WO2022113264A1 - 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板 - Google Patents

無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板 Download PDF

Info

Publication number
WO2022113264A1
WO2022113264A1 PCT/JP2020/044203 JP2020044203W WO2022113264A1 WO 2022113264 A1 WO2022113264 A1 WO 2022113264A1 JP 2020044203 W JP2020044203 W JP 2020044203W WO 2022113264 A1 WO2022113264 A1 WO 2022113264A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
content
oriented electrical
Prior art date
Application number
PCT/JP2020/044203
Other languages
English (en)
French (fr)
Inventor
吉宏 有田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US18/033,123 priority Critical patent/US20230392227A1/en
Priority to KR1020237021158A priority patent/KR20230110338A/ko
Priority to JP2022564928A priority patent/JPWO2022113264A1/ja
Priority to EP20963528.3A priority patent/EP4253575A4/en
Priority to PCT/JP2020/044203 priority patent/WO2022113264A1/ja
Priority to CN202080107537.1A priority patent/CN116547394A/zh
Publication of WO2022113264A1 publication Critical patent/WO2022113264A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a non-oriented electrical steel sheet, a method for manufacturing the same, and a hot-rolled steel sheet as a material for the non-oriented electrical steel sheet.
  • Steel sheets required for general-purpose models have a Si content of 1.5% or less, and by promoting crystal grain growth during strain relief annealing performed after motor core punching, iron loss is dramatically improved. It is a material to be used.
  • Patent Document 1 As a means for improving crystal grain growth during strain removal annealing, for example, in Patent Document 1, C; ⁇ 0.065%, Si; ⁇ 2.0%, Al; ⁇ 0.10%, O; ⁇ 0.020%, B / N; 0.50 to 2.50, hot rolled sheet obtained by hot rolling a steel slab consisting of the balance Fe and unavoidable impurities, including one cold rolling or intermediate annealing. Disclosed is a method for producing an electric iron plate having excellent magnetic properties, which is characterized in that the final size is obtained by cold rolling two or more times and further annealing is performed.
  • Patent Document 2 C: 0.015% or less, Si: 0.1 to 1.0%, sol. Al: 0.001 to 0.005%, Mn: 1.5% or less, S: 0.008% or less, N: 0.0050% or less, T.I. O: In non-oriented electrical steel sheets containing 0.02% or less, the ratio of the weight of MnO to the total weight of the three types of inclusions of SiO 2 , MnO, and Al 2 O 3 in the steel is 15% or less. Disclosed is a non-oriented electrical steel sheet having a small iron loss and capable of achieving an average crystal grain size of 50 ⁇ m or more after magnetic baking.
  • Patent Document 3 describes C: 0.01% or less in weight%, Si: 0.1% or more and 2.0% or less, Mn: 0.1% or more and 1.5% or less, and a method for deoxidizing steel.
  • a non-oriented electrical steel sheet containing Al: 0.1% or less or Zr: 0.05% or less and composed of residual iron and unavoidable impurity elements the oxide in the steel has a diameter of 0.5 ⁇ m or more and 5 ⁇ m.
  • Patent Document 4 in terms of mass%, C: 0.0050% or less, Si: 0.05 to 3.5%, Mn: 3.0% or less, Al: 3.0% or less, S: 0.008%.
  • P 0.15% or less
  • N 0.0050% or less
  • Cu 0.2% or less are contained, and (S which is a Cu sulfide) / (S in steel) ⁇ 0.2, or ( A steel satisfying S) / (S) which is a Cu sulfide / (S) which is a Mn sulfide, and the number density of the sulfide containing Cu having a diameter of 0.03 to 0.20 ⁇ m in the steel plate is 0. .5 pieces / ⁇ m 3 or less non-directional electromagnetic steel sheets are disclosed.
  • Patent Document 5 in mass%, Si: 1.5% or less, Mn: 0.4% or more and 1.5% or less, Sol. Al: 0.01% or more and 0.04% or less, Ti: 0.0015% or less, N: 0.0030% or less, S: 0.0010% or more and 0.0040% or less, B is 0. It contains 5 or more and 1.5 or less, and consists of the balance Fe and unavoidable impurities.
  • B is 0. It contains 5 or more and 1.5 or less, and consists of the balance Fe and unavoidable impurities.
  • the sulfides containing Mn 10% or more is complex-precipitated with B precipitates, and MnS, Cu 2 S and its composite sulfides are formed.
  • the total distribution density is 3.0 ⁇ 10 5 pieces / mm 2 or less, and the distribution density of Ti precipitates less than 0.1 ⁇ m in diameter is 1.0 ⁇ 10 3 pieces / mm 2 or less.
  • Non-directional electromagnetic steel sheets are disclosed.
  • Japanese Unexamined Patent Publication No. 54-163720 Japanese Unexamined Patent Publication No. 63-195217 Japanese Unexamined Patent Publication No. 3-104844 Japanese Unexamined Patent Publication No. 2004-2954 International Publication No. 2005/100627
  • Patent Document 1 and Patent Document 5 in Al deoxidized steel, about 0.002% of B is added to generate BN as a nitride and suppress the precipitation of AlN harmful to crystal grain growth.
  • the technique has a problem that the magnetic flux density is lower than that of Si deoxidation described in Patent Documents 2 and 4, even if a low iron loss is obtained.
  • Patent Document 5 discloses the effect of improving the magnetic flux density by adding Sn, but this technique has a problem of increasing the cost.
  • the present invention has been made in view of such a problem, and it suppresses the formation of AlN, reduces the solid solution B (sol.B), and has good crystal grain growth after strain-removal annealing.
  • Another object of the present invention is to provide a non-oriented electrical steel sheet having good iron loss and magnetic flux density, a method for manufacturing the non-oriented electrical steel sheet, and a hot-rolled steel sheet that can be used as a material for the non-oriented electrical steel sheet.
  • the present invention has been made to solve the above problems, and the gist thereof is the following non-oriented electrical steel sheet, its manufacturing method, and hot-rolled steel sheet.
  • the chemical composition is mass%.
  • C 0.0010 to 0.0050%, Si: 1.50% or less, Mn: 0.10 to 1.50%, sol.
  • Al 0.010 to 0.040%, Ti: 0.0030% or less, Nb: 0.0030% or less, V: 0.0030% or less, Zr: 0.0030% or less, N: 0.0030% or less, S: 0.0040% or less, B: 0.0045% or less, Remaining: Fe and impurities, Satisfy the following equations (i) to (iv), Non-oriented electrical steel sheet. 0.0020 ⁇ Ti + Nb + V + Zr ⁇ 0.0120 ... (i) 0.5 ⁇ B / N ⁇ 1.5 ... (ii) sol.
  • the average crystal grain size is 30 ⁇ m or less, and The average crystal grain size after strain relief annealing under the condition of holding at 750 ° C. for 2 hours is 50 ⁇ m or more.
  • the hot rolling process Before hot rolling, the slab is kept at a temperature of 1000 to 1050 ° C. for 30 minutes or more.
  • the cumulative reduction rate in the temperature range of 900 to 1000 ° C is set to 70% or more.
  • the temperature of the hot-rolled steel sheet is maintained at 700 ° C. or higher and lower than 780 ° C. for 30 minutes or longer. Manufacturing method of non-oriented electrical steel sheet.
  • the time for heating to the maximum temperature reached at 800 ° C. or higher and lower than 850 ° C. at an average heating rate of 20 ° C./s or higher and the temperature of the cold-rolled steel sheet at 800 ° C. or higher is 15 seconds.
  • the chemical composition is by mass%, C: 0.0010 to 0.0050%, Si: 1.50% or less, Mn: 0.10 to 1.50%, sol. Al: 0.010 to 0.040%, Ti: 0.0030% or less, Nb: 0.0030% or less, V: 0.0030% or less, Zr: 0.0030% or less, N: 0.0030% or less, S: 0.0040% or less, B: 0.0045% or less, Remaining: Fe and impurities, Satisfy the following equations (i) to (iv), Hot-rolled steel sheet.
  • the chemical composition is, instead of a part of the Fe, by mass%.
  • Sn 0.50% or less, Contains, The hot-rolled steel sheet according to (6) above.
  • the present inventors investigated the reason why the magnetic flux density of Al deoxidized steel containing about 0.002% of B was lower than that of Si deoxidized steel, focusing on the existence form of B.
  • B has the effect of suppressing the precipitation of AlN, which is extremely harmful to crystal grain growth. This is because B is easier to form a nitride than Al.
  • the present inventors have found that when excess B is contained in the non-oriented electrical steel sheet, B exists in a solid solution state and reduces the magnetic flux density (see FIG. 1).
  • the solid solution B amount does not increase due to the excess B, but AlN is generated by the surplus N and the crystal grain growth deteriorates. Therefore, it is preferable to increase the B content as much as possible within a range that does not cause solid solution B, but it is industrially difficult to control the B content with high accuracy.
  • the nitride-forming elements include Ti, Nb, V, Zr, etc. in addition to Al and B, and their presence must be taken into consideration when controlling the B content. This is because it is usually mixed in non-oriented electrical steel sheets as impurities, and it is difficult to accurately grasp the amount.
  • the N content of the non-oriented electrical steel sheet can also fluctuate in the steelmaking process, it is difficult to accurately grasp the amount of B to be charged. As described above, it is industrially extremely difficult to include a sufficient amount of B in the non-oriented electrical steel sheet in order to suppress the formation of AlN.
  • the slab before annealing is heat-treated to hold it in a temperature range of 1000 to 1050 ° C for 30 minutes or more, and the steel sheet after annealing is subjected to a temperature range of 700 ° C or more and less than 780 ° C for 30 minutes or more.
  • the formation of AlN can be avoided, and in the finish annealing of the steel sheet after cold rolling or the strain relief annealing of the non-directional electromagnetic steel sheet after the finish annealing, the crystal grain growth becomes good and the low iron It was found that a loss and a high magnetic flux density can be obtained.
  • C 0.0010-0.0050% C has the effect of fixing the solid solution B as a carbide. However, if an amount of C exceeding 0.0050% is contained, the iron loss is deteriorated by magnetic aging. Therefore, the C content is set to 0.0010 to 0.0050%.
  • the C content is preferably 0.0015% or more, 0.0020% or more, or 0.0025% or more.
  • the C content is preferably 0.0045% or less, 0.0040% or less, or 0.0035% or less.
  • Si 1.50% or less Si is an effective element for increasing electrical resistance. However, if the Si content exceeds 1.50%, the hardness increases, the magnetic flux density decreases, the manufacturing cost increases, and the like. Therefore, the Si content is 1.50% or less.
