WO2022117824A1 - PRODROGUE DU 5α-HYDROXY-6β-[2-(1H-IMIDAZOL-4-YL)ETHYLAMINO]CHOLESTAN-3β-OL ET COMPOSITIONS PHARMACEUTIQUES LE COMPRENANT POUR UTILISATION DANS LE TRAITEMENT DU CANCER - Google Patents

PRODROGUE DU 5α-HYDROXY-6β-[2-(1H-IMIDAZOL-4-YL)ETHYLAMINO]CHOLESTAN-3β-OL ET COMPOSITIONS PHARMACEUTIQUES LE COMPRENANT POUR UTILISATION DANS LE TRAITEMENT DU CANCER Download PDF

Info

Publication number
WO2022117824A1
WO2022117824A1 PCT/EP2021/084191 EP2021084191W WO2022117824A1 WO 2022117824 A1 WO2022117824 A1 WO 2022117824A1 EP 2021084191 W EP2021084191 W EP 2021084191W WO 2022117824 A1 WO2022117824 A1 WO 2022117824A1
Authority
WO
WIPO (PCT)
Prior art keywords
imidazol
cholestan
hydroxy
ethylamino
compound
Prior art date
Application number
PCT/EP2021/084191
Other languages
English (en)
Inventor
Stéphane SILVENTE
Quentin MARLIER
Arnaud RIVES
Nicolas Caron
Dario MOSCA
Hélène MICHAUX
Original Assignee
Dendrogenix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dendrogenix filed Critical Dendrogenix
Priority to JP2023533809A priority Critical patent/JP2024503572A/ja
Priority to KR1020237021722A priority patent/KR20230114274A/ko
Priority to EP21819893.5A priority patent/EP4255441A1/fr
Priority to CA3200327A priority patent/CA3200327A1/fr
Priority to CN202180081946.3A priority patent/CN116546988A/zh
Priority to US18/265,186 priority patent/US20240002429A1/en
Priority to AU2021391628A priority patent/AU2021391628A1/en
Publication of WO2022117824A1 publication Critical patent/WO2022117824A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J43/003Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/36Arsenic; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Definitions

