WO2022188048A1 - 充放电控制装置 - Google Patents

充放电控制装置 Download PDF

Info

Publication number
WO2022188048A1
WO2022188048A1 PCT/CN2021/079865 CN2021079865W WO2022188048A1 WO 2022188048 A1 WO2022188048 A1 WO 2022188048A1 CN 2021079865 W CN2021079865 W CN 2021079865W WO 2022188048 A1 WO2022188048 A1 WO 2022188048A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
coupled
interface
conversion circuit
Prior art date
Application number
PCT/CN2021/079865
Other languages
English (en)
French (fr)
Inventor
胡章荣
申朋朋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/079865 priority Critical patent/WO2022188048A1/zh
Priority to CN202180005065.3A priority patent/CN115336159A/zh
Publication of WO2022188048A1 publication Critical patent/WO2022188048A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a charge and discharge control device.
  • low-voltage batteries such as silicon anode batteries
  • silicon anode batteries can still power electronic devices when the voltage is less than 3.5V.
  • An existing power supply scheme is shown in FIG. 1 , the low-voltage battery passes through a voltage converter, such as a step-down circuit/boost circuit, and the switch tube is connected to the power supply interface VSYS of the system.
  • the threshold eg 3.5V
  • the power supply voltage of the system is insufficient, which will cause the low-voltage battery to fail to supply power to the electronic device, reducing the battery life of the electronic device and affecting the user experience.
  • the threshold eg 3.5V
  • the embodiment of the present application provides a charge and discharge control device, and the embodiment of the present application can supply power to the system when the low-voltage battery is at a low voltage, and is compatible with different working modes, and the implementation is simple.
  • embodiments of the present application provide a charge and discharge control device, including a first interface for coupling to an external device, a second interface for coupling to a load circuit, and a third interface for coupling to a battery, the charge and discharge
  • the control device further includes a voltage conversion circuit, a first switch, a second switch and a third switch; the first switch is coupled between the second interface and the first end of the voltage conversion circuit; the second switch A switch is coupled between the second interface and the second end of the voltage conversion circuit, the second end of the voltage conversion circuit is coupled to the third interface; the third switch is coupled to the between the first interface and the first end of the voltage conversion circuit; the voltage conversion circuit is used to convert the voltage of the first interface or the voltage of the third interface.
  • the system can be powered when the low-voltage battery is at a low voltage, and can be compatible with a variety of different working modes, and the implementation is simple.
  • the voltage conversion circuit includes an inductor, a first end of the inductor is coupled to the first end of the voltage conversion circuit, and a second end of the inductor is coupled to the the second terminal of the voltage conversion circuit.
  • the voltage conversion circuit further includes a fifth switch; a first end of the fifth switch is coupled to the constant voltage end, and a second end of the fifth switch is coupled to the voltage the first end of the conversion circuit.
  • the embodiments of the present application can supply power to the system when the low-voltage battery is at a low voltage, and can work in a step-down (buck) mode, which is simple to implement.
  • the voltage conversion circuit further includes a fifth switch; the first end of the fifth switch is coupled to the constant voltage end, and the second end of the fifth switch is coupled to the voltage conversion the second end of the circuit.
  • the embodiments of the present application can supply power to the system when the low-voltage battery is at a low voltage, and can operate in a boost mode.
  • the voltage conversion circuit includes a sixth switch; a first end of the sixth switch is coupled to a second end of the voltage conversion circuit, and a second end of the sixth switch is coupled to connected to the second end of the inductor and the second end of the fifth switch.
  • the embodiments of the present application can supply power to the system when the low-voltage battery is at a low voltage, and can operate in a boost mode.
  • the voltage conversion circuit further includes a sixth switch; a first end of the sixth switch is coupled to the constant voltage end, and a second end of the sixth switch is coupled to the voltage the second end of the conversion circuit.
  • the embodiments of the present application can supply power to the system when the low-voltage battery is at a low voltage, and can operate in a buckboost mode.
  • the voltage conversion circuit further includes a seventh switch; the first end of the seventh switch is coupled to the second end of the voltage conversion circuit, and the second end of the seventh switch is coupled to the second end of the inductor and the second end of the sixth switch.
  • the embodiments of the present application can supply power to the system when the low-voltage battery is at a low voltage, and can operate in a buckboost mode.
  • the voltage conversion circuit includes a fourth switch, a fifth switch, a sixth switch and a capacitor; the fourth switch is coupled to the first end of the voltage conversion circuit and the voltage conversion circuit between the second ends of the circuit, the first end of the capacitor is coupled to the first end of the voltage conversion circuit, the second end of the capacitor is coupled to the second end of the fifth switch, the The first end of the fifth switch is coupled to the second end of the voltage conversion circuit, the first end of the sixth switch is coupled to the second end of the fifth switch, and the second end of the sixth switch The terminal is coupled to the constant voltage terminal.
  • the charge and discharge control device further includes a control circuit, coupled to the first interface, for detecting the connection state of the first detection; the control circuit is further configured to: When the first interface is connected to a power adapter, the first switch is controlled to be in an off state, and the second switch is controlled to be in a closed or dynamic switch state; when the first interface is not connected to a power adapter and the operating voltage of the load and When the voltage of the battery is the same, the first switch is controlled to be in an open state, and the second switch is controlled to be in a closed state; when the first interface is not connected to a power adapter and the working voltage of the load is different from the battery voltage , the first switch is controlled to be in a dynamic switching state, and the second switch is controlled to be in an off state.
  • the embodiments of the present application can control the state of the first switch or the second switch to supply power to the system when the low-voltage battery is at a low voltage, which is compatible with a variety of different working modes
  • the above constant voltage terminal may be a ground terminal.
  • embodiments of the present application provide an electronic device, including the foregoing charge and discharge control device.
  • the electronic device further includes a load circuit.
  • the electronic device further includes a battery.
  • an embodiment of the present application provides a charging and discharging control method, including the flow executed by the aforementioned control circuit.
  • the first interface is coupled to the first end of the voltage conversion circuit
  • the third interface is coupled to the second end of the voltage conversion circuit
  • the first switch is coupled to Between the first end of the voltage conversion circuit and the second interface
  • a second switch is coupled between the second interface and the second end of the voltage conversion circuit, and the charging and discharging of the battery can be controlled correspondingly by controlling the working state of the switch Function. Therefore, by using the embodiments of the present application, the system can be powered when the low-voltage battery is at a low voltage, and can be compatible with a variety of different working modes, and the implementation is simple.
  • FIG. 1 is a schematic diagram of a charging and discharging scheme of an electronic device in the prior art.
  • FIG. 2 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a charge-discharge control device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a specific structure of the charge-discharge control device of FIG. 3 .
  • FIG. 5 is another schematic diagram of the charging and discharging control device according to the embodiment of the present application.
  • FIG. 6 is a schematic circuit diagram of a charge and discharge control device according to an embodiment of the present application.
  • FIG. 7 is an operation mode diagram of the charge-discharge control device in FIG. 5 .
  • FIG. 8 is an operation mode diagram of the charge/discharge control device in FIG. 5 .
  • FIG. 9 is an operation mode diagram of the charge and discharge control device in FIG. 5 .
  • FIG. 10 is a circuit diagram of another embodiment of the charge and discharge control device of the present application.
  • FIG. 11 is a circuit diagram of another embodiment of the charge and discharge control device of the present application.
  • FIG. 12 is a circuit diagram of another embodiment of the charge and discharge control device of the present application.
  • FIG. 13 is a circuit diagram of another embodiment of the charge and discharge control device of the present application.
  • FIG. 14 is a flowchart of a charging/discharging control method according to an embodiment of the present application.
  • words such as “first” and “second” are only used to distinguish different objects, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order.
  • the first application, the second application, etc. are used to distinguish different applications, rather than to describe the specific order of the applications, and the features defined with “first” and “second” may expressly or implicitly include one or more of this feature.
  • words such as “exemplary” or “for example” are used to mean serving as an example, illustration or illustration. Any embodiment or design described in the embodiments herein as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • the embodiments of the present application provide a charge-discharge control device and an electronic device, which can supply power to a system when a low-voltage battery is at a low voltage, are compatible with different working modes, and are simple to implement.
  • FIG. 2 is a schematic structural diagram of an electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 in this embodiment may include a charge and discharge control device 10 , a battery 20 and a load circuit 30 .
  • the charge and discharge control device 10 is coupled to an external device 40, the external device 40 can also charge the electronic device 100, such as a power adapter, so that the battery 20 can For receiving the charging current of the power adapter, the charging and discharging control device 10 can be used to convert the charging voltage of the power adapter, and use the converted voltage to supply power to the load circuit 30 .
  • the battery 20 can be used to supply power to the load circuit 30 .
  • the electronic device 100 may be an electronic product such as a mobile phone, a wireless headset, a tablet computer, etc., which is not limited in this application.
  • FIG. 3 is a schematic diagram of the circuit structure of the charge and discharge control device 10 provided by an embodiment of the present application.
  • the charge-discharge control device 10 may include a voltage converter 11 , a switch Q1 , a switch Q2 , a Vbus interface 12 , a Vbat interface 13 , electrical nodes Vsys and VsysH interface 15 , and a control circuit 16 .
  • the voltage converter 11 in this embodiment may include a switch Q3 and a voltage conversion circuit 19 .
  • the Vbus interface 12 can be used for coupling an external device 40
  • the Vbat interface 13 can be used for coupling the battery 20
  • the VsysH interface 15 can be used for coupling connected to the load circuit 30 in the electronic device 100 .
  • the voltage converter 11 is coupled between the Vbus interface 12 and the Vbat interface 13 for converting the voltage of the Vbus interface 12 or the voltage of the Vbat interface 13 .
  • the voltage conversion circuit 19 may be coupled between the switch Q3 and the Vbat interface 13 , and the voltage conversion circuit 19 may be used to convert the voltage of the Vbus interface 12 or the voltage of the Vbat interface 13 voltage is converted.
  • the voltage conversion circuit 19 is coupled to the electrical node Vsys1 between the first end of the switch Q1 and the first end of the switch Q3, and the second end of the switch Q1 is coupled to the VsysH interface 15,
  • the third terminal of the switch Q1 is coupled to the control circuit 16 , and the third terminal is a control terminal.
  • the first end of the switch Q2 is coupled to the electrical node Vsys2 between the Vbat interface 13 and the voltage conversion circuit 19, the second end of the switch Q2 is coupled to the VsysH interface 15, the switch
  • the third terminal of Q2 is coupled to the control circuit 16, and the third terminal is a control terminal.
  • the first end of the switch Q3 is coupled to the voltage conversion circuit 19, the second end of the switch Q3 is coupled to the Vbus interface 12, and the third end of the switch Q3 is coupled to the control circuit 16.
  • the third terminal is a control terminal.
  • the control circuit 16 may be used to control the working states of the switch Q1, the switch Q2 and the switch Q3. It can be understood that, in some embodiments, the electrical node Vsys1 can be used as the first terminal of the voltage conversion circuit 19 , and the electrical node Vsys2 can be used as the second terminal of the voltage conversion circuit 19 .
  • FIG. 4 is a schematic diagram of a specific structure of the charge-discharge control device of FIG. 3 .
  • the voltage converter 11 further includes a switch Q5 , a switch Q6 , a switch Q7 and a capacitor C1 .
  • the above-mentioned voltage conversion circuit 19 in FIG. 3 includes the switch Q6, the switch Q7 and the capacitor C1.
  • the first end of the switch Q5 is coupled to the electrical node Vsys1 between the first end of the switch Q3 and the first end of the switch Q1, and the second end of the switch Q5 is coupled to the electrical node Vsys2, the third terminal of the switch Q5 is coupled to the control circuit 16, the third terminal is a control terminal, and the control circuit 16 can be used to control the working state of the switch Q5.
  • the first end of the switch Q6 is coupled to the second end of the switch Q5, the second end of the switch Q6 is coupled to the first end of Q7, and the third end of the switch Q6 is coupled to the The control circuit 16, the third terminal is a control terminal, and the control circuit 16 can be used to control the working state of the switch Q6.
  • the first end of the switch Q7 is coupled to the second end of the switch Q6 and is also the second end of the capacitor C1, the second end of the switch Q7 is coupled to the ground, and the third end of the switch Q7 is coupled to the ground Connected to the control circuit 16, the third terminal is a control terminal, and the control circuit 16 can be used to control the working state of the switch Q7.
  • the first end of the capacitor C1 is coupled to the electrical node Vsys1, which is also the first end of the switch Q5, and the second end of the capacitor C1 is coupled to the first end of the switch Q7, which is also the first end of the switch Q5. second terminal of switch Q6.
  • the control circuit 16 can be coupled to the third terminals of the switches Q1-Q3 and Q5-Q7, whereby the control circuit 16 can be used to control the working states of the switches Q1-Q3 and Q5-Q7.
