WO2023151364A1 - 充电电路、充电方法、电子设备及存储介质 - Google Patents

充电电路、充电方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2023151364A1
WO2023151364A1 PCT/CN2022/137849 CN2022137849W WO2023151364A1 WO 2023151364 A1 WO2023151364 A1 WO 2023151364A1 CN 2022137849 W CN2022137849 W CN 2022137849W WO 2023151364 A1 WO2023151364 A1 WO 2023151364A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
switch tube
cell
charge pump
path
Prior art date
Application number
PCT/CN2022/137849
Other languages
English (en)
French (fr)
Inventor
郑毅成
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023151364A1 publication Critical patent/WO2023151364A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present application relates to the technical field of charging, and more specifically, to a charging circuit, a charging method, an electronic device, and a storage medium.
  • parallel dual-cell technology is widely used in electronic devices such as special-shaped mobile phones and folding screen mobile phones.
  • a charging chip based on a charge pump is widely used to charge parallel-connected battery cells.
  • one of the cells is connected to the charging chip through a flexible printed circuit (FPC)
  • FPC flexible printed circuit
  • a load switch is artificially added on a path with a small impedance, and the impedance of the path of the two cells is matched by adjusting the impedance of the load switch.
  • this method when this method is applied in a high-current charging mode, there will be a large heat loss; in addition, adding a load switch in the charging circuit will bring additional cost increase.
  • the present application provides a charging circuit, a charging method, an electronic device and a storage medium to solve the above problems.
  • a charging circuit including: a first charge pump, having a first output terminal, the first output terminal is connected to the first cell through a first path, so as to charge the charge pump through the first path.
  • the first battery core provides charging current;
  • the second charge pump has a second output terminal, and the second output terminal is connected to the second battery core through a second path, so as to provide charging current for the second battery core through the second path.
  • providing charging current wherein the path impedance of the second path is greater than the path impedance of the first path;
  • a control circuit configured to control the The voltage at the first output end is adjusted so that the charging currents of the first charging path and the second charging path match.
  • an inductor is provided on the first charging channel, and the inductor and the first charge pump jointly form a buck circuit, and the control circuit adjusts the voltage of the first output terminal by controlling the buck circuit.
  • the first charge pump and the second charge pump jointly form a dual-phase charge pump; or, the first charge pump and/or the second charge pump include a multi-phase charge pump.
  • the first charge pump includes a first switch tube, a second switch tube, a third switch tube, and a fourth switch tube, and the first switch tube and the second switch tube are connected in series in the charging circuit Between the charging input end of the charge pump and the first output end, the third switch tube and the fourth switch tube are connected in series between the first output end and ground;
  • the second charge pump includes a fifth switch tube, a sixth switching tube, a seventh switching tube and an eighth switching tube, the fifth switching tube and the sixth switching tube are connected in series between the charging input end of the charging circuit and the second output end, The seventh switch tube and the eighth switch tube are connected in series between the first output terminal and ground.
  • the control circuit controls the first switch tube and/or the second switch tube to be in a linear conduction state, to balance the voltages of the first battery cell and the second battery cell; or, when the voltage of the first battery cell is lower than the voltage of the second battery cell, the control circuit controls the fifth battery cell
  • the switch tube and/or the sixth switch tube are in a linear conduction state, so as to balance the voltages of the first cell and the second cell.
  • the charging circuit includes a plurality of the first charge pump and the second charge pump connected in parallel.
  • a charging method comprising: using a charging circuit to charge the first battery cell and the second battery cell; wherein, the charging circuit includes: a first charge pump having a first output terminal, and The first output end is connected to the first cell through a first path, so as to provide charging current for the first cell through the first path; the second charge pump has a second output end, and the first charge pump has a second output end.
  • the two output terminals are connected to the second cell through the second path to provide charging current for the second cell through the second path, wherein the path impedance of the second path is greater than the path impedance of the first path
  • the method further includes: during the process of using the first charge pump to charge the first cell, controlling the voltage of the first output terminal so that the first charging path and the second charging path match the charging current.
  • an inductor is provided on the first charging channel, and the inductor and the first charge pump together form a buck circuit; the method further includes: controlling the buck circuit to adjust the voltage of the first output terminal .
  • the first charge pump and the second charge pump jointly form a dual-phase charge pump; or, the first charge pump and/or the second charge pump include a multi-phase charge pump.
  • the first charge pump includes a first switch tube, a second switch tube, a third switch tube, and a fourth switch tube, and the first switch tube and the second switch tube are connected in series in the charging circuit Between the charging input end of the charge pump and the first output end, the third switch tube and the fourth switch tube are connected in series between the first output end and ground;
  • the second charge pump includes a fifth switch tube, a sixth switching tube, a seventh switching tube and an eighth switching tube, the fifth switching tube and the sixth switching tube are connected in series between the charging input end of the charging circuit and the second output end, The seventh switch tube and the eighth switch tube are connected in series between the first output terminal and ground.
  • the method further includes: when the voltage of the first cell is greater than the voltage of the second cell, controlling the first switch tube and/or the second switch tube to be in linear conduction state, so that the voltages of the first cell and the second cell are balanced; or, when the voltage of the first cell is lower than the voltage of the second cell, control the fifth switching tube And/or the sixth switch tube is in a linear conduction state, so as to balance the voltages of the first battery cell and the second battery cell.
  • the charging circuit includes a plurality of the first charge pump and the second charge pump connected in parallel.
  • an electronic device including: a first battery cell and a second battery cell connected in parallel; and the charging circuit according to the first aspect and any optional implementation manner of the first aspect.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method described in the second aspect and any optional implementation manner of the second aspect is implemented. The steps of the charging method.
  • the first charge pump and the second charge pump are used to independently supply power to the two batteries connected in parallel, and the output voltage of the path with smaller impedance is adjusted by the control circuit, so that the mutual The two batteries connected in parallel can achieve a state of charge balance, which can effectively avoid the problems of increased hardware cost and increased heat loss in the high-current mode caused by the load switch added to balance the load in the prior art.
  • FIG. 1 is a schematic diagram of a mobile phone in the related art.
  • FIG. 2 is a schematic diagram of another mobile phone in the related art.
  • FIG. 3 is a circuit diagram of a charge pump in the related art.
  • FIG. 4 is a circuit diagram of a charging system based on a charge pump in the related art.
  • FIG. 5 is a schematic diagram of a charging system for charging double batteries connected in parallel in the related art.
  • Fig. 6 is the simulation result of the charging system in Fig. 5 .
  • FIG. 7 is a schematic diagram of a charging system for charging parallel dual cells based on the channel impedance compensation technology in the related art.
  • Fig. 8 is the simulation result of the charging system in Fig. 7 .
  • FIG. 9 is a circuit diagram of a charging circuit provided by an embodiment of the present application.
  • FIG. 10 is a circuit diagram of a buck circuit provided in an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a charging method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the first cell 111 and the second cell 112 in the battery are arranged symmetrically on both sides of the bending axis 12 .
  • components such as the motherboard occupy part of the internal space of the mobile phone 20 . Therefore, in order to increase the capacity of the battery 21 as much as possible, the method widely adopted in the related art is to set the battery 21 as a special-shaped battery.