  • the invention relates to the field of sterol compounds and more particularly to prodrugs of the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -ol and pharmaceutical compositions comprising it for use in particular in the treatment of cancer.
  • cancer or "cancerous tumor” encompasses a group of diseases characterized by the uncontrolled growth and spread of abnormal cells. If the cancer cells are not eliminated, the evolution of the disease will more or less quickly lead to the death of the affected person.
  • Cancer management involves surgery, radiotherapy and chemotherapy, which can be used alone or in combination, simultaneously or sequentially.
  • Chemotherapy uses antineoplastic agents which are drugs that prevent or inhibit the maturation and proliferation of neoplasms.
  • Antineoplastic agents work by effectively targeting rapidly dividing cells. Because antineoplastic agents affect cell division, tumors with a high growth rate (such as acute myeloid leukemia and aggressive lymphomas, including Hodgkin's disease) are more susceptible to chemotherapy because a greater proportion of cells targets undergo cell division at any time. Malignant tumors with slower growth rates, such as indolent lymphomas, tend to respond much more modestly to chemotherapy. However, the development of drug resistance is a persistent problem during chemotherapy treatment.
  • AML acute myeloid leukemia
  • anthracycline such as daunorubicin
  • the overall 5-year survival rate is 40% in young adults and about 10% in elderly patients. Response rates vary considerably with aging, from 40% to 55% in patients over 60 and from 24% to 33% in patients over 70. This is even worse for the elderly with unfavorable cytogenetic profiles and death within 30 days of treatment ranges from 10% to 50% with increasing age and worsening.
  • the restriction of the use of these molecules is also due to side effects, and in particular to the emergence of chronic cardiac toxicity (linked to anthracyclines).
  • the toxic mortality rate linked to intensive chemotherapy is 10% to 20% in patients over 60 years of age.
  • Dendrogenin A the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -ol, known as Dendrogenin A, useful for the treatment of chemoresistant tumours.
  • Dendrogenin A (hereafter referred to as DX101) is able to restore the sensitivity of chemoresistant tumors to an antineoplastic agent or to increase the effects of antineoplastic agents on tumors, which in turn makes it possible to reduce the effective cytotoxic dose of antineoplastic agents against chemosensitive tumours.
  • An object of the present invention is to provide new compounds and prodrugs or prodrugs of the compound Dendrogenin A, useful in particular for treating cancerous tumours, chemosensitive and/or chemoresistant tumours.
  • the first subject of the invention is a compound of formula (I); or a pharmaceutically acceptable salt of such a compound, in which R1 is chosen from:
  • R 2 , R3 are equivalent or different and are chosen from H and a saturated or unsaturated, linear or branched C1 to C8 carbon chain optionally containing one or more substituents chosen from allyl, carbonyl and aromatic heterocycle groups,
  • R 4 being chosen from -CH 2 CH 3 and -C 5 H 11 ,
  • R 5 is a C1 to C8 carbon chain; saturated or unsaturated, linear or branched,
  • R 6 is the side chain of the amino acids chosen from -CH 2 -C 3 N 2 H 2 , CH 2 CH(CH 3 ) 2 , - CH(CH 3 )CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 C 6 H 5 , -CH 2 C 8 NH 6 , -(CH 2 ) 4 NH 2 , -CH 2 C 6 OH 5 , -C 3 H 5 N, for its use as a medicament for regressing a mammalian cancerous tumor.
  • a second subject of the invention is a pharmaceutical composition
  • a pharmaceutical composition comprising, in a pharmaceutically acceptable vehicle, at least one compound of formula (I) for its use as a medicament for regressing a mammalian cancerous tumour.
  • solvate is used herein to describe a molecular complex comprising a compound of the invention and containing stoichiometric or sub-stoichiometric amounts of one or more pharmaceutically acceptable solvent molecules such as ethanol.
  • solvent molecules such as ethanol.
  • hydrate refers when said solvent is water.
  • carbonyl refers to a double bond between a carbon atom and an oxygen atom.
  • aromatic heterocycle refers to monocyclic and polycyclic aromatic compounds comprising as cyclic elements one or more heteroatoms among O, S and/or N.
  • aromatic heterocycles mention may be made of imidazole, furan, thiophene, pyrole, purine, pyrimidine, indole and benzofuran.
  • human refers to a subject of either sex and at any stage of development (i.e. newborn, infant, juvenile, adolescent, adult).
  • patient refers to a warm-blooded animal, more preferably a human, who is awaiting reception or receiving medical treatment and/or who will be the subject of a medical procedure.
  • pharmaceutical vehicle means an inert carrier or medium used as a solvent or diluent in which the pharmaceutically active agent is formulated and/or administered.
  • pharmaceutical carriers include creams, gels, lotions, solutions and liposomes.
  • administration means to deliver, the active agent or the active ingredient (for example the compound of formula (I)), in a pharmaceutically acceptable, to the patient in which a condition, symptom and/or disease is to be treated.
  • treat and “treatment” as used herein include alleviating, alleviating, stopping, curing a condition, symptom and/or disease.
  • prodrug or "prodrug” as used in the present description refers to pharmacologically acceptable derivatives of the compounds of formula (I), which can be administered to a patient without undue toxicity, irritation, allergic reaction, etc. ., which are convertible in vivo by metabolic means (eg hydrolysis) and whose in vivo biotransformation product generates the biologically active drug.
  • Most of the prodrugs described in this specification are characterized by increased bioavailability and are readily metabolized to biologically active compounds in vivo.
  • the prodrug is administered in a form that is inactive or much less active than its metabolite.
  • the prodrugs have identical, similar or superior pharmacological properties to the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -ol.
  • Certain prodrugs described in the present invention when they do not show a higher bioavailability than the reference compound, show a faster penetration and potentially a faster effect for their use to treat cancer.
  • drug in this description means any compound or composition presented as having curative or preventive properties with regard to human or animal diseases.
  • a medicine includes any compound or any composition that can be used in humans or animals or that can be administered to them, with a view to establishing a medical diagnosis or restoring, correcting or modifying their physiological functions by exerting a pharmacological, immunological or metabolic action.
  • the drug is composed of two kinds of substances, an active principle and one or more excipients.
  • active ingredient refers to a compound having a pharmacological effect and a therapeutic effect.
  • excipient refers to any substance other than the active ingredient in a medicine.
  • chemoresistant cancer we mean a cancer in a patient where the proliferation of cancerous cells cannot be prevented or inhibited by means of an antineoplastic agent or a combination of antineoplastic agents commonly used to treat this cancer, at a dose acceptable to the patient.
  • Tumors may be inherently resistant prior to chemotherapy, or resistance may be acquired during treatment by tumors initially responsive to chemotherapy.
  • chemosensitive cancer is meant a cancer in a patient which responds to the effects of an antineoplastic agent, i.e. where the proliferation of cancer cells can be prevented by means of said antineoplastic agent at a dose acceptable to the patient.
  • the compound of formula (I) belongs to the group of steroids.
  • the numbering of the carbon atoms of the compound of formula (I) therefore follows the nomenclature defined by the IUPAC in Pure & Appl. Chem., Vol.61, No.10, pp.1783-1822,1989.
  • the numbering of the carbon atoms of a compound belonging to the group of steroids according to IUPAC is shown below:
  • AML acute myeloid leukemia
  • Dendrogenin A 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -ol;
  • MCF-7 Michigan Cancer Foundation-7
  • DMEM Dulbecco's Modified Eagle Medium
  • FCS fetal calf serum
  • ChEH Cholesterol Epoxide Hydrolase
  • Neuro2a murine glioblastoma
  • PBS phosphate buffered saline
  • DMSO dimethyl sulfoxide
  • OD optical density or absorbance
  • CT cholestane-3 ⁇ ,5 ⁇ ,6 ⁇ -triol
  • OCDO 6-oxo-cholestan-3 ⁇ ,5 ⁇ -diol
  • 5,6 ⁇ -EC 5,6 ⁇ -epoxycholesterol
  • Tam Tamoxifen
  • the first subject of the invention is a compound of formula (I); or a pharmaceutically acceptable salt of such a compound, in which R1 is chosen from:
  • R 2 , R 3 are equivalent or different and are chosen from H and a saturated or unsaturated, linear or branched C1 to C8 carbon chain optionally containing one or more chosen substituents from allyl, carbonyl and aromatic heterocycle groups,
  • R 4 being chosen from -CH 2 CH 3 and -C 5 H 11 ,
  • R 5 is a C1 to C8 carbon chain; saturated or unsaturated, linear or branched,
  • the invention relates to a compound of formula (I); or a pharmaceutically acceptable salt of such a compound, in which R 1 is chosen from:
  • R 2 , R 3 are equivalent or different and are chosen from H and a saturated or unsaturated, linear or branched C1 to C8 carbon chain optionally containing one or more chosen substituents from allyl, carbonyl and aromatic heterocycle groups, a group - C(O)R 4 , with R 4 is chosen from -CH 2 CH 3 and -C 5 H 11 ,
  • R 5 is a C1 to C8 carbon chain; saturated or unsaturated, linear or branched, a group - C(O)CHNH(COCH 2 CH 3 )R61 where Re is the side chain of the amino acids chosen from -CH 2 -C 3 N 2 H 2 , CH 2 CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 C 6 H 5 , -CH 2 C 8 NH 6 , -(CH 2 ) 4 NH 2 , -CH 2 C 6 OH 5 , -C 3 H 5 N, for its use as a medicament for regressing a cancerous mammalian tumour.
  • the R 1 radical is a -C(O)R 4 group (acyl group) with R 4 being the radical chosen from -CH 2 CH 3 and -C 5:11 a.m.
  • the R 4 radical is preferably the -CH 2 CH 3 radical, it is the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4- yl)-ethylamino]-cholestan-3 ⁇ -propionate. Propionate is interchangeably propanoate.
  • the R 4 radical is C 5 H 11 , it is the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl) -ethylamino]-cholestan-3 ⁇ -hexanoate.
  • the R 1 radical is a -C(O)OR 5 group (carbonate group), where R 5 is a C1 to C8 carbon chain.
  • the R 5 radical is preferably an ethyl or butyl carbon chain, very preferably an ethyl carbon chain.
  • the R 1 radical is a -C(O)NR 2 R 3 group (carbamate group) in which R 2 and R 3 are equivalent or different and are selected from H and a saturated, linear C1 to C8 carbon chain optionally containing an aromatic heterocycle substituent.
  • R 2 and R 3 are chosen from two ethyl radicals or the 1-H-imidazole-4yl group.
  • R 2 and R 3 is an aromatic heterocycle substituent such as the 1-H-imidazole-4yl group.
  • R 1 is a group - C(O)CHNH(COCH 2 CH 3 )R 6 where R 6 is the side chain of the amino acids chosen from - CH 2 -C 3 N 2 H 2 , CH 2 CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 C 6 H 5 , -CH 2 C 8 NH 6 , - (CH 2 ) 4 NH 2 , -CH 2 C 6 OH 5 , -C 3 H 5 N.
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )CH(CH 3 )CH 2 CH 3 group
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )CH(CH 3 )CH 2 CH 3 group
  • it is of the compound N-propionate-L-Isoleucine 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl ester.
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )CH 2 C6H 5 group
  • it is the N-propionate compound -L-Phenylalanine 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl ester.
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )CH 2 C 8 NH 6 group
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )CH 2 C 8 NH 6 group
  • it is the compound N -propionate-L-Tryptophan 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl ester.
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )CH 2 C 6 H 4 OH group
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )CH 2 C 6 H 4 OH group
  • it is the compound N-propionate-L-Tyrosine 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl ester.
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )CH(CH 3 )2 group
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )CH(CH 3 )2 group
  • it is the compound N -propionate-L-Valine 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl ester.
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )C 3 H 5 N group
  • R 1 radical is the -C(O)CHNH(COCH 2 CH 3 )C 3 H 5 N group
  • it is the compound N- Propionate-L-Proline a-hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl ester.
  • N-propionate-L-Tryptophan 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl ester
  • N-propionate-L-Lysine 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl ester
  • the compound of formula (I) is intended for use as a drug in the treatment of breast, prostate, colorectal, lung, bladder, skin, uterus, cervix, mouth, brain, stomach, liver, throat, larynx, esophagus, bone, ovary, pancreas, kidney, retina, sinus, nasal cavity, testis, thyroid, vulva, in the treatment of lymphoma, non-Hodgkin's lymphoma, Hodgkin's lymphoma, leukemia, acute myeloid leukemia or acute lymphocytic leukemia, multiple myeloma, Merkel cell carcinoma or mesothelioma.
  • the cancer is acinar adenocarcinoma, acinar carcinoma, acrolentiginous melanoma, actinic keratosis, adenocarcinoma, adenoid cystic carcinoma, adenosquamous carcinoma, adnexal carcinoma, rest tumor adrenal cell carcinoma, adrenocortical carcinoma, aldosterone-secreting carcinoma, alveolar soft tissue sarcoma, ameloblastic thyroid carcinoma, angiosarcoma, apocrine carcinoma, Askin tumor, astrocytoma, basal cell carcinoma, carcinoma basaloid, basosquamous carcinoma, bile duct cancer, bone marrow cancer, botryoid sarcoma, bronchioalveolar carcinoma, bronchogenic adenocarcinoma, bronchogenic carcinoma, carcinoma ex pleomorphic adenoma, chloroma, carcinoma cholangiocellular, chondrosarcom
  • the compound of formula (I) is for use as a medicament in the treatment of breast cancer, myeloid leukemia and melanoma in mammals.
  • the compound is for use as a drug in the treatment of chemosensitive cancer.
  • the compound of formula (I) is intended for use as a medicament in the treatment of a chemoresistant cancer.
  • the chemoresistant cancer is a hematological or blood cancer, such as leukemia, in particular acute myeloid leukemia or acute lymphocytic leukemia, lymphoma, in particular non-Hodgkin's lymphoma and myeloma multiple.
  • leukemia in particular acute myeloid leukemia or acute lymphocytic leukemia
  • lymphoma in particular non-Hodgkin's lymphoma and myeloma multiple.
  • the cancer is chemoresistant to daunorubicin, cytarabine, fluorouracil, cisplatin, all-trans-retinoic acid, arsenic trioxide, bortezomib, or one of of their combinations.
  • the C3-specific prodrugs of the compound Dendrogenin A described in this specification exhibit comparable or superior pharmacological activity to Dendrogenin A.
  • Dendrogenin A is eliminated rapidly in vivo from the body.
  • the C3-specific prodrugs according to the invention have a higher bioavailability than Dendrogenin A and are easily metabolized into biologically active compounds in vivo. Therefore, the therapeutic effect of Dendrogenin A is prolonged in the patient's body when a specific C3 prodrug described in this description is used in vivo.
  • All references to compounds of formula (I) include references to salts, multi-component complexes and their liquid crystals. All references to compounds of formula (I) also include references to polymorphs and their usual crystals. [59]
  • the compound according to the invention may be in the form of pharmaceutically acceptable salts.
  • a pharmaceutically acceptable salt of the compound of formula (I) comprises the acid addition thereof.
  • Suitable acid salts are formed from acids that form non-toxic salts.
  • the salts are chosen from: acetate, adipate, benzoate, bicarbonate, carbonate, bisulfate, sulfate, camphorsulfonate, borate, camsylate, citrate, cyclamate, edisylate, esylate, formate, furamate, gluceptate, gluconate, glucuronate, hexafluorophosphate, hibenzate, chloride hydrochloride, hydrobromide, bromide, hydroiodide, iodide, isethionate, lactate, malate, maleate, malonate mesylate, methylsulfate, naphthylate, 2-napsylate, nicotinate, nitrate, orotate, oxalate, palmitate, pamoate, phosphate, hydrogen phosphate, dihydrogen phosphate , pyrogluta
  • compositions of formula (I) can be prepared by one or more of the following three methods:
  • the salt obtained can precipitate and be collected by filtration or can be recovered by evaporation of the solvent.
  • the degree of ionization of the salt obtained can vary from completely ionized to almost non-ionized.
  • the second subject of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising, in a pharmaceutically acceptable vehicle, at least one compound according to the invention, as described above for its use as a medicament for regressing a cancerous mammalian tumour.
  • the pharmaceutical composition further comprises at least one other therapeutic agent.
  • this other therapeutic agent is an antineoplastic agent.
  • the antineoplastic agent is a DNA damaging agent such as camptothecin, irinotecan, topotecan, amsacrine, etoposide, etoposide phosphate, teniposide, cisplatin, carboplatin, oxaliplatin, cyclophosphamide, chlorambucil, chlormethine, busulfan, treosulfan or thiotepa, an antitumor antibiotic such as daunorubicin, doxorubicin, epirubicin, idarubicin, mitoxantrone, valrubicin, actinomycin D, mitomycin, bleomycin or plicamycin, an antimetabolite such as 5-fluorouracil, cytarabine, fludarabine or methotrexate, an antimitotic such as paclitaxel
  • the pharmaceutical composition is used in the treatment of cancer in a patient suffering from a tumor which is chemoresistant to said antineoplastic agent when it is not administered in combination with a compound according to the invention .
  • the pharmaceutical composition is used in the treatment of cancer in a patient suffering from a tumor which is chemosensitive to said antineoplastic agent, and the dose of the antineoplastic agent administered to said patient in combination with a compound according to the invention or one of its pharmaceutically acceptable salts is lower than the dose of the antineoplastic agent when it is not administered in combination with a compound according to the invention.
  • the dose of the antineoplastic agent administered to said patient in combination with a compound according to the invention or one of its pharmaceutically acceptable salts is lower than the dose of the antineoplastic agent administered alone, without any other active ingredient.
  • composition according to the invention may also also comprise other active therapeutic compounds commonly used in the treatment of the pathology set out above.
  • the pharmaceutical composition comprises the compound according to the invention as the sole therapeutic agent.
  • the pharmaceutical composition comprises the compound of formula (I) administered to the patient as an active therapeutic agent.
  • the pharmaceutical composition comprises the compound of formula (I) administered to the patient in combination with at least one other active therapeutic agent.
  • the pharmaceutical composition of the invention can be administered by any route, in particular by route: intradermal, intramuscular, intraperitoneal, intravenous or subcutaneous, pulmonary, transmucosal (oral, intranasal, intravaginal, rectal ), nasal spray inhalation, using tablet, capsule, solution, powder, gel, particle formulation; and contained in a syringe, an implanted device, an osmotic pump, a cartridge, a micropump; or any other means appreciated by the skilled artisan well known in the art.
  • Site-specific administration can be performed, for example, intratumoral, intra-articular, intrabronchial, intra-abdominal, intracapsular, intra-cartilaginous, intracavitary, intracerebellar, intracerebroventricular, intracolonic, intracervical, intragastric, intrahepatic, intracardiac , intraosteal, intrapelvic, intrapericardial, intraperitoneal, intrapleural, intraprostatic, intrapulmonary, intrarectal, intrarenal, intraretinal, intraspinal, intrasynovial, intrathoracic, intrauterine, intravascular, intravesical, intralesional, vaginal, rectal, buccal, sublingual, intranasal or transdermal in a suitable dosage comprising the usual non-toxic and pharmaceutically acceptable vehicles.
  • the pharmaceutical composition is in a form suitable for being administered intravenously, subcutaneously, intraperitoneally or orally.
  • the oral route is particularly preferred.
  • the compound of the invention is also effective on humans.
  • compositions for the administration of the compounds of this invention may be presented in unit dose form and may be prepared by any of the methods well known in the state of the art. All methods include the step of bringing the active ingredient into association with the carrier which constitutes one or more accessory ingredients.
  • pharmaceutical compositions are prepared by bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation.
  • the active object compound is included in an amount sufficient to produce the desired effect on the disease process or state.
  • compositions containing the active ingredient may be in a form suitable for oral use, for example in the form of tablets, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, capsules, syrups, elixirs, solutions, mouth patches, oral gel, chewing gum, chewable tablets, effervescent powder and effervescent tablets.
  • the essays Pharmaceuticals containing the active ingredient can be in the form of an aqueous or oily suspension.
  • the aqueous suspensions contain the active materials mixed with excipients suitable for the manufacture of aqueous suspensions.
  • excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxy-propylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia;
  • the dispersing or wetting agents may be a natural phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of alkylene oxide ethylene with long chain aliphatic alcohols, for example heptadecaethylene-oxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol, such as polyoxyethylene monooleate sorbitol, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene
  • the aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, p-hydroxybenzoate, one or more colorants, one or more flavoring agents, and one or more sweeteners, such as sucrose or saccharin.
  • the oily suspensions can be formulated by suspending the active ingredient in a vegetable oil, for example peanut, olive, sesame or coconut oil, or in a mineral such as liquid paraffin.
  • Oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those mentioned above and flavoring agents can be added to obtain a palatable oral preparation. These compositions can be preserved by adding an antioxidant such as ascorbic acid.
  • Dispersible powders and granules which are suitable for the preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent and one or more preservatives.
  • Syrups and elixirs can be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. These formulations may also contain emollient, preservative, flavoring and coloring agents.
  • sweetening agents for example glycerol, propylene glycol, sorbitol or sucrose. These formulations may also contain emollient, preservative, flavoring and coloring agents.
  • the pharmaceutical compositions according to the invention may be in the form of an aqueous or oleaginous suspension which can be injected in a sterile manner. This suspension can be formulated according to the known art using the appropriate dispersing or wetting agents and suspending agents which have been mentioned above.
  • the sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic diluent or solvent acceptable parenterally, for example a solution in 1,3-butane diol.
  • Acceptable vehicles and solvents include; water, Ringer's fluid and isotonic sodium chloride solution.
  • sterile fixed oils are traditionally used as a solvent or suspending medium. For this purpose, any fixed oil can be used, including synthetic mono- or diglycerides. Also, fatty acids such as oleic acid are used in the preparation of injectables.
  • compositions according to the invention can also be administered in the form of suppositories for the rectal administration of the drug.
  • These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and which will therefore melt in the rectum to release the drug.
  • a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and which will therefore melt in the rectum to release the drug.
  • materials include cocoa butter and polyethylene glycols.
  • compositions according to the invention can be administered via the ocular route by means of solutions or ointments.
  • transdermal delivery of the compounds in question can be achieved by means of iontophoretic and other patches.
  • creams, ointments, jellies, solutions or suspensions are used.
  • a suitable dosage of the pharmaceutical composition according to the invention can generally be from about 0.1 to 50,000 micrograms ( ⁇ g) per kg of body weight. of the patient per day, which can be administered in single or multiple doses.
  • the dosage level will preferably be from about 1000 to about 40,000 ⁇ g/kg per day, depending on many factors such as the severity of the cancer to be treated, the age and relative state of health of the subject, the route and the form of administration.
  • this composition may be supplied in the form of tablets containing 1000 to 100000 micrograms of each of the active ingredients, in particular 1000, 5000, 10000, 15000, 20000, 25000, 50000, 75000, 100000 micrograms of each active ingredient .
  • This composition can be administered on a 1 to 4 times daily schedule, for example once or twice daily.
  • the dosage regimen may be adjusted to provide an optimal therapeutic response.
  • the invention also discloses below processes for the manufacture of the compounds of formula (I).
  • Figure 1 illustrates the pharmacokinetic profile of the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl propionate (DX107) in comparison with the compound Dendrogenin A (DX101).
  • Figure 2 illustrates the pharmacokinetic profile of the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl-(2-(1 H-imidazol-4-yl)ethyl)carbamate (DX117) in comparison with the compound Dendrogenin A (DX101).
  • Figure 3 illustrates the pharmacokinetic profile of the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -ethyl-carbonate (DX121) in comparison with the compound Dendrogenin A (DX101).
  • Figure 4A illustrates the comparison of activity between DX107 and DX101 on the reduction of tumor growth.
  • Figure 4B illustrates the activity comparison between DX107 and DX101 on animal survival
  • Figure 5 shows the results of a cytotoxicity study of the compound, 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl propionate on Neuro2a cells via a trypan blue test.
  • Figure 6 illustrates the results of an MTT cell viability test carried out on MCF-7 mammary tumor cells in the presence of the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino ]-cholestan-3 ⁇ -yl propionate.
  • Figure 7 illustrates the results of Cholesterol Epoxide Hydrolase (ChEH) activity in MCF-7 cells in the presence of the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)- ethylamino]-cholestan-3 ⁇ -yl propionate.
  • ambient temperature used in the following examples must be interpreted as being a temperature between 10 and 40 degrees Celsius (°C), for example between 15°C and 30°C and preferably around 20°C.
  • Example 1 Synthesis of the compound of formula (I) 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestan-3 ⁇ -yl propionate (named DX107, in basic form):
  • the first step is a synthesis of the compound cholestan-3 ⁇ -propionate comprising the following steps:
  • the second step consists in synthesizing from cholestan-3 ⁇ -propionate the compound 5,6 ⁇ -Epoxycholestan-3 ⁇ -propionate as follows:
  • the third step consists in synthesizing 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestane-3 ⁇ -propionate (DX107 in basic form) as follows:
  • Histamine in its basic form (1.44 g, 13.0 mmol) is added after complete dissolution of 3.00 g of 5,6 ⁇ -Epoxycholestan-3 ⁇ -propionate (at 73%, 4.6 mmol) in 30 ml of butanol.
  • the reaction mixture is kept under stirring and at reflux for 48 hours.
  • the progress of the reaction is monitored by thin layer chromatography (TLC) to monitor the conversion of 5,6 ⁇ -Epoxycholestan-3 ⁇ -propionate.
  • TLC thin layer chromatography
  • the reaction medium is diluted in 24 mL of methyl tert-butyl ether, the organic phase is washed twice with 24 mL of water then twice with a saturated NaCl solution.
  • the organic phase is dried over anhydrous MgSO 4 .
  • the reaction crude is purified by chromatography column on silica gel on a purification automaton.
  • the eluent used is a mixture of dichloromethane/ethyl acetate 100-0% to 0-100%.
  • a white powder of 1.20 g of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestan-3 ⁇ -yl propionate is obtained, corresponding to 46% yield.
  • Example 2 Preparation of a dilactate salt of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino1cholestan-3 ⁇ -yl propionate (DX107 in dilatact form):
  • a dilactate salt of compound 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestan-3 ⁇ -yl propionate was prepared as follows:
  • Example 3 Synthesis of the compound of formula (I) 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylaminol-cholestan-38-yl hexanoate (named DX113, in basic form) :
  • the first step is a synthesis of the compound cholestan-3 ⁇ -hexanoate comprising the following steps:
  • the second step consists in synthesizing from cholestan-3 ⁇ -hexanoate the compound 5,6 ⁇ -Epoxycholestan-3 ⁇ -hexanoate as follows:
  • Vacuum evaporation of the organic solvent allows 5.06 g of a white powder to be obtained, corresponding to 5,6 ⁇ -Epoxycholestan-3 ⁇ -hexanoate (70%) and 5,6 ⁇ -Epoxycholestan-3 ⁇ -hexanoate (30%). 5,6 ⁇ -Epoxycholestan-3 ⁇ -hexanoate is used as is without further purification.
  • the third step consists in synthesizing 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestane-3 ⁇ -hexanoate as follows (DX1 13 in basic form):
  • Histamine in its basic form (1.25 g, 11.2 mmol) is added to a butanol solution (40 mL) of a 5,6 ⁇ -Epoxycholestan-3 ⁇ -hexanoate (at 70% purity, 4.0 g, 5.6 mmol ).
  • the reaction mixture is kept under stirring and at reflux for 48 hours.
  • the progress of the reaction is monitored by thin layer chromatography (TLC) to monitor the conversion of 5,6 ⁇ -Epoxycholestan-3 ⁇ -hexanoate.
  • TLC thin layer chromatography
  • the reaction medium is diluted in 40 mL of methyl tert-butyl ether, the organic phase is washed three times with 40 mL of water then once with 40 mL of saturated NaCl solution.
  • the organic phase is dried over anhydrous MgSO 4 .
  • the reaction crude is purified by chromatography column on silica gel on a purification automaton.
  • the eluent used is a dichloromethane/ethyl acetate mixture 100-0% to 0-100%.
  • a white powder of 1.71 g of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestane-3 ⁇ -hexanoate (50% yield) is obtained.
  • Example 4 Preparation of a dilactate salt of the compound 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestan-3 ⁇ -yl hexanoate (DX113 in dilactate form): [107] A dilactate salt of the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl hexanoate was prepared as follows:
  • Example 5 Synthesis of the compound of formula (I) 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestan-3 ⁇ -yl ethyl carbonate (named DX121, in basic form) :
  • the first step consists in synthesizing from the commercial product cholestan-3 ⁇ -yl ethyl carbonate the compound 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl ethyl carbonate as follows:
  • Meta-chloro-peroxybenzoic acid (m-CPBA) (77%, 1.31 g, 5.8 mmol) is dissolved in dichloromethane (30 mL) and added dropwise over 30 minutes to a mixture of cholestan-3 ⁇ -yl ethyl carbonate (2.02 g, 4.4 mmol) dissolved in dichloromethane (15 mL). Stirring is maintained at room temperature for three hours. The reaction medium is washed twice with an aqueous solution of sodium sulphite (10% by weight), twice with a saturated solution of NaHCO 3 and once with a saturated solution of NaCl. The organic phase is dried over anhydrous MgSO 4 .
  • the second step consists of synthesizing 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl ethyl carbonate as follows:
  • Histamine in its basic form (754.5 mg, 6.8 mmol) is added after complete dissolution of 2.09 g of 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl ethyl carbonate (at 76%, 3.4 mmol) in 20 ml of butanol.
  • the reaction mixture is kept under stirring and at reflux for 48 hours.
  • the progress of the reaction is monitored by thin layer chromatography (TLC) to monitor the conversion of 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl ethyl carbonate.
  • TLC thin layer chromatography
  • the reaction medium is diluted in 20 mL of methyl tert-butyl ether, the organic phase is washed 3 times with 20 mL of a saturated NaCl solution.
  • the organic phase is dried over anhydrous MgSO 4 .
  • the reaction crude is purified by chromatography column on silica gel on a purification automaton.
  • the eluent used is a mixture of dichloromethane/ethyl acetate 100-0% to 0-100%.
  • a white powder of 480 mg of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl ethyl carbonate is obtained, corresponding to 24% yield.
  • Example 6 Preparation of a dilactate salt of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino1-cholestan-3 ⁇ -yl ethyl carbonate (DX121 in dilactate form):
  • a dilactate salt of the compound 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl ethyl carbonate was prepared as follows:
  • Example 7 Synthesis of the compound of formula (I) 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino1cholestane-3 ⁇ -yl butyl carbonate (named DX119, in basic form):
  • the first step consists in synthesizing from the commercial product cholestan-3 ⁇ -yl butyl carbonate the compound 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl butyl carbonate as follows:
  • Vacuum evaporation of the organic solvent yields 2.21 g of a white powder corresponding to the mixture of the two isomers: 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl butyl carbonate (77%) and 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl butyl carbonate (23%).
  • the white powder is used as is without further purification.
  • the second step consists of synthesizing 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl butyl carbonate (DX119 in basic form) as follows:
  • Histamine in its basic form (759.8 mg, 6.8 mmol) is added after complete dissolution of 2.21 g of 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl butyl carbonate (at 77%, 3.4 mmol) in 20 ml of butanol .
  • the reaction mixture is kept under stirring and at reflux for 48 hours.
  • the progress of the reaction is monitored by thin layer chromatography (TLC) to monitor the conversion of 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl butyl carbonate.
  • TLC thin layer chromatography
  • the reaction medium is diluted in 20 mL of methyl tert-butyl ether, the organic phase is washed 3 times with 20 mL of a saturated NaCl solution.
  • the organic phase is dried over anhydrous MgSO 4 .
  • the reaction crude is purified by chromatographic column on a purification automaton.
  • the eluent used is a mixture of dichloromethane/ethyl acetate 100-0% to 0-100%.
  • a white powder of 814 mg of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl butyl carbonate is obtained, corresponding to 39% yield.
  • Example 8 Preparation of a dilactate salt of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino1-cholestan-3 ⁇ -yl butyl carbonate (DX1 19 in dilactate form):
  • a dilactate salt of the compound 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl butyl carbonate was prepared as follows:
  • Example 9 Synthesis of the compound of formula (I) 5 ⁇ -Hydroxy-6 ⁇ -[2-(1 H-imidazol-4-yl)ethylamino]-cholestane-3 ⁇ -yl-(2-(1 H-imidazol -4-yl)ethyl)carbamate (named DX1 17, in basic form):
  • the first step is a synthesis of the compound cholestan-3 ⁇ -yl phenyl carbonate comprising the following steps: [132] In a 100mL ground-in flask, 20 mL of dichloromethane are added to dissolve 7.58 g of cholesterol (19.6 mmol) and 1.0 g of 4-Dimethylaminopyridine (DMAP, 8.2 mmol). Then 15 mL of anhydrous pyridine (185.5 mmol) and 3.4 mL of phenyl chloroformate (24.1 mmol) are added and the whole is mixed at room temperature for 1 hour.
  • DMAP 4-Dimethylaminopyridine
  • the reaction is diluted by adding 35 mL of dichloromethane and the reaction medium is washed three times with 70 mL of an aqueous solution of HCl (1 M).
  • the organic phase is dried over anhydrous MgSO 4 . Vacuum evaporation of the organic solvent makes it possible to obtain 8.79 g of a white powder corresponding to the desired product, corresponding to 98% yield.
  • the second step consists in synthesizing from cholestan-3 ⁇ -yl phenyl carbonate the compound 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl phenyl carbonate as follows:
  • Meta-chloro-peroxybenzoic acid (77%, 5.08 g, 22.7 mmol) is dissolved in dichloromethane (70 mL) and added dropwise for 1 hour to a mixture of cholestan-3 ⁇ -yl phenyl carbonate (8.79 g , 17.3 mmol) dissolved in dichloromethane (70 mL). Stirring is maintained at room temperature for three hours. The reaction medium is washed twice with an aqueous solution of Na 2 S 2 O 3 (10% by weight), twice with a saturated solution of NaHCO 3 and once with a saturated solution of NaCl. The organic phase is dried over anhydrous MgSO 4 .
  • Vacuum evaporation of the organic solvent makes it possible to obtain 9.04 g of transparent oil corresponding to the mixture of the two isomers: 5,6 ⁇ -epoxycholestan-3 ⁇ -yl phenyl carbonate and 5,6 ⁇ -epoxycholestan-3 ⁇ -yl phenyl carbonate.
  • the mixture was redissolved in 10 mL of Et 2 O and 40 mL of EtOH were added to obtain a white precipitate.
  • the solution was filtered and the precipitate washed with EtOH.
  • the procedure makes it possible to obtain 7.23 g of a white powder rich in 5,6 ⁇ -epoxy-cholestan-3 ⁇ -yl phenyl carbonate corresponding to 88% yield 89% (76% enantiomeric excess).
  • the third step is to synthesize 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl-(2-(1H-imidazol-4-yl )ethyl)carbamate (DX1 17 in basic form) as follows:
  • Histamine in its basic form (1.13 g, 10.2 mmol) is added after complete dissolution of 1.0 g of 5,6 ⁇ -epoxy-cholestan-3 ⁇ -yl phenyl carbonate (88%, 1.7 mmol) with 30 mL of butanol.
  • the reaction mixture is kept under stirring and at reflux for 48 hours.
  • the progress of the reaction is monitored by thin layer chromatography (TLC) to monitor the conversion of 5,6 ⁇ -epoxycholestan-3 ⁇ -yl phenyl carbonate.
  • TLC thin layer chromatography
  • the mixture was transferred to a separatory funnel and the organics were extracted twice with 15 mL of methyl tert-butyl ether and twice more with 15 mL of ethyl acetate.
  • the organic phases were combined, dried over anhydrous MgSO 4 .
  • the reaction crude is purified by chromatography column on silica gel on a purification automaton.
  • the eluent used is a mixture of ethyl acetate-MeOH 95-5% up to 80-20% and finally DCM-MeOH-NH 4 OH 75-20-5%.
  • a white powder of 530 mg of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl-(2-(1H-imidazol-4-yl)ethyl) carbamate is obtained, correspond to 48% yield.
  • Example 10 Preparation of a trilactate salt of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl-(2-(1H-imidazol- 4-yl)ethyl)carbamate (DX1 17 in trilactate form):
  • a trilactate salt of the compound 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]-cholestan-3 ⁇ -yl-(2-(1H-imidazol-4-yl)ethyl)carbamate a was prepared as follows:
  • Example 11 Synthesis of the compound of formula (I) 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino1cholestan-3 ⁇ -yl-diethyl carbamate (named DX131, in basic form):
  • the first step is a synthesis of the compound cholestan-3 ⁇ -diethyl carbamate comprising the following steps:
  • the white solid was dissolved with 100 mL of Et 2 O and made precipitate with 100 ml of MeOH, then the solution was filtered and the precipitate is washed with cold MeOH.
  • the procedure makes it possible to obtain 9.30 g of a white powder corresponding to cholestan-3 ⁇ -diethyl carbamate (yield of 95%).
  • the second step consists in synthesizing from cholestan-3 ⁇ -diethyl carbamate the compound 5,6 ⁇ -Epoxycholestan-3 ⁇ -diethyl carbamate as follows:
  • Meta-chloro-peroxybenzoic acid (77%, 4.47 g, 19.9 mmol) is dissolved in dichloromethane (100 mL) and added dropwise for 1 h to a mixture of cholestan-3 ⁇ -diethyl carbamate (7.45 g, 15.3 mmol) dissolved in dichloromethane (50 mL). Stirring is maintained at room temperature for three hours. The reaction medium is washed twice with an aqueous solution of Na 2 S 2 O 3 (10% by weight), twice with a saturated solution of NaHCO 3 and once with a saturated solution of NaCl. The organic phase is dried over anhydrous MgSO 4 .
  • the third step is to synthesize 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestane-3 ⁇ -diethyl carbamate (DX131 in basic form) as follows: [148]
  • Histamine in its basic form (756.3 mg, 6.8 mmol) is added after complete dissolution of 2.00 g of 5,6 ⁇ -Epoxycholestan-3 ⁇ -diethyl carbamate (at 86%, 3.4 mmol) with 7 ml of butanol.
  • the reaction mixture is kept under stirring and at reflux for 48 hours.
  • the progress of the reaction is monitored by thin layer chromatography (TLC) to monitor the conversion of 5,6 ⁇ -Epoxycholestan-3 ⁇ -diethyl carbamate.
  • TLC thin layer chromatography
  • the reaction medium is diluted in 7 mL of methyl tert-butyl ether, the organic phase is washed 3 times with 7 mL of a saturated NaCl solution.
  • the organic phase is dried over anhydrous MgSO 4 .
  • the reaction crude is purified by column chromatography on silica gel.
  • the eluent used is a mixture of hexane-ethyl acetate 90-10% up to 0-100%, then ethyl acetate-methanol 90-10% up to 70-30%.
  • a white powder of 0.45 g of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestane-3 ⁇ -yl-diethylcarbamate is obtained, corresponding to a 22% yield.
  • Example 12 Preparation of a dilactate salt of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino1cholestan-3 ⁇ -yl-diethylcarbamate (DX131 in dilactate form):
  • a dilactate salt of the compound 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestan-3 ⁇ -yl-diethyl carbamate was prepared as follows:
  • Example 13 Synthesis of the compound of formula (I) 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestan-3 ⁇ -yl propionyltyrosine (named DX133, in basic form):
  • the first step is the synthesis of N-propionyltyrosine from the amino acid tyrosine:
  • the second step is the esterification reaction between cholesterol and N-propionyltyrosine to obtain the compound cholestan-3 ⁇ -yl propionyltyrosine
  • the organic phases thus obtained were combined and dried over MgSO 4 then evaporated, allowing a white-brownish solid to be obtained.
  • the reaction crude is purified by column chromatography on silica gel.
  • the eluent used is a mixture of hexane/ethyl acetate 90-10% up to 30-70%.
  • a brownish-white solid of 7.83 g of cholestane-3 ⁇ -yl propionyltyrosine is obtained, corresponding to 96% yield.
  • the third step consists in synthesizing from cholestan-3 ⁇ -yl propionyltyrosine the compound 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl propionyltyrosine as follows:
  • Meta-chloro-peroxybenzoic acid (77%, 1.79 g, 8.0 mmol) is dissolved in dichloromethane (45 mL) and added dropwise over 30 minutes to a mixture of cholestan-3 ⁇ -yl propionyltyrosine (4.66 g, 7.7 mmol) dissolved in dichloromethane (20 mL). Stirring is maintained at room temperature for three hours. The reaction medium is washed twice with an aqueous solution of Na 2 S 2 O 3 (10% by weight), twice with a saturated solution of NaHCO 3 and once with a saturated solution of NaCl. The organic phase is dried over anhydrous MgSO 4 .
  • Vacuum evaporation of the organic solvent makes it possible to obtain 6.29 g of an oil corresponding to the mixture of the two isomers: 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl propionylglycine and 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl propionylglycine.
  • the mixture was redissolved in 20 mL of dichloromethane and 80 mL of EtOH was added to obtain a brownish-white precipitate. The brownish-white precipitate obtained was filtered and washed with MeOH.
  • the fourth step is to synthesize 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino]cholestan-3 ⁇ -yl propionyltyrosine as follows (DX133 in basic form):
  • Histamine in its basic form (449 mg, 4.0 mmol) is added after complete dissolution of 1.0 g of 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl propionyltyrosine (at 63%, 1.0 mmol) under 5 ml of butanol.
  • the reaction mixture is kept under stirring and under reflux for 24 hours.
  • the progress of the reaction is monitored by thin layer chromatography (TLC) to monitor the conversion of 5,6 ⁇ -Epoxycholestan-3 ⁇ -yl propionyltyrosine.
  • reaction medium is diluted in 5 mL of methyl tert-butyl ether, the organic phase is washed twice with 5 mL of a saturated solution of NaCl and once with 5 mL of a saturated solution of NaHCO 3 .
  • the organic phase is dried over anhydrous MgSO 4 .
  • the reaction crude is purified by column chromatography on silica gel.
  • the eluent used is a mixture of ethyl acetate-methanol 100-0% up to 70-30%.
  • Example 14 Preparation of a dilactate salt of 5 ⁇ -Hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)ethylamino1cholestan-3 ⁇ -yl propionyltyrosine (DX133 in lactate form):
  • 3-yl propionyltyrosine was prepared as follows:
  • Example 15 Synthesis of the compounds (N-propionyl)-L-Histidine 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylaminol-cholestan-3 ⁇ -yl ester, (N- propionyl)-L-Isoleucine 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylaminol-cholestan-3 ⁇ -yl ester. (N-propionyl)-L-Leucine 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylaminol-cholestan-3 ⁇ -yl ester.
  • Example 19 Study of the cytotoxicity of compounds and 5 ⁇ -hydroxy-6 ⁇ -[2-(1 H-imidazol-4-yl)-ethylamino1-cholestan-3 ⁇ -yl propionate or DX107:
  • the culture medium consists of Dulbecco's Modified Eagle Medium (DMEM) marketed by Westburg under the reference LO BE12-604F), comprising 4.5 g/L Glucose with L-Glutamine, to which 10% serum is added. of fetal calf (SVF). Neuro2a cells (murine neuroblastoma) are introduced into this culture medium.
  • DMEM Dulbecco's Modified Eagle Medium
  • LO BE12-604F fetal calf
  • 24-well dishes were seeded with 10,000 Neuro2a cells per well. After 72 hours (h) of culture under normal conditions, i.e. in an incubator at a temperature of 37°C at 5% CO2, the Neuro2a cells were treated for 48 hours with 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl-propionate and 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]- cholestan-3 ⁇ -ol at 100 nM, 1 ⁇ M and 10 ⁇ M.
  • a control (CTL) is also carried out using the protocol described previously without the treatment with the aforementioned compounds.
  • FIG. 5 illustrates the ordinate of the percentage of cell survival relative to the control group.
  • the cell survival percentage is respectively 43.25% ⁇ 2.44, and 30, 46 ⁇ 5.22%.
  • a cytotoxic activity of the compounds of formula (I) is observed towards Neuro2a tumor cells for concentrations of 1 ⁇ M for 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl propanoate and 10 ⁇ m for 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4- yl)-ethylamino]-cholestan-3 ⁇ -yl propionate.
  • Example 20 Effect of the compound 5 ⁇ -hvdroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino1-cholestan-3 ⁇ -yl propionate or DX107 on the viability of MCF-7 cells:
  • MCF-7 Moichigan Cancer Foundation-7
  • HER2 ER(+) cells
  • the MCF-7 cells are in a cell culture medium identical to example 14 and are seeded in 12-well plates at 50,000 cells per well for 24 h. 24 hours after seeding, the cells are treated with the vehicle solvate comprising water and ethanol with a ratio of 1 ⁇ of ethanol and comprising 5 ⁇ -hydroxy-6 ⁇ -[2-(1 H-imidazol-4 -yl)-ethylamino]-cholestan-3 ⁇ -yl propionate or 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -ol at 1, 2.5 or 5 ⁇ M .
  • the cells are observed under an inverted microscope and photographed via the microscope camera at 24 h and 48 h.
  • the white vesicles reflect cell death by cytotoxic autophagy; - Rounding cells indicate cell death;
  • the supernatant cells reflect cell death; and - Refractory cells reflect cell death.
  • a cell viability test is measured by MTT labeling at 48 hours. This test is based on the use of the tetrazolium salt MTT (bromide of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium). Tetrazolium is reduced by active living cell mitochondrial succinate dehydrogenase to formazan, a violet-colored precipitate. The quantity of precipitate formed is proportional to the quantity of living cells but also to the metabolic activity of each cell. Thus, a simple assay of the optical density at 540 nm by spectroscopy makes it possible to know the relative quantity of living and metabolically active cells.
  • the medium is aspirated, the cells washed with phosphate buffered saline (PBS) then incubated with MTT (0.5 mg/ml in PBS) for approximately 2 hours.
  • the MTT solution is aspirated and then the purple crystals are dissolved in dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • Figure 6 illustrates the ordinate of the percentage of cell viability compared to the control group.
  • the control group is made in a similar way to the groups studied without the addition of the molecules studied in this text.
  • a 5 ⁇ -hydroxy-6 ⁇ -[2-(1 H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -ethoxyl dose-dependent decrease in cell viability in MTT for 5 ⁇ -hydroxy is measured.
  • Example 21 Effect of the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1 H-imidazol-4-yl)-ethylamino1-cholestan-38-yl propionate or DX107 on the activity of Cholesterol Epoxide Hydrolase (ChEH ) in MCF-7 cells:
  • the compounds 5,6 ⁇ -epoxycholesterol (5,6 ⁇ -EC) and 5,6[3-epoxycholesterol (5,6 ⁇ -EC) are oxysterols implicated in the anticancer pharmacology of tamoxifen, a widely used antitumor drug. They are both metabolized to cholestane-3 ⁇ ,5 ⁇ ,6 ⁇ -triol (CT) by the enzyme cholesterol-5,6-epoxide hydrolase (ChEH), and CT is metabolized by the enzyme HSD11 B2 (1 ip-Hydroxysteroid dehydrogenase 2) to 6-oxo-cholestan-3 ⁇ ,5 ⁇ -diol (OCDO), a tumor-promoting oncosterone.
  • CT cholesterol-5,6-epoxide hydrolase
  • the following experiment aims to demonstrate the ability of the compound 5 ⁇ -hydroxy-6 ⁇ -[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3 ⁇ -yl propionate to block ChEH and therefore to limit the metabolism of oncosterone, a tumor promoting metabolite.
  • MCF-7 cells are in a cell culture medium identical to Example 20 and are seeded in 6-well plates at 150,000 cells per well with 3 wells per treatment condition. 24 h after seeding, the MCF-7 cells are treated with [ 14 C]5,6 ⁇ -EC (stock solution 1000X: 0.6 mM; 20 ⁇ Ci/ ⁇ mol; final concentration 0.6 ⁇ M) alone or in combination with Tamoxifen (tam) . Tamoxifen is used as a positive control for the compounds studied. The treatment with the compound according to the invention is carried out at a concentration of 1 ⁇ M.
  • lipid extracts are prepared from the cell pellets by extraction with 100 pL of chloroform, 400 pL of methanol and 300 ⁇ L of water. Lipid extracts are analyzed by thin layer chromatography (TLC) using ethyl acetate (EtOAc) as eluent. The analysis is carried out using a plate reader and then by autoradiography.
  • TLC thin layer chromatography
  • EtOAc ethyl acetate
  • Example 22 Study of the cytotoxicity of DX101 prodrugs on 4T1 cells
  • the culture medium consists of Dulbecco's Modified Eagle Medium (DMEM, marketed by Westburg under the reference LO BE12-604F), comprising 4.5 g/L Glucose with L-Glutamine, to which 10% serum is added. of fetal calf (FCS) and 50 U/mL penicillin/streptomycin.
  • DMEM Dulbecco's Modified Eagle Medium
  • FCS fetal calf
  • the 4T 1 cells are introduced into this culture medium.
  • 96-well dishes were seeded with 2,000 4T 1 cells per well. After 72 hours (h) of culture under normal conditions, i.e. in an incubator at a temperature of 37°C at 5% CO2, the 4T1 cells are treated for 48 hours with DX101, DX107, DX113, DX117, DX1 19, DX121 or DX131 at 100 nM, 1 ⁇ M, 2.5 ⁇ M and 10 ⁇ M.
  • a control condition (CTL) is also carried out in parallel using the protocol described previously without treatment with the molecules DX101, DX107, DX113, DX1 17, DX1 19, DX121, DX131 or DX133.
  • [190] Cell viability is measured by three different methods.
  • MTT labeling is carried out at 48 hours. This test is based on the use of the tetrazolium salt MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide). Tetrazolium is reduced by active living cell mitochondrial succinate dehydrogenase to formazan, a violet-colored precipitate. The quantity of precipitate formed is proportional to the quantity of living cells but also to the metabolic activity of each cell. Thus, a simple assay of the optical density at 550 nm by spectroscopy makes it possible to know the relative quantity of living and metabolically active cells.
  • the medium is aspirated, and the cells are incubated with MTT (0.5 mg/ml in culture medium) for about 3 hours.
  • MTT 0.5 mg/ml in culture medium
  • the MTT solution is aspirated and the purple crystals are dissolved in dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • the OD optical density
  • the percentage of viability is then determined in each well compared to the CTL and the IC 50 (concentration for which 50% of living cells remain) is determined for each molecule with the Prism software using a regression line nonlinear (log(inhibitor) vs. Response).
  • the percentage of viability is determined using the assay of the activity of the enzyme LDH (lactate dehydrogenase) in the cell supernatants using the non-radioactive cytotoxicity assay kit (Promega ).
  • LDH lactate dehydrogenase
  • LDH is an enzyme released in the supernatant of dead cells. The higher the LDH activity in the supernatant, the greater the cell death.
  • the released LDH converts a purple tetrazolium salt to a red-colored formazan, absorbing at 490 nm. The intensity of the red color is proportional to the number of dead cells.
  • the supernatants are transferred to a new 96-well plate and are incubated for 30 minutes in the presence of the substrate mix at room temperature.
  • the reaction is stopped using the stop buffer and the absorbance is determined at 490 nm.
  • the percentage of cell death is determined here using a 100% control of maximum LDH activity (made from untreated cells incubated in the presence of the lysis solution for 45 minutes at 37°C just before adding of the substrate mix), and the cell viability in each well is then deduced from this percentage.
  • the IC 50 is then determined as explained in the previous paragraph.
  • the percentage of viability is determined using the CelITox Green Cytotoxicity Assay kit (Promega). This test measures cell death via a change in membrane integrity. This test uses a cyanine-type probe which does not penetrate cells when they are alive, but which binds to the DNA of dead cells, making them permeable to the probe, causing it to fluoresce. Accordingly, the higher the fluorescence in the wells, the greater the cell death. After 48 hours of treatment, the cells are incubated for a minimum of 15 minutes in the presence of Celltox green reagent at room temperature and the fluorescence is read at ⁇ emission 485 nm/ ⁇ excitation 590 nm.
  • the percentage of cell death is determined using the 100% cell death control (made from untreated cells incubated in the presence of the lysis solution for 30 minutes at 37°C before adding the Celltox green reagent), and the cell viability in each well is then deducted from this percentage.
  • the IC 50 is then determined as explained above.
  • Example 23 Study of the cytotoxicity of DX101 prodrugs on BT-474 cells
  • BT-474 human mammary tumor cells characterized as being triple positive HER2+, ER+, PR+.
  • the BT-474 cells are in a cell culture medium identical to the previous example and are seeded in 24-well plates at 70,000 cells per well, for the determination of cell viability using Trypan blue, or in 96-well plates at 13,000 cells per well for determining cell viability using the MTT or LDH assay. After 96 hours (h) of culture under normal conditions, i.e.
  • the Biorad TC20 cell counting device counts the proportion of blue and non-blue cells, and reports the percentage of cells. The percentage of viability is then determined in each well relative to the untreated cells and the IC 50 is determined as explained in the preceding example. The results are shown in Table 2. Also, the percentage viability of BT-474 cells was determined using the MTT and LDH assay, performed as described in the previous example. The results are also shown in Table 2.
  • n b represents the number of independent tests with 4 to 10 replicates for each condition.
  • Example 24 Effect of prodrug DX107 on tumor growth in vivo
  • All animal procedures were conducted according to our institution's guidelines after being approved by the ethics committee.
  • 4T1 cells were cultured as before, and were dissociated in trypsin and washed twice in cold PBS and resuspended in 1.5 million/mL PBS.
  • 4T1 tumors were obtained by subcutaneous transplantation of 0.150 million cells in 100 ⁇ L into the flank of female Balb/c mice (9 weeks, January). When the tumors had reached a volume of 50-100 mm 3 , the mice were force-fed with 40 mg/kg of DX101 or 40 mg/kg of DX11 1 or of the control vehicle (water).
  • the treatment was carried out every day until the end of the experiment (tumor volume > 1000 mm 3 ).
  • the tumor volume was determined daily using a caliper and calculated using the formula: 1 /z X (Length * Width 2 ).
  • the percentage of tumor growth inhibition was determined according to the following formula: 100 X (1 - (Tumor volume, day 8 / tumor volume day 0) DX107 ) / (1- (tumor volume, day 8 / tumor volume day 0) vehicle ).
  • DX107 has a greater effect than DX101 in reducing tumor growth (***p ⁇ 0.001, one-way ANOVA test and Tukey's post-test). Tumor growth inhibition was further determined to be 78% for DX107-treated animals and 58% for DX101-treated animals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Steroid Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention concerne un nouveau composé de formule générale (I): et/ou un sel pharmaceutiquement acceptable d'un tel composé, une composition pharmaceutique comprenant au moins ledit composé, pour son utilisation en tant que médicament pour faire régresser une tumeur cancéreuse de mammifère.

