WO2022116550A1 - 一种带有硬密封结构的电磁阀 - Google Patents

一种带有硬密封结构的电磁阀 Download PDF

Info

Publication number
WO2022116550A1
WO2022116550A1 PCT/CN2021/106658 CN2021106658W WO2022116550A1 WO 2022116550 A1 WO2022116550 A1 WO 2022116550A1 CN 2021106658 W CN2021106658 W CN 2021106658W WO 2022116550 A1 WO2022116550 A1 WO 2022116550A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve core
valve
liquid inlet
seat
rotor
Prior art date
Application number
PCT/CN2021/106658
Other languages
English (en)
French (fr)
Inventor
苏建良
张海洪
沈俊杰
Original Assignee
上海克来机电自动化工程股份有限公司
上海奥可威智能设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海克来机电自动化工程股份有限公司, 上海奥可威智能设备有限公司 filed Critical 上海克来机电自动化工程股份有限公司
Priority to KR1020217029061A priority Critical patent/KR102604908B1/ko
Priority to US17/604,999 priority patent/US11614171B2/en
Priority to JP2021552505A priority patent/JP2023551074A/ja
Priority to EP21769617.8A priority patent/EP4033180B1/en
Publication of WO2022116550A1 publication Critical patent/WO2022116550A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/243Packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • F16K1/425Attachment of the seat to the housing by plastical deformation, e.g. valve seat or housing being plastically deformed during mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/46Attachment of sealing rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/029Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/314Forms or constructions of slides; Attachment of the slide to the spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/0624Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0668Sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to a solenoid valve, in particular to a solenoid valve with a hard sealing structure.
  • Automobile air conditioning system is easy to leak, and its working refrigerant usually adopts CO 2 .
  • the refrigeration system using carbon dioxide as the refrigerant must work in the transcritical region, and the working pressure exceeds The critical pressure is much higher than the operating pressure of current automotive air conditioning systems.
  • the electronic expansion valve/electronic globe valve working in the high-pressure refrigeration system is used to smoothly drive the movement of the valve core under high pressure.
  • the end of the valve core is designed into a needle-like shape, which reduces the cross-sectional area to reduce the force acting on the valve core. This method exists: valve core processing Complexity, large non-linear area of flow regulation, etc.
  • Patent CN 111188912 A discloses a solenoid valve, which has the advantages of easy drive of the valve core, miniaturized valve body, accurate and stable flow regulation, etc.
  • the valve core seat and the liquid inlet seat of this patent are set separately, There is a problem of leakage when assembling between the two, especially for CO 2 whose refrigerant is high pressure.
  • a rubber sealing ring is used to seal between the valve core seat and the liquid inlet seat and its connected components, which is prone to leakage and failure problems, which greatly reduces the service life of the valve.
  • the purpose of the present invention is to provide a solenoid valve with a hard sealing structure in order to overcome the above-mentioned problems of difficulty in sealing and easy leakage in the prior art.
  • a solenoid valve with a hard sealing structure comprising a valve body provided with a fluid channel and an accommodating cavity inside and a valve assembly installed in the accommodating cavity, the fluid channel and the accommodating cavity being communicated,
  • the valve assembly includes a liquid inlet seat installed at the bottom of the accommodating cavity, a valve core for closing or opening the fluid passage in cooperation with the liquid inlet seat, and a driving mechanism for driving the valve core to reciprocate;
  • the liquid inlet seat is provided with a guide hole allowing the lower end of the valve core to protrude
  • the middle section of the liquid inlet seat is provided with several liquid inlet holes arranged along the circumferential direction of the liquid inlet seat
  • the lower section of the liquid inlet seat is provided with a plurality of liquid inlet holes arranged in the circumferential direction of the liquid inlet seat
  • the valve core includes a large diameter section, a slope section, a small diameter section and a valve core end slope in sequence from top to bottom, the diameter of the small diameter section is smaller than the diameter of the fluid passage of the valve core, and the diameter of the large diameter section is larger than Describe the diameter of the spool fluid passage.
  • the liquid inlet seat is made of hard material, and the lower end of the liquid inlet seat is machined with a lower protrusion.
  • the lower protrusion is embedded in the stepped surface of the valve body to achieve a hard sealed connection;
  • a circular arc protrusion is processed on the upper circumferential wall of the liquid inlet seat, and the circular arc protrusion squeezes the inner wall circumference of the accommodating cavity during assembly to achieve interference fit and fluid medium sealing.
  • the drive mechanism includes a screw rod and a driving element that drives the screw rod to rotate, the inside of the valve core is provided with an axial through hole, the screw rod and the axial through hole are connected by a screw thread, and the screw thread connects the axial through hole.
  • the rotation of the screw rod is converted into the linear motion of the valve core; the screw rod and/or the valve core is provided with a pressure balance channel, and the fluid entering the valve body fills the upper and lower end faces of the valve core through the pressure balance channel the cavity in which it is located.
  • the accommodating cavity is a cylindrical cavity with a stepped structure inside
  • the driving mechanism further includes a rotor mounting seat matched and installed on the above-mentioned stepped structure
  • the driving element includes a rotor mounting seat mounted on the rotor mounting seat. a rotor and a stator sleeved on the outer circumference of the rotor and driving the rotor to rotate;
  • the rotor mounting seat is fixed on the valve body by threads, and is provided with a central stepped through hole for accommodating the valve core.
  • the central stepped through hole is provided with a guide groove, and the upper end of the valve core is provided with a guide. a boss, the guide boss is slidably connected with the guide groove;
  • the end of the rotor mounting seat is provided with a mounting seat protrusion, and when the liquid inlet seat is axially pressed, the mounting seat protrusion is embedded in the stepped surface of the valve body to realize a hard sealing connection.
  • an axial seal receiving cavity with a stepped hole structure is arranged above the guide hole of the liquid inlet seat, and the axial seal receiving cavity is provided with a sealing ring that is in contact with the valve core, and a sleeve is provided.
  • stator casing is provided outside the stator, and the stator casing is fixedly connected to the upper end face of the valve body; the outer side wall of the rotor mounting seat is provided with a notch for placing an upper sealing ring, and the The rotor mounting seat and the stator housing are dust-tight sealed by the upper sealing ring.
  • a platform surface (or channel groove) is processed on the threaded cylindrical surface of the screw rod, and the pressure balance channel is formed between the platform surface and the axial through hole of the valve core.
  • the accommodating cavity forms a sealed casing of a sealed space, the sealed casing is covered outside the rotor, and the lower end is fixed and sealed with the rotor mounting seat through a stop;
