WO2023185154A1 - Dcdc电路、电源适配器和电压转换方法 - Google Patents

Dcdc电路、电源适配器和电压转换方法 Download PDF

Info

Publication number
WO2023185154A1
WO2023185154A1 PCT/CN2022/142601 CN2022142601W WO2023185154A1 WO 2023185154 A1 WO2023185154 A1 WO 2023185154A1 CN 2022142601 W CN2022142601 W CN 2022142601W WO 2023185154 A1 WO2023185154 A1 WO 2023185154A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
output
input
dcdc
Prior art date
Application number
PCT/CN2022/142601
Other languages
English (en)
French (fr)
Inventor
郭红光
张晨松
张锦
李建国
纪策
田晨
张加亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023185154A1 publication Critical patent/WO2023185154A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present application relates to the field of circuit technology, and in particular to a DCDC circuit, a power adapter and a voltage conversion method.
  • DCDC Direct Current-Direct Current
  • boost circuits boost circuits
  • buck circuits inverting circuits according to their functions.
  • DCDC circuits are in constant voltage output mode, that is, even when the input voltage of the DCDC circuit changes, the DCDC circuit can also output a constant voltage.
  • the embodiments of the present application provide a DCDC circuit, a power adapter and a voltage conversion method, which can improve the application flexibility of the DCDC circuit.
  • a DCDC circuit including a feedback circuit and a conversion circuit, and the feedback circuit is connected to the conversion circuit;
  • the feedback circuit is used to receive the input voltage input from the previous stage circuit and output a reference voltage according to the input voltage;
  • the conversion circuit is used to perform voltage conversion processing according to the reference voltage to obtain an output voltage.
  • a power adapter including the DCDC circuit described in the first aspect.
  • a voltage conversion method for use in the DCDC circuit as described in the first aspect, and the method includes:
  • the DCDC circuit in the embodiment of the present application includes a feedback circuit and a conversion circuit.
  • the feedback circuit and the conversion circuit are connected.
  • the feedback circuit is used to receive the input voltage input from the previous stage circuit and output a reference voltage according to the input voltage.
  • the conversion circuit is used to calculate the reference voltage according to the reference voltage. Perform voltage conversion processing to obtain the output voltage; since in the DCDC circuit, the size of the output voltage is determined by the size of the base voltage (or reference voltage), the size of the output voltage is linearly related to the size of the base voltage. In this way, this application implements For example, a feedback circuit can output a reference voltage according to the input voltage.
  • the reference voltage output by the feedback circuit also increases simultaneously, realizing that the size of the reference voltage changes with the change of the input voltage, and because the output The magnitude of the voltage is linearly related to the magnitude of the reference voltage. Therefore, the magnitude of the output voltage of the embodiment of the present application also changes as the magnitude of the input voltage changes. Based on this, the DCDC circuit provided by the embodiment of the present application can be applied to some scenarios with special needs that the traditional constant voltage output DCDC circuit cannot be applied to.
  • the output voltage of the DCDC circuit In the scenario of charging the battery, when the input voltage changes, the output voltage of the DCDC circuit also changes with the change of the input voltage, so the output current provided by the power adapter to the battery can change with the change of the output voltage. This avoids battery damage caused by the battery being maintained at a fixed high current for a long time when the power adapter is equipped with a traditional DCDC circuit with constant voltage output to charge the battery.
  • the DCDC circuit provided by the embodiment of the present application can extend the battery life in the above example scenario. life span.
  • Figure 1 is a schematic diagram of a buck circuit with constant voltage output mode
  • FIG. 2 is a schematic diagram of a DCDC circuit in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another DCDC circuit in an embodiment of the present application.
  • Figure 4 is a schematic diagram of the connection between the DCDC circuit and the load in the embodiment of the present application.
  • Figure 5 is a schematic diagram of an exemplary output voltage Vout and output current Iout changing with the input voltage Vin in an embodiment of the present application
  • FIG. 6 is a background illustration about PFC
  • Figure 7 is a schematic diagram of a feedback circuit in an embodiment of the present application.
  • Figure 8 is a schematic diagram of another feedback circuit in an embodiment of the present application.
  • Figure 9 is a schematic diagram of DCDC circuit debugging connections in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another DCDC circuit in an embodiment of the present application.
  • Figure 11 is a schematic flowchart of a voltage conversion method in an embodiment of the present application.
  • Feedback circuit 100; first feedback circuit: 101; second feedback circuit: 102; second voltage dividing resistor: 101; non-inverting amplifier circuit: 102; inverting amplifying circuit: 103; conversion circuit: 200; operational amplifier circuit: 201 ; Waveform generation circuit: 202; First voltage dividing resistor: 203; Load: 300; Control circuit: 400.
  • first, second, etc. used in this application may be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • a first resistor may be referred to as a second resistor, and similarly, the second resistor may be referred to as a first resistor, without departing from the scope of the present application.
  • the first resistor and the second resistor are both resistors, but they are not the same resistor.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection”, etc. if the connected circuits, modules, units, etc. have the transmission of electrical signals or data between each other.
  • DCDC Direct Current-Direct Current, DC to DC
  • Boost circuits boost circuits
  • Buck circuits buck circuits
  • BUCK-BOOST circuits BUCK-BOOST circuits
  • FIG. 1 is a schematic diagram of a buck circuit with a constant voltage output mode.
  • the LMV7219 shown on the left side in Figure 1 is a comparator
  • the OPAMP shown on the right side in Figure 1 is an ideal operational amplifier.
  • the reference voltage In the DCDC circuit, there is usually a reference voltage (the Vref node indicated by the arrow in Figure 1, the reference voltage can also be called the reference voltage).
  • the reference voltage When the DCDC circuit operates stably, the reference voltage is a constant voltage.
  • the output voltage of the DCDC circuit (Vout shown in Figure 1) is determined by the size of the reference voltage. The size of the output voltage is linearly related to the size of the reference voltage. Therefore, the output voltage Vout of the buck circuit shown in Figure 1 is a constant voltage.
  • the DCDC circuit with constant voltage output cannot be applied.
  • the output current provided by the power adapter to the battery can vary within a certain range, which is beneficial to extending the life of the battery.
  • the traditional DCDC circuit can only output constant voltage, so the output current provided by the power adapter to the battery is also constant.
  • the battery is usually maintained at a high current for a long time, which can easily lead to battery damage.
  • the DCDC circuit includes a feedback circuit and a conversion circuit.
  • the feedback circuit and the conversion circuit are connected, wherein the feedback circuit is used to receive input from the front-stage circuit. Input voltage and output the reference voltage according to the input voltage.
  • the conversion circuit is used to perform voltage conversion processing according to the reference voltage to obtain the output voltage. Since in the DCDC circuit, the size of the output voltage is determined by the size of the base voltage, the size of the output voltage is equal to The magnitude of the reference voltage is linearly related. In this way, the feedback circuit in the embodiment of the present application can output the reference voltage according to the input voltage.
  • the reference voltage output by the feedback circuit when the input voltage increases, the reference voltage output by the feedback circuit also increases, realizing that the magnitude of the reference voltage changes with the input voltage.
  • the magnitude of the input voltage changes as the magnitude of the input voltage changes, and since the magnitude of the output voltage is linearly related to the magnitude of the reference voltage, the magnitude of the output voltage of the embodiment of the present application also changes as the magnitude of the input voltage changes.
  • the DCDC circuit is used for battery charging as an example.
  • the output voltage of the DCDC circuit also changes with the change of the input voltage. Therefore, the output current provided by the power adapter to the battery can change with the change of the output voltage. This change avoids battery damage caused by maintaining a large current for a long time during battery charging.