  • the special-shaped battery 21 shown in FIG. 2 includes a first battery cell 211 and a second battery cell 212, The first battery cell 211 is arranged on the left side of the motherboard, and the second battery cell 212 is arranged on the lower side of the motherboard.
  • FIG. 3 shows a circuit diagram of a typical step-down charge pump 30 .
  • the charge pump 30 in FIG. 3 includes: an input terminal 31 , an output terminal 32 , a first capacitor 33 , a second capacitor 34 , a first switch 35 , a second switch 36 , a third switch 37 and a fourth switch 38 .
  • first switch 35, the second switch 36, the third switch 37 and the fourth switch 38 are sequentially connected in series between the input terminal 31 and the ground terminal, and the first terminal of the first capacitor 33 is connected to the first switch 35 and the second switch 36 connected to the series node, the second end is connected to the series node of the third switch 37 and the fourth switch 38; the first end of the second capacitor 34 is connected to the series node of the second switch 36 and the third switch 37 and used as the The output terminal 32 of the charge pump and the second terminal of the second capacitor 34 are connected to the ground terminal.
  • the working principle of the charge pump 30 in FIG. 3 is: in the first section, the first switch 35 and the third switch 37 are controlled to be closed, and the second switch 36 and the fourth switch 38 are opened. At this moment, the first capacitor 33 and the second The two capacitors 34 are charged in series, and the voltages of the first capacitor 33 and the second capacitor 34 are both half of the input voltage Vin; in the second period, the first switch 35 and the third switch 37 are controlled to be disconnected, and the second switch 36 and the fourth switch The switch 38 is closed. At this time, the connection between the charge pump and the power supply device is disconnected. The first capacitor 33 and the second capacitor 34 are connected in parallel, and the voltage is output through the output terminal 32.
  • FIG. 4 shows a charging system 40 based on the above-mentioned charge pump in the related art.
  • the charging system 40 can be applied to the electronic equipment shown in FIG. 1 and FIG. 2 to charge the battery in the electronic equipment.
  • the charging system 40 in FIG. 4 includes a power supply device 41 , a dual-phase charge pump 42 , a first cell 43 and a second cell 44 .
  • the dual-phase charge pump 42 includes a first-phase charge pump 421 and a second-phase charge pump 422, the input terminals of the first-phase charge pump 421 and the second-phase charge pump 422 are coupled, and are provided with a power supply through a charging interface of an electronic device.
  • the device 43 is connected; the output terminals of the first-phase charge pump 421 and the second-phase charge pump 422 are coupled, and are connected with the first electric core 43 and the second electric core 44 connected in parallel, so that the first electric core 43 and the second electric core 44 charging.
  • the power supply device 43 may be, for example, a power adapter or other power supply sources.
  • the first-phase charge pump 421 includes switch tubes M1 - M4
  • the second-phase charge pump 422 includes switch tubes M5 - M8 .
  • the dual-phase charge pump 42 When the dual-phase charge pump 42 is working, the operating phases of the control switches M1 and M3 are opposite to those of the switching tubes M5 and M7, and the operating phases of the switching tubes M2 and M4 are opposite to those of the switching tubes M6 and M8, so that the phases of the switching tubes M1 and M3 can be effectively reduced.
  • the ripple of the output current It should be noted that the dual-phase charge pump 42 in FIG. 4 is only an example, and in the related art, the dual-phase charge pump 42 can also be replaced by a single-phase charge pump or a multi-phase charge pump.
  • a charging IC Integrated Circuit, integrated circuit
  • the charging IC can be the dual-phase charge pump mentioned above. Therefore, for a battery with double-parallel cells, one of the cells needs to be connected to the charging IC through the FPC due to the limitation of the arrangement of the cells.
  • the charging IC 13 is arranged on the side close to the first battery cell 111 , and at this time, the second battery cell and the charging IC 13 need to be connected by the FPC 113 .
  • the connection between the second battery cell 212 and the charging IC 22 can also be realized through the FPC213 .
  • the metal traces in the FPC will form impedance on the path.
  • the impedance of the FPC is proportional to its length, that is to say, the farther the distance between the charging IC and the second cell is, the more significant the impedance of the FPC is. This will lead to inconsistencies in the path impedance between the first battery cell and the second battery cell and the charging IC.
  • a voltage will be generated between the first battery cell and the second battery cell.
  • the voltage difference will become larger and larger, resulting in that when the first cell is fully charged, the second cell is still not fully charged, that is, the cell voltage of the first cell reaches the full charge voltage, and the second cell is not fully charged.
  • the voltage of the second cell is lower than the full charge voltage, resulting in a waste of battery capacity.
  • the first battery cell and the second battery cell will automatically balance due to the voltage difference, so that the battery cell voltage tends to the middle value, shortening the battery life; especially at high current In the fast charging mode, the pressure difference is more obvious, resulting in a more obvious waste of battery capacity.
  • FIG. 5 shows the schematic diagram of the charging system for charging the first battery cell and the second battery cell in the above-mentioned related art, wherein the charging IC51 is the dual-phase charge pump mentioned above, and the input of the charging IC51 end is connected with the power supply to receive the input voltage Vin; the charging IC51 converts the input voltage into an output voltage Vout, and charges the first battery core and the second battery core through the output terminal; the second battery core and the second battery core are also shown in FIG. 5
  • the resistor R1 on the path of the output terminal of the charging IC51 is used to represent the impedance of the FPC mentioned above.
  • the charging current of the core is only 1.3A. That is to say, due to the existence of the channel impedance between the second battery cell and the charging IC, the charging current of the first battery cell is obviously greater than the charging current of the second battery cell, so that the charging speed between the two battery cells is limited. Big difference.
  • the principle is to artificially introduce an impedance compensation device on the side where the path impedance is small.
  • the impedance compensation device can be a load switch, for example, and the load switch can be composed of
  • the back-to-back form of MOS tubes is realized, and the adjustment of the channel impedance can be realized by controlling the driving voltage and/or on-off time of the MOS tubes.
  • FIG. 7 shows a schematic circuit diagram using the impedance control compensation technology, and R2 in the figure is the equivalent impedance of the above-mentioned impedance compensation device. Using the circuit shown in Figure 7 for simulation, the simulation results shown in Figure 8 are obtained.
  • FIG 8 shows the variation of the input current of the first battery cell and the second battery cell.
  • the waveforms of the charging current of the battery cell overlap, and the charging current is 1.42A. It can be seen from the simulation results that the charging current of the two batteries can be balanced by using this path compensation technology.
  • FIG. 9 shows a circuit diagram of a charging circuit provided by an embodiment of the present application.
  • the charging circuit 90 in FIG. 9 includes:
  • the first charge pump 91 has a first output terminal 911, and the first output terminal 911 is connected to the first cell 93 through the first path 912, so as to provide the first cell 93 with the first path 912. recharging current.
  • the second charge pump 92 has a second output terminal 921, and the second output terminal 921 is connected to the second electric core 94 through the second path 922, so as to provide the second electric core 94 through the second path 922. charging current, wherein the impedance of the second pathway 922 is greater than the impedance of the first pathway 912 .