  • the Si content is preferably 1.30% or less, 1.00% or less, or 0.80% or less.
  • the lower limit of the Si content is 0%, but in order to obtain the above-mentioned effects, the Si content is preferably 0.10% or more, 0.20% or more, or 0.50% or more.
  • Mn 0.10 to 1.50%
  • Mn is a sulfide-forming element, and is preferably contained in an appropriate amount from the viewpoint of promoting crystal grain growth.
  • the Mn content is set to 0.10 to 1.50%.
  • the Mn content is preferably 0.30% or more, 0.50% or more, or 0.70% or more.
  • the Mn content is preferably 1.20% or less, 1.00% or less, or 0.80% or less.
  • sol. Al 0.010 to 0.040%
  • Al is an element required for deoxidation of steel. sol. If the content of Al (Al existing in a solid solution state) is less than 0.010%, a stable deoxidizing effect cannot be obtained, and problems such as nozzle clogging occur. On the other hand, from the viewpoint of scrap utilization by consumers, it is preferable that the Al content is low. Therefore, sol.
  • the Al content is 0.010 to 0.040%. sol.
  • the Al content is preferably 0.015% or more, 0.020% or more, or 0.025% or more.
  • sol. The Al content is preferably 0.035% or less, 0.030% or less, or 0.028% or less.
  • Ti 0.0030% or less Ti produces nitrides and significantly deteriorates grain growth.
  • Ti is an element mixed in steel as an impurity, it is industrially difficult to reduce the Ti content to zero. Further, a very small amount of Ti has an effect of suppressing the formation of AlN.
  • the Ti content is set to 0.0030% or less.
  • the Ti content is preferably 0.0025% or less, 0.0020% or less, or 0.0015% or less.
  • the Ti content is preferably 0.0005% or more, 0.0008% or more, 0.0010% or more, or 0.0012% or more.
  • Nb 0.0030% or less Nb produces a nitride and significantly deteriorates grain growth.
  • Nb is an element mixed in steel as an impurity, it is industrially difficult to reduce the Nb content to zero. Further, a very small amount of Nb has an effect of inhibiting the production of AlN.
  • the Nb content is set to 0.0030% or less.
  • the Nb content is preferably 0.0025% or less, 0.0020% or less, or 0.0015% or less.
  • the Nb content is preferably 0.0005% or more, 0.0008% or more, 0.0010% or more, or 0.0012% or more.
  • V 0.0030% or less V produces a nitride and significantly deteriorates grain growth.
  • V is an element mixed in steel as an impurity, it is industrially difficult to reduce the V content to zero. Further, a very small amount of V has an effect of inhibiting the production of AlN.
  • the V content is set to 0.0030% or less.
  • the V content is preferably 0.0025% or less, 0.0020% or less, or 0.0015% or less.
  • the V content is preferably 0.0005% or more, 0.0008% or more, 0.0010% or more, or 0.0012% or more.
  • Zr 0.0030% or less Zr produces nitrides and significantly deteriorates grain growth.
  • Zr is an element mixed in steel as an impurity, it is industrially difficult to reduce the Zr content to zero.
  • a very small amount of Zr has an effect of inhibiting the production of AlN.
  • the Zr content is set to 0.0030% or less.
  • the Zr content is preferably 0.0025% or less, 0.0020% or less, or 0.0015% or less.
  • the Zr content is preferably 0.0005% or more, 0.0008% or more, 0.0010% or more, or 0.0012% or more.
  • any one of Ti, Nb, V and Zr may be contained alone, or two or more thereof may be contained in combination.
  • the total content of these elements satisfies the following formula (i). 0.0020 ⁇ Ti + Nb + V + Zr ⁇ 0.0120 ... (i)
  • the element symbol in the above formula (i) represents the content (mass%) of each element.
  • N 0.0030% or less N produces a nitride harmful to crystal grain growth.
  • the upper limit of the N content is set to 0.0030%.
  • the N content is preferably 0.0025% or less, 0.0020% or less, or 0.0015% or less. It is preferable to reduce the N content as much as possible, but since N is an element mixed in steel as an impurity, it is industrially difficult to reduce the N content to zero.
  • the lower limit of the N content is defined by the relational expression with the B content described later.
  • the lower limit of the N content may be set separately.
  • the N content may be 0.0008% or more, 0.0010% or more, or 0.0012% or more.
  • the N content means the content of N in all forms including N AlN , which will be described later, and N constituting BN.
  • S 0.0040% or less S forms sulfides and significantly deteriorates grain growth.
  • the S content is set to 0.0040% or less.
  • the S content is preferably 0.0035% or less, 0.0030% or less, or 0.0025% or less.
  • the lower limit of the S content is 0%, but the S content may be 0.0008% or more, 0.0010% or more, or 0.0012% or more in consideration of the refining cost.
  • B 0.0045% or less B is an essential element for suppressing the production of AlN, which is harmful to crystal grain growth. Therefore, the B content is determined in the range of 0.0045% or less and according to the above-mentioned N content. Specifically, the B content is controlled so as to satisfy the following equation (ii).
  • the B content means the content of all forms of B including solid solution B (sol. B) and B forming a precipitate such as BN. Setting the B / N value to 0.5 to 1.5 is one of the important means for achieving both the reduction of the amount of solid solution B and the suppression of the production of AlN.
  • the B / N value is preferably 0.6 or more, 0.7 or more, or 0.8 or more.
  • the B / N is preferably 1.4 or less, 1.3 or less, or 1.0 or less. 0.5 ⁇ B / N ⁇ 1.5 ... (ii) However, the element symbol in the above equation (ii) represents the content (mass%) of each element.
  • the content of B shall also be specified.
  • the content of B is 0.0005% or less as an upper limit that does not affect the magnetic flux density. That is, sol.
  • the content of B needs to satisfy the following formula (iii). sol. B ⁇ 0.0005 ⁇ ⁇ ⁇ (iii)
  • the content of B is preferably 0.0004% or less, or 0.0003% or less.
  • sol. The content of B may be defined as 0.00005% or more, 0.00010% or more, or 0.00015% or more.
  • the content of B is measured by the following procedure. First, a test piece is cut out from a non-directional electromagnetic steel sheet or a hot-rolled steel sheet, and electrolyzed with 10% acetylacetone-1% tetramethylammonium chloride / methanol at a current density of 20 mA / cm 2 in an amount of about 0.4 g. The solution used for the electrolysis is filtered through a filter having a pore size of 0.2 ⁇ m, and the B content in the extraction residue is measured by using ICP emission spectroscopy for the extraction residue collected on the filter. Then, the value obtained by subtracting the B content in the extraction residue from the B content in the steel is calculated as sol. Let it be the content of B.
  • Sn 0.50% or less Since Sn is not essential in the present invention, the lower limit of its content is 0%. From the viewpoint of alloy cost reduction, it is preferable that the Sn content is reduced as much as possible. However, Sn has the effect of improving the magnetic flux density. In addition to this, Sn is also effective in suppressing nitriding and oxidation of the surface of the steel sheet during annealing. In addition, sol. When Al: contains 0.010 to 0.040%, Sn is particularly liable to be nitrided. Therefore, Sn may be contained if necessary. Specifically, the Sn content is preferably 0.01% or more, 0.02% or more, or 0.05% or more.
  • the Sn content is 0.40% or less, 0.30% or less, 0.20% or less, 0.10% or less, 0.09% or less. , Or 0.08% or less.
  • N AlN The content of N (hereinafter referred to as "N AlN ”) constituting the precipitate AlN shall be 0.0005% or less as an upper limit that does not affect the crystal grain growth. That is, the content of N AlN must satisfy the following equation (iv). N AlN ⁇ 0.0005 ⁇ ⁇ ⁇ (iv)
  • the content of N AlN is preferably 0.0004% or less, or 0.0003% or less. Since it is preferable to reduce the content of N AlN as much as possible, the lower limit of the content is 0%. On the other hand, the content of N AlN may be defined as 0.00005% or more, 0.00010% or more, or 0.00015% or more.
  • the content of N AlN is measured by the following procedure. First, a test piece is cut out from a non-directional electromagnetic steel sheet or a hot-rolled steel sheet, and electrolyzed with 10% acetylacetone-1% tetramethylammonium chloride / methanol at a current density of 20 mA / cm 2 in an amount of about 0.4 g. The solution used for the electrolysis is filtered through a filter having a pore size of 0.2 ⁇ m, and the Al content in the extraction residue is measured by using ICP emission spectroscopy for the extraction residue collected on the filter. Since it is considered that all Al in the extraction residue exists as AlN, the N content in the extraction residue is obtained by multiplying the Al content in the extraction residue by 14/27, and the N AlN content is obtained. And.
  • the state of the precipitate is very important, but the state of the precipitate is not particularly specified. This is because the precipitates are so fine that it is technically difficult to define their condition. Further, it has been confirmed that by keeping the amount of N AlN constituting the precipitate within the above range, the precipitate is well controlled and the magnetic properties of the non-oriented electrical steel sheet are improved.
  • the average crystal grain size of the non-oriented electrical steel sheet according to this embodiment is not particularly specified. As described above, the non-oriented electrical steel sheet is used after being machined and annealed by strain, so that the average crystal grain size changes depending on the conditions of annealing by strain. Considering the above-mentioned actual usage, it is not essential to specify the average crystal grain size at the stage of grain-oriented electrical steel sheet as long as the grain growth property in strain annealing is good. On the other hand, the average crystal grain size is an important factor from the viewpoint of improving punching workability. In non-oriented electrical steel sheets used for punching, when the average crystal grain size is 30 ⁇ m or less, the punching workability is improved. Therefore, the average crystal grain size of the non-oriented electrical steel sheet after finish annealing may be 30 ⁇ m or less. As a means for reducing the average crystal grain size to 30 ⁇ m or less, a known technique can be appropriately used.
