一端连接 至电流源装置 32, 另一端是电压源的输出端, 并连接至电容的一端, 电容 的另一端接地。 该电压源 342的结构简单, 节约了电源的成本。
优选地, 上述电压选择装置 36包括多个开关, 分别连接至电压源装置 中的多个电压源。
优选地, 上述开关包括但不限于以下至少之一: 三极管、 MOS管、 二 极管、 JFET管。 具体地, 开关可以由三极管、 MOS管、 二极管或者以上三 种器件的组合构成; 为防止因三极管、 MOS管等单向阻断开关器件引起电 压源短路的问题, 开关也可以由 JFET等具双向阻断特性的开关器件构成。 当然, 除上述开关之外, 其它的开关种类也适用于本发明。
上述电源具有快速调压功能, 可以应用于射频功率放大器的供电装置。 为了使本发明的技术方案和实现方法更加清楚, 下面将结合优选的实 优选实施例一
图 4是才艮据本发明优选实施例一的电源的结构示意图, 如图 4所示, 本优选实施例中, 电流源装置 402是图 3中电流源装置 32的一种可能的具 体实现电路, 包括: 输入电源 4021、 第一开关 4022、 第二开关 4023和电 感 4024。其中,第一开关 4022导通、第二开关 4023关断时,输入电源 4021 对电感 4024充电, 电感电流增加; 当第一开关 4022关断、 第二开关 4023 导通时, 电感电;巟减小。
电压源 404是图 3中电压源装置 34中的电压源 342的一种可能的实现 方式, 包括第三开关 4042和电容 4044。 第三开关 4042导通时, 电感电流 对电容 4044充电, 维持电压源 404输出电压 V 々稳定。 相应地, 其它电 压源通过电感电流维持各自的输出电压 V2 ~VN的稳定。
电压选择电路 406是图 3中电压选择装置 36的一种可能实现电路, 第 四开关 4062导通时, 选通输入电压 Vi为输出电压 V。ut, 相应地, 某个开关 导通, 就会将其对应的电压源的输出电压(V^VN )作为整个电源的输出电 压 Vout
为进一步方便理解, 如图 5 所示, 是对应本优选实施例的一种示例波 形, 501是快速调压电源的输出电压, 502是负载电流(如, 以电阻负载为 例), 503是电流源装置 402的输出电流。
图 6是才艮据本发明优选实施例一的对应于图 4的具有隔离功能的电源 的结构示意图, 隔离功能, 即输出电压与输入电源的参考地可以不同。 如 图 6所示, 电流源装置 402是图 3中电流源装置 32的一种带隔离功能的可 能具体实现电路, 其输入输出的隔离功能通过变压器 4025实现。 第五开关 4026导通时, 输入电源 4021的电压通过变压器 4025感应到副边, 通过第 一开关 4022的导通给电感 4024充电; 第五开关 4026关断时, 电感电流通 过第二开关 4023续流。 具体地, 本优选实施例中的隔离功能也可以由其他 拓展电路, 如双管正激、 反激、 桥式电路、 推挽电路等隔离电源领域常用 拓朴实现。
优选实施例二
图 7是才艮据本发明优选实施例二的电源的结构示意图, 如图 7所示, 电流源装置 702是图 3中电流源装置 32的另一种可能具体实现电路, 第一 开关 7023导通时, 输入电源 7021对电感 7022充电, 电感电流增加; 第一 开关 7023关断时, 电感电流对后续电压源充电。 其余部分与图 4所示的结 构一致, 此处不再赘述。
图 8是才艮据本发明优选实施例二的对应于图 7的具有隔离功能的电源 的结构示意图, 如图 8中, 电流源装置 702是图 3中电流源装置 32的另一 种带隔离功能的可能具体实施电路, 其输入输出隔离功能通过变压器 7024 实现。 第二开关 7025导通时, 输入电源 7021对变压器 7024的原边激磁电 感充电; 第二开关 7025关断时, 原边激磁电感电流通过变压器 7024反激 到副边, 形成电流源装置 702的输出电流, 对后续电压源充电。