  • the switches Q1-Q3 and Q5-Q7 can all be field effect transistors. In some other possible designs, the switches Q1-Q3 and Q5-Q7 may also be other types of electronic switches. This application is not limited. In a possible application scenario, taking the electronic device 100 as a mobile phone as an example, the charging and discharging control apparatus 10 in the embodiment of the present application is illustrated by an example.
  • control circuit 16 when the power adapter is electrically connected to the Vbus interface 12, the control circuit 16 outputs a signal to the third terminal of the switch Q1 to control the switch Q1 to be in an off state, and the control The circuit 16 will also output a signal to the third terminal of the switch Q2 to control the switch Q2 to be in an always-on state.
  • the control circuit 16 also outputs signals to the third terminal of the switch Q3, the third terminal of the switch Q5, the third terminal of the switch Q6 and the third terminal of the switch Q7, wherein the The on-duty ratio of switches Q3 and Q6 is 0.5, and the on-duty ratio of switches Q5 and Q7 is inverse to the on-duty ratio of switch Q3, which is also 0.5, thereby making the voltage conversion
  • the device 11 enters the 2:1 switched capacitor (SC) step-down operating mode.
  • SC switched capacitor
  • V bat is the voltage value of the Vbat interface 13
  • V sysHL is the voltage value of the VsysHL interface 18
  • V bus is the voltage value of the Vbus interface 12 .
  • the control circuit 16 when the power adapter is not electrically connected to the Vbus interface 12, the control circuit 16 will also output a signal to the third terminal of the switch Q2 to control the second switch Q2 to be in an off state , the control circuit 16 will also output a signal to the third terminal of the switch Q3 to control the second switch Q3 to be in an off state, and the control circuit 16 will output a signal to the third terminal of the switch Q1 and
  • the third terminals of the switches Q5, Q6, and Q7 are used to control the switches Q1, Q5, Q6, and Q7 to be in a dynamic switching state.
  • the on-duty ratio of the switch Q1 can be set to be 0.5, the on-duty ratio of the switch Q6 is in phase with the switch Q1, and the on-duty ratio of the switches Q5 and Q7 is opposite to that of the switch Q1, The same is 0.5.
  • the transmission gain functions of the Vbat interface 13 and the VsysHL interface 18 can satisfy the following formula:
  • VsysHL 2 ⁇ Vbat (2)
  • V bat is the voltage value of the Vbat interface 13
  • V sysHL is the voltage value of the VsysHL interface 18 .
  • the voltage converter may further include a switch Q4.
  • the first end of the switch Q4 is coupled to the Vbat interface 13
  • the second end of the switch Q4 is coupled to the electrical node Vsys2
  • the third end of the switch Q4 is coupled to the control circuit 16
  • the third terminal is a control terminal
  • the control circuit 16 can be used to control the working state of the switch Q4.
  • the switch Q4 is used to enable the output of the Vbat interface 13 .
  • the voltage conversion circuit 19 may include an inductor L1 and a switch Q5.
  • the first end of the inductor L1 is coupled to the electrical node Vsys1 between the first end of the switch Q3 and the first end of the switch Q1, that is, is coupled to the Vbus interface 12 through the switch Q3, so
  • the second end of the inductor L1 is coupled to the electrical node Vsys2, that is, coupled to the Vbat interface 13 through the switch Q4.
  • the first end of the inductor L1 is the end away from the Vbat interface 13 .
  • the first end of the switch Q5 is grounded, the second end of the switch Q5 is coupled to the first end of the inductor L1 and the electrical node Vsys1, and the third end of the switch Q5 is coupled to the In the control circuit 16, the third terminal is the control terminal.
  • the grounding can be replaced by a constant voltage coupled to, for example, the first end of the switch Q5 is coupled to a relatively low constant voltage, so that the switch Q5 It can be used as a channel for discharging current.
  • the first end of the switch Q1 may be coupled to the first end of the inductor L1 through the electrical node Vsys1, the second end of the switch Q1 may be coupled to the VsysH interface 15, and the third end of the switch Q1
  • the control circuit 16 can be coupled, and the third terminal is a control terminal.
  • the first end of the switch Q2 may be coupled to the second end of the inductor L1 through the electrical node Vsys2, the second end of the switch Q2 may be coupled to the VsysH interface 15, and the third end of the switch Q2
  • the control circuit 16 can be coupled, and the third terminal is a control terminal.
  • the first end of the switch Q3 can be coupled to the first end of the inductor L1 through the electrical node Vsys1, the second end of the switch Q3 is coupled to the Vbus interface 12, and the third end of the switch Q3
  • the terminal is coupled to the control circuit 16, and the third terminal is a control terminal.
  • the first end of the switch Q4 may be coupled to the Vbat interface 13 , the second end of the switch Q4 may be coupled to the electrical node Vsys2 , and the third end of the switch Q4 may be coupled to the control circuit 16 , the third terminal is the control terminal.
  • the control circuit 16 can be coupled to the third terminals of the switches Q1-Q5, so that the control circuit 16 can be used to control the working states of the switches Q1-Q5.
  • the control circuit 16 is also used for coupling to the Vbus interface 12 and for detecting the connection state of the Vbus interface 12 . For example, whether the Vbus interface 12 is electrically plugged into a power adapter or the like.
  • the switches Q1-Q5 can all be field effect transistors. In some other possible designs, the switches Q1-Q5 can also be other types of electronic switches. This application is not limited. In a possible application scenario, taking the electronic device 100 as a mobile phone as an example, the charging and discharging control apparatus 10 in the embodiment of the present application is illustrated by an example.
  • the external device 40 is a power adapter for charging the mobile phone.
  • the power adapter can output a charging voltage of 5V or 9V to the mobile phone, and the mobile phone can work in a constant voltage charging state.
  • the control circuit 16 when the power adapter is electrically connected to the Vbus interface 12, the control circuit 16 outputs a signal to the third terminal of the switch Q1 to control the switch Q1 to be in an off state, and the control The circuit 16 will also output a signal to the third terminal of the switch Q2 and the third terminal of the switch Q4 to control the switch Q2 and the switch Q4 to be in the always-on state.
  • the control circuit 16 also outputs a signal to the third end of the switch Q3 and the third end of the switch Q5, wherein the duty cycle of the switch Q3 being turned on is D1, and the turn-on of the switch Q5 is D1.
  • the duty cycle is inverse to the on-duty cycle of the switch Q3, thereby causing the voltage converter 11 to enter the Buck step-down operation mode.
  • Vbat is the voltage value of the Vbat interface 13
  • VsysH is the voltage value of the VsysH interface 15
  • Vbus is the voltage value of the Vbus interface 12
  • D1 is the switch Q3 On duty cycle.
  • the voltage path (1) shown in FIG. 7 can be a path from V bus to V bat /V sysH , that is, V bus is used as an input voltage, V bat and V sysH are used as output voltages, and V bat is used to charge the battery 20 , V sysH supplies power to the load circuit 30 , that is, the range of V bat and V sysH as output voltages can be (0, V bus ), so that step-down conversion of the voltage converter 11 in a preset range can be achieved.
  • the Vbus interface 12 is not connected to a power adapter, and the voltage required by the load circuit 30 is higher or lower than the battery voltage, that is, when the load operating voltage is different from the battery voltage,
  • the battery 20 of the mobile phone can provide different voltages for the Vbus interface 12 and the VsysH interface 15 .
  • the control circuit 16 will also output a signal to the third terminal of the switch Q2 to control the second switch Q2 to be in an off state, and the control circuit 16 A signal is output to the third terminal of the switch Q1 and the third terminal of the switch Q4, so as to control the switch Q1 to be in a dynamic switching state, and the switch Q4 is always in an on state.
  • the control circuit 16 also outputs an output signal to the switch Q3 and the switch Q5, wherein the on-duty ratio of the switch Q5 is D1, and the sum of the on-duty ratios of the switch Q3 and the switch Q1 is the same as the on-duty ratio of the switch Q3 and the switch Q1.
  • the duty cycle at which switch Q5 is turned on is inverted.
  • the transmission gain functions of the Vbus interface 12, the Vbat interface 13 and the VsysH interface 15 can satisfy the following formula:
  • V bat D2 ⁇ V bus +(1-D1-D2) (4)
  • the voltage path (2) shown in FIG. 8 can be a path from V bat to V bus /V sysH , that is, V bat is used as the input voltage, V bus and V sysH are used as output voltages, and the V bat output by the battery 20
  • the external device 40 and the load circuit 30 to supply power that is, the range of V bus and V sysH as the output voltage can be (V bat , + ⁇ ), and then the voltage converter 11 can be increased in the preset range. pressure conversion.
  • the external device 40 is now a reverse-charged device, and is no longer a power adapter for charging.
  • the mobile phone can use the voltage Path (3) supplies power to the system and external loads.
  • the control circuit 16 outputs an output signal to the third terminal of the switch Q1, the third terminal of the switch Q3 and the third terminal of the switch Q5,
  • the switch Q1 is controlled to be in an off state, and the switch Q3 and the switch Q5 are in a dynamic switch state.
  • the control circuit 16 also outputs a signal to the third terminal of the switch Q2 and the third terminal of the switch Q4, so as to control the switch Q2 and the switch Q4 to be always on.
  • the on-duty ratio of the switch Q5 may be set as D1, and the on-duty ratio of the switch Q3 is 1-D1.
  • the transmission gain functions of the Vbat interface 13, the Vbus interface 12, and the VsysH interface 15 can satisfy the following formula:
  • V bus V bat /1-D1 (5)
  • the Vbat interface 13 of the battery 20 can directly discharge the VsysH interface 15; the Vbat interface 13 of the battery 20 is boosted by the voltage converter 11 to be The Vbus interface 12 is discharged.
  • the voltage path (3) shown in FIG. 9 can be another path from V bat to V bus /V sysH , that is, V bat is used as the input voltage, V bus and V sysH are used as output voltages, and the output voltage of the battery 20 V bat directly supplies power to the load circuit 30 and supplies power to the external device 40 after being boosted.
  • the charging and discharging control device 10 in the embodiment of the present application is further illustrated.
  • the Vbat interface 13 can be coupled to the battery of the earphone box, and the VsysH interface 15 can be coupled to two earphones.
  • the power adapter can output a charging voltage of 5V or 9V to charge the earphone box and the two earphones.
  • the control circuit 16 will output a signal to the third terminal of the switch Q1 to control the switch Q1 to be in an off state, and the control circuit 16 will also output a signal to the third terminal of the switch Q2 and all other components.
  • the on-duty ratio of the switch Q4 is D2, wherein the on-duty ratio of the switch Q2 is opposite to the on-duty ratio of the switch Q4.
  • the control circuit 16 also outputs a signal to the third end of the switch Q3 and the third end of the switch Q5, wherein the duty cycle of the switch Q3 being turned on is D1, and the turn-on of the switch Q5 is D1.
  • the duty cycle is inverse to the duty cycle at which the switch Q3 is turned on.
  • D1 ⁇ V bus D2 ⁇ V bat +(1-D2) ⁇ V sysH (5)
  • the voltage path (4) in the above formula (5) can be a path from V bus to V bat /V sysH , that is, V bus is used as the input voltage, V bat and V sysH are used as output voltages, and V bat is the battery 20 Charge,
  • V sysH supplies power to the load circuit 30 , that is, the range of V bat and V sysH as the output voltage can be (0, V bus ), which can realize the step-down conversion of the voltage converter 11 in the preset range, and then can meet the requirements of the earphones respectively. , Different voltage requirements of the headphone box.
  • the power adapter can output a charging voltage of 5V or 9V to charge the headset box.
  • the control circuit 16 also outputs a signal to the third terminal of the switch Q3 and the third terminal of the switch Q5, wherein the duty cycle of the switch Q3 being turned on is D1, and the switch Q5
  • the on-duty ratio is inverse to the on-duty ratio of the switch Q3.
  • the control circuit 16 will output a signal to the third terminal of the switch Q1 to control the switch Q1 to be in an off state, and the control circuit 16 will also output a signal to the third terminal of the switch Q2 and all other components.
  • the on-duty ratio of the switch Q4 is D2, wherein the on-duty ratio of the switch Q2 is opposite to the on-duty ratio of the switch Q4.
  • the earphone box battery charges the earphone at this time.
  • the embodiment of the present application can use the direct mode of the voltage path (3) shown in FIG. 8 and its special control strategy to supply power to the earphone. That is, the control circuit 16 controls the switch Q3 and the switch Q5 to be completely turned off.
  • the embodiment of the present application can open the voltage path (3) when the V sysH drops beyond a certain threshold, and when the V sysH voltage After recovery, the voltage path (3) is closed in time, and then the voltage path (2) is used to supply power to the earphone, so that the stability of the V sysH output voltage can be ensured.
  • the requirements of the earphone for different input voltages in different charging application scenarios and discharging application scenarios can be met, and the user experience can be improved.
  • FIG. 10 is a schematic diagram of a circuit structure of another embodiment of a charge-discharge control device 10 provided by the present application.
  • the difference from the embodiment of the charge-discharge control device 10 shown in FIG. 6 is that, as shown in FIG. 10 , in this embodiment, the second end of the inductor L1 is coupled to the electrical node Vsys2 .
  • the first end of the switch Q5 is grounded, the second end of the switch Q5 is coupled to the second end of the inductor L1, and the second end of the switch Q5 can also be coupled to the electrical node Vsys2.
  • the second terminal of the switch Q4 and the third terminal of the switch Q5 are coupled to the control circuit 16 , and the third terminal is a control terminal.
  • the first terminal of the switch Q4 is coupled to the Vbat interface 13
  • the third terminal of the switch Q4 can be coupled to the control circuit 16, and the third terminal of the switch Q4 is a control terminal.
  • the first end of the inductor L1 is coupled to the electrical node Vsys1 between the first end of the switch Q1 and the first end of the switch Q3, and the second end of the switch Q3 is coupled to the Vbus Interface 12,
  • the first end of the switch Q2 is coupled to the electrical node Vsys2,
  • the second end of the switch Q1 and the second end of the switch Q2 are both coupled to the VsysL interface 17, the second end of the switch Q1
  • the three terminals, the third terminal of the switch Q2 and the third terminal of the switch Q3 are all coupled to the control circuit 16
  • the third terminal is a control terminal.
  • the switch Q1 is set at the left position of the inductor L1, and the switch Q2 is set at the output position of the electrical node Vsys2.
  • the charging and discharging control device 10 in this embodiment will be illustrated based on a scenario where the mobile phone is connected in series with batteries.
  • the external device 40 is a power adapter to charge the mobile phone.