  • non-oriented electrical steel sheets are subjected to machining and strain removal annealing after shipment.
  • the average crystal grain size after the strain-removing annealing is 50 ⁇ m or more, the iron loss characteristics are extremely improved.
  • the chemical composition and the state of the oxide of the non-oriented electrical steel sheet according to the present embodiment are preferably controlled, the average crystal grain size after strain removal and annealing under the condition of holding at 750 ° C. for 2 hours is 50 ⁇ m or more. It becomes.
  • the strain-removing annealing conditions are not limited to the above conditions, and the annealing temperature and time may be appropriately changed in consideration of both equipment restrictions and promotion of crystal grain growth.
  • the average crystal grain size of the non-oriented electrical steel sheet can be obtained by the following method.
  • the L cross section (cross section parallel to the rolling direction) of the non-directional electromagnetic steel plate is polished and etched, and observed with an optical microscope.
  • the observation magnification is 100 times, the area of the observation field of view is 0.5 mm 2 , and the number of observation points is 3.
  • JIS G 0551: 2013 "Steel-grain size microscopic test method" to these optical micrographs, the average crystal grain size of the non-oriented electrical steel sheet is obtained.
  • the manufacturing method of the non-directional electromagnetic steel plate according to the present embodiment includes a steelmaking process, a hot rolling process, a pickling process, a cold rolling process, and a finish annealing process.
  • (A) Steelmaking process In the steelmaking process, slabs having the above-mentioned chemical composition are produced by appropriately refining and casting.
  • the manufacturing conditions are not particularly limited in the steelmaking process, and known conditions can be appropriately adopted.
  • Hot-rolling process In the hot-rolling process, the slab obtained by the continuous casting process is heated and then hot-rolled to obtain a hot-rolled steel sheet. By this step, a hot-rolled steel sheet according to an embodiment of the present invention is manufactured.
  • the steps after the hot rolling step do not substantially affect the chemical composition and the state of the oxide. Therefore, as described above, the chemical composition and the state of precipitates of the hot-rolled steel sheet are common to those of the non-oriented electrical steel sheet according to the present embodiment.
  • the hot rolling process is an important process for controlling deposits and ensuring magnetic properties.
  • the slab is kept at a temperature of 1000 to 1050 ° C. for 30 minutes or more before hot rolling. Subsequently, hot rolling is performed so that the cumulative rolling reduction in the temperature range of 900 to 1000 ° C. is 70% or more. Then, after hot rolling, the temperature of the hot-rolled steel sheet is maintained at 700 ° C. or higher and lower than 780 ° C. for 30 minutes or longer.
  • the AlN content when the B content is excessive with respect to the N content, the AlN content can be suppressed by fixing N with B, so that the N AlN content can be set to 0.0005% or less. It is possible.
  • the B content may exceed 0.0005%. Therefore, it is necessary to generate B precipitates other than BN to suppress the solid solution B content.
  • B produces carbides, the precipitation temperature of B carbides is relatively low. Therefore, it is possible to promote the precipitation of B carbide by setting the cumulative reduction rate in the temperature range of 900 to 1000 ° C. to 70% or more.
  • the B carbide is promoted by hot rolling under the above conditions, some B may remain in the solid solution state and remain in the hot-rolled steel sheet.
  • the solid solution B can be precipitated by holding the hot-rolled steel sheet for 30 minutes or more within the range where the temperature of the hot-rolled steel sheet is 700 ° C. or higher and lower than 780 ° C. This is because the B carbide does not precipitate even if the holding temperature is less than 700 ° C., and dissolves if the holding temperature is 780 ° C. or higher.
  • sol. B can be 0.0005% or less, but it is necessary to suppress the production of AlN.
  • the formation of Ti, Nb, V, and Zr nitrides suppresses the formation of AlN, which is harmful to crystal grain growth. Since these nitrides are relatively fine, they need to be sufficiently grown in this step. Therefore, before hot rolling, the temperature of the slab is kept within the range of 1000 to 1050 ° C for 30 minutes or more, and after hot rolling, the temperature of the hot-rolled steel sheet is 700 ° C or higher and lower than 780 ° C. Hold for 30 minutes or more within the range that becomes. This makes it possible to reduce the N AlN content to 0.0005% or less by fixing N with Ti, Nb, V, and Zr and suppressing the AlN amount.
  • the rolling reduction in the hot rolling process is not particularly limited, but is preferably 90% or more.
  • the thickness of the obtained hot-rolled steel sheet is also not particularly limited, but is preferably 1.0 to 4.0 mm, more preferably 2.0 to 3.0 mm.
  • (C) Pickling step In the pickling step, the hot-rolled steel sheet obtained by the hot-rolling step is pickled.
  • the pickling conditions are not particularly limited, and may be within the normal range in the manufacturing conditions of the non-oriented electrical steel sheet.
  • (D) Cold-rolled step In the cold-rolled step, the hot-rolled steel sheet after pickling is cold-rolled to obtain a cold-rolled steel sheet.
  • the cold rolling conditions are not particularly limited, and may be within the normal range in the manufacturing conditions of non-oriented electrical steel sheets.
  • the rolling reduction in the cold rolling step is preferably 50 to 95%, more preferably 75 to 85%.
  • finish annealing step finish annealing is performed on the cold-rolled steel sheet obtained by the cold-rolling step.
  • the conditions are not particularly limited, and known conditions can be appropriately used.
  • the heating rate in the finish annealing step is 20 ° C./s or more.
  • the heating rate is a value obtained by dividing the difference between the heating start temperature and the soaking temperature of the cold-rolled steel plate by the time from the heating start temperature to the soaking temperature, that is, from the heating start temperature to the soaking temperature. Is the average heating rate of.
  • the maximum temperature reached (the temperature of the cold-rolled steel sheet) is 850 ° C. or higher, the crystal grain size becomes too large, and there is a possibility that defects occur in the punching process performed before the strain-removal annealing. ..
  • the maximum temperature reached is preferably less than 850 ° C.
  • the maximum temperature reached is less than 800 ° C., recrystallization may be insufficient and defects may occur in the punching process. In order to avoid this, it is preferable that the maximum temperature reached is 800 ° C. or higher.
  • the time for the temperature of the cold-rolled steel sheet to reach 800 ° C. or higher should be 15 seconds or less. preferable.
  • the thickness of the non-oriented electrical steel sheet manufactured through the above steps is not particularly limited, but is preferably 0.1 to 1.0 mm, more preferably 0.2 to 0.7 mm. ..
  • a non-directional electromagnetic steel plate was produced by sequentially performing a steelmaking process, a hot rolling process, a pickling process, a cold rolling process, and a finishing annealing process.
  • the chemical composition of non-oriented electrical steel sheets is shown in Table 1, and the manufacturing conditions for these are shown in Table 2. Each steel sheet was manufactured 5 times under the same conditions.
  • a test piece was cut out from a non-oriented electrical steel sheet and electrolyzed with 10% acetylacetone-1% tetramethylammonium chloride / methanol at a current density of 20 mA / cm 2 in an amount of about 0.4 g.
  • the solution used for the electrolysis was filtered through a filter having a pore size of 0.2 ⁇ m, and the B content in the extraction residue was measured by using ICP emission spectroscopy for the extraction residue collected on the filter. Then, the value obtained by subtracting the B content in the extraction residue from the B content in the steel is calculated as sol. The content of B was used.
  • a test piece was cut out from a non-oriented electrical steel sheet and electrolyzed with 10% acetylacetone-1% tetramethylammonium chloride / methanol at a current density of 20 mA / cm 2 in an amount of about 0.4 g.
  • the solution used for the electrolysis was filtered through a filter having a pore size of 0.2 ⁇ m, and the Al content in the extraction residue was measured by using ICP emission spectroscopy for the extraction residue collected on the filter. Then, the Al content in the extraction residue was multiplied by 14/27 to determine the N content in the extraction residue, which was used as the N AlN content.
  • the obtained non-oriented electrical steel sheet was subjected to strain-removal annealing by holding it at 750 ° C. for 2 hours.
  • the following characteristic evaluations were carried out on the non-oriented electrical steel sheets after strain removal and annealing.
  • (B) Magnetic Flux Density After Strain Removal and Annealing The magnetic flux density (B 50 ) of the steel sheet after strain removal and annealing was measured in accordance with JIS C 2552: 2014 “Directional Electromagnetic Steel Band”. It was judged that the non-oriented electrical steel sheet having a B50 of 1.70 T or more of the steel sheet after strain relief annealing was excellent in the magnetic flux density after strain cancellation annealing.
  • Table 3 The above evaluation results are shown in Table 3. The characteristic evaluation was carried out using five steel plates. Further, in Table 3, the average value and the maximum value are shown for the iron loss, and the average value and the minimum value are shown for the magnetic flux density.
  • the present invention it is possible to stably provide a non-oriented electrical steel sheet having good crystal grain growth after strain relief annealing and good iron loss and magnetic flux density after strain cancellation annealing at low cost. Therefore, the present invention has extremely high industrial applicability.

