WO2022118764A1 - 潜熱蓄熱材、保冷具、物流梱包容器及び食品保冷用具 - Google Patents

潜熱蓄熱材、保冷具、物流梱包容器及び食品保冷用具 Download PDF

Info

Publication number
WO2022118764A1
WO2022118764A1 PCT/JP2021/043511 JP2021043511W WO2022118764A1 WO 2022118764 A1 WO2022118764 A1 WO 2022118764A1 JP 2021043511 W JP2021043511 W JP 2021043511W WO 2022118764 A1 WO2022118764 A1 WO 2022118764A1
Authority
WO
WIPO (PCT)
Prior art keywords
latent heat
heat storage
storage material
cold
weight
Prior art date
Application number
PCT/JP2021/043511
Other languages
English (en)
French (fr)
Inventor
恭平 勢造
克也 城戸
有佑 池田
勝一 香村
夕香 内海
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2022566895A priority Critical patent/JPWO2022118764A1/ja
Publication of WO2022118764A1 publication Critical patent/WO2022118764A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies

Definitions

  • the frozen food When frozen food is transported, in many cases, the frozen food is packed in a distribution container, and the distribution container in which the frozen food is packed is transported.
  • the frozen food In order to maintain the quality of frozen food when it is transported, the frozen food must be kept cold at least below freezing point, depending on the type of frozen food, -10 ° C or less, -15 ° C or less, respectively. It is desirable to maintain -18 ° C or lower. However, until now, dry ice has been used for the transportation of frozen foods regardless of the required temperature.
  • the ice pack described in Patent Document 1 contains a water-soluble compound having a freezing point depression action and water (paragraph 0006).
  • a water-soluble compound having a freezing point depression action an inorganic salt of a monovalent cation and urea are used in combination (paragraph 0042).
  • the latent heat storage material must be solidified before use.
  • the latent heat storage material having a melting point of around -25 ° C which has been mainly used as a latent heat storage material in place of dry ice, requires a freezer having a set temperature of ⁇ 35 ° C. or lower in order to solidify. In general, the lower the set temperature of the freezer, the more power is consumed. Since a large amount of latent heat storage material is required in logistics, the energy consumption required for solidification becomes enormous. However, as mentioned above, there are stages in the temperature required by frozen foods, and not all foods require a latent heat storage material having a melting point near -25 ° C.
  • the set temperature required for the freezer can be raised. Power consumption can be suppressed.
  • the latent heat storage material having a melting point of -25 ° C or higher and -20 ° C or lower often contains water as a main component, but the latent heat amount of the latent heat storage material is 333J, which is the latent heat amount at the time of melting ice.
  • a latent heat storage material containing sodium chloride and water and having a eutectic composition has a melting point of about -21 ° C., but the latent heat of the latent heat storage material is as low as about 210 J / g. Therefore, a latent heat storage material having a melting point of ⁇ 25 ° C. or higher and ⁇ 20 ° C. or lower generally has a short cooling time.
  • the melting point of the latent heat storage material is -25 ° C
  • the difference between the temperature of the environment around the latent heat storage material and the melting point of the latent heat storage material becomes large, and therefore, per unit time of the latent heat storage material.
  • the amount of heat absorbed by the latent heat storage material is increased, the consumption of the latent heat storage material is likely to progress, and the cold retention time of the latent heat storage material is further shortened.
  • This disclosure was made to solve the above problem. It is an object of the present disclosure to provide a latent heat storage material capable of keeping a cold object such as a frozen food cold at a temperature of -18 ° C. or lower for a long time and reducing power consumption required at the time of solidification.
  • the latent heat storage material of the first aspect of the present disclosure contains 6 to 29 parts by weight of ammonium chloride, 6 to 29 parts by weight of urea, and 42 to 88 parts by weight of water, and contains ammonium chloride, urea and water.
  • the total is 100 parts by weight, and has a main melting point in the range of ⁇ 18 ° C. to -21 ° C.
  • the second form of the cold insulation device of the present disclosure includes the latent heat storage material of the first aspect of the present disclosure and the main body of the cold insulation device for containing the latent heat storage material in a liquid-tight manner.
  • the distribution packaging container and the food cold storage device of the third form of the present disclosure include the cold storage device of the second form of the present disclosure.
  • the fourth form of the cold insulation device of the present disclosure includes the latent heat storage material of the first aspect of the present disclosure, and a cold insulation device main body provided with a plurality of accommodating portions and a plurality of joint portions.
  • the distribution packing container and the food cold storage device of the fifth form of the present disclosure include the cold storage device of the fourth form of the present disclosure.
  • the sixth embodiment of the cold insulation device of the present disclosure includes the latent heat storage material of the first aspect of the present disclosure, and a cold insulation device main body provided with a plurality of accommodating portions and a plurality of joint portions.
  • the distribution packing container and the food cooling device of the seventh aspect of the present disclosure include the cooling device of the sixth form of the present disclosure.
  • a latent heat storage material capable of keeping a cold object such as a frozen food cold at a temperature of -18 ° C. or lower for a long time and reducing power consumption required for solidification.
  • First Embodiment 1.1 Composition of the latent heat storage material
  • the latent heat storage material of the first embodiment is brought into close contact with or in contact with the object to be cooled in a solidified state, so that the material to be cooled is kept at a temperature near the main melting point. Keep cold.
  • the latent heat storage material keeps the object to be cooled at a temperature near the main melting point of the latent heat storage material until it is completely melted.
  • the latent heat storage material of the first embodiment contains 6 to 29 parts by weight of ammonium chloride, 6 to 29 parts by weight of urea, and 42 to 88 parts by weight of water. Desirably, the latent heat storage material contains 14 to 16 parts by weight of ammonium chloride, 15 to 18 parts by weight of urea, and 66 to 71 parts by weight of water. The total of ammonium chloride, urea and water is 100 parts by weight.
  • the latent heat storage material of the first embodiment has a composition close to the eutectic composition by having a composition within the above-mentioned range. Therefore, the latent heat storage material is composed of a mixed aqueous solution of ammonium chloride and urea in the liquid state, but is mainly composed of eutectic crystals of ammonium chloride, urea and ice in the solid state. Therefore, when the latent heat storage material is solidified, eutectic crystals of ammonium chloride, urea, and ice are mainly formed. When the latent heat storage material has a composition within the above-mentioned desirable range, almost no coagulation component other than the eutectic is formed.
  • the eutectic of ammonium chloride and ice has a eutectic point at about -15 ° C. Also, the eutectic of urea and ice has a eutectic point at about -12 ° C. On the other hand, it was found that the eutectic of ammonium chloride, urea and ice has a eutectic point at about ⁇ 20 ° C., which is lower than any of the above eutectic.
  • ammonium chloride which is an ionic substance, dissociates into cations (ammonium ions) and anions (chloride ions) when dissolved in water, so both cations and anions are different from ammonium chloride.
  • the latent heat storage material has a single eutectic point at ⁇ 20 ° C. by forming only the eutectic of ammonium chloride, urea and ice. Therefore, the latent heat storage material of the first embodiment has a main melting point close to ⁇ 20 ° C.
  • the latent heat storage material can keep the object to be cooled at a temperature of ⁇ 18 ° C. or lower.
  • the latent heat storage material of the first embodiment has a main melting point of -18 ° C to -21 ° C. Therefore, the difference between the temperature of the environment around the latent heat storage material and the main melting point of the latent heat storage material is smaller than that of the heat storage material having a melting point of ⁇ 25 ° C. Therefore, the amount of heat absorbed per unit time of the latent heat storage material when the latent heat storage material melts is small. Further, the latent heat storage material has a large latent heat amount because it has a composition of eutectic composed of ammonium chloride, urea and ice, which is close to the eutectic composition. From these facts, the latent heat storage material has a long cold insulation time.
  • the latent heat storage material has a composition outside the above range, the coagulation components other than the eutectic of ammonium chloride, urea and ice, which are formed when the latent heat storage material is solidified, increase. Therefore, it becomes difficult to obtain a latent heat storage material having a main melting point of -18 ° C to -21 ° C and a large latent heat amount.
  • the amount of ammonium chloride contained in the latent heat storage material is less than 6 parts by weight and the amount of urea contained in the latent heat storage material is less than 6 parts by weight, only a latent heat storage material having a latent heat amount of less than half of the eutectic composition can be obtained. do not have.
  • the cold insulation time is significantly shortened.
  • the latent heat amount is small and the main melting point is lower than -21 ° C. Can only be obtained.
  • the main melting point is lower than -21 ° C
  • the temperature of the environment around the latent heat storage material and the main melting point of the latent heat storage material are compared with the latent heat storage material having the main melting point in the range of -18 ° C to -21 ° C. Since the difference is large, the amount of heat absorption per unit time is large.
  • the main melting point is The latent heat storage material below -21 ° C has a shorter cooling time.
  • the latent heat storage material of the first embodiment preferably contains a supercooling inhibitor.
  • the supercooling inhibitor is dissolved or dispersed in water.
  • the supercooling inhibitor it is possible to suppress the phenomenon that the latent heat storage material is supercooled and the solidification start temperature is lowered when the latent heat storage material is solidified.
  • the solubility of the supercooling inhibitor decreases and saturates during the temperature decrease when the latent heat storage material is solidified, and the solid of the supercooling inhibitor precipitates. Shows the inhibitory effect of. Therefore, for example, the latent heat storage material can be solidified in a widely used freezer at -25 ° C.
  • the supercooling inhibitor preferably contains at least one selected from the group consisting of ammonium alum aluminum dodecahydrate, calcium carbonate, aluminum oxide and activated carbon.
  • the weight of the supercooling inhibitor is preferably 0.1 part by weight to 10 parts by weight with respect to 100 parts by weight of the total of ammonium chloride, urea and water.
  • the latent heat storage material of the first embodiment may contain components other than the above-mentioned components.
  • Ingredients other than the above-mentioned components include, for example, at least one selected from the group consisting of thickeners, antibacterial agents and pigments.
  • FIG. 2 is a diagram illustrating a method for measuring the melting start temperature and the latent heat amount of the latent heat storage material of the first embodiment.
  • the DSC curve is measured by differential scanning calorimetry (DSC) for the latent heat storage material. 10 is acquired.
  • T temperature
  • dH / dT melting enthalpy
  • the temperature of the intersection 16 between the straight line 13 linearly extrapolated by the low temperature side 12 of the melting peak 11 included in the DSC curve 10 and the straight line 15 linearly extrapolated by the baseline 14 on the low temperature side included in the DSC curve 10 melts. It is the starting temperature.
  • the value obtained by dividing the area of the latent heat region 17 surrounded by the melting peak 11 and the straight line 15 by the weight of the latent heat storage material is defined as the latent heat amount.
  • thermocouple was placed in 40 g of the latent heat storage material according to the examples and comparative examples, and the temperature at the time of melting of each latent heat storage material was measured. Specifically, after solidifying each latent heat storage material at -35 ° C, the temperature is raised at a rate of 0.25 ° C / min, and the change over time in the temperature of each latent heat storage material is measured at 1-minute intervals using a thermocouple. did.
  • the main melting point and cold insulation time were obtained from the measurement results of the above melting characteristics.
  • FIG. 3 is a diagram illustrating a method of determining the main melting point and cold insulation time of the latent heat storage material of the first embodiment.
  • the rate of the temperature change of the latent heat storage material between the measurement point immediately before the measurement point and the measurement point is calculated, the average value is the temperature rise rate of the environmental temperature 0.
  • the longest continuous section is the main melting region.
  • the lowest temperature in the main melting region is the temperature of the latent heat storage material at the first measurement point in the main melting region.
  • the maximum temperature of the main melting region is the temperature of the latent heat storage material at the last measurement point of the main melting region.
  • the intermediate value between the lowest temperature in the main melting region and the highest temperature in the main melting region is the main melting point.
  • the cold insulation time is a time during which the temperature of the latent heat storage material is in the range of ⁇ 18 ° C. to -21 ° C., and is a time during which the latent heat storage material can be used to keep cold in the temperature range.
  • FIG. 4 The results of the melting characteristics of the latent heat storage materials of Examples 1 and 1 are shown in FIG. 4, the results of the melting characteristics of the latent heat storage materials of Examples 1, 2 and 3 are shown in FIG. 5, and the results of Examples 1 and Comparative Example are shown in FIG.
  • the results of the melting characteristics of the latent heat storage materials of 2 and 3 are shown in FIG. 6, and the results of the melting characteristics of the latent heat storage materials of Examples 4 and 5 and Comparative Examples 2 and 3 are shown in FIG.
  • the horizontal axis of FIGS. 4 to 7 shows the elapsed time from the start of temperature rise from ⁇ 35 ° C.
  • the latent heat storage material of Example 1 is all melted after about 2.9 hours and the temperature rises sharply, whereas the latent heat storage material of Comparative Example 1 is all after about 2.6 hours. It can be seen that it melts and the temperature rises sharply, and it melts in a short time.
  • the cold insulation time is about 1.9 hours in Example 1 and about 1.6 hours in Comparative Example 1. That is, the latent heat storage material of Example 1 contains 6 to 29 parts by weight of ammonium chloride, 6 to 29 parts by weight of urea, and 42 to 88 parts by weight of water, and is a total of ammonium chloride, urea and water. By setting the composition to 100 parts by weight, it is possible to keep cold for a long time as compared with the latent heat storage material of Comparative Example 1.
  • the latent heat storage materials of Examples 2 and 3 had a long cold insulation time equivalent to that of the latent heat storage material of Example 1. That is, in the case of a latent heat storage material consisting of 14 to 16 parts by weight of ammonium chloride, 15 to 18 parts by weight of urea, and 66 to 71 parts by weight of water, which is a desirable composition range, almost only eutectic crystals are formed at the time of solidification. Since a large amount of latent heat is obtained, it can be kept cold for a long time.