  • the DCDC circuit provided by the embodiment of the present application can extend the life of the battery in the above battery charging scenario.
  • FIG. 2 shows a schematic diagram of a DCDC circuit provided by an embodiment of the present application.
  • the DCDC circuit includes a feedback circuit 100 and a conversion circuit 200 .
  • the feedback circuit 100 and the conversion circuit 200 are connected.
  • the input terminal of the feedback circuit 100 can be connected to the output terminal of the previous stage circuit
  • the output terminal of the feedback circuit 100 can be connected to the input terminal of the conversion circuit 200
  • the output terminal of the conversion circuit 200 can be connected to the load.
  • the feedback circuit 100 is used to receive the input voltage input from the previous stage circuit and output the reference voltage according to the input voltage.
  • the front-end circuit may be, for example, a circuit component such as a transformer.
  • the feedback circuit 100 can be constructed using discrete devices such as a bipolar junction transistor (BJT), a field effect transistor (also known as a MOS transistor), and an operational amplifier according to different actual application scenarios of the DCDC circuit. It can also be implemented using other conversion circuits to achieve the benchmark.
  • BJT bipolar junction transistor
  • MOS transistor field effect transistor
  • the purpose of the voltage waveform of the voltage is to follow the voltage waveform of the input voltage.
  • the voltage waveform change rule of the reference voltage is the same as or opposite to the voltage waveform change rule of the input voltage.
  • the reference voltage increases as the input voltage increases and the phases of the reference voltage and the input voltage are the same, or the reference voltage increases as the input voltage increases and the phases of the reference voltage and the input voltage are opposite.
  • the feedback circuit 100 can be a voltage dividing resistor, so that as the input voltage increases, the reference voltage also increases, and the reference voltage is the voltage obtained by scaling down the input voltage through the voltage dividing resistor; for example, the feedback circuit 100 can also be It is an inverting circuit, so that as the input voltage increases, the reference voltage also increases, and the phases of the reference voltage and the input voltage are opposite, and so on.
  • the Vref pin in the traditional DCDC chip can be led out, and then the feedback circuit 100 of the embodiment of the present application is set between the input terminal of the DCDC and the Vref pin, so that the Vref pin
  • the voltage waveform of the reference voltage of the pin can follow the voltage waveform of the input voltage; or, the feedback circuit 100 of the embodiment of the present application can also be set inside the DCDC chip during the DCDC chip design stage, without specific limitations here.
  • the conversion circuit 200 is used to perform voltage conversion processing according to the reference voltage to obtain an output voltage.
  • the conversion circuit 200 is used to convert the reference voltage into an output voltage.
  • the conversion circuit 200 may include a PWM (Pulse width modulation, pulse width modulation) waveform generator; or the conversion circuit 200 may include the PWM waveform generator in FIG. 1 OPAMP ideal operational amplifier, LMV7219 comparator, and the circuit part between the LMV7219 comparator and Vout.
  • PWM Pulse width modulation, pulse width modulation
  • the conversion circuit 200 may include an operational amplifier circuit 201 and a waveform generating circuit 202 .
  • the output end of the feedback circuit 100 is connected to the forward input of the operational amplifier circuit 201
  • the output terminal of the operational amplifier circuit 201 is connected to the input terminal of the waveform generating circuit 202 .
  • the operational amplifier circuit 201 may include the OPAMP ideal operational amplifier in FIG. 1
  • the waveform generation circuit 202 may include the LMV7219 comparator in FIG. 1 and the circuit part between the LMV7219 comparator and Vout.
  • the operational amplifier circuit 201 is used to amplify the reference voltage output by the feedback circuit 100 to obtain an amplified voltage, which is an analog voltage; the waveform generating circuit 202 is used to output an output voltage according to the amplified voltage.
  • the waveform The generating circuit 202 can convert the simulated amplified voltage into a PWM waveform to obtain the output voltage Vout.
  • the waveform generating circuit 202 also includes a capacitor (not shown in Figure 3), which is connected to the output end of the waveform generating circuit 202.
  • the capacitor is used to form a filter circuit with the inductor in the waveform generating circuit 202, thereby ensuring that the output voltage Vout is a DC voltage.
  • the input quantity in the DCDC loop is the input voltage Vin.
  • the input voltage Vin is adjusted to the required reference voltage Vref, thereby achieving the purpose of the voltage waveform of the reference voltage Vref following the voltage waveform change of the input voltage Vin. .
  • the output voltage Vout is the control object in the DCDC loop, and the size of the output voltage Vout is linearly related to the size of the reference voltage Vref. Therefore, when the reference voltage Vref changes, the output voltage Vout will also change linearly.
  • the purpose of input voltage feedforward is generally to achieve a stable voltage output.
  • the feedback circuit 100 is provided to add a small ripple to the output voltage on the basis of voltage stabilization. This results in different characteristics from the traditional DCDC circuit, making it suitable for some special needs scenarios.
  • the DCDC circuits in the embodiments of the present application include but are not limited to boost circuits (Boost circuits), buck circuits (Buck circuits) and BUCK-BOOST circuits, which can be used in photovoltaic systems, solar charging units, etc. to achieve output voltage and output according to the input voltage. In the case of power control, it has excellent performance in photovoltaic systems and battery charging systems.
  • Boost circuits boost circuits
  • Buck circuits buck circuits
  • BUCK-BOOST circuits which can be used in photovoltaic systems, solar charging units, etc. to achieve output voltage and output according to the input voltage.
  • power control it has excellent performance in photovoltaic systems and battery charging systems.
  • the DCDC circuit of the above embodiment includes a feedback circuit 100 and a conversion circuit 200.
  • the feedback circuit 100 is connected to the conversion circuit 200.
  • the feedback circuit 100 is used to receive the input voltage input from the previous stage circuit and output a reference according to the input voltage.
  • the conversion circuit 200 is used to perform voltage conversion processing according to the reference voltage to obtain the output voltage; since in the DCDC circuit, the size of the output voltage is determined by the size of the base voltage (or reference voltage), the size of the output voltage is related to the size of the base voltage. is linearly related to the size of It changes with the change of the input voltage, and since the output voltage is linearly related to the reference voltage, the output voltage of the embodiment of the present application also changes with the change of the input voltage.
  • the DCDC circuit provided by the embodiment of the present application can be applied to some special demand scenarios that the traditional constant voltage output DCDC circuit cannot be applied to.
  • the power adapter is provided with the DCDC circuit of the embodiment of the present application.
  • the output voltage of the DCDC circuit also changes with the change of the input voltage. Therefore, the output current provided by the power adapter to the battery can change with the change of the output voltage.
  • the power adapter is equipped with a traditional DCDC circuit with constant voltage output to charge the battery, battery damage caused by the battery being maintained at a fixed high current for a long time is avoided.
  • the DCDC circuit provided by the embodiment of the present application can extend the battery life in the above example scenario. life.
  • the output voltage Vout is also adjusted based on the fixed reference voltage Vref. Therefore, in digital control, if it is necessary to achieve the purpose of the voltage waveform of the output voltage Vout following the voltage waveform change of the input voltage Vin, only by modifying the reference voltage
  • Vref the value of Vref can be easily implemented and is not limited here.
  • the output end of the conversion circuit 200 is connected to the load 300 , and the capacitor shown in FIG. 4 is included in the conversion circuit 200 .
  • the load 300 is a charging type load or a resistive load.