  • the rotor is limited and installed inside the sealed housing through the upper bearing and the lower bearing, the lower bearing is installed on the step of the central stepped through hole of the rotor installation seat, the upper bearing is installed in the bearing seat, the The bearing seat is mounted on the inner wall of the sealing housing in a circumferential fit and the upper end of the bearing seat abuts the inner surface of the sealing housing.
  • valve body is provided with several accommodating cavities, and each accommodating cavity is provided with a valve assembly.
  • valve body is provided with a pressure relief channel communicating with the fluid channel, and a pressure relief valve is installed at the port of the pressure relief channel.
  • the present invention has the following advantages:
  • the present invention makes the existing valve core seat and the liquid inlet seat into an integrated liquid inlet seat, which not only reduces one component and improves the assembly effect, but also can avoid the sealing problem when the valve core seat and the liquid inlet seat are assembled.
  • the outer circumference of the liquid inlet seat is provided with a circular arc protrusion, and the circular arc protrusion squeezes the inner wall circumference of the accommodating cavity during assembly to achieve a hard seal with interference fit.
  • This structure minimizes the number of rubber sealing rings used. Thereby, the problem of sealing failure of the traditional rubber sealing ring is avoided, and the service life of the solenoid valve is greatly increased.
  • Fig. 1 is the structural representation of the present invention
  • Fig. 2 is the top view structure schematic diagram of the present invention.
  • Fig. 3 is the H-H direction sectional view of Fig. 2;
  • Fig. 4 is the J-J direction sectional view of Fig. 3;
  • Fig. 5 is a partial enlarged view of Fig. 4;
  • Fig. 6 is the front view of the valve body in the present invention.
  • Fig. 7 is the M-M direction sectional view of Fig. 6;
  • Fig. 8 is the top view of the valve body in the present invention.
  • Fig. 9 is the K-K direction sectional view of Fig. 8.
  • Figure 10 is a top view of the valve core in the present invention.
  • FIG. 11 is a cross-sectional view taken along the Q-Q direction of FIG. 6;
  • Fig. 12 is the front view direction sectional view of the liquid inlet seat in the present invention.
  • Figure 13 is a top view of the rotor mounting seat in the present invention.
  • FIG. 14 is a sectional view taken along the P-P direction of FIG. 13;
  • 1 is the valve body, 101 is the first accommodating cavity, 102 is the second accommodating cavity, 103 is the longitudinal channel, 104 is the first transverse channel, 105 is the second transverse channel, and 106 is the third transverse channel;
  • 3 is the liquid inlet seat, 301 is the liquid inlet hole, 302 is the arc protrusion, 303 is the guide hole, 304 is the axial seal receiving cavity, 305 is the flow channel slope, 306 is the valve core fluid channel, 307 is the lower bulge;
  • 4 is the rotor mounting seat, 401 is the central stepped through hole, 402 is the guide groove, and 403 is the mounting seat protrusion;
  • 5 is the valve core
  • 501 is the stepped hole
  • 502 is the fine-toothed precision internal thread
  • 503 is the guide boss
  • 504 is the inclined surface of the valve core end
  • 505 is the small diameter section
  • 506 is the inclined surface section
  • 507 is the large diameter section
  • 6 is the screw rod
  • 7 is the rotor
  • 8 is the lower bearing
  • 9 is the upper bearing
  • 10 is the bearing seat
  • 11 is the sealing shell
  • 12 is the stator
  • 13 is the stator control board
  • 14 is the pressure relief valve
  • 18 is the sealing ring
  • 19 is the axial sealing O-ring
  • 20 is the transition plate
  • 22 is the upper sealing ring
  • 23 is the stator housing.
  • a solenoid valve with a hard sealing structure as shown in Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5, includes a valve body 1, a liquid inlet seat 3, a rotor mounting seat 4, a valve core 5, and a screw rod 6.
  • the valve body 1 is provided with a first accommodating cavity 101 , a second accommodating cavity 102 , a longitudinal channel 103 , a first transverse channel 104 , a second transverse channel 105 , a Three transverse channels 106; inside the valve body 1, the first transverse channel 104 communicates with the longitudinal channel 103, the first accommodating cavity 101 and the second accommodating cavity 102 communicate with the longitudinal channel 103 through their respective vertical channels, and the end of the longitudinal channel 103
  • the head is provided with a pressure relief valve 14.
  • the pressure relief valve 14 When the pressure in the longitudinal passage 103 exceeds the set value, the pressure relief valve 14 is opened to release the pressure; the second transverse passage 105 is communicated with the first accommodation chamber 101; the third transverse passage 106 is connected with the first The two accommodating chambers 102 communicate with each other.
  • the first transverse channel 104, the second transverse channel 105, the third transverse channel 106 and the longitudinal channel 103 constitute a fluid channel. The fluid can enter from the second transverse channel 105 and the third transverse channel 106 and pass through the longitudinal channel.
  • the fluid 103 and the first transverse channel 104 flow out can also flow in from the first transverse channel 104, flow out from the second transverse channel 105, can flow in from the second transverse channel 105, and flow out from the first transverse channel 104, the fluid flows in the solenoid valve.
  • the flow is bidirectional, and the solenoid valve of this embodiment does not limit the flow direction of the fluid.
  • the accommodating cavity is cylindrical with steps in the axial direction, and two sets of valve assemblies are respectively installed in the two accommodating cavities.
  • the liquid inlet seat 3 and the rotor mounting seat 4 are sequentially installed in the accommodating cavity from bottom to top.
  • the screw rod 6 and the valve core 5 are connected by threads.
  • the valve core 5 and the liquid inlet seat 3 cooperate with each other to realize flow regulation.
  • a stepped hole 501 is formed in the center of the valve core 5.
  • the upper part of the stepped hole 501 is machined with a fine-toothed precision internal thread 502 that engages with the screw rod 6.
  • the valve core 5 is provided with a guide boss 503. From top to bottom are the large diameter section 507 , the inclined surface section 506 , the small diameter section 505 and the valve core end slope 504 provided on the bottom end surface of the valve core 5 .
  • the liquid inlet seat 3 is placed at the bottom of the accommodating cavity.
  • the liquid inlet seat 3 is provided with a guide hole 303 that allows the lower end of the valve core 5 to extend into it, and the middle section of the liquid inlet seat 3 is provided with a number of liquid inlet holes 301 arranged along the circumferential direction of the liquid inlet seat 3.
  • the lower section of the liquid seat 3 is provided with a valve core fluid channel 306 and a flow channel slope 305 located on the upper part of the valve core fluid channel 306 for adjusting the flow rate.
  • the arc protrusion 302 when assembled, squeezes the inner wall circumference of the accommodating cavity to achieve interference fit and fluid medium sealing; a lower protrusion 307 is machined on the lower end of the liquid inlet seat 3, and when axially compressed, the lower protrusion 307 is formed.
  • the protrusions 307 are embedded in the stepped surface of the valve body to achieve a hard sealing connection.
  • the lower end surface of the valve core 5 is designed with a valve core end slope 504 that matches the flow channel slope 305.
  • the channel between the valve core end slope 504 and the flow channel slope 305 is the refrigerant.