Abstract

化学組成が、質量%で、C:0.0010~0.0050%、Si:1.50%以下、Mn:0.10~1.50%、sol.Al:0.010~0.040%、Ti:0.0030%以下、Nb:0.0030%以下、V:0.0030%以下、Zr:0.0030%以下、N:0.0030%以下、S:0.0040%以下、B:0.0045%以下、残部:Feおよび不純物であり、[0.0020≦Ti+Nb+V+Zr≦0.0120]、[0.5≦B/N≦1.5]、[sol.B≦0.0005]および[NAlN≦0.0005]を満足する、無方向性電磁鋼板。

Description

無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板
 本発明は無方向性電磁鋼板およびその製造方法、ならびに当該無方向性電磁鋼板の素材となる熱延鋼板に関する。
 近年、世界的な電気機器の省エネルギー化要求の高まりにより、回転機の鉄心材料として用いられる無方向性電磁鋼板に対しても、より高性能な特性が要求されている。具体的には、電気製品のモーターのうち高効率機種といわれるものについては、SiおよびAl含有量を増加させて固有抵抗を高め、かつ結晶粒径を大きくした高級素材が使用されるようになってきた。一方、汎用機種のモーターについても性能向上が要求されるようになってきているが、コスト制約が厳しいため、高効率機種のようにその材質を高級素材に切替えることは難しいのが実情である。
 汎用機種に要求される鋼板は、Si含有量が1.5%以下であり、かつ、モータコア打ち抜き加工後に施される歪取焼鈍時に結晶粒成長を促進させることで、鉄損が飛躍的に改善する素材である。
 さらに最近では、コア打ち抜き時に発生するスクラップを鋳物の原料に活用する需要家が増えてきている。スクラップの鋳造性確保の観点から、鋼板のAl含有量を0.05%未満とする必要が生じてきた。
 歪取焼鈍時の結晶粒成長を改善するための手段として、例えば、特許文献1には、C;≦0.065%、Si;≦2.0%、Al;≦0.10%、O;≦0.020%、B/N;0.50~2.50、残部Feおよび不可避不純物からなる鋼スラブを熱間圧延して得た熱延板を1回の冷間圧延あるいは中間焼鈍を含む2回以上の冷間圧延によって最終寸法となし、さらに焼鈍を施すことを特徴とする磁気特性の優れた電気鉄板の製造方法が開示されている。
 特許文献2には、C:0.015%以下、Si:0.1~1.0%、sol.Al:0.001~0.005%、Mn:1.5%以下、S:0.008%以下、N:0.0050%以下、T.O:0.02%以下を含む無方向性電磁鋼板において、鋼中のSiO、MnO、Alの3種の介在物の総重量に対するMnOの重量の割合が15%以下であることを特徴とする磁性焼鈍後の平均結晶粒径を50μm以上になし得る鉄損の少ない無方向性電磁鋼板が開示されている。
 特許文献3には、重量%でC:0.01%以下、Si:0.1%以上2.0%以下、Mn:0.1%以上1.5%以下、および鋼の脱酸方式に応じて、Al:0.1%以下、またはZr:0.05%以下を含有し、残部鉄および不可避不純物元素よりなる無方向性電磁鋼板において、鋼中の酸化物で直径0.5μm以上5μm以下の大きさのものが、1cm当り1000個以上50000個以下であることを特徴とする磁気特性の優れた無方向性電磁鋼板が開示されている。
 特許文献4では、質量%で、C:0.0050%以下、Si:0.05~3.5%、Mn:3.0%以下、Al:3.0%以下、S:0.008%以下、P:0.15%以下、N:0.0050%以下、Cu:0.2%以下を含み、(Cu硫化物であるS)/(鋼中S)≦0.2、または、(Cu硫化物であるS)/(Mn硫化物であるS)≦0.2を満足する鋼であって、更に鋼板中の直径0.03~0.20μmのCuを含有する硫化物の数密度が0.5個/μm以下の無方向性電磁鋼板が開示されている。
 特許文献5では、質量%で、Si:1.5%以下、Mn:0.4%以上1.5%以下、Sol.Al:0.01%以上0.04%以下、Ti:0.0015%以下、N:0.0030%以下、S:0.0010%以上0.0040%以下、BをB/Nで0.5以上1.5以下含有し、残部Feおよび不可避不純物からなり、Mnを含む硫化物のうち個数割合で10%以上がB析出物と複合析出し、MnS、CuSおよびその複合硫化物を合計した分布密度が3.0×10個/mm以下であり、直径0.1μmに満たないTi析出物の分布密度が1.0×10個/mm以下であることを特徴とする無方向性電磁鋼板が開示されている。
特開昭54-163720号公報 特開昭63-195217号公報 特開平3-104844号公報 特開2004-2954号公報 国際公開第2005/100627号
 しかしながら、さらなる鉄損の低減が要求される状況において、上記の従来手法では、十分かつ安定的に製造することが難しくなってきている。特に、特許文献1および特許文献5に記載のように、Al脱酸鋼においてBを0.002%程度添加して窒化物としてBNを生成し、結晶粒成長に有害なAlNの析出を抑制する技術では、たとえ低鉄損が得られたとしても、特許文献2および特許文献4に記載のSi脱酸に比べて、磁束密度が低くなるという課題があった。特許文献5では、Sn添加によって磁束密度を向上させる効果が開示されているが、この技術にはコスト増になるという課題があった。その他にも、スキンパス圧延等の特別な工程を追加することで結晶粒の粗大化を促進することも考えられるが、この場合もやはり製造コストの大幅な上昇を招くという問題がある。
 本発明は、このような問題に鑑みてなされたものであり、AlNの生成を抑制しつつ、かつ固溶B(sol.B)を低減し、歪取焼鈍後の結晶粒成長が良好であり、かつ、鉄損と磁束密度とが良好な無方向性電磁鋼板およびその製造方法、ならびに、当該無方向性電磁鋼板の素材として使用可能な熱延鋼板を提供しようとすることを課題とする。
 本発明は、上記課題を解決するためになされたものであり、下記の無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板を要旨とする。
 (1)化学組成が、質量%で、
 C:0.0010~0.0050%、
 Si:1.50%以下、
 Mn:0.10~1.50%、
 sol.Al:0.010~0.040%、
 Ti:0.0030%以下、
 Nb:0.0030%以下、
 V:0.0030%以下、
 Zr:0.0030%以下、
 N:0.0030%以下、
 S:0.0040%以下、
 B:0.0045%以下、
 残部:Feおよび不純物であり、
 下記(i)~(iv)式を満足する、
 無方向性電磁鋼板。
 0.0020≦Ti+Nb+V+Zr≦0.0120  ・・・(i)
 0.5≦B/N≦1.5  ・・・(ii)
 sol.B≦0.0005  ・・・(iii)
 NAlN≦0.0005  ・・・(iv)
 但し、上記(i)および(ii)式中の元素記号は各元素の含有量(質量%)を表し、上記(iii)式中のsol.Bは固溶B量(質量%)であり、上記(iv)式中のNAlNはAlNとして存在するN量(質量%)である。
 (2)前記化学組成が、前記Feの一部に代えて、質量%で、
 Sn:0.50%以下、
 を含有する、
 上記(1)に記載の無方向性電磁鋼板。
 (3)平均結晶粒径が30μm以下であり、かつ、
 750℃で2時間保持する条件で歪取焼鈍を行った後の平均結晶粒径が50μm以上である、
 上記(1)または(2)に記載の無方向性電磁鋼板。
 (4)上記(1)から(3)までのいずれか一項に記載の無方向性電磁鋼板を製造する方法であって、
 上記(1)または(2)に記載の化学組成を有するスラブを製造する製鋼工程と、
 得られた前記スラブを加熱した後に熱間圧延を施し、熱延鋼板とする熱延工程と、
 前記熱延鋼板に対して、酸洗を施す酸洗工程と、
 酸洗後の前記熱延鋼板に対して冷間圧延を施し、冷延鋼板とする冷延工程と、
 前記冷延鋼板に対して仕上焼鈍を施す仕上焼鈍工程と、を備え、
 前記熱延工程において、
 熱間圧延を施す前に、前記スラブの温度が1000~1050℃となる範囲内で30分以上保持し、
 900~1000℃の温度範囲内での累積圧下率を70%以上とし、
 熱間圧延を施した後に、前記熱延鋼板の温度が700℃以上780℃未満となる範囲内で30分以上保持する、
 無方向性電磁鋼板の製造方法。
 (5)前記仕上焼鈍工程において、20℃/s以上の平均加熱速度で800℃以上850℃未満の最高到達温度まで加熱し、かつ前記冷延鋼板の温度が800℃以上となる時間を15秒以下とする、
 上記(4)に記載の無方向性電磁鋼板の製造方法。
 (6)上記(1)から(3)までのいずれか一項に記載の無方向性電磁鋼板の素材となる熱延鋼板であって、
 化学組成が、質量%で、
 C:0.0010~0.0050%、
 Si:1.50%以下、
 Mn:0.10~1.50%、
 sol.Al:0.010~0.040%、
 Ti:0.0030%以下、
 Nb:0.0030%以下、
 V:0.0030%以下、
 Zr:0.0030%以下、
 N:0.0030%以下、
 S:0.0040%以下、
 B:0.0045%以下、
 残部:Feおよび不純物であり、
 下記(i)~(iv)式を満足する、
 熱延鋼板。
 0.0020≦Ti+Nb+V+Zr≦0.0120  ・・・(i)
 0.5≦B/N≦1.5  ・・・(ii)
 sol.B≦0.0005  ・・・(iii)
 NAlN≦0.0005  ・・・(iv)
 但し、上記(i)および(ii)式中の元素記号は各元素の含有量(質量%)を表し、上記(iii)式中のsol.Bは固溶B量(質量%)であり、上記(iv)式中のNAlNはAlNとして存在するN量(質量%)である。
 (7)前記化学組成が、前記Feの一部に代えて、質量%で、
 Sn:0.50%以下、
 を含有する、
 上記(6)に記載の熱延鋼板。
 本発明によれば、歪取焼鈍後の結晶粒成長が良好であり、かつ、歪取焼鈍後の鉄損と磁束密度とが良好な無方向性電磁鋼板を低コストで安定的に提供できる。
余剰B量と磁束密度との関係を示す図である。
 本発明者らは、Bを0.002%程度含有させたAl脱酸鋼の磁束密度がSi脱酸鋼に比べて低くなる原因について、Bの存在形態に着目して調査した。Bは、結晶粒成長に極めて有害なAlNの析出を抑制する効果を有する。なぜなら、BはAlよりも窒化物を生成し易いからである。しかしながら、過剰のBが無方向性電磁鋼板に含まれる場合、Bが固溶状態で存在し、磁束密度を低下させることを本発明者らは知見した(図1参照)。
 B含有量を減らせば、過剰Bに起因する固溶B量の増大が生じないものの、余剰NによりAlNが生成して結晶粒成長が悪化する。したがって、固溶Bを生じさせない範囲内で可能な限りB含有量を増大させることが好ましいのであるが、このようなB含有量制御を高精度に行うことは工業的に困難である。なぜなら、窒化物生成元素にはAlおよびBの他に、Ti、Nb、V、およびZr等があり、B含有量の制御の際にはこれらの存在も考慮に入れなければならないが、これらは通常は不純物として無方向性電磁鋼板に混入するものであるので、その量を正確に把握することは困難であるからである。さらに、無方向性電磁鋼板のN含有量も製鋼工程内で変動し得るため、投入すべきBの量を正確には把握することは困難である。このように、AlN生成抑制のために過不足のない量のBを無方向性電磁鋼板に含有させることは工業的には極めて難しい。
 このような事情に鑑み、本発明者らは、N量に対するB量の過不足いずれの場合も許容しつつ、良好な磁気特性が得られる方法を鋭意研究した結果、以下の知見を得るに至った。
 まず、B量がN量に対して過剰に多い場合において、BN以外のB析出物を熱間圧延時に生成させる方法を検討した。その結果、熱間圧延時の温度と累積圧下率とを適正範囲にすれば、BN以外のB析出物量を増大させられることが分かった。具体的には、900~1000℃の温度範囲内での累積圧下率が70%以上となる条件で熱間圧延を行うことが望まれる。この効果は、熱間圧延によってBの析出が促進されたために生じたものと推察される。
 さらに、その後に700℃以上780℃未満の温度範囲で30分以上保持する熱処理を熱延後の鋼板に施すことで、加工によって生じた上述のBN以外のB析出物を成長させることができる。その結果、冷延後の鋼板の仕上焼鈍、または仕上焼鈍後の鋼板(無方向性電磁鋼板)の歪取焼鈍において、結晶粒成長が良好となって、低鉄損かつ高磁束密度を実現できる。