  • the charging type load 300 is a load powered by a rechargeable battery, such as: mobile phones, mobile power supplies, laptops, tablets, watches, bracelets, smart glasses, sweeping robots, wireless headsets, Bluetooth speakers, electric toothbrushes, and rechargeable wireless mice. , etc.; resistive loads such as induction cookers, etc.
  • the resistance value of the line resistance R is usually small, for example, less than 100 milliohms. In this way, when a small-amplitude ripple is superimposed on the output voltage Vout, there will be a large-amplitude ripple on Iout.
  • Figure 5 is an exemplary schematic diagram of the output voltage Vout and the output current Iout changing with the input voltage Vin. It can be seen that while the input voltage Vin changes, the output voltage Vout changes slightly with the input voltage Vin, while the output current Iout changes significantly. That is, a small ripple on Vout will cause a large ripple on Iout.
  • the embodiment of the present application can control the output power of the DCDC circuit through the input voltage Vin.
  • the input voltage Vin is high, a larger power is output, and when the input voltage Vin is low, a smaller power is output to prevent the DCDC circuit from turning on the DCDC circuit.
  • the front-end circuit is broken.
  • Power factor is a parameter used to measure the power efficiency of electrical equipment. Low power factor represents low power efficiency. The technology to improve the power factor of electrical equipment is called for power factor correction.
  • the PFC value of the electrical equipment such as a power adapter
  • the PFC value of the electrical equipment can measure the degree of effective utilization of power, when the PFC value is larger, it means that the power consumption The higher the power utilization rate of the equipment
  • a PFC circuit is added before the DCDC circuit.
  • the function of the PFC circuit is to make the input voltage and input current of the DCDC circuit have the same waveform and phase as much as possible, thereby improving the PFC value of the electrical equipment.
  • the way to improve the PFC value is to make the input voltage and input current of the DCDC circuit have the same waveform and phase as much as possible.
  • DCDC circuits usually have constant power output. In this way, when the output power is constant, the input current of the traditional DCDC circuit is large when the input voltage is low, and the input current is small when the input voltage is high. This is inconsistent with The way to increase PFC value is just the opposite. Without adding a PFC circuit, the PFC value of the electrical equipment corresponding to the traditional DCDC circuit is very low, that is, the power consumption efficiency is low, which is not conducive to the power planning and deployment of the power grid. For example, due to the low power consumption efficiency of electrical equipment, the power grid may need to deploy 200 MW of power resources to provide the 100 MW of power that the power equipment actually consumes, resulting in a waste of power resources.
  • the output voltage of the DCDC circuit changes with the change of the input voltage, that is, the input voltage and the output voltage have the same directionality (isotropy means synchronous increase or synchronous decrease), and the input voltage and output current are in the same direction. Small ripples on the output voltage will cause large ripples on the output current. Then, as the input voltage increases The output power can change significantly, so it can be realized that when the input voltage increases, the input current also increases, and when the input voltage is low, the input current also decreases, that is, the input voltage and input current are in the same direction.
  • This characteristic of the DCDC circuit in the embodiment of the present application is the same as that of the PFC circuit.
  • this characteristic of the DCDC circuit in the embodiment of the present application allows the DCDC circuit to have a certain PFC function, which can greatly reduce the increase in harmonics to the front stage.
  • the DCDC circuit of the embodiment of the present application can easily achieve a higher PFC value without adding additional PFC circuits and losses, which improves the power consumption efficiency of the electrical equipment corresponding to the DCDC circuit and avoids redundant Power deployment saves the power resources of the power grid.
  • the feedback circuit 100 may include a second voltage dividing resistor 101, the voltage input end of the second voltage dividing resistor 101 is used to be connected to the front-stage circuit, and the voltage output end of the second voltage dividing resistor 101 is connected to the input of the conversion circuit 200. end connection.
  • the reference voltage is the voltage obtained by scaling down the input voltage through the second voltage dividing resistor 101 .
  • the feedback circuit 100 may also include a non-inverting amplifier circuit 102 or an inverting amplifying circuit 103.
  • a non-inverting amplifier circuit 102 or an inverting amplifying circuit 103.
  • two implementations including the non-inverting amplifying circuit 102 or the inverting amplifying circuit 103 will be introduced respectively with reference to the figures.
  • the feedback circuit 100 further includes a non-inverting amplifier circuit 102 , the voltage output end of the second voltage dividing resistor 101 is connected to the input end of the non-inverting amplifying circuit 102 , and the output end of the non-inverting amplifying circuit 102 Connected to the input end of the conversion circuit 200.
  • the in-phase amplifier circuit 102 is used to amplify the voltage output from the voltage output terminal of the second voltage dividing resistor 101 in the same phase to obtain a reference voltage. That is, the reference voltage increases as the input voltage increases, and the phases of the reference voltage and the input voltage are the same.
  • the feedback circuit 100 of this embodiment can be used in the above-mentioned implementation scenario for improving the PFC value to improve the power consumption efficiency of electrical equipment, such as power adapters.
  • the feedback circuit 100 also includes an inverting amplifier circuit 103.
  • the voltage output end of the second voltage dividing resistor 101 is connected to the input end of the inverting amplifying circuit 103.
  • the inverting amplifying circuit The output terminal of 103 is connected to the input terminal of the conversion circuit 200.
  • the inverting amplifier circuit 103 is used for inverting amplifying the voltage output from the voltage output terminal of the second voltage dividing resistor 101 to obtain a reference voltage. That is, the reference voltage increases as the input voltage increases, and the phases of the reference voltage and the input voltage are opposite.
  • the feedback circuit 100 of this embodiment may be applicable to some scenarios where the output voltage of the DCDC circuit is required to increase as the input voltage increases, and the phases of the output voltage and the input voltage are opposite.
  • the feedback circuit 100 in the embodiment of the present application can be flexibly set according to the usage scenario, which improves the application flexibility of the DCDC circuit.
  • this embodiment exemplarily explains the implementation process of the DCDC circuit in the design and debugging stage.
  • the output terminal of the waveform generating circuit 202 is connected to the inverting input terminal of the operational amplifier circuit 201.
  • the operational amplifier circuit 201 is also used to output a voltage control signal according to the reference voltage and the output voltage output by the waveform generation circuit 202;
  • the waveform generation circuit 202 includes a conduction switch and an inductor, and the waveform generation circuit 202 is also used to receive the input voltage and generate the voltage according to the voltage.
  • the instruction of the control signal adjusts the conduction time of the conduction switch to adjust the time the input voltage is applied to the inductor.
  • the conversion circuit 200 also includes a first voltage dividing resistor 203.
  • the voltage input terminal of the first voltage dividing resistor 203 is connected to the output terminal of the waveform generating circuit 202.
  • the voltage output terminal of the first voltage dividing resistor 203 is Connected to the inverting input terminal of the operational amplifier circuit 201.
  • the operational amplifier circuit 201 is specifically configured to output a voltage control signal based on the magnitude relationship between the reference voltage and the voltage output by the first voltage dividing resistor 203 .
  • the reference voltage and the output voltage are linearly related. For different application scenarios, developers may need different multiple relationships between the reference voltage and the output voltage.
  • the expected output voltage Vout is 5 times the reference voltage Vref, that is, there is a 5-fold relationship between Vout and Vref.
  • the operational amplifier circuit 201 compares the reference voltage Vref and the output voltage Vout. It can be understood that when the conversion circuit 200 does not include the first voltage dividing resistor 203, the operational amplifier circuit 201 directly compares the reference voltage Vref and the output voltage Vout. The multiple relationship of the output voltage Vout. When the conversion circuit 200 includes the first voltage dividing resistor 203, the operational amplifier circuit 201 determines the reference voltage by comparing the magnitude relationship between the reference voltage and the voltage output by the first voltage dividing resistor 203. Whether the multiple relationship between Vref and output voltage Vout meets the design requirements.