  • the latent heat storage material of Comparative Example 2 maintained a cold insulation time of less than half that of the latent heat storage material of Example 1. Further, the latent heat storage material of Comparative Example 3 had a main melting point lower than ⁇ 18 ° C. to -21 ° C., and the cold insulation time was short. That is, if the composition is out of the above range, the latent heat amount is significantly reduced, or the latent heat amount is small, and the main melting point is lower than -18 ° C to -21 ° C, so that the cold insulation time is significantly shortened and -18. It becomes difficult to keep cold below °C.
  • the latent heat storage material of Comparative Example 2 has an extremely short cold insulation time as compared with the latent heat storage material of Example 4. It is considered that this is because the concentration of ammonium chloride becomes extremely low, the amount of eutectic formed from ammonium chloride and ice decreases, and the latent heat value becomes low.
  • the latent heat storage material of Comparative Example 3 has a shorter cold insulation time than the latent heat storage material of Example 5. It is considered that this is because too much urea inhibits the formation of eutectic with ammonium chloride and ice, and as shown in FIG. 1, the main melting point is lowered and the latent heat value is lowered.
  • the fact that the main melting point is lower means that a melting component at a lower temperature than the temperature to be kept cold is generated during solidification, but the melting component at a lower temperature has a larger temperature difference from the ambient temperature, so the unit time The amount of heat absorbed per hit is large, the melting is fast, and as a result, the cold insulation time is shortened. Therefore, the main melting point of the latent heat storage material is preferably ⁇ 18 ° C. to -21 ° C.
  • each latent heat storage material was placed in 40 g of each latent heat storage material, and the change over time in the temperature of each latent heat storage material during solidification was measured. Specifically, each latent heat storage material was placed in a cold storage having an environmental temperature of -25 ° C, and the environmental temperature was maintained at -25 ° C, so that the change over time in the temperature of the latent heat storage material during solidification was measured.
  • the latent heat storage material of Example 1 after the temperature dropped below -23 ° C, the supercooling disappeared and solidification started, and heat generation derived from solidification was observed.
  • the latent heat storage materials of Examples 6 to 9 to which the supercooling inhibitor was added started solidification promptly with almost no supercooling, and heat generation derived from solidification was observed. That is, by adding the supercooling inhibitor, the latent heat storage material can be quickly solidified even if it is cooled at ⁇ 25 ° C., which is in the vicinity of ⁇ 18 ° C. to -21 ° C., which is the main melting point range.
  • the latent heat storage materials of Examples 6 to 9 to which the supercooling inhibitor is added can impart cold insulation performance with energy saving to the latent heat storage material of Example 1 to which the supercooling inhibitor is not added.
  • FIG. 9 is a vertical cross-sectional view schematically showing the cold insulation tool 2 of the second embodiment.
  • FIG. 10 is a cross-sectional view schematically illustrating the cold insulation tool 2 of the second embodiment.
  • the cold insulation tool 2 keeps the object to be cooled cold.
  • the cold food is, for example, a frozen food that is kept cold at a temperature of ⁇ 18 ° C. or lower.
  • the cold insulator 2 is a so-called blow container type cold insulator.
  • the cold insulation tool 2 includes a latent heat storage material 201 and a cold insulation tool main body 202.
  • the latent heat storage material 201 is the latent heat storage material of the first embodiment.
  • the cooler main body 202 houses the latent heat storage material 201 in a liquid-tight manner.
  • the latent heat storage material 201 is housed in the internal space 201c formed in the cooler main body 202.
  • the cooler main body 202 includes an accommodating member 211, an injection port 212, and a sealing member 213.
  • the accommodating member 211 has a hollow structure. As a result, the accommodation member 211 is formed with an internal space 201c in which the latent heat storage material 201 is accommodated.
  • the accommodating member 211 is preferably made of a material having high rigidity. As a result, it is possible to prevent the shape of the accommodating member 211 from changing when the latent heat storage material 201 changes from a solid to a liquid. As a result, the cold insulation tool 2 has a feature that the shape change when the latent heat storage material 201 changes from a solid to a liquid is small.
  • the material constituting the accommodating member 211 includes, for example, at least one selected from the group consisting of a resin material, a metal material, and an inorganic material.
  • the resin material contains at least one selected from the group consisting of polyethylene, polypropylene, polyester, polyurethane, polycarbonate, polyvinyl chloride and polyamide.
  • the metallic material comprises at least one selected from the group consisting of aluminum, stainless steel, copper and silver.
  • Inorganic materials include at least one selected from the group consisting of glass, ceramics and ceramics.
  • the material constituting the accommodating member 211 is preferably a resin material. This makes it possible to improve the ease and durability of the accommodating member 211.
  • the injection port 212 is coupled to the upper part of the accommodating member 211.
  • the sealing member 213 seals the injection port 212.
  • the cold insulation tool 2 is brought close to or in contact with the object to be cooled. As a result, the object to be cooled can be kept cold at a temperature near the main melting point of the latent heat storage material 201.
  • FIGS. 11A to 11C are diagrams schematically showing a manufacturing device 221 used for manufacturing the cold storage device 2 of the second embodiment.
  • the latent heat storage material 201 which is a liquid, is injected into the accommodating member 211 by the cylinder pump 231 via the injection port 212. Cylinder.
  • the latent heat storage material 201 may be injected into the accommodating member 211 by another method.
  • the latent heat storage material 201 may be injected into the accommodating member 211 by a mono pump.
  • the tip of the filling hose 241 of the cylinder pump 231 is connected to the injection port 212 as shown in FIG. 11A. Further, the tip of the suction hose 242 of the cylinder pump 231 is put into the latent heat storage material 201.
  • the piston 243 of the cylinder pump 231 is lowered.
  • the latent heat storage material 201 is sucked up.
  • the latent heat storage material 201 sucked up is sucked into the inside of the cylinder 244 of the cylinder pump 231 via the suction hose 242.
  • the piston 243 of the cylinder pump 231 is raised.
  • the latent heat storage material 201 is discharged from the inside of the cylinder 244 of the cylinder pump 231.
  • the discharged latent heat storage material 201 is injected into the accommodating member 211 via the filling hose 241.
  • the injection amount of the latent heat storage material 201 is not limited, but is preferably 70% or more and 90% or less of the internal volume of the accommodating member 211.
  • the injection port 212 is sealed by the sealing member 213.
  • the sealing of the injection port 212 by the sealing member 213 is performed, for example, by welding the sealing member 213 to the injection port 212.
  • the injection port 212 is sealed by the sealing member 213.
  • Welding of the sealing member 213 to the injection port 212 is performed by ultrasonic welding, heat welding, or the like.
  • the sealing of the injection port 212 by the sealing member 213 may be performed by screwing the sealing member 213 into the injection port 212 as a screw plug.
  • the sealing member 213 can be made into a stopper that can be freely opened and closed by hand.
  • the cold insulator 2 is allowed to stand in an environment having a temperature equal to or lower than the solidification temperature of the latent heat storage material 201. As a result, the latent heat storage material 201 solidifies.
  • the latent heat storage material 201 is solidified before the cold storage tool 2 is housed in the distribution packing container.
  • the temperature inside the distribution packing container can be set to a temperature equal to or lower than the solidification start temperature of the latent heat storage material 201 at the first stage of the distribution process, the latent heat storage is performed after the cooling device 2 is housed in the distribution packaging container.
  • the material 201 may be solidified. As a result, the use of the cold insulation tool 2 can be started in a state where the latent heat storage material 201 is a liquid.
  • FIG. 12 is a cross-sectional view schematically illustrating the distribution packing container 3 of the third embodiment.
  • the distribution packing container 3 keeps the object to be cooled X cold.
  • the distribution packing container 3 is used for transporting the object to be cooled X in a cold state.
  • the object to be cooled X is, for example, a frozen food that is kept cold at a temperature of ⁇ 18 ° C. or lower.
  • the distribution packing container 3 is also a food cooling tool for keeping the frozen food cold.
  • the distribution packing container 3 includes the cold insulation tool 2 of the second embodiment and the distribution packing container main body 301.
  • the distribution packing container main body 301 accommodates the cold insulation tool 2 and the object to be cooled X.
  • the cold insulation tool 2 sandwiches the object to be cooled X from above and below. As a result, at least a part of the cold insulation tool 2 comes into contact with the cold insulation object X. As a result, heat is conducted from the object to be cooled X to the item 2 to be cooled via the contact surface 2a between the object X to be cooled and the tool 2. As a result, the object to be cooled X can be effectively cooled. Further, it is possible to prevent the heat flowing from the outside of the distribution packing container 3 into the inside of the distribution packing container 3 from affecting the object to be cooled X. Therefore, the cold insulation tool 2 can keep the object to be cooled X cold at a temperature near the main melting point of the latent heat storage material 201.
  • the distribution packing container 3 is suitably used for cold storage and transportation of frozen foods that are kept cold at a temperature of ⁇ 18 ° C. or lower.
  • the distribution packing container 3 may be provided with a heat insulating member arranged above the cold insulation device 2. Thereby, the cold insulation performance of the distribution packing container 3 can be improved.
  • the shape, number, posture, etc. of the cold insulation tool 2 are changed according to the shape, properties, etc. of the object to be cooled.
  • FIG. 13 is a perspective view schematically illustrating the cold insulation 4 in the fourth embodiment.
  • FIG. 14 is a cross-sectional view schematically illustrating the cold insulation tool 4 of the fourth embodiment.
  • FIG. 14 illustrates a cross section at the position of the cutting line XI-XI drawn in FIG.
  • the cold storage device 4 is a so-called film pack type cold storage device.
  • the cold insulation tool 4 includes a latent heat storage material 401 and a cold insulation tool main body 402.
  • the latent heat storage material 401 is the latent heat storage material of the first embodiment.
  • the cooler main body 402 includes a plurality of accommodating portions 411 and a plurality of joint portions 412.
  • Each of the plurality of accommodating portions 411 houses the latent heat storage material 401 in a liquid-tight manner.
  • the latent heat storage material 401 is accommodated in the internal space 411c formed in each of the plurality of accommodating portions 411.
  • Each of the plurality of accommodating portions 411 has a strip-shaped planar shape and an elliptical cross-sectional shape.
  • Each of the plurality of accommodating portions 411 may have a planar shape other than the strip-shaped planar shape, or may have a cross-sectional shape other than the elliptical sectional shape.
  • the cooler main body 402 is provided with three accommodating portions 411.
  • the number of accommodating portions 411 provided in the cooler main body 402 may be increased or decreased.
  • the number of accommodating portions 411 provided in the cold insulation device main body 402 is increased or decreased according to the size of the object to be cooled. Thereby, the size of the cold insulation tool 4 can be changed according to the size of the object to be cooled.
  • the latent heat storage material 401 may be one type of latent heat storage material or two or more types of latent heat storage materials having different melting points from each other.
  • two or more kinds of latent heat storage materials having different melting points are housed in a plurality of accommodating portions 411, a plurality of objects to be cooled that should be kept cold at different cold insulation temperatures can be simultaneously cooled.
  • Each of the plurality of joint portions 412 joins two adjacent accommodating portions 411 included in the plurality of accommodating portions 411.
  • Each of the plurality of joint portions 412 has a joint function that makes the two accommodating portions 411 movable. Since the cold insulation tool 4 includes the plurality of joint portions 412, the cold insulation tool 4 can be provided with a shape that conforms to the object to be cooled even when the latent heat storage material 401 is solid. Thereby, even when the object to be cooled has a complicated shape, the cold insulation tool 4 can be brought into contact with the object to be cooled over a wide range. Thereby, even when the object to be cooled has a complicated shape, the object to be cooled can be effectively cooled.
  • the cooler main body 402 includes two film members 421.
  • the two film members 421 are joined to each other at the plurality of joint portions 431 to form a plurality of joint portions 412, and are not joined to each other at the residual portion to form a plurality of accommodating portions 411.
  • the film member 421 is made of a material capable of suppressing leakage and volatilization of the latent heat storage material 401. Further, the film member 421 is made of a material that can be joined to each other. Further, the film member 421 is made of a flexible material capable of imparting a joint function to a plurality of joint portions 412.
  • the material constituting the film member 421 includes, for example, at least one selected from the group consisting of polyethylene, polypropylene, polyamide and polyester.
  • the material constituting the film member 421 may be one kind of material or a combination of two or more kinds of materials.
  • the film member 421 may be a single-layer film or a multilayer film.
  • the film member 421 is preferably a multilayer film including a low-density polyethylene resin layer and a polyamide resin layer.
  • the two film members 421 are stacked so that the two low-density polyethylene resin layers provided in the two film members 421 are in contact with each other. Further, the contact surfaces of the two low-density polyethylene resin layers are thermocompression bonded to each other. Thereby, a plurality of joint portions 412 can be formed.
  • the film member 421 may include a base material and a thin film arranged on the base material.
  • the material constituting the thin film contains, for example, at least one selected from the group consisting of aluminum and silicon dioxide. Thereby, the durability and the barrier property of the film member 421 can be improved.
  • the cold insulation tool 4 may be provided with a temperature indicator sticker attached to the film member 421 to indicate the temperature. This makes it possible to recognize the temperature of the cold insulator 4.
  • the cooler 4 may have a so-called pack-in-pack structure.
  • the cold storage device 4 When the cold storage device 4 has a pack-in-pack structure, the cold storage device 4 includes a film for wrapping the film member 421. Thereby, the physical strength, touch and heat insulating property of the cold insulation tool 4 can be improved.