  • the control circuit 95 is configured to control the voltage of the first output terminal 911 during the process of using the first charge pump 91 to charge the first cell 93, so that the first path 912 and the first The charging currents of the two paths 922 are matched.
  • first charge pump 91 and the second charge pump 92 may be step-down charge pumps as shown in FIG. 3 .
  • the first charge pump 91 and the second charge pump 92 may also be boost charge pumps.
  • the first charge pump 91 and the second charge pump 92 may be the first-phase charge pump and the second-phase charge pump in the aforementioned dual-phase charge pump, and the two-phase charge pump of the dual-phase charge pump It is split so that it can independently supply power to the first battery cell 93 and the second battery cell 94 connected in parallel.
  • the voltage of the first output terminal 911 can be reduced, thereby reducing the charging current of the first path 912, so that the first battery cell 93 and the charging efficiency of the second cell 94 are basically balanced.
  • the control circuit 95 may be connected to the first charge pump 91 to control the voltage of the first output terminal 911 of the first charge pump 91 .
  • the first charge pump 91 includes a plurality of switch transistors, and the plurality of switch transistors are configured to be connected to the control circuit 95 .
  • the control circuit 95 can be used to control the on-off of each switch tube, so as to realize the adjustment of the voltage of the first output terminal 911 .
  • the first charge pump and the second charge pump are used to independently supply power to the two batteries connected in parallel, and the output voltage of the path with smaller impedance is adjusted by the control circuit, so that the two batteries connected in parallel
  • the two battery cells can reach the state of charging balance, which can effectively avoid the problems of increasing hardware cost and increasing heat loss in the high current mode caused by the load switch added for load balancing in the prior art.
  • the inductor 96 in order to adjust the voltage of the first output terminal 911 conveniently, can be arranged on the first path 912 so that the inductor 96 and the first charge pump 91 together form a buck circuit.
  • the buck circuit is controlled by the control circuit 95 to adjust the voltage of the first output terminal 911 .
  • FIG. 10 shows a schematic circuit diagram of the above buck circuit, which is also called a three-level buck circuit.
  • the difference between the three-level buck circuit in FIG. 10 and the step-down charge pump 30 shown in FIG. 3 is that an inductor 1001 is added between the output terminal 32 and the second capacitor 34 .
  • the output voltage of the circuit can be adjusted by controlling the duty cycle of each switch tube.
  • the solution provided by the embodiment of the present application to form a three-level buck circuit by increasing the inductance can significantly improve efficiency and reduce heat loss.
  • the heat loss increases by 0.405W
  • the heat loss increases by 0.81W
  • the heat loss is reduced by about 1.71W at most, and the charging efficiency and performance have been significantly improved.
  • the buck circuit is formed by adding an inductor at the output end of the charge pump, and the output voltage can be adjusted more precisely by using the control circuit, so as to realize the controlled balance of the charging current on the two charging paths.
  • the existing charging IC based on the dual-phase charge pump can be directly used, and only an inductor needs to be added to the output end of one of the phases to achieve the above effect.
  • Proprietary materials need to be customized separately, which can effectively reduce hardware costs.
  • the aforementioned first charge pump and second charge pump may jointly form a dual-phase charge pump.
  • the first charge pump 91 and the second charge pump 91 jointly form a dual-phase charge pump 97 .
  • the first charge pump 91 and the second charge pump 92 may be a first-phase charge pump and a second-phase charge pump separated from the dual-phase charge pump 97 .
  • both the first charge pump 91 and/or the second charge pump 92 may be charge pumps including multiple phases, which is not specifically limited in this embodiment of the present application. Setting the first charge pump 91 and/or the second charge pump 92 as a multi-phase charge pump can increase the charging current and/or voltage to improve charging efficiency.
  • the first charge pump 91 further includes a first switch tube Q1, a second switch tube Q2, a third switch tube Q3, and a fourth switch tube Q4, wherein the first The switching tube Q1 and the second switching tube Q2 are connected in series between the charging input terminal of the charging circuit 90 and the first output terminal 911, and the third switching tube Q3 and the fourth switching tube Q4 are connected in series. Between the first output terminal 911 and ground.
  • the second charge pump 92 further includes a fifth switching tube Q5 , a sixth switching tube Q6 , a seventh switching tube Q7 and an eighth switching tube Q8 .
  • the fifth switching tube Q5 and the sixth switching tube Q6 are connected in series between the charging input terminal of the charging circuit and the second output terminal 921, and the seventh switching tube Q7 and the eighth switching tube Q7 are connected in series.
  • the switch tube Q8 is connected in series between the second output terminal 921 and ground.
  • the two cells Interlocking will occur.
  • the first battery cell and the second battery cell will be automatically balanced due to the existence of the voltage difference.
  • the first cell charges the second cell until the voltages of the two cells are the same.
  • the first cell and the second cell will generate a large current during the balancing process.
  • the current flows through the charging IC will cause irreversible damage to the charging IC.
  • a plurality of switch tubes in the first charge pump 91 and the second charge pump 92 can be used to realize the overcurrent protection when the cells are matched and balanced.
  • the control circuit 95 can control the first switching tube Q1 and/or the second switching tube Q2 in the first charge pump 91 to be in a linear conduction state, To balance the voltages of the first cell 93 and the second cell 94 slowly.
  • control circuit 95 can control the fifth switching tube Q5 and/or the sixth switching tube Q6 in the second charge pump 92 to be linearly turned on. state, so that the voltages of the first cell 93 and the second cell 94 are balanced slowly.
  • the first battery cell 93 and the second battery cell 94 in the embodiment of the present application may be composed of multiple battery cells connected in series.
  • the above-mentioned plurality of battery cells connected in series may be composed of a plurality of sub-cells connected in series or in parallel.
  • the charging circuit provided by the embodiment of the present application can also be used to charge a single-cell battery.
  • the first output terminal 911 of the first charge pump 91 and the second charge The second output terminal 921 of the pump 92 is directly connected, and both the first charge pump 91 and the second charge pump 92 are configured to work in the charge pump mode, which is completely consistent with the use and control mode of the common step-down charge pump.
  • Fig. 11 is a schematic flowchart of a charging method provided by an embodiment of the present application.
  • the method in FIG. 11 can be realized by using the charging circuit shown in FIG. 9 , for example.
  • step S1102 the charging circuit is used to charge the first battery cell and the second battery cell.
  • the charging circuit includes: a first charge pump having a first output terminal, the first output terminal is connected to the first cell through a first path, so as to charge the first charge pump through the first path.
  • the battery cell provides charging current;
  • the second charge pump has a second output terminal, and the second output terminal is connected to the second battery cell through a second path to provide charging for the second battery cell through the second path current, wherein the path impedance of the second path is greater than the path impedance of the first path.
  • step S1104 during the process of using the first charge pump to charge the first cell, the voltage of the first output terminal is controlled so that the charging currents of the first charging path and the second charging path match.
  • an inductor is provided on the first charging channel, and the inductor and the first charge pump together form a buck circuit; the method further includes: controlling the buck circuit to adjust the voltage of the first output terminal .