  • the operational amplifier circuit 201 determines through comparison that the multiple relationship between the reference voltage Vref and the output voltage Vout does not meet the design requirements, that is, the output voltage Vout is not 5 times the reference voltage Vref, then a voltage control signal is output to instruct the waveform generation circuit 202 adjusts the conduction time of the conduction switch.
  • the conduction switch can refer to the MOS transistor T1.
  • the longer the conduction time of the conduction switch the longer the input voltage Vin is applied to the inductor L1, and the greater the impact of the input voltage Vin on the output voltage Vout. larger, thereby increasing the output voltage Vout; on the contrary, the shorter the conduction time of the conduction switch, the shorter the time for the input voltage Vin to be applied to the inductor L1, and the smaller the impact of the input voltage Vin on the output voltage Vout, thus The output voltage Vout can be reduced.
  • the voltage control signal is used to instruct the waveform generating circuit 202 to extend the conduction of the turn-on switch. If the operational amplifier circuit 201 determines through comparison that the multiple relationship between the reference voltage Vref and the output voltage Vout does not meet the design requirements, and the output voltage Vout needs to be reduced, the voltage control signal is used to instruct the waveform generation circuit 202 to shorten the turn-on switch. On-time duration.
  • the voltage control signal is used to instruct the waveform generation circuit 202 to maintain the current conduction duration of the conduction switch, thereby allowing the DCDC circuit to The design stage can meet the design requirements to be flexibly applied to various scenarios.
  • the DCDC circuit in the embodiment of the present application may also include a control circuit 400.
  • the feedback circuit 100 includes a first feedback circuit 101 and a second feedback circuit 102.
  • the control circuit 400 is connected to both the first feedback circuit 101 and the second feedback circuit 102 .
  • the control circuit 400 is used to control the first feedback circuit 101 and the conversion circuit 200 to be conductive according to the preset conduction condition, or to control the second feedback circuit 102 to be conductive to the conversion circuit 200.
  • the voltage waveform variation rules of the reference voltage output by the first feedback circuit 101 and the second feedback circuit 102 are different.
  • the first feedback circuit 101 is the feedback circuit 100 shown in Figure 7
  • the second feedback circuit 102 is the feedback circuit 100 shown in Figure 8.
  • the feedback circuits 100 shown are respectively used to achieve different effects.
  • the control circuit 400 can select different feedback circuits 100 to be connected to the conversion circuit 200 according to different current application scenarios, so that the current application scenario matches the feedback circuit 100 .
  • the preset conduction condition may be that after receiving a user's selection instruction for the usage scenario, the control circuit 400 selects the first feedback circuit 101 or the second feedback circuit 102 that matches the selection instruction to conduct with the conversion circuit 200 .
  • the number of the first feedback circuit 101 and the second feedback circuit 102 can be multiple to achieve flexible switching of multiple feedback circuits 100 to match multiple usage scenarios and improve the application flexibility of the DCDC circuit.
  • a power adapter is provided.
  • the power adapter includes the DCDC circuit as described in any of the above embodiments.
  • a voltage conversion method is provided.
  • the voltage conversion method is used in the DCDC circuit as described in any of the above embodiments.
  • the method includes the following steps:
  • Step 100 Receive the input voltage from the front-end circuit and output the reference voltage according to the input voltage.
  • Step 200 Perform voltage conversion processing according to the reference voltage to obtain the output voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请涉及一种DCDC电路、电源适配器和电压转换方法。该DCDC电路包括反馈电路和转换电路,所述反馈电路和所述转换电路连接;所述反馈电路,用于接收前级电路输入的输入电压,并根据所述输入电压输出基准电压;所述转换电路,用于根据所述基准电压进行电压转换处理,得到输出电压。本申请实施例可以提升DCDC电路的应用灵活性。

Description

DCDC电路、电源适配器和电压转换方法
本申请要求于2022年04月01日提交中华人民共和国国家知识产权局、申请号为2022103385960、发明名称为“DCDC电路、电源适配器和电压转换方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路技术领域,特别是涉及一种DCDC电路、电源适配器和电压转换方法。
背景技术
随着电子工业的不断发展,开关电源的应用越来越广泛。DCDC(Direct Current-Direct Current,直流转直流)电路是开关电源技术的一个分支,DCDC电路按功能分为升压电路、降压电路以及反相电路。
目前,大多数DCDC电路为恒压输出模式,即在DCDC电路的输入电压变化的情况下,DCDC电路也能够输出恒定的电压。
但是,上述具有恒压输出模式的DCDC电路在实际应用中灵活性较差,存在一定的应用局限性。
发明内容
本申请实施例提供了一种DCDC电路、电源适配器和电压转换方法,可以提升DCDC电路的应用灵活性。
第一方面,提供了一种DCDC电路,包括反馈电路和转换电路,所述反馈电路和所述转换电路连接;
所述反馈电路,用于接收前级电路输入的输入电压,并根据所述输入电压输出基准电压;
所述转换电路,用于根据所述基准电压进行电压转换处理,得到输出电压。
第二方面,提供了一种电源适配器,包括如上述第一方面所述的DCDC电路。
第三方面,提供了一种电压转换方法,用于如上述第一方面所述的DCDC电路中,所述方法包括:
接收前级电路输入的输入电压,并根据所述输入电压输出基准电压;
根据所述基准电压进行电压转换处理,得到输出电压。
本申请实施例提供的技术方案带来的有益效果至少包括:
本申请实施例DCDC电路包括反馈电路和转换电路,反馈电路和转换电路连接,其中,反馈电路用于接收前级电路输入的输入电压,并根据输入电压输出基准电压,转换电路用于根据基准电压进行电压转换处理,得到输出电压;由于在DCDC电路中,输出电压的大小由基准电压(或称为参考电压)的大小决定,输出电压的大小与基准电压的大小线性相关,这样,本申请实施例反馈电路可以根据输入电压输出基准电压,例如,在输入电压增大的情况下反馈电路输出的基准电压也同步增大,实现了基准电压的大小随输入电压的大小变化而变化,而由于输出电压的大小与基准电压的大小线性相关,因此,本申请实施例输出电压的大小也随着输入电压大小的变化而变化。基于此,本申请实施例提供的DCDC电路能够适用于一些传统恒压输出的DCDC电路所不能适用的特殊需求的场景,示例性地,在通过设置有本申请实施例提供的DCDC电路的电源适配器给电池充电的场景下,在输入电压变化的情况下,DCDC电路的输出电压也随着输入电压的变化而变化,从而电源适配器提供给电池的输出电流可以随着输出电压的变化而变化,这就避免了电源适配器配备传统恒压输出的DCDC电路给电池充电时,由于电池长期维持在固定大电流的情况下导致的电池损伤,本申请实施例提供的DCDC电路在上述示例场景下可以延长电池的寿命。
附图说明
图1为一种具有恒压输出模式的降压电路的示意图;
图2为本申请实施例中一种DCDC电路的示意图;
图3为本申请实施例中另一种DCDC电路的示意图;
图4为本申请实施例中DCDC电路与负载连接的示意图;
图5为本申请实施例中一种示例性地输出电压Vout、输出电流Iout随输入电压Vin变化的示意图;
图6为一种关于PFC的背景说明图;
图7为本申请实施例中一种反馈电路的示意图;
图8为本申请实施例中另一种反馈电路的示意图;
图9为本申请实施例中DCDC电路调试连接示意图;
图10为本申请实施例中另一种DCDC电路的示意图;
图11为本申请实施例中一种电压转换方法的流程示意图。
附图标记说明:
反馈电路:100;第一反馈电路:101;第二反馈电路:102;第二分压电阻:101;同相放大电路:102;反相放大电路:103;转换电路:200;运放电路:201;波形发生电路:202;第一分压电阻:203;负载:300;控制电路:400。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一电阻称为第二电阻,且类似地,可将第二电阻称为第一电阻。第一电阻和第二电阻两者都是电阻,但其不是同一电阻。
可以理解,以下实施例中的“连接”,如果被连接的电路、模块、单元等相互之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。
DCDC(Direct Current-Direct Current,直流转直流)电路是开关电源技术的一个分支,DCDC电路按功能分为升压电路(Boost电路)、降压电路(Buck电路)以及BUCK-BOOST电路。传统技术中,大多数DCDC电路为恒压输出模式,即在DCDC电路的输入电压变 化的情况下,DCDC电路也能够输出恒定的电压。部分DCDC电路具有恒流输出模式。
以恒压输出为例,示例性地,参见图1,图1为一种具有恒压输出模式的降压电路的示意图。其中,图1中左侧所示的LMV7219为比较器,图1中右侧所示的OPAMP为理想运放。
请继续参见图1,在DCDC电路中,通常都存在基准电压(如图1中箭头所指示的Vref节点,基准电压也可以称为参考电压),在DCDC电路稳定工作时基准电压为一个恒定电压,DCDC电路的输出电压(图1所示的Vout)的大小由基准电压的大小决定,输出电压的大小与基准电压的大小线性相关,因此,图1所示的降压电路的输出电压Vout为一个恒定的电压。
然而,在一些特殊需求的场景下,恒压输出的DCDC电路无法适用。例如,在通过设置有DCDC电路的电源适配器给电池充电的场景下,期望电源适配器提供给电池的输出电流可以在一定范围内变化,这样有利于延长电池的寿命。但是,传统的DCDC电路仅能够恒压输出,从而电源适配器提供给电池的输出电流也恒定,电池在充电时通常都是长期维持在一个大电流的情况下,容易导致电池损伤。
鉴于此,本申请实施例提供一种DCDC电路、电源适配器和电压转换方法,该DCDC电路包括反馈电路和转换电路,反馈电路和转换电路连接,其中,反馈电路,用于接收前级电路输入的输入电压,并根据输入电压输出基准电压,转换电路,用于根据基准电压进行电压转换处理,得到输出电压,由于在DCDC电路中,输出电压的大小由基准电压的大小决定,输出电压的大小与基准电压的大小线性相关,这样,本申请实施例反馈电路可以根据输入电压输出基准电压,例如,在输入电压增大的情况下反馈电路输出的基准电压也增大,实现了基准电压的大小随输入电压的大小变化而变化,而由于输出电压的大小与基准电压的大小线性相关,因此,本申请实施例输出电压的大小也随着输入电压大小的变化而变化,以本申请实施例提供的DCDC电路用于上述电池充电为例,在输入电压变化的情况下,DCDC电路的输出电压也随着输入电压的变化而变化,从而电源适配器提供给电池的输出电流可以随着输出电压的变化而变化,避免了电池充电时长期维持在大电流的情况下导致的电池损伤,本申请实施例提供的DCDC电路在上述电池充电的场景下可以延长电池的寿命。
以下,通过一些示例性地实施方式对本申请实施例的技术方案进行介绍。
请参考图2,其示出了本申请实施例提供的一种DCDC电路的示意图。如图2所示,该DCDC电路包括反馈电路100和转换电路200。
本申请实施例中,反馈电路100和转换电路200连接。示例性地,反馈电路100的输入端可以用于与前级电路的输出端连接,反馈电路100的输出端可以与转换电路200的输入端连接,转换电路200的输出端可以与负载连接。
其中,反馈电路100用于接收前级电路输入的输入电压,并根据输入电压输出基准电压。
前级电路例如可以是变压器等电路元件。反馈电路100可以根据DCDC电路实际应用场景的不同,使用三极管(bipolarjunction transistor,BJT)、场效应管(又称MOS管)、运算放大器等分立器件搭建,也可以使用其他变换电路实现,以实现基准电压的电压波形跟随输入电压的电压波形变化的目的。
本申请实施例中,基准电压的电压波形变化规律与输入电压的电压波形变化规律相同或相反。示例性地,基准电压随着输入电压的增大而增大且基准电压和输入电压的相位相同,或者,基准电压随着输入电压的增大而增大且基准电压和输入电压的相位相反。