Description

PRODROGUE DU 5α-hydroxy-6β-[2-(1H-imidazol-4- yl)éthylamino]cholestan-3β-ol ET COMPOSITIONS PHARMACEUTIQUES LE COMPRENANT POUR UTILISATION DANS LE TRAITEMENT DU CANCER
Domaine technique
[1] L’invention se rapporte au domaine des composés stérols et plus particulièrement à des prodrogues du composé 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol et compositions pharmaceutiques le comprenant pour utilisation notamment dans le traitement du cancer.
Arrière-plan technologique
[2] Le terme « cancer » ou « tumeur cancéreuse » englobe un groupe de maladies se caractérisant par la multiplication et la propagation anarchiques de cellules anormales. Si les cellules cancéreuses ne sont pas éliminées, l’évolution de la maladie va mener plus ou moins rapidement au décès de la personne touchée.
[3] La prise en charge du cancer implique la chirurgie, la radiothérapie et la chimiothérapie, qui peuvent être utilisées seules ou en association, simultanément ou séquentiellement. La chimiothérapie utilise des agents antinéoplasiques qui sont des médicaments qui empêchent ou inhibent la maturation et la prolifération des néoplasmes. Les agents antinéoplasiques agissent en ciblant efficacement les cellules à division rapide. Comme les agents antinéoplasiques affectent la division cellulaire, les tumeurs avec un fort taux de croissance (telles que la leucémie myéloïde aiguë et les lymphomes agressifs, y compris la maladie de Hodgkin) sont plus sensibles à la chimiothérapie, car une plus grande proportion des cellules ciblées subit une division cellulaire à tout moment. Les tumeurs malignes avec des taux de croissance plus lents, comme les lymphomes indolents, ont tendance à répondre beaucoup plus modestement à la chimiothérapie. Cependant, le développement de la chimiorésistance est un problème persistant pendant le traitement de chimiothérapie. Par exemple, le traitement conventionnel de la leucémie myéloïde aiguë (LMA) comprend l'administration combinée de cytarabine avec une anthracycline, telle que la daunorubicine. Le taux de survie globale à 5 ans est de 40% chez les jeunes adultes et d'environ 10 % chez les patients âgés. Les taux de réponse varient considérablement avec le vieillissement, de 40 % à 55 % chez les patients de plus de 60 ans et de 24 % à 33 % chez les patients de plus de 70 ans. Ceci est encore pire pour les personnes âgées avec des profils cytogénétiques défavorables et le décès dans les 30 jours suivant le traitement varie de 10% à 50% avec l'âge et l'aggravation. Par ailleurs, la restriction de l'utilisation de ces molécules est due également à des effets secondaires, et en particulier à l'émergence d'une toxicité cardiaque chronique (liée aux anthracyclines). Le taux de mortalité toxique liée à la chimiothérapie intensive est de 10 % à 20 % chez les patients de plus de 60 ans.
[4] Avec ce profil risque-bénéfice du régime conventionnel, seulement 30% des personnes âgées avec une LMA nouvellement diagnostiquée reçoivent une chimiothérapie antinéoplasique.
[5] Au cours des dernières décennies, il n'y a eu qu'une amélioration modeste des résultats pour les patients plus jeunes atteints de LMA, mais aucune pour les adultes de plus de 60 ans (la plupart des patients atteints de LMA).
[6] Il existe donc un réel besoin de développer des molécules utiles dans le traitement de ces tumeurs cancéreuses qui présentent des problèmes de chimiorésistance et de toxicité intrinsèque des médicaments antinéoplasiques. Les données précitées soulignent la nécessité de trouver de nouvelles approches qui combinent à la fois de réduire les schémas posologiques d'agents antinéoplasiques pour traiter les tumeurs chimiosensibles et de contourner la résistance des tumeurs chimiorésistantes à l'agent antinéoplasique.
[7] On connaît du document EP3272350B1 le composé 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)- éthylamino]-cholestan-3β-ol, connu sous le nom de Dendrogénine A, utile pour le traitement des tumeurs chimiorésistantes. La Dendrogénine A (nommé ci-après DX101 ) est capable de restaurer la sensibilité des tumeurs chimiorésistantes à un agent antinéoplasique ou d'augmenter les effets des agents antinéoplasiques sur les tumeurs, ce qui permet à son tour de réduire la dose cytotoxique efficace d'agents antinéoplasiques contre les tumeurs chimiosensibles.
[8] Le document de Medina et al. ( J. Med. Chem., 2009, 52(23), 7765-77 , XP009131948) décrit des composés comprenant en position 3 du DX101 un radical acétate ou butyrate dont les activités in vitro sont différentes.
[9] Un objet de la présente invention est de fournir de nouveaux composés et prodrogues ou promédicaments du composé Dendrogénine A, utiles pour notamment traiter les tumeurs cancéreuses, les tumeurs chimiosensibles et/ou chimiorésistantes.
[10] De manière surprenante, les inventeurs ont découvert que des prodrogues ou promédicaments spécifiques en C3 du composé Dendrogénine A, présentent une activité pharmacologique comparable ou supérieure à la Dendrogénine A, notamment avec une bonne biodisponibilité ainsi qu’un effet thérapeutique prolongé dans l’organisme du patient.
Résumé
[1 1] L’invention a pour premier objet un composé de formule (I) ;
Figure imgf000005_0001
ou un sel pharmaceutiquement acceptable d’un tel composé, dans lequel R1 est choisi parmi :
- un groupement - C(O)NR2R3, où R2, R3 sont équivalents ou différents et sont choisis parmi H et une chaîne carbonée en C1 à C8 saturée ou insaturée, linéaire ou ramifiée contenant éventuellement un ou plusieurs substituants choisis parmi des groupes allyle, carbonyle et hétérocycle aromatique,
- un groupement - C(O)R4, avec R4 est choisi parmi -CH2CH3 et -C5H11,
- un groupement - C(O)OR5, où R5 est une chaîne carbonée en C1 à C8 ; saturée ou insaturée, linéaire ou ramifiée,
- un groupement - C(O)CHNH(COCH2CH3)R6 où R6 est la chaîne latérale des acides aminés choisie parmi -CH2-C3N2H2, CH2CH(CH3)2, -CH(CH3)CH2CH3, -CH(CH3)2, -CH2C6H5, -CH2C8NH6, -(CH2)4NH2, -CH2C6OH5, -C3H5N, pour son utilisation en tant que médicament pour faire régresser une tumeur cancéreuse de mammifère.
[12] L’invention a pour second objet une composition pharmaceutique comprenant dans un véhicule pharmaceutiquement acceptable, au moins un composé de formule (I) pour son utilisation en tant que médicament pour faire régresser une tumeur cancéreuse de mammifère. Définitions
[13] Dans cette description, à moins qu’il n’en soit spécifié autrement, il est entendu que, lorsqu’un intervalle est donné, il inclut les bornes supérieures et inférieures dudit intervalle.
[14] Dans le présent texte, les termes suivants, sauf indication contraire, doivent être compris comme ayant la signification suivante :
[15] Le terme « solvate » est utilisé ici pour décrire un complexe moléculaire comprenant un composé de l’invention et contenant des quantités stoechiométriques ou sous- stœchiométriques d’une ou plusieurs molécules de solvant pharmaceutiquement acceptable telles que l’éthanol. Le terme « hydrate » fait référence lorsque ledit solvant est de l’eau.
[16] Le terme « allyle » fait référence à un groupe fonctionnel alcénique de formule semi- développée H2C=CH-CH2-.
[17] Le terme « carbonyle » fait référence à une double liaison entre un atome de carbone et un atome d'oxygène.
[18] Le terme « hétérocycle aromatique » fait référence à des composés aromatiques monocycliques et polycycliques comportant comme éléments cycliques un ou plusieurs hétéroatomes parmi O, S et/ou N. Parmi les hétérocycles aromatiques, on peut citer lïmidazole, le furane, thiophène, pyrole, la purine, pyrimidine, I’ indole et benzofurane.
[19] Le terme « humain » fait référence à un sujet des deux sexes et à tout stade de développement (c’est-à-dire un nouveau-né, nourrisson, juvénile, adolescent, adulte).
[20] Le terme « patient » fait référence à un animal à sang chaud, plus préférablement un humain, qui attend la réception ou qui reçoit des soins médicaux et/ou qui sera l’objet d’un acte médical.
[21 ] Par « pharmaceutiquement acceptable » il est entendu que les ingrédients d’un produit pharmaceutiquement acceptable sont compatibles les uns avec les autres et ne sont pas nuisibles pour le patient de ce produit.
[22] Le terme « véhicule pharmaceutique » tel qu’utilisé dans ce texte signifie un support ou un milieu inerte utilisé comme solvant ou diluant dans lequel l’agent pharmaceutiquement actif est formulé et / ou administré. Des exemples non limitatifs de véhicules pharmaceutique comprennent les crèmes, les gels, les lotions, les solutions et les liposomes.
[23] Le terme « administration », signifie délivrer, l’agent actif ou l’ingrédient actif (par exemple le composé de formule (I)), dans une composition pharmaceutiquement acceptable, au patient dans lequel une condition, un symptôme et/ou une maladie doit être traitée.
[24] Les termes « traiter » et « traitement » tels qu’utilisés ici incluent atténuer, apaiser, stopper, soigner une condition, un symptôme et/ou une maladie.
[25] Le terme « prodrogue » ou « promédicament » tels qu’utilisés dans la présente description désigne les dérivés pharmacologiquement acceptables des composés de formule (I), qui peuvent être administré à un patient sans toxicité excessive, irritation, réaction allergique, etc., qui sont convertibles in vivo par des moyens métaboliques (par exemple par hydrolyse) et dont le produit de biotransformation in vivo génère le médicament biologiquement actif. La plupart des promédicaments décrits dans la présente description sont caractérisés par une biodisponibilité accrue et sont facilement métabolisés en composés biologiquement actifs in vivo. Le promédicament est administré sous une forme inactive ou beaucoup moins active que son métabolite. Dans la présente description, les prodrogues présentent des propriétés pharmacologiques identiques, similaire ou supérieure au composé 5α-hydroxy-6β -[2-(1 H-imidazol-4-yl)-éthylamino]- cholestan-3β-ol. Certains promédicaments décrits dans la présente invention, lorsqu’ils ne présentent pas une biodisponibilité supérieure à celle du composé de référence, présentent une pénétration plus rapide et potentiellement un effet plus rapide pour leur utilisation pour traiter le cancer.
[26] Le terme « médicament » dans la présente description désigne tout composé ou composition présenté(e) comme possédant des propriétés curatives ou préventives à l'égard des maladies humaines ou animales. Par extension, un médicament comprend tout composé ou toute composition pouvant être utilisé chez l'être humain ou l'animal ou pouvant leur être administrée, en vue d'établir un diagnostic médical ou de restaurer, corriger ou modifier leurs fonctions physiologiques en exerçant une action pharmacologique, immunologique ou métabolique. Le médicament est composé de deux sortes de substances, un principe actif et un ou plusieurs excipients.
[27] Le terme « principe actif » désigne un composé ayant un effet pharmacologique et un effet thérapeutique.
[28] Le terme « excipient » désigne toute substance autre que le principe actif dans un médicament.
[29] Par "cancer chimiorésistant", on entend un cancer chez un patient où la prolifération des cellules cancéreuses ne peut être empêchée ou inhibée au moyen d'un agent antinéoplasique ou d'une combinaison d'agents antinéoplasiques habituellement utilisés pour traiter ce cancer, à une dose acceptable pour le patient. Les tumeurs peuvent être intrinsèquement résistantes avant la chimiothérapie, ou une résistance peut être acquise pendant le traitement par des tumeurs initialement sensibles à la chimiothérapie.
[30] Par "cancer chimiosensible", on entend un cancer chez un patient qui répond aux effets d'un agent antinéoplasique, c'est-à-dire où la prolifération des cellules cancéreuses peut être empêchée au moyen dudit agent antinéoplasique à une dose acceptable pour le patient.
[31 ] Le composé de formule (I) appartient au groupe des stéroïdes. La numérotation des atomes de carbone du composé de formule (I) suit donc la nomenclature définie par l’IUPAC dans Pure & Appl. Chem., Vol.61 , No.10, pp.1783-1822,1989. La numérotation des atomes de carbone d’un composé appartenant au groupe des stéroïdes selon l’IUPAC est illustrée ci-dessous :
Figure imgf000008_0001
[32] Dans la présente description, les abréviations suivantes signifient :
LMA : leucémie myéloïde aiguë ;
Dendrogenine A : 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol ;
MCF-7 : Michigan Cancer Foundation-7 ;
DMEM : Dulbecco's Modified Eagle Medium ;
SVF : sérum de veau foetal ;
ChEH : Cholestérol Epoxyde Hydrolase ;
Neuro2a : glioblastome murin ;
CTL : Contrôle ;
MTT : bromure de 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tétrazolium ;
PBS : tampon phosphate salin ;
DMSO : diméthylsulfoxyde ;
DO : densité optique ou absorbance ;
CT : cholestane-3β,5α,6β-triol ;
OCDO : 6-oxo-cholestan-3β,5α-diol ; 5,6α-EC : 5,6α-epoxycholesterol ;
Tam : Tamoxifène ;
CCM : chromatographie sur couche mince ; tert-butyle : ter-butyle ou t-butyle de formule (CH3)3C-
Description des modes de réalisation
[33] L’invention a pour premier objet un composé de formule (I) ;
Figure imgf000009_0001
ou un sel pharmaceutiquement acceptable d’un tel composé, dans lequel R1 est choisi parmi :
- un groupement - C(O)NR2R3, où R2, R3 sont équivalents ou différents et sont choisis parmi H et une chaîne carbonée en C1 à C8 saturée ou insaturée, linéaire ou ramifiée contenant éventuellement un ou plusieurs substituants choisis parmi des groupes allyle, carbonyle et hétérocycle aromatique,
- un groupement - C(O)R4, avec R4 est choisi parmi -CH2CH3 et -C5H11 ,
- un groupement - C(O)OR5, où R5 est une chaîne carbonée en C1 à C8 ; saturée ou insaturée, linéaire ou ramifiée,
- un groupement - C(O)CHNH(COCH2CH3)R6 où Re est la chaîne latérale des acides aminés choisie parmi -CH2-C3N2H2, CH2CH(CH3)2, -CH(CH3)CH2CH3, -CH(CH3)2, -CH2C6H5, -CH2C8NH6, -(CH2)4NH2, -CH2C6OH5, -C3H5N, pour son utilisation en tant que médicament. [34] Selon un mode de réalisation, l’invention concerne un composé de formule (I) ;
Figure imgf000010_0001
ou un sel pharmaceutiquement acceptable d’un tel composé, dans lequel R1 est choisi parmi :
- un groupement - C(O)NR2R3, où R2, R3 sont équivalents ou différents et sont choisis parmi H et une chaîne carbonée en C1 à C8 saturée ou insaturée, linéaire ou ramifiée contenant éventuellement un ou plusieurs substituants choisis parmi des groupes allyle, carbonyle et hétérocycle aromatique, un groupement - C(O)R4, avec R4 est choisi parmi -CH2CH3 et -C5H11 ,
- un groupement - C(O)OR5, où R5 est une chaîne carbonée en C1 à C8 ; saturée ou insaturée, linéaire ou ramifiée, un groupement - C(O)CHNH(COCH2CH3)R61 où Re est la chaîne latérale des acides aminés choisie parmi -CH2-C3N2H2, CH2CH(CH3)2, -CH(CH3)CH2CH3, -CH(CH3)2, -CH2C6H5, -CH2C8NH6, -(CH2)4NH2, -CH2C6OH5, -C3H5N, pour son utilisation en tant que médicament pour faire régresser une tumeur cancéreuse de mammifère.
[35] Dans un mode de réalisation du composé de formule (I), le radical R1 est un groupement - C(O)R4 (groupement acylés) avec R4 est le radical choisi parmi -CH2CH3 et -C5H11 . Dans ce mode de réalisation du composé de formule (I), le radical R4 est préférentiellement le radical -CH2CH3, il s’agit du composé 5α-hydroxy-6β-[2-(1 H- imidazol-4-yl)-éthylamino]-cholestan-3β-propionate. Propionate est indifféremment propanoate. Dans un autre mode de réalisation préféré du composé de formule (I), le radical R4 est C5H11 , il s’agit du composé 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]- cholestan-3β-hexanoate. [36] Dans un autre mode de réalisation du composé de formule (I), le radical R1 est un groupement - C(O)OR5 (groupement carbonate), où R5 est une chaîne carbonée en C1 à C8. Dans ce mode de réalisation du composé de formule (I), le radical R5 est préférentiellement une chaîne carbonée éthyle ou butyle, de manière très préférentielle une chaîne carbonée éthyle.
[37] Dans encore un autre mode de réalisation du composé de formule (I), le radical R1 est un groupement - C(O)NR2R3 (groupement carbamate) dans lequel R2 et R3 sont équivalents ou différents et sont choisis parmi H et une chaîne carbonée en C1 à C8 saturée, linéaire contenant éventuellement un substituant hétérocycle aromatique. Dans un mode de réalisation préféré du composé de formule (I), R2 et R3 sont choisi parmi deux radicaux éthyle ou le groupe 1 -H-imidazole-4yl. Dans un mode de réalisation très préféré du composé de formule (I), R2 et R3 est un substituant hétérocycle aromatique tel que le groupe 1 -H-imidazole-4yl.
[38] Dans un mode de réalisation du composé de formule (I), R1 est un groupement - C(O)CHNH(COCH2CH3)R6 où R6 est la chaîne latérale des acides aminés choisie parmi - CH2-C3N2H2, CH2CH(CH3)2, -CH(CH3)CH2CH3, -CH(CH3)2, -CH2C6H5, -CH2C8NH6, - (CH2)4NH2, -CH2C6OH5, -C3H5N.
[39] Dans ce mode de réalisation du composé de formule (I), quand le radical R1 est le groupement -C(O)CHNH(COCH2CH3)CH2C3N2H, il s’agit du composé N-propionate-L- Histidine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[40] Dans ce mode de réalisation du composé de formule (I), quand le radical R1 est le groupement -C(O)CHNH(COCH2CH3)CH(CH3)CH2CH3, il s’agit du composé N- propionate-L-lsoleucine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[41 ] Dans ce mode de réalisation du composé de formule (I), quand le radical R1 est le groupement -C(O)CHNH(COCH2CH3)CH2CH(CH3)2, il s’agit du composé N-propionate-L- Leucine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[42] Dans ce mode de réalisation du composé de formule (I), quand le radical R1 est le groupement -C(O)CHNH(COCH2CH3)(CH2)4NH2, il s’agit du composé N-propionate-L- lysine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[43] Dans ce mode de réalisation du composé de formule (I), quand le radical R1 est le groupement -C(O)CHNH(COCH2CH3)CH2C6H5, il s’agit du composé N-propionate-L- Phénylalanine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester. [44] Dans ce mode de réalisation du composé de formule (I), quand le radical R1 est le groupement -C(O)CHNH(COCH2CH3)CH2C8NH6, il s’agit du composé N-propionate-L- Tryptophane 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[45] Dans ce mode de réalisation du composé de formule (I), quand le radical R1 est le groupement -C(O)CHNH(COCH2CH3)CH2C6H4OH, il s’agit du composé N-propionate-L- Tyrosine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[46] Dans ce mode de réalisation du composé de formule (I), quand le radical R1 est le groupement -C(O)CHNH(COCH2CH3)CH(CH3)2, il s’agit du composé N-propionate-L- Valine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[47] Dans ce mode de réalisation du composé de formule (I), quand le radical R1 est le groupement -C(O)CHNH(COCH2CH3)C3H5N, il s’agit du composé N-propionate-L-Proline a-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[48] Les composés préférés selon l’invention sont choisis parmi :
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β- propionate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β- hexanoate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl-éthyle carbonate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl butyle carbonate ;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl 1 -H-imidazole-4-yl éthyle carbamate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl diéthyle carbamate ;
- N-propionate-L-Histidine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan- 3β-yl ester ;
- N-propionate-L-Leucine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β- yl ester ;
- N-propionate-L-lsoleucine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan- 3β-yl ester ;
- N-propionate-L-Valine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester ;
- N-propionate-L-Phénylalanine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]- cholestan-3β-yl ester ;
- N-propionate-L-Tryptophane 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]- cholestan-3β-yl ester ; - N-propionate-L-Lysine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester ;
- N-propionate-L-Tyrosine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan- 3β-yl ester. imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester,
-N-propionate-L-Proline a-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester. imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[49] Les composés très préférés selon l’invention sont choisis parmi :
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β- propionate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β- hexanoate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl-éthyle carbonate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl butyle carbonate ;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl 1 -H-imidazole-4-yl éthyle carbamate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl diéthyle carbamate.
- N-propionate-L-Tyrosine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan- 3β-yl ester.
[50] Selon un mode de réalisation, le composé de formule (I) est destiné à être utilisé en tant que médicament dans le traitement du cancer du sein, de la prostate, colorectal, du poumon, de la vessie, de la peau, de l’utérus, du col de l’utérus, de la bouche, du cerveau, de l’estomac, du foie, de la gorge, du larynx, de l'œsophage, de l'os, de l'ovaire, du pancréas, du rein, de la rétine, du sinus, de la fosses nasales, du testicule, de la tyroïde, de la vulve, dans le traitement du lymphome, lymphome non hodgkinien, lymphome hodgkinien, de la leucémie, la leucémie myéloïde aiguë ou la leucémie lymphocytaire aiguë, le myélome multiple, le carcinome à cellules de Merkel ou mésothéliome.
[51 ] Selon un mode de réalisation, le cancer est un adénocarcinome acineux, un carcinome acineux, un mélanome acro-lentigineux, une kératose actinique, un adénocarcinome, un carcinome adénoïde kystique, un carcinome adénosquameux, un carcinome annexiel, une tumeur du repos surrénal, un carcinome adrénocortical, un carcinome sécrétant de l'aldostérone, un sarcome alvéolaire de la partie molle, un carcinome améloblastique de la thyroïde, un angiosarcome, un carcinome apocrine, une tumeur d'Askin, astrocytome, un carcinome basocellulaire, un carcinome basaloïde, un carcinome basosquameux, un cancer des voies biliaires, un cancer de la moelle osseuse, un sarcome botryoïde, un carcinome bronchioalvéolaire, un adénocarcinome bronchogène, un carcinome bronchogène, un carcinome ex adénome pléomorphe, un chlorome, un carcinome cholangiocellulaire, un chondrosarcome, un choriocarcinome, un carcinome du plexus choroïde, un adénocarcinome à cellules claires, un cancer du côlon, un comédocarcinome, un carcinome producteur de cortisol, un carcinome à cellules cylindriques, un liposarcome différencié, un adénocarcinome canalaire de la prostate, un carcinome canalaire, un carcinome canalaire in situ, un cancer duodénal, un carcinome eccrine, un carcinome embryonnaire, un carcinome de l'endomètre, un carcinome stromal de l'endomètre, un sarcome épithélioïde, un sarcome d'Ewing, un carcinome exophytique, sarcome fibroblastique, un fibrocarcinome, un carcinome fibrolamellaire, un fibrosarcome, carcinome folliculaire de la thyroïde, un cancer de la vésicule biliaire, un adénocarcinome gastrique, un carcinome à cellules géantes, un sarcome à cellules géantes, une tumeur osseuse à cellules géantes, un gliome, un glioblastome multiforme, un carcinome à cellules de granulosa, un cancer de la tête et du cou, un hémangiome, un hémangiosarcome, un hépatoblastome, un carcinome hépatocellulaire, un carcinome à cellules de Hürthle, un cancer iléal, un carcinome lobulaire infiltrant, un carcinome inflammatoire du sein, un carcinome intraductal, un carcinome intra-épidermique, un cancer du jéjunum, un sarcome de Kaposi, une tumeur de Krukenberg, un carcinome à cellules de Kulchitsky, un sarcome à cellules de Kupffer, un carcinome à grandes cellules, un cancer du larynx, un mélanome de lentigo maligna, un liposarcome, un carcinome lobulaire, un carcinome lobulaire in situ, un lymphoépithéliome, un lymphosarcome, un mélanome malin, un carcinome médullaire, un carcinome médullaire de la thyroïde, un médulloblastome, un carcinome méningé, un carcinome micropapillaire, un sarcome à cellules mixtes, un carcinome mucineux, un carcinome muco-épidermoïde, un mélanome mucosal, un liposarcome myxoïde, un myxosarcome, un carcinome nasopharyngé, néphroblastome, un neuroblastome, un mélanome nodulaire, un cancer du rein à cellules non claires, un cancer du poumon à cellules non petites, un carcinome à cellules d'avoine, un mélanome oculaire, un cancer buccal, un carcinome ostéoïde, un ostéosarcome, un cancer des ovaires, un carcinome de Paget, un pancréatoblastome, un adénocarcinome papillaire, un carcinome papillaire, un carcinome papillaire de la thyroïde, un cancer pelvien, un carcinome périampullaire, une tumeur phyllode, un cancer de l'hypophyse, liposarcome pléomorphe, un blastome pleuropulmonaire, un carcinome intra-osseux primaire, un cancer du rectum, un carcinome des cellules rénales, un rétinoblastome, un rhabdomyosarcome, un liposarcome à cellules rondes, un cancer cicatriciel, un cancer de la vessie schistosomique, un carcinome schneidérien, un carcinome sébacé, un carcinome à cellules en anneau, un cancer de la peau, un cancer du poumon à petites cellules, un ostéosarcome à petites cellules, un sarcome des tissus mous, un sarcome à cellules fusiformes, un carcinome épidermoïde, un cancer de l'estomac, un mélanome à diffusion superficielle, un sarcome synovial, un sarcome télangiectasique, un carcinome du canal terminal, un cancer des testicules, un cancer de la thyroïde, un carcinome des cellules transitoires, un carcinome tubulaire, un mélanome tumorigène, un carcinome indifférencié, un adénocarcinome de l'urètre, un cancer de la vessie, un cancer de l'utérus, un carcinome du corps utérin, un mélanome de l'utérus, un cancer du vagin, un carcinome verruqueux, un carcinome villeux, un liposarcome bien différencié, une tumeur de Wilms ou une tumeurs des cellules germinales.
[52] Dans un mode de réalisation préféré, le composé de formule (I) est destiné à être utilisé en tant que médicament dans le traitement du cancer du sein, la leucémie myéloïde et le mélanome chez les mammifères.
[53] Selon un mode de réalisation, le composé est destiné à être utilisé en tant que médicament dans le traitement d’un cancer chimiosensible.
[54] Selon un mode de réalisation particulièrement préféré, le composé de formule (I) est destiné à être utilisé en tant que médicament dans le traitement d’un cancer chimiorésistant.
[55] Selon un mode de réalisation, le cancer chimiorésistant est un cancer hématologique ou du sang, tel que la leucémie, en particulier la leucémie myéloïde aiguë ou la leucémie lymphocytaire aiguë, le lymphome, en particulier le lymphome non-hodgkinien et le myélome multiple.
[56] Selon un mode de réalisation, le cancer est chimiorésistant à la daunorubicine, à la cytarabine, au fluorouracile, au cisplatine, à l’acide tout-trans-rétinoïque, au trioxyde d’arsenic, au bortézomib ou à l’une de leurs combinaisons.