本发明实施例还提供了一种电源调压方法, 该电源调压方法可以基于 上述任一种的电源实现。 图 9是根据本发明实施例的电源调压方法的流程 图, 如图 9所示, 包括如下的步骤 S902至步骤 S906。
步骤 S902, 电流源装置向电压源装置输入电流信号。
步骤 S904, 电压源装置中的多个电压源分别将电流信号转换成电压信 号。
步骤 S906, 电压选择装置在多个电压信号中选择一路作为输出电压信 号。
步骤 S906包括: 电压选择装置通过导通不同的开关, 得到不同的电压 幅值, 作为输出电压信号。
优选地, 电压选择装置通过导通不同的开关, 得到不同的电压幅值包 括: 将与电压选择装置中导通的开关连接的电压源中的开关导通, 电压源 中的电容与电流源装置组成稳压直流电源(例如, 可以组成 Buck结构直流 电源或者其它完整结构的稳压直流电源), 维持电压源的输出在带负载下的 稳压。
优选地, 电流源装置向电压源装置输入电流信号包括: 控制电流源装 置中的输入电源对电感进行充电; 当电压源中的开关导通时, 电感的电流 对电压源中的电容充电。
对于当前处于断开状态的支路(包括电压源以及与其连接的电压选择 装置中的开关), 由于不带负载, 电压源的输出电压可由电压源中的电容维 持。
上述实施例中, 采用电压选择的方式实现调压, 效率高, 并且采用一 路独立输入电源同时工作, 结构简单, 降低了体积和成本, 没有其它路电 源的空载工作, 效率更高, 调压响应速度更快。
综上所述, 根据本发明的上述实施例, 提供了一种电源及电源调压方 法。 通过本发明, 利用一个电流源装置分别给电压源装置中的多个电压源 供电, 以维持各个电压源输出电压(V^VN )的稳定, 电压选择装置根据实 际调压的需求选择其中一路电压源的输出作为最终的输出电压 (V。ut ), 可 大大简化多路输入电源的结构, 进而减小电源体积, 降低成本, 提高效率。
显然, 本领域的技术人员应该明白, 上述的本发明实施例的各模块或 各步骤可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置 可执行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装 置来执行, 或者将它们分别制作成各个集成电路模块, 或者将它们中的多 个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明实施例不限 制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权利要求书
1、 一种电源, 包括电流源装置、 电压源装置和电压选择装置, 其中, 所述电流源装置, 配置为向所述电压源装置提供电流信号; 所述电压源装置, 连接至所述电流源装置, 包括多个电压源, 配置 为将来自所述电流源装置的所述电流信号转换成电压信号;
所述电压选择装置, 连接至所述电压源装置, 配置为在来自所述多 个电压源的电压信号中选择一路作为输出电压信号。
2、 根据权利要求 1所述的电源, 其中, 所述电流源装置包括: 第一 输入电源、 第一开关、 第二开关和第一电感, 其中,
所述第一输入电源的负极接地, 正极连接至所述第一开关的一端; 所述第一开关的另一端连接至所述第二开关和所述第一电感, 且所 述第二开关接地;
所述第一电感的另一端是所述电流源装置的输出端。
3、 根据权利要求 2所述的电源, 其中, 所述电流源装置还包括隔离 电路, 所述隔离电路包括以下之一: 正激、 反激、 桥式电路、 推挽电路, 所述隔离电路中的隔离器件是变压器。
4、 根据权利要求 3所述的电源, 其中, 所述电流源装置还包括第三 开关, 其中,
所述变压器的原边的一端连接至所述第一输入电源的正极, 另一端 连接至所述第三开关的一端, 所述第三开关的另一端连接至所述第一输 入电源的负极;
所述变压器的副边的一端连接至所述第一开关, 另一端连接至所述 第二开关接地的一端。