 次に、B量がN量に対して不足する場合において、結晶粒成長に有害なAlNを生成させない方法を検討した。その結果、熱延前のスラブに対して1000~1050℃の温度域で30分以上保持する熱処理を施し、かつ熱延後の鋼板に対して700℃以上780℃未満の温度域で30分以上保持する熱処理を施すと、AlNの生成が回避でき、冷延後の鋼板の仕上焼鈍、または仕上焼鈍後の無方向性電磁鋼板の歪取焼鈍において、結晶粒成長が良好となって、低鉄損かつ高磁束密度が得られることを知見した。
 以上の知見により、Bを0.002%程度添加したAl脱酸鋼において、特別な工程を追加して結晶粒の粗大化を促進させなくても、低鉄損と高磁束密度とを両立することができる条件を見出し、本発明を完成させた。
 本発明は上記の知見に基づいてなされたものである。以下に本発明の各要件について説明する。
 1.化学組成
 本発明の一実施形態に係る無方向性電磁鋼板および熱延鋼板の化学組成について説明する。各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.0010~0.0050%
 Cは、固溶Bを炭化物として固定する効果を有する。しかしながら、0.0050%を超える量のCを含有させると、磁気時効によって鉄損を劣化させる。そのため、C含有量は0.0010~0.0050%とする。C含有量は0.0015%以上、0.0020%以上、または0.0025%以上であるのが好ましい。また、C含有量は0.0045%以下、0.0040%以下、または0.0035%以下であるのが好ましい。
 Si:1.50%以下
 Siは、電気抵抗を増加させるために有効な元素である。しかしながら、Si含有量が1.50%を超えると、硬度上昇、磁束密度の低下、および製造コスト増等が生じる。そのため、Si含有量は1.50%以下とする。Si含有量は1.30%以下、1.00%以下、または0.80%以下であるのが好ましい。Si含有量の下限値は0%であるが、上述の効果を得るために、Si含有量は0.10%以上、0.20%以上、または0.50%以上であるのが好ましい。
 Mn:0.10~1.50%
 Mnは、硫化物生成元素であり、結晶粒成長を促進する観点からは適量が含まれることが好ましい。しかしながら、Mn含有量が1.50%を超える場合、変態温度が下がって熱延鋼板の組織制御が困難になり、結晶粒成長を促進することができなくなり、鉄損が劣化する。加えて、飽和磁束密度の低下が著しくなる。そのため、Mn含有量は0.10~1.50%とする。Mn含有量は0.30%以上、0.50%以上、または0.70%以上であるのが好ましい。また、Mn含有量は1.20%以下、1.00%以下、または0.80%以下であるのが好ましい。
 sol.Al:0.010~0.040%
 Alは、鋼の脱酸に必要な元素である。sol.Al(固溶状態で存在するAl)の含有量が0.010%に満たない場合、安定した脱酸効果が得られず、ノズル詰り等の問題が発生する。一方、需要家におけるスクラップ活用の観点から、Al含有量は少ない方が好ましい。そのため、sol.Al含有量は0.010~0.040%とする。sol.Al含有量は0.015%以上、0.020%以上、または0.025%以上であるのが好ましい。また、sol.Alの含有量は0.035%以下、0.030%以下、または0.028%以下であるのが好ましい。
 Ti:0.0030%以下
 Tiは、窒化物を生成して粒成長を著しく悪化させる。しかし、Tiは不純物として鋼中に混入する元素であるので、Ti含有量をゼロにすることは工業的には難しい。また、極微量のTiは、AlNの生成を抑制する効果を有する。一方、その含有量が過剰であると結晶粒成長を悪化させる。そのため、Ti含有量は0.0030%以下とする。Ti含有量は0.0025%以下、0.0020%以下、または0.0015%以下であるのが好ましい。一方、上記の効果を得たい場合は、Ti含有量は0.0005%以上、0.0008%以上、0.0010%以上、または0.0012%以上であるのが好ましい。
 Nb:0.0030%以下
 Nbは、窒化物を生成して粒成長を著しく悪化させる。しかし、Nbは不純物として鋼中に混入する元素であるので、Nb含有量をゼロにすることは工業的には難しい。また、極微量のNbは、AlNの生成を阻害する効果を有する。一方、その含有量が過剰であると結晶粒成長を悪化させる。そのため、Nb含有量は0.0030%以下とする。Nb含有量は0.0025%以下、0.0020%以下、または0.0015%以下であるのが好ましい。一方、上記の効果を得たい場合は、Nb含有量は0.0005%以上、0.0008%以上、0.0010%以上、または0.0012%以上であるのが好ましい。
 V:0.0030%以下
 Vは、窒化物を生成して粒成長を著しく悪化させる。しかし、Vは不純物として鋼中に混入する元素であるので、V含有量をゼロにすることは工業的には難しい。また、極微量のVは、AlNの生成を阻害する効果を有する。一方、その含有量が過剰であると結晶粒成長を悪化させる。そのため、V含有量は0.0030%以下とする。V含有量は0.0025%以下、0.0020%以下、または0.0015%以下であるのが好ましい。一方、上記の効果を得たい場合は、V含有量は0.0005%以上、0.0008%以上、0.0010%以上、または0.0012%以上であるのが好ましい。
 Zr:0.0030%以下
 Zrは、窒化物を生成して粒成長を著しく悪化させる。しかし、Zrは不純物として鋼中に混入する元素であるので、Zr含有量をゼロにすることは工業的には難しい。また、極微量のZrは、AlNの生成を阻害する効果を有する。一方、その含有量が過剰であると結晶粒成長を悪化させる。そのため、Zr含有量は0.0030%以下とする。Zr含有量は0.0025%以下、0.0020%以下、または0.0015%以下であるのが好ましい。一方、上記の効果を得たい場合は、Zr含有量は0.0005%以上、0.0008%以上、0.0010%以上、または0.0012%以上であるのが好ましい。
 Ti、Nb、VおよびZrはいずれか1種を単独で含有させてもよいし、2種以上を複合的に含有させてもよい。しかしながら、これらの元素の合計含有量が少なすぎるとAlNの生成を阻害する効果が得られず、一方、過剰であると結晶粒成長を悪化させる。そのため、これらの元素の合計含有量が下記(i)式を満足する必要がある。
 0.0020≦Ti+Nb+V+Zr≦0.0120  ・・・(i)
 但し、上記(i)式中の元素記号は各元素の含有量(質量%)を表す。
 N:0.0030%以下
 Nは、結晶粒成長に有害な窒化物を生成する。結晶粒成長を悪化させない条件として、N含有量の上限を0.0030%とする。N含有量は0.0025%以下、0.0020%以下、または0.0015%以下であるのが好ましい。なお、N含有量は可能な限り低減することが好ましいが、Nは不純物として鋼中に混入する元素であるので、N含有量をゼロにすることは工業的には難しい。本発明においては、Nがある程度含有されることを前提としたうえで、後述するB含有量との関係式によってN含有量の下限値を規定することとする。一方、N含有量の下限値を別途定めてもよい。例えば、N含有量を0.0008%以上、0.0010%以上、または0.0012%以上としてもよい。なお、N含有量とは、後述するNAlN、およびBNを構成するN等を含む全ての形態のNの含有量を意味する。
 S:0.0040%以下
 Sは、硫化物を形成して粒成長を著しく悪化させる。特に、S含有量が0.0040%を超えると硫化物の析出量が増え、結晶粒成長が阻害される。そのため、S含有量は0.0040%以下とする。S含有量は0.0035%以下、0.0030%以下、または0.0025%以下であるのが好ましい。S含有量の下限値は0%であるが、精錬コストを考慮して、S含有量を0.0008%以上、0.0010%以上、または0.0012%以上としてもよい。
 B:0.0045%以下
 Bは、結晶粒成長に有害なAlNの生成抑制に必須の元素である。そのため、B含有量は0.0045%以下の範囲で、かつ上述のN含有量に応じて定めることとする。具体的には、下記(ii)式を満足するようにB含有量を制御することとする。なお、このB含有量とは、固溶B(sol.B)、およびBN等の析出物を形成するB等を含むあらゆる形態のBの含有量を意味する。B/Nの値を0.5~1.5とすることは、固溶B量の低減およびAlNの生成抑制の両方を達成するための重要な手段の1つである。なお、B/Nの値は0.6以上、0.7以上、または0.8以上であるのが好ましい。また、B/Nは1.4以下、1.3以下、または1.0以下であるのが好ましい。
 0.5≦B/N≦1.5  ・・・(ii)
 但し、上記(ii)式中の元素記号は各元素の含有量(質量%)を表す。
 また、本発明では、B含有量に加えて、sol.Bの含有量も規定することとする。sol.Bの含有量は、磁束密度に影響しない上限として、0.0005%以下とする。すなわち、sol.Bの含有量は下記(iii)式を満足する必要がある。
 sol.B≦0.0005  ・・・(iii)
 sol.Bの含有量は0.0004%以下、または0.0003%以下であるのが好ましい。なお、sol.Bの含有量は可能な限り低減することが好ましいため、その下限値は0%である。一方、sol.Bの含有量を0.00005%以上、0.00010%以上、または0.00015%以上と規定してもよい。
 本発明において、sol.Bの含有量は、以下の手順で測定する。まず、無方向性電磁鋼板または熱延鋼板から試験片を切り出し、10%アセチルアセトン-1%テトラメチルアンモニウムクロライド/メタノールにて、20mA/cmの電流密度で約0.4g電解する。その電解に用いた溶液を孔径0.2μmのフィルターでろ過し、フィルター上に捕集した抽出残渣について、ICP発光分光分析法を用いることで、抽出残渣中のB含有量を測定する。そして、鋼中のB含有量から抽出残渣中のB含有量を差し引いた値を、sol.Bの含有量とする。
 Sn:0.50%以下
 本発明において、Snは必須ではないため、その含有量の下限値は0%である。合金コスト削減の観点からは、Sn含有量は極力低減されることが好ましい。ただし、Snは磁束密度の向上効果を有する。これに加え、Snは、焼鈍中における鋼板表面の窒化および酸化の抑制にも効果がある。また、sol.Al:0.010~0.040%を含有する場合においては、Snは特に窒化されやすい。そのため、必要に応じてSnを含有させても構わない。具体的には、Sn含有量は0.01%以上、0.02%以上、または0.05%以上であるのが好ましい。一方、Sn含有量が多すぎてもその効果が飽和するので、Sn含有量を0.40%以下、0.30%以下、0.20%以下、0.10%以下、0.09%以下、または0.08%以下としてもよい。
 2.析出物
 AlNを構成するN(以下「NAlN」と記載する)の含有量は、結晶粒成長に影響しない上限として、0.0005%以下とする。すなわち、NAlNの含有量は下記(iv)式を満足する必要がある。
 NAlN≦0.0005  ・・・(iv)
 NAlNの含有量は0.0004%以下、または0.0003%以下であるのが好ましい。なお、NAlNの含有量は可能な限り低減することが好ましいため、その含有量の下限値0%である。一方、NAlNの含有量を0.00005%以上、0.00010%以上、または0.00015%以上と規定してもよい。
 本発明において、NAlNの含有量は、以下の手順で測定する。まず、無方向性電磁鋼板または熱延鋼板から試験片を切り出し、10%アセチルアセトン-1%テトラメチルアンモニウムクロライド/メタノールにて、20mA/cmの電流密度で約0.4g電解する。その電解に用いた溶液を孔径0.2μmのフィルターでろ過し、フィルター上に捕集した抽出残渣について、ICP発光分光分析法を用いることで、抽出残渣中のAl含有量を測定する。そして、抽出残渣中のAlは全てAlNとして存在していると考えられるため、抽出残渣中のAl含有量に14/27をかけることで抽出残渣中のN含有量を求め、NAlNの含有量とする。