  • the power adapter can output a charging voltage of 5V to the mobile phone.
  • the mobile phone can work in a constant voltage charging state.
  • the control circuit 16 when the power adapter is electrically connected to the Vbus interface 12, the control circuit 16 outputs a signal to the third terminal of the switch Q1 to control the switch Q1 to be in an off state, and the control The circuit 16 will also output a signal to the third terminal of the switch Q2, the third terminal of the switch Q4 and the third terminal of the switch Q5, so as to control the on-duty ratio of the switch Q5 to be D1,
  • the sum of the on-duty ratios of the switch Q4 and the switch Q2 is inverse to the on-duty ratio of the switch Q5, and the control circuit 16 outputs a signal to the third terminal of the switch Q3 to control the The switch Q3 is always on.
  • the on-duty ratio of the switch Q4 is D2
  • the on-duty ratio of the switch Q2 is 1-D1-D2.
  • Vbus D2 ⁇ Vbat+(1-D1-D2) ⁇ VsysL ( 7)
  • V bat is the voltage value of the Vbat interface 13
  • V sysL is the voltage value of the VsysL interface 17
  • V bus is the voltage value of the Vbus interface 12 .
  • the voltage path (5) in the above formula (7) can be the path from V bus to V bat /V sysL , that is, V bus is the input voltage, V bat and V sysL are the output voltages, and V bat is the battery 20
  • V sysL supplies power to the load circuit 30 , that is, the range of the output voltages of V bat and V sysL can be (V bus , + ⁇ ), and then the boost conversion of the voltage converter 11 in a preset range can be realized .
  • the control circuit 16 can control the switches correspondingly, specifically: the switch Q2 is always in an off state, and the switch Q4 is in a dynamic switching state.
  • the on-duty ratio of the switch Q4 is D1
  • the on-duty ratio of the switch Q5 is inverse to the on-duty ratio of the switch Q4
  • the on-duty ratio of the switch Q3 is D2
  • the on-duty ratio of the switch Q1 is opposite to the on-duty ratio of the switch Q3.
  • the transmission gain functions of the Vbus interface 12, the Vbat interface 13 and the VsysL interface 17 can satisfy the following formula:
  • D1 ⁇ V bat D2 ⁇ V bus +(1-D2) ⁇ V sysL (8)
  • the voltage path (6) in the above formula (8) can be the path from V bat to V bus /V sysL .
  • Vbus is not connected to the device, that is, V bat is used as the input voltage, and V sysL is used as the output voltage.
  • the V bat output by the battery 20 supplies power to the load circuit 30 , that is, the range of V sysL as an output voltage can be (0, V bat ), thereby enabling step-down conversion of the voltage converter 11 within a preset range.
  • the embodiment of the present application may adopt a voltage path (6) Powering the load circuit 30 and the external device 40 .
  • the external device 40 is no longer a power adapter but a reversely charged device.
  • FIG. 11 is a schematic diagram of a circuit structure of another embodiment of the charge-discharge control device 10 provided by the present application.
  • the voltage conversion circuit 19 may further include a switch Q6 .
  • the voltage conversion circuit 19 may include an inductor L1, a switch Q5 and a switch Q6.
  • the first end of the switch Q6 is coupled to the electrical node Vsys2, the second end of the switch Q6 is coupled to the second end of the switch Q5 and the second end of the inductor L1, the switch The third terminal of Q6 is coupled to the control circuit 16 , the third terminal is a control terminal, and the first terminal of the inductor L1 is coupled to the first terminal of the switch Q1 and the first terminal of the switch Q3 The electrical node Vsys1 between the terminals.
  • the switch Q6 is coupled to the Vbat interface 13 through the switch Q4.
  • the switch Q6 may be used to prevent the electrical node Vsys2 from being grounded when the switch Q5 is turned on.
  • FIG. 12 is a schematic diagram of a circuit structure of another embodiment of the charge and discharge control device 10 provided by the present application.
  • the voltage conversion circuit 19 may further include a switch Q6 .
  • the first end of the switch Q5 is grounded, the second end of the switch Q5 is coupled to the first end of the inductor L1 , and the third end of the switch Q5 is coupled to the control circuit 16 .
  • the first end of the switch Q6 is grounded, the second end of the switch Q6 is coupled between the second end of the inductor L1 and the electrical node Vsys2, and the third end of the switch Q6 is coupled to the In the control circuit 16, the third terminal is the control terminal.
  • the first end of the switch Q1 is coupled to the first end of the inductor L1, the first end of the switch Q2 is coupled to the electrical node Vsys2, and the first end of the inductor L1 can be coupled to the The electrical node Vsys1 between the first end of the switch Q1 and the first end of the switch Q3, the second end of the switch Q3 is coupled to the Vbus interface 12, the second end of the switch Q1 and the The second terminal of the switch Q2 is all coupled to the VsysHL interface 18 , and the third terminal of the switch Q1 , the third terminal of the switch Q2 and the third terminal of the switch Q3 are all coupled to the control circuit 16 .
  • the switch Q1 is set at the left position of the inductor L1, and the switch Q2 is set at the output position of the electrical node Vsys2.
  • the first terminals of the switches Q5 and Q6 can be coupled to a relatively low constant voltage, so that the switches Q5 and Q6 can be used as channels for discharging current.
  • FIG. 13 is a schematic diagram of a circuit structure of another embodiment of the charge-discharge control device 10 provided by the present application.
  • the voltage conversion circuit 19 may further include a switch Q7 .
  • the voltage conversion circuit 19 may include an inductor L1, a switch Q5, a switch Q6 and a switch Q7.
  • the first end of the switch Q7 is coupled to the second end of the inductor L1 and the second end of the switch Q6, the second end of the switch Q7 is coupled to the electrical node Vsys2, and the
  • the third terminal is coupled to the control circuit 16, and the third terminal is a control terminal.
  • the first terminal of the switch Q5 and the first terminal of the switch Q6 are both grounded, the third terminal of the switch Q5 and the third terminal of the switch Q6 are both coupled to the control circuit 16, and the switch Q5
  • the second end of the switch Q6 may be coupled to the first end of the inductor L1 and the first end of the switch Q1 through the electrical node Vsys1, and the second end of the switch Q6 is coupled to the second end of the inductor L1 and the the first end of the switch Q7.
  • the charging and discharging control device 10 in this embodiment is illustrated based on a charging and discharging scenario of a mobile phone.
  • the power adapter can output a charging voltage of 5V or 9V to the mobile phone, and the mobile phone can work in a constant voltage charging state at this time.
  • the control circuit 16 can control the switches as follows: the switch Q3 and the switch Q6
  • the on-duty ratio is D1
  • the on-duty ratio of the switch Q5 and the switch Q7 is inverse to the on-duty ratio of the switch Q3, and the switch Q1 is always in the off state, so
  • the sum of the on-duty ratios of the switch Q4 and the switch Q2 is in the same phase as the on-duty ratio of the switch Q5. If the on-duty ratio of the switch Q4 is set to be D2, then the switch Q2 turns on The duty cycle of the pass is 1-D1-D2.
  • D1 ⁇ V bus D2 ⁇ V bat +(1-D1-D2) ⁇ V sysHL (9)
  • V bat is the voltage value of the Vbat interface 13
  • V sysHL is the voltage value of the VsysHL interface 18
  • V bus is the voltage value of the Vbus interface 12 .
  • V bus is used as the input voltage
  • V bat and V sysHL are used as the output voltage
  • the range of the V bat and V sysHL as the output voltage can be (0, + ⁇ ), so that the voltage converter 11 can realize the buck-boost conversion within a preset range.
  • the embodiment of the present application may adopt the voltage reduction control strategy of the voltage path (4).
  • the embodiment of the present application may adopt the boost control strategy of the voltage path (5).
  • the control circuit 16 can control the switches correspondingly, specifically: the switches Q5 and The on-duty ratio of the switch Q7 is D1, the on-duty ratio of the switch Q6 is inverse to the on-duty ratio of the switch Q5, the switch Q2 is always in the off state, the switch Q4 is always on, the sum of the on-duty ratios of the switch Q3 and the switch Q1 is in phase with the on-duty ratio of the switch Q6, and the on-duty ratio of the switch Q3 is set to be D2, the on-duty ratio of the switch Q1 is 1-D1-D2.
  • the transmission gain functions of the Vbus interface 12, the Vbat interface 13 and the VsysHL interface 18 can satisfy the following formula:
  • D1 ⁇ V bat D2 ⁇ V bus +(1-D1-D2) ⁇ V sysHL (10)
  • the voltage path (8) in the above formula (10) can be the path from V bat to V bus /V sysHL , that is, V bat is the input voltage, and V bus and V sysHL are the output voltages, that is, V bus and V sysHL
  • the range of the output voltage can be (0, + ⁇ ), so that the voltage converter 11 can achieve buck-boost conversion within a preset range.
  • Vbus D1 ⁇ Vbat /1-D1.
  • V sysHL D1 ⁇ V bat /1-D1 , both of which are buck-boost circuit structures.
  • V sysHL enables full range voltage regulation to power the load circuit.
  • the embodiment of the present application may adopt the voltage reduction control strategy of the voltage path (6).
  • the embodiment of the present application may adopt the boost control strategy of the voltage path (2).
  • the embodiment of the present application may adopt the voltage path (8), and according to V bat and V
  • the size selection of bus and V sysHL corresponds to the control strategy, and supplies power to the load circuit 30 and the external device 40 .
  • the voltage path (3) can also be used for the load circuit 30. powered by.
  • the embodiment of the present application can solve the problem that a low-voltage battery such as a silicon anode battery cannot directly supply power to the system under low voltage, and can improve the battery life of the electronic device, and the technical solution of the present application has a simple structure and high system integration. , which can improve the user experience.
  • a low-voltage battery such as a silicon anode battery cannot directly supply power to the system under low voltage
  • the technical solution of the present application has a simple structure and high system integration. , which can improve the user experience.
  • FIG. 14 is a flowchart of the charging and discharging control method of the present application.
  • the flowchart of the charging and discharging control method includes the following steps:
  • Step S141 Detect whether the first interface is connected to a power adapter.
  • the first interface may be the Vbus interface 12, and the Vbus interface 12 is coupled to the voltage conversion circuit 19 through the switch Q3, that is, the voltage conversion circuit 19 may be coupled to the first end of the switch Q3 and the voltage conversion circuit 19.
  • the electrical node Vsys1 between the first terminals of the switch Q1 and the second terminal of the switch Q3 is coupled to the Vbus interface 12 .
  • the third terminal of the switch Q3 is coupled to the control circuit, and the third terminal of the switch Q3 is the control terminal.
  • the second end of the switch Q1 is coupled to the VsysH interface 15 , the third end of the switch Q1 is coupled to the control circuit 16 , and the third end of the switch Q1 is the control end.
  • the voltage conversion circuit 19 is coupled to the Vbat interface 13 through the electrical node Vsys2, the voltage conversion circuit 19 is further coupled to the first end of the switch Q2 through the electrical node Vsys2, and the second end of the switch Q2 is coupled to the In the VsysH interface 15, the third terminal of the switch Q2 is coupled to the control circuit 16, and the third terminal of the switch Q2 is the control terminal.
  • the VsysH interface 15 can be used to couple the load circuit 30
  • the Vbat interface 13 can be used to couple the battery 20
  • the voltage conversion circuit 19 may also be coupled to the second end of the switch Q4 through the electrical node Vsys2, and the first end of the switch Q4 may be coupled to the Vbat interface 13,
  • the third terminal of the switch Q4 can be coupled to the control circuit 16, and the third terminal of the switch Q4 is a control terminal.
  • the voltage conversion circuit 19 may be used to convert the voltage of the Vbus interface 12 or the voltage of the Vbat interface 13 .
  • the control circuit 16 can be used to control the working states of the switches Q1-Q4.
  • the voltage conversion circuit 19 may include an inductor L1 and a switch Q5. Specifically, the first end of the inductor L1 may be coupled to the electrical node Vsys1, and the second end of the inductor L1 may be coupled to the second end of the switch Q4 through the electrical node Vsys2, so The first terminal of the switch Q5 is grounded, the second terminal of the switch Q5 is coupled to the electrical node Vsys1 , and the third terminal of the switch Q5 can be coupled to the control circuit 16 .
  • the control circuit 16 can control the working states of the switches Q1-Q5.
  • the switches Q1-Q5 may all be field effect transistors. In some other possible designs, the switches Q1-Q5 can also be other types of electronic switches. This application is not limited.
  • Step S142 If the first interface is connected to a power adapter, control the first switch to be in an off state, and control the second switch to be in a closed or dynamic switch state.
  • the control circuit 16 can output a signal to the third terminal of Q1 to control the Q1 to be in an off state.
  • the control circuit 16 also outputs a signal to the third terminal of the Q2 to control the Q2 to be in a closed or dynamic switching state. Therefore, the charging voltage input by the power adapter can be converted by the voltage converter 11 and then output to the VsysH interface 15 and the Vbat interface 13.
  • the charging voltage input by the power adapter can be converted by the voltage.
  • the boost conversion of the device 11 is output to the VsysH interface 15 and the Vbat interface 13 to supply power to the battery 20 and the load circuit 30 .
  • Step S143 If the first interface is not connected to a power adapter and the operating voltage of the load circuit is different from the battery voltage, control the first switch to be in a dynamic switching state, and control the second switch to be in an off state.
  • the control circuit 16 can control the switch Q1 to be in a dynamic switching state, and control the Switch Q2 is in the off state.
  • the voltage output by the battery 20 can be converted by the voltage converter 11 to supply power to the Vbus interface 12 and the VsysH interface 15.
  • the voltage output by the battery 20 can be boosted and converted by the voltage converter 11 to be The Vbus interface 12 and the VsysH interface 15 are powered.
  • Step S144 If the first interface is not connected to a power adapter and the operating voltage of the load circuit is the same as the battery voltage, control the first switch to be in an off state, and control the second switch to be in a closed state.
  • the control circuit 16 can control the switch Q1 to be in an off state, and control all The switch Q2 is turned on.
  • the voltage output by the battery 20 can directly supply power to the Vbus interface 12 and the VsysH interface 15 . Therefore, the embodiment of the present application can supply power to the system when the low-voltage battery is at a low voltage, and can be compatible with different working modes, and the implementation is simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例公开一种充放电控制装置。充放电控制装置包括用于耦接外部设备的第一接口、耦接负载电路的第二接口和耦接电池的第三接口、电压转换电路、第一开关、第二开关和第三开关,电压转换电路耦接第三开关与第三接口之间,第一开关耦接于第二接口和电压转换电路的第一端之间;第二开关耦接于第二接口与电压转换电路的第二端之间,所述电压转换电路的第二端耦接于所述第三接口;第三开关耦接第一接口与电压转换电路的第一端之间,电压转换电路用于转换所述第一接口的电压或者所述第三接口的电压。本申请实施例可以在低电压电池处于低压时给系统供电,并可以兼容不同工作模式,实现简单。