  • the cross-sectional area of the circulation path is linearly adjusted, and the flow rate of the refrigerant is further linearly adjusted.
  • the size of the small diameter section 505 of the valve core 5 is slightly smaller than the aperture of the valve core fluid channel 306; the size of the large diameter section 507 is larger than the diameter of the valve core fluid channel 306.
  • the channel 306 is in contact, thereby fulfilling the function of a shut-off valve.
  • the same valve can cut off the flow of the refrigerant between the channels, that is, act as a stop valve, and can also realize the expansion of the refrigerant between the channels, that is, as an expansion valve.
  • a plurality of liquid inlet holes 301 are provided in the circumferential direction of the lower part of the liquid inlet seat 3 to reduce the flow rate of the incoming refrigerant, reduce the noise generated by the flow of the refrigerant, and prevent the refrigerant from directly impacting the valve core 5; the center of the liquid inlet seat 3 is provided with an accommodating valve core The guide hole 303 of 5 realizes the centering support for the up and down movement of the valve core 5 .
  • an axial seal receiving cavity 304 is opened. As shown in FIG. 5, the axial seal receiving cavity 304 houses the seal ring 18, the axial seal O-ring 19, and the transition plate 20. .
  • the force transmitted from the rotor mounting seat 4 deforms the axial sealing O-ring 19 through the transition plate 20 and then squeezes the sealing ring 18 against the valve core 5 supported in the guide hole 303 to ensure the sealing when the valve core 5 moves up and down. ;
  • the rotor mounting seat 4 is installed above the liquid inlet seat 3 through the steps in the accommodating cavity. As shown in Figures 13 and 14, the rotor mounting seat 4 is provided with a slot for placing the o-ring sealing ring. The sealing ring 22 and the end of the rotor mounting seat 4 are provided with mounting seat protrusions 403. When axially pressed, the mounting seat protrusions 403 are embedded in the stepped surface of the accommodating cavity of the valve body 1 to achieve a hard sealing connection.
  • the rotor mounting seat 4 is fixedly connected to the valve body 1 by threads, and a central stepped through hole 401 and a rectangular guide groove 402 are opened in the center.
  • the guide boss 503 of the valve core 5 cooperates with the guide groove 402 to limit the valve core 5 When the rotation occurs, the rotary motion of the screw rod 6 is converted into the up and down motion of the valve core 5 through the threaded pair transmission and the guidance of the guide boss 503 .
  • the lead screw 6 is fixedly connected to the rotor 7 by means of integrated casting or interference fit. 502 is engaged, and a pressure balance channel is formed between the platform surface of the screw 6 and the stepped hole 501 of the valve core 5.
  • the pressure balance channel connects the cavity where the upper end surface of the valve core 5 is located and the cavity where the lower end surface is located, and the refrigerant passes through.
  • the gap between the platform surface and the stepped hole 501 fills the cavity where the upper and lower end surfaces of the valve core 5 are located, and the upper and lower end surfaces are in the same pressure area of the refrigerant. Therefore, the operation of the driving valve core 5 does not need to overcome the pressure of the refrigerant, and can be driven with a small force.
  • the valve core 5 is driven to move rapidly, so that the valve can work in any pressure refrigerant system, especially in the high pressure refrigerant system.
  • the rotor 7 is composed of permanent magnet silicon steel sheets, which are accommodated in the inner cavity of the sealed casing 11 and are supported by the upper bearing 9 and the lower bearing 8. Under the support limit of the upper and lower bearings, the rotor is in the stator 12 Under the driving of the rotor, it rotates around the axis, and the up and down movement of the rotor is eliminated.
  • the upper bearing 9 is installed in the bearing seat 10 , the bearing seat 10 is circumferentially fitted in the inner cavity of the sealing housing 11 , and the upper end abuts against the bottom surface of the sealing housing 11 .
  • the sealed casing 11 is matched with the rotor mounting seat 4 through the spigot, and is fixedly connected with the rotor mounting seat 4 by means of laser welding.
  • the stator 12 is sleeved on the outer circumference of the rotor casing 11 and is fixedly connected to the upper end face of the valve body 1 by bolts.
  • the stator housing 23 it is connected to the coil of the stator by means of pin crimping, and is powered by a plug, and is equipped with a control and driving circuit and chip to realize the control of the stator, and then control the rotational speed, angle, and output of the rotor. moment.
  • two accommodating cavities and valve assemblies are arranged on the same valve body 1 to reduce the number of connecting pipelines between the valves, which can realize a variety of functional combinations and meet the requirements of the refrigerant in different working conditions of the automobile CO 2 air conditioning system. Adjustment requirements.
  • the initial state can be a full-flow full-flow state (the cross-sectional area of the channel between the valve core end slope 504 of the valve core 5 and the flow channel slope 305 is greater than the cross-sectional area of the valve core fluid channel 306 ), under the control of the drive plate 13 , the rotor 7 rotates, and the spool 5 moves downward through the meshing transmission of the fine-toothed precision thread pair, and the gap between the inclined surface 504 at the end of the spool and the inclined surface 305 of the flow channel gradually narrows, and enters the large flow linear adjustment state.
  • the transverse channel 103 and the second transverse channel 105 (or the third transverse channel 106 ) decrease the refrigerant flow linearly (used as an electronic expansion valve).
  • the constant flow output in the flow state, the flow section at this time is the constant gap area between the valve core fluid channel 306 and the small diameter section 505; the valve core 5 moves further downward, the slope section 506 of the valve core 5 and the valve core fluid channel. 306 is contacted, and the refrigerant flow channel is completely shut off (used as an electronic shut-off valve).
  • the rotor moves in the opposite direction, and the working state changes from the cut-off state, to the constant output state of small flow, to the linear adjustment state of large flow, and finally to the state of full flow and full flow.
  • the present invention makes the existing valve core seat and the liquid inlet seat into an integrated liquid inlet seat, which not only reduces one component and improves the assembly effect, but also can avoid the sealing problem when the valve core seat and the liquid inlet seat are assembled.
  • the outer circumference of the liquid inlet seat is provided with a circular arc protrusion 302.
  • the circular arc protrusion squeezes the inner wall circumference of the accommodating cavity to achieve a hard seal with interference fit. This structure minimizes the damage of the rubber sealing ring.
  • the number of use so as to avoid the problem of sealing failure of the traditional rubber sealing ring, and greatly increase the service life of the solenoid valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Valve Housings (AREA)
  • Lift Valve (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种带有硬密封结构的电磁阀,包括内部设有流体通道和容纳腔的阀体(1)以及安装于容纳腔内的阀组件,流体通道和容纳腔连通;阀组件包括进液座(3)、与进液座(3)相配合用于关闭或打开流体通道的阀芯(5)、驱动阀芯(5)往复运动的驱动机构;进液座(3)设有允许阀芯(5)下端伸入的导向孔(303),进液座(3)中段设有若干个沿进液座(3)周向布置的进液孔(301),进液座(3)下段设有阀芯流体通道(306)以及位于阀芯流体通道(306)上部用于调节流量的流道斜面(305),阀芯(5)从上往下依次包括大径段(507)、斜面段(506)、小径段(505)和阀芯端部斜面(505),在进液座(3)和转子安装座(4)的下端部设有凸起结构,采用硬密封的装配方式,不容易造成泄漏,大大增加电磁阀的使用寿命。