  • the first charge pump and the second charge pump jointly form a dual-phase charge pump; or, the first charge pump and/or the second charge pump include a multi-phase charge pump.
  • the first charge pump includes a first switch tube, a second switch tube, a third switch tube, and a fourth switch tube, and the first switch tube and the second switch tube are connected in series in the charging circuit Between the charging input end of the charge pump and the first output end, the third switch tube and the fourth switch tube are connected in series between the first output end and ground;
  • the second charge pump includes a fifth switch tube, a sixth switching tube, a seventh switching tube and an eighth switching tube, the fifth switching tube and the sixth switching tube are connected in series between the charging input end of the charging circuit and the second output end, The seventh switch tube and the eighth switch tube are connected in series between the first output terminal and ground.
  • the method further includes: when the voltage of the first cell is greater than the voltage of the second cell, controlling the first switch tube and/or the second switch tube to be in linear conduction state, so that the voltages of the first cell and the second cell are balanced; or, when the voltage of the first cell is lower than the voltage of the second cell, control the fifth switching tube And/or the sixth switch tube is in a linear conduction state, so as to balance the voltages of the first battery cell and the second battery cell.
  • the charging circuit in this embodiment of the present application may include multiple first charge pumps and second charge pumps connected in parallel.
  • the embodiment of the present application also provides an electronic device 1200 .
  • the electronic device 1200 may include a first battery cell 1201 , a second battery cell 1202 and a charging circuit 1203 connected in parallel.
  • the charging circuit 1203 may be the charging circuit 90 provided in any one of the foregoing embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the charging method described in any one of the foregoing embodiments are implemented.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be read by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital video disc, DVD)) or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)

Abstract

提供了一种充电电路、充电方法、电子设备及存储介质,所述充电电路包括第一电荷泵,具有第一输出端,所述第一输出端通过第一通路与第一电芯相连,以通过所述第一通路为所述第一电芯提供充电电流;第二电荷泵,具有第二输出端,所述第二输出端通过第二通路与第二电芯相连,以通过所述第二通路为所述第二电芯提供充电电流,其中所述第二通路的通路阻抗大于所述第一通路的通路阻抗;控制电路,用于在利用所述第一电荷泵为所述第一电芯充电的过程中,控制所述第一输出端的电压,使得所述第一通路和所述第二通路的充电电流相匹配。

Description

充电电路、充电方法、电子设备及存储介质
本申请要求于2022年2月8日提交中国专利局、申请号为CN202210119832.X、申请名称为“充电电路、充电方法、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及充电技术领域,更为具体的,涉及一种充电电路、充电方法、电子设备及存储介质。
背景技术
目前,并联双电芯技术广泛的应用在异形手机、折叠屏手机等电子设备中。相关技术中广泛采用基于电荷泵的充电芯片为并联的电芯充电。在这种电子设备中,由于其中的一个电芯与充电芯片之间通过柔性电路板(flexible printed circuit,FPC)连接,从而存在数十mΩ的通路阻抗,导致两个电芯的通路阻抗不一致。这种阻抗不一致会使两个电芯的充电电流和充电效率均有较大的差别。
为了解决上述问题,相关技术中通过在阻抗较小的通路上人为增加负载开关,通过调节负载开关的阻抗而使两个电芯的通路阻抗匹配。但是,这种方法在应用于大电流充电模式下时,会有较大的热损耗;此外,在充电电路中增加负载开关会带来额外的成本增加。
发明内容
有鉴于此,本申请提供一种充电电路、充电方法、电子设备及存储介质,以解决上述问题。
第一方面,提供一种充电电路,包括:第一电荷泵,具有第一输出端,所述第一输出端通过第一通路与第一电芯相连,以通过所述第一通路为所述第一电芯提供充电电流;第二电荷泵,具有第二输出端,所述第二输出端通过第二通路与第二电芯相连,以通过所述第二通路为所述第二电芯提供充电电流,其中所述第二通路的通路阻抗大于所述第一通路的通路阻抗;控制电路,用于在利用所述第一电荷泵为所述第一电芯充电的过程中,控制所述第一输出端的电压,使得所述第一充电通路和所述第二充电通路的充电电流相匹配。
可选地,所述第一充电通道上设置有电感,所述电感与所述第一电荷泵共同形成buck电路,所述控制电路通过控制所述buck电路,调整所述第一输出端的电压。
可选地,所述第一电荷泵和所述第二电荷泵共同形成双相电荷泵;或者,所述第一电荷泵和/或所述第二电荷泵包括多相电荷泵。