Description

充放电控制装置 技术领域
本申请涉及电子技术领域,尤其涉及一种充放电控制装置。
背景技术
目前,手机、无线耳机和平板电脑等电子设备已经成为人们日常生活中常用的电子产品。然而,随着电子设备的功能越来越多,因此对电子设备电池的续航能力的要求也越来越高。
由于低电压电池(例如硅负极电池)的续航性能突出而广泛应用为电子设备供电。例如硅负极电池在电压小于3.5V时仍然可以为电子设备供电。现有的一种供电方案如图1中所示,低电压电池通过电压转换器,例如降压电路/升压电路,开关管连接系统的供电接口VSYS。然而,当电池的电压小于阈值(例如3.5V)时,系统的供电电压不足,将会导致低电压电池不能为电子设备供电,降低了电子设备的续航时间,影响用户的使用体验。现有技术中存在一些利用低压电池供电的解决方案,但需要额外的升压器件,实现复杂度高。
发明内容
本申请的实施例提供一种充放电控制装置,采用本申请实施例可以在低电压电池处于低压时给系统供电,并兼容不同工作模式,实现简单。
第一方面,本申请的实施例提供一种充放电控制装置,包括用于耦接外部设备的第一接口、耦接负载电路的第二接口和耦接电池的第三接口,所述充放电控制装置还包括电压转换电路、第一开关、第二开关和第三开关;所述第一开关耦接于所述第二接口和所述电压转换电路的第一端之间;所述第二开关耦接于所述第二接口与所述电压转换电路的第二端之间,所述电压转换电路的第二端耦接于所述第三接口;所述第三开关耦接于所述第一接口与所述电压转换电路的第一端之间;所述电压转换电路用于转换所述第一接口的电压或者所述第三接口的电压。采用本申请的实施例,可以在低电压电池处于低压时给系统供电,并且可以兼容多种不同的工作模式,实现简单。
在一种可能的设计中,所述电压转换电路包括电感器,所述电感器的第一端耦接于所述电压转换电路的第一端,所述电感器的第二端耦接于所述电压转换电路的第二端。基于这样的设计,本申请实施例可以兼容多种不同的工作模式,并且实现简单。
在一种可能的设计中,所述电压转换电路还包括第五开关;所述第五开关的第一端耦接于恒定电压端,所述第五开关的第二端耦接于所述电压转换电路的第一端。基于这样的设计,本申请实施例可以在低电压电池处于低压时给系 统供电,并且可以工作降压(buck)模式,实现简单。
在一种可能的设计中,所述电压转换电路还第五开关;所述第五开关的第一端耦接于恒定电压端,所述第五开关的第二端耦接于所述电压转换电路的第二端。基于这样的设计,本申请实施例可以在低电压电池处于低压时给系统供电,并且可以工作升压(boost)模式。
在一种可能的设计中,所述电压转换电路包括第六开关;所述第六开关的第一端耦接于所述电压转换电路的第二端,所述第六开关的第二端耦接于所述电感器的第二端和所述第五开关的第二端。基于这样的设计,本申请实施例可以在低电压电池处于低压时给系统供电,并且可以工作升压(boost)模式。
在一种可能的设计中,所述电压转换电路还包括第六开关;所述第六开关的第一端耦接于恒定电压端,所述第六开关的第二端耦接于所述电压转换电路的第二端。基于这样的设计,本申请实施例可以在低电压电池处于低压时给系统供电,并且可以工作升压降压(buckboost)模式。
在一种可能的设计中,所述电压转换电路还包括第七开关;所述第七开关的第一端耦接于所述电压转换电路的第二端,所述第七开关的第二端耦接于所述电感器的第二端和所述第六开关的第二端。基于这样的设计,本申请实施例可以在低电压电池处于低压时给系统供电,并且可以工作升压降压(buckboost)模式。
在一种可能的设计中,所述电压转换电路包括第四开关、第五开关、第六开关和电容;所述第四开关耦接于所述电压转换电路的第一端与所述电压转换电路的第二端之间,所述电容的第一端耦接于所述电压转换电路的第一端,所述电容的第二端耦接于所述第五开关的第二端,所述第五开关的第一端耦接于所述电压转换电路的第二端,所述第六开关的第一端耦接于所述第五开关的第二端,所述第六开关的第二端耦接于恒定电压端。
在一种可能的设计中,所述充放电控制装置还包括控制电路,耦接于所述第一接口,用于检测所述第一检测的连接状态;所述控制电路还用于:在所述第一接口连接电源适配器时,控制所述第一开关处于关断状态,并且控制所述第二开关处于闭合或者动态开关状态;在所述第一接口未连接电源适配器且负载的工作电压和电池的电压相同时,控制所述第一开关处于断开状态,并控制所述第二开关处于闭合状态;在所述第一接口未连接电源适配器且负载的工作电压和电池的电压不相同时,控制所述第一开关处于动态开关状态,并且控制所述第二开关处于断开状态。基于这样的设计,本申请实施例可以控制第一开关或第二开关的状态,以在低电压电池处于低压时给系统供电,兼容多种不同的工作模式,实现简单。
可选地,以上恒定电压端可以是接地端。
第二方面,本申请的实施例提供一种电子设备,包括前述充放电控制装置。可选地,电子设备还包括负载电路。可选地,电子设备还包括电池。
第三方面,本申请的实施例提供一种充放电控制方法,包括前述控制电路所执行的流程。
本申请实施例提供的充放电控制装置,通过将第一接口耦接于电压转换电路的第一端,将第三接口耦接于电压转换电路的第二端,并将第一开关耦接于电压转换电路的第一端与第二接口之间,将第二开关耦接于第二接口与电压转换电路的第二端之间,通过控制开关的工作状态,可以对应的控制电池的充放电功能。由此,采用本申请实施例,可以在低电压电池处于低压时给系统供电,并且可以兼容多种不同的工作模式,实现简单。
附图说明
图1是现有技术中一种电子设备的充放电方案的示意图。
图2是本申请实施例的电子设备的示意图。
图3是本申请实施例的充放电控制装置的示意图。
图4是图3充放电控制装置的一种具体结构示意图。
图5是本申请实施例的充放电控制装置的另一示意图。
图6是本申请实施例的充放电控制装置的电路示意图。
图7是图5中充放电控制装置的工作模式图。
图8是图5中的充放电控制装置的工作模式图。
图9是图5中的充放电控制装置的工作模式图。
图10是本申请充放电控制装置的另一实施例的电路图。
图11是本申请充放电控制装置的另一实施例的电路图。
图12是本申请充放电控制装置的另一实施例的电路图。
图13是本申请充放电控制装置的另一实施例的电路图。
图14是本申请实施例的充放电控制方法的流程图。
主要元件符号说明
电子设备                           100
充放电控制装置                     10
电压转换器                         11
Vbus接口                           12
Vbat接口                           13
VsysH接口                          15
控制电路                           16
VsysL接口                          17
VsysHL接口                         18
电压转换电路                       19
电池                             20
负载电路                         30
外部设备                         40
电感器                           L1
开关                             Q1-Q7
如下具体实施方式将结合上述附图进一步详细说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
本申请实施例中,“第一”、“第二”等词汇,仅用于区别不同的对象,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。例如,第一应用、第二应用等是用于区别不同的应用,而不是用于描述应用的特定顺序,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例的描述中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。在本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的实施例提供一种充放电控制装置及电子设备,可以在低电压电池处于低压时给系统供电,并可以兼容不同工作模式,实现简单。请参阅图2,为本申请的一个实施例提供的电子设备100的结构示意图。本实施例中的所述电子设备100可以包括充放电控制装置10、电池20和负载电路30。
在一种可能的应用场景中,若所述充放电控制装置10耦接外部设备40,所述外部设备40亦可为所述电子设备100进行充电,例如电源适配器,由此所述电池20可以用于接收所述电源适配器的充电电流,所述充放电控制装置10可以用于将电源适配器的充电电压进行转换,以及使用转换后的电压为所述负载电路30供电。在另一种可能的应用场景中,若所述充放电控制装置10没有耦接电源适配器,所述电池20可以用于为所述负载电路30供电。可以理解,所述电子设备100可以为手机、无线耳机、平板电脑等电子产品,本申请对此不做限定。
请参阅图3,以下将结合附图和实际应用场景,对本申请实施例提供的充放电控制装置10进行举例说明。图3所示为本申请的一个实施例提供的充放电控 制装置10的电路结构示意图。本实施例中,所述充放电控制装置10可以包括电压转换器11、开关Q1、开关Q2、Vbus接口12、Vbat接口13、电气节点Vsys和VsysH接口15及控制电路16。其中,本实施例中的电压转换器11可以包括开关Q3和电压转换电路19。
可以理解,在一种可能的实施例中,所述Vbus接口12可以用于耦接外部设备40,所述Vbat接口13可以用于耦接所述电池20,所述VsysH接口15可以用于耦接所述电子设备100中的负载电路30。所述电压转换器11耦接于所述Vbus接口12与Vbat接口13之间,以用于将Vbus接口12的电压或者Vbat接口13的电压进行转换。具体地,所述电压转换电路19可以耦接于所述开关Q3与所述Vbat接口13之间,所述电压转换电路19可以用于将所述Vbus接口12的电压或者所述Vbat接口13的电压进行转换。
所述电压转换电路19耦接于所述开关Q1的第一端与所述开关Q3的第一端之间的电气节点Vsys1,所述开关Q1的第二端耦接于所述VsysH接口15,所述开关Q1的第三端耦接于所述控制电路16,所述第三端是控制端。所述开关Q2的第一端耦接于所述Vbat接口13和所述电压转换电路19之间的电气节点Vsys2,所述开关Q2的第二端耦接于所述VsysH接口15,所述开关Q2的第三端耦接所述控制电路16,所述第三端是控制端。所述开关Q3的第一端耦接于所述电压转换电路19,所述开关Q3的第二端耦接于所述Vbus接口12,所述开关Q3的第三端耦接于所述控制电路16,所述第三端是控制端。本实施例中,所述控制电路16可以用于控制所述开关Q1、所述开关Q2和所述开关Q3的工作状态。可以理解,在一些实施例中,所述电气节点Vsys1可以作为所述电压转换电路19的第一端,所述电气节点Vsys2可以作为所述电压转换电路19的第二端。