  • the cold insulation tool 4 may be attached to a fixing jig for fixing the cold insulation tool 4 to the cold insulation object and fixed to the cold insulation object.
  • the fixing jig is, for example, a supporter, a towel, a bandage, or the like.
  • FIG. 15 is a diagram schematically showing a manufacturing apparatus 441 used for manufacturing the cooling device 4 of the fourth embodiment.
  • the manufacturing device 441 is a so-called vertical pillow type packaging machine that is also used for food packaging.
  • the latent heat storage material 401 stored in the constant temperature bath 451 is transported to the stirring tank 452.
  • both ends of the two unwound films 454 extending in the long axis direction are joined by the former portion 455.
  • both ends of the two combined films 454 are thermocompression bonded by the vertical sealing portion 456.
  • a tubular object is formed by the two films 454.
  • the two films 454 constituting the tubular object are thermocompression bonded along the crimping line extending in the minor axis direction of the two films 454 by the horizontal sealing portion 457.
  • the two films 454 constituting the tubular object are thermocompression-bonded again by the horizontal sealing portion 457 along the crimping line extending in the minor axis direction of the two films 454.
  • the accommodating portion 411 and the joint portion 412 are formed.
  • the latent heat storage material 401 is housed in the formed accommodating portion 411.
  • FIG. 16 is a cross-sectional view schematically illustrating the distribution packing container 5 of the fifth embodiment.
  • the distribution packing container 5 keeps the object to be cooled X cold.
  • the distribution packing container 5 is used for transporting the object to be cooled X in a cold state.
  • the object to be cooled X is, for example, a frozen food that is kept cold at a temperature of ⁇ 18 ° C. or lower.
  • the distribution packing container 5 is also a food cooling tool for keeping the frozen food cold.
  • the distribution packing container 5 includes the cold storage device 4 of the fourth embodiment and the distribution packing container main body 501.
  • the distribution packing container main body 501 accommodates the cold insulation tool 4 and the object to be cooled X.
  • the cold insulation tool 4 covers the object to be cooled X from above. As a result, at least a part of the cold insulation tool 4 comes into contact with the cold insulation object X. As a result, heat is conducted from the object to be cooled X to the item 4 via the contact surface 4a between the object X to be cooled and the tool 4. As a result, the object to be cooled X can be effectively cooled. Further, it is possible to prevent the heat flowing from the outside of the distribution packing container 5 into the inside of the distribution packing container 5 from affecting the object to be cooled X. Therefore, the cold insulation tool 4 can keep the object to be cooled X cold at a temperature near the main melting point of the latent heat storage material 401. Therefore, the cold insulator 4 is suitably used for cold insulation and transportation of frozen foods which are kept cold at a temperature of ⁇ 18 ° C. or lower.
  • the shape, number, posture, etc. of the cold insulation tool 4 are changed according to the shape, properties, etc. of the object to be cooled X.
  • FIG. 17 is a cross-sectional view schematically illustrating the distribution packing container 5A of the modification of the fifth embodiment.
  • the distribution packing container 5A is different from the distribution packing container 5 in that the cold insulation tool 2 of the second embodiment is provided in addition to the cold insulation tool 4 of the fourth embodiment.
  • the cold insulation tool 2 is arranged between the object to be cooled X and the bottom surface 510a of the distribution packing container main body 501. As a result, it is possible to prevent heat from flowing into the object to be cooled X via the bottom surface 510a of the distribution packing container main body 501.
  • the cold insulator 2 has a feature that the shape change when the latent heat storage material 201 changes from a solid to a liquid is small. Therefore, in the distribution packing container 5A, the object to be cooled X can be stably arranged on the cold insulation tool 2.
  • FIG. 18 is a plan view schematically showing the cooling tool 6 of the 6th embodiment.
  • FIG. 19 is a cross-sectional view schematically illustrating the cold insulation tool 6 of the sixth embodiment.
  • the cold storage device 6 is a so-called blister pack type cold storage device.
  • the cold insulation tool 6 includes a latent heat storage material 601 and a cold insulation tool main body 602.
  • the latent heat storage material 601 is the latent heat storage material of the first embodiment.
  • the cooler body 602 includes a plurality of accommodating portions 611 and a plurality of joint portions 612.
  • Each of the plurality of accommodating portions 611 accommodates the latent heat storage material 601 in a liquid-tight manner.
  • the latent heat storage material 601 is accommodated in the internal space 611c formed in each of the plurality of accommodating portions 611.
  • Each of the plurality of accommodating portions 611 has a strip-shaped planar shape and a trapezoidal cross-sectional shape.
  • Each of the plurality of accommodating portions 611 may have a planar shape other than the strip-shaped planar shape, or may have a cross-sectional shape other than the trapezoidal cross-sectional shape.
  • the cooler main body 602 is provided with six accommodating portions 611.
  • the number of accommodating portions 611 provided in the cooler main body 602 may be increased or decreased.
  • the number of accommodating portions 611 provided in the cold insulation device main body 602 is changed according to the size of the object to be cooled. Thereby, the size of the cold insulation tool 6 can be changed according to the size of the object to be cooled.
  • the latent heat storage material 601 may be one type of latent heat storage material, or may be two or more types of latent heat storage materials having different melting points from each other. When two or more kinds of latent heat storage materials having different melting points are housed in a plurality of accommodating portions 611, a plurality of objects to be cooled that should be kept cold at different cold insulation temperatures can be simultaneously cooled.
  • the contact surface 611a of the accommodating portion 611 may be a concave curved surface having a shape suitable for the convex curved surface of the object to be cooled.
  • the thickness of the accommodating portion 611 may be changed along the longitudinal direction of the accommodating portion 611.
  • Each of the plurality of joint portions 612 joins two adjacent accommodating portions 611 included in the plurality of accommodating portions 611.
  • Each of the plurality of joint portions 612 has a joint function that makes the two accommodating portions 611 movable.
  • the cooler main body 602 includes an accommodating member 621 and a sealing member 622.
  • the accommodating member 621 and the sealing member 622 are joined to each other at a plurality of joining portions 631 to form a plurality of joint portions 612, and are not joined to each other in the remaining portion to form a plurality of accommodating portions 611.
  • the accommodating member 621 includes a plurality of recesses 641.
  • the sealing member 622 has a flat plate shape.
  • the plurality of recesses 641 together with the sealing member 622 constitute a plurality of accommodating portions 611.
  • the accommodating member 621 is made of a material having a hardness capable of retaining the shape of the recess 641.
  • the accommodating member 621 and the sealing member 622 are made of a material capable of suppressing leakage and volatilization of the latent heat storage material 601. Further, the accommodating member 621 and the sealing member 622 are made of a material that can be joined to each other. Further, the accommodating member 621 and the sealing member 622 are made of a flexible material capable of imparting a joint function to a plurality of joint portions 612.
  • the material constituting the accommodating member 621 includes, for example, at least one selected from the group consisting of polyethylene, polypropylene, polyamide, polyester, polycarbonate and polyvinyl chloride.
  • the material constituting the accommodating member 621 may be one kind of material or a combination of two or more kinds of materials.
  • the accommodating member 621 preferably has a thickness of 100 ⁇ m or more and 1000 ⁇ m or less. This makes it possible to impart flexibility to the accommodating member 621. Thereby, the joint function can be imparted to the plurality of joint portions 612.
  • the material constituting the sealing member 622 includes, for example, at least one selected from the group consisting of polyethylene, polypropylene, polyamide and polyester.
  • the material constituting the sealing member 622 may be one kind of material or a combination of two or more kinds of materials.
  • the sealing member 622 preferably has a thickness of 50 ⁇ m or more and 100 ⁇ m or less. This makes it possible to impart flexibility to the sealing member 622. Thereby, the joint function can be imparted to the plurality of joint portions 612.
  • the accommodating member 621 and the sealing member 622 may be a single-layer member or a multi-layer member.
  • the accommodating member 621 and the sealing member 622 are preferably multilayer members including a low-density polyethylene resin layer and a polyamide resin layer.
  • the accommodating member 621 and the sealing member 622 are the multilayer members, the accommodating member 621 and the encapsulating member 621 and the encapsulating member so that the two low-density polyethylene resin layers provided in the accommodating member 621 and the encapsulating member 622 are in contact with each other. 622 is stacked. Further, the contact surfaces of the two low-density polyethylene resin layers are thermocompression bonded to each other. Thereby, a plurality of joint portions 612 can be formed.
  • At least one member of the accommodating member 621 and the sealing member 622 may include a base material and a thin film arranged on the base material.
  • the material constituting the thin film contains, for example, at least one selected from the group consisting of aluminum and silicon dioxide. Thereby, the durability and the barrier property of the member can be improved.
  • the cold insulation tool 6 may be provided with a temperature indicator seal attached to at least one of the accommodating member 621 and the sealing member 622 to indicate the temperature. This makes it possible to recognize the temperature of the cold insulator 6.
  • the accommodating member 621 and the sealing member 622 may be provided with a fixing portion for maintaining the shape of the cold insulator 6 in a cylindrical shape. Thereby, when the cold insulation tool 6 is brought close to or in contact with the cold insulation object, the cold insulation tool 6 can surround the cold insulation object.
  • the fixing portion includes, for example, a hook-and-loop fastener provided on the surface 621a of the accommodating member 621 and the surface 622a of the sealing member 622.
  • FIG. 20 is a perspective view schematically illustrating the cold insulation tool 6A of the modification of the sixth embodiment.
  • FIG. 21 is a cross-sectional view schematically illustrating the cold insulation tool 6A of the modified example of the sixth embodiment.
  • the cold storage device 6A is different from the cold storage device 6 in that the cold storage device support 651 is provided.
  • the cooler support 651 has a bottomed cylindrical shape. One end of the cooler support 651 is open. An internal space 651c for accommodating the cold storage device 6 is formed in the cold storage device support 651.
  • the cold insulation tool 6 is deformed so that the accommodating member 621 is arranged radially inside and the sealing member 622 is arranged radially outside.
  • the cold insulation tool 6A has a cylindrical shape and can stand on its own by providing the cold insulation tool support 651.
  • the cooler support 651 is preferably made of a material that has heat insulating properties and can prevent heat exchange between the outside of the cooler support 651 and the inside of the cooler support 651.
  • the material constituting the cold insulation support support 651 includes, for example, at least one selected from the group consisting of foamed polyethylene, urethane foam and chloroprene rubber (foam rubber).
  • the cold insulation object X having a can-shaped or bottle-shaped shape is inserted into the cylindrical space 600c surrounded by the cold insulator support 651. Will be done.
  • the cold insulation tool 6 can be brought close to or in contact with the object to be cooled X.
  • the object to be cooled X can be kept cold at a temperature near the main melting point of the latent heat storage material 601.
  • the cooler support 651 is preferably made of an elastic material. As a result, the cold insulation support support 651 can be elastically deformed according to the diameter of the object to be cooled X. As a result, the cold insulation support support 651 can be pressed against the object to be cooled X.
  • FIGS. 22A to 22D are sectional views schematically illustrating an intermediate product obtained when the cooling device 6 of the sixth embodiment is manufactured.
  • a hard film serving as a precursor of the accommodating member 621 is placed on a mold 661 in which a groove portion 661 g having a trapezoidal cross-sectional shape is formed. 671 is loaded.
  • the shape of the groove portion 661 g formed in the mold 661 is transferred to the hard film 671 by vacuum forming, press working, or the like. As a result, the accommodating member 621 is formed.
  • the latent heat storage material 601 which is a liquid is injected into the recess 641 of the accommodating member 621 by a pump or the like.
  • the sealing member 622 is placed on the accommodating member 621. Further, the contact surfaces of the accommodating member 621 and the sealing member 622 are thermocompression bonded to each other to form the accommodating portion 611 and the joint portion 612.
  • FIG. 23 is a cross-sectional view schematically illustrating the distribution packing container 7 of the seventh embodiment.
  • the distribution packing container 7 keeps the object to be cooled X cold.
  • the distribution packing container 7 is used for transporting the object to be cooled X in a cold state.
  • the object to be cooled X is, for example, a frozen food that is kept cold at a temperature of ⁇ 18 ° C. or lower.
  • the distribution packing container 7 is also a food cooling tool for keeping the frozen food cold.
  • the distribution packing container 7 includes the cold insulation tool 6 of the sixth embodiment and the distribution packing container main body 701.
  • the distribution packing container main body 701 accommodates the cold insulation tool 6 and the object to be cooled X.
  • the cold insulation tool 6 covers the object to be cooled X from above. As a result, at least a part of the cold insulation tool 6 comes into contact with the cold insulation object X. As a result, heat is conducted from the object to be cooled X to the cooler 6 via the contact surface 6a between the object X to be cooled and the cooler 6. As a result, the object to be cooled X can be effectively cooled. Further, it is possible to prevent the heat flowing from the outside of the distribution packing container 7 into the inside of the distribution packing container 7 from affecting the object to be cooled X. Therefore, the cold insulation tool 6 can keep the object to be cooled X cold at a temperature near the main melting point of the latent heat storage material 601. Therefore, the cold insulator 6 is suitably used for cold insulation and transportation of frozen foods which must be maintained at a temperature of ⁇ 18 ° C. or lower.
  • the distribution packing container 7 may be provided with a heat insulating member arranged above the cold insulation device 6. Thereby, the cold insulation performance of the distribution packing container 7 can be improved.
  • the surface 621a of the housing member 621 and the bottom surface 701a of the distribution packing container main body 701 may be fixed to each other by a hook-and-loop fastener or the like.
  • the present disclosure is not limited to the above-described embodiment, and is substantially the same as the configuration shown in the above-described embodiment, a configuration having the same action and effect, or a configuration capable of achieving the same purpose. May be replaced with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