例如,反馈电路100可以是分压电阻,这样,输入电压增大基准电压也随之增大,且基准电压是通过分压电阻将输入电压按比例缩小后的电压;例如,反馈电路100还可以是反相电路,这样,输入电压增大基准电压也随之增大,且基准电压和输入电压的相位相反,等等。
需要说明的是,在模拟电路设计上,可以将传统DCDC芯片中的Vref引脚引出来,然后在DCDC的输入端子和Vref引脚之间设置本申请实施例的反馈电路100,从而使得Vref引脚的基准电压的电压波形可以跟随输入电压的电压波形变化;或者,也可以在DCDC芯片设计阶段将本申请实施例的反馈电路100设置在DCDC芯片内部,在此不做具体限制。
下面,对转换电路200的实施方式进行示例性地说明。
本申请实施例中,转换电路200用于根据基准电压进行电压转换处理,得到输出电压。
转换电路200用于实现将基准电压转化为输出电压的目的,示例性地,转换电路200 可以包括PWM(Pulse width modulation,脉冲宽度调制)波形发生器;或者,转换电路200可以包括图1中的OPAMP理想运放、LMV7219比较器以及LMV7219比较器与Vout之间的电路部分。
在本申请实施例转换电路200一种可能的实施方式中,参见图3,转换电路200可以包括运放电路201和波形发生电路202,反馈电路100的输出端与运放电路201的正向输入端连接,运放电路201的输出端与波形发生电路202的输入端连接。
可选地,运放电路201可以包括图1中的OPAMP理想运放,波形发生电路202可以包括图1中的LMV7219比较器以及LMV7219比较器与Vout之间的电路部分。
其中,运放电路201用于对反馈电路100输出的基准电压进行放大,得到放大电压,该放大电压为一个模拟的电压;波形发生电路202用于根据放大电压输出输出电压,示例性地,波形发生电路202可以将该模拟的放大电压转换为PWM波形,则得到输出电压Vout。
波形发生电路202还包括电容(图3未示出),该电容连接在波形发生电路202的输出端,该电容用于与波形发生电路202中的电感形成滤波电路,从而保证输出电压Vout是一个直流电压。
上述实施例DCDC环路中输入量为输入电压Vin,通过搭建反馈电路100,将输入电压Vin调整成需要的基准电压Vref,从而实现基准电压Vref的电压波形跟随输入电压Vin的电压波形变化的目的。
进一步地,DCDC环路中输出电压Vout为控制对象,而输出电压Vout的大小与基准电压Vref的大小线性相关,因此,当基准电压Vref发生变化时,输出电压Vout也会随之线性变化。
需要说明的是,传统技术中,输入电压前馈的目的一般是为了实现稳压输出,而本申请实施例,设置反馈电路100是为了让输出电压在稳压的基础上加入一个小纹波,从而得到与传统DCDC电路不同的特性,以适用于一些特殊需求的场景。
本申请实施例DCDC电路包括但不限于升压电路(Boost电路)、降压电路(Buck电路)以及BUCK-BOOST电路,其可用于光伏系统、太阳能充电单元等需要根据输入电压实现输出电压、输出功率控制的场合,其在在光伏系统、电池充电系统中具有优越的性能体现。
整体而言,上述实施例的DCDC电路包括反馈电路100和转换电路200,反馈电路100和转换电路200连接,其中,反馈电路100用于接收前级电路输入的输入电压,并根据输入电压输出基准电压,转换电路200用于根据基准电压进行电压转换处理,得到输出电压;由于在DCDC电路中,输出电压的大小由基准电压(或称为参考电压)的大小决定,输出电压的大小与基准电压的大小线性相关,这样,本申请实施例反馈电路100可以根据输入电压输出基准电压,例如,在输入电压增大的情况下反馈电路100输出的基准电压也同步增大,实现了基准电压的大小随输入电压的大小变化而变化,而由于输出电压的大小与基准电压的大小线性相关,因此,本申请实施例输出电压的大小也随着输入电压大小的变化而变化。基于此,本申请实施例提供的DCDC电路能够适用于一些传统恒压输出的DCDC电路所不能适用的特殊需求的场景,示例性地,在通过设置有本申请实施例的DCDC电路的电源适配器给电池充电的场景下,在输入电压变化的情况下,DCDC电路的输出电压也随着输入电压的变化而变化,从而电源适配器提供给电池的输出电流可以随着输出电压的变化而变化,这就避免了电源适配器配备传统恒压输出的DCDC电路给电池充电时,由于电池长期维持在固定大电流的情况下导致的电池损伤,本申请实施例提供的DCDC电路在上述示例场景下可以延长电池的寿命。
需要说明的是,上述实施例均是针对模拟控制进行的介绍。在数字控制中,同样也是根据固定的基准电压Vref调整输出电压Vout,因此,在数字控制中,若需要实现输出电压Vout的电压波形跟随输入电压Vin的电压波形变化的目的,仅通过修改基准电压Vref的值则可以方便地实现,在此不做限制。
在一个实施例中,基于上述实施例,参见图4,本申请实施例中转换电路200的输出端与负载300连接,图4所示的电容包含于转换电路200中。
其中,负载300为充电类型的负载或者电阻式负载。充电类型的负载300即通过充电电池供电的负载,例如:手机、移动电源、笔记本电脑、平板电脑、手表、手环、智能眼镜、扫地机器人、无线耳机、蓝牙音响、电动牙刷、可充电无线鼠标,等等;电阻式负载例如电磁炉等。
请继续参见图4,在本申请实施例DCDC电路与负载300连接的情况下,从DCDC电 路的输出端输出的输出电压为Vout,负载300电压为Vload,线阻(即DCDC电路和负载之间的线缆自身的阻抗)R上面通过的电流为Iout,则:
Iout=(Vout-Vload)/R
线阻R的阻值通常较小,例如小于100毫欧,这样,当输出电压Vout上叠加一个小幅度的纹波时,Iout上则会有一个大幅度的纹波。
参见图5,图5为一种示例性的输出电压Vout、输出电流Iout随输入电压Vin变化的示意图。可以看出,在输入电压Vin变化的同时,输出电压Vout跟随输入电压Vin小幅度变化,而输出电流Iout大幅度变化,即Vout上的小纹波会造成Iout的大幅度纹波。
本申请的发明人在研发过程中通过大量的仿真实验发现,不管是从DCDC电路的输出功率来看,还是从负载300的抽取功率来看,Vout和Vload的纹波分量(即变化量)相对于直流分量都是很小的,影响功率(Pout=Vout*Iout)的主要因素为Iout,Pout和Iout成线性关系。因此,本申请实施例的DCDC电路与负载300连接的情况下,DCDC电路的输出功率跟随DCDC电路的输入电压Vin也发生动态变化。
可见,本申请实施例可以通过输入电压Vin实现对DCDC电路输出功率的控制,在输入电压Vin较高时,输出较大功率,在输入电压Vin较低时,输出较小功率,防止DCDC电路将前级电路拉挂。
以下,对本申请实施例提供的DCDC电路的输出功率可以跟随DCDC电路的输入电压Vin发生动态变化的这种特性所带来的另一有益效果进行简要说明。
首先引入一个概念:PFC(Power Factor Correction,功率因数校正),功率因数是用来衡量用电设备用电效率的参数,低功率因数代表低电力效能,为了提高用电设备功率因数的技术就称为功率因数校正。
示例性地,参见图6,为了提升DCDC电路对应的用电设备(如电源适配器)的PFC值(用电设备的PFC值可以衡量电力被有效利用的程度,当PFC值越大,代表用电设备电力利用率越高),通常会在DCDC电路前加PFC电路,PFC电路的功能是让DCDC电路的输入电压和输入电流尽可能同波形、同相位,以此提升用电设备的PFC值。
也就是说,提高PFC值的途径是让DCDC电路的输入电压和输入电流尽可能同波形、同相位。但是,传统技术中,DCDC电路通常是恒定功率输出,这样,在输出功率一定的 情况下,传统的DCDC电路的输入电压低时输入电流则大,而输入电压高时输入电流则小,这与提高PFC值的途径正好相反。在不增加PFC电路的情况下,传统的DCDC电路对应的用电设备的PFC值很低,即用电效率低下,不利于电网的用电规划部署。例如,由于用电设备的用电效率低下,电网可能需要布置200兆瓦的电力资源提供电力设备实际上消耗的100兆瓦的电量,造成电力资源的浪费。
本申请实施例提出的具有输入前馈功能的DCDC电路,在连接负载300的情况下,通过上述分析可知,DCDC电路的输出电压随着输入电压的变化而变化,即输入电压与输出电压具有同向性(同向性是指同步增大或者同步减小),且输入电压和输出电流同向,输出电压上的小纹波会造成输出电流的大幅度纹波,那么,随着输入电压的变化,输出功率可以大幅度变化,因此可以实现:输入电压增高时输入电流也增高,输入电压低时输入电流也小,即输入电压和输入电流具有同向性。
本申请实施例DCDC电路的这个特性和PFC电路的特性相同,也就是说,本申请实施例DCDC电路的这个特性让DCDC电路有了一定的PFC功能,可以大大减少对前级的谐波增加,搭配其他DCX架构,本申请实施例DCDC电路可以很容易实现较高的PFC值,而不需要增加额外的PFC电路和损耗,提升了DCDC电路对应的用电设备的用电效率,避免冗余的电力部署,节约了电网的电力资源。
基于上述图2-图4任一所示实施例,以下,对反馈电路100可能的实施方式进行示例性地介绍。
示例性地,反馈电路100可以包括第二分压电阻101,第二分压电阻101的电压输入端用于与前级电路连接,第二分压电阻101的电压输出端与转换电路200的输入端连接。这样,输入电压增大基准电压也随之增大,且基准电压是通过第二分压电阻101将输入电压按比例缩小后的电压。