5、 根据权利要求 1所述的电源, 其中, 所述电流源装置包括: 第二 输入电源、 第二电感和第四开关, 其中, 所述第二输入电源的负极接地, 正极连接至所述第二电感的一端; 所述电感的另一端是所述电流源装置的输出端, 并连接至所述第四 开关的一端, 所述第四开关的另一端接地。
6、 根据权利要求 5所述的电源, 其中, 所述电流源装置还包括: 第 三输入电源、 隔离电路和第五开关, 所述隔离电路包括以下之一: 正激、 反激、 桥式电路、 推挽电路, 所述隔离电路中的隔离器件是变压器。
7、 根据权利要求 6所述的电源, 其中, 所述第三输入电源的负极接 地, 正极连接至所述变压器的原边的一端, 所述原边的另一端连接至所 述第五开关的一端, 所述第五开关的另一端连接至所述第三输入电源的 负极; 所述变压器的副边一端是所述电流源装置的输出端, 另一端接地。
8、 根据权利要求 1至 7中任一项所述的电源, 其中, 所述电压源包 括: 第六开关和电容, 所述第六开关的一端连接至所述电流源装置, 另 一端是所述电压源的输出端, 并连接至所述电容的一端, 所述电容的另 一端接地。
9、 根据权利要求 1至 7中任一项所述的电源, 其中, 所述电压选择 装置包括多个开关, 分别连接至所述电压源装置中的多个电压源。
10、 根据权利要求 2至 7中任一项所述的电源, 其中, 开关包括以 下至少之一: 三极管、 金属氧化物半导体 MOS管、 二极管、 结晶型场效 应晶体管 JFET管。
11、一种电源调压方法,采用权利要求 1至 10中任一项所述的电源, 所述方法包括:
电流源装置向电压源装置输入电流信号;
所述电压源装置中的多个电压源分别将所述电流信号转换成电压信 号;
电压选择装置在多个电压信号中选择一路作为输出电压信号。
12、 根据权利要求 11所述的方法, 其中, 所述电压选择装置在多个 电压信号中选择一路作为输出电压信号包括:
所述电压选择装置通过导通不同的开关, 得到不同的电压幅值, 作 为输出电压信号。
13、 根据权利要求 12所述的方法, 其中, 所述电压选择装置通过导 通不同的开关, 得到不同的电压幅值包括:
将与所述电压选择装置中导通的开关连接的电压源中的开关导通, 所述电压源中的电容与所述电流源装置组成稳压直流电源, 维持所述电 压源的输出在带负载下的稳压。
14、 根据权利要求 11所述的方法, 其中, 所述电流源装置向电压源 装置输入电流信号包括:
控制所述电流源装置中的输入电源对电感进行充电;
当所述电压源中的开关导通时, 所述电感的电流对所述电压源中的 电容充电。
15、 根据权利要求 11至 14中任一项所述的方法, 其中, 当所述电 压源以及与其连接的电压选择装置中的开关处于断开状态时, 所述电压 源的输出电压由所述电压源中的电容维持。
PCT/CN2013/077938 2012-10-16 2013-06-25 电源及电源调压方法 WO2013170808A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/436,173 US20150288192A1 (en) 2012-10-16 2013-06-25 Power source and power source voltage regulating method
EP13790135.1A EP2911282B1 (en) 2012-10-16 2013-06-25 Power source and power source voltage regulating method
JP2015537116A JP6434913B2 (ja) 2012-10-16 2013-06-25 電源及び電源電圧調整方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210393107.8A CN103731031B (zh) 2012-10-16 2012-10-16 电源及电源调压方法
CN201210393107.8 2012-10-16