[57] Les promédicaments spécifiques en C3 du composé Dendrogénine A décrits dans la présente description présentent une activité pharmacologique comparable ou supérieure à la Dendrogénine A. La Dendrogénine A est éliminée rapidement in vivo par l’organisme. Les promédicaments spécifiques en C3 selon l’invention présentent une biodisponibilité supérieure à la Dendrogénine A et sont facilement métabolisés en composés biologiquement actifs in vivo. Par conséquent, l’effet thérapeutique de la Dendrogénine A est prolongé dans l’organisme du patient lorsqu’un promédicament spécifique en C3 décrit dans la présente description est utilisée in vivo.
[58] Toutes les références aux composés de formules (I) comprennent les références aux sels, aux complexes multi-composants et leurs cristaux liquides. Toutes les références aux composés de formules (I) comprennent également les références aux polymorphes et leurs cristaux habituels. [59] Le composé selon l’invention peut être sous forme de sels pharmaceutiquement acceptables. Un sel pharmaceutiquement acceptable du composé de formule (I) comprend l’addition d’acide de celui-ci.
[60] Des sels acides appropriés sont formés à partir d’acides qui forment des sels non toxiques. Par exemple les sels sont choisis parmi : acétate, adipate, benzoate, bicarbonate, carbonate, bisulfate, sulfate, camphosulfonate, borate, camsylate, citrate, cyclamate, édisylate, ésylate, formate, furamate, gluceptate, gluconate, glucuronate, hexafluorophosphate, hibenzate, chlorhydrate de chlorure, bromhydrate, bromure, hydroiodure, iodure, iséthionate, lactate, malate, maléate, malonate mésylate, méthylsulfate, naphtylate, 2-napsylate, nicotinate, nitrate, orotate, oxalate, palmitate, pamoate, phosphate, hydrogène phosphate, phosphate dihydrogène, pyroglutamate, saccarate, stérate, succinate, tannate, sels de tartrate, tosylate, trifluoroacétate et xinofoate. De manière préféré, le sel pharmaceutiquement acceptable du composé de formule (I) est formé à partir du lactate.
[61 ] Les sels pharmaceutiquement acceptables des composés de formule (I) peuvent être préparés par une ou plusieurs des trois méthodes suivantes :
(i) en faisant réagir le composé de formule (I) avec l'acide désirée ;
(ii) en éliminant un groupe protecteur labile en milieu acide ou basique d'un précurseur approprié du composé de formule (I) ou en ouvrant le cycle d'un précurseur cyclique approprié, par exemple une lactone ou un lactame, en utilisant l'acide désiré ; ou iii) par conversion d'un sel du composé de formule (I) en un autre par réaction avec un acide ou au moyen d'une colonne échangeuse d'ions appropriée.
[62] Ces trois réactions sont généralement effectuées en solution. Le sel obtenu peut précipiter et être recueilli par filtration ou peut être récupéré par évaporation du solvant. Le degré d'ionisation du sel obtenu peut varier de complètement ionisé à presque non ionisé.
[63] L’invention concerne en deuxième objet une composition pharmaceutique comprenant dans un véhicule pharmaceutiquement acceptable au moins un composé selon l’invention, comme décrit ci-dessus pour son utilisation en tant que médicament pour faire régresser une tumeur cancéreuse de mammifère.
[64] Selon un mode de réalisation, la composition pharmaceutique comprend en outre au moins un autre agent thérapeutique.
[65] Selon un monde de réalisation préféré, cet autre agent thérapeutique est un agent antinéoplasique. [66] Selon un mode de réalisation, l'agent antinéoplasique est un agent endommageant l'ADN tel que la camptothécine, l'irinotécan, le topotécan, l'amsacrine, l'étoposide, le phosphate d'étoposide, le téniposide, le cisplatine, le carboplatine, l'oxaliplatine, le cyclophosphamide, le chlorambucil, la chlorméthine, le busulfan, le tréosulfan ou le thiotépa, un antibiotique antitumoral tel que la daunorubicine, la doxorubicine, l'épirubicine, l'idarubicine, la mitoxantrone, la valrubicine, l'actinomycine D, la mitomycine, la bléomycine ou la plicamycine, un antimétabolite tel que le 5-fluorouracile, la cytarabine, la fludarabine ou le méthotrexate, un antimitotique tel que le paclitaxel, le docétaxel, la vinblastine, la vincristine, la vindésine ou la vinorelbine, ou divers agents antinéoplasiques tels que le bortézomib, l'acide tout- trans-rétinoïque, le trioxyde d'arsenic, ou l'un de leurs produits combinés.
[67] Selon un mode de réalisation, la composition pharmaceutique est utilisée dans le traitement du cancer chez un patient souffrant d’une tumeur qui est chimiorésistante audit agent antinéoplasique lorsqu’il n’est pas administré en combinaison avec un composé selon l’invention.
[68] Selon un mode de réalisation, la composition pharmaceutique est utilisée dans le traitement du cancer chez un patient souffrant d’une tumeur qui est chimiosensible audit agent antinéoplasique, et la dose de l’agent antinéoplasique administrée audit patient en combinaison avec un composé selon l’invention ou l’un de ses sels pharmaceutiquement acceptables est inférieure à la dose de l’agent antinéoplasique lorsqu’il n’est pas administré en combinaison avec un composé selon l’invention. En particulier, la dose de l’agent antinéoplasique administré audit patient en combinaison avec un composé selon l’invention ou l’un de ses sels pharmaceutiquement acceptables est inférieure à la dose de l’agent antinéoplasique administré seul, sans autre principe actif.
[69] La composition pharmaceutique selon l’invention peut également comprendre en outre d’autres composés thérapeutiques actifs utilisés couramment dans le traitement de la pathologie énoncée ci-dessus.
[70] Selon un mode de réalisation, la composition pharmaceutique comprend le composé selon l’invention comme unique agent thérapeutique.
[71] Selon un mode de réalisation, la composition pharmaceutique comprend le composé de formule (I) administré au patient en tant qu’agent thérapeutique actif.
[72] Selon un mode de réalisation, la composition pharmaceutique comprend le composé de formule (I) administré au patient en combinaison avec au moins un autre agent thérapeutique actif. [73] Selon un mode de réalisation, la composition pharmaceutique de l’invention peut être administrée par toutes voies, notamment par voies : intradermique, intramusculaire, intrapéritonéale, intraveineuse ou sous-cutanée, pulmonaire, transmuqueuse (orale, intranasale, intravaginale, rectale), inhalation par spray nasal, utilisant une formulation en comprimé, capsule, solution, poudre, gel, particule ; et contenu dans une seringue, un dispositif implanté, une pompe osmotique, une cartouche, une micropompe ; ou tout autre moyen apprécié par l'artisan qualifié, bien connu dans l'art. L'administration spécifique à un site peut être réalisée, par exemple par voie intratumorale, intra-articulaire, intrabronchique, intra-abdominale, intracapsulaire, intra-cartilagineuse, intracavitaire, intracérébelleuse, intracérébroventriculaire, intracolique, intracervicale, intragastrique, intra-hépatique, intracardiaque, intraostéale, intra-pelvien, intrapéricardique, intrapéritonéal, intrapleural, intraprostatique, intrapulmonaire, intrarectal, intrarénal, intrarétinien, intraspinal, intrasynovial, intrathoracique, intra-utérin, intravasculaire, intravésical, intralésionnel, vaginal, rectal, buccal, sublingual, intranasal ou transdermique dans un dosage adapté comprenant les véhicules usuels non toxiques et pharmaceutiquement acceptables. De manière préférée, la composition pharmaceutique est sous forme appropriée pour être administrée par voie intraveineuse, sous-cutanée, intrapéritonéale ou orale. La voie orale étant particulièrement préférée.
[74] Outre les animaux à sang chaud tels que les souris, les rats, les chiens, les chats, les moutons, les chevaux, les vaches et les singes, le composé de l’invention est également efficace sur les humains.
[75] Selon un mode de réalisation, les compositions pharmaceutiques pour l'administration des composés de cette invention peuvent être présentées sous forme de doses unitaires et peuvent être préparées par l'une des méthodes bien connues dans l’état de l'art. Toutes les méthodes comprennent l'étape consistant à mettre le principe actif en association avec le support qui constitue un ou plusieurs ingrédients accessoires. En général, les compositions pharmaceutiques sont préparées en mettant l'ingrédient actif en association avec un support liquide ou un support solide finement divisé ou les deux, puis, si nécessaire, en façonnant le produit dans la formulation souhaitée. Dans la composition pharmaceutique, le composé de l'objet actif est inclus en quantité suffisante pour produire l'effet souhaité sur le processus ou l'état des maladies. Les compositions pharmaceutiques contenant le principe actif peuvent se présenter sous une forme adaptée à l'usage oral, par exemple sous forme de comprimés, de pastilles, de suspensions aqueuses ou huileuses, de poudres ou de granulés dispersibles, d'émulsions, de capsules, de sirops, d'élixirs, de solutions, de timbres buccaux, de gel oral, de chewing-gum, de comprimés à mâcher, de poudre effervescente et de comprimés effervescents. Les compositions pharmaceutiques contenant le principe actif peuvent se présenter sous une forme de suspension aqueuse ou huileuse.
[76] Selon un mode de réalisation, les suspensions aqueuses contiennent les matières actives en mélange avec des excipients adaptés à la fabrication de suspensions aqueuses. Ces excipients sont des agents de suspension, par exemple la carboxyméthylcellulose sodique, la méthylcellulose, l'hydroxy-propylméthylcellulose, l'alginate de sodium, la polyvinyl-pyrrolidone, la gomme adragante et la gomme d'acacia ; les agents dispersants ou mouillants peuvent être un phosphatide naturel, par exemple la lécithine, ou des produits de condensation d'un oxyde d'alkylène avec des acides gras, par exemple le stéarate de polyoxyéthylène, ou des produits de condensation de l'oxyde d'éthylène avec des alcools aliphatiques à longue chaîne, par exemple l'heptadécaéthylène-oxycétanol, ou des produits de condensation de l'oxyde d'éthylène avec des esters partiels dérivés d'acides gras et d'un hexitol, comme le monooléate de polyoxyéthylène sorbitol, ou des produits de condensation de l'oxyde d'éthylène avec des esters partiels dérivés d'acides gras et d'anhydrides d'hexitol, par exemple le monooléate de polyéthylène sorbitol. Les suspensions aqueuses peuvent également contenir un ou plusieurs conservateurs, par exemple de l'éthyle, ou du n-propyle, du p-hydroxybenzoate, un ou plusieurs colorants, un ou plusieurs aromatisants, et un ou plusieurs édulcorants, comme le saccharose ou la saccharine.
[77] Selon un mode de réalisation, les suspensions huileuses peuvent être formulées en mettant en suspension le principe actif dans une huile végétale, par exemple l'huile d'arachide, d'olive, de sésame ou de coco, ou dans une huile minérale telle que la paraffine liquide. Les suspensions huileuses peuvent contenir un agent épaississant, par exemple de la cire d'abeille, de la paraffine dure ou de l'alcool cétylique. Des agents édulcorants tels que ceux mentionnés ci-dessus et des agents aromatisants peuvent être ajoutés pour obtenir une préparation orale agréable au goût. Ces compositions peuvent être conservées par l'ajout d'un antioxydant tel que l'acide ascorbique. Les poudres et granules dispersables qui conviennent à la préparation d'une suspension aqueuse par addition d'eau fournissent l'ingrédient actif en mélange avec un agent dispersant ou mouillant, un agent de suspension et un ou plusieurs conservateurs.
[78] Les sirops et élixirs peuvent être formulés avec des agents édulcorants, par exemple le glycérol, le propylène glycol, le sorbitol ou le saccharose. Ces formulations peuvent également contenir un émollient, un agent de conservation, des agents aromatisants et colorants. [79] Les compositions pharmaceutiques selon l’invention peuvent se présenter sous la forme d'une suspension aqueuse ou oléagineuse injectable de manière stérile. Cette suspension peut être formulée selon l'art connu en utilisant les agents dispersants ou mouillants et les agents de suspension appropriés qui ont été mentionnés ci-dessus. La préparation stérile injectable peut également être une solution ou une suspension stérile injectable dans un diluant ou un solvant non toxique acceptable par voie parentérale, par exemple une solution dans du 1 ,3-butane diol. Les véhicules et solvants acceptables pouvant être utilisés comprennent ; l'eau, le liquide de Ringer et la solution isotonique de chlorure de sodium. En outre, des huiles fixes stériles sont traditionnellement utilisées comme solvant ou milieu de suspension. À cette fin, toute huile fixe peut être utilisée, y compris les mono- ou diglycérides synthétiques. En outre, les acides gras tels que l'acide oléique sont utilisés dans la préparation des produits injectables.
[80] Les compositions pharmaceutiques selon l’invention peuvent également être administrées sous forme de suppositoires pour l'administration rectale du médicament. Ces compositions peuvent être préparées en mélangeant le médicament avec un excipient approprié non irritant qui est solide à la température ordinaire mais liquide à la température rectale et qui fondra donc dans le rectum pour libérer le médicament. Ces matières comprennent le beurre de cacao et les polyéthylèneglycols.
[81 ] En outre, les compositions pharmaceutiques selon l’invention peuvent être administrées par voie oculaire au moyen de solutions ou de pommades. De plus, l'administration transdermique des composés en question peut être réalisée au moyen de patchs iontophorétiques et autres. Pour l'utilisation topique, on utilise des crèmes, des pommades, des gelées, des solutions ou des suspensions.
[82] Dans le traitement d'un mammifère souffrant ou risquant de développer un cancer, un dosage approprié de la composition pharmaceutique selon l’invention peut généralement être d'environ 0,1 à 50 000 microgrammes (μg) par kg de poids corporel du patient par jour, qui peut être administré en doses uniques ou multiples. Le niveau de dosage sera de préférence d'environ 1000 à environ 40 000 μg/kg par jour, en fonction de nombreux facteurs tels que la gravité du cancer à traiter, l'âge et l'état de santé relatif du sujet, la voie et la forme d'administration. Pour l'administration orale, cette composition peut être fournie sous forme de comprimés contenant 1000 à 100000 microgrammes de chacun des principes actifs, en particulier 1000, 5000, 10000, 15000, 20000, 25000, 50000, 75000, 100000 microgrammes de chaque principe actif. Cette composition peut être administrée selon un schéma de 1 à 4 fois par jour, par exemple une ou deux fois par jour. Le régime posologique peut être ajusté pour fournir une réponse thérapeutique optimale. [83] L’invention divulgue également ci-après des procédés de fabrication des composés de formule (I).
Brève description des figures
[84] L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
[85] [fig-1 ] La figure 1 illustre le profil pharmacocinétique du composé 5α-hydroxy-6β-[2- (1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate (DX107) en comparaison avec le composé Dendrogénine A (DX101 ).
[86] [fig.2] La figure 2 illustre le profil pharmacocinétique du composé 5α-hydroxy-6β -[2- (1 H-imidazole-4-yl)éthylamino]-cholestane-3β-yl-(2-(1 H-imidazol-4-yl)ethyl)carbama- te (DX117) en comparaison avec le composé Dendrogénine A (DX101 ).
[87] [fig. 3] La figure 3 illustre le profil pharmacocinétique du composé 5α-hydroxy-6β-[2- (1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-éthyl-carbonate (DX121 ) en comparaison avec le composé Dendrogénine A (DX101 ).
[88] [fig. 4A] La figure 4A illustre la comparaison d’activité entre le DX107 et le DX101 sur la réduction de la croissance tumorale.
[89] [fig. 4B] La figure 4B illustre la comparaison d’activité entre le DX107 et le DX101 sur la survie des animaux
[90] [fig. 5] La figure 5 représente les résultats d’une étude de cytotoxicité du composé, 5α- hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate sur les cellules Neuro2a via un test de bleu de trypan.
[91] [fig. 6] La figure 6 illustre les résultats d’un test de viabilité cellulaires MTT réalisé sur des cellules tumorales mammaires MCF-7 en présence du composé 5α-hydroxy-6β-[2- (1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate.
[92] [fig. 7] La figure 7 illustre les résultats de l’activité de la Cholestérol Epoxyde Hydrolase (ChEH) dans des cellules MCF-7 en présence du composé 5α-hydroxy-6β-[2-(1 H- imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate.
[93] EXEMPLES
[94] Différentes expériences ont été réalisées afin d’évaluer les caractéristiques des composés de formule (I).
Le terme « température ambiante » employé dans les exemples suivants doit s’interpréter comme étant une température comprise entre 10 et 40 degrés Celsius (°C), par exemple entre 15 °C et 30 °C et préférentiellement environ 20 °C.
[95] Les composés préférés selon l’invention correspondant à la formule I générale dont il est décrit ci-après la synthèse et l’activité sont les suivants :
Figure imgf000022_0001
[96] Les autres composés rentrant dans la portée de la formule générale, non exemplifiés, font partie intégrante des composés selon l’invention.
[97] Exemple 1 : Synthèse du composé de formule (I) 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]cholestane-3β-yl propionate (nommé DX107, sous forme basique):
La première étape est une synthèse du composé cholestan-3β-propionate comprenant les étapes suivantes :
Figure imgf000022_0002
Dans un ballon rodé de 100mL, 10.0 mL de pyridine anhydre (123.6 mmol) sont ajoutés à 4.00 g de cholestérol (10.3 mmol). 7.07 g anhydride propionique (54.3 mmol) sont ajoutés et le tout est mélangé à température ambiante pendant 24 heures. Au bout de 24 heures, un précipité blanc apparait dans le mélange. La réaction est arrêtée par addition de 50 mL de méthanol (MeOH) et une grande quantité de précipité blanc est obtenue. La solution a été filtré et le précipité est lavé avec du MeOH. La procédure permet l'obtention de 4.50 g d’une poudre blanche correspondent au cholestan-3β-propionate (rendement 89%). Le 3β-propionate- cholestane est utilisé tel quel sans purification supplémentaire. 1H-NMR (500 MHz, CDCI3): δ (ppm) 5.37 - 5.36 (d, 1 H), 4.64 - 4.58 (m, 1 H), 2.32 - 2.27 (m, 4H), 2.02 - 1 .95 (t, 2H), 1.86 - 1 .79 (m, 3H), 1.61 - 1 .81 (m, 27H), 0.92 - 0.90 (d, 3H), 0.87 - 0.85 (d, 6H), 0.67 (s, 3H).
La deuxième étape consiste à synthétiser à partir du cholestan-3β-propionate le composé 5,6α-Epoxycholestan-3β-propionate de la manière suivante :
Figure imgf000023_0001
L’acide méta-chloro-peroxybenzoïque (m-CPBA) (à 77%, 2.67 g, 1 1 .9 mmol) est dissous dans du dichlorométhane (60 mL) et ajouté goutte à goutte pendant 1 h à un mélange de cholestan- 3β-propionate (4.00 g, 9.03 mmol) dissous dans du dichlorométhane (20 mL). L’agitation est maintenue à température ambiante durant trois heures. Le milieu réactionnel est lavé deux fois avec une solution aqueuse de Na2S2O3 (10 % en poids), deux fois avec une solution saturée de NaHCO3 et une fois avec une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. L'évaporation sous vide du solvant organique permet l'obtention de 4.08 g d’une poudre blanche correspondent au mélange des deux isomères : 5,6α-Epoxycholestan-3β-propionate (73%) et 5,6β-Epoxycholestan-3β-propionate (27%). La poudre blanche est utilisée tel quel sans purification supplémentaire.
1H-NMR (500 MHz, CDCI3): δ (ppm) 4.99 - 4.93 (q, 1 H), 2.89 - 2.88 (d, 1 H), 2.31 - 2.25 (m, 2H), 2.18 - 2.13 (t, 1 H) 2.00 - 1 .77 (m, 4H), 1 .70 - 0.94 (m, 29H), 0.89 - 0.88 (d, 3H), 0.86 - 0.85 (d, 6H), 0.60 (s, 3H).
La troisième étape consiste à synthétiser le 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]cholestane-3β-propionate (DX107 sous forme basique) de la manière suivante :
Figure imgf000023_0002
L’histamine sous sa forme basique (1 .44 g, 13.0 mmol) est ajoutée après complète dissolution de 3.00 g de 5,6α-Epoxycholestan-3β-propionate (à 73%, 4.6 mmol) sous 30 ml de butanol. Le mélange réactionnel est maintenu sous agitation et à reflux, pendant 48 heures. L'avancée de la réaction est contrôlée par chromatographie sur couche mince (CCM) pour suivre la conversion du 5,6α-Epoxycholestan-3β-propionate. Après refroidissement, le milieu réactionnel est dilué dans 24 mL de méthyl tert-butyl éther, la phase organique est lavée par 2 fois avec 24 mL d’eau puis deux fois avec une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. Le brut réactionnel est purifié par colonne chromatographique sur gel de Silice sur un automate de purification. L’éluant utilisé est un mélange de dichlorométhane/ Acétate d’éthyle 100-0% jusqu’au 0-100%. Une poudre blanche de 1.20 g de 5α-Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]cholestane-3β-yl propionate est obtenue, correspondent à 46% de rendement.
1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.60 (s, 1 H), 6.85 (s, 1 H), 5.21 - 5.15 (q, 1 H), 2.94 - 2.89 (m, 1 H), 2.77 - 2.69 (m, 3H), 2.39 (s, 1 H), 2.34 - 2.29 (m, 2H), 2.12 - 2.07 (t, 1 H), 2.01 - 1 .99 (bd, 2H), 1.89 - 1 .79 (m, 2H), 1.70 - 1 .01 (m, 29H), 0.94 - 0.93 (d, 3H), 0.9 - 0.89 (dd, 6H), 0.69 (s, 3H).
Exemple 2 : Préparation d’un sel dilactate du 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino1cholestane-3β-yl propionate (DX107 sous forme dilatacte) :
Un sel dilactate du composé 5 α-Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]cholestane-3β- yl propionate a été préparé de la manière suivante :
Figure imgf000024_0001
384 mg d’acide lactique (4.3 mmol) a été ajouté à une solution de 1 .20 g de 5α-Hydroxy-6β- [2-(1 H-imidazole-4-yl)éthylamino]cholestane-3β-yl propionate (2.1 mmol) dans 20 mL d’éthanol anhydre sous agitation. L’agitation a été maintenue à température ambiante durant trois heures. Une évaporation sous vide du solvant organique permet l’obtention d’une poudre blanche de 1.58 g de 5α-Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]cholestane-3β-yl propionate dilactate.
1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.61 (s, 1 H), 6.85 (s, 1 H), 5.04 - 4.98 (q, 1 H), 3.93 - 3.89 (q, 2H), 3.43 - 3.42 (q, 1 H), 3.25 - 3.20 (m, 1 H), 3.12 - 3.06 (q, 1 H), 2.15 - 2.09 (m, 3H), 1.87 - 1 .85 (d, 1 H), 1.69 - 1 .67 (m, 3H), 1.61 - 1 .05 (m, 4H), 1 .41 - 0.82 (m, 33H), 0.76 - 0.75 (d, 3H), 0.69 - 0.68 (d, 6H), 0.57 (s, 3H).
[98] Exemple 3 : Synthèse du composé de formule (I) 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)- éthylaminol-cholestan-38-yl hexanoate (nommé DX113, sous forme basique):
La première étape est une synthèse du composé cholestan-3β-hexanoate comprenant les étapes suivantes :
Figure imgf000025_0001
Dans un ballon rodé de 100 mL, 4.00 g (10.3 mmol) de cholestérol sont dissous dans 10 mL de pyridine anhydre (123.6 mg) et 1 1.64 g d’anhydride hexanoïque (54.3 mmol) sont additionnés. Le tout est mélangé à température ambiante pendant 24 heures. Au bout de 24 heures, un précipité blanc apparait dans le mélange. La réaction est arrêtée par addition de 50 mL de méthanol (MeOH) et une grande quantité de précipité blanc est obtenue. La solution a été filtré et le précipité est lavé avec du MeOH. La procédure permet l'obtention de 4.95 g d’une poudre blanche correspondent au cholestan-3β-hexanoate (rendement 99%). Le cholestan-3β-hexanoate est utilisé tel quel sans purification supplémentaire.
[99] 1H-NMR (500 MHz, CDCI3): δ (ppm) 5.38 (s, 1 H), 4.64 - 4.58 (m, 1 H), 2.32 - 2.25 (m, 4H), 2.02 - 1 .95 (m, 2H), 1 .86 - 1 .84 (m, 3H), 1 .63 - 0.86 (m, 42H), 0.67 (s, 3H).
[100] La deuxième étape consiste à synthétiser à partir du cholestan-3β-hexanoate le composé 5,6α-Epoxycholestan-3β-hexanoate de la manière suivante :
[101]
Figure imgf000025_0002
L’acide méta-chloro-peroxybenzoïque (m-CPBA) (à 77%, 2.95 g, 17.1 mmol) est dissous dans du dichlorométhane (60 mL) et ajouté goutte à goutte pendant 1 heure à une solution de cholestan-3β-hexanoate (4.90 g, 10.1 mmol) dans du dichlorométhane (20 mL). L’agitation est maintenue à température ambiante 3 heures. Le milieu réactionnel est lavé deux fois avec une solution aqueuse de Na2S2O3 (10 % en poids), deux fois avec une solution saturée de NaHCO3 et un fois avec une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. L'évaporation sous vide du solvant organique permet l'obtention de 5.06 g d’une poudre blanche correspondent aux 5,6α- Epoxycholestan-3β-hexanoate (70%) et 5,6β-Epoxycholestan-3β-hexanoate (30%). Le 5,6α-Epoxycholestan-3β-hexanoate est utilisé tel quel sans purification supplémentaire.
[102] 1H-NMR (500 MHz, CDCI3): δ (ppm) 4.99 - 4.93 (g, 1 H), 2.89 - 2.88 (d, 1 H), 2.26 - 2.23 (m, 2H), 2.18 - 2.13 (t, 1 H), 2.00 - 0.85 (m, 48H), 0.60 (s, 3H).
[103] La troisième étape consiste à synthétiser le 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]-cholestane-3β-hexanoate de la manière suivante (DX1 13 sous forme basique) :
[104]
Figure imgf000026_0001
L’histamine sous sa forme basique (1.25 g, 11.2 mmol) est ajoutée à une solution butanolique (40 mL) d'un 5,6α-Epoxycholestan-3β-hexanoate (à 70% de pureté, 4. 0 g, 5.6 mmol). Le mélange réactionnel est maintenu sous agitation et à reflux, pendant 48 heures. L'avancée de la réaction est contrôlée par chromatographie sur couche mince (CCM) pour suivre la conversion du 5,6α-Epoxycholestan-3β-hexanoate. Après refroidissement, le milieu réactionnel est dilué dans 40 mL de méthyl tert-butyl éther, la phase organique est lavée trois fois par 40 mL d’eau puis une fois avec 40 ml une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. Le brut réactionnel est purifié par colonne chromatographique sur gel de Silice sur un automate de purification. L’éluant utilisé est un mélange dichlorométhane/ Acétate d’éthyle 100-0% jusqu’au 0-100%. Une poudre blanche de 1.71 g de 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]cholestane-3β-hexanoate (50% de rendement) est obtenue.
[105] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.59 (s, 1 H), 6.85 (s, 1 H), 5.22 - 5.16 (g, 1 H), 2.94 - 2.89 (m, 1 H), 2.77 - 2.67 (m, 3H), 2.39 (s, 1 H), 2.30 - 2.28 (t, 2H), 2.14 - 2.10 (t, 1 H), 2.01 - 1 .99 (bd, 1 H), 1 .88 - 0.89 (m, 47H), 0.69 (s, 3H).
[106] Exemple 4 : Préparation d’un sel dilactate du composé 5α-Hvdroxy-6β-[2-(1 H- imidazole-4-yl)éthylamino]cholestane-3β-yl hexanoate (DX113 sous forme dilactate): [107] Un sel dilactate du composé 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]- cholestane-3β-yl hexanoate a été préparé de la manière suivante :
Figure imgf000027_0001
552 mg d’acide lactique (6.15 mmol) a été ajouté à une solution de 1.87 g de 5α-hydroxy- 6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestane-3β-yl hexanoate (3.06 mmol) dans 5 mL d’éthanol anhydre sous agitation. L’agitation a été maintenue à température ambiante 3 heures. Une évaporation sous vide du solvant organique permet l’obtention d’une poudre blanche de 2.42 g de 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestane-3β-yl hexanoate dilactate.