可选地,所述第一电荷泵包括第一开关管、第二开关管、第三开关管和第四开关管,所述第一开关管和所述第二开关管串联在所述充电电路的充电输入端和所述第一输出端之间,所述第三开关管和所述第四开关管串联在所述第一输出端和地之间;所述第二电荷泵包括第五开关管、第六开关管、第七开关管和第八开关管,所述第五开关管和所述第六开关管串联在所述充电电路的充电输入端和所述第二输出端之间,所述第七开关管和所述第八开关管串联在所述第一输出端和地之间。
可选地,当所述第一电芯的电压大于所述第二电芯的电压时,所述控制电路控制所述第一开关管和/或所述第二开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡;或者,当所述第一电芯的电压小于所述第二电芯的电压时,所述控制电路控制所述第五开关管和/或所述第六开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡。
可选地,所述充电电路包括多个并联的所述第一电荷泵和所述第二电荷泵。
第二方面,提供一种充电方法,所述方法包括:利用充电电路为第一电芯和第二电芯充电;其中,所述充电电路包括:第一电荷泵,具有第一输出端,所述第一输出端通过第一通路与所述第一电芯相连,以通过所述第一通路为所述第一电芯提供充电电流;第二电荷泵,具有第二输出端,所述第二输出端通过第二通路与第二电芯相连,以通过所述第二通路为所述第二电芯提供充电电流,其中所述第二通路的通路阻抗大于所述第一通路的通路阻抗;所述方法还包括:在利用所述第一电荷泵为所述第一电芯充电的过程中,控制所述第一输出端的电压,使得所述第一充电通路和所述第二充电通路的充电电流相匹配。
可选地,所述第一充电通道上设置有电感,所述电感与所述第一电荷泵共同形成buck电路;所述方法还包括:控制所述buck电路,调整所述第一输出端的电压。
可选地,所述第一电荷泵和所述第二电荷泵共同形成双相电荷泵;或者,所述第一电荷泵和/或所述第二电荷泵包括多相电荷泵。
可选地,所述第一电荷泵包括第一开关管、第二开关管、第三开关管和第四开关管,所述第一开关管和所述第二开关管串联在所述充电电路的充电输入端和所述第一输出端之间,所述第三开关管和所述第四开关管串联在所述第一输出端和地之间;所述第二电荷泵包括第五开关管、第六开关管、第七开关管和第八开关管,所述第五开关管和所述第六 开关管串联在所述充电电路的充电输入端和所述第二输出端之间,所述第七开关管和所述第八开关管串联在所述第一输出端和地之间。
可选地,所述方法还包括:当所述第一电芯的电压大于所述第二电芯的电压时,控制所述第一开关管和/或所述第二开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡;或者,当所述第一电芯的电压小于所述第二电芯的电压时,控制所述第五开关管和/或所述第六开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡。
可选地,所述充电电路包括多个并联的所述第一电荷泵和所述第二电荷泵。
第三方面,提供一种电子设备,包括:并联的第一电芯和第二电芯;如第一方面和第一方面任一可选的实施方式所述的充电电路。
第四方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第二方面及第二方面中任一可选的实施实施方式所述的充电方法的步骤。
本申请实施例提供的充电电路,利用第一电荷泵和第二电荷泵分别为相互并联的两个电芯独立的供电,通过控制电路对其中阻抗较小的通路的输出电压进行调整,使相互并联的两个电芯能够达到充电均衡的状态,可以有效避免现有技术中为使负载均衡而增加的负载开关所带来的硬件成本增加和在大电流模式下增加热损耗的问题。
附图说明
图1为相关技术中一种手机的示意图。
图2为相关技术中另一种手机的示意图。
图3为相关技术中一种电荷泵的电路图。
图4为相关技术中一种基于电荷泵的充电系统的电路图。
图5为相关技术中为并联双电芯充电的充电系统的原理图。
图6为对图5中的充电系统进行仿真的结果。
图7为相关技术中基于通路阻抗补偿技术为并联双电芯充电的充电系统的原理图。
图8为对图7中的充电系统进行仿真的结果。
图9为本申请实施例提供的充电电路的电路图。
图10为本申请实施例提供的buck电路的电路图。
图11为本申请实施例提供的充电方法的示意性流程图。
图12为本申请实施例提供的电子设备的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
在介绍本申请具体实施例之前,先结合附图,对相关技术中的充电电路、充电方法及其存在的问题进行详细的举例说明。
随着技术的不断发展和进步,在一些消费电子产品中会设置双电芯结构的电池,以提高电池的整体容量。例如,在如图1所示的折叠屏手机10中,电池中的第一电芯111和第二电芯112在弯折轴12的两侧对称设置。又例如,在图2所示的手机20中,由于主板等器件占用了手机20内部的部分空间。因此,为了能尽量增大电池21的容量,相关技术中广泛采用的方法是将电池21设置为异形电池,图2中所示的异形电池21包括第一电芯211和第二电芯212,将第一电芯211设置在主板的左侧,第二电芯212设置在主板的下侧。
相关技术中,为了提高充电效率,可以使用基于电荷泵的充电电路来对以上所述的双电芯电池充电。电荷泵是一种高效的无感式DC-DC转换器,利用电容作为储能元件进行电压变换,可以使电压减半同时使电流增倍;并且。由于电容的阻抗较小,能够显著提高充电效率,在较大功率下能够达到97%以上的效率。下面首先结合图3对电荷泵的工作过程进行详细的举例说明,图3示出了一种典型的降压型电荷泵30的电路图。图3中的电荷泵30包括:输入端31、输出端32、第一电容33、第二电容34、第一开关35、第二开关36、第三开关37以及第四开关38。
其中,第一开关35、第二开关36、第三开关37以及第四开关38依次串联于输入端31与接地端之间,第一电容33的第一端与第一开关35和第二开关36的串联节点连接,第二端与第三开关37和第四开关38的串联节点连接;第二电容34的第一端与第二开关36和第三开关37的串联节点连接并作为所述电荷泵的输出端32,第二电容34的第二端与接地端连接。
图3中的电荷泵30的工作原理为:在第一段内,控制第一开关35和第三开关37闭合,第二开关36和第四开关38断开,此时第一电容33和第二电容34串联充电,第一电容33和第二电容34的电压均为输入电压Vin的一半;在第二时段,控制第一开关35和第三开关37断开,第二开关36和第四开关38闭合,此时电荷泵与电源提供装置的连接断开,第一电容33和第二电容34并联,通过输出端32将电压输出,此时的输出电压Vout=Vin/2,同时,相互并联的两个电容同时放电时,输出通路上的电流增倍;通过控制 多个开关管的状态,使电荷泵30交替工作在第一时段和第二时段,即可使电荷泵保持Vout=Vin/2的输出。
图4示出了相关技术中基于以上所述的电荷泵的充电系统40,该充电系统40可以应用于如图1和图2中所示的电子设备,以为电子设备中的电池充电。
图4中的充电系统40包括电源提供装置41、双相电荷泵42、第一电芯43以及第二电芯44。其中,双相电荷泵42包括第一相电荷泵421和第二相电荷泵422,第一相电荷泵421和第二相电荷泵422的输入端耦合,并通过电子设备的充电接口与电源提供装置43连接;第一相电荷泵421和第二相电荷泵422的输出端耦合,与相互并联的第一电芯43和第二电芯44连接,以为第一电芯43和第二电芯44充电。其中电源提供装置43例如可以是电源适配器或者其他供电源。
继续参阅图4,其中第一相电荷泵421中包括开关管M1-M4,第二相电荷泵422中包括开关管M5-M8。在双相电荷泵42工作时,控制开关管M1和M3的工作相位与开关管M5和M7的相位相反,开关管M2和M4的工作相位与开关管M6和M8的相位相反,使得能够有效降低输出电流的波纹。需要说明的是,图4中的双相电荷泵42仅为示例,在相关技术中,也可以将双相电荷泵42替换为单相电荷泵或多相电荷泵。