冷凍食品のような被保冷物を-18℃以下の温度で長時間保冷することができ、かつ凝固時に必要な消費電力を低減できる潜熱蓄熱材を提供する。潜熱蓄熱材は、6重量部~29重量部の塩化アンモニウムと、6重量部~29重量部の尿素と、42重量部~88重量部の水と、を含み、塩化アンモニウム、尿素及び水の合計が100重量部であり、-18℃~-21℃の範囲に主たる融点を有する。

Description

潜熱蓄熱材、保冷具、物流梱包容器及び食品保冷用具
 本開示は、潜熱蓄熱材、保冷具、物流梱包容器及び食品保冷用具に関する。本出願は、2020年12月4日に日本に出願された特願2020-202086号に優先権を主張し、その内容をここに援用する。
 冷凍食品が輸送される際には、多くの場合は、冷凍食品が物流容器に梱包され、冷凍食品を梱包した物流容器が輸送される。
 冷凍食品が輸送される際に冷凍食品の品質を保持するためには、冷凍食品は、少なくとも氷点下で保冷され続ける必要があり、冷凍食品の種類によって、それぞれ-10℃以下、-15℃以下、-18℃以下を維持することが望ましいとされる。しかし、これまで冷凍食品の輸送には、必要な温度にかかわらずドライアイスが用いられてきた。
 しかし、近年においては、ドライアイスの原料である液化炭酸ガスの供給が不足しており、特に夏の欠乏が著しい。液化炭酸ガスの需要は多岐にわたり、生命にかかわる医療現場への供給が優先されることは社会的に当然である。このため、物流分野においては、ドライアイスを代替する潜熱蓄熱材として、-25℃付近に融点を有する潜熱蓄熱材の適用が進んでいる。
 特許文献1に記載された保冷剤は、凝固点降下作用のある水溶性化合物及び水を含む(段落0006)。凝固点降下作用のある水溶性化合物としては、1価陽イオンの無機塩及び尿素が併用される(段落0042)。
特開平6-65560号公報
 潜熱蓄熱材は、使用する前に必ず凝固させなければならない。ドライアイスに替わる潜熱蓄熱材としてこれまで主に使用されてきた-25℃付近に融点を有する潜熱蓄熱材は、凝固させるために設定温度が-35℃以下の凍結庫が必要とされる。一般に、凍結庫の設定温度は低ければ低いほど、消費する電力量が増大する。物流においては大量な潜熱蓄熱材を必要とするため、凝固に必要なエネルギー消費は膨大になる。しかし前述の通り、冷凍食品が必要とする温度には段階があり、すべての食品に-25℃付近に融点を有する潜熱蓄熱材を必要とするわけではない。必要とされる保冷温度にできるだけ近い融点をもつ潜熱蓄熱材を選択する、すなわち、これまでより高い融点を有する潜熱蓄熱材を用いれば、凍結庫に必要な設定温度を上昇させることができるので、消費電力を抑制することができる。
 また、-25℃以上-20℃以下の融点を有する潜熱蓄熱材は、多くの場合は、水を主成分としているが、当該潜熱蓄積材の潜熱量は、氷の融解時の潜熱量の333J/gに対して低い。例えば、塩化ナトリウム及び水を含み共晶組成を有する潜熱蓄熱材は、約-21℃の融点を有するが、当該潜熱蓄積材の潜熱は、210J/g程度の潜熱量と低い。このため、-25℃以上-20℃以下の融点を有する潜熱蓄熱材は、一般に保冷時間が短い。特に、当該潜熱蓄熱材の融点が-25℃である場合は、当該潜熱蓄熱材の周囲の環境の温度と当該潜熱蓄熱材の融点との差が大きくなるため、当該潜熱蓄熱材の単位時間当たりの吸熱量が大きくなり、当該潜熱蓄熱材の消耗が進行しやすくなり、潜熱蓄熱材の保冷時間がさらに短くなる。
 本開示は、前記の問題を解決するためになされた。本開示は、冷凍食品のような被保冷物を-18℃以下の温度で長時間保冷することができ、かつ凝固時に必要な消費電力を低減できる潜熱蓄熱材を提供することを目的とする。
 本開示の第1の形態の潜熱蓄熱材は、6~29重量部の塩化アンモニウムと、6~29重量部の尿素と、42~88重量部の水と、を含み、塩化アンモニウム、尿素及び水の合計が100重量部であり、-18℃~-21℃の範囲に主たる融点を有する。
 本開示の第2の形態の保冷具は、本開示の第1の形態の潜熱蓄熱材と、前記潜熱蓄熱材を液密に収容する保冷具本体と、を備える。
 本開示の第3の形態の物流梱包容器及び食品保冷用具は、本開示の第2の形態の保冷具を備える。
 本開示の第4の形態の保冷具は、本開示の第1の形態の潜熱蓄熱材と、複数の収容部と複数の関節部とを備えた保冷具本体と、を備える。
 本開示の第5の形態の物流梱包容器及び食品保冷用具は、本開示の第4の形態の保冷具を備える。
 本開示の第6の形態の保冷具は、本開示の第1の形態の潜熱蓄熱材と、複数の収容部と複数の関節部とを備えた保冷具本体と、を備える。
 本開示の第7の形態の物流梱包容器及び食品保冷用具は、本開示の第6の形態の保冷具を備える。
 本開示によれば、冷凍食品のような被保冷物を-18℃以下の温度で長時間保冷することができ、かつ凝固時に必要な消費電力を低減できる潜熱蓄熱材を提供することができる。
実施例および比較例に係る潜熱蓄熱材の組成等を示す表である。 実施例および比較例に係る潜熱蓄熱材の融解開始温度及び潜熱量の測定方法を説明する図である。 実施例および比較例に係る潜熱蓄熱材の主たる融点及び保冷時間の決定方法を説明する図である。 実施例1および比較例1に係る潜熱蓄熱材の融解挙動を示す図である。 実施例1、2、3に係る潜熱蓄熱材の融解挙動を示す図である。 実施例1および比較例2、3の潜熱蓄熱材の融解挙動を示す図である。 実施例4、5および比較例2,3の潜熱蓄熱材の融解挙動を示す図である。 実施例1および実施例6~9に係る潜熱蓄熱材の凝固挙動を示す図である。 第2実施形態の保冷具を模式的に図示する縦断面図である。 第2実施形態の保冷具を模式的に図示する横断面図である。 第2実施形態の保冷具の製造に用いられる製造装置を模式的に図示する図である。 第2実施形態の保冷具の製造に用いられる製造装置を模式的に図示する図である。 第2実施形態の保冷具の製造に用いられる製造装置を模式的に図示する図である。 第3実施形態の物流梱包容器を模式的に図示する断面図である。 第4実施形態の保冷具を模式的に図示する斜視図である。 第4実施形態の保冷具を模式的に図示する断面図である。 第4実施形態の保冷具の製造に用いられる製造装置を模式的に図示する図である。 第5実施形態の物流梱包容器を模式的に図示する断面図である。 第5実施形態の変形例の物流梱包容器を模式的に図示する断面図である。 第6実施形態の保冷具を模式的に図示する平面図である。 第6実施形態の保冷具を模式的に図示する断面図である。 第6実施形態の変形例の保冷具を模式的に図示する斜視図である。 第6実施形態の変形例の保冷具を模式的に図示する断面図である。 第6実施形態の保冷具が製造される際に得られる中間品を模式的に図示する断面図である。 第6実施形態の保冷具が製造される際に得られる中間品を模式的に図示する断面図である。 第6実施形態の保冷具が製造される際に得られる中間品を模式的に図示する断面図である。 第6実施形態の保冷具が製造される際に得られる中間品を模式的に図示する断面図である。 第7実施形態の物流梱包容器を模式的に図示する断面図である。
 以下、本開示の実施形態について、図面を参照しつつ説明する。なお、図面については、同一又は同等の要素には同一の符号を付し、重複する説明は省略する。
 1 第1実施形態
 1.1 潜熱蓄熱材の組成
 第1実施形態の潜熱蓄熱材は、凝固させられた状態で被保冷物に近接又は接触させられることにより、主たる融点付近の温度で被保冷物を保冷する。当該潜熱蓄熱材は、完全に融解するまでの間、当該潜熱蓄熱材の主たる融点付近の温度で被保冷物を保冷し続ける。
 第1実施形態の潜熱蓄熱材は、6~29重量部の塩化アンモニウムと、6~29重量部の尿素と、42~88重量部の水と、を含む。望ましくは、当該潜熱蓄熱材は、14~16重量部の塩化アンモニウムと、15~18重量部の尿素と、66~71重量部の水と、を含む。塩化アンモニウム、尿素及び水の合計は、100重量部である。
 第1実施形態の潜熱蓄熱材は、上述した範囲内の組成を有することにより、共晶組成に近い組成を有する。このため、当該潜熱蓄熱材は、液体状態においては、塩化アンモニウム及び尿素の混合水溶液からなるが、固体状態においては、主に塩化アンモニウム、尿素及び氷の共晶からなる。このため、当該潜熱蓄熱材が凝固させられる際には、主に塩化アンモニウム、尿素及び氷の共晶が形成される。当該潜熱蓄熱材が上述した望ましい範囲内の組成を有する場合は、当該共晶以外の凝固成分がほとんど形成されなくなる。
 塩化アンモニウム及び氷の共晶は、約-15℃に共晶点を有する。また、尿素及び氷の共晶は、約-12℃に共晶点を有する。一方で、塩化アンモニウム、尿素及び氷の共晶は、いずれの前記共晶よりも低温の約-20℃に共晶点を有することがわかった。また、イオン性物質である塩化アンモニウムは水に溶解することで陽イオン(アンモニウムイオン)と陰イオン(塩化物イオン)に解離するため、陽イオンと陰イオンがいずれも塩化アンモニウムとは異なる他のイオン性物質が含有されていると、前記他のイオン性物質から解離した他の陽イオンと他の陰イオンとの間で異なる無機塩が形成され、塩化アンモニウムと氷との共晶の形成が阻害されるという現象があるが、分子性物質である尿素はほとんどイオンに解離しないため、他の物質を生成しにくい。これらのことから、塩化アンモニウム、尿素及び氷の共晶のみが形成されることで、潜熱蓄熱材は、-20℃に単一の共晶点を有する。このため、第1実施形態の潜熱蓄熱材は、共晶組成に近い組成を有することにより、-20℃に近い主たる融点を有し、具体的には-18℃~-21℃の範囲に主たる融点を有する。このため、当該潜熱蓄熱材は、-18℃以下の温度で被保冷物を保冷することができる。
 第1実施形態の潜熱蓄熱材は、-18℃~-21℃の主たる融点を有する。このため、当該潜熱蓄熱材の周辺の環境の温度と当該潜熱蓄熱材の主たる融点との差は、-25℃の融点を有する蓄熱材と比較して、小さい。このため、当該潜熱蓄熱材が融解する際の当該潜熱蓄熱材の単位時間当たりの吸熱量は小さい。また、当該潜熱蓄熱材は、塩化アンモニウム、尿素及び氷からなる共晶の、共晶組成に近い組成を有することにより、大きな潜熱量を有する。これらのことから、当該潜熱蓄熱材は、長い保冷時間を有する。
 しかし、潜熱蓄熱材が上述した範囲外の組成を有する場合は、潜熱蓄熱材が凝固させられる際に形成される、塩化アンモニウム、尿素及び氷の共晶以外の凝固成分が多くなる。このため、-18℃~-21℃の主たる融点を有し、かつ大きな潜熱量を有する潜熱蓄熱材を得ることが困難になる。例えば、潜熱蓄熱材に含まれる塩化アンモニウムが6重量部より少ない場合及び潜熱蓄熱材に含まれる尿素が6重量部より少ない場合は、共晶組成の半分以下の潜熱量の潜熱蓄熱材しか得られない。すなわち、保冷時間が大幅に短くなる。また、潜熱蓄熱材に含まれる塩化アンモニウムが29重量部より多い場合及び潜熱蓄熱材に含まれる尿素が29重量部より多い場合は、潜熱量が小さく、主たる融点が-21℃を下回る潜熱蓄熱材しか得られない。主たる融点が-21℃を下回ると、-18℃~-21℃の範囲に主たる融点を有する潜熱蓄熱材と比較して、潜熱蓄熱材の周辺の環境の温度と潜熱蓄熱材の主たる融点との差が大きくなるため、単位時間当たりの吸熱量が大きくなる。すなわち、主たる融点が-21℃を下回った潜熱蓄熱材と、主たる融点が-18℃~-21℃の範囲にある潜熱蓄熱材が、共に同じ潜熱量を有していたとしても、主たる融点が-21℃を下回った潜熱蓄熱材の方が、保冷時間が短くなる。