[108] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.56 (s, 1 H), 6.78 (s, 1 H), 4.93 - 4.87 (q, 1 H), 3.84 - 3.82 (d, 2H), 3.33 - 3.32 (m, 1 H), 3.13 (bs, 1 H), 3.02 (bs, 1 H), 2.75 - 2.69 (m, 3H), 2.08-2.05 (m, 3H), 1.78 - 1 .76 (d, 1 H), 1 .61 - 0.59 (m, 50H), 0.48 (s, 3H).
[109] Exemple 5 : Synthèse du composé de formule (I) 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]cholestane-3β-yl éthyle carbonate (nommé DX121 , sous forme basique):
[1 10] La première étape consiste à synthétiser à partir du produit commerciale cholestane- 3β-yl éthyle carbonate le composé 5,6α-Epoxycholestan-3β-yl éthyle carbonate de la manière suivante :
Figure imgf000027_0002
L’acide méta-chloro-peroxybenzoïque (m-CPBA) (à 77%, 1.31 g, 5.8 mmol) est dissous dans du dichlorométhane (30 mL) et ajouté goutte à goutte pendant 30 minutes à un mélange de cholestane-3β-yl éthyle carbonate (2.02 g, 4.4 mmol) dissous dans du dichlorométhane (15 mL). L’agitation est maintenue à température ambiante pendant trois heures. Le milieu réactionnel est lavé deux fois avec une solution aqueuse de sulfite de sodium (10 % en poids), deux fois avec une solution saturée de NaHCO3 et une fois avec une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. L'évaporation sous vide du solvant organique permet l'obtention de 2.09 g d’une poudre blanche correspondent au mélange des deux isomères : 5,6α-Epoxycholestan-3β-yl éthyle carbonate (76%) et 5,6β-Epoxycholestan-3β-yl éthyle carbonate (24%). La poudre blanche est utilisée tel quel sans purification supplémentaire.
[111] 1H-NMR (500 MHz, CDCI3): δ (ppm) 4.85 - 4.78 (g, 1 H), 2.90 - 2.89 (d, 1 H), 2.23 - 2.19 (t, 1 H), 2.09 - 2.04 (m, 1 H), 1.98 - 1.87 (m, 2H), 1.84 - 0.93 (m, 32H), 0.89 - 0.87 (d, 3H), 0.86 - 0.84 (d, 6H), 0.60 (s, 3H).
[112] La deuxième étape consiste à synthétiser le 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]-cholestane-3β-yl éthyle carbonate de la manière suivante :
[113]
Figure imgf000028_0001
[114]
L’histamine sous sa forme basique (754.5 mg, 6.8 mmol) est ajoutée après complète dissolution de 2.09 g de 5,6α-Epoxycholestan-3β-yl éthyle carbonate (à 76%, 3.4 mmol) sous 20 ml de butanol. Le mélange réactionnel est maintenu sous agitation et à reflux, pendant 48 heures. L'avancée de la réaction est contrôlée par chromatographie sur couche mince (CCM) pour suivre la conversion du 5,6α-Epoxycholestan-3β-yl éthyle carbonate. Après refroidissement, le milieu réactionnel est dilué dans 20 mL de méthyl tert-butyl éther, la phase organique est lavée 3 fois avec 20 mL d’une solution saturée de NaCL La phase organique est séchée sur du MgSO4 anhydre. Le brut réactionnel est purifié par colonne chromatographique sur gel de Silice sur un automate de purification. L’éluant utilisé est un mélange de dichlorométhane/ Acétate d’éthyle 100-0% jusqu’au 0- 100%. Une poudre blanche de 480 mg de 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]-cholestan-3β-yl éthyle carbonate est obtenue, correspondent à 24% de rendement.
[115] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.54 (s, 1 H), 6.80 (s, 1 H), 5.00 - 4.93 (q, 1 H), 2.89 - 2.84 (m, 1 H), 2.73 - 2.62 (m, 3H), 2.36 (s, 1 H), 2.08 - 2.03 (t, 1 H), 1 .96 - 1 .94 (d, 1 H) 1 .83 - 1 .79 (m, 2H), 1 .66 - 0.97 (m, 32H), 0.90 - 0.89 (d, 3H), 0.85 - 0.84 (dd, 6H), 0.64 (s, 3H). [1 16] Exemple 6 : Préparation d’un sel dilactate du 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino1-cholestane-3β-yl éthyle carbonate (DX121 sous forme dilactate) :
[1 17] Un sel dilactate du composé 5α-Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]- cholestane-3β-yl éthyle carbonate a été préparé de la manière suivante :
Figure imgf000029_0001
141.6 mg d’acide lactique (1.57 mmol) a été ajouté à une solution de 460 mg de 5α- Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]-cholestane-3β-yl éthyle carbonate (0.785 mmol) dans 8 mL d’éthanol anhydre sous agitation. L’agitation a été maintenue à température ambiante durant trois heures. Une évaporation sous vide du solvant organique permet l’obtention d’une poudre blanche de 1.58 g de 5α-Hydroxy-6β-[2-(1 H- imidazole-4-yl)éthylamino]-cholestane-3β-yl éthyle carbonate dilactate.
[118] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.57 (s, 1 H), 6.76 (s, 1 H), 4.74 - 4.70 (g, 1 H), 3.84 - 3.78 (g, 4H), 3.31 - 3.27 (m, 2H), 3.13 - 3.08 (m, 1 H), 2.99 - 2.94 (m, 1 H), 2.73 - 2.67 (m, 3H), 2.04 - 2.00 (t, 1 H), 1.75 - 1 .72 (d, 1 H), 1.64 - 1 .39 (m, 8H), 1 .28 - 0.69 (m, 28H), 0.64 - 0.63 (d, 3H), 0.57 - 0.56 (d, 6H), 0.45 (s, 3H).
[1 19] Exemple 7 : Synthèse du composé de formule (I) 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino1cholestane-3β-yl butyle carbonate (nommé DX119, sous forme basique):
[120] La première étape consiste à synthétiser à partir du produit commerciale cholestane- 3β-yl butyl carbonate le composé 5,6α-Epoxycholestan-3β-yl butyle carbonate de la manière suivante :
Figure imgf000029_0002
[121] L’acide méta-chloro-peroxybenzoïque (à 77%, 1.28 g, 5.7 mmol) est dissous dans du dichlorométhane (30 mL) et ajouté goutte à goutte pendant 30 minutes à un mélange de cholestane-3β-yl butyle carbonate (2.14 g, 4.4 mmol) dissous dans du dichlorométhane (15 mL). L’agitation est maintenue à température ambiante pendant trois heures. Le milieu réactionnel est lavé deux fois avec une solution aqueuse de Na2S2O3 (10 % en poids), deux fois avec une solution saturée de NaHCO3 et une fois avec une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. L'évaporation sous vide du solvant organique permet l'obtention de 2.21 g d’une poudre blanche correspondent au mélange des deux isomères : 5,6α-Epoxycholestan-3β-yl butyle carbonate (77%) et 5,6β- Epoxycholestan-3β-yl butyle carbonate (23%). La poudre blanche est utilisée tel quel sans purification supplémentaire.
[122] 1H-NMR (500 MHz, CDCI3): δ (ppm) 4.86 - 4.79 (g, 1 H), 2.91 - 2.89 (d, 1 H), 2.22 - 2.18 (t, 1 H), 2.09 - 2.04 (m, 1 H), 1.98 - 1.87 (m, 2H), 1.84 - 0.93 (m, 33H), 0.89 - 0.87 (d, 6H), 0.86 - 0.84 (d, 6H), 0.60 (s, 3H).
[123] La deuxième étape consiste à synthétiser le 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]-cholestane-3β-yl butyle carbonate (DX119 sous forme basique) de la manière suivante :
Figure imgf000030_0001
[124] L’histamine sous sa forme basique (759.8 mg, 6.8 mmol) est ajoutée après complète dissolution de 2.21 g de 5,6α-Epoxycholestan-3β-yl butyle carbonate (à 77%, 3.4 mmol) sous 20 ml de butanol. Le mélange réactionnel est maintenu sous agitation et à reflux, pendant 48 heures. L'avancée de la réaction est contrôlée par chromatographie sur couche mince (CCM) pour suivre la conversion du 5,6α-Epoxycholestan-3β-yl butyle carbonate. Après refroidissement, le milieu réactionnel est dilué dans 20 mL de méthyl tert-butyl éther, la phase organique est lavée 3 fois avec 20 mL d’une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. Le brut réactionnel est purifié par colonne chromatographique sur un automate de purification. L’éluant utilisé est un mélange de dichlorométhane/Acétate d’éthyle 100-0% jusqu’au 0-100%. Une poudre blanche de 814 mg de 5α-Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]-cholestan-3β-yl butyle carbonate est obtenue, correspondent à 39% de rendement.
[125] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.54 (s, 1 H), 6.80 (s, 1 H), 5.00 - 4.93 (g, 1 H), 4.06 - 4.03 (m, 2H), 2.91 - 2.87 (m, 1 H), 2.73 - 2.65 (m, 3H), 2.39 (s, 1 H), 2.09 - 2.05 (t, 1 H), 1 .96 - 1 .93 (d, 1 H) 1 .84 - 1 .77 (m, 2H), 1 .66 - 0.96 (m, 31 H), 0.92 - 0.88 (m, 6H), 0.85 - 0.83 (dd, 6H), 0.64 (s, 3H).
[126] Exemple 8 : Préparation d’un sel dilactate du 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino1-cholestane-3β-yl butyl carbonate (DX1 19 sous forme dilactate) :
[127] Un sel dilactate du composé 5α-Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]- cholestane-3β-yl butyle carbonate a été préparé de la manière suivante :
Figure imgf000031_0001
33.7 mg d’acide lactique (0.37 mmol) a été ajouté à une solution de 114 mg de 5α- Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]-cholestane-3β-yl butyle carbonate (0.186 mmol) dans 2 mL d’éthanol anhydre sous agitation. L’agitation a été maintenue à température ambiante durant trois heures. Une évaporation sous vide du solvant organique permet l’obtention d’une poudre blanche de 148 mg de 5α-Hydroxy-6β-[2-(1 H- imidazole-4-yl)éthylamino]-cholestane-3β-yl butyle carbonate dilactate.
[128] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.70 (s, 1 H), 6.97 (s, 1 H), 5.02 - 4.95 (g, 1 H), 4.08 - 4.03 (g, 4H), 3.37 - 3.35 (m, 1 H), 3.26 - 3.20 (m, 1 H), 2.95 (s, 1 H), 2.87 (s, 1 H), 2.31 - 2.26 (t, 2H), 2.02 - 1 .99 (d, 1 H), 1 .92 - 0.94 (m, 39H), 0.90 - 0.88 (m, 6H), 0.84 - 0.82 (dd, 6H), 0.72 (s, 3H).
[129] Exemple 9 : Synthèse du composé de formule (I) 5α-Hvdroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]-cholestane-3β-yl-(2-(1 H-imidazol-4-yl)ethyl)carbamate (nommé DX1 17, sous forme basique):
[130] La première étape est une synthèse du composé cholestan-3β-yl phényle carbonate comprenant les étapes suivantes :
Figure imgf000031_0002
[132] Dans un ballon rodé de 100mL, 20 mL de dichlorométhane sont ajouté pour dissoudre 7.58 g de cholestérol (19.6 mmol) et 1 .0 g de 4-Diméthylaminopyridine (DMAP, 8.2 mmol). Puis 15 mL de pyridine anhydre (185.5 mmol) et 3.4 ml de phényl chloroformiate (24.1 mmol) sont ajoutés et le tout est mélangé à température ambiante pendant 1 heure. Au bout de l’heure, la réaction est diluée par addition de 35 mL de dichlorométhane et le milieu réactionnel est lavée trois fois avec une 70 mL d’une solution aqueuse de HCl (1 M). La phase organique est séchée sur du MgSO4 anhydre. L'évaporation sous vide du solvant organique permet l'obtention de 8.79 g d’une poudre blanche correspondent au produit souhaité, correspondent au 98% de rendement.
[133] 1H-NMR (500 MHz, CDCI3): δ (ppm) 7.31 - 7.28 (m, 2H), 7.17 - 7.13 (m, 1 H), 7.12 - 7.10 (d, 2H), 5.35 - 5.34 (g, 1 H), 4.54 - 4.47 (m, 1 H), 2.45 - 2.36 (m, 2H), 1.98 - 1.61 (m, 6H), 1 .54 - 0.88 (m, 23H), 0.85 - 0.84 (d, 3H), 0.80 - 0.78 (d, 6H), 0.61 (s, 3H).
[134] La deuxième étape consiste à synthétiser à partir du cholestan-3β-yl phényle carbonate le composé 5,6α-Epoxycholestan-3β-yl phényle carbonate de la manière suivante :
Figure imgf000032_0001
L’acide méta-chloro-peroxybenzoïque (à 77%, 5.08 g, 22.7 mmol) est dissous dans du dichlorométhane (70 mL) et ajouté goutte à goutte pendant 1 h à un mélange de cholestan- 3β-yl phényle carbonate (8.79 g, 17.3 mmol) dissous dans du dichlorométhane (70 mL). L’agitation est maintenue à température ambiante durant trois heures. Le milieu réactionnel est lavé deux fois avec une solution aqueuse de Na2S2O3 (10 % en poids), deux fois avec une solution saturée de NaHCO3 et une fois avec une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. L'évaporation sous vide du solvant organique permet l'obtention de 9.04 g d’huile transparent correspondent au mélange des deux isomères : 5,6α-epoxycholestan-3β-yl phényle carbonate et 5,6β- epoxycholestan-3β-yl phényle carbonate. Le mélange a été redissous dans 10 mL de Et2O et 40 mL d’EtOH ont été ajoutés pour obtenir un précipitât blanc. La solution a été filtré et le précipité est lavé avec du EtOH. La procédure permet l'obtention de 7.23 g d’une poudre blanche riche en 5,6α- époxy-cholestan-3β-yl phényle carbonate correspondent au 88% de rendement 89% (76% excès énantiomérique).
[135] 1H-NMR (500 MHz, CDCI3): δ (ppm) 7.38 - 7.35 (m, 2H), 7.24 - 7.21 (m, 1 H), 7.18 -
7.16 (d, 2H), 4.96 - 4.90 (q, 1 H), 2.93 (s, 1 H), 2.33 - 2.29 (tq 1 H), 2.18 - 2.15 (d, 1 H), 1.97 - 1 .90 (m, 2H), 1.84 - 1 .74 (m, 3H), 1 .58 - 0.95 (m, 24H), 0.90 - 0.88 (d, 3H), 0.87 - 0.85 (dd, 6H), 0.61 (s, 3H).
[136] La troisième étape consiste à synthétiser le 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]-cholestan-3β-yl-(2-(1 H-imidazol-4-yl)ethyl)carbamate (DX1 17 sous forme basique) de la manière suivante :
[137]
Figure imgf000033_0001
L’histamine sous sa forme basique (1.13 g, 10.2 mmol) est ajoutée après complète dissolution de 1.0 g de 5,6α- époxy-cholestan-3β-yl phényle carbonate (à 88%, 1 .7 mmol) avec 30 mL de butanol. Le mélange réactionnel est maintenu sous agitation et à reflux, pendant 48 heures. L'avancée de la réaction est contrôlée par chromatographie sur couche mince (CCM) pour suivre la conversion du 5,6α-epoxycholestan-3β-yl phényle carbonate. Le mélange a été transféré dans une ampoule à décanter et les produits organiques ont été extraits 2 fois avec 15 mL de méthyl tert-butyl éther et 2 autres fois avec 15 mL d’acétate d’éthyle. Les phases organiques ont été combinées, séchées sur du MgSO4 anhydre. Le brut réactionnel est purifié par colonne chromatographique sur gel de Silice sur un automate de purification. L’éluant utilisé est un mélange de acétate d’éthyle-MeOH 95-5% jusqu’au 80-20% et enfin DCM-MeOH-NH4OH 75-20-5%. Une poudre blanche de 530 mg de 5α-Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]- cholestane-3β-yl-(2-(1 H-imidazol-4-yl)ethyl)carbamate est obtenue, correspondent à 48% de rendement.
[138] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.60 (s, 1 H), 7.58 (s, 1 H), 6.86 (s, 1 H), 6.83 (s, 1 H), 5.02 - 4.95 (q, 1 H), 3.31 - 3.30 (m, 2H), 2.99 - 2.97 (m, 1 H), 2.77 - 2.74 (m, 5H), 2.45 (s, 1 H), 2.09 - 2.05 (t, 1 H), 2.00 - 1 .98 (d, 1 H), 1.86 - 1 .81 (m, 2H), 1.69 - 1 .00 (m, 27H), 0.93 - 0.92 (d, 3H), 0.89 - 0.87 (d, 6H), 0.69 (s, 3H).
[139] Exemple 10: Préparation d’un sel trilactate du 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]-cholestan-3β-yl-(2-(1 H-imidazol-4-yl)ethyl)carbamate (DX1 17 sous forme trilactate):
Un sel trilactate du composé 5α-Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]-cholestan- 3β-yl-(2-( 1 H-imidazol-4-yl)ethyl)carbamate a été préparé de la manière suivante :
Figure imgf000034_0001
103.4 mg d’acide lactique (1.15 mmol) a été ajouté à une solution de 251.2 mg 5α- Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]-cholestan-3β-yl-(2-(1 H-imidazol-4- yl)ethyl)carbamate (0.39 mmol) dans 5 mL d’éthanol anhydre sous agitation. L’agitation a été maintenue à température ambiante durant trois heures. Une évaporation sous vide du solvant organique permet l’obtention d’une poudre blanche de 1.58 g de 5α-Hydroxy-6β- [2-(1 H-imidazole-4-yl)éthylamino]-cholestan-3β-yl-(2-(1 H-imidazol-4-yl)ethyl)carbamate trilactate.
[140] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 8.20 (s, 1 H), 7.60 (s, 1 H), 6.96 (s, 1 H), 6.85 (s, 1 H), 4.85 - 4.78 (m, 1 H), 3.95 - 3.91 (q, 4H), 3.43 - 3.39 (q, 1 H), 3.25 - 3.07 (m, 5H), 2.84 - 2.83 (m, 2H), 2.74 (s, 1 H), 2.68 - 2.65 (m, 2H), 2.11 - 2.07 (t, 1 H), 1.86 - 1 .84 (d, 1 H), 1 .69 - 0.81 (m, 35H), 0.75 - 0.74 (d, 3H), 0.69 - 0.67 (d, 6H), 0.57 (s, 3H).
[141 ] Exemple 11 : Synthèse du composé de formule (I) 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino1cholestane-3β-yl-diéthyle carbamate (nommé DX131 , sous forme basique):
[142] La première étape est une synthèse du composé cholestan-3β-diéthyle carbamate comprenant les étapes suivantes :
Figure imgf000034_0002
Dans un ballon rodé de 100mL, 2.0 mL de pyridine anhydre (d=0.978 g/mL ; 24.7 mmol) sont ajoutés à un mélange de cholestérol chloro formiate (9.07 g, 20.2 mmol) dissous dans 40mL de dichlorométhane. 5.0 mL de diéthylamine (d=1.248 g/mL ; 48.3 mmol) sont ajoutés et le tout est mélangé à température ambiante pendant une nuit. Le milieu réactionnel est dilué avec 60 mL de dichlorométhane et lavé 5 fois avec 100 mL d’une solution aqueuse de HCl 3.7%v. La phase organique est séchée sur du MgSO4 anhydre et le solvant organique évaporé sous vide. Le solide blanc a été dissous avec 100 mL d’Et2O et fait précipiter avec 100 ml_ de MeOH, puis la solution a été filtrée et le précipité est lavé avec du MeOH froid. La procédure permet l'obtention de 9.30 g d’une poudre blanche correspondent à cholestan-3β-diéthyle carbamate (rendement de 95%).
[144] 1H-NMR (500 MHz, CDCI3): δ (ppm) 5.37 - 5.36 (d, 1 H), 4.54 - 4.49 (m, 1 H), 2.38 - 2.37 (dd, 1 H), 2.31 - 2.27 (t, 1 H), 2.02 - 1 .80 (m, 5H), 1 .60 - 0.93 (m, 34H), 0.92 - 0.91 (d, 3H), 0.87 - 0.86 (d, 6H), 0.67 (s, 3H).
[145] La deuxième étape consiste à synthétiser à partir du cholestan-3β- diéthyle carbamate le composé 5,6α-Epoxycholestan-3β- diéthyle carbamate de la manière suivante :
Figure imgf000035_0001
L’acide méta-chloro-peroxybenzoïque (à 77%, 4.47 g, 19.9 mmol) est dissous dans du dichlorométhane (100 mL) et ajouté goutte à goutte pendant 1 h à un mélange de cholestan-3β-diéthyle carbamate (7.45 g, 15.3 mmol) dissous dans du dichlorométhane (50 mL). L’agitation est maintenue à température ambiante durant trois heures. Le milieu réactionnel est lavé deux fois avec une solution aqueuse de Na2S2O3 (10 % en poids), deux fois avec une solution saturée de NaHCO3 et une fois avec une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. L'évaporation sous vide du solvant organique permet l'obtention de 7.81 g d’une solide blanche correspondent au mélange des deux isomères : 5,6α-Epoxycholestan-3β-diéthyle carbamate (69%) carbamate et 5,6β-Epoxycholestan-3β-diéthyle carbamate (31%). Le solide blanc est dissous dans 50 mL de dichlorométhane et 100 mL de MeOH ont été ajouté pour faire précipiter 4.27 g d’une poudre blanche riche en 5,6α-Epoxycholestan-3β-diéthyle carbamate (86%).
[146] 1H-NMR (500 MHz, CDCI3): δ (ppm) 4.88 - 4.83 (g, 1 H), 2.88 (s, 1 H), 2.16 - 2.13 (t, 1 H) 2.05 - 2.03 (d, 1 H), 1 .97 - 0.93 (m, 39H), 0.89 - 0.88 (d, 3H), 0.86 - 0.85 (d, 6H), 0.60 (s, 3H).
[147] La troisième étape consiste à synthétiser le 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]cholestane-3β-diéthyle carbamate (DX131 sous forme basique) de la manière suivante : [148]
Figure imgf000036_0001
L’histamine sous sa forme basique (756.3 mg, 6.8 mmol) est ajoutée après complète dissolution de 2.00 g de 5,6α-Epoxycholestan-3β-diéthyle carbamate (à 86%, 3.4 mmol) avec 7 ml de butanol. Le mélange réactionnel est maintenu sous agitation et à reflux, pendant 48 heures. L'avancée de la réaction est contrôlée par chromatographie sur couche mince (CCM) pour suivre la conversion du 5,6α-Epoxycholestan-3β-diéthyle carbamate. Après refroidissement, le milieu réactionnel est dilué dans 7 mL de méthyl tert- butyl éther, la phase organique est lavée par 3 fois avec 7 mL d’une solution saturée de NaCL La phase organique est séchée sur du MgSO4 anhydre. Le brut réactionnel est purifié par colonne chromatographique sur gel de Silice. L’éluant utilisé est un mélange de hexane-Acétate d’éthyle 90-10% jusqu’au 0-100%, puis Acétate d’éthyle-Méthanol 90- 10% jusqu’au 70-30 %. Une poudre blanche de 0.45 g de 5α-Hydroxy-6β-[2-(1 H- imidazole-4-yl)éthylamino]cholestane-3β-yl-diéthyle carbamate est obtenue, correspondent à 22% de rendement.
[149] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.61 (s, 1 H), 6.89 (s, 1 H), 5.07 - 5.01 (g, 1 H), 3.05 - 2.99 (m, 1 H), 2.82 - 2.79 (m, 3H), 2.49 (s, 1 H), 2.19 - 2.14 (t, 1 H), 2.02 - 1 .99 (bd, 1 H), 1.88 - 1 .82 (m, 2H), 1 .73 - 0.96 (m, 37H), 0.95 - 0.93 (d, 3H), 0.90 - 0.88 (dd, 6H), 0.70 (s, 3H).
[150] Exemple 12 : Préparation d’un sel dilactate du 5α-Hvdroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino1cholestane-3β-yl-diéthyle carbamate (DX131 sous forme dilactate):
[151 ] Un sel dilactate du composé 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]cholestane-3β-yl-diéthyle carbamate a été préparé de la manière suivante :
Figure imgf000037_0001
132.7 mg d’acide lactique (1.34 mmol) a été ajouté à une solution de 449.1 mg de 5α- Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]cholestane-3β-yl-diéthyle carbamate (0.73 mmol) dans 7.5 mL d’éthanol anhydre sous agitation. L’agitation a été maintenue à température ambiante durant trois heures. Une évaporation sous vide du solvant organique permet l’obtention d’une poudre blanche de 580.6 g de 5α-Hydroxy-6β-[2-(1 H- imidazole-4-yl)éthylamino]cholestane-3β-yl-diéthyle carbamate dilactate.
[152] 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.66 (s, 1 H), 6.94 (s, 1 H), 5.01 - 4.95 (g, 1 H), 4.06 - 4.01 (g, 2H), 3.53 - 3.49 (m, 1 H), 3.37 - 3.32 (g, 1 H), 3.22 - 3.17 (m, 6H), 2.94 - 2.91 (t, 1 H), 2.86 (bd, 1 H), 2.29 - 2.25 (t, 1 H) 1 .98 - 1 .95 (d, 1 H), 1 .84 - 0.92 (m, 40H), 0.86 - 0.85 (d, 3H), 0.80 - 0.78 (d, 6H), 0.68 (s, 3H).
[153] Exemple 13 : Synthèse du composé de formule (I) 5α-Hvdroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]cholestane-3β-yl propionyltyrosine (nommé DX133, sous forme basique):
[154] La première étape est la synthèse du N-propionyltyrosine à partir de l’acide aminé tyrosine :
Figure imgf000037_0002
10 mL de anhydride propionique (d= 1 .01 g/mL ; 77.7 mmol) ont été ajouté après complète dissolution de 2.33 g de NaOH (58.3 mmol) et 3.52 g de tyrosine (62.1 mmol) dans 60 mL d’eau désionisé à 100°C ambiante. Le mélange réactionnel est maintenu sous agitation et à reflux, pendant 3 jours. A l’issue de cette durée, la réaction a été neutralisée par addition de HCl jusqu’à avoir un pH = 6 et transférée dans une ampoule à décanter et extraite trois fois avec de l’acétate d’éthyle. Les phases organiques ainsi obtenues ont été combinées et séchées sur du MgSO4 puis évaporées permettant l’obtention d’une huile transparente correspondant au mélange N-propionyltyrosine et l’anhydride propionique qui n’a pas réagi. L’huile a été dissous avec de l’EtOH et séchée sous vide jusqu’à obtenir une poudre blanche de 3.81 g (70% de rendement).
1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.03 - 7.01 (d, 2H), 6.69 - 6.67 (d, 2H), 4.59 - 4.56 (m, 1 H), 3.11 - 3.07 (m, 1 H), 2.86 - 2.81 (m, 1 H), 2.19 - 2.14 (q, 2H), 1.04 - 1.01 (t, 3H).
[155] La deuxième étape est la réaction d’estérification entre cholestérol et N- propionyltyrosine pour obtenir le composé cholestan-3β-yl propionyltyrosine
[156]
Figure imgf000038_0001
3.81 g de N-propionyltyrosine (13.6 mmol), 5.26 g de cholestérol (13.5 mmol) et 480 mg d’acide paratoluènesulfonique monohydrate (TsOH, 1 .39 mmol) ont été transféré dans un ballon rodé de 100 mL et dissous dans 20 mL de Toluène. TsOH a été ajouté en deux portions ; la deuxième portion a été ajoutée 6 heures après la première. Le mélange réactionnel est maintenu sous agitation et à reflux pendant 24 heures. A l’issue de cette journée de réaction, la réaction a été neutralisée par addition de NaOH jusqu’au pH =12. Le mélange a été transféré dans une ampoule à décanter et extrait trois fois avec de l’acétate d’éthyle. Les phases organiques ainsi obtenues ont été combinées et séchées sur du MgSO4 puis évaporées permettant l’obtention d’une solide blanc-marronâtre. Le brut réactionnel est purifié par colonne chromatographique sur gel de Silice. L’éluant utilisé est un mélange de hexane/ Acétate d’éthyle 90-10% jusqu’au 30-70%. Une solide blanc- marronâtre de 7.83 g de cholestane-3β-yl propionyltyrosine est obtenu, correspondant à 96% de rendement.
1H-NMR (500 MHz, CDCI3): δ (ppm) 6.97 - 6.95 (dd, 2H), 6.73 - 6.70 (dd, 2H), 6.41 (bs, 1 H), 5.98 - 5.97 (d, 1 H), 5.38 - 5.36 (t, 1 H), 4.84 - 4.80 (m, 1 H), 4.66 - 4.60 (m, 1 H), 3.09 - 2.96 (m, 2H), 2.36 - 2.19 (m, 4H), 2.02 - 1 .95 (m, 2H), 1 .88 - 1 .79 (m, 3H), 1 .71 - 0.93 (m, 27H), 0.92 - 0.91 (d, 3H), 0.87 - 0.85 (d, 6H), 0.68 (s, 3H).
[157] La troisième étape consiste à synthétiser à partir du cholestan-3β-yl propionyltyrosine le composé 5,6α-Epoxycholestan-3β-yl propionyltyrosine de la manière suivante :
Figure imgf000039_0001
L’acide méta-chloro-peroxybenzoïque (à 77%, 1.79 g, 8.0 mmol) est dissous dans du dichlorométhane (45 mL) et ajouté goutte à goutte pendant 30 minutes à un mélange de cholestan-3β-yl propionyltyrosine (4.66 g, 7.7 mmol) dissous dans du dichlorométhane (20 mL). L’agitation est maintenue à température ambiante durant trois heures. Le milieu réactionnel est lavé deux fois avec une solution aqueuse de Na2S2O3 (10 % en poids), deux fois avec une solution saturée de NaHCO3 et une fois avec une solution saturée de NaCI. La phase organique est séchée sur du MgSO4 anhydre. L'évaporation sous vide du solvant organique permet l'obtention de 6.29 g d’une huile correspondent au mélange des deux isomères : 5,6α-Epoxycholestan-3β- yl propionylglycine et 5,6β-Epoxycholestan-3β- yl propionylglycine. Le mélange a été redissous dans 20 mL de dichlorométhane et 80 mL d’EtOH ont été ajouté pour obtenir un précipitât blanc-marronâtre. Le précipitât blanc- marronâtre obtenu a été filtré et lavé avec du MeOH. Pendant le lavage avec MeOH, la poudre blanche passe dans le filtre, le filtré résultant a été séché sous vide et permet l'obtention de 4.33 g d’une poudre blanche riche en 5,6α-Epoxycholestan-3β-yl propionyltyrosine correspondant au 90% de rendement (36% excès énantiomérique).
1H-NMR (500 MHz, CDCI3): δ (ppm) 6.95 - 6.93 (dd, 2H), 6.73 - 6.71 (dd, 2H), 6.48 (bs, 1 H), 4.99 - 4.92 (m, 1 H), 4.80 - 4.75 (m, 1 H), 3.07 - 2.89 (m, 4H), 2.22 - 0.93 (m, 36H), 0.89 - 0.88 (d, 3H), 0.86 - 0.85 (dd, 6H), 0.61 (s, 3H).
La quatrième étape consiste à synthétiser le 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino]cholestane-3β-yl propionyltyrosine de la manière suivante (DX133 sous forme basique):
Figure imgf000039_0002
L’histamine sous sa forme basique (449 mg, 4.0 mmol) est ajoutée après complète dissolution de 1 .0 g de 5,6α-Epoxycholestan-3β-yl propionyltyrosine (à 63%, 1 .0 mmol) sous 5 ml de butanol. Le mélange réactionnel est maintenu sous agitation et à reflux, pendant 24 heures. L'avancée de la réaction est contrôlée par chromatographie sur couche mince (CCM) pour suivre la conversion du 5,6α-Epoxycholestan-3β-yl propionyltyrosine. Après refroidissement, le milieu réactionnel est dilué dans 5 mL de méthyl tert-butyl éther, la phase organique est lavée par 2 fois avec 5 mL d’une solution saturée de NaCI et 1 fois avec 5 mL d’une solution saturée de NaHCO3. La phase organique est séchée sur du MgSO4 anhydre. Le brut réactionnel est purifié par colonne chromatographique sur gel de Silice. L’éluant utilisé est un mélange de Acétate d’éthyle- methanol 100-0% jusqu’au 70-30%. Une poudre blanche de 220 mg de 5α-Hydroxy-6β- [2-(1 H-imidazole-4-yl)éthylamino]cholestane-3β-yl propionyltyrosine est obtenue, correspondant à 28% de rendement.
1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.60 (s, 1 H), 7.02 - 7.00 (d, 2H), 6.86 (s, 1 H), 6.70 - 6.69 (d, 2H), 5.20 - 5.13 (q, 1 H), 4.55 - 4.52 (q, 1 H), 3.02 - 2.72 (m, 6H), 2.41 (s, 1 H), 2.21 - 2.16 (q, 2H), 2.08 - 2.04 (t, 1 H), 2.00 - 1 .97 (d, 1 H), 1.88 - 1 .80 (m, 2H), 1 .68 - 1 .00 (m, 30H), 0.93 - 0.91 (d, 3H), 0.89 - 0.87 (dd, 6H), 0.67 (s, 3H).
[158] Exemple 14 : Préparation d’un sel dilactate du 5α-Hydroxy-6β-[2-(1 H-imidazole-4- yl)éthylamino1cholestane-3β-yl propionyltyrosine (DX133 sous forme lactate):
Un sel dilactate du composé 5α-Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]cholestane- 3|3-yl propionyltyrosine a été préparé de la manière suivante :
Figure imgf000040_0001