请重新参阅图1和图2,相关技术中,在为电池11或异形电池22充电时,通常是利用设置在主板上的充电IC(Integrated Circuit,集成电路)来实现的,此处的充电IC例如可以是前文中提到的双相电荷泵。因此,对于具有双并联电芯的电池来说,由于电芯排布方式的限制,其中的一个电芯需要通过FPC与充电IC连接。例如,在图1所示的折叠屏手机10中,充电IC13设置在靠近第一电芯111的一侧,此时需要利用FPC113将第二电芯与充电IC13连接。又例如,在图2所示的手机20中,第二电芯212与充电IC22的连接也可以通过FPC213来实现。由于FPC中的金属走线会在通路上形成阻抗。并且,FPC的阻抗与其长度成正比,也就是说,充电IC与第二电芯之间的距离越远,FPC的阻抗的就越显著。这样会导致第一电芯和第二电芯与充电IC之间的通路阻抗不一致,在对第一电芯和第二电芯充电时,第一电芯和第二电芯之间会产生压差;并且,在充电过程的后期,压差会越来越大,导致当第一电芯充满时,第二电芯仍没有充满,即第一电芯的电芯电压达到满充电压,第二电芯的电压低于满充电压,造成电池容量的浪费。并且,这种情况下,在停止充电后,第一电芯和第二电芯会因存在电压差而自动均衡,使得电芯电压趋近于中间值,缩短了续航时间;尤其是在大电流快充模式时,压差更加明显,导致电池容量的浪费也更加明显。
请参阅图5,图5示出了上述相关技术中为第一电芯和第二电芯充电的充电系统的原 理图,其中充电IC51为前文中所说的双相电荷泵,充电IC51的输入端与电源连接,以接收输入电压Vin;充电IC51将输入电压转换为输出电压Vout,通过输出端为第一电芯和第二电芯充电;在图5中还示出了第二电芯与充电IC51的输出端的通路上的电阻R1,用来表示前文中所说的FPC的阻抗。
对图5中所示的电路进行仿真,得到如图6所示的仿真结果。由于第一电芯与充电IC的通路由于阻抗较小,在该通路上仅有电池的50mΩ内阻,因此第一电芯的充电电流达到了3.1A;而在第二电芯与充电IC的通路上,由于连接第二电芯与充电IC的FPC具有约70mΩ的通路阻抗,因此在该通路上的阻抗为FPC的阻抗与第二电芯的内阻之和,约为120mΩ,第二电芯的充电电流仅有1.3A。也就是说,由于第二电芯与充电IC之间的通路阻抗的存在,导致第一电芯的充电电流明显大于第二电芯的充电电流,这样使得两个电芯之间的充电速度有较大的差异。
在相关技术中,可以通过通路补偿技术来解决上述问题,其原理主要是在通路阻抗较小的一侧人为的引入阻抗补偿装置,该阻抗补偿装置例如可以是负载开关,负载开关可以是由组成背靠背形式的MOS管来实现,通过控制MOS管的驱动电压和/或通断时间,可以实现对通路阻抗的调整。图7示出了利用该阻抗控制补偿技术的电路原理图,图中的R2为以上所述阻抗补偿装置的等效阻抗。利用图7所示的电路进行仿真,得到如图8所示的仿真结果,图8示出了第一电芯和第二电芯的输入电流的变化情况,图中第一电芯和第二电芯的充电电流的波形重合,充电电流均为1.42A。从仿真的结果能够看出,利用这种通路补偿技术,能够使两个电芯充电电流均衡。
以上所述的通路补偿技术虽然能够解决现有技术中因通路阻抗不一致带来的充电效率同的问题,但是该技术方案还存在着一些问题。首先,在阻抗较低的通路上增加负载开关,会增加电子设备的成本。其次,由于需要人为的在低阻抗通路中增加额外的阻抗来实现均衡,在充电电流较大的情况下,对于70mΩ的阻抗来说,当输入电流为3A时,其热损耗为630mW;如果进一步提高充电功率,使充电电流增加到6A时,该阻抗的热损耗将达到2520mW。
为了解决上述问题,本申请实施例提供了一种充电电路,下面结合附图对本申请的充电电路进行详细的描述。
图9示出了本申请实施例提供的充电电路的电路图,图9中的充电电路90包括:
第一电荷泵91,具有第一输出端911,所述第一输出端911通过第一通路912与第一电芯93相连,以通过所述第一通路912为所述第一电芯93提供充电电流。
第二电荷泵92,具有第二输出端921,所述第二输出端921通过第二通路922与第二 电芯94相连,以通过所述第二通路922为所述第二电芯94提供充电电流,其中所述第二通路922的通路阻抗大于所述第一通路912的通路阻抗。
控制电路95,用于在利用所述第一电荷泵91为所述第一电芯93充电的过程中,控制所述第一输出端911的电压,使得所述第一通路912和所述第二通路922的充电电流相匹配。
需要说明的是,本申请实施例对第一电荷泵91和第二电荷泵92的具体类型不做限定,例如,可以是如图3中所示的降压型电荷泵。或者,在一些实施方式中,第一电荷泵91和第二电荷泵92也可以是升压型电荷泵。
在本申请实施例中,第一电荷泵91和第二电荷泵92可以是前文中的双相电荷泵的中的第一相电荷泵和第二相电荷泵,将双相电荷泵的两相进行拆分,使其分别独立的为相互并联的第一电芯93和第二电芯94供电。
可以理解的是,当第一输出端911和第二输出端921的输出电压相同时,由于第二通路922的阻抗大于第一通路912的阻抗,第一通路912的充电电流大于第二通路922的充电电流,从而使第一电芯93的充电效率要明显高于第二电芯94。在这种情况下,为使第一电芯93和第二电芯94的充电效率均衡,可以通过降低第一输出端911的电压,进而降低第一通路912的充电电流,使得第一电芯93和第二电芯94的充电效率基本均衡。
在本申请实施例中,控制电路95可以与第一电荷泵91连接,以控制第一电荷泵91的第一输出端911的电压。具体的,第一电荷泵91中包括多个开关管,将多个开关管配置为与控制电路95连接。在为第一电芯93供电的过程中,可以利用控制电路95控制各开关管的通断,以实现对第一输出端911的电压的调整。
本申请实施例提供的充电电路,利用第一电荷泵和第二电荷泵分别为相互并联的两个电芯独立供电,通过控制电路对其中阻抗较小的通路的输出电压进行调整,使相互并联的两个电芯能够达到充电均衡的状态,可以有效避免现有技术中为使负载均衡而增加的负载开关所带来的硬件成本增加和在大电流模式下增加热损耗的问题。
在一些实施方式中,为了便于对第一输出端911的电压进行调整,可以通过在第一通路912上设置电感96,使电感96与第一电荷泵91共同形成buck电路。利用控制电路95控制所述buck电路,以实现对第一输出端911的电压的调整。
图10示出了上述buck电路的电路示意图,该电路又称三电平buck电路。图10中的三电平buck电路与图3中所示的降压型电荷泵30的区别在于在输出端32和第二电容34之间增加了电感1001。在三电平buck电路中,可以通过控制各个开关管的占空比,即可实现对该电路的输出电压的调整。
相比于现有技术中增加负载开关方式,本申请实施例所提供的通过增加电感以形成三电平buck电路的方案能够显著提高效率和降低热损耗。以输入电压Vin=9V的极端场景为例,当第一电芯的充电电流为3A时,热损耗增加0.405W,充电电流为6A时,热损耗增加0.81W,相比于增加复杂开关的方案,热损耗最多降低了1.71W左右,充电效率和性能得到了明显的提升。
在该实施例中,通过在电荷泵的输出端增加电感形成buck电路,利用控制电路,能够对输出电压进行较为精确调整,从而实现两个充电通路上的充电电流的受控均衡。从硬件的角度来说,可以直接利用现有的基于双相电荷泵的充电IC,只需要在其中一相的输出端增加一个电感,即可实现上述效果,在应用于电子设备中时,不需要单独定制专有物料,能够有效地降低硬件成本。
在一些实施方式中,前文中的第一电荷泵和第二电荷泵可以共同形成双相电荷泵,例如图9中,第一电荷泵91和第二电荷泵91共同形成双相电荷泵97。换句话说,第一电荷泵91和第二电荷泵92可以是由双相电荷泵97拆分出的第一相电荷泵和第二相电荷泵。
在一些实施方式中,第一电荷泵91和/或第二电荷泵92均可以是包括多相的电荷泵,本申请实施例对此不做具体限定。将第一电荷泵91和/或第二电荷泵92设置为多相电荷泵,能够提升充电电流和/或电压,以提高充电效率。
在一些实施方式中,请重新参阅图9,第一电荷泵91中还包括第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4,其中,所述第一开关管Q1和所述第二开关管Q2串联在所述充电电路90的充电输入端和所述第一输出端911之间,所述第三开关管Q3和所述第四开关管Q4串联在所述第一输出端911和地之间。
第二电荷泵92中还包括第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8。其中,所述第五开关管Q5和所述第六开关管Q6串联在所述充电电路的充电输入端和所述第二输出端921之间,所述第七开关管Q7和所述第八开关管Q8串联在所述第二输出端921和地之间。
在电子设备的生产装配过程中,对于先扣一颗电池,再扣另一颗压差较大的电池的场景。举例说明,若先扣入电压为4V的第一电芯,再扣入电压为3.4V的第二电芯时,由于第一电芯和第二电芯的压差较大,两颗电芯会发生互扣。换句话说,第一电芯和第二电芯会因为电压差的存在而自动均衡。具体表现为第一电芯向第二电芯充电,直至两电芯的电压相同。