 なお、上述のように、本発明では、析出物の状態が非常に重要であるが、析出物状態は特に規定されない。これは、析出物が非常に微細であるので、その状態を規定することが技術的に困難であることによる。また、析出物を構成するNAlNの量などを上述の範囲内とすることにより、析出物が良好に制御され無方向性電磁鋼板の磁気特性が向上することが確認されている。
 3.結晶粒径
 本実施形態に係る無方向性電磁鋼板の平均結晶粒径は特に規定されない。無方向性電磁鋼板は、上述のとおり、機械加工および歪取焼鈍を経てから使用されるため、歪取焼鈍の条件に応じて平均結晶粒径が変化する。上述の使用実態を考慮すると、歪取焼鈍における粒成長性が良好である限り、無方向性電磁鋼板の段階で平均結晶粒径を規定することは必須ではない。一方、平均結晶粒径は打ち抜き加工性の向上の観点からは重要な因子である。打ち抜き加工に供される無方向性電磁鋼板では、平均結晶粒径が30μm以下であると打ち抜き加工性が向上する。そのため、仕上焼鈍後の無方向性電磁鋼板の平均結晶粒径は30μm以下としてもよい。平均結晶粒径を30μm以下にするための手段としては、公知の技術を適宜用いることができる。
 一般に、無方向性電磁鋼板は、出荷後に機械加工および歪取焼鈍に供される。この歪取焼鈍後の平均結晶粒径が50μm以上である場合、鉄損特性が極めて向上する。本実施形態に係る無方向性電磁鋼板は化学組成および酸化物の状態が好ましく制御されているので、750℃で2時間保持する条件で歪取焼鈍を行った後の平均結晶粒径は50μm以上となる。なお、実際の製品において、歪取焼鈍条件は上記の条件に限定されず、設備制約および結晶粒成長促進の両面を考慮して、焼鈍温度と時間とを適宜変更してもよい。
 無方向性電磁鋼板の平均結晶粒径は以下の方法により求めることができる。無方向性電磁鋼板のL断面(圧延方向に平行な断面)を研磨およびエッチングし、光学顕微鏡で観察する。観察倍率は100倍とし、観察視野の面積は0.5mmとし、観察箇所数は3箇所とする。これら光学顕微鏡写真に対して、JIS G 0551:2013「鋼-結晶粒度の顕微鏡試験方法」を適用することによって、無方向性電磁鋼板の平均結晶粒径を求める。
 4.製造方法
 本実施形態に係る無方向性電磁鋼板の製造方法は、製鋼工程、熱延工程、酸洗工程、冷延工程および仕上焼鈍工程を備える。
 (a)製鋼工程
 製鋼工程において、適宜精錬および鋳造を行うことで、上述した化学組成を有するスラブを製造する。製鋼工程において製造条件は特に限定されず、公知の条件を適宜採用することができる。
 (b)熱延工程
 熱延工程において、連続鋳造工程によって得られたスラブを加熱した後に熱間圧延を施し、熱延鋼板とする。本工程によって、本発明の一実施形態に係る熱延鋼板が製造される。なお、熱延工程以降の工程が化学組成および酸化物の状態に実質的な影響を与えることはない。そのため、上述のように、熱延鋼板の化学組成および析出物の状態は、本実施形態に係る無方向性電磁鋼板と共通している。
 熱延工程は、析出物制御を行い、磁気特性を確保するために重要な工程である。熱延工程においては、熱間圧延を施す前に、スラブの温度が1000~1050℃となる範囲内で30分以上保持する。続いて、900~1000℃の温度範囲内での累積圧下率が70%以上となるように熱間圧延を行う。そして、熱間圧延を施した後に、熱延鋼板の温度が700℃以上780℃未満となる範囲内で30分以上保持する。
 上述のように、B含有量がN含有量に対して過剰となるか不足するかを、製鋼工程において判断することは技術上極めて困難である。しかし、熱延工程において上記の製造条件を満足することによって、B含有量がN含有量に対して過剰となる場合、および不足する場合のいずれにも対応することが可能である。それぞれの場合について、以下に詳しく説明する。
 まず、B含有量がN含有量に対して過剰な場合、Bを用いてNを固定することによってAlN量を抑制することができるため、NAlN含有量を0.0005%以下とすることが可能である。一方、余剰のBが生じることにより、sol.B含有量が0.0005%を超えるおそれがある。そこで、BN以外のB析出物を生成させて、固溶B含有量を抑制する必要がある。Bは炭化物を生成するものの、B炭化物の析出温度は比較的低い。そのため、900~1000℃の温度範囲内での累積圧下率を70%以上とすることでB炭化物の析出を促進することが可能となる。
 また、上記の条件で熱間圧延を行うことでB炭化物は析出促進されるものの、一部のBは固溶状態のままで熱延後の鋼板中に残存する可能性がある。しかしながら、熱間圧延を施した後に、熱延鋼板の温度が700℃以上780℃未満となる範囲内で30分以上保持することで、この固溶Bを析出させることが可能となる。B炭化物は、保持温度が700℃未満であっても析出せず、780℃以上であると溶解してしまうためである。
 次に、B含有量がN含有量に対して不足する場合、sol.Bを0.0005%以下とすることができるが、AlNの生成を抑制する必要がある。本発明では、Ti、Nb、V、およびZrの窒化物を生成させることで、結晶粒成長に有害なAlNの生成を抑制する。これらの窒化物は比較的微細であることから、本工程で十分に成長させておく必要がある。そのため、熱間圧延を施す前に、スラブの温度が1000~1050℃となる範囲内で30分以上保持するとともに、熱間圧延を施した後に、熱延鋼板の温度が700℃以上780℃未満となる範囲内で30分以上保持する。これにより、Ti、Nb、V、およびZrを用いてNを固定し、AlN量を抑制することで、NAlN含有量を0.0005%以下とすることが可能となる。
 なお、熱延工程における圧下率については特に制限はないが、90%以上とすることが好ましい。また、得られる熱延鋼板の厚さについても特に制限はないが、1.0~4.0mmであるのが好ましく、2.0~3.0mmであるのがより好ましい。
 (c)酸洗工程
 酸洗工程において、熱延工程によって得られた熱延鋼板に対して、酸洗を施す。酸洗条件は特に限定されず、無方向性電磁鋼板の製造条件における通常の範囲内とすればよい。
 (d)冷延工程
 冷延工程において、酸洗後の熱延鋼板に対して、冷間圧延を施し、冷延鋼板とする。冷間圧延条件は特に限定されず、無方向性電磁鋼板の製造条件における通常の範囲内とすればよい。例えば、冷延工程における圧下率については、50~95%とするのが好ましく、75~85%とするのがより好ましい。
 (e)仕上焼鈍工程
 仕上焼鈍工程において、冷延工程によって得られた冷延鋼板に対して仕上焼鈍を施す。仕上焼鈍工程において、条件は特に限定されず、公知の条件を適宜用いることができる。ただし、冷延鋼板の加熱速度を増加させることによって、磁束密度を高めることができるため好ましい。したがって、仕上焼鈍工程における加熱速度を20℃/s以上とすることが好ましい。ここで、加熱速度とは、冷延鋼板の加熱開始温度と均熱温度との差を、加熱開始温度から均熱温度に至るまでの時間で割った値、すなわち加熱開始温度から均熱温度までの平均加熱速度である。
 また、仕上焼鈍工程において、最高到達温度(冷延鋼板の温度)が850℃以上となると、結晶粒径が大きくなり過ぎ、歪取焼鈍前に施される打ち抜き加工で不良が生じる可能性がある。これを回避するため、最高到達温度は850℃未満とすることが好ましい。一方、最高到達温度が800℃に満たないと、再結晶が不十分となって打ち抜き加工で不良が生じる可能性がある。これを回避するため、最高到達温度を800℃以上とすることが好ましい。また、結晶粒径が大きくなり過ぎ、歪取焼鈍前に施される打ち抜き加工で不良が生じることを回避するため、冷延鋼板の温度が800℃以上となる時間を15秒以下とすることが好ましい。
 以上の工程を経て製造される無方向性電磁鋼板の厚さについて、特に制限はないが、0.1~1.0mmであるのが好ましく、0.2~0.7mmであるのがより好ましい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 製鋼工程、熱延工程、酸洗工程、冷延工程および仕上焼鈍工程を順に行うことにより、無方向性電磁鋼板を作製した。無方向性電磁鋼板の化学組成を表1に示し、これらの製造条件を表2に示す。なお、各鋼板について、同一の条件で5回製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた無方向性電磁鋼板について、以下の方法により、sol.BおよびNAlNの含有量を測定した。
 まず、無方向性電磁鋼板から試験片を切り出し、10%アセチルアセトン-1%テトラメチルアンモニウムクロライド/メタノールにて、20mA/cmの電流密度で約0.4g電解した。その電解に用いた溶液を孔径0.2μmのフィルターでろ過し、フィルター上に捕集した抽出残渣について、ICP発光分光分析法を用いることで、抽出残渣中のB含有量を測定した。そして、鋼中のB含有量から抽出残渣中のB含有量を差し引いた値を、sol.Bの含有量とした。
 同様に、無方向性電磁鋼板から試験片を切り出し、10%アセチルアセトン-1%テトラメチルアンモニウムクロライド/メタノールにて、20mA/cmの電流密度で約0.4g電解した。その電解に用いた溶液を孔径0.2μmのフィルターでろ過し、フィルター上に捕集した抽出残渣について、ICP発光分光分析法を用いることで、抽出残渣中のAl含有量を測定した。そして、抽出残渣中のAl含有量に14/27をかけることで抽出残渣中のN含有量を求め、NAlNの含有量とした。
 sol.BおよびNAlNの含有量については、5つの鋼板から得られた測定値を平均し、それぞれの測定結果とした。
 続いて、得られた無方向性電磁鋼板に対して、750℃で2時間保持する歪取焼鈍を実施した。歪取焼鈍後の無方向性電磁鋼板について、以下の特性評価を実施した。
 (A)歪取焼鈍後の鉄損
 上述の歪取焼鈍後の鋼板の鉄損(W15/50)を、JIS C 2552:2014「無方向性電磁鋼帯」に準拠して測定した。歪取焼鈍後の鋼板のW15/50が5.0W/kg以下である無方向性電磁鋼板を、歪取焼鈍後の鉄損特性に優れたものと判断した。
 (B)歪取焼鈍後の磁束密度
 上述の歪取焼鈍後の鋼板の磁束密度(B50)を、JIS C 2552:2014「無方向性電磁鋼帯」に準拠して測定した。歪取焼鈍後の鋼板のB50が1.70T以上である無方向性電磁鋼板を、歪取焼鈍後の磁束密度に優れたものと判断した。
 (C)歪取焼鈍における粒成長性
 上述の歪取焼鈍後の鋼板の平均結晶粒径を、上述の無方向性電磁鋼板の平均結晶粒径の測定方法と同じ方法を用いて測定した。歪取焼鈍後の平均結晶粒径が50μm以上である無方向性電磁鋼板は、歪取焼鈍における粒成長性が良好であると判断された。
 (D)打ち抜き加工性
 歪取焼鈍を行う前の、仕上焼鈍後の無方向性電磁鋼板を用いて打ち抜き加工性の評価を行った。具体的には、板厚の7%以上12%以下のクリアランスで、鋼板を打ち抜いた。打ち抜き部におけるカエリ高さを測定した。カエリ高さが30μm以下となった試料に関しては、打ち抜き加工性を「良好」(記号A)と判定した。カエリ高さが30μm超100μm以下となった試料に関しては、打ち抜き加工性を「可」(記号B)と判定した。
 上記評価結果を表3に示す。なお、特性評価は、5つの鋼板を用いて実施した。また、表3において、鉄損に関しては平均値および最大値を示し、磁束密度に関しては平均値および最小値を示している。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、本発明の規定を満足する試験No.1~8、29および30では、優れた磁気特性を安定的に発揮することが分かる。一方、化学組成が本発明の規定を満足しない試験No.9~18では、鉄損および磁気特性の少なくともいずれかが劣化する結果となった。
 また、試験No.19~24では、B含有量がN含有量に対して不足する鋼を用いており、製造条件が不適切であったため、NAlN含有量が上限を超え、その結果、鉄損が劣化する結果となった。さらに、試験No.25~28では、B含有量がN含有量に対して過剰な鋼を用いており、製造条件が不適切であったため、固溶B含有量が上限を超え、その結果、磁束密度が劣化する結果となった。
 本発明によれば、歪取焼鈍後の結晶粒成長が良好であり、かつ、歪取焼鈍後の鉄損と磁束密度とが良好な無方向性電磁鋼板を低コストで安定的に提供できる。そのため、本発明は極めて高い産業上の利用可能性を有する。