53.1 mg d’acide lactique (0.59 mmol) a été ajouté à une solution de 212.4 mg de 5α- Hydroxy-6β-[2-(1 H-imidazole-4-yl)éthylamino]cholestane-3β-yl propionyltyrosine (0.29 mmol) dans 3 mL d’éthanol anhydre sous agitation. L’agitation a été maintenue à température ambiante durant trois heures. Une évaporation sous vide du solvant organique permet l’obtention d’une poudre blanche de 265.5 mg de 5α-Hydroxy-6β-[2- (1 H-imidazole-4-yl)éthylamino]cholestane-3β-yl propionyltyrosine dilactate. 1H-NMR (500 MHz, MeOD-4d): δ (ppm) 7.74 (s, 1 H), 7.01 - 6.97 (m, 3H), 6.70 - 6.64 (dd, 2H), 5.20 - 5.11 (g, 1 H), 4.52 - 4.44 (m, 1 H), 4.13 - 4.09 (q, 2H), 3.43 - 3.37 (m, 1 H), 3.25 - 3.21 (m, 1 H), 2.98 - 2.81 (m, 5H), 2.26 - 2.15 (m, 3H), 2.06 - 2.03 (bd, 1 H), 1 .88 -1 .00 (m, 38H), 0.94 - 0.93 (d, 3H), 0.88 - 0.87 (dd, 6H), 0.76 (s, 3H).
[159] Les chemins réactionnels successifs sont les mêmes étapes développées pour la synthèse de la Dendrogénine A, notamment divulgué dans le brevet EP2782923B1 , « Procédé de préparation de dérivés de stérol », dont le contenu est inclus par référence dans la présente invention.
[160] Exemple 15: Synthèse des composés (N-propionyl)-L-Histidine 5α-hydroxy-6β-[2-(1 H- imidazol-4-yl)-éthylaminol-cholestan-3β-yl ester, (N-propionyl)-L-lsoleucine 5α-hydroxy- 6β-[2-(1 H-imidazol-4-yl)-éthylaminol-cholestan-3β-yl ester. (N-propionyl)-L-Leucine 5α- hydroxy-6β-[2-( 1 H-imidazol-4-yl)-éthylaminol-cholestan-3β-yl ester. (/V-propionyl)-L- lysine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylaminol-cholestan-3β-yl ester. (N- propionyl)-L-PhenyIalanine 5α-hydroxy-6β-[2-( 1 H-imidazol-4-yl)-éthylaminol-cholestan-
3β-yl ester. (N-propionyl)-L-Proline 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylaminol- cholestan- 3β-yl ester, (N-propionyl)- L-Tryptophane 5α-hydroxy- 6β-[2-(1 H-imidazol-4-yl)- éthylaminol-cholestan-3β-yl esteerr., (N-propionyl)-L-Tyrosine 5α-hydroxy-6β-[2-(1 H- imidazol-4-yl)-éthylaminol-cholestan-3β-yl ester, (N-propionyl)-L-Valine 5α-hydroxy-6β-[2-
(1 H-imidazol-4-yl)-éthylaminol-cholestan-3β-yl ester, comprennent les étapes suivantes :
- dissolution des différents acides aminés en CH3CN et ajout des réactifs DMAP et (BOC)2O pour protéger leurs groupes aminés,
- Estérification du N-propionate acides aminés avec du cholestérol par réaction de Fischer catalysée par TsOH en toluene
- Les chemins réactionnels successifs sont les mêmes étapes développées pour la synthèse de la Dendrogénine A (voir ci-dessus).
[161 ] Exemple 16 : Étude pharmacocinétique du DX107
[162] L’étude suivante est un dosage par LC/MS dans le plasma des différentes molécules sur 3 jours (11 points de mesures au final). Les graphiques sont toujours présentés en comparaison avec le DX101 qui est la référence.
[163] Protocole
Figure imgf000041_0001
Figure imgf000042_0001
Échantillonnage plasmatique à 0 (sans injection), 5, 10, 15, 30min, 1 h 4h 8h 24h 48h 72h (11 points)
[164] Le profil pharmacocinétique du DX107 en comparaison avec le DX101 est donné à la figure 1 . Les résultats sont les suivants :
Figure imgf000042_0002
[165] Conclusion : Les résultats démontrent que le profil du DX107 présente une absorption plus rapide dans l’organisme et une meilleure biodisponibilité que le DX101 . On démontre bien que le DX101 est un promédicament car la présence du DX101 dans l’organisme est augmentée, ce qui permet d’augmenter l’efficacité du traitement. [166] Exemple 17 : Étude pharmacocinétique du DX117
[167] L’étude suivante est un dosage par LC/MS dans le plasma des différentes molécules sur 3 jours (1 1 points de mesures au final). Les graphiques sont toujours présentés en comparaison avec le DX101 qui est la référence.
[168] Protocole
Figure imgf000042_0003
Figure imgf000043_0001
Échantillonnage plasmatique à 0 (sans injection), 5, 10, 15, 30min, 1 h 4h 8h 24h 48h 72h (11 points)
[169] Le profil pharmacocinétique du DX117 en comparaison avec le DX101 est donné à la figure 2. Les résultats sont les suivants :
Figure imgf000043_0002
[170] Conclusion : Les résultats démontrent bien que le DX1 17, et par là-même les dérivés carbamate, est un promédicament car la présence du DX101 dans l’organisme est confirmée.
[171 ] Exemple 18 : Étude pharmacocinétique du DX121
[172] L’étude suivante est un dosage par LC/MS dans le plasma des différentes molécules sur 3 jours (1 1 points de mesures au final). Les graphiques sont toujours présentés en comparaison avec le DX101 qui est la référence.
[173] Protocole
Figure imgf000043_0003
Figure imgf000044_0001
Échantillonnage plasmatique à 0 (sans injection), 5, 10, 15, 30min, 1 h 4h 8h 24h 48h 72h (11 points)
[174] Le profil pharmacocinétique du DX121 en comparaison avec le DX101 est donné à la figure 3. Les résultats sont les suivants :
Figure imgf000044_0002
[175] Conclusion : Les résultats démontrent bien que le DX121 , et par là-même les dérivés carbonate, est un promédicament car la présence du DX101 dans l’organisme est confirmée.
[176] Exemple 19 : Etude de la cytotoxicité des composés et 5α-hydroxy-6β-[2-(1 H- imidazol-4-yl)-éthylamino1-cholestan-3β-yl propionate ou DX107:
Pour cette expérience, un milieu de culture cellulaire a été préparé. Le milieu de culture est constitué d’un milieu Dulbecco's Modified Eagle Medium (DMEM) commercialisé par Westburg sous la référence LO BE12-604F), comprenant 4.5 g/L Glucose avec de la L- Glutamine, auquel y est ajouté 10% de sérum de veau foetal (SVF). Des cellules Neuro2a (neuroblastome murin) sont introduites dans ce milieu de culture.
Il a été ensemencé des boites de 24 puits avec 10000 cellules Neuro2a par puits. Après 72 heures (h) de culture en condition normale, c’est-à-dire dans un incubateur à une température de 37 °C à 5% de CO2, les cellules Neuro2a ont été traitées pendant 48h avec le 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl-propionate et le 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol à 100 nM, 1 μM et 10 μM. Un contrôle (CTL) est également réalisé en utilisant le protocole décrit précédemment sans le traitement avec les composés précités. La survie cellulaire est quantifiée par un test de bleu de trypan avec comptage automatique par l’appareil Biorad TC20 (TC20™ Automated Cell Counter). Le test via le bleu de trypan est basé sur l’intégrité des membranes cellulaire, laquelle est rompue chez les cellules mortes. Le bleu de trypan colore les cellules mortes en bleu. L’appareil de comptage cellulaire Biorad TC20 compte la proportion de cellules bleues et non-bleues, et rapporte au pourcentage de cellules. Les résultats sont représentés figure 5. La figure 5 illustre en ordonnée le pourcentage de survie cellulaire par rapport au groupe contrôle.
Il est illustré figure 5 que pour 100 nM de traitement avec les composés 5α-hydroxy-6β- [2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propanoate et le 5α-hydroxy-6β-[2-(1 H- imidazol-4-yl)-éthylamino]-cholestan-3β-ol, le pourcentage de cellule vivante reste inchangé en comparaison au groupe contrôle (CTL). En outre, pour une concentration de 1 μM de 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol, 5α-hydroxy- 6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propanoate, le pourcentage de survie cellulaire est respectivement de 85,42 % avec un standard de déviation (SD) autrement appelé écart type égal à 4,73 (soit 85,42 ± 4,73 %), et de 84,08 ± 4,09 %. Pour une concentration de 10 μM de 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]- cholestan-3β-ol,
Figure imgf000045_0001
5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate, le pourcentage de survie cellulaire est respectivement de 43,25 % ± 2,44 , et 30,46± 5,22 %.
En conclusion, on observe une activité cytotoxique des composés de formule (I) envers les cellules tumorales Neuro2a pour des concentrations de 1 μM pour
Figure imgf000045_0002
5α-hydroxy-6β-[2- (1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propanoate et 10 pm pour 5α-hydroxy-6β- [2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate.
[177] Exemple 20 : Effet du composé 5α-hvdroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino1- cholestan-3β-yl propionate ou DX107 sur la viabilité des cellules MCF-7 :
Un test de viabilité cellulaires a été réalisé sur des cellules tumorales mammaires MCF-7 (Michigan Cancer Foundation-7) surexprimant HER2 (cellules ER(+)) contenant des récepteurs pour l'hormone d'œstrogène.
Les cellules MCF-7 sont dans un milieu de culture cellulaire identique à l’exemple 14 et sont ensemencées dans des plaques 12 puits à 50000 cellules par puits durant 24 h. 24 heures après ensemencement, les cellules sont traitées par le solvate véhicule comprenant de l’eau et de l’éthanol avec un rapport 1‰ d’éthanol et comprenant le 5α- hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate ou le 5α- hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol à 1 , 2.5 ou 5 μM. Les cellules sont observées au microscope inversé et photographiées via la caméra du microscope à 24 h et 48 h. Les modifications morphologiques des cellules à 1 μM sont très faibles. On observe quelques vésicules blanches après 24 heures de traitement avec le 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol.
Dans ce test :
- Les vésicules blanches traduisent la mort cellulaire par autophagie cytotoxique ; - Les cellules qui s’arrondissent traduisent la mort cellulaire ;
- Les cellules qui se décrochent traduisent un effet cytotoxique ;
- Les cellules adhérentes traduisent une survie cellulaire ;
- Les cellules surnageantes traduisent une mort cellulaire ; et - Les cellules réfringentes traduisent la mort cellulaire.
[178] [Tableau 1] Morphologie des cellules MCF7 après 24 heures et 48 heures de traitement par le 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol et son dérivé promédicament :
Figure imgf000046_0001
Les observations décrites ci-dessus illustrent que les composés de formule (I) présentent une activité cytotoxique sur les cellules MCF-7. Au vu des observations au microscope, il peut être classé les composés au regard de leurs activités, entrainant des cellules qui s’arrondissent et des vésicules blanches :
- A 24 heures : 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol > 5α- hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propanoate ; - A 48 heures : 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol > 5α- hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate.
[179] A la suite de cette observation, un test de viabilité cellulaire est mesuré par marquage MTT à 48 heures. Ce test est basé sur l’utilisation du sel de tétrazolium MTT (bromure de 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tétrazolium). Le tétrazolium est réduit par la succinate déshydrogénase mitochondriale des cellules vivantes actives, en formazan, précipité de couleur violette. La quantité de précipité formée est proportionnelle à la quantité de cellules vivantes mais également à l'activité métabolique de chaque cellule. Ainsi, un simple dosage de la densité optique à 540 nm par spectroscopie permet de connaître la quantité relative de cellules vivantes et actives métaboliquement. Après 48 heures, le milieu est aspiré, les cellules lavées au tampon phosphate salin (PBS) puis incubées avec du MTT (0.5 mg/ml dans du PBS) pendant environ 2 heures. La solution de MTT est aspirée puis les cristaux violets sont solubilisés dans du diméthylsulfoxyde (DMSO). La DO (densité optique) est mesurée à 540 nm.
[180] Les résultats de ce test sont présentés à la figure 6. La figure 6 illustre en ordonnée le pourcentage de viabilité cellulaire par rapport au groupe contrôle. Le groupe contrôle est réalisé de manière similaire aux groupes étudiés sans l’ajout des molécules étudiées dans le présent texte. En comparaison au contrôle, il est mesuré une diminution dose dépendante 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ethoxyle de la viabilité cellulaire en MTT pour 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]- cholestan-3β-yl propionate et le 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]- cholestan-3β-ol.
Pour une concentration de 2,5 μM, il est observé une diminution de la viabilité cellulaire sur les cellules MCF-7 au regard du groupe contrôle. Le traitement avec le composé 5α- hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol entraine une viabilité cellulaire proche de 60 % au regard du groupe contrôle. Pour la composé 5α-hydroxy-6β- [2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propanoate, la viabilité cellulaire est d’environ 95 %. En conclusion, pour un traitement avec une concentration de 2,5 μM, on obtient un ordre d’efficacité suivant : 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]- cholestan-3β-ol > 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propanoate.
Pour un traitement à une concentration de 5 μM, il est observé une diminution de la viabilité cellulaire sur les cellules MCF-7 au regard du groupe contrôle. Les traitements avec les composés 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol, 5α-hydroxy- 6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propanoate, la viabilité cellulaire est d’environ 18 %. En conclusion, pour un traitement avec une concentration de 5 μM, on obtient un ordre d’efficacité suivant : 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]- cholestan-3β-ol > 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate.
Cette expérience démontre une capacité de destruction de cellules tumorales mammaires par les composés de formule (I). Ces résultats sont concordant avec les observations réalisées à 24 h et 48 h précitées.
[181 ] Exemple 21 : Effet du composé 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino1- cholestan-38-yl propionate ou DX107 sur l’activité de la Cholestérol Epoxyde Hydrolase (ChEH) dans des cellules MCF-7 :
[182] Les composés 5,6α-epoxycholesterol (5,6α-EC) et 5,6[3-epoxycholesterol ( 5,6β-EC) sont des oxystérols impliqués dans la pharmacologie anticancéreuse du tamoxifène, un médicament antitumoral largement utilisé. Ils sont tous deux métabolisés en cholestane- 3β,5α,6β-triol (CT) par l'enzyme cholestérol-5,6-époxyde hydrolase (ChEH), et le CT est métabolisé par l’enzyme HSD11 B2 (1 ip-Hydroxystéroïde déshydrogénase 2) en 6-oxo- cholestan-3β,5α-diol (OCDO), un oncostérone promoteur de tumeur. L’expérience suivante a pour but de démontrer la capacitée du composé 5α-hydroxy-6β-[2-(1 H- imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate à bloquer la ChEH et donc à limiter la métabolisation d’oncostérone, un métabolite promoteur de tumeur.
[183] Des cellules MCF-7 sont dans un milieu de culture cellulaire identique à l’exemple 20 et sont ensemencées dans des plaques 6 puits à 150000 cellules par puits avec 3 puits par condition de traitement. 24 h après ensemencement, les cellules MCF-7 sont traitées par du [14C]5,6α-EC (solution mère 1000X : 0.6mM ; 20μCi/μmol ; concentration finale 0.6 μM) seul ou en association avec du Tamoxifène (tam). Le Tamoxifène est utilisé en tant que témoin positif des composés étudiés. Le traitement avec le composé selon l’invention est réalisé à une concentration de 1 μM.
[184] Après 24 heures de traitement, les milieux sont collectés et des extraits lipidiques sont préparés à partir des culots cellulaires par extraction avec 100 pL de chloroforme, 400 pL de méthanol et 300 μL d’eau. Les extraits lipidiques sont analysés par chromatographie sur couche mince (CCM) en utilisant l’acétate d'éthyle (EtOAc) en tant qu’éluant. L’analyse est réalisée à l’aide d’un lecteur de plaque puis par autoradiographie.
[185] Les résultats sont présentés figure 7. Il est observé la métabolisation quasi-totale de l’époxyde en CT et OCDO (puits 1) et une inhibition totale de l’activité ChEH par le Tamoxifène et presque totale (trace de CT) par le 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)- éthylamino]-cholestan-3β-ol. 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan- 3|3-yl propionate, une inhibition de la ChEH est observée au regard du témoin (1 ), elle est cependant moins importante que le témoin positif (2) et le 5α-hydroxy-6β-[2-(1 H-imidazol- 4-yl)-éthylamino]-cholestan-3β-oL Ces résultats permettent de déduire l’ordre d’efficacité suivant : 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-ol > 5α-hydroxy- 6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl propionate. En conclusion, les composés étudiés possèdent une activité inhibitrice de la ChEH. Il est observé que l’ordre d’efficacité est identique de l’ordre établi pour les modifications morphologiques observées après 24 heures de traitement pour les cellules MCF-7 de l’exemple 20.
[186] Exemple 22 : Etude de la cytotoxicité des promédicaments du DX101 sur les cellules 4T1
[187] Les tests de viabilité cellulaire ont été réalisés sur des cellules tumorales mammaires murine 4T1 caractérisées comme triples négatives (HER2-, ER-, PR-).
[188] Pour cette expérience, un milieu de culture cellulaire a été préparé. Le milieu de culture est constitué d’un milieu Dulbecco's Modified Eagle Medium (DMEM, commercialisé par Westburg sous la référence LO BE12-604F), comprenant 4.5 g/L Glucose avec de la L- Glutamine, auquel y est ajouté 10% de sérum de veau foetal (SVF) et 50 U/mL de péniciline /streptomycine. Les cellules 4T 1 sont introduites dans ce milieu de culture.
[189] Il a été ensemencé des boites de 96 puits avec 2 000 cellules 4T 1 par puits. Après 72 heures (h) de culture en condition normale, c’est-à-dire dans un incubateur à une température de 37 °C à 5% de CO2, les cellules 4T1 sont traitées pendant 48h avec le DX101 , DX107, DX113, DX117, DX1 19, DX121 ou DX131 à 100 nM, 1 μM, 2.5 μM et 10 μM. Une condition contrôle (CTL) est également réalisée en parallèle en utilisant le protocole décrit précédemment sans traitement avec les molécules DX101 , DX107, DX113, DX1 17, DX1 19, DX121 , DX131 ou DX133.
[190] La viabilité cellulaire est mesurée par trois différentes méthodes. Pour la première méthode, un marquage MTT est réalisé à 48 heures. Ce test est basé sur l’utilisation du sel de tétrazolium MTT (bromure de 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tétrazolium). Le tétrazolium est réduit par la succinate déshydrogénase mitochondriale des cellules vivantes actives, en formazan, précipité de couleur violette. La quantité de précipité formée est proportionnelle à la quantité de cellules vivantes mais également à l'activité métabolique de chaque cellule. Ainsi, un simple dosage de la densité optique à 550 nm par spectroscopie permet de connaître la quantité relative de cellules vivantes et actives métaboliquement. Après 48 heures, le milieu est aspiré, et les cellules son incubées avec du MTT (0.5 mg/ml dans du milieu de culture) pendant environ 3 heures. La solution de MTT est aspirée et les cristaux violets sont solubilisés dans du diméthylsulfoxyde (DMSO). La DO (densité optique) est mesurée à 550 nm. Le pourcentage de viabilité est alors déterminé dans chaque puits par rapport au CTL et l’IC50 (concentration pour laquelle il reste 50% de cellules vivantes) est déterminée pour chaque molécule avec le logiciel Prism à l’aide d’une droite de régression non linéaire (log(inhibitor) vs. Response). [191 ] Pour la deuxième méthode, le pourcentage de viabilité est déterminé à l’aide du dosage de l’activité de l’enzyme LDH (lactate deshydrogénase) dans les surnageants cellulaires à l’aide du kit non radioactive cytotoxicity assay kit (Promega). La LDH est une enzyme libérée dans le surnageant des cellules mortes. Plus l’activité LDH dans le surnageant est élevée, plus la mort cellulaire est importante. Dans cet essai enzymatique, la LDH libérée convertit un sel de tétrazolium violet en formazan de couleur rouge, absorbant à 490 nm. L’intensité de la couleur rouge est proportionnelle au nombre de cellules mortes. Après 48h de traitement, les surnageants sont transférés dans une nouvelle plaque 96 puits et sont incubés pendant 30 minutes en présence du substrate mix à température ambiante. La réaction est arrêtée à l’aide du tampon stop et l’absorbance est déterminée à 490 nm. Le pourcentage de mort cellulaire est déterminé ici à l’aide d’un contrôle 100% d’activité maximale de la LDH (réalisé à partir de cellules non traitées incubées en présence du lysis solution 45 minutes à 37°C juste avant l’ajout du substrate mix), et la viabilité cellulaire dans chaque puits est alors déduite de ce pourcentage. L’IC50 est alors déterminée comme expliqué dans le paragraphe précédent.
[192] Pour la troisième méthode, le pourcentage de viabilité est déterminé à l’aide du kit CelITox Green Cytotoxicity Assay (Promega). Ce test mesure la mort cellulaire via un changement de l’intégrité membranaire. Ce test utilise une sonde de type cyanine qui ne pénètre pas dans les cellules quand elles sont vivantes, mais, qui se lie à l’ADN des cellules mortes, elles perméables à la sonde, la rendant alors fluorescente. En conséquence, plus la fluorescence dans les puits est élevée, plus la mort cellulaire est importante. Après 48h de traitement, les cellules sont incubées pendant 15 minutes minimum en présence du Celltox green reagent à température ambiante et la fluorescence est lue à λemission 485 nm/λexcitation 590 nm. Le pourcentage de mort cellulaire est déterminé à l’aide du contrôle 100% de mort cellulaire (réalisé à partir de cellules non traitées incubées en présence du lysis solution 30 minutes à 37°C avant l’ajout du Celltox green reagent), et la viabilité cellulaire dans chaque puits est alors déduite de ce pourcentage. L’IC50 est alors déterminée comme expliqué précédemment.
[193] Les résultats des IC50 de ces tests sont présentés dans les Tableaux 2a, 2b et 2c. Dans ces tableaux :
- a Le seuil de significativité a été calculé par comparaison du LogIC50 du composé au LogIC50 du DX101 avec min n=3 et un test de One-way ANOVA suivi d’un post-test de Dunnett’s
. nb représente le nombre de test indépendant avec 4 à 10 réplicats pour chaque condition. [194] Tableau 2a :
Figure imgf000051_0001
[195] Tableau 2b :
Figure imgf000051_0002
[196] Tableau 2c :
Figure imgf000052_0001
[197] Il est illustré sur les Tableaux 2a, 2b et 2c que pour l’activité du DX107, l’IC50 est équivalente à celle du DX101 , indiquant une activité cytotoxique similaire à celle du DX101 . En outre, les activités des autres molécules testées, le DX1 13, DX1 17, DX1 19, DX121 , DX131 et DX133 sont inférieures ou équivalentes à celle du DX101 .
[198] Exemple 23 : Etude de la cytotoxicité des promédicaments du DX101 sur les cellules BT-474
[199] Les tests de viabilité cellulaires ont été réalisés également sur des cellules tumorales mammaires humaines BT-474 (caractérisée comme étant triples positives HER2+, ER+, PR+). Les cellules BT-474 sont dans un milieu de culture cellulaire identique à l’exemple précédent et sont ensemencées dans des plaques 24 puits à 70 000 cellules par puits, pour la détermination de la viabilité cellulaire à l’aide du bleu Trypan, ou dans des plaques 96 puits à 13 000 cellules par puits pour la détermination de la viabilité cellulaire à l’aide du test MTT ou LDH. Après 96 heures (h) de culture en condition normale, c’est-à-dire dans un incubateur à une température de 37 °C à 5% de CO2, nous traitons pendant 48h les cellules BT-474 avec le DX101 , DX107, et DX1 13 à 100 nM, 1 μM, 2.5 μM et 10 μM. Un contrôle est également réalisé en utilisant le protocole décrit précédemment sans traitement avec les molécules DX101 , DX107, DX113, DX117, DX1 19, DX121 ou DX131 . [200] Après une digestion à la trypsine de 10 minutes à 37°C, la survie cellulaire a été quantifiée également par un test de bleu de trypan avec comptage automatique par l’appareil Biorad TC20 (TC20™ Automated Cell Counter). Le test via le bleu de trypan est basé sur l’intégrité des membranes cellulaire, laquelle est rompue chez les cellules mortes. Le bleu de trypan colore les cellules mortes en bleu. L’appareil de comptage cellulaire Biorad TC20 compte la proportion de cellules bleues et non-bleues, et rapporte au pourcentage de cellules. Le pourcentage de viabilité est alors déterminé dans chaque puits par rapport au cellules non traitées et l’IC50 est déterminée comme expliqué dans l’exemple précédent. Les résultats sont représentés sur le Tableau 2. Également, le pourcentage de viabilité des cellules BT-474 a été déterminé à l’aide du test MTT et LDH, réalisé comme décrit dans l’exemple précédent. Les résultats sont représentés également sur le tableau 2.
[201] Les résultats des IC50 de ces tests sont présentés dans les Tableaux 3a, 3b et 3c. Dans ces tableaux : - a Le seuil de significativité a été calculé par comparaison du LogIC50 du composé au LogIC50 du DX101 avec min n=3 et un test de One-way ANOVA suivi d’un post-test de Dunnett’s
. nb représente le nombre de test indépendant avec 4 à 10 réplicats pour chaque condition.
[202] Tableau 3a :
Figure imgf000053_0001
Figure imgf000054_0001
[203] Tableau 3b :
Figure imgf000054_0002
[204] Tableau 3c :
Figure imgf000054_0003
Il est illustré sur les Tableaux 3a, 3b et 3c que l’activité du DX107 est similaire à celle du DX101 , et également que l’activité du DX113 est plus faible que celle du DX101 dans cette lignée. L’activité du DX117 semble équivalente à celle du DX101 et les activités des autres composés testés, le DX1 19, DX121 et DX131 semblent inférieures à celle du DX101.
[205] Exemple 24 : Effet du promédicament DX107 sur la croissance tumorale in vivo [206] Toutes les procédures sur les animaux ont été conduites selon les guidelines de notre institution après avoir été approuvée par le comité d’éthique. Les cellules 4T1 ont été cultivées comme précédemment, et ont été dissociées dans la trypsine et lavées deux fois dans du PBS froid et re-suspendues dans du PBS à 1.5 million/mL. Les tumeurs 4T1 ont été obtenues par transplantation sous-cutanée de 0.150 million de cellules dans 100 pL dans le flanc de souris Balb/c femelle (9 semaines, Janvier). Quand les tumeurs ont atteint un volume de 50-100 mm3, les souris ont été gavées de 40 mg/kg de DX101 ou de 40 mg/kg de DX11 1 ou du véhicule contrôle (eau). Le traitement a été réalisé tous les jours jusqu’à la fin de l’expérience (volume tumoral > 1000 mm3). Le volume tumoral a été déterminé tous les jours à l’aide d’un pied à coulisse et calculé à l’aide de la formule : 1/z X (Longueur * Largeur2). Le pourcentage d’inhibition de la croissance tumorale a été déterminé selon la formule suivante : 100 X (1 - (Volume tumoral, jour 8/ volume tumoral jour 0) DX107) / (1- (volume tumoral, jour 8/ volume tumoral jour 0) véhicule).
[207] La méthode de Kaplan-Meier a été utilisée pour comparer la survie des animaux.
[208] Il est illustré sur la figure 4A que le DX107 présente un effet supérieur au DX101 sur la réduction de la croissance tumorale (***p<0.001 , test one-way ANOVA et post-test de Tukey). L’inhibition de la croissance tumorale a en outre été déterminée à 78% pour les animaux traités au DX107 et à 58% pour les animaux traités au DX101 .
[209] En outre, l’analyse de la survie des animaux, illustrée également sur la figure 4B, indique une médiane de survie significativement supérieur des animaux traités au DX107 comparée à celle du DX101 (Log-rank Mantel-Cox test, *p<0.05).
[210] Dans la figure 4B, les résultats obtenus sont les suivant :
Figure imgf000055_0001
[211 ] Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. [212] L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
[213] Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