 第1実施形態の潜熱蓄熱材は、望ましくは、過冷却抑制剤を含む。過冷却抑制剤は、水に溶解または分散させられる。過冷却抑制剤を含むことにより、当該潜熱蓄熱材が凝固する際、当該潜熱蓄熱材が過冷却して凝固開始温度が低くなる現象を抑制することができる。過冷却抑制剤が水に溶解する場合には、当該潜熱蓄熱材を凝固させる際の降温中に過冷却抑制剤の溶解度が減少して飽和し、過冷却抑制剤の固体が析出して、前記の抑制効果を示す。このため、例えば、広く用いられている-25℃の冷凍庫において当該潜熱蓄熱材を凝固させることができる。
 過冷却抑制剤は、望ましくは、硫酸アンモニウムアルミニウム十二水和物、炭酸カルシウム、酸化アルミニウム及び活性炭からなる群より選択される少なくとも1種を含む。
 過冷却抑制剤の重量は、望ましくは、塩化アンモニウム、尿素及び水の合計100重量部に対して、0.1重量部~10重量部である。
 第1実施形態の潜熱蓄熱材が、上述した成分以外の成分を含んでもよい。上述した成分以外の成分は、例えば、増粘剤、抗菌剤及び色素からなる群より選択される少なくとも1種を含む。
<第1実施形態の実施例および比較例>
 図1の表に示す重量比で、水、無機塩(例えば、塩化アンモニウム、塩化ナトリウム等)、尿素等を含む主剤、および過冷却抑制剤を混合し、無機塩、尿素、過冷却抑制剤等を水に溶解することにより実施例および比較例にかかる潜熱蓄熱材を調製した。なお、主剤全体が100重量部になるように潜熱蓄熱材を調製した。
 また、実施例および比較例にかかる潜熱蓄熱材における、潜熱値、融解開始温度、主たる融点、保冷時間等の特性についての結果も図1に示す。
 図2は、第1実施形態の潜熱蓄熱材の融解開始温度及び潜熱量の測定方法を説明する図である。
 第1実施形態の潜熱蓄熱材の融解開始温度及び潜熱量が測定される際には、図2に図示されるように、当該潜熱蓄熱材に対して示差走査熱量測定(DSC)にてDSC曲線10が取得される。横軸は温度(T)、縦軸は単位温度あたりの融解エンタルピー(dH/dT)である。また、DSC曲線10に含まれる融解ピーク11の低温側12を線形外挿した直線13とDSC曲線10に含まれる低温側のベースライン14を線形外挿した直線15との交点16の温度が融解開始温度とされる。また、融解ピーク11と直線15とに囲まれる潜熱領域17の面積を当該潜熱蓄熱材の重量で除した値が潜熱量とされる。
 実施例および比較例にかかる潜熱蓄熱材の融解特性について評価した。実施例および比較例にかかる潜熱蓄熱材40gに、熱電対を入れ、各潜熱蓄熱材の融解時の温度を測定した。具体的には、各潜熱蓄熱材を-35℃で凝固させた後、0.25℃/分のレートで昇温し、熱電対により各潜熱蓄熱材の温度の経時変化を1分間隔で測定した。
 なお、主たる融点及び保冷時間は、上記融解特性の測定結果から得た。
 図3は、第1実施形態の潜熱蓄熱材の主たる融点及び保冷時間の決定方法を説明する図である。
 図3の潜熱蓄熱材の温度の経時変化において、1分間隔の各測定点について、当該測定点の1つ前の測定点と当該測定点との間での潜熱蓄熱材の温度変化のレートと、当該測定点と当該測定点の1つ後の測定点との間での潜熱蓄熱材の温度変化のレートとの平均値を算出したとき、前記平均値が環境温度の昇温レートである0.25℃/分よりも小さい0.15℃/分未満となる測定点が連続する区間のうち、最も長時間連続する区間が主たる融解領域である。主たる融解領域の最低温度は、主たる融解領域の最初の測定点での潜熱蓄熱材の温度である。主たる融解領域の最高温度は、主たる融解領域の最後の測定点での潜熱蓄熱材の温度である。主たる融解領域の最低温度と、主たる融解領域の最高温度との中間値が、主たる融点である。
 保冷時間は、潜熱蓄熱材の温度が-18℃~-21℃の範囲にある時間であり、当該潜熱蓄熱材を使用して前記温度範囲での保冷が可能な時間である。
 実施例1、比較例1の潜熱蓄熱材の融解特性についての結果を図4に、実施例1、2、3の潜熱蓄熱材の融解特性についての結果を図5に、実施例1、比較例2、3の潜熱蓄熱材の融解特性についての結果を図6に、実施例4、5、比較例2、3の潜熱蓄熱材の融解特性についての結果を図7に示す。なお、図4~7の横軸は-35℃から温度上昇を開始してからの経過時間を示す。
 図4より、実施例1の潜熱蓄熱材は約2.9時間後、すべて融解して温度が急激に上昇しているのに対し、比較例1の潜熱蓄熱材は約2.6時間後にすべて融解して温度が急激に上昇しており、短時間で融解していることがわかる。保冷時間は、実施例1が約1.9時間、比較例1が約1.6時間である。すなわち、実施例1の潜熱蓄熱材は、6~29重量部の塩化アンモニウムと、6~29重量部の尿素と、42~88重量部の水と、を含み、塩化アンモニウム、尿素及び水の合計が100重量部となる組成にすることで、比較例1の潜熱蓄熱材に比べ、長時間、保冷することができる。
 図5より、実施例2および実施例3の潜熱蓄熱材は、実施例1の潜熱蓄熱材と同等の長い保冷時間を有することが分かった。すなわち、望ましい組成範囲である14~16重量部の塩化アンモニウムと、15~18重量部の尿素と、66~71重量部の水からなる潜熱蓄熱材であれば、凝固時にほぼ共晶のみが形成されて大きな潜熱量が得られるため、長時間、保冷することができる。
 図6より、比較例2の潜熱蓄熱材は、実施例1の潜熱蓄熱材に対して、保冷時間が半分以下の時間しか維持していなかった。また、比較例3の潜熱蓄熱材は、主たる融点が-18℃~-21℃を下回っており、保冷時間が短かった。すなわち、上述した範囲外の組成では、潜熱量が大幅に小さくなる、或いは潜熱量が小さくなり、かつ主たる融点が-18℃~-21℃を下回るため、保冷時間が大幅に短くなり、-18℃以下での保冷が困難となる。
 図7より、比較例2の潜熱蓄熱材は、実施例4の潜熱蓄熱材と比べて、保冷時間が極端に短いことが分かる。これは、塩化アンモニウムの濃度が極端に低くなることで、塩化アンモニウム及び氷とから生成される共晶の量が少なくなり、潜熱値が低くなったためと考えられる。
 さらに、比較例3の潜熱蓄熱材は、実施例5の潜熱蓄熱材と比べて、保冷時間が短いことが分かる。これは、多すぎる尿素が、塩化アンモニウム及び氷との共晶の生成を阻害し、図1に示すように主たる融点が低くなるとともに、潜熱値が低くなったためと考えられる。主たる融点が低くなるということは、凝固時に保冷したい温度より低温の融解成分が発生するということであるが、より低温の融解成分は周囲の環境温度との温度差がより大きくなるために単位時間当たりの吸熱量が大きくなり、融解が速く、結果として保冷時間が短くなる。したがって、潜熱蓄熱材の主たる融点は、-18℃~-21℃であることが好ましい。
 以上より、実施例4、5と比較して、比較例2、3の保冷時間が短いのは、潜熱蓄熱材における塩化アンモニウム、尿素の濃度の影響と考えられる。すなわち、塩化アンモニウム6~29重量部、尿素6~29重量部、水42~88重量部の濃度範囲を逸脱すると、-18℃~-21℃での保冷時間が短くなり、例えば、冷凍食品のような保冷対象物を-18℃以下で保冷することが困難であり、十分な保冷効果が得られないと考えられる。したがって、潜熱蓄熱材おいては、塩化アンモニウム6~29重量部、尿素6~29重量部、水42~88重量部の濃度範囲に調整することが好ましいことが分かる。
 さらに、実施例1および実施例6~9にかかる潜熱蓄熱材の凝固特性について評価した。各潜熱蓄熱材40gに、熱電対を入れ、各潜熱蓄熱材の凝固時の温度の経時変化を測定した。具体的には、各潜熱蓄熱材を-25℃の環境温度の保冷庫に入れ、環境温度を-25℃に維持することにより、潜熱蓄熱材の凝固時の温度の経時変化を測定した。
 実施例1および実施例6~9の凝固特性についての結果を図8に示す。
 図8より、実施例1の潜熱蓄熱材は-23℃を下回ってから過冷却が解消して凝固を開始し、凝固に由来する発熱がみられた。一方で、過冷却抑制剤を添加した実施例6~9の潜熱蓄熱材は、ほぼ過冷却なく速やかに凝固を開始し、凝固に由来する発熱がみられた。つまり、過冷却抑制剤の添加により、潜熱蓄熱材を主たる融点の範囲である-18℃~-21℃近辺の-25℃で冷却しても速やかに凝固させることができる。過冷却抑制剤を添加していない実施例1の潜熱蓄熱材に対し、過冷却抑制剤を添加した実施例6~9の潜熱蓄熱材は、省エネルギーで保冷性能を付与することができる。
 2 第2実施形態
 2.1 保冷具
 図9は、第2実施形態の保冷具2を模式的に図示する縦断面図である。図10は、第2実施形態の保冷具2を模式的に図示する横断面図である。
 保冷具2は、被保冷物を保冷する。被保冷物は、例えば、-18℃以下の温度で保冷される冷凍食品である。保冷具2は、いわゆるブロー容器型の保冷具である。
 図9及び図10に図示されるように、保冷具2は、潜熱蓄熱材201と、保冷具本体202と、を備える。
 潜熱蓄熱材201は、第1実施形態の潜熱蓄熱材である。
 保冷具本体202は、潜熱蓄熱材201を液密に収容する。潜熱蓄熱材201は、保冷具本体202に形成された内部空間201cに収容される。
 図9及び図10に図示されるように、保冷具本体202は、収容部材211と、注入口212と、封止部材213と、を備える。
 収容部材211は、中空構造を有する。これにより、収容部材211には、潜熱蓄熱材201が収容される内部空間201cが形成される。
 収容部材211は、望ましくは、高い剛性を有する材料により構成される。これにより、潜熱蓄熱材201が固体から液体に変化する際に収容部材211の形状が変化することを抑制することができる。これにより、保冷具2は、潜熱蓄熱材201が固体から液体に変化する際の形状変化が小さいという特徴を有する。
 収容部材211を構成する材料は、例えば、樹脂材料、金属材料及び無機材料からなる群より選択される少なくとも1種を含む。樹脂材料は、ポリエチレン、ポリプロピレン、ポリエステル、ポリウレタン、ポリカーボネート、ポリ塩化ビニル及びポリアミドからなる群より選択される少なくとも1種を含む。金属材料は、アルミニウム、ステンレス鋼、銅及び銀からなる群より選択される少なくとも1種を含む。無機材料は、ガラス、陶磁器及びセラミックからなる群より選択される少なくとも1種を含む。収容部材211を構成する材料は、望ましくは、樹脂材料である。これにより、収容部材211の作り易さ及び耐久性を向上することができる。
 注入口212は、収容部材211の上部に結合される。
 封止部材213は、注入口212を封止する。
 保冷具2は、被保冷物に近接又は接触させられる。これにより、潜熱蓄熱材201の主たる融点付近の温度で被保冷物を保冷することができる。
 2.2 保冷具の製造方法
 図11Aから図11Cまでは、第2実施形態の保冷具2の製造に用いられる製造装置221を模式的に図示する図である。
 図11Aから図11Cまでに図示されるように、保冷具2が製造される際には、液体である潜熱蓄熱材201が、シリンダーポンプ231により注入口212を経由して収容部材211に注入される。潜熱蓄熱材201が他の方法により収容部材211に注入されてもよい。例えば、潜熱蓄熱材201がモーノポンプにより収容部材211に注入されてもよい。