Publications (1)

Publication Number Publication Date
WO2013170808A1 true WO2013170808A1 (zh) 2013-11-21

Family

ID=49583169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077938 WO2013170808A1 (zh) 2012-10-16 2013-06-25 电源及电源调压方法

Country Status (5)

Country Link
US (1) US20150288192A1 (zh)
EP (1) EP2911282B1 (zh)
JP (1) JP6434913B2 (zh)
CN (1) CN103731031B (zh)
WO (1) WO2013170808A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3198356A4 (en) * 2014-09-25 2018-05-16 Intel Corporation Power supply topologies with capacitance management
US20190245438A1 (en) * 2018-02-08 2019-08-08 Yazaki Corporation Power Transmission System

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003908A1 (en) * 2014-07-01 2016-01-07 Skyworks Solutions, Inc. Circuits, devices and methods for achieving fast changes in voltage regulator outputs
CN104917295A (zh) * 2015-06-19 2015-09-16 国网天津市电力公司 一种远程模拟控制装置
CN106612077A (zh) * 2015-10-27 2017-05-03 群光电能科技股份有限公司 电能转换系统
CN107370379A (zh) * 2016-05-13 2017-11-21 群光电能科技股份有限公司 电能转换系统及其对电子装置供电的方法
CN106451746A (zh) * 2016-10-18 2017-02-22 广西电网有限责任公司电力科学研究院 一种户外测试仪供电方法
WO2018125104A1 (en) * 2016-12-28 2018-07-05 Halliburton Energy Services, Inc. Current-to-voltage power converter
CN107168140A (zh) * 2017-07-02 2017-09-15 武汉梦之蓝科技有限公司 一种基于互联网控制的城市公路绿化带自动灌溉管理系统
US10608607B2 (en) 2018-01-09 2020-03-31 Biamp Systems, LLC Audio power source with improved efficiency
US10404218B2 (en) 2018-01-09 2019-09-03 Biamp Systems, LLC Audio power source with improved efficiency
US10516373B2 (en) 2018-01-09 2019-12-24 Biamp Systems, LLC Audio power source with improved efficiency
KR102545731B1 (ko) * 2018-11-02 2023-06-19 한국전기연구원 파형 발생 장치
CN109698674A (zh) * 2018-12-11 2019-04-30 四川九洲电器集团有限责任公司 一种功率回退装置和电子设备及其控制方法
CN110492717A (zh) * 2019-07-01 2019-11-22 联想(北京)有限公司 一种处理设备和处理方法
CN113497564B (zh) 2020-04-03 2023-08-18 台达电子企业管理(上海)有限公司 电源适配器及其控制方法
US11616449B2 (en) 2020-04-03 2023-03-28 Delta Electronics (Shanghai) Co., Ltd Power adapter
CN211579860U (zh) 2020-04-03 2020-09-25 台达电子企业管理(上海)有限公司 电源适配器
CN113497568A (zh) * 2020-04-03 2021-10-12 台达电子企业管理(上海)有限公司 一种电源适配器
DE102022102872A1 (de) 2022-02-08 2023-08-10 R. Stahl Schaltgeräte GmbH Netzwerk-Portschaltung
CN114844349B (zh) * 2022-04-08 2024-06-04 浙江大学 一种基于开关电容的混合型高降压比直流电源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080231115A1 (en) * 2007-03-16 2008-09-25 Gyuha Cho Multiple-Output DC-DC Converter
CN101610034A (zh) * 2008-06-17 2009-12-23 恩益禧电子股份有限公司 电源电路及其控制方法
CN101672872A (zh) * 2009-09-26 2010-03-17 青岛海信移动通信技术股份有限公司 一种快速测量电路功耗的方法
CN102084581A (zh) * 2008-05-15 2011-06-01 努吉拉有限公司 单电感多输出转换器
CN102403894A (zh) * 2010-09-15 2012-04-04 Nxp股份有限公司 电源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740785B2 (ja) * 1987-04-03 1995-05-01 株式会社日立製作所 多チヤンネルインバ−タ回路
JPH06237162A (ja) * 1993-02-09 1994-08-23 Sharp Corp 電圧出力回路並びに表示装置の共通電極駆動回路及び表示装置の信号配線駆動回路
JP3259703B2 (ja) * 1998-12-28 2002-02-25 日本電気株式会社 マイクロ波増幅回路
JP2001274632A (ja) * 2000-03-28 2001-10-05 Japan Radio Co Ltd 増幅装置及び消費電力制御方法
FR2928496B1 (fr) * 2008-03-06 2015-09-25 Commissariat Energie Atomique Dispositif d'alimentation d'un circuit electrique, en particulier d'un circuit numerique
GB2480614B (en) * 2010-05-24 2017-04-12 Snaptrack Inc Switched arrangement for switched mode supply
US9062932B2 (en) * 2010-10-13 2015-06-23 Lasermax, Inc. Thermal marking systems and methods of control
US8970162B2 (en) * 2011-07-12 2015-03-03 Texas Instruments Incorporated System and method for balancing electrical energy storage devices via differential power bus and capacitive load switched-mode power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080231115A1 (en) * 2007-03-16 2008-09-25 Gyuha Cho Multiple-Output DC-DC Converter
CN102084581A (zh) * 2008-05-15 2011-06-01 努吉拉有限公司 单电感多输出转换器
CN101610034A (zh) * 2008-06-17 2009-12-23 恩益禧电子股份有限公司 电源电路及其控制方法
CN101672872A (zh) * 2009-09-26 2010-03-17 青岛海信移动通信技术股份有限公司 一种快速测量电路功耗的方法
CN102403894A (zh) * 2010-09-15 2012-04-04 Nxp股份有限公司 电源