Description

一种带有硬密封结构的电磁阀 技术领域
本发明涉及一种电磁阀,尤其是涉及一种带有硬密封结构的电磁阀。
背景技术
汽车空调系统易泄漏,其工作冷媒介质通常采用CO 2。然而,CO 2的临界压力高(Pc=7.38MPa)、临界温度低(Tc=31.25℃),为达成良好的综合制冷性能,以二氧化碳为冷媒的制冷系统必须工作在跨临界区域,工作压力超过临界压力,与目前的汽车空调系统相比工作压力要高很多。目前工作于高压制冷系统中的电子膨胀阀/电子截止阀为顺畅地驱动高压力下的阀芯运动,一方面采用大规格电机,增设减速器等方式增加驱动力,这种方式存在着结构复杂、能耗大、难以小型化等缺点;另一方面,阀芯的端头设计成针尖状,减少了截面面积,以减小作用在阀芯上的力,这种方式存在着:阀芯加工复杂、流量调节非线性区域大等缺点。
专利CN 111188912 A公开了一种电磁阀,具有阀芯容易驱动、阀体小型化、流量调节精确稳定等优点,然而仍然存在以下问题:该专利的阀芯座与进液座是分开设置的,两者之间装配时容易出现泄漏的问题,尤其是对于冷媒介质为高压的CO 2。此外,阀芯座与进液座与其相连的部件之间采用橡胶密封圈密封,也容易存在泄漏及失效问题,导致该阀的使用寿命大大缩减。
发明内容
本发明的目的就是为了克服上述现有技术存在的密封困难、易泄漏的问题,而提供一种带有硬密封结构的电磁阀。
本发明的目的可以通过以下技术方案来实现:
一种带有硬密封结构的电磁阀,包括内部设有流体通道和容纳腔 的阀体以及安装于容纳腔内的阀组件,所述流体通道和容纳腔相连通,
所述阀组件包括安装于所述容纳腔底部的进液座、与所述进液座相配合用于关闭或打开所述流体通道的阀芯、驱动所述阀芯往复运动的驱动机构;
其中,所述进液座设有允许所述阀芯下端伸入的导向孔,所述进液座中段设有若干个沿进液座周向布置的进液孔,所述进液座下段设有阀芯流体通道以及位于所述阀芯流体通道上部用于调节流量的流道斜面;
所述阀芯从上往下依次包括大径段、斜面段、小径段和阀芯端部斜面,所述小径段的直径小于所述阀芯流体通道的直径,所大径段的直径大于所述阀芯流体通道的直径。
进一步地,所述进液座由硬质材料制成,所述进液座的下端加工出下凸起,轴向压紧时,所述下凸起嵌入所述阀体的台阶面,实现硬密封连接;
所述进液座的上部圆周壁上加工出圆弧凸起,装配时所述圆弧凸起挤压容纳腔的内壁圆周,实现过盈配合及流体介质密封。
进一步地,所述驱动机构包括丝杆和带动所述丝杆转动的驱动元件,所述阀芯的内部设有轴向通孔,所述丝杆和轴向通孔通过螺纹连接,该螺纹将丝杆的转动转化为阀芯的直线运动;所述丝杆和/或阀芯上设有压力平衡通道,进入阀体的流体经过所述压力平衡通道充满所述阀芯的上端面和下端面所在的腔体。
进一步地,所述容纳腔为内部设有台阶结构的圆柱形腔体,所述驱动机构还包括匹配安装于上述台阶结构上的转子安装座,所述驱动元件包括安装于所述转子安装座上的转子以及套设于所述转子外周并驱动所述转子旋转的定子;
所述转子安装座通过螺纹固定于所述阀体上,并且内部设有容纳阀芯的中心台阶型通孔,该中心台阶型通孔内设有导向凹槽,所述阀芯上端设有导向凸台,所述导向凸台与导向凹槽滑动连接;
所述转子安装座的端部设有安装座凸起,进液座轴向压紧时,所 述安装座凸起嵌入所述阀体的台阶面,实现硬密封连接。
进一步地,所述进液座的导向孔上方设有台阶孔结构的轴向密封件承纳腔,该轴向密封件承纳腔内设有与所述阀芯接触连接的密封环、套设于所述密封环外侧的轴向密封O型圈以及设于所述密封环和轴向密封O型圈上部的过渡板;所述转子安装座通过该过渡板挤压所述轴向密封O型圈。
进一步地,所述定子的外部设有定子壳体,该定子壳体固定连接于所述阀体的上端面;所述转子安装座的外侧壁上设有放置上密封圈的槽口,所述转子安装座和定子壳体通过上密封圈进行防尘密封。
进一步地,所述丝杆的螺纹圆柱面上加工有平台面(或通道槽),该平台面与所述阀芯的轴向通孔之间形成所述压力平衡通道。
进一步地,所述容纳腔形成密封空间的密封壳体,所述密封壳体罩设于所述转子的外部,并且下端通过止口与所述转子安装座固定密封连接;
所述转子通过上轴承和下轴承限位安装于所述密封壳体内部,所述下轴承安装于转子安装座的中心台阶型通孔的台阶上,所述上轴承安装于轴承座内,该轴承座圆周配合安装于所述密封壳体的内壁并且所述轴承座的上端抵接所述密封壳体的内表面。
进一步地,同一个阀体上设有若干个容纳腔,每个容纳腔内均安装有阀组件。
进一步地,所述阀体上设有与所述流体通道连通的泄压通道,该泄压通道的端口安装有泄压阀。
与现有技术相比,本发明具有以下优点:
本发明将现有的阀芯座+进液座制成一体的进液座,不仅减少了一个零部件,提高装配效果,最主要的是可以避免阀芯座与进液座装配时的密封问题,避免高压冷媒介质CO 2的泄漏;此外,在进液座的下端以及转子安装座的下端部设有凸起结构,轴向压紧时,凸起嵌入阀体台阶孔的台阶面,实现硬密封连接,进液座外圆周设有圆弧凸起,装配时圆弧凸起挤压容纳腔的内壁圆周,实现过盈配合的硬密封,该 结构最大限度地减少橡胶密封圈的使用数量,从而避免传统橡胶密封圈出现的密封失效的问题,大大增加电磁阀的使用寿命。
附图说明
图1为本发明的结构示意图;
图2为本发明的俯视结构示意图;
图3为图2的H-H向剖视图;
图4为图3的J-J向剖视图;
图5为图4的局部放大图;
图6为本发明中阀体的主视图;
图7为图6的M-M向剖视图;
图8为本发明中阀体的俯视图;
图9为图8的K-K向剖视图;
图10为本发明中阀芯的俯视图;
图11为图6的Q-Q向剖视图;
图12为本发明中进液座的主视方向剖视图;
图13为本发明中转子安装座的俯视图;
图14为图13的P-P向剖视图;
图中:
1为阀体,101为第一容纳腔,102为第二容纳腔,103为纵向通道,104为第一横向通道,105为第二横向通道,106为第三横向通道;
3为进液座,301为进液孔,302为圆弧凸起,303为导向孔,304为轴向密封件承纳腔,305为流道斜面,306为阀芯流体通道,307为下凸起;
4为转子安装座,401为中心台阶型通孔,402为导向凹槽,403为安装座凸起;
5为阀芯,501为台阶孔,502为细牙精密内螺纹,503为导向凸台,504为阀芯端部斜面,505为小径段,506为斜面段,507为大径 段;
6为丝杆,7为转子,8为下轴承,9为上轴承,10为轴承座,11为密封壳体,12为定子,13为定子控制板,14为泄压阀,18为密封环,19为轴向密封O型圈,20为过渡板,22为上密封圈,23为定子壳体。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例
一种带有硬密封结构的电磁阀,如图1、图2、图3、图4和图5所示,包括阀体1以及进液座3,转子安装座4,阀芯5,丝杆6,转子7,下轴承8,上轴承9,轴承座10,密封壳体11,定子12,定子控制板13,泄压阀14以及定子壳体23等阀组件。
如图6、图7、图8和图9所示,阀体1上开设有第一容纳腔101、第二容纳腔102、纵向通道103、第一横向通道104、第二横向通道105、第三横向通道106;在阀体1的内部第一横向通道104与纵向通道103连通,第一容纳腔101、第二容纳腔102通过各自的竖向通道与纵向通道103连通,纵向通道103的端头安装有泄压阀14,当纵向通道103中的压力超过设定值是泄压阀14被打开而泄压;第二横向通道105与第一容纳腔101连通;第三横向通道106与第二容纳腔102连通,第一横向通道104、第二横向通道105、第三横向通道106以及纵向通道103构成流体通道,流体可以从第二横向通道105、第三横向通道106进入,经过纵向通道103和第一横向通道104流出,也可以从第一横向通道104流入,从第二横向通道105流出,可以从 第二横向通道105流入,从第一横向通道104流出,流体在电磁阀内的流动是双向的,本实施例的电磁阀对流体的流动方向不进行限制。容纳腔为圆柱形,轴向设计有台阶,两个容纳腔分别安装两套阀组件。进液座3、转子安装座4自下而上依次安装到容纳腔内,丝杆6和阀芯5通过螺纹连接,丝杆6的转动通过螺纹转化为阀芯5的上下直线运动。阀芯5和进液座3相互配合实现流量调节。
如图10和图11所示,阀芯5中心开设贯通的台阶孔501,台阶孔501的上段加工有与丝杆6啮合的细牙精密内螺纹502,阀芯5设置有导向凸台503,从上而下依次为大径段507、斜面段506、小径段505以及设于阀芯5底部端面的阀芯端部斜面504。
如图4所示,进液座3安放在容纳腔的底部。如图12所示,进液座3设有允许所述阀芯5下端伸入的导向孔303,进液座3中段设有若干个沿进液座3周向布置的进液孔301,进液座3下段设有阀芯流体通道306以及位于阀芯流体通道306上部用于调节流量的流道斜面305,进液座3由硬质材料制成,进液座的上部圆周壁上加工出圆弧凸起302,装配时圆弧凸起302挤压容纳腔的内壁圆周,实现过盈配合及流体介质密封;进液座3的下端加工出下凸起307,轴向压紧时,下凸起307嵌入阀体的台阶面,实现硬密封连接。
如图11,阀芯5的下端面设计有与流道斜面305匹配的阀芯端部斜面504,在大流量调节阶段,阀芯端部斜面504与流道斜面305之间的通道就是冷媒的流通路径,通过调节阀芯5的上下位置,线性调节该流通路径的截面积,进而线性调节冷媒流量。阀芯5的小径段505的尺寸略小于阀芯流体通道306的孔径;大径段507的尺寸大于阀芯流体通道306的孔径,当阀芯下降到一定程度时实现斜面段506与阀芯流体通道306接触,从而实现截止阀的功能。通过调节阀芯5在进液座3中的不同位置,同一个阀可以截止冷媒在通道间的流动,即用作截止阀,也可以实现冷媒在通道间的膨胀,即用作膨胀阀。