 潜熱蓄熱材201が収容部材211に注入される際には、図11Aに図示されるように、シリンダーポンプ231の充填ホース241の先端が注入口212に接続される。また、シリンダーポンプ231の吸い上げホース242の先端が、潜熱蓄熱材201に入れられる。
 続いて、図11Bに図示されるように、シリンダーポンプ231のピストン243が下降させられる。これにより、潜熱蓄熱材201が吸い上げられる。吸い上げられた潜熱蓄熱材201は、吸い上げホース242を経由してシリンダーポンプ231のシリンダ244の内部に吸入される。
 続いて、図11Cに図示されるように、シリンダーポンプ231のピストン243が上昇させられる。これにより、シリンダーポンプ231のシリンダ244の内部から潜熱蓄熱材201が排出される。排出された潜熱蓄熱材201は、充填ホース241を経由して収容部材211に注入される。潜熱蓄熱材201の注入量は、限定されないが、望ましくは、収容部材211の内容積の70%以上90%以下である。
 続いて、注入口212が封止部材213により封止される。封止部材213による注入口212の封止は、例えば、封止部材213を注入口212に溶着することにより行われる。これにより、封止部材213により注入口212が密栓される。これにより、潜熱蓄熱材201が収容部材211から漏れることを抑制することができる。封止部材213の注入口212への溶着は、超音波溶着、熱溶着等により行われる。
 封止部材213による注入口212の封止が、封止部材213をネジ栓として注入口212に螺合することにより行われてもよい。これにより、封止部材213を手で自在に開閉することができる栓とすることができる。
 続いて、保冷具2が潜熱蓄熱材201の凝固温度以下の温度を有する環境下に静置される。これにより、潜熱蓄熱材201が凝固する。
 保冷具2が物流梱包容器に収容される場合は、保冷具2が物流梱包容器に収容される前に潜熱蓄熱材201が凝固させられる。しかし、物流過程の最初の段階において物流梱包容器の内部の温度を潜熱蓄熱材201の凝固開始温度以下の温度にすることができる場合は、保冷具2が物流梱包容器に収容された後に潜熱蓄熱材201が凝固させられてもよい。これにより、潜熱蓄熱材201が液体である状態で保冷具2の使用を開始することができる。
 3 第3実施形態
 3.1 物流梱包容器(食品保冷用具)
 図12は、第3実施形態の物流梱包容器3を模式的に図示する断面図である。
 物流梱包容器3は、被保冷物Xを保冷する。物流梱包容器3は、被保冷物Xを保冷した状態で輸送するために用いられる。被保冷物Xは、例えば、-18℃以下の温度で保冷される冷凍食品である。被保冷物Xが冷凍食品である場合は、物流梱包容器3は、冷凍食品を保冷する食品保冷用具でもある。
 図12に図示されるように、物流梱包容器3は、第2実施形態の保冷具2と、物流梱包容器本体301と、を備える。
 物流梱包容器本体301は、保冷具2及び被保冷物Xを収容する。
 保冷具2は、被保冷物Xを上方及び下方から挟む。これにより、保冷具2の少なくとも一部は、被保冷物Xに接触する。これにより、被保冷物Xから被保冷物Xと保冷具2との接触面2aを経由して保冷具2まで熱が伝導する。これにより、被保冷物Xを効果的に保冷することができる。また、物流梱包容器3の外部から物流梱包容器3の内部に流入する熱が被保冷物Xに影響を与えることを抑制することができる。このため、保冷具2は、潜熱蓄熱材201の主たる融点付近の温度で被保冷物Xを保冷することができる。物流梱包容器3は、-18℃以下の温度で保冷される冷凍食品の保冷及び輸送に好適に用いられる。
 物流梱包容器3が、保冷具2の上方に配置される断熱部材を備えてもよい。これにより、物流梱包容器3の保冷性能を向上することができる。
 保冷具2の形状、数、使用時の姿勢等は、被保冷物Xの形状、性質等に応じて変更される。
 4 第4実施形態
 4.1 保冷具
 図13は、第4実施形態の保冷具4を模式的に図示する斜視図である。図14は、第4実施形態の保冷具4を模式的に図示する断面図である。図14は、図13に描かれた切断線XI-XIの位置における断面を図示する。
 保冷具4は、いわゆるフィルムパック型の保冷具である。
 図13及び図14に図示されるように、保冷具4は、潜熱蓄熱材401と、保冷具本体402と、を備える。
 潜熱蓄熱材401は、第1実施形態の潜熱蓄熱材である。
 図13及び図14に図示されるように、保冷具本体402は、複数の収容部411と、複数の関節部412と、を備える。
 複数の収容部411の各々は、潜熱蓄熱材401を液密に収容する。潜熱蓄熱材401は、複数の収容部411の各々に形成された内部空間411cに収容される。
 複数の収容部411の各々は、短冊状の平面形状を有し、楕円状の断面形状を有する。複数の収容部411の各々が、短冊状の平面形状以外の平面形状を有してもよく、楕円状の断面形状以外の断面形状を有してもよい。
 保冷具本体402は、3個の収容部411を備える。保冷具本体402に備えられる収容部411の数が増減されてもよい。保冷具本体402に備えられる収容部411の数は、被保冷物の大きさに応じて増減される。これにより、被保冷物の大きさに応じて保冷具4の大きさを変更することができる。
 潜熱蓄熱材401は、1種の潜熱蓄熱材であってもよいし、互いに異なる融点を有する2種以上の潜熱蓄熱材であってもよい。互いに異なる融点を有する2種以上の潜熱蓄熱材が複数の収容部411に収容された場合は、互いに異なる保冷温度で保冷されるべき複数の被保冷物を同時に保冷することができる。
 複数の関節部412の各々は、複数の収容部411に含まれる隣接するふたつの収容部411を結合する。複数の関節部412の各々は、当該ふたつの収容部411を可動ならしめる関節機能を有する。保冷具4が複数の関節部412を備えることにより、潜熱蓄熱材401が固体である状態においても、被保冷物に沿う形状を保冷具4に付与することができる。これにより、被保冷物が複雑な形状を有する場合であっても、広い範囲に渡って保冷具4を被保冷物に接触させることができる。これにより、被保冷物が複雑な形状を有する場合であっても、被保冷物を効果的に保冷することができる。
 図14に図示されるように、保冷具本体402は、2枚のフィルム部材421を備える。2枚のフィルム部材421は、複数の接合部431において互いに接合されて複数の関節部412を構成し、残余部において互いに接合されず複数の収容部411を構成する。
 フィルム部材421は、潜熱蓄熱材401の漏洩及び揮発を抑制することができる材料により構成される。また、フィルム部材421は、互いに接合することができる材料により構成される。また、フィルム部材421は、複数の関節部412に関節機能を付与することができる柔軟性を有する材料により構成される。
 フィルム部材421を構成する材料は、例えば、ポリエチレン、ポリプロピレン、ポリアミド及びポリエステルからなる群より選択される少なくとも1種を含む。フィルム部材421を構成する材料は、1種の材料であってもよいし、2種以上の材料の組み合わせであってもよい。
 フィルム部材421は、単層フィルムであってもよいし、多層フィルムであってもよい。フィルム部材421は、望ましくは、低密度ポリエチレン樹脂層及びポリアミド樹脂層を備える多層フィルムである。フィルム部材421が当該多層フィルムである場合は、2枚のフィルム部材421にそれぞれ備えられる2層の低密度ポリエチレン樹脂層が互いに接触するように2枚のフィルム部材421が重ねられる。また、2層の低密度ポリエチレン樹脂層の接触面が互いに熱圧着される。これにより、複数の関節部412を形成することができる。
 フィルム部材421が、基材及び基材の上に配置される薄膜を備えてもよい。薄膜を構成する材料は、例えば、アルミニウム及び二酸化ケイ素からなる群より選択される少なくとも1種を含む。これにより、フィルム部材421の耐久性及びバリア性を向上することができる。
 保冷具4が、フィルム部材421に貼り付けられ温度を示す示温材シールを備えてもよい。これにより、保冷具4の温度を認識することが可能になる。
 保冷具4が、いわゆるパックインパック構造を有してもよい。保冷具4がパックインパック構造を有する場合は、保冷具4は、フィルム部材421を包装するフィルムを備える。これにより、保冷具4の物理的な強度、肌触り及び断熱性を向上することができる。
 保冷具4が、保冷具4を被保冷物に固定するための固定治具に取り付けられて被保冷物に固定されてもよい。固定治具は、例えば、サポーター、タオル、包帯等である。
 4.2 保冷具の製造方法
 図15は、第4実施形態の保冷具4の製造に用いられる製造装置441を模式的に図示する図である。
 製造装置441は、食品の包装にも用いられる、いわゆる縦ピロー型包装機である。
 図15に図示されるように、保冷具4が製造される際には、恒温槽451に貯留されている潜熱蓄熱材401が撹拌槽452まで輸送される。
 続いて、撹拌槽452まで輸送された潜熱蓄熱材401が攪拌機453により撹拌される。
 続いて、図示されないフィルムロールから2枚のフィルム454が繰り出される。
 続いて、繰り出された2枚のフィルム454の、長軸方向に伸びる両端がフォーマー部455により合わされる。
 続いて、合わされた2枚のフィルム454の両端が、縦シール部456により、熱圧着される。これにより、2枚のフィルム454により筒状物が構成される。
 続いて、筒状物を構成する2枚のフィルム454が、横シール部457により、2枚のフィルム454の短軸方向に延びる圧着ラインに沿って熱圧着される。
 続いて、ポンプ459が動作させられる。これにより、撹拌された潜熱蓄熱材401が、2枚のフィルム454により構成される筒状物の内部に注入される。
 続いて、筒状物を構成する2枚のフィルム454が、横シール部457により、2枚のフィルム454の短軸方向に延びる圧着ラインに沿って再び熱圧着される。これにより、収容部411及び関節部412が形成される。形成された収容部411には、潜熱蓄熱材401が収容されている。
 5 第5実施形態
 5.1 物流梱包容器(食品保冷用具)
 図16は、第5実施形態の物流梱包容器5を模式的に図示する断面図である。
 物流梱包容器5は、被保冷物Xを保冷する。物流梱包容器5は、被保冷物Xを保冷した状態で輸送するために用いられる。被保冷物Xは、例えば、-18℃以下の温度で保冷される冷凍食品である。被保冷物Xが冷凍食品である場合は、物流梱包容器5は、冷凍食品を保冷する食品保冷用具でもある。
 図16に図示されるように、物流梱包容器5は、第4実施形態の保冷具4と、物流梱包容器本体501と、を備える。
 物流梱包容器本体501は、保冷具4及び被保冷物Xを収容する。
 保冷具4は、被保冷物Xを上方から被覆する。これにより、保冷具4の少なくとも一部は、被保冷物Xに接触する。これにより、被保冷物Xから被保冷物Xと保冷具4との接触面4aを経由して保冷具4まで熱が伝導する。これにより、被保冷物Xを効果的に保冷することができる。また、物流梱包容器5の外部から物流梱包容器5の内部に流入する熱が被保冷物Xに影響を与えることを抑制することができる。このため、保冷具4は、潜熱蓄熱材401の主たる融点付近の温度で被保冷物Xを保冷することができる。このため、保冷具4は、-18℃以下の温度で保冷される冷凍食品の保冷及び輸送に好適に用いられる。
 保冷具4の形状、数、使用時の姿勢等は、被保冷物Xの形状、性質等に応じて変更される。
 5.2 変形例