本申请实施例中,反馈电路100还可以包括同相放大电路102或反相放大电路103,以下,结合图示,对包括同相放大电路102或反相放大电路103的两种实施方式分别进行介绍。
在一种可能的实施方式中,参见图7,反馈电路100还包括同相放大电路102,第二 分压电阻101的电压输出端与同相放大电路102的输入端连接,同相放大电路102的输出端与转换电路200的输入端连接。
该同相放大电路102用于对第二分压电阻101的电压输出端输出的电压进行同相位放大,得到基准电压。即基准电压随着输入电压的增大而增大,且基准电压和输入电压的相位相同。
该实施方式的反馈电路100则可以用于上述用于提升PFC值的实施场景中,以提升用电设备,如电源适配器的用电效率。
在另一种可能的实施方式中,参见图8,反馈电路100还包括反相放大电路103,第二分压电阻101的电压输出端与反相放大电路103的输入端连接,反相放大电路103的输出端与转换电路200的输入端连接。
该反相放大电路103用于对第二分压电阻101的电压输出端输出的电压进行反相位放大,得到基准电压。即基准电压随着输入电压的增大而增大,且基准电压和输入电压的相位相反。
该实施方式的反馈电路100可以适用于一些需要DCDC电路的输出电压随输入电压的增大而增大,且输出电压和输入电压的相位相反的场景中。
由此可见,本申请实施例的反馈电路100可以依据使用场景灵活设置,提升了DCDC电路的应用灵活性。
基于上述图3所示的实施例,本实施例对DCDC电路在设计调试阶段的实施过程进行示例性地说明。
本申请实施例中,波形发生电路202的输出端与运放电路201的反向输入端连接。运放电路201还用于根据基准电压和波形发生电路202输出的输出电压,输出电压控制信号;波形发生电路202包括导通开关和电感,波形发生电路202还用于接收输入电压,并按照电压控制信号的指示调整导通开关的导通时长,以调整输入电压施加于电感的时长。
进一步地,参见图9,该转换电路200还包括第一分压电阻203,第一分压电阻203的电压输入端与波形发生电路202的输出端连接,第一分压电阻203的电压输出端与运放电路201的反向输入端连接。
运放电路201,具体用于根据基准电压和第一分压电阻203输出的电压之间的大小关系,输出电压控制信号。
以下,基于图9,对DCDC电路调试阶段的原理进行说明。
在DCDC电路设计的过程中,基准电压和输出电压线性相关,针对不同的应用场景,开发人员可能需要基准电压和输出电压之间呈现不同的倍数关系。
例如,基于应用场景,期望输出电压Vout为基准电压Vref的5倍,即Vout与Vref之间呈现5倍的关系。
在测试过程中,通过运放电路201比较基准电压Vref和输出电压Vout,可以理解的是,在转换电路200不包括第一分压电阻203的情况下,运放电路201直接比较基准电压Vref和输出电压Vout的倍数关系,在转换电路200包括第一分压电阻203的情况下,运放电路201通过比较基准电压和第一分压电阻203输出的电压之间的大小关系,来确定基准电压Vref和输出电压Vout的倍数关系是否满足设计要求。
承接上述举例,若运放电路201通过比较确定基准电压Vref和输出电压Vout的倍数关系不满足设计要求,即满足输出电压Vout不是基准电压Vref的5倍,则输出电压控制信号,指示波形发生电路202调整整导通开关的导通时长。
请结合图1,导通开关可以是指MOS管T1,导通开关的导通时长越长,输入电压Vin加在电感L1上的时间就越长,输入电压Vin对输出电压Vout的影响就越大,从而可以增大输出电压Vout;相反,导通开关的导通时长越短,输入电压Vin加在电感L1上的时间就越短,输入电压Vin对输出电压Vout的影响就越小,从而可以减小输出电压Vout。
因此,若运放电路201通过比较确定基准电压Vref和输出电压Vout的倍数关系不满足设计要求,且输出电压Vout需要增大,则电压控制信号用于指示波形发生电路202延长导通开关的导通时长;若运放电路201通过比较确定基准电压Vref和输出电压Vout的倍数关系不满足设计要求,且输出电压Vout需要减小,则电压控制信号用于指示波形发生电路202缩短导通开关的导通时长。
而若运放电路201通过比较确定基准电压Vref和输出电压Vout的倍数关系满足设计要求,则电压控制信号用于指示波形发生电路202保持当前的导通开关的导通时长,从而使得DCDC电路在设计阶段可以符合设计要求,以灵活应用于各种场景。
在一个实施例中,基于图2所示的实施例,参见图10,本申请实施例DCDC电路还可以包括控制电路400,反馈电路100包括第一反馈电路101和第二反馈电路102,控制电路400与第一反馈电路101和第二反馈电路102均连接。
控制电路400,用于根据预设的导通条件,控制第一反馈电路101与转换电路200导通,或者,控制第二反馈电路102与转换电路200导通。
其中,第一反馈电路101和第二反馈电路102输出的基准电压的电压波形变化规律不同,例如,第一反馈电路101为图7所示的反馈电路100,第二反馈电路102为图8所示的反馈电路100,分别用于实现不同的效果。
这样,在实际应用的过程中,根据当前应用场景的不同,控制电路400可以选择不同的反馈电路100与转换电路200导通,以使当前应用场景与反馈电路100匹配。该预设的导通条件可以是接收到用户针对使用场景的选择指令,控制电路400则选择与该选择指令匹配的第一反馈电路101或者第二反馈电路102与转换电路200导通。
可以理解的是,第一反馈电路101和第二反馈电路102的数量均可以是多个,以实现多个反馈电路100匹配多个使用场景的灵活切换,提升DCDC电路的应用灵活性。
在一个实施例中,提供一种电源适配器,该电源适配器包括如上述任一实施例所述的DCDC电路。
关于电源适配器的具体限定和有益效果可以参见上述实施例,在此不再赘述。
在一个实施例中,参见图11,提供一种电压转换方法,该电压转换方法用于如上述任一实施例所述的DCDC电路中,该方法包括如下步骤:
步骤100,接收前级电路输入的输入电压,并根据输入电压输出基准电压。
步骤200,根据基准电压进行电压转换处理,得到输出电压。
关于电压转换方法的具体限定和有益效果可以参见上述DCDC电路的实施例,在此不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例 中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种DCDC电路,其中,包括反馈电路和转换电路;
    所述反馈电路,用于接收前级电路输入的输入电压,并根据所述输入电压输出基准电压;
    所述转换电路,用于根据所述基准电压进行电压转换处理,得到输出电压。
  2. 根据权利要求1所述的DCDC电路,其中,所述转换电路包括运放电路和波形发生电路,所述反馈电路的输出端与所述运放电路的正向输入端连接,所述运放电路的输出端与所述波形发生电路的输入端连接;
    所述运放电路,用于对所述反馈电路输出的所述基准电压进行放大,得到放大电压;
    所述波形发生电路,用于根据所述放大电压输出所述输出电压。
  3. 根据权利要求2所述的DCDC电路,其中,所述波形发生电路的输出端与所述运放电路的反向输入端连接;
    所述运放电路,还用于根据所述基准电压和所述波形发生电路输出的所述输出电压,输出电压控制信号;
    所述波形发生电路包括导通开关和电感,所述波形发生电路还用于接收所述输入电压,并按照所述电压控制信号的指示调整所述导通开关的导通时长,以调整所述输入电压施加于所述电感的时长。
  4. 根据权利要求3所述的DCDC电路,其中,所述转换电路还包括第一分压电阻,所述第一分压电阻的电压输入端与所述波形发生电路的输出端连接,所述第一分压电阻的电压输出端与所述运放电路的反向输入端连接;
    所述运放电路,具体用于根据所述基准电压和所述第一分压电阻输出的电压之间的大小关系,输出所述电压控制信号。
  5. 根据权利要求1所述的DCDC电路,其中,所述转换电路的输出端与负载连接;
    其中,所述负载为充电类型的负载或者电阻式负载。
  6. 根据权利要求1所述的DCDC电路,其中,所述DCDC电路还包括控制电路,所述反馈电路包括第一反馈电路和第二反馈电路,所述控制电路与所述第一反馈电路和所述第二反馈电路均连接,所述第一反馈电路和所述第二反馈电路输出的基准电压的电压波形 变化规律不同;
    所述控制电路,用于根据预设的导通条件,控制所述第一反馈电路与所述转换电路导通,或者,控制所述第二反馈电路与所述转换电路导通。
  7. 根据权利要求1所述的DCDC电路,其中,所述反馈电路包括同相放大电路或反相放大电路。
  8. 根据权利要求1所述的DCDC电路,其中,所述基准电压的电压波形变化规律与所述输入电压的电压波形变化规律相同或相反。
  9. 根据权利要求8所述的DCDC电路,其中,所述基准电压随着所述输入电压的增大而增大且所述基准电压和所述输入电压的相位相同。
  10. 根据权利要求8所述的DCDC电路,其中,所述基准电压随着所述输入电压的增大而增大且所述基准电压和所述输入电压的相位相反。
  11. 一种电源适配器,其中,包括DCDC电路,所述DCDC电路包括反馈电路和转换电路;