在进液座3下部周向开设有多个进液孔301,以降低进入冷媒的 流速、降低冷媒流动产生的噪声、避免冷媒直接冲击阀芯5;进液座3的中心开设有容纳阀芯5的导向孔303,实现对阀芯5上下运动的定心支撑。在进液座3的上端面,开设有轴向密封件承纳腔304,如图5,轴向密封件承纳腔304内安放有密封环18、轴向密封o型圈19、过渡板20。从转子安装座4传递来的力通过过渡板20使得轴向密封o型圈19变形进而挤压密封环18紧贴支撑于导向孔303内的阀芯5,确保阀芯5上下运动时的密封;阀芯5的大径段507与导向孔303油膜滑动配合保证阀芯5的直线运动。
转子安装座4通过容纳腔内的台阶配合安放在进液座3的上方,如图13和图14所示,转子安装座4开设有安放o形密封圈的槽口,在槽口内放置有上密封圈22,转子安装座4的端部设有安装座凸起403,轴向压紧时,安装座凸起403嵌入阀体1容纳腔的台阶面,实现硬密封连接。
转子安装座4通过螺纹固连于阀体1,中心开设有中心台阶型通孔401和矩形结构的导向凹槽402,阀芯5的导向凸台503与导向凹槽402配合,限制阀芯5发生转动,通过螺纹副传动和导向凸台503的导向,将丝杆6的旋转运动转换为阀芯5的上下运动。
丝杆6通过一体化浇注或过盈配合等方式与转子7固定连接,丝杆6的螺纹圆柱面加工有平台面,丝杆6的外圆周加工有细牙精密外螺纹与细牙精密内螺纹502啮合,丝杆6的平台面和阀芯5的台阶孔501之间形成了一个压力平衡通道,该压力平衡通道将阀芯5的上端面所在腔体和下端面所在腔体连通,冷媒通过平台面与台阶孔501之间的缝隙充盈阀芯5上下端面所在的腔体,上下端面处于冷媒的同一压力区域,因此,驱动阀芯5的运行无需克服冷媒的压力,可以以较小的力驱动阀芯5快速运动,进而这种阀可以工作在任何压力的冷媒系统中,尤其在高压冷媒系统中具有优势。
如图4所示,转子7由永磁硅钢片组成,容纳在密封壳体11的内腔,通过上轴承9和下轴承8支撑,在上、下轴承的支撑限位下, 转子在定子12的驱动下,绕着轴线旋转,且消除了转子的上下串动。上轴承9安装在轴承座10内,轴承座10圆周配合在密封壳体11内腔,上端抵住密封壳体11的底面。密封壳体11通过止口与转子安装座4配合,通过激光焊接的方式实现与转子安装座4的固定连接。如图1和图5所示,定子12套接在转子壳11的外周,通过螺栓固连与阀体1的上端面,定子壳体23套设在定子12的外部,驱控板13固定在定子壳体23内,通过Pin针压接的方式与定子的线圈连接,通过接插头供电,其上配置有控制及驱动的电路和芯片,实现对定子控制,进而控制转子的转速、转角、输出力矩。
本实施例中,同一个阀体1上配置两个容纳腔和阀组件,减少阀之间的连接管路,可以实现多种功能组合,满足汽车CO 2空调系统的不同工况下对冷媒的调节要求。
本实施例的工作原理为:
起始状态可以是全流量满流状态(阀芯5的阀芯端部斜面504与流道斜面305之间的通道截面积大于阀芯流体通道306的截面积),在驱动板13的控制下,转子7转动,通过细牙精密螺纹副的啮合传动,阀芯5向下运动,阀芯端部斜面504与流道斜面305之间的间隙逐渐缩小,进入大流量线性调节状态,通过第一横向通道103和第二横向通道105(或第三横向通道106)冷媒流量线性减小(用作电子膨胀阀),当阀芯5的小径段505开始伸入阀芯流体通道306时,进入小流量状态下的恒定流量输出,此时的流通截面就是阀芯流体通道306与小径段505之间恒定的缝隙面积;阀芯5进一步向下运动,阀芯5的斜面段506与阀芯流体通道306接触,冷媒流道被全面关断(用做电子截止阀)。转子反向运动,工作状态则从截止状态,到小流量恒定输出状态,再到大流量线性调节状态,最后回复到全流量满流状态。
本发明将现有的阀芯座+进液座制成一体的进液座,不仅减少了一个零部件,提高装配效果,最主要的是可以避免阀芯座与进液座装 配时的密封问题,避免高压冷媒介质CO 2的泄漏;此外,在进液座3的下端以及转子安装座4的下端部设有凸起结构,轴向压紧时,凸起嵌入阀体台阶孔的台阶面,实现硬密封连接,进液座外圆周设有圆弧凸起302,装配时圆弧凸起挤压容纳腔的内壁圆周,实现过盈配合的硬密封,该结构最大限度地减少橡胶密封圈的使用数量,从而避免传统橡胶密封圈出现的密封失效的问题,大大增加电磁阀的使用寿命。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