在以上所述的自动均衡的过程中,如果在充电电路中不加以保护,会使第一电芯和第二电芯在平衡的过程中产生较大的电流,当该电流流经充电IC时,会对充电IC造成不可 逆的损坏。
有鉴于上述问题,在本申请实施例中,可以利用第一电荷泵91和第二电荷泵92中的多个开关管来实现电芯匹配均衡时的过流保护。当第一电芯93的电压大于第二电芯94的电压时,可以通过控制电路95控制第一电荷泵91中的第一开关管Q1和/或第二开关管Q2处于线性导通状态,以使第一电芯93和第二电芯94的电压缓慢的平衡。
而当第一电芯93的电压小于第二电芯94的电压时,则可以通过控制电路95控制第二电荷泵92中的第五开关管Q5和/或第六开关管Q6处于线性导通状态,以使第一电芯93和第二电芯94的电压缓慢的平衡。
在一些实施方式中,本申请实施例中的第一电芯93和第二电芯94可以是由多个相互串联的电芯构成。或者,以上所述相互串联的多个电芯可以是由多个子电芯串联或并联组成。
在一些实施方式中,本申请实施例提供的充电电路还可以用于为单电芯的电池充电,在这种场景下,只需将第一电荷泵91的第一输出端911与第二电荷泵92的第二输出端921直连,配置第一电荷泵91和第二电荷泵92均工作为电荷泵模式,此时与普通的降压型电荷泵的使用及控制方式完全一致。
上文结合图9和图10,详细地描述了本申请的装置实施例,下面结合图11,描述本申请的方法实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详尽描述的部分可以参见前面的装置实施例。
图11是本申请实施例提供的充电方法的示意性流程图。图11的方法例如可以采用图9所示的充电电路来实现。
参见图11,在步骤S1102,利用充电电路为第一电芯和第二电芯充电。
其中,所述充电电路包括:第一电荷泵,具有第一输出端,所述第一输出端通过第一通路与所述第一电芯相连,以通过所述第一通路为所述第一电芯提供充电电流;第二电荷泵,具有第二输出端,所述第二输出端通过第二通路与第二电芯相连,以通过所述第二通路为所述第二电芯提供充电电流,其中所述第二通路的通路阻抗大于所述第一通路的通路阻抗。
在步骤S1104,在利用第一电荷泵为第一电芯充电的过程中,控制第一输出端的电压,使得第一充电通路和第二充电通路的充电电流相匹配。
可选地,所述第一充电通道上设置有电感,所述电感与所述第一电荷泵共同形成buck电路;所述方法还包括:控制所述buck电路,调整所述第一输出端的电压。
可选地,所述第一电荷泵和所述第二电荷泵共同形成双相电荷泵;或者,所述第一电 荷泵和/或所述第二电荷泵包括多相电荷泵。
可选地,所述第一电荷泵包括第一开关管、第二开关管、第三开关管和第四开关管,所述第一开关管和所述第二开关管串联在所述充电电路的充电输入端和所述第一输出端之间,所述第三开关管和所述第四开关管串联在所述第一输出端和地之间;所述第二电荷泵包括第五开关管、第六开关管、第七开关管和第八开关管,所述第五开关管和所述第六开关管串联在所述充电电路的充电输入端和所述第二输出端之间,所述第七开关管和所述第八开关管串联在所述第一输出端和地之间。
可选地,所述方法还包括:当所述第一电芯的电压大于所述第二电芯的电压时,控制所述第一开关管和/或所述第二开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡;或者,当所述第一电芯的电压小于所述第二电芯的电压时,控制所述第五开关管和/或所述第六开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡。
可选地,本申请实施例中的充电电路可以包括多个并联的第一电荷泵和第二电荷泵。
如图12所示,本申请实施例还提供了一种电子设备1200。电子设备1200可以包括相互并联的第一电芯1201、第二电芯1202以及充电电路1203。其中充电电路1203可以为前文中任一实施例提供的充电电路90。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前文中任一实施例所述的充电方法的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产 品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种充电电路,其特征在于,包括:
    第一电荷泵,具有第一输出端,所述第一输出端通过第一通路与第一电芯相连,以通过所述第一通路为所述第一电芯提供充电电流;
    第二电荷泵,具有第二输出端,所述第二输出端通过第二通路与第二电芯相连,以通过所述第二通路为所述第二电芯提供充电电流,其中所述第二通路的通路阻抗大于所述第一通路的通路阻抗;
    控制电路,用于在利用所述第一电荷泵为所述第一电芯充电的过程中,控制所述第一输出端的电压,使得所述第一通路和所述第二通路的充电电流相匹配。
  2. 根据权利要求1所述的充电电路,其特征在于,所述第一充电通道上设置有电感,所述电感与所述第一电荷泵共同形成buck电路,所述控制电路通过控制所述buck电路,调整所述第一输出端的电压。
  3. 根据权利要求1所述的充电电路,其特征在于,
    所述第一电荷泵和所述第二电荷泵共同形成双相电荷泵;或者,
    所述第一电荷泵和/或所述第二电荷泵包括多相电荷泵。
  4. 根据权利要求1所述的充电电路,其特征在于,
    所述第一电荷泵包括第一开关管、第二开关管、第三开关管和第四开关管,所述第一开关管和所述第二开关管串联在所述充电电路的充电输入端和所述第一输出端之间,所述第三开关管和所述第四开关管串联在所述第一输出端和地之间;
    所述第二电荷泵包括第五开关管、第六开关管、第七开关管和第八开关管,所述第五开关管和所述第六开关管串联在所述充电电路的充电输入端和所述第二输出端之间,所述第七开关管和所述第八开关管串联在所述第二输出端和地之间。
  5. 根据权利要求4所述的充电电路,其特征在于,
    当所述第一电芯的电压大于所述第二电芯的电压时,所述控制电路控制所述第一开关管和/或所述第二开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡;或者,
    当所述第一电芯的电压小于所述第二电芯的电压时,所述控制电路控制所述第五开关管和/或所述第六开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡。
  6. 根据权利要求1所述的充电电路,其特征在于,所述充电电路包括多个并联的所 述第一电荷泵和所述第二电荷泵。
  7. 一种充电方法,其特征在于,所述方法包括:
    利用充电电路为第一电芯和第二电芯充电;
    其中,所述充电电路包括:
    第一电荷泵,具有第一输出端,所述第一输出端通过第一通路与所述第一电芯相连,以通过所述第一通路为所述第一电芯提供充电电流;
    第二电荷泵,具有第二输出端,所述第二输出端通过第二通路与第二电芯相连,以通过所述第二通路为所述第二电芯提供充电电流,其中所述第二通路的通路阻抗大于所述第一通路的通路阻抗;
    所述方法还包括:在利用所述第一电荷泵为所述第一电芯充电的过程中,控制所述第一输出端的电压,使得所述第一充电通路和所述第二充电通路的充电电流相匹配。
  8. 根据权利要求7所述的充电方法,其特征在于,
    所述第一充电通道上设置有电感,所述电感与所述第一电荷泵共同形成buck电路;
    所述方法还包括:控制所述buck电路,调整所述第一输出端的电压。
  9. 根据权利要求7所述的充电方法,其特征在于,
    所述第一电荷泵和所述第二电荷泵共同形成双相电荷泵;或者,
    所述第一电荷泵和/或所述第二电荷泵包括多相电荷泵。
  10. 根据权利要求7所述的充电方法,其特征在于,
    所述第一电荷泵包括第一开关管、第二开关管、第三开关管和第四开关管,所述第一开关管和所述第二开关管串联在所述充电电路的充电输入端和所述第一输出端之间,所述第三开关管和所述第四开关管串联在所述第一输出端和地之间;
    所述第二电荷泵包括第五开关管、第六开关管、第七开关管和第八开关管,所述第五开关管和所述第六开关管串联在所述充电电路的充电输入端和所述第二输出端之间,所述第七开关管和所述第八开关管串联在所述第二输出端和地之间。