    所述反馈电路,用于接收前级电路输入的输入电压,并根据所述输入电压输出基准电压;
    所述转换电路,用于根据所述基准电压进行电压转换处理,得到输出电压。
  12. 根据权利要求11所述的电源适配器,其中,所述转换电路包括运放电路和波形发生电路,所述反馈电路的输出端与所述运放电路的正向输入端连接,所述运放电路的输出端与所述波形发生电路的输入端连接;
    所述运放电路,用于对所述反馈电路输出的所述基准电压进行放大,得到放大电压;
    所述波形发生电路,用于根据所述放大电压输出所述输出电压。
  13. 根据权利要求12所述的电源适配器,其中,所述所述波形发生电路的输出端与所述运放电路的反向输入端连接;
    所述运放电路,还用于根据所述基准电压和所述波形发生电路输出的所述输出电压,输出电压控制信号;
    所述波形发生电路包括导通开关和电感,所述波形发生电路还用于接收所述输入电压,并按照所述电压控制信号的指示调整所述导通开关的导通时长,以调整所述输入电压 施加于所述电感的时长。
  14. 根据权利要求13所述的电源适配器,其中,所述转换电路还包括第一分压电阻,所述第一分压电阻的电压输入端与所述波形发生电路的输出端连接,所述第一分压电阻的电压输出端与所述运放电路的反向输入端连接;
    所述运放电路,具体用于根据所述基准电压和所述第一分压电阻输出的电压之间的大小关系,输出所述电压控制信号。
  15. 根据权利要求11所述的电源适配器,其中,所述转换电路的输出端与负载连接;
    其中,所述负载为充电类型的负载或者电阻式负载。
  16. 根据权利要求11所述的电源适配器,其中,所述DCDC电路还包括控制电路,所述反馈电路包括第一反馈电路和第二反馈电路,所述控制电路与所述第一反馈电路和所述第二反馈电路均连接,所述第一反馈电路和所述第二反馈电路输出的基准电压的电压波形变化规律不同;
    所述控制电路,用于根据预设的导通条件,控制所述第一反馈电路与所述转换电路导通,或者,控制所述第二反馈电路与所述转换电路导通。
  17. 根据权利要求11所述的电源适配器,其中,所述反馈电路包括同相放大电路或反相放大电路。
  18. 根据权利要求11所述的电源适配器,其中,所述基准电压的电压波形变化规律与所述输入电压的电压波形变化规律相同或相反。
  19. 根据权利要求18所述的电源适配器,其中,所述基准电压随着所述输入电压的增大而增大且所述基准电压和所述输入电压的相位相同,或者,所述基准电压随着所述输入电压的增大而增大且所述基准电压和所述输入电压的相位相反。
  20. 一种电压转换方法,其中,用于如权利要求1-8任一项所述的DCDC电路中,所述方法包括:
    接收前级电路输入的输入电压,并根据所述输入电压输出基准电压;
    根据所述基准电压进行电压转换处理,得到输出电压。
PCT/CN2022/142601 2022-04-01 2022-12-28 Dcdc电路、电源适配器和电压转换方法 WO2023185154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210338596.0A CN116937984A (zh) 2022-04-01 2022-04-01 Dcdc电路、电源适配器和电压转换方法
CN202210338596.0 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023185154A1 true WO2023185154A1 (zh) 2023-10-05

Family

ID=88198995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142601 WO2023185154A1 (zh) 2022-04-01 2022-12-28 Dcdc电路、电源适配器和电压转换方法

Country Status (2)

Country Link
CN (1) CN116937984A (zh)
WO (1) WO2023185154A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726845A (en) * 1996-02-28 1998-03-10 Astec International Limited Short circuit protection for power factor correction circuit
US20050269999A1 (en) * 2004-06-04 2005-12-08 Chi Fai Liu Real-time voltage detection and protection circuit for PFC boost converters
CN104967323A (zh) * 2015-06-12 2015-10-07 南京理工大学 低输出电压纹波断续模式反激功率因数校正变换器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726845A (en) * 1996-02-28 1998-03-10 Astec International Limited Short circuit protection for power factor correction circuit
US20050269999A1 (en) * 2004-06-04 2005-12-08 Chi Fai Liu Real-time voltage detection and protection circuit for PFC boost converters
CN104967323A (zh) * 2015-06-12 2015-10-07 南京理工大学 低输出电压纹波断续模式反激功率因数校正变换器

Also Published As

Publication number Publication date
CN116937984A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US9490644B2 (en) Reconfigurable compensator with large-signal stabilizing network
JP5901635B2 (ja) ブリッジトポロジーを用いるスイッチドモード電力コンバータ及びそのスイッチング方法
CN103501032B (zh) 电池放电电路及放电方法
CN102624042A (zh) 电池充电器数字控制电路和方法
CN104935199A (zh) 逆变装置
JP2013537032A (ja) ブリッジトポロジーを用いるスイッチドモード電力コンバータにおけるリップル電流の低減
CN101651416B (zh) 功率调节器及其输入电流平均值限制方法
CN111435819A (zh) 降压型迟滞式开关变换器及其控制方法
CN106817024B (zh) 提升瞬态响应性能的降压型电源转换器
US8269461B2 (en) Hybrid battery charger and control circuit and method thereof
CN103647448B (zh) 集成降压-反激式高功率因数恒流电路及装置
Liu et al. High‐gain boost dc‐dc converters: A‐LDC converter and S‐LDC converter
CN109412397A (zh) 一种脉冲宽度调制电流模式开关电源二次斜波补偿电路
US20050225304A1 (en) Methods and systems for controlling an AC adapter and battery charger in a closed loop configuration
WO2023185154A1 (zh) Dcdc电路、电源适配器和电压转换方法
CN106571742A (zh) 一种升压转换器
CN115242089B (zh) 开关变换器及其控制电路和控制方法
CN114337264B (zh) 升压变换电路、装置及方法
CN110311550B (zh) 一种两模块isop直直变换器均压控制方法
CN114499183A (zh) 一种宽范围输入非隔离三端口dc-dc变换器
CN202978686U (zh) Buck变换器电路
Yu et al. Modeling, analysis and design of a dual-input ZVS DC/DC converter
CN115833577B (zh) 电压转换电路及电子设备
Yu et al. Design of an AC-DC and DC-DC interleaved PWM controller for switching power supply
CN216531076U (zh) 一种单开关管高增益dc/dc变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934966

Country of ref document: EP

Kind code of ref document: A1