请参阅图4,图4为图3充放电控制装置的一种具体结构示意图。如图4所示,本实施例中,所述电压转换器11还包括开关Q5、开关Q6、开关Q7和电容C1。其中,图3中上述电压转换电路19包括所述开关Q6、开关Q7和电容C1。
所述开关Q5的第一端耦接于所述开关Q3的第一端与所述开关Q1的第一端之间的电气节点Vsys1,所述开关Q5的第二端耦接于所述电气节点Vsys2,所述开关Q5的第三端耦接于所述控制电路16,所述第三端是控制端,所述控制电路16可以用于控制所述开关Q5的工作状态。所述开关Q6的第一端耦接于所述开关Q5的第二端,所述开关Q6的第二端耦接于Q7的第一端,所述开关Q6的第三端耦接于所述控制电路16,所述第三端是控制端,所述控制电路16可以用于控制所述开关Q6的工作状态。所述开关Q7的第一端耦接于所述开关Q6的第二端,也是电容C1的第二端,所述开关Q7的第二端耦接于地,所述开关Q7的第三端耦接于所述控制电路16,所述第三端是控制端,所述控制电路16可以用于控制所述开关Q7的工作状态。所述电容C1的第一端耦接于所述电气节点Vsys1,也是所述开关Q5的第一端,所述电容C1的第二端耦接于所述开关Q7的第一端,也是所述开关Q6的第二端。所述控制电路16可以 耦接所述开关Q1-Q3和Q5-Q7的第三端,由此,所述控制电路16可以用于控制所述开关Q1-Q3和Q5-Q7的工作状态。
在一些可能的设计中,所述开关Q1-Q3和Q5-Q7均可以为场效应管。在其他一些可能的设计中,所述开关Q1-Q3和Q5-Q7也可以是其他类型的电子开关。对此本申请不作限定。在一种可能的应用场景下,以所述电子设备100为手机为例,对本申请实施例中的充放电控制装置10进行举例说明。
举例说明,当电源适配器与所述Vbus接口12电性插接时,所述控制电路16将输出信号给所述开关Q1的第三端,以控制所述开关Q1处于关断状态,所述控制电路16还将会输出信号给所述开关Q2的第三端,以控制所述开关Q2和处于一直导通状态。所述控制电路16还将输出信号给所述开关Q3的第三端、所述开关Q5的第三端、所述开关Q6的第三端和所述开关Q7的第三端,其中,所述开关Q3、Q6的导通占空比为0.5,所述开关Q5、Q7的导通占空比与所述开关Q3导通的占空比反相,同样为0.5,由此使得所述电压转换器11进入2:1开关电容(SC)降压工作模式。
可以理解,所述Vbus接口12、Vbat接口13和VsysHL接口18的传输增益函数可以满足以下公式:
V bat=V sysHL=0.5×V bus  (1)
其中,在上述公式(1)中,V bat为所述Vbat接口13的电压值,V sysHL为VsysHL接口18的电压值,V bus为所述Vbus接口12的电压值。
举例说明,当电源适配器与所述Vbus接口12没有电性插接时,所述控制电路16还将会输出信号给所述开关Q2的第三端,控制所述第二开关Q2处于关断状态,所述控制电路16还将会输出信号给所述开关Q3的第三端,控制所述第二开关Q3处于关断状态,所述控制电路16输出信号给所述开关Q1的第三端及所述开关Q5、Q6、Q7的第三端,以控制所述开关Q1、Q5、Q6、Q7均处于动态开关状态。本申请实施例可以设定开关Q1导通占空比为0.5,开关Q6的导通占空比与所述开关Q1同相,而所述开关Q5、Q7导通占空比与开关Q1反相,同样为0.5。
由此,所述Vbat接口13和VsysHL接口18的传输增益函数可以满足以下公式:
V sysHL=2×V bat  (2)
其中,在上述公式(2)中,V bat为所述Vbat接口13的电压值,V sysHL为VsysHL接口18的电压值。
请参阅图5,图5为本申请提供的充放电控制装置10的另一实施例的示意图。如图5所示,本实施例中,所述电压转换器还可以进一步包括开关Q4。所述开关Q4的第一端耦接于所述Vbat接口13,所述开关Q4的第二端耦接于所述电气节点Vsys2,所述开关Q4的第三端耦接于所述控制电路16,所述第三端是控制端,所述控制电路16可以用于控制所述开关Q4的工作状态。所述开关Q4用于使能所述Vbat接口13的输出。
请参阅图6,图6为本申请提供的充放电控制装置10的另一实施例的示意 图。本实施例中,所述电压转换电路19可以包括电感器L1和开关Q5。所述电感器L1的第一端耦接于所述开关Q3的第一端与所述开关Q1的第一端之间的电气节点Vsys1,即通过开关Q3耦接于所述Vbus接口12,所述电感器L1的第二端耦接于所述电气节点Vsys2,即通过开关Q4耦接于所述Vbat接口13。
可以理解,所述电感器L1的第一端为远离所述Vbat接口13的一端。所述开关Q5的第一端接地,所述开关Q5的第二端耦接于所述电感器L1的第一端和所述电气节点Vsys1,所述开关Q5的第三端耦接于所述控制电路16,所述第三端是控制端。可以理解,在本实施例或后续实施例中,所述接地可以用耦接于以恒定电压来代替,例如所述开关Q5的第一端耦接在一个比较低的恒定电压上,使得开关Q5能够作为泄放电流的通道。
所述开关Q1的第一端可以通过电气节点Vsys1耦接所述电感器L1的第一端,所述开关Q1的第二端可以耦接所述VsysH接口15,所述开关Q1的第三端可以耦接所述控制电路16,所述第三端是控制端。所述开关Q2的第一端可以通过电气节点Vsys2耦接所述电感器L1的第二端,所述开关Q2的第二端可以耦接所述VsysH接口15,所述开关Q2的第三端可以耦接所述控制电路16,所述第三端是控制端。
所述开关Q3的第一端可以通过电气节点Vsys1耦接于所述电感器L1的第一端,所述开关Q3的第二端耦接于所述Vbus接口12,所述开关Q3的第三端耦接于所述控制电路16,所述第三端是控制端。
所述开关Q4的第一端可以耦接所述Vbat接口13,所述开关Q4的第二端可以耦接所述电气节点Vsys2,所述开关Q4的第三端可以耦接所述控制电路16,所述第三端是控制端。
所述控制电路16可以耦接所述开关Q1-Q5的第三端,由此,所述控制电路16可以用于控制所述开关Q1-Q5的工作状态。
在一些可能实现的设计中,所述控制电路16还用于耦接所述Vbus接口12,并用于检测所述Vbus接口12的连接状态。例如,所述Vbus接口12是否电性插接电源适配器等。在一些可能的设计中,所述开关Q1-Q5均可以为场效应管。在其他一些可能的设计中,所述开关Q1-Q5也可以是其他类型的电子开关。对此本申请不作限定。在一种可能的应用场景下,以所述电子设备100为手机为例,对本申请实施例中的充放电控制装置10进行举例说明。如图7所示的应用场景中,所述外部设备40为电源适配器,为手机充电,例如,电源适配器可以输出5V或9V的充电电压给手机,此时手机可以工作于恒压充电状态中。
举例说明,当电源适配器与所述Vbus接口12电性插接时,所述控制电路16将输出信号给所述开关Q1的第三端,以控制所述开关Q1处于关断状态,所述控制电路16还将会输出信号给所述开关Q2的第三端及所述开关Q4的第三端,以控制所述开关Q2和所述开关Q4均处于一直导通状态。所述控制电路16还将输出信号给所述开关Q3的第三端及所述开关Q5的第三端,其中,所述开关Q3导通的占空比为D1,所述开关Q5导通的占空比与所述开关Q3导通的占空比反相,由此使得所述电压转换器11进入Buck降压工作模式。
可以理解,所述Vbus接口12、Vbat接口13和VsysH接口15的传输增益函数可以满足以下公式:
V bat=V sysH=D1×V bus  (3)
其中,在上述公式(3)中,V bat为所述Vbat接口13的电压值,V sysH为VsysH接口15的电压值,V bus为所述Vbus接口12的电压值,D1为所述开关Q3导通的占空比。
可以理解,图7中示出的电压路径(1)可以为V bus至V bat/V sysH路径,即V bus作为输入电压,V bat和V sysH作为输出电压,V bat为所述电池20充电,V sysH为负载电路30供电,即V bat和V sysH作为输出电压的范围可以为(0,V bus),进而可以实现所述电压转换器11在预设范围的降压转换。
在一种可能的应用场景中,若所述Vbus接口12未连接电源适配器,并且所述负载电路30所需的电压高于或者低于所述电池电压,即负载工作电压和电池电压不同时,手机的电池20可以为Vbus接口12和VsysH接口15提供不同的电压。
举例说明,如图8所示的应用场景中,所述控制电路16还将会输出信号给所述开关Q2的第三端,控制所述第二开关Q2处于关断状态,所述控制电路16输出信号给所述开关Q1的第三端及所述开关Q4的第三端,以控制所述开关Q1处于动态开关状态,所述开关Q4为一直导通状态。所述控制电路16还将输出信号给开关Q3及开关Q5,其中所述开关Q5导通的占空比为D1,所述开关Q3与所述开关Q1导通的占空比之和与所述开关Q5导通的占空比反相。本申请实施例可以设定开关Q3导通的占空比为D2,则所述开关Q1导通的占空比为1-D1-D2。
由此,所述Vbus接口12、Vbat接口13和VsysH接口15的传输增益函数可以满足以下公式:
V bat=D2×V bus+(1-D1-D2)  (4)
其中,在上述公式(4)中,0<D1+D2<1。
可以理解,图8中示出的电压路径(2)可以为V bat至V bus/V sysH路径,即V bat作为输入电压,V bus和V sysH作为输出电压,所述电池20输出的V bat为所述外部设备40和所述负载电路30供电,即V bus和V sysH作为输出电压的范围可以为(V bat,+∞),进而可以实现所述电压转换器11在预设范围的升压转换。外部设备40此时是被反向充电的设备,不再是用于充电的电源适配器。当所述开关Q1完全关断时,即1-D1-D2=0时,此时V bus=V bat/1-D1,当所述开关Q3完全关断时,即D2=0时,V sysH=V bat/1-D1,均为Boost升压电路结构。
在一种可能的应用场景中,若所述Vbus接口12未连接电源适配器,并且所述负载电路30所需的电压为所述电池电压,即负载工作电压和电池电压相同时,手机可以采用电压路径(3)为系统和外部负载供电。
具体来说,如图9所示的应用场景中,所述控制电路16将输出信号给所述开关Q1的第三端、所述开关Q3的第三端和所述开关Q5的第三端,以控制所 述开关Q1为关断状态,开关Q3、开关Q5为动态开关状态。所述控制电路16还将输出信号给所述开关Q2的第三端和所述开关Q4的第三端,以控制所述开关Q2和开关Q4均为一直导通状态。同样,本申请实施例可以设定开关Q5导通的占空比为D1,则所述开关Q3导通的占空比为1-D1。