  1. 一种带有硬密封结构的电磁阀,包括内部设有流体通道和容纳腔的阀体(1)以及安装于容纳腔内的阀组件,所述流体通道和容纳腔相连通,其特征在于,
    所述阀组件包括安装于所述容纳腔底部的进液座(3)、与所述进液座(3)相配合用于关闭或打开所述流体通道的阀芯(5)、驱动所述阀芯(5)往复运动的驱动机构;
    其中,所述进液座(3)设有允许所述阀芯(5)下端伸入的导向孔(303),所述进液座(3)中段设有若干个沿进液座(3)周向布置的进液孔(301),所述进液座(3)下段设有阀芯流体通道(306)以及位于所述阀芯流体通道(306)上部用于调节流量的流道斜面(305);
    所述阀芯(5)从上往下依次包括大径段(507)、斜面段(506)、小径段(505)和阀芯端部斜面(504),所述小径段(505)的直径小于所述阀芯流体通道(306)的直径,所述大径段(507)的直径大于所述阀芯流体通道(306)的直径。
  2. 根据权利要求1所述的一种带有硬密封结构的电磁阀,其特征在于,所述进液座(3)的下端加工出下凸起(307),轴向压紧时,所述下凸起(307)嵌入所述阀体的台阶面,实现硬密封连接;
    所述进液座(3)的上部圆周壁上加工出圆弧凸起(302),装配时所述圆弧凸起挤压容纳腔的内壁圆周,实现过盈配合及流体介质密封。
  3. 根据权利要求2所述的一种带有硬密封结构的电磁阀,其特征在于,所述驱动机构包括丝杆(6)和带动所述丝杆(6)转动的驱动元件,所述阀芯(5)的内部设有轴向通孔,所述丝杆(6)和轴向通孔通过螺纹连接,该螺纹将丝杆(6)的转动转化为阀芯(5)的直线运动;所述丝杆(6)和/或阀芯(5)上设有压力平衡通道,进入阀体(1)的流体经过所述压力平衡通道充满所述阀芯(5)的上端面 和下端面所在的腔体。
  4. 根据权利要求3所述的一种带有硬密封结构的电磁阀,其特征在于,所述容纳腔为内部设有台阶结构的圆柱形腔体,所述驱动机构还包括匹配安装于上述台阶结构上的转子安装座(4),所述驱动元件包括安装于所述转子安装座(4)上的转子(7)以及套设于所述转子(7)外周并驱动所述转子旋转的定子(12);
    所述转子安装座(4)通过螺纹固定于所述阀体(1)上,并且内部设有容纳阀芯(5)的中心台阶型通孔(401),该中心台阶型通孔(401)内设有导向凹槽(402),所述阀芯(5)上端设有导向凸台(503),所述导向凸台(503)与导向凹槽(402)滑动连接;
    所述转子安装座(4)的端部设有安装座凸起(403),轴向压紧时,所述安装座凸起(403)嵌入所述阀体(1)的台阶面,实现硬密封连接。
  5. 根据权利要求4所述的一种带有硬密封结构的电磁阀,其特征在于,所述进液座(3)的导向孔(303)上方设有台阶孔结构的轴向密封件承纳腔(304),该轴向密封件承纳腔(304)内设有与所述阀芯(5)接触连接的密封环(18)、套设于所述密封环(18)外侧的轴向密封O型圈(19)以及设于所述密封环(18)和轴向密封O型圈(19)上部的过渡板(20);所述转子安装座(4)通过该过渡板(20)挤压所述轴向密封O型圈(19)。
  6. 根据权利要求5所述的一种带有硬密封结构的电磁阀,其特征在于,所述定子(12)的外部设有定子壳体(23),该定子壳体(23)固定连接于所述阀体(1)的上端面;所述转子安装座(4)的外侧壁上设有放置上密封圈(22)的槽口,所述转子安装座(4)和定子壳体(23)通过上密封圈(22)进行防尘密封。
  7. 根据权利要求3所述的一种带有硬密封结构的电磁阀,其特征在于,所述丝杆(6)的螺纹圆柱面上加工有平台面,该平台面与所述阀芯(5)的轴向通孔之间形成所述压力平衡通道。
  8. 根据权利要求4所述的一种带有硬密封结构的电磁阀,其特征在于,所述容纳腔形成密封空间的密封壳体(11),所述密封壳体(11)罩设于所述转子(7)的外部,并且下端通过止口与所述转子安装座(4)固定密封连接;
    所述转子(7)通过上轴承(9)和下轴承(8)限位安装于所述密封壳体(11)内部,所述下轴承(8)安装于转子安装座(4)的中心台阶型通孔(401)的台阶上,所述上轴承(9)安装于轴承座(10)内,该轴承座(10)圆周配合安装于所述密封壳体(11)的内壁并且所述轴承座(10)的上端抵接所述密封壳体(11)的内表面。
  9. 根据权利要求1所述的一种带有硬密封结构的电磁阀,其特征在于,同一个阀体(1)上设有若干个容纳腔,每个容纳腔内均安装有阀组件。
  10. 根据权利要求1所述的一种带有硬密封结构的电磁阀,其特征在于,所述阀体(1)上设有与所述流体通道连通的泄压通道,该泄压通道的端口安装有泄压阀(14)。
PCT/CN2021/106658 2020-12-04 2021-07-16 一种带有硬密封结构的电磁阀 WO2022116550A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217029061A KR102604908B1 (ko) 2020-12-04 2021-07-16 경질 밀봉 구조를 가진 전자 밸브
US17/604,999 US11614171B2 (en) 2020-12-04 2021-07-16 Solenoid valve with hard seal structure
JP2021552505A JP2023551074A (ja) 2020-12-04 2021-07-16 ハードシール構造を有する電磁弁
EP21769617.8A EP4033180B1 (en) 2020-12-04 2021-07-16 Electromagnetic valve having hard sealing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011397721.2 2020-12-04
CN202011397721.2A CN112361671A (zh) 2020-12-04 2020-12-04 一种带有硬密封结构的电磁阀