 図17は、第5実施形態の変形例の物流梱包容器5Aを模式的に図示する断面図である。
 物流梱包容器5Aは、第4実施形態の保冷具4に加えて第2実施形態の保冷具2を備える点で、物流梱包容器5と相違する。保冷具2は、被保冷物Xと物流梱包容器本体501の底面510aとの間に配置される。これにより、物流梱包容器本体501の底面510aを経由して被保冷物Xに熱が流入することを抑制することができる。
 上述したように、保冷具2は、潜熱蓄熱材201が固体から液体に変化する際の形状変化が小さいという特徴を有する。このため、物流梱包容器5Aにおいては、被保冷物Xを保冷具2の上に安定して配置することができる。
 6 第6実施形態
 6.1 保冷具
 図18は、第6実施形態の保冷具6を模式的に図示する平面図である。図19は、第6実施形態の保冷具6を模式的に図示する断面図である。
 保冷具6は、いわゆるブリスターパック型の保冷具である。
 図18及び図19に図示されるように、保冷具6は、潜熱蓄熱材601と、保冷具本体602と、を備える。
 潜熱蓄熱材601は、第1実施形態の潜熱蓄熱材である。
 図18及び図19に図示されるように、保冷具本体602は、複数の収容部611と、複数の関節部612と、を備える。
 複数の収容部611の各々は、潜熱蓄熱材601を液密に収容する。潜熱蓄熱材601は、複数の収容部611の各々に形成された内部空間611cに収容される。
 複数の収容部611の各々は、短冊状の平面形状を有し、台形状の断面形状を有する。複数の収容部611の各々が、短冊状の平面形状以外の平面形状を有してもよく、台形状の断面形状以外の断面形状を有してもよい。
 保冷具本体602は、6個の収容部611を備える。保冷具本体602に備えられる収容部611の数が増減されてもよい。保冷具本体602に備えられる収容部611の数は、被保冷物の大きさに応じて変更される。これにより、被保冷物の大きさに応じて保冷具6の大きさを変更することができる。
 潜熱蓄熱材601は、1種の潜熱蓄熱材であってもよいし、互いに異なる融点を有する2種以上の潜熱蓄熱材であってもよい。互いに異なる融点を有する2種以上の潜熱蓄熱材が複数の収容部611に収容された場合は、互いに異なる保冷温度で保冷されるべき複数の被保冷物を同時に保冷することができる。
 被保冷物が缶状の形状を有する場合は、収容部611の接触面611aが、被保冷物の凸曲面に適合する形状を有する凹曲面とされてもよい。被保冷物がテーパー状の形状を有する場合は、収容部611の厚さが収容部611の長尺方向に沿って変化させられてもよい。
 複数の関節部612の各々は、複数の収容部611に含まれる隣接するふたつの収容部611を結合する。複数の関節部612の各々は、当該ふたつの収容部611を可動ならしめる関節機能を有する。保冷具6が複数の関節部612を備えることにより、潜熱蓄熱材601が固体である状態においても、被保冷物に沿う形状を保冷具6に付与することができる。これにより、被保冷物が複雑な形状を有する場合であっても、広い範囲に渡って保冷具6を被保冷物に接触させることができる。これにより、被保冷物が複雑な形状を有する場合であっても、被保冷物を効果的に保冷することができる。
 図19に図示されるように、保冷具本体602は、収容部材621及び封止部材622を備える。収容部材621及び封止部材622は、複数の接合部631において互いに接合されて複数の関節部612を構成し、残余部において互いに接合されず複数の収容部611を構成する。
 図18及び図19に図示されるように、収容部材621は、複数の凹部641を備える。封止部材622は、平板状の形状を有する。複数の凹部641は、封止部材622とともに複数の収容部611を構成する。
 収容部材621は、凹部641の形状を保持することができる硬度を有する材料により構成される。収容部材621及び封止部材622は、潜熱蓄熱材601の漏洩及び揮発を抑制することができる材料により構成される。また、収容部材621及び封止部材622は、互いに接合することができる材料により構成される。また、収容部材621及び封止部材622は、複数の関節部612に関節機能を付与することができる柔軟性を有する材料により構成される。
 収容部材621を構成する材料は、例えば、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリカーボネート及びポリ塩化ビニルからなる群より選択される少なくとも1種を含む。収容部材621を構成する材料は、1種の材料であってもよいし、2種以上の材料の組み合わせであってもよい。
 収容部材621は、望ましくは、100μm以上1000μm以下の厚さを有する。これにより、収容部材621に可撓性を付与することができる。これにより、複数の関節部612に関節機能を付与することができる。
 封止部材622を構成する材料は、例えば、ポリエチレン、ポリプロピレン、ポリアミド及びポリエステルからなる群より選択される少なくとも1種を含む。封止部材622を構成する材料は、1種の材料であってもよいし、2種以上の材料の組み合わせであってもよい。
 封止部材622は、望ましくは、50μm以上100μm以下の厚さを有する。これにより、封止部材622に可撓性を付与することができる。これにより、複数の関節部612に関節機能を付与することができる。
 収容部材621及び封止部材622は、単層部材であってもよいし、多層部材であってもよい。収容部材621及び封止部材622は、望ましくは、低密度ポリエチレン樹脂層及びポリアミド樹脂層を備える多層部材である。収容部材621及び封止部材622が当該多層部材である場合は、収容部材621及び封止部材622にそれぞれ備えられる2層の低密度ポリエチレン樹脂層が互いに接触するように収容部材621及び封止部材622が重ねられる。また、2層の低密度ポリエチレン樹脂層の接触面が互いに熱圧着される。これにより、複数の関節部612を形成することができる。
 収容部材621及び封止部材622の少なくとも一方の部材が、基材及び基材の上に配置される薄膜を備えてもよい。薄膜を構成する材料は、例えば、アルミニウム及び二酸化ケイ素からなる群より選択される少なくとも1種を含む。これにより、当該部材の耐久性及びバリア性を向上することができる。
 保冷具6が、収容部材621及び封止部材622の少なくとも一方の部材に貼り付けられ温度を示す示温材シールを備えてもよい。これにより、保冷具6の温度を認識することが可能になる。
 収容部材621及び封止部材622が、保冷具6の形状を筒状に維持するための固定部を備えてもよい。これにより、保冷具6が被保冷物に近接又は接触させられる際に、保冷具6により被保冷物を包囲することができる。固定部は、例えば、収容部材621の表面621a及び封止部材622の表面622aに備えられる面ファスナーを備える。
 6.2 変形例
 図20は、第6実施形態の変形例の保冷具6Aを模式的に図示する斜視図である。図21は、第6実施形態の変形例の保冷具6Aを模式的に図示する断面図である。
 保冷具6Aは、保冷具支持体651を備える点で、保冷具6と相違する。
 保冷具支持体651は、有底円筒状の形状を有する。保冷具支持体651の一端は、開口している。保冷具支持体651には、保冷具6を収容する内部空間651cが形成されている。保冷具6は、収容部材621が径方向内側に配置され、封止部材622が径方向外側に配置されるように、変形されている。保冷具6Aは、保冷具支持体651を備えることにより、円筒状の形状を有し、自立することができる。
 保冷具支持体651は、望ましくは、断熱性を有し保冷具支持体651の外部と保冷具支持体651の内部との間の熱交換を防ぐことができる材料により構成される。
 保冷具支持体651を構成する材料は、例えば、発泡ポリエチレン、発泡ウレタン及びクロロプレンゴム(発泡ゴム)からなる群より選択される少なくとも1種を含む。
 図21に図示されるように、保冷具6Aが使用されている状態においては、缶状又はボトル状の形状を有する被保冷物Xが保冷具支持体651に囲まれる円筒状の空間600cに挿入される。これにより、保冷具6を被保冷物Xに近接又は接触させることができる。これにより、潜熱蓄熱材601の主たる融点付近の温度で被保冷物Xを保冷することができる。
 保冷具支持体651は、望ましくは、弾性を有する材料により構成される。これにより、保冷具支持体651が、被保冷物Xの径に応じて弾性変形することができる。これにより、保冷具支持体651を被保冷物Xに押し付けることができる。
 6.3 保冷具の製造方法
 図22Aから図22Dまでは、第6実施形態の保冷具6が製造される際に得られる中間品を模式的に図示する断面図である。
 保冷具6が製造される際には、図22Aに図示されるように、台形状の断面形状を有する溝部661gが形成された金型661の上に、収容部材621の前駆体となる硬質フィルム671が載せられる。
 続いて、図22Bに図示されるように、真空成型、プレス加工等により、金型661に形成された溝部661gの形状が硬質フィルム671に転写される。これにより、収容部材621が形成される。
 続いて、図22Cに図示されるように、液体である潜熱蓄熱材601が、ポンプ等により、収容部材621の凹部641に注入される。
 続いて、図22Dに図示されるように、封止部材622が収容部材621の上に載せられる。また、収容部材621及び封止部材622の接触面が互いに熱圧着されて収容部611及び関節部612が形成される。
 7 第7実施形態
 7.1 物流梱包容器(食品保冷用具)
 図23は、第7実施形態の物流梱包容器7を模式的に図示する断面図である。
 物流梱包容器7は、被保冷物Xを保冷する。物流梱包容器7は、被保冷物Xを保冷した状態で輸送するために用いられる。被保冷物Xは、例えば、-18℃以下の温度で保冷される冷凍食品である。被保冷物Xが冷凍食品である場合は、物流梱包容器7は、冷凍食品を保冷する食品保冷用具でもある。
 図23に図示されるように、物流梱包容器7は、第6実施形態の保冷具6と、物流梱包容器本体701と、を備える。
 物流梱包容器本体701は、保冷具6及び被保冷物Xを収容する。
 保冷具6は、被保冷物Xを上方から被覆する。これにより、保冷具6の少なくとも一部は、被保冷物Xに接触する。これにより、被保冷物Xから被保冷物Xと保冷具6との接触面6aを経由して保冷具6まで熱が伝導する。これにより、被保冷物Xを効果的に保冷することができる。また、物流梱包容器7の外部から物流梱包容器7の内部に流入する熱が被保冷物Xに影響を与えることを抑制することができる。このため、保冷具6は、潜熱蓄熱材601の主たる融点付近の温度で被保冷物Xを保冷することができる。このため、保冷具6は、-18℃以下の温度に維持されなければならない冷凍食品の保冷及び輸送に好適に用いられる。
 物流梱包容器7が、保冷具6の上方に配置される断熱部材を備えてもよい。これにより、物流梱包容器7の保冷性能を向上することができる。
 物流梱包容器7において、収容部材621の表面621a及び物流梱包容器本体701の底面701aが面ファスナー等により互いに固定することができてもよい。
 本開示は、上記実施の形態に限定されるものではなく、上記実施の形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成又は同一の目的を達成することができる構成で置き換えてもよい。