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3198356A4 (en) * 2014-09-25 2018-05-16 Intel Corporation Power supply topologies with capacitance management
US20190245438A1 (en) * 2018-02-08 2019-08-08 Yazaki Corporation Power Transmission System
US10879799B2 (en) * 2018-02-08 2020-12-29 Yazaki Corporation Power transmission system

Also Published As

Publication number Publication date
CN103731031B (zh) 2018-01-02
JP6434913B2 (ja) 2018-12-05
EP2911282A1 (en) 2015-08-26
EP2911282B1 (en) 2019-11-13
US20150288192A1 (en) 2015-10-08
EP2911282A4 (en) 2016-08-24
JP2015532579A (ja) 2015-11-09
CN103731031A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2013170808A1 (zh) 电源及电源调压方法
US11038424B2 (en) Direct current-direct current converter
Barreto et al. A quasi-resonant quadratic boost converter using a single resonant network
US20180175726A1 (en) Hybrid DCDC Power Converter with Increased Efficiency
US10797605B2 (en) Resonant switching converter
US7173403B1 (en) Boost DC/DC converter
KR20130082166A (ko) 직렬 공진 dc/dc 컨버터를 제어하기 위한 방법
CN107546959B (zh) 一种开关电源、电子设备及开关电源控制方法
CN104052275B (zh) 用于具有快速瞬态响应的两级降压升压转换器的系统和方法
TW201931720A (zh) 具低待機功耗之充電電源系統及其控制方法
US8269461B2 (en) Hybrid battery charger and control circuit and method thereof
CN109450260A (zh) 一种电容串接式交错并联反激电路
CN109412397A (zh) 一种脉冲宽度调制电流模式开关电源二次斜波补偿电路
CN115714532A (zh) 基于耦合电感倍压单元的双开关直流升压变换器及控制方法
US20180368225A1 (en) Led power supply device
CN104113208A (zh) 一种包括无损缓冲电路的交错并联Boost变换器
CN115714533B (zh) 基于耦合电感倍压单元的高增益x源直流升压变换器及控制方法
CN115765447B (zh) 一种双耦合电感串联型直流升压变换器及控制方法
TWI565205B (zh) 功率變換器裝置
CN110557022B (zh) 控制psfb变换器的方法及psfb变换器
CN106059300B (zh) 一种基于脉冲跨周期宽度调制模式的电压变换器
CN107634645B (zh) 一种基于耦合电感的输出支路结构
CN109245578B (zh) 一种单磁芯四绕组高增益单级式Buck-Boost型逆变器
CN117614267B (zh) 一种γ源耦合电感双开关直流升压网络变换器及其控制方法
CN115642799B (zh) 一种高增益耦合电感z源直流升压变换器及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14436173

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013790135

Country of ref document: EP