Revendications
[Revendication 1] Composé de formule (I) ;
Figure imgf000057_0001
ou un sel pharmaceutiquement acceptable d’un tel composé, dans lequel R1 est choisi parmi :
- un groupement - C(O)NR2R3, où R2, R3 sont équivalents ou différents et sont choisis parmi H et une chaîne carbonée en C1 à C8 saturée ou insaturée, linéaire ou ramifiée contenant éventuellement un ou plusieurs substituants choisis parmi des groupes allyle, carbonyle et hétérocycle aromatique, un groupement - C(O)R4, avec R4 est choisi parmi -CH2CH3 et -C5H11 ,
- un groupement - C(O)OR5, où R5 est une chaîne carbonée en C1 à C8 ; saturée ou insaturée, linéaire ou ramifiée, un groupement - C(O)CHNH(COCH2CH3)R6 où Re est la chaîne latérale des acides aminés choisie parmi -CH2-C3N2H2, CH2CH(CH3)2, -CH(CH3)CH2CH3, -CH(CH3)2, -CH2C6H5, -CH2C8NH6, -(CH2)4NH2, -CH2C6OH5, -C3H5N, pour son utilisation en tant que médicament pour faire régresser une tumeur cancéreuse de mammifère.
[Revendication 2] Composé pour son utilisation selon la revendication 1 , dans lequel R1 est un groupement - C(O)R4 avec R4 est le radical choisi parmi -CH2CH3 et -C5H11 , de préférence le radical -CH2CH3.
[Revendication 3] Composé pour son utilisation selon la revendication 1 , dans lequel R1 est un groupement - C(O)OR5, où R5 est une chaîne carbonée en C1 à C8, de préférence une chaîne carbonée éthyle ou butyle.
[Revendication 4] Composé pour son utilisation selon la revendication 1 , dans lequel R1 est un groupement - C(O)NR2R3, dans lequel R2 et R3 sont équivalents ou différents et sont choisis parmi H et une chaîne carbonée en C1 à C8 saturée, linéaire contenant éventuellement un substituant hétérocycle aromatique, de préférence le groupe 1 -H- imidazole-4yl.
[Revendication 5] Composé pour son utilisation selon la revendication 1 , dans lequel R1 est un groupement - C(O)CHNH(COCH2CH3)R6 où R6 est la chaîne latérale des acides aminés choisie parmi -CH2-C3N2H2, -CH2CH(CH3)2, -CH(CH3)CH2CH3, -CH(CH3)2, - CH2C6H5, -CH2C8NH6, -(CH2)4NH2, -CH2C6OH5, -C3H5N.
[Revendication 6] Composé pour son utilisation selon l’une des revendications 1 à 5 dans lequel le composé de formule (I) est choisi parmi :
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β- propionate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β- hexanoate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl-éthyle carbonate;
- 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl butyle carbonate ; 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl 1 -H-imidazole-4- yl éthyle carbamate; 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl-éthyle carbamate ;
L-Histidine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester, L-Leucine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester, L-lsoleucine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester,
L-Valine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester,
L-Phénylalanine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester,
L-Tryptophane 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester,
L-Lysine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester,
L-Tyrosine 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester,
L- Proline 5α-hydroxy-6β-[2-(1 H-imidazol-4-yl)-éthylamino]-cholestan-3β-yl ester.
[Revendication 7] Composé pour son utilisation selon l’une des revendications 1 à 6, dans lequel la tumeur cancéreuse est un cancer chimiosensible.
[Revendication 8] Composé pour son utilisation selon l’une des revendications 1 à 6, dans lequel la tumeur cancéreuse est un cancer chimiorésistant.
[Revendication 9] Composé pour son utilisation selon la revendication 8 dans lequel le cancer chimiorésistant est un cancer hématologique ou du sang, tel que la leucémie, en particulier la leucémie myéloïde aiguë ou la leucémie lymphocytaire aiguë, le lymphome, en particulier le lymphome non-hodgkinien et le myélome multiple.
[Revendication 10] Composé pour son utilisation selon l’une des revendications 8 et 9 dans lequel ledit cancer est chimiorésistant à la daunorubicine, à la cytarabine, au fluorouracile, au cisplatine, à l’acide tout-trans-rétinoïque, au trioxyde d’arsenic, au bortézomib ou à l’une de leurs combinaisons.
[Revendication 11] Composition pharmaceutique comprenant dans un véhicule pharmaceutiquement acceptable, au moins un composé selon l’une des revendications 1 à 10 pour son utilisation en tant que médicament pour faire régresser une tumeur cancéreuse de mammifère.
[Revendication 12] Composition pharmaceutique selon la revendication 1 1 , comprenant au moins un autre agent thérapeutique.
[Revendication 13] Composition pharmaceutique selon la revendication 12, dans laquelle l’autre agent thérapeutique est un agent antinéoplasique.
[Revendication 14] Composition pharmaceutique selon la revendication 13 pour son utilisation dans le traitement du cancer chez un patient souffrant d’une tumeur qui est chimiorésistante audit agent antinéoplasique lorsqu’il n’est pas administré en combinaison avec un composé selon l’une des revendications 1 à 10.
[Revendication 15] Composition pharmaceutique selon la revendication 13 pour son utilisation dans le traitement du cancer chez un patient souffrant d’une tumeur qui est chimiosensible audit agent antinéoplasique, et la dose de l’agent antinéoplasique administrée audit patient en combinaison avec un composé selon l’une des revendications 1 à 10 ou l’un de ses sels pharmaceutiquement acceptables est inférieure à la dose de l’agent antinéoplasique lorsqu’il n’est pas administré en combinaison avec un composé selon l’une des revendications 1 à 10.
[Revendication 16] Composition pharmaceutique selon l’une des revendications 1 1 à 15, caractérisée par le fait qu’elle est sous forme appropriée pour être administrée par voie intraveineuse, sous-cutanée, intrapéritonéale ou orale.
PCT/EP2021/084191 2020-12-03 2021-12-03 PRODROGUE DU 5α-HYDROXY-6β-[2-(1H-IMIDAZOL-4-YL)ETHYLAMINO]CHOLESTAN-3β-OL ET COMPOSITIONS PHARMACEUTIQUES LE COMPRENANT POUR UTILISATION DANS LE TRAITEMENT DU CANCER WO2022117824A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2023533809A JP2024503572A (ja) 2020-12-03 2021-12-03 癌の治療に使用するための5α-ヒドロキシ-6β-[2-(1h-イミダゾール-4-イル)エチルアミノ]-コレスタン-3β-オールのプロドラッグおよびそれを含む医薬組成物
KR1020237021722A KR20230114274A (ko) 2020-12-03 2021-12-03 5α-하이드록시-6β-[2-(1H-이미다졸-4-일)에틸아미노]콜레스탄-3β-올의전구약물 및 암 치료에 사용하기 위한 이를 포함하는 약제학적 조성물
EP21819893.5A EP4255441A1 (fr) 2020-12-03 2021-12-03 PRODROGUE DU 5a-HYDROXY-6ß-[2-(1H-IMIDAZOL-4-YL)ETHYLAMINO]CHOLESTAN-3ß-OL ET COMPOSITIONS PHARMACEUTIQUES LE COMPRENANT POUR UTILISATION DANS LE TRAITEMENT DU CANCER
CA3200327A CA3200327A1 (fr) 2020-12-03 2021-12-03 Prodrogue du 5?-hydroxy-6?-[2-(1h-imidazol-4-yl)ethylamino]cholestan-3?-ol et compositions pharmaceutiques le comprenant pour utilisation dans le traitement du cancer
CN202180081946.3A CN116546988A (zh) 2020-12-03 2021-12-03 5α-羟基-6β-[2-(1H-咪唑-4-基)乙基氨基]胆甾烷-3β-醇的前药及包含其的用于癌症治疗的药物组合物
US18/265,186 US20240002429A1 (en) 2020-12-03 2021-12-03 PRODRUG OF 5a-HYDROXY-6ß-[2-(1H-IMIDAZOL-4-YL)ETHYLAMINO]CHOLESTAN-3ß-OL AND PHARMACEUTICAL COMPOSITIONS COMPRISING SAME FOR USE IN THE TREATMENT OF CANCER
AU2021391628A AU2021391628A1 (en) 2020-12-03 2021-12-03 PRODRUG OF 5α-HYDROXY-6β-[2-(1H-IMIDAZOL-4-YL)ETHYLAMINO]CHOLESTAN-3β-OL AND PHARMACEUTICAL COMPOSITIONS COMPRISING SAME FOR USE IN THE TREATMENT OF CANCER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE20205878 2020-12-03
BE20205878A BE1028852B1 (fr) 2020-12-03 2020-12-03 PRODROGUE DU 5α-hydroxy-6β-[2-(1H-imidazol-4-yl) éthylamino]cholestan-3β-ol ET COMPOSITIONS PHARMACEUTIQUES LE COMPRENANT POUR UTILISATION DANS LE TRAITEMENT DU CANCER