 

Claims (8)

  1.  6重量部~29重量部の塩化アンモニウムと、6重量部~29重量部の尿素と、42重量部~88重量部の水と、を含み、塩化アンモニウム、尿素及び水の合計が100重量部であり、-18℃~-21℃の範囲に主たる融点を有する潜熱蓄熱材。
  2.  14重量部~16重量部の塩化アンモニウムと、15重量部~18重量部の尿素と、66重量部~71重量部の水と、を含む
    請求項1に記載の潜熱蓄熱材。
  3.  過冷却抑制剤を含む
    請求項1又は2に記載の潜熱蓄熱材。
  4.  前記過冷却抑制剤は、硫酸アンモニウムアルミニウム十二水和物、炭酸カルシウム、酸化アルミニウム及び活性炭からなる群より選択される少なくとも1種を含む
    請求項3に記載の潜熱蓄熱材。
  5.  請求項1から4までのいずれかに記載の潜熱蓄熱材と、
     前記潜熱蓄熱材を液密に収容する保冷具本体と、
    を備える保冷具。
  6.  前記保冷具本体は、複数の収容部と、前記複数の収容部に含まれる隣接するふたつの収容部を互いに結合する関節部と、を備え、
     前記複数の収容部の各々は、前記潜熱蓄熱材を液密に収容する
    請求項5に記載の保冷具。
  7.  請求項5又は6に記載の保冷具を備える物流梱包容器。
  8.  請求項5又は6に記載の保冷具を備える食品保冷用具。


     
PCT/JP2021/043511 2020-12-04 2021-11-29 潜熱蓄熱材、保冷具、物流梱包容器及び食品保冷用具 WO2022118764A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566895A JPWO2022118764A1 (ja) 2020-12-04 2021-11-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-202086 2020-12-04
JP2020202086 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118764A1 true WO2022118764A1 (ja) 2022-06-09

Family

ID=81853866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043511 WO2022118764A1 (ja) 2020-12-04 2021-11-29 潜熱蓄熱材、保冷具、物流梱包容器及び食品保冷用具

Country Status (2)

Country Link
JP (1) JPWO2022118764A1 (ja)
WO (1) WO2022118764A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1387810A (en) * 1971-05-27 1975-03-19 Chubb Fire Security Ltd Freezing point depressant
JPS55161878A (en) * 1979-06-04 1980-12-16 Mitsui Toatsu Chem Inc Freezing mixture
JPS59170179A (ja) * 1983-03-16 1984-09-26 Matsushita Electric Ind Co Ltd 蓄熱材
CN1266876A (zh) * 1999-03-10 2000-09-20 海尔集团公司 一种共晶液
WO2019026820A1 (ja) * 2017-07-31 2019-02-07 シャープ株式会社 潜熱蓄熱材、保冷具、保冷庫、物流梱包容器および保冷ユニット
WO2019235468A1 (ja) * 2018-06-07 2019-12-12 シャープ株式会社 潜熱蓄熱材料およびその製造方法、ならびにこれを用いた保冷具、物流梱包容器、人体冷却用具、冷蔵庫および食品保冷用具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1387810A (en) * 1971-05-27 1975-03-19 Chubb Fire Security Ltd Freezing point depressant
JPS55161878A (en) * 1979-06-04 1980-12-16 Mitsui Toatsu Chem Inc Freezing mixture
JPS59170179A (ja) * 1983-03-16 1984-09-26 Matsushita Electric Ind Co Ltd 蓄熱材
CN1266876A (zh) * 1999-03-10 2000-09-20 海尔集团公司 一种共晶液
WO2019026820A1 (ja) * 2017-07-31 2019-02-07 シャープ株式会社 潜熱蓄熱材、保冷具、保冷庫、物流梱包容器および保冷ユニット
WO2019235468A1 (ja) * 2018-06-07 2019-12-12 シャープ株式会社 潜熱蓄熱材料およびその製造方法、ならびにこれを用いた保冷具、物流梱包容器、人体冷却用具、冷蔵庫および食品保冷用具

Also Published As

Publication number Publication date
JPWO2022118764A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
JPWO2019026820A1 (ja) 潜熱蓄熱材、保冷具、保冷庫、物流梱包容器および保冷ユニット
JP6999030B2 (ja) 潜熱蓄熱材料およびその製造方法、ならびにこれを用いた保冷具、物流梱包容器、人体冷却用具、冷蔵庫および食品保冷用具
JP2009168303A (ja) 長時間常温を保つ常温保温剤バック及び保温箱、常温保温方法
WO2022118764A1 (ja) 潜熱蓄熱材、保冷具、物流梱包容器及び食品保冷用具
WO2022118765A1 (ja) 潜熱蓄熱材、保冷具、物流梱包容器及び食品保冷用具
CN111670239B (zh) 潜热蓄热材料及使用其的保冷工具以及保冷方法
JP4736776B2 (ja) 保冷剤および保冷材
JP6663508B2 (ja) 蓄熱材、保冷具、物流梱包容器および保冷ユニット
US8240300B1 (en) Hot/cold pack product and method of making
CN111902345A (zh) 保冷用具
WO2019235279A1 (ja) 保冷具および梱包容器、ならびに保冷対象物の輸送方法
JP2023001433A (ja) 潜熱蓄熱材、保冷具、物流梱包容器及び食品保冷用具
JP2015067651A (ja) 保冷具
JP4840075B2 (ja) 保冷剤および保冷材
JP2008156582A (ja) 保冷剤及び保冷剤パック
WO2018003768A2 (ja) 保冷容器、保冷皿および赤ワイン用サーバー
JP7481973B2 (ja) 蓄熱材、保冷具、物流梱包容器及び蓄熱材の製造方法
JP7011743B1 (ja) 冷凍温度帯蓄冷材とそれを用いた保冷具および物流梱包容器
JP7217878B2 (ja) 保冷具、貨物、輸送機器、輸送方法及び保冷方法
CN203497413U (zh) 蓄冷式软冰排
JP2007217460A (ja) 保冷剤及び保冷剤パックとその保冷剤パックを備えて包装した保冷包装食品
JP7011744B1 (ja) 冷凍温度帯蓄冷材とそれを用いた保冷具、物流梱包容器および物流システム
US20210207015A1 (en) Refrigeration pack product and method for providing same comprising providing a slurry including a thickening agent
JP2022085249A (ja) 保冷剤用増粘剤、保冷剤、保冷具、貨物、輸送機器、保冷具の製造方法、輸送方法及び保冷方法
JP2023013394A (ja) 潜熱蓄熱材、およびそれを用いた保冷具、用具並びに保冷方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900518

Country of ref document: EP

Kind code of ref document: A1