由此,所述Vbat接口13和Vbus接口12、VsysH接口15的传输增益函数可以满足以下公式:
V sysH=V bat
V bus=V bat/1-D1  (5)
其中,从上述公式(5)中可以看出,所述电池20的Vbat接口13可以直接为所述VsysH接口15放电;所述电池20的Vbat接口13通过所述电压转化器11升压后为所述Vbus接口12放电。可以理解,图9中示出的电压路径(3)可以为另一条V bat至V bus/V sysH路径,即V bat作为输入电压,V bus和V sysH作为输出电压,所述电池20输出的V bat直接为所述负载电路30供电且升压后为外部设备40供电。
可以理解,在一种可能的应用场景中,当所述Vbus接口12未接任何设备,并且所述负载电路30所需的电压高于所述电池电压时,本申请实施例可以采用上述电压路径(2)及对应的控制策略,使得所述充放电控制装置10可以工作在传统Boost工作模式。所述控制电路16可以对开关进行如下控制:所述开关Q3为关断状态,即D2=0,此时V sysH=V bat/1-D1,以在升压后为所述VsysH接口15供电。
可以理解,在另外一种可能的应用场景中,当手机的电池电压处于临界模式切换点时,即在V sysH下降超过一定阈值时开启电压路径(3),在V sysH电压恢复后及时关闭电压路径(3),接着再采用电压路径(2)为手机的负载电路供电,以保证V sysH输出电压的稳定。
在一种可能的应用场景下,以所述电子设备100为耳机盒为例,对本申请实施例中的充放电控制装置10进行进一步地举例说明。
在上述应用场景中,所述Vbat接口13可以耦接耳机盒电池,所述VsysH接口15可以耦接两个耳机。
举例说明,若两个耳机均置于耳机盒中,并且电源适配器与所述Vbus接口12电性插接,此时电源适配器可以输出5V或9V的充电电压为耳机盒和两个耳机充电。所述控制电路16将输出信号给所述开关Q1的第三端,以控制所述开关Q1处于关断状态,所述控制电路16还将会输出信号给所述开关Q2的第三端及所述开关Q4的第三端,所述开关Q4导通的占空比为D2,其中所述开关Q2导通的占空比与所述开关Q4导通的占空比反相。所述控制电路16还将输出信号给所述开关Q3的第三端及所述开关Q5的第三端,其中,所述开关Q3导通的占空比为D1,所述开关Q5导通的占空比与所述开关Q3导通的占空比反相。
可以理解,所述Vbus接口12、Vbat接口13和VsysH接口15的传输增益 函数可以满足以下公式:
D1×V bus=D2×V bat+(1-D2)×V sysH  (5)
可以理解,上述公式(5)中的电压路径(4)可以为V bus至V bat/V sysH路径,即V bus作为输入电压,V bat和V sysH作为输出电压,V bat为所述电池20充电,
V sysH为负载电路30供电,即V bat和V sysH作为输出电压的范围可以为(0,V bus),可以实现所述电压转换器11在预设范围的降压转换,进而可以分别满足耳机、耳机盒的不同电压需求。
在另一种应用场景中,若耳机没有置于耳机盒中,并且电源适配器与所述Vbus接口12电性插接,此时电源适配器可以输出5V或9V的充电电压为耳机盒充电。
举例说明,所述控制电路16还将输出信号给所述开关Q3的第三端及所述开关Q5的第三端,其中,所述开关Q3导通的占空比为D1,所述开关Q5导通的占空比与所述开关Q3导通的占空比反相。所述控制电路16将输出信号给所述开关Q1的第三端,以控制所述开关Q1处于关断状态,所述控制电路16还将会输出信号给所述开关Q2的第三端及所述开关Q4的第三端,所述开关Q4导通的占空比为D2,其中所述开关Q2导通的占空比与所述开关Q4导通的占空比反相。当开关Q2完全关断时,即1-D2=0,此时V bat=D1×V bus,即所述V bat可以给耳机盒充电。
在另一种应用场景中,若所述电源适配器没有与所述Vbus接口12电性插接,此时耳机盒电池给耳机充电。当耳机盒电池的电压可以满足耳机的工作电压要求时,本申请实施例可以采用图8所示的电压路径(3)的直通模式及其特殊控制策略为耳机供电。即所述控制电路16控制所述开关Q3、开关Q5完全关断。
当耳机盒电池的电压较低,不能满足耳机的工作电压要求时,本申请实施例可以采用如图8所示的电压路径(2)及对应控制策略的特殊工作模式为耳机供电,即所述控制电路16控制所述开关Q3完全关断,即D2=0,此时V sysH=V bat/1-D1,即传统Boost升压转换模式以为耳机供电。
可以理解,在另外一种可能的应用场景中,当耳机盒的电池电压为模式切换点时,本申请实施例可以在V sysH下降超过一定阈值时开启电压路径(3),并在V sysH电压恢复后及时关闭电压路径(3),接着再采用电压路径(2)为耳机供电,因此可以保证V sysH输出电压的稳定。
由此,采用本申请的技术方案,在耳机产品的应用场景中,可以满足不同的充电应用场景和放电应用场景下,耳机对不同输入电压的需求,提升用户的使用体验。
请参阅图10,图10为本申请提供充放电控制装置10的另一实施例的电路结构示意图。与图6中示出的充放电控制装置10的实施例区别在于,如图10所示,本实施例中,所述电感器L1的第二端耦接所述电气节点Vsys2。所述开关Q5的第一端接地,所述开关Q5的第二端耦接于所述电感器L1的第二端,所述开关Q5的第二端还可以通过所述电气节点Vsys2耦接于所述开关Q4的第 二端,所述开关Q5的第三端耦接所述控制电路16,所述第三端是控制端。所述开关Q4的第一端耦接于所述Vbat接口13,所述开关Q4的第三端可以耦接于所述控制电路16,所述开关Q4的第三端是控制端。所述电感器L1的第一端耦接于所述开关Q1的第一端与所述开关Q3的第一端之间的电气节点Vsys1,所述开关Q3的第二端耦接于所述Vbus接口12,所述开关Q2的第一端耦接于所述电气节点Vsys2,所述开关Q1的第二端及所述开关Q2的第二端均耦接VsysL接口17,所述开关Q1的第三端、所述开关Q2的第三端和所述开关Q3的第三端均耦接所述控制电路16,所述第三端是控制端。
本实施例中的所述开关Q1设置在所述电感器L1的左侧位置,所述开关Q2设置在电气节点Vsys2的输出位置。
以所述电子设备100为手机为例,基于手机串联电池场景对本实施例中的充放电控制装置10进行举例说明。所述外部设备40为电源适配器以给手机充电,例如,电源适配器可以输出5V的充电电压给手机,此时手机可以工作于恒压充电状态中。
举例说明,当电源适配器与所述Vbus接口12电性插接时,所述控制电路16将输出信号给所述开关Q1的第三端,以控制所述开关Q1处于关断状态,所述控制电路16还将会输出信号给所述开关Q2的第三端、所述开关Q4的第三端和所述开关Q5的第三端,以控制所述开关Q5导通的占空比为D1,所述开关Q4和所述开关Q2导通占空比之和与所述开关Q5导通的占空比反相,所述控制电路16输出信号给所述开关Q3的第三端,以控制所述开关Q3一直处于导通状态。本实施例中,所述开关Q4导通的占空比为D2,则所述开关Q2导通的占空比为1-D1-D2。
可以理解,所述Vbus接口12、Vbat接口13和VsysL接口17的传输增益函数可以满足以下公式:
V bus=D2×V bat+(1-D1-D2)×V sysL  (7)
其中,0<D1+D2<1。
可以理解,在上述公式(7)中,V bat为所述Vbat接口13的电压值,V sysL为VsysL接口17的电压值,V bus为所述Vbus接口12的电压值。
可以理解,上述公式(7)中的电压路径(5)可以为V bus至V bat/V sysL路径,即V bus作为输入电压,V bat和V sysL作为输出电压,V bat为所述电池20充电,V sysL为负载电路30供电,即所述V bat和V sysL作为输出电压的范围可以为(V bus,+∞),进而可以实现所述电压转换器11在预设范围的升压转换。
可以理解,在特殊模式下,所述控制电路16控制所述开关Q2完全关断,即1-D1-D2=0,并控制所述开关Q1导通,因此可以实现V sysL=V bus,从而为电池20和负载电路30同时充电。
在一种可能的应用场景中,当所述Vbus接口12连接负载时,即在电池放电场景下,手机的电池20可以为Vbus接口12和VsysL接口17供电。举例说明,所述控制电路16可以对开关作出对应的控制,具体为:所述开关Q2一直 处于关断状态,所述开关Q4处于动态开关状态。所述开关Q4导通的占空比为D1,所述开关Q5导通的占空比与所述开关Q4导通的占空比反相,所述开关Q3导通的占空比为D2,所述开关Q1导通的占空比与所述开关Q3导通的占空比反相。
由此,所述Vbus接口12、Vbat接口13和VsysL接口17的传输增益函数可以满足以下公式:
D1×V bat=D2×V bus+(1-D2)×V sysL  (8)
可以理解,在上述公式(8)中的电压路径(6)可以为V bat至V bus/V sysL路径,当Vbus未连接设备时,即V bat作为输入电压,V sysL作为输出电压,所述电池20输出的V bat为所述负载电路30供电,即V sysL作为输出电压的范围可以为(0,V bat),进而可以实现所述电压转换器11在预设范围的降压转换。
在一种可能的应用场景中,当所述Vbus接口12连接负载时,即电池为放电场景且手机工作于即插即用(On The Go,OTG)场景时,本申请实施例可以采用电压路径(6)为所述负载电路30和外部设备40供电。外部设备40不再是电源适配器而是被反向充电的设备。
当所述开关Q1完全关断时,即1-D2=0,此时V bus=D1×V bat。当所述开关Q3完全关断时,即D2=0时,此时V sysL=D1×V bat,均可以为Buck降压电路结构,所述电池20可以分别为所述Vbus接口12和所述VsysL接口17提供不同的电压。由此,采用本申请的技术方案,在串联电池的应用场景中,可以实现多功能的升压转换和降压转换,可以满足不同应用场景的需求,提升用户的使用体验。
请参阅图11,图11为本申请提供充放电控制装置10的另一实施例的电路结构示意图。与图10中示出的充放电控制装置10的实施例区别在于,如图11所示,所述电压转换电路19还可以进一步包括开关Q6。本实施例中,所述电压转换电路19可以包括电感器L1、开关Q5和开关Q6。所述开关Q6的第一端耦接于所述电气节点Vsys2,所述开关Q6的第二端耦接于所述开关Q5的第二端和所述电感器L1的第二端,所述开关Q6的第三端耦接所述控制电路16,所述第三端是控制端,所述电感器L1的第一端耦接于所述开关Q1的第一端与所述开关Q3的第一端之间的电气节点Vsys1。本实施例中,所述开关Q6通过所述开关Q4耦接于所述Vbat接口13。在一种可能的设计中,所述开关Q6可以用于在所述开关Q5导通时,防止所述电气节点Vsys2接地。