Claims (7)

  1.  化学組成が、質量%で、
     C:0.0010~0.0050%、
     Si:1.50%以下、
     Mn:0.10~1.50%、
     sol.Al:0.010~0.040%、
     Ti:0.0030%以下、
     Nb:0.0030%以下、
     V:0.0030%以下、
     Zr:0.0030%以下、
     N:0.0030%以下、
     S:0.0040%以下、
     B:0.0045%以下、
     残部:Feおよび不純物であり、
     下記(i)~(iv)式を満足する、
     無方向性電磁鋼板。
     0.0020≦Ti+Nb+V+Zr≦0.0120  ・・・(i)
     0.5≦B/N≦1.5  ・・・(ii)
     sol.B≦0.0005  ・・・(iii)
     NAlN≦0.0005  ・・・(iv)
     但し、上記(i)および(ii)式中の元素記号は各元素の含有量(質量%)を表し、上記(iii)式中のsol.Bは固溶B量(質量%)であり、上記(iv)式中のNAlNはAlNとして存在するN量(質量%)である。
  2.  前記化学組成が、前記Feの一部に代えて、質量%で、
     Sn:0.50%以下、
     を含有する、
     請求項1に記載の無方向性電磁鋼板。
  3.  平均結晶粒径が30μm以下であり、かつ、
     750℃で2時間保持する条件で歪取焼鈍を行った後の平均結晶粒径が50μm以上である、
     請求項1または請求項2に記載の無方向性電磁鋼板。
  4.  請求項1から請求項3までのいずれか一項に記載の無方向性電磁鋼板を製造する方法であって、
     請求項1または請求項2に記載の化学組成を有するスラブを製造する製鋼工程と、
     得られた前記スラブを加熱した後に熱間圧延を施し、熱延鋼板とする熱延工程と、
     前記熱延鋼板に対して、酸洗を施す酸洗工程と、
     酸洗後の前記熱延鋼板に対して冷間圧延を施し、冷延鋼板とする冷延工程と、
     前記冷延鋼板に対して仕上焼鈍を施す仕上焼鈍工程と、を備え、
     前記熱延工程において、
     熱間圧延を施す前に、前記スラブの温度が1000~1050℃となる範囲内で30分以上保持し、
     900~1000℃の温度範囲内での累積圧下率を70%以上とし、
     熱間圧延を施した後に、前記熱延鋼板の温度が700℃以上780℃未満となる範囲内で30分以上保持する、
     無方向性電磁鋼板の製造方法。
  5.  前記仕上焼鈍工程において、20℃/s以上の平均加熱速度で800℃以上850℃未満の最高到達温度まで加熱し、かつ前記冷延鋼板の温度が800℃以上となる時間を15秒以下とする、
     請求項4に記載の無方向性電磁鋼板の製造方法。
  6.  請求項1から請求項3までのいずれか一項に記載の無方向性電磁鋼板の素材となる熱延鋼板であって、
     化学組成が、質量%で、
     C:0.0010~0.0050%、
     Si:1.50%以下、
     Mn:0.10~1.50%、
     sol.Al:0.010~0.040%、
     Ti:0.0030%以下、
     Nb:0.0030%以下、
     V:0.0030%以下、
     Zr:0.0030%以下、
     N:0.0030%以下、
     S:0.0040%以下、
     B:0.0045%以下、
     残部:Feおよび不純物であり、
     下記(i)~(iv)式を満足する、
     熱延鋼板。
     0.0020≦Ti+Nb+V+Zr≦0.0120  ・・・(i)
     0.5≦B/N≦1.5  ・・・(ii)
     sol.B≦0.0005  ・・・(iii)
     NAlN≦0.0005  ・・・(iv)
     但し、上記(i)および(ii)式中の元素記号は各元素の含有量(質量%)を表し、上記(iii)式中のsol.Bは固溶B量(質量%)であり、上記(iv)式中のNAlNはAlNとして存在するN量(質量%)である。
  7.  前記化学組成が、前記Feの一部に代えて、質量%で、
     Sn:0.50%以下、
     を含有する、
     請求項6に記載の熱延鋼板。
PCT/JP2020/044203 2020-11-27 2020-11-27 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板 WO2022113264A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/033,123 US20230392227A1 (en) 2020-11-27 2020-11-27 Non-oriented electrical steel sheet, method for producing same, and hot-rolled steel sheet
KR1020237021158A KR20230110338A (ko) 2020-11-27 2020-11-27 무방향성 전자 강판 및 그 제조 방법, 그리고 열연 강판
JP2022564928A JPWO2022113264A1 (ja) 2020-11-27 2020-11-27
EP20963528.3A EP4253575A4 (en) 2020-11-27 2020-11-27 NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, METHOD FOR PRODUCING THE SAME AND HOT ROLLED STEEL SHEET
PCT/JP2020/044203 WO2022113264A1 (ja) 2020-11-27 2020-11-27 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板
CN202080107537.1A CN116547394A (zh) 2020-11-27 2020-11-27 无取向性电磁钢板及其制造方法、以及热轧钢板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044203 WO2022113264A1 (ja) 2020-11-27 2020-11-27 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板