Publications (1)

Publication Number Publication Date
WO2022117824A1 true WO2022117824A1 (fr) 2022-06-09

Family

ID=74175504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/084191 WO2022117824A1 (fr) 2020-12-03 2021-12-03 PRODROGUE DU 5α-HYDROXY-6β-[2-(1H-IMIDAZOL-4-YL)ETHYLAMINO]CHOLESTAN-3β-OL ET COMPOSITIONS PHARMACEUTIQUES LE COMPRENANT POUR UTILISATION DANS LE TRAITEMENT DU CANCER

Country Status (9)

Country Link
US (1) US20240002429A1 (fr)
EP (1) EP4255441A1 (fr)
JP (1) JP2024503572A (fr)
KR (1) KR20230114274A (fr)
CN (2) CN116615202A (fr)
AU (1) AU2021391628A1 (fr)
BE (1) BE1028852B1 (fr)
CA (1) CA3200327A1 (fr)
WO (1) WO2022117824A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2782923B1 (fr) 2011-11-24 2016-11-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédé de préparation de dérivés de stérol
EP3272350B1 (fr) 2013-09-04 2019-05-01 Affichem Dendrogénine a et agents antinéoplastiques pour le traitement des tumeurs chimiosensitives ou chimiorésistantes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2782923B1 (fr) 2011-11-24 2016-11-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédé de préparation de dérivés de stérol
EP3272350B1 (fr) 2013-09-04 2019-05-01 Affichem Dendrogénine a et agents antinéoplastiques pour le traitement des tumeurs chimiosensitives ou chimiorésistantes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE MEDINA PHILIPPE ET AL: "Synthesis of new alkylaminooxysterols with potent cell differentiating activities: identification of leads for the treatment of cancer and neurodegenerative diseases", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 52, no. 23, 10 December 2009 (2009-12-10), pages 7765 - 7777, XP009131948, ISSN: 0022-2623, [retrieved on 20090922], DOI: 10.1021/JM901063E *
IUPAC, PURE & APPL. CHEM., vol. 61, no. 10, 1989, pages 1783 - 1822
MEDINA ET AL., J. MED. CHEM., vol. 52, no. 23, 2009, pages 7765 - 77

Also Published As

Publication number Publication date
CN116615202A (zh) 2023-08-18
KR20230114274A (ko) 2023-08-01
CN116546988A (zh) 2023-08-04
EP4255441A1 (fr) 2023-10-11
JP2024503572A (ja) 2024-01-26
US20240002429A1 (en) 2024-01-04
BE1028852B1 (fr) 2022-07-05
AU2021391628A1 (en) 2023-06-29
AU2021391628A9 (en) 2024-09-12
CA3200327A1 (fr) 2022-06-09
BE1028852A1 (fr) 2022-06-28

Similar Documents

Publication Publication Date Title
CN109021058B (zh) 具有肿瘤耐药逆转活性的ocotillol型皂苷元衍生物及其制备方法和用途
CA2706812A1 (fr) Procede de preparation de nanoparticules a base de molecules ou macromolecules amphiphiles fonctionnelles et leur utilisation
JP2014524467A (ja) デオキシコール酸およびその塩類の製剤
WO2021048129A1 (fr) Utilisation de nmn pour la prévention et/ou le traitement de la douleur et compositions correspondantes
TWI564291B (zh) 一氧化氮生成調節劑
EP1583538A1 (fr) Utilisation de la 3-methoxy-pregnenolone pour la préparation d&#39;un médicament destiné traiter les maladies neurodegeneratives
CA2761079A1 (fr) Combinaison antitumorale comprenant le cabazitaxel et la capecitabine
WO2022117824A1 (fr) PRODROGUE DU 5α-HYDROXY-6β-[2-(1H-IMIDAZOL-4-YL)ETHYLAMINO]CHOLESTAN-3β-OL ET COMPOSITIONS PHARMACEUTIQUES LE COMPRENANT POUR UTILISATION DANS LE TRAITEMENT DU CANCER
WO2018055136A1 (fr) Utilisation des harringtonines dans le traitement du cancer du sein, notamment triple-négatif
CN104163801B (zh) 一种依达拉奉化合物
BE1028754B1 (fr) ANALOGUES DU 5α-hydroxy-6β-[2-(1H-imidazol-4-yl)éthylamino]cholestan-3β-ol ET COMPOSITIONS PHARMACEUTIQUES LE COMPRENANT POUR UTILISATION DANS LE TRAITEMENT DU CANCER
WO2022090427A1 (fr) Analogues du 5alpha-hydroxy-6 beta-[2-(1-h-imidazol-4-yl)ethylamino]-cholestan-3 beta-ol et compositions pharmaceutiques le comprenant pour utilisation dans le traitement du cancer
WO2018146390A1 (fr) Utilisation d&#39;un compose appartenant a la famille des diuretiques pour traiter le cancer
NO328418B1 (no) Pentacykliske taksanforbindelser, anvendelser derav, og medikamenter omfattende slike forbindelser.
JP2015051945A (ja) 晶癖を有する結晶及び該結晶を有効成分として含有する医薬組成物
WO2020254484A1 (fr) Promédicamentà base de succinate, compositions contenant le promédicament de succinate et utilisations associées
RU2697580C1 (ru) Новый цинковый комплекс, его получение и применение для терапии заболеваний человека и животных
EP3237015A1 (fr) Derives hydroxybisphosphoniques hydrosolubles de la doxorubicine
CA2152280C (fr) Utilisation du riluzole comme radiorestaurateur
EP3593789A1 (fr) Composition contenant un dérivé de 7beta-hydroxycholestérol et un véhicule lipidique, et son utilisation dans le traitement de pathologies néoplasiques
CN115181154A (zh) Pyxinol酰胺衍生物及其制备方法以及在药物领域中的应用
EP2663302B1 (fr) Utilisation de la simalikalactone e comme agent anticancereux
CN101642435A (zh) 异甜菊醇及其衍生物脂质体制剂及其制备方法
KR20090124228A (ko) 신규 스파이로[크로멘-2,4&#39;-피페리딘] 티오유레아 유도체또는 이의 약제학적으로 허용가능한 염, 이의 제조방법 및이를 유효성분으로 함유하는 다약제내성 조절 또는 치료용약학적 조성물
NZ723233A (en) Compositions of selenoorganic compounds and methods of use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21819893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3200327

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023533809

Country of ref document: JP

Ref document number: 18265186

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081946.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237021722

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021391628

Country of ref document: AU

Date of ref document: 20211203

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021819893

Country of ref document: EP

Effective date: 20230703