Publications (1)

Publication Number Publication Date
WO2022116550A1 true WO2022116550A1 (zh) 2022-06-09

Family

ID=74536976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106658 WO2022116550A1 (zh) 2020-12-04 2021-07-16 一种带有硬密封结构的电磁阀

Country Status (6)

Country Link
US (1) US11614171B2 (zh)
EP (1) EP4033180B1 (zh)
JP (1) JP2023551074A (zh)
KR (1) KR102604908B1 (zh)
CN (1) CN112361671A (zh)
WO (1) WO2022116550A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361671A (zh) * 2020-12-04 2021-02-12 上海克来机电自动化工程股份有限公司 一种带有硬密封结构的电磁阀
CN113883747B (zh) * 2021-10-12 2023-03-28 艾泰斯热系统研发(上海)有限公司 冷媒换热装置及间接式热泵系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782269A (en) * 1997-04-14 1998-07-21 Caterpillar Inc. Soft seal poppet type check valve
JP2004270976A (ja) * 2003-03-06 2004-09-30 Tgk Co Ltd 膨張装置
CN108087605A (zh) * 2016-11-21 2018-05-29 浙江三花汽车零部件有限公司 一种电磁阀
CN110836271A (zh) * 2018-08-17 2020-02-25 浙江盾安禾田金属有限公司 电子膨胀阀及使用该电子膨胀阀的空调系统
CN111188912A (zh) 2020-03-06 2020-05-22 上海克来机电自动化工程股份有限公司 一种电磁阀
CN212131323U (zh) * 2020-03-06 2020-12-11 上海克来机电自动化工程股份有限公司 一种电磁阀
CN112361671A (zh) * 2020-12-04 2021-02-12 上海克来机电自动化工程股份有限公司 一种带有硬密封结构的电磁阀
CN213841418U (zh) * 2020-12-04 2021-07-30 上海克来机电自动化工程股份有限公司 一种带有硬密封结构的电磁阀

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129559A (ja) * 1992-10-21 1994-05-10 Aisin Seiki Co Ltd 電磁弁装置
JPH08145507A (ja) * 1994-11-24 1996-06-07 Sanyo Electric Co Ltd 冷媒流量制御弁及び冷媒流量制御弁を用いた冷凍装置
JP3094136U (ja) * 2002-11-19 2003-06-06 日清紡績株式会社 電磁弁
JP5022120B2 (ja) * 2007-07-03 2012-09-12 株式会社不二工機 冷暖房システム用の電動弁
JP2009174619A (ja) * 2008-01-24 2009-08-06 Hitachi Ltd 電磁弁
CN102252119A (zh) * 2010-05-21 2011-11-23 浙江三花股份有限公司 一种电动阀及包括该电动阀的热交换装置
CN103388694B (zh) * 2012-05-11 2016-07-27 浙江三花股份有限公司 一种电子膨胀阀
CN103512288B (zh) * 2012-06-20 2016-07-06 浙江三花股份有限公司 一种电子膨胀阀
BR112016004469B1 (pt) * 2013-09-02 2022-01-18 Smc Corporation Válvula de controle de fluido
CN106322861B (zh) * 2015-06-29 2021-09-28 浙江盾安禾田金属有限公司 一种电子膨胀阀
CN108317259B (zh) * 2017-01-18 2020-05-05 浙江三花制冷集团有限公司 一种电子膨胀阀
WO2018137636A1 (zh) * 2017-01-26 2018-08-02 浙江三花智能控制股份有限公司 电子膨胀阀
CN110296265A (zh) * 2018-03-23 2019-10-01 浙江三花智能控制股份有限公司 电子膨胀阀

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782269A (en) * 1997-04-14 1998-07-21 Caterpillar Inc. Soft seal poppet type check valve
JP2004270976A (ja) * 2003-03-06 2004-09-30 Tgk Co Ltd 膨張装置
CN108087605A (zh) * 2016-11-21 2018-05-29 浙江三花汽车零部件有限公司 一种电磁阀
CN110836271A (zh) * 2018-08-17 2020-02-25 浙江盾安禾田金属有限公司 电子膨胀阀及使用该电子膨胀阀的空调系统
CN111188912A (zh) 2020-03-06 2020-05-22 上海克来机电自动化工程股份有限公司 一种电磁阀
CN212131323U (zh) * 2020-03-06 2020-12-11 上海克来机电自动化工程股份有限公司 一种电磁阀
CN112361671A (zh) * 2020-12-04 2021-02-12 上海克来机电自动化工程股份有限公司 一种带有硬密封结构的电磁阀
CN213841418U (zh) * 2020-12-04 2021-07-30 上海克来机电自动化工程股份有限公司 一种带有硬密封结构的电磁阀

Also Published As

Publication number Publication date
US20220349482A1 (en) 2022-11-03
US11614171B2 (en) 2023-03-28
EP4033180A4 (en) 2022-07-27
KR102604908B1 (ko) 2023-11-21
CN112361671A (zh) 2021-02-12
JP2023551074A (ja) 2023-12-07
EP4033180B1 (en) 2023-10-11
KR20220079793A (ko) 2022-06-14
EP4033180A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2022116550A1 (zh) 一种带有硬密封结构的电磁阀
CN212131323U (zh) 一种电磁阀
JP2000227165A (ja) 電動式コントロールバルブ
KR101401086B1 (ko) 조립식 고압유량제어밸브
EP0937928A1 (en) Electric motor-operated flow control valve
CN110836270B (zh) 电子膨胀阀
CN111188912A (zh) 一种电磁阀
CN213841418U (zh) 一种带有硬密封结构的电磁阀
CN112594124A (zh) 一种具有过载自动卸荷功能的新型集成马达
JP4521484B2 (ja) 可変容量圧縮機用制御弁
JP3987269B2 (ja) 可変容量圧縮機用制御弁
EP4246022A1 (en) Electric valve
CN113685388B (zh) 水基比例减压溢流阀
JPH07167071A (ja) 可変容量ベーンコンプレッサのコントロールバルブとその取付方法
CN212028576U (zh) 一种调节控制阀
CN110296222B (zh) 电子膨胀阀
CN210141237U (zh) 一种排气机构
JP2000266194A (ja) 二段式電動膨張弁
JP2000130619A (ja) 減圧装置
CN219242692U (zh) 可用于高压环境下的小动力驱动球阀
CN220911733U (zh) 膨胀阀、空调器及车辆
CN114607781B (zh) 电子膨胀阀和制冷设备
WO2024021828A1 (zh) 电子膨胀阀及制冷设备
CN219035578U (zh) 电子膨胀阀
CN220749118U (zh) 一种阀装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2021552505

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021769617

Country of ref document: EP

Effective date: 20210922

NENP Non-entry into the national phase

Ref country code: DE