请参阅图12,图12为本申请提供充放电控制装置10的另一实施例的电路结构示意图。与图6中示出的充放电控制装置10的实施例区别在于,如图12所示,本实施例中,所述电压转换电路19还可以包括开关Q6。所述开关Q5的第一端接地,所述开关Q5的第二端耦接所述电感器L1的第一端,所述开关Q5的第三端耦接所述控制电路16。所述开关Q6的第一端接地,所述开关Q6的第二端耦接所述电感器L1的第二端与所述电气节点Vsys2之间,所述开关Q6的第三端耦接所述控制电路16,所述第三端是控制端。所述开关Q1的第一端耦接所述电感器L1的第一端,所述开关Q2的第一端耦接所述电气节点Vsys2, 所述电感器L1第一端可以耦接于所述开关Q1的第一端与所述开关Q3的第一端之间的电气节点Vsys1,所述开关Q3的第二端耦接于所述Vbus接口12,所述开关Q1的第二端及所述开关Q2的第二端均耦接VsysHL接口18,所述开关Q1的第三端、所述开关Q2的第三端和所述开关Q3的第三端均耦接所述控制电路16。本实施例中的所述开关Q1设置在所述电感器L1的左侧位置,所述开关Q2设置在电气节点Vsys2的输出位置。可选地,出了接地之外,所述开关Q5和Q6的第一端可以耦接在一个比较低的恒定电压上,使得开关Q5和Q6能够作为泄放电流的通道。
请参阅图13,图13为本申请提供充放电控制装置10的另一实施例的电路结构示意图。与图12中示出的充放电控制装置10的实施例区别在于,如图13所示,所述电压转换电路19还可以进一步包括开关Q7。本实施例中,所述电压转换电路19可以包括电感器L1、开关Q5、开关Q6和开关Q7。所述开关Q7的第一端耦接所述电感器L1的第二端和所述开关Q6的第二端,所述开关Q7的第二端耦接所述电气节点Vsys2,所述开关Q7的第三端耦接所述控制电路16,所述第三端是控制端。所述开关Q5的第一端和所述开关Q6的第一端均接地,所述开关Q5的第三端和所述开关Q6的第三端均耦接所述控制电路16,所述开关Q5的第二端可以通过电气节点Vsys1耦接所述电感器L1的第一端和所述开关Q1的第一端,所述开关Q6的第二端耦接所述电感器L1的第二端和所述开关Q7的第一端。
以所述电子设备100为手机为例,基于手机充放电场景对本实施例中的充放电控制装置10进行举例说明。在一种可能的场景中,电源适配器可以输出5V或9V的充电电压给手机,此时手机可以工作于恒压充电状态中。举例说明,当V sysHL<V bus且V bat>V bus或者V sysHL>V bus且V bat<V bus时,所述控制电路16可以对开关作出如下控制:所述开关Q3和所述开关Q6导通的占空比为D1,所述开关Q5和所述开关Q7的导通的占空比与所述开关Q3导通的占空比反相,所述开关Q1一直处于关断状态,所述开关Q4和所述开关Q2导通的占空比之和与所述开关Q5导通的占空比同相,设定所述开关Q4导通的占空比为D2,则所述开关Q2导通的占空比为1-D1-D2。
可以理解,所述Vbus接口12、Vbat接口13和VsysHL接口18的传输增益函数可以满足以下公式:
D1×V bus=D2×V bat+(1-D1-D2)×V sysHL  (9)
可以理解,在上述公式(9)中,V bat为所述Vbat接口13的电压值,V sysHL为VsysHL接口18的电压值,V bus为所述Vbus接口12的电压值。在上述公式(9)中的电压路径(7)中,即V bus作为输入电压,V bat和V sysHL作为输出电压,所述V bat和V sysHL作为输出电压的范围可以为(0,+∞),进而可以实现所述电压转换器11在预设范围的升降压转换。
从上述公式(9)中可以看出,当所述开关Q2为完全关断时,即1-D1-D2=0,此时V bat=D1×V bus/1-D1。当所述开关Q4为完全关断时,即D2=0,此时V sysHL=D1×V bus/1-D1,均为BuckBoost升降压电路结构。所述V sysHL可以实现全范围的 电压调节,给负载电路供电。
此外,当V sysHL<V bus且V bat<V bus时,则本申请实施例可以采用电压路径(4)的降压控制策略。当V sysHL>V bus且V bat>V bus时,则本申请实施例可以采用电压路径(5)的升压控制策略。
在一种可能的应用场景中,当所述Vbus接口12连接负载时,即在电池放电场景下,手机的电池20可以为VsysHL接口18供电。举例说明,当V sysHL<V bat且V bus>V bat或者V sysHL>V bat且V bus<V bat时,所述控制电路16可以对开关作出对应的控制,具体为:所述开关Q5和所述开关Q7导通的占空比为D1,所述开关Q6导通的占空比与所述开关Q5导通的占空比反相,所述开关Q2一直处于关断状态,所述开关Q4处于一直导通状态,所述开关Q3和所述开关Q1导通的占空比之和与所述开关Q6导通的占空比同相,设定所述开关Q3导通的占空比为D2,则所述开关Q1导通的占空比为1-D1-D2。
由此,所述Vbus接口12、Vbat接口13和VsysHL接口18的传输增益函数可以满足以下公式:
D1×V bat=D2×V bus+(1-D1-D2)×V sysHL  (10)
可以理解,在上述公式(10)中的电压路径(8)可以为V bat至V bus/V sysHL路径,即V bat作为输入电压,V bus和V sysHL作为输出电压,即V bus和V sysHL作为输出电压的范围可以为(0,+∞),进而可以实现所述电压转换器11在预设范围的升降压转换。
从上述公式(10)中可以看出,当所述开关Q1为完全关断时,即1-D1-D2=0,此时V bus=D1×V bat/1-D1。当所述开关Q3为完全关断时,即D2=0,此时V sysHL=D1×V bat/1-D1,均为升降压电路结构。V sysHL可以实现全范围的电压调节,给负载电路供电。
此外,当V sysHL<V bat且V bus<V bat时,则本申请实施例可以采用电压路径(6)的降压控制策略。当V sysHL>V bat且V bus>V bat时,则本申请实施例可以采用电压路径(2)的升压控制策略。
在一种可能的应用场景中,当所述Vbus接口12连接负载时,即电池为放电场景且手机工作在OTG场景时,本申请实施例可以采用电压路径(8),并根据V bat与V bus、V sysHL的大小选择对应控制策略,为所述负载电路30和外部设备40供电。
在一种可能的应用场景中,当所述Vbus接口12连接负载时,所述电池20的电压满足所述VsysHL接口18的电压需求时,也可通过电压路径(3)为所述负载电路30供电。
由此,采用本申请实施例可以解决硅负极电池等的低电压电池在低压下不能直接为系统供电的问题,可以提高电子设备的电池续航能力,并且本申请技术方案结构简单且系统集成度高,可以提升用户体验。
请参阅图14所示,为本申请的充放电控制方法的流程图,所述充放电控制方法的流程图包括以下步骤:
步骤S141:检测第一接口是否连接电源适配器。本实施例中,所述第一接 口可以为Vbus接口12,所述Vbus接口12通过开关Q3耦接于电压转换电路19,即所述电压转换电路19可以耦接于开关Q3的第一端与开关Q1的第一端之间的电气节点Vsys1,所述开关Q3的第二端耦接于Vbus接口12。所述开关Q3的第三端耦接于控制电路,所述开关Q3的第三端为控制端。所述开关Q1的第二端耦接于VsysH接口15,所述开关Q1的第三端耦接于控制电路16,所述开关Q1的第三端为控制端。所述电压转换电路19通过电气节点Vsys2耦接至Vbat接口13,所述电压转换电路19还通过电气节点Vsys2耦接于开关Q2的第一端,所述开关Q2的第二端耦接于所述VsysH接口15,所述开关Q2的第三端耦接于控制电路16,所述开关Q2的第三端为控制端。
在一些可能的设计中,所述VsysH接口15可以用于耦接负载电路30,所述Vbat接口13可以用于耦接电池20。在一个可能的实施例中,所述电压转换电路19还可以通过所述电气节点Vsys2耦接于开关Q4的第二端,所述开关Q4的第一端可以耦接于所述Vbat接口13,所述开关Q4的第三端可以耦接于控制电路16,所述开关Q4的第三端为控制端。在一些可能的设计中,所述电压转换电路19可以用于将所述Vbus接口12的电压或者Vbat接口13的电压进行转换。所述控制电路16可以用于控制所述开关Q1-Q4的工作状态。在一些可能的设计中,所述电压转换电路19可以包括电感器L1和开关Q5。具体地,所述电感器L1的第一端可以耦接所述电气节点Vsys1,所述电感器L1的第二端可以通过所述电气节点Vsys2耦接于所述开关Q4的第二端,所述开关Q5的第一端接地,所述开关Q5的第二端耦接于所述电气节点Vsys1,所述开关Q5的第三端可以耦接控制电路16。由此,所述控制电路16可以控制开关Q1-Q5的工作状态。在一些可能的设计中,所述开关Q1-Q5可以均为场效应管。在其他一些可能的设计中,所述开关Q1-Q5也可以是其他类型的电子开关。对此本申请不作限定。
步骤S142:若所述第一接口连接电源适配器,控制第一开关处于关断状态,并且控制第二开关处于闭合或者动态开关状态。本实施例中,若所述Vbus接口连接电源适配器,所述控制电路16可以输出信号给Q1的第三端,以控制所述Q1处于关断状态。所述控制电路16还输出信号给所述Q2的第三端,以控制所述Q2处于闭合或者动态开关状态。由此,所述电源适配器输入的充电电压可以经过所述电压转换器11的转换后输出给所述VsysH接口15及Vbat接口13,例如,所述电源适配器输入的充电电压可以经过所述电压转换器11的升压转换后输出给所述VsysH接口15及Vbat接口13,以为所述电池20及所述负载电路30供电。
步骤S143:若所述第一接口未连接电源适配器,并且负载电路的工作电压和电池电压不同,控制第一开关处于动态开关状态,并且控制第二开关处于关断状态。本实施例中,若电池20的电压并不能满足负载电路30及负载的工作电压,例如电池20的电压小于3.5V,此时,所述控制电路16可以控制开关Q1处于动态开关状态,并且控制开关Q2处于关断状态。此时,所述电池20输出的电压可以经过电压转换器11的转换后为Vbus接口12和VsysH接口15供电, 例如,所述电池20输出的电压可以经过电压转换器11的升压转换后为所述Vbus接口12和所述VsysH接口15供电。
步骤S144:若所述第一接口未连接电源适配器,并且负载电路的工作电压和电池电压相同,控制第一开关处于关断状态,并且控制第二开关处于闭合状态。本实施例中,若电池20的电压可以满足负载电路30的工作需求,例如电池20的电压大于3.5V,此时,所述控制电路16可以控制所述开关Q1处于关断状态,并且控制所述开关Q2处于导通状态。此时,所述电池20输出的电压可以直接为所述Vbus接口12和所述VsysH接口15供电。由此,采用本申请实施例可以在低电压电池处于低压时给系统供电,并可以兼容不同工作模式,实现简单。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围之内。