  11. 根据权利要求10所述的充电方法,其特征在于,所述方法还包括:
    当所述第一电芯的电压大于所述第二电芯的电压时,控制所述第一开关管和/或所述第二开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡;或者,
    当所述第一电芯的电压小于所述第二电芯的电压时,控制所述第五开关管和/或所述第六开关管处于线性导通状态,以使所述第一电芯和所述第二电芯的电压平衡。
  12. 根据权利要求7所述的充电方法,其特征在于,所述充电电路包括多个并联的所述第一电荷泵和所述第二电荷泵。
  13. 一种电子设备,其特征在于,所述电子设备包括:
    并联的第一电芯和第二电芯;
    如权利要求1-6中任一项所述的充电电路。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,
    所述计算机程序被处理器执行时实现如权利要求7至12中任一项所述的充电方法的步骤。
PCT/CN2022/137849 2022-02-08 2022-12-09 充电电路、充电方法、电子设备及存储介质 WO2023151364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210119832.XA CN114465311A (zh) 2022-02-08 2022-02-08 充电电路、充电方法、电子设备及存储介质
CN202210119832.X 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023151364A1 true WO2023151364A1 (zh) 2023-08-17

Family

ID=81413224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137849 WO2023151364A1 (zh) 2022-02-08 2022-12-09 充电电路、充电方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN114465311A (zh)
WO (1) WO2023151364A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114465311A (zh) * 2022-02-08 2022-05-10 Oppo广东移动通信有限公司 充电电路、充电方法、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089271A (ja) * 2007-10-02 2009-04-23 Panasonic Corp チャージポンプ回路、チャージポンプ装置、pll回路、dll回路、クロックデータリカバリシステム
CN106712498A (zh) * 2017-01-09 2017-05-24 格科微电子(上海)有限公司 稳压电荷泵装置及其控制方法
CN109510272A (zh) * 2018-12-07 2019-03-22 青岛海信移动通信技术股份有限公司 一种充电控制方法及充电电路
CN113422410A (zh) * 2021-06-23 2021-09-21 深圳传音控股股份有限公司 充电装置及移动终端
CN113725957A (zh) * 2021-08-17 2021-11-30 珠海市魅族科技有限公司 一种多电荷泵控制电路、控制方法及电子设备
CN113725958A (zh) * 2021-08-17 2021-11-30 珠海市魅族科技有限公司 电池电源调节电路、调节方法、充电线及终端设备
CN114465311A (zh) * 2022-02-08 2022-05-10 Oppo广东移动通信有限公司 充电电路、充电方法、电子设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089271A (ja) * 2007-10-02 2009-04-23 Panasonic Corp チャージポンプ回路、チャージポンプ装置、pll回路、dll回路、クロックデータリカバリシステム
CN106712498A (zh) * 2017-01-09 2017-05-24 格科微电子(上海)有限公司 稳压电荷泵装置及其控制方法
CN109510272A (zh) * 2018-12-07 2019-03-22 青岛海信移动通信技术股份有限公司 一种充电控制方法及充电电路
CN113422410A (zh) * 2021-06-23 2021-09-21 深圳传音控股股份有限公司 充电装置及移动终端
CN113725957A (zh) * 2021-08-17 2021-11-30 珠海市魅族科技有限公司 一种多电荷泵控制电路、控制方法及电子设备
CN113725958A (zh) * 2021-08-17 2021-11-30 珠海市魅族科技有限公司 电池电源调节电路、调节方法、充电线及终端设备
CN114465311A (zh) * 2022-02-08 2022-05-10 Oppo广东移动通信有限公司 充电电路、充电方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN114465311A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
TWI587602B (zh) 充電器電路、電子器件及用於為電池充電之方法
WO2018157761A1 (zh) 电压转换器及其控制方法和电压转换系统
KR102507050B1 (ko) 전력 변환 구조체, 전력 변환 방법, 이를 포함하는 전자 장치 및 그 칩 유닛
WO2023151364A1 (zh) 充电电路、充电方法、电子设备及存储介质
CN114142723B (zh) 电源转换结构及包括其的电子设备
US20240079956A1 (en) Hybrid power converter
CN103560550A (zh) 一种可同时给移动电子设备供电及充电装置
WO2024066508A1 (zh) 多输入电源电路及电子设备
US11588391B1 (en) Power conversion structure, system, method, electronic device including power conversion structure, and chip unit
WO2022036667A1 (zh) 用于控制电芯的电路和电子设备
CN114552975B (zh) 电源转换系统、包括其的电子设备及集成电路
WO2021190339A1 (zh) 一种充电电路、方法、系统、电池和电子设备
WO2022067701A1 (zh) 一种充电电路及电子设备
US11949332B2 (en) Hybrid power converter with two-phase control of flying capacitor balancing
CN115833577B (zh) 电压转换电路及电子设备
WO2022188048A1 (zh) 充放电控制装置
CN115940637A (zh) 供电装置、系统、方法、电子设备及可读存储介质
WO2023185154A1 (zh) Dcdc电路、电源适配器和电压转换方法
US20230253883A1 (en) Hybrid Buck-Boost Power Converter
US20230006450A1 (en) Power System Configurations for Wireless Charging
WO2021155507A1 (zh) 一种开关电源
CN116613858A (zh) 功率转换结构、系统以及方法
CN104901387A (zh) 充电装置及用户设备
CN115800730A (zh) 一种开关电容电压转换电路、电压转换器和芯片
CN117937647A (zh) 一种充放电电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925715

Country of ref document: EP

Kind code of ref document: A1