Publications (1)

Publication Number Publication Date
WO2022113264A1 true WO2022113264A1 (ja) 2022-06-02

Family

ID=81755425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044203 WO2022113264A1 (ja) 2020-11-27 2020-11-27 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板

Country Status (6)

Country Link
US (1) US20230392227A1 (ja)
EP (1) EP4253575A4 (ja)
JP (1) JPWO2022113264A1 (ja)
KR (1) KR20230110338A (ja)
CN (1) CN116547394A (ja)
WO (1) WO2022113264A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163720A (en) 1978-06-16 1979-12-26 Nippon Steel Corp Production of electric iron plate with excellent magnetic property
JPS5837122A (ja) * 1981-08-29 1983-03-04 Nippon Steel Corp 低級電磁鋼板の製造方法
JPS58164724A (ja) * 1982-03-24 1983-09-29 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
JPS59157259A (ja) * 1983-01-25 1984-09-06 Nippon Steel Corp 鉄損が低くかつ磁束密度がすぐれた無方向性電磁鋼板およびその製造法
JPS63195217A (ja) 1987-02-10 1988-08-12 Nippon Steel Corp 磁性焼鈍後の鉄損の少ない無方向性電磁鋼板
JPH03104844A (ja) 1989-09-18 1991-05-01 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板およびその製造方法
JPH03219020A (ja) * 1990-01-23 1991-09-26 Nkk Corp 無方向性電磁鋼板の製造方法
JP2000104144A (ja) * 1998-07-29 2000-04-11 Kawasaki Steel Corp L方向及びc方向の磁気特性に優れた電磁鋼板及びその製造方法
JP2004002954A (ja) 2002-04-05 2004-01-08 Nippon Steel Corp 鉄損および磁束密度が極めて優れた無方向性電磁鋼板およびその製造方法
WO2005100627A1 (ja) 2004-04-16 2005-10-27 Nippon Steel Corporation 打抜き加工性と歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板とその製造方法
CN101392351A (zh) * 2007-09-22 2009-03-25 鞍钢股份有限公司 高效高强电机钢及其生产方法
JP2013044010A (ja) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp 無方向性電磁鋼板およびその製造方法
JP2013104080A (ja) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal Corp 無方向性電磁鋼板およびその製造方法
CN109825760A (zh) * 2018-12-28 2019-05-31 日照钢铁控股集团有限公司 一种含硼无取向电工钢及其无头轧制的生产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW422885B (en) * 1996-12-09 2001-02-21 Po Hang Iron & Steel Non-oriented magnetic steel plate with excellent electro-magnetic properties and process for making the same
CN108004463A (zh) * 2016-10-28 2018-05-08 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢及其制造方法
KR101903008B1 (ko) * 2016-12-20 2018-10-01 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163720A (en) 1978-06-16 1979-12-26 Nippon Steel Corp Production of electric iron plate with excellent magnetic property
JPS5837122A (ja) * 1981-08-29 1983-03-04 Nippon Steel Corp 低級電磁鋼板の製造方法
JPS58164724A (ja) * 1982-03-24 1983-09-29 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
JPS59157259A (ja) * 1983-01-25 1984-09-06 Nippon Steel Corp 鉄損が低くかつ磁束密度がすぐれた無方向性電磁鋼板およびその製造法
JPS63195217A (ja) 1987-02-10 1988-08-12 Nippon Steel Corp 磁性焼鈍後の鉄損の少ない無方向性電磁鋼板
JPH03104844A (ja) 1989-09-18 1991-05-01 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板およびその製造方法
JPH03219020A (ja) * 1990-01-23 1991-09-26 Nkk Corp 無方向性電磁鋼板の製造方法
JP2000104144A (ja) * 1998-07-29 2000-04-11 Kawasaki Steel Corp L方向及びc方向の磁気特性に優れた電磁鋼板及びその製造方法
JP2004002954A (ja) 2002-04-05 2004-01-08 Nippon Steel Corp 鉄損および磁束密度が極めて優れた無方向性電磁鋼板およびその製造方法
WO2005100627A1 (ja) 2004-04-16 2005-10-27 Nippon Steel Corporation 打抜き加工性と歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板とその製造方法
CN101392351A (zh) * 2007-09-22 2009-03-25 鞍钢股份有限公司 高效高强电机钢及其生产方法
JP2013044010A (ja) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp 無方向性電磁鋼板およびその製造方法
JP2013104080A (ja) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal Corp 無方向性電磁鋼板およびその製造方法
CN109825760A (zh) * 2018-12-28 2019-05-31 日照钢铁控股集团有限公司 一种含硼无取向电工钢及其无头轧制的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4253575A4

Also Published As

Publication number Publication date
CN116547394A (zh) 2023-08-04
US20230392227A1 (en) 2023-12-07
EP4253575A4 (en) 2023-12-20
JPWO2022113264A1 (ja) 2022-06-02
EP4253575A1 (en) 2023-10-04
KR20230110338A (ko) 2023-07-21

Similar Documents

Publication Publication Date Title
JP4880467B2 (ja) 無方向性電磁鋼板の改善された製造方法
KR100567239B1 (ko) 무방향성 전자강판, 회전기용 부재 및 회전기
JP2008050686A (ja) 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
JP7054074B2 (ja) 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
JP4860783B2 (ja) 無方向性電磁鋼板
WO2013121924A1 (ja) 無方向性電磁鋼板
KR20210082516A (ko) 무방향성 전기 강판 및 그 제조 방법
JP2016003371A (ja) 全周の磁気特性が良好な無方向性電磁鋼板
JP4414727B2 (ja) 磁気特性、耐変形性の優れた電磁鋼板とその製造方法
JPH06108149A (ja) 需要家焼鈍後の鉄損が極めて優れた無方向性珪素鋼板の製造方法
JP2005200713A (ja) コイル内の磁気特性の均一性に優れ製造歩留まりが高い無方向性電磁鋼板およびその製造方法
JP2020169369A (ja) 無方向性電磁鋼板
JP2024041844A (ja) 無方向性電磁鋼板の製造方法
JP4710458B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP2005336503A (ja) 鉄損に優れた無方向性電磁鋼板およびその製造方法
JPWO2005100627A1 (ja) 打抜き加工性と歪取焼鈍後の磁気特性に優れた無方向性電磁銅板とその製造方法
WO2022113264A1 (ja) 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板
JP2007162097A (ja) 回転子用無方向性電磁鋼板の製造方法
TWI751812B (zh) 無方向性電磁鋼板及其製造方法、以及熱軋鋼板
CN112840041B (zh) 用于制造具有中间厚度的no-电工带的方法
JP2005002401A (ja) 無方向性電磁鋼板の製造方法
CN113166871A (zh) 无取向电工钢板及其制造方法
JP2020143309A (ja) フェライト系ステンレス鋼板
TWI757156B (zh) 無方向性電磁鋼板用熱軋鋼板及其製造方法
WO2022219742A1 (ja) 無方向性電磁鋼板用熱延鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564928

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18033123

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007901

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202080107537.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 112023007901

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230426

ENP Entry into the national phase

Ref document number: 20237021158

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020963528

Country of ref document: EP

Effective date: 20230627