Claims (10)

  1. 一种充放电控制装置,包括用于耦接外部设备的第一接口、耦接负载电路的第二接口和耦接电池的第三接口,其特征在于,所述充放电控制装置还包括电压转换电路、第一开关、第二开关和第三开关;
    所述第一开关耦接于所述第二接口和所述电压转换电路的第一端之间;
    所述第二开关耦接于所述第二接口与所述电压转换电路的第二端之间,所述电压转换电路的第二端耦接于所述第三接口;
    所述第三开关耦接于所述第一接口与所述电压转换电路的第一端之间;
    所述电压转换电路用于转换所述第一接口的电压或者所述第三接口的电压。
  2. 如权利要求1所述的充放电控制装置,其特征在于,
    所述充放电控制装置还包括第四开关,所述第四开关耦接于所述第三接口与所述电压转换电路的第二端之间。
  3. 如权利要求1或2所述的充放电控制装置,其特征在于,
    所述电压转换电路包括电感器,所述电感器的第一端耦接于所述电压转换电路的第一端,所述电感器的第二端耦接于所述电压转换电路的第二端。
  4. 如权利要求1-3任意一项所述的充放电控制装置,其特征在于,
    所述电压转换电路还包括第五开关,所述第五开关的第一端耦接于恒定电压端,所述第五开关的第二端耦接于所述电压转换电路的第一端。
  5. 如权利要求1-3任意一项所述的充放电控制装置,其特征在于,
    所述电压转换电路还第五开关,所述第五开关的第一端耦接于恒定电压端,所述第五开关的第二端耦接于所述电压转换电路的第二端。
  6. 如权利要求5所述的充放电控制装置,其特征在于,
    所述电压转换电路包括第六开关,所述第六开关的第一端耦接于所述电压转换电路的第二端,所述第六开关的第二端耦接于所述电感器的第二端和所述第五开关的第二端。
  7. 如权利要求4所述的充放电控制装置,其特征在于,
    所述电压转换电路还包括第六开关,所述第六开关的第一端耦接于恒定电压端,所述第六开关的第二端耦接于所述电压转换电路的第二端。
  8. 如权利要求7所述的充放电控制装置,其特征在于,
    所述电压转换电路还包括第七开关,所述第七开关的第一端耦接于所述电压转换电路的第二端,所述第七开关的第二端耦接于所述电感器的第二端和所述第六开关的第二端。
  9. 如权利要求1所述的充放电控制装置,其特征在于,
    所述电压转换电路包括第四开关、第五开关、第六开关和电容,所述第四开关耦接于所述电压转换电路的第一端与所述电压转换电路的第二端之间,所述电容的第一端耦接于所述电压转换电路的第一端,所述电容的第二端耦接于 所述第五开关的第二端,所述第五开关的第一端耦接于所述电压转换电路的第二端,所述第六开关的第一端耦接于所述第五开关的第二端,所述第六开关的第二端耦接于恒定电压端。
  10. 如权利要求1-9任意一项所述的充放电控制装置,其特征在于,
    所述充放电控制装置还包括控制电路,耦接于所述第一接口,用于检测所述第一检测的连接状态;
    所述控制电路还用于:
    在所述第一接口连接电源适配器时,控制所述第一开关处于关断状态,并且控制所述第二开关处于闭合或者动态开关状态;
    在所述第一接口未连接电源适配器且负载的工作电压和电池的电压相同时,控制所述第一开关处于断开状态,并控制所述第二开关处于闭合状态;
    在所述第一接口未连接电源适配器且负载的工作电压和电池的电压不相同时,控制所述第一开关处于动态开关状态,并且控制所述第二开关处于断开状态。
PCT/CN2021/079865 2021-03-10 2021-03-10 充放电控制装置 WO2022188048A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/079865 WO2022188048A1 (zh) 2021-03-10 2021-03-10 充放电控制装置
CN202180005065.3A CN115336159A (zh) 2021-03-10 2021-03-10 充放电控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/079865 WO2022188048A1 (zh) 2021-03-10 2021-03-10 充放电控制装置

Publications (1)

Publication Number Publication Date
WO2022188048A1 true WO2022188048A1 (zh) 2022-09-15

Family

ID=83227319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079865 WO2022188048A1 (zh) 2021-03-10 2021-03-10 充放电控制装置

Country Status (2)

Country Link
CN (1) CN115336159A (zh)
WO (1) WO2022188048A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296716A (zh) * 2012-02-27 2013-09-11 英飞凌科技奥地利有限公司 用于电池管理的系统和方法
CN106605356A (zh) * 2014-09-02 2017-04-26 苹果公司 利用升压旁路的多相电池充电
CN109038744A (zh) * 2014-06-24 2018-12-18 苹果公司 利用可重复使用的电感器进行电池充电以用于升压
CN109149915A (zh) * 2017-06-19 2019-01-04 华为技术有限公司 电源转换电路、充电装置及系统
CN109802457A (zh) * 2019-01-18 2019-05-24 青岛海信移动通信技术股份有限公司 一种电子设备及其充电方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296716A (zh) * 2012-02-27 2013-09-11 英飞凌科技奥地利有限公司 用于电池管理的系统和方法
CN109038744A (zh) * 2014-06-24 2018-12-18 苹果公司 利用可重复使用的电感器进行电池充电以用于升压
CN106605356A (zh) * 2014-09-02 2017-04-26 苹果公司 利用升压旁路的多相电池充电
CN109149915A (zh) * 2017-06-19 2019-01-04 华为技术有限公司 电源转换电路、充电装置及系统
CN109802457A (zh) * 2019-01-18 2019-05-24 青岛海信移动通信技术股份有限公司 一种电子设备及其充电方法

Also Published As

Publication number Publication date
CN115336159A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2020169037A1 (zh) 一种放电电路和电子设备
US9490644B2 (en) Reconfigurable compensator with large-signal stabilizing network
CN110741528B (zh) 电池供电电路、待充电设备及充电控制方法
US20180083470A1 (en) Charging circuit for battery-powered device
US11791721B2 (en) Multi-mode DC-to-DC power converter
CN104348202A (zh) 充电控制电路、方法及电子设备
WO2023207706A1 (zh) 一种充电电路及电子设备
WO2022188048A1 (zh) 充放电控制装置
WO2023193646A1 (zh) 一种电路、供电方法、电子设备及计算机程序产品
CN101917042A (zh) 一种锂电池充电器和直流升压器集成电路系统
CN115347633A (zh) 一种耳机座舱的充放电管理方法、装置及系统
WO2022067701A1 (zh) 一种充电电路及电子设备
CN211880118U (zh) 电池管理芯片、电池管理系统及电子设备
CN111404220A (zh) 电池管理芯片、电池管理系统、电子设备及供电方法
CN115347632B (zh) 一种tws耳机的电池充电管理方法、装置及系统
US20230369986A1 (en) Hybrid power conversion circuit
CN216414180U (zh) 功率转换结构、系统、电子设备及芯片单元
CN218415857U (zh) 一种手机电源供电电路
CN214380155U (zh) 双接口同时充电装置及设备
CN221177316U (zh) 供电电路及电子设备
CN212627160U (zh) 一种直流低压配电装置
CN211790933U (zh) 一种自切换电路
US11949332B2 (en) Hybrid power converter with two-phase control of flying capacitor balancing
CN115833577B (zh) 电压转换电路及电子设备
WO2024087672A1 (zh) 一种充放电电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929529

Country of ref document: EP

Kind code of ref document: A1