WO2022110776A1 - 定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序 - Google Patents

定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序 Download PDF

Info

Publication number
WO2022110776A1
WO2022110776A1 PCT/CN2021/101021 CN2021101021W WO2022110776A1 WO 2022110776 A1 WO2022110776 A1 WO 2022110776A1 CN 2021101021 W CN2021101021 W CN 2021101021W WO 2022110776 A1 WO2022110776 A1 WO 2022110776A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
kth
positioning
positioning result
information
Prior art date
Application number
PCT/CN2021/101021
Other languages
English (en)
French (fr)
Inventor
谢卫健
钱权浩
王楠
章国锋
鲍虎军
Original Assignee
浙江商汤科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江商汤科技开发有限公司 filed Critical 浙江商汤科技开发有限公司
Priority to JP2022550162A priority Critical patent/JP7487321B2/ja
Priority to KR1020237016682A priority patent/KR20230086782A/ko
Publication of WO2022110776A1 publication Critical patent/WO2022110776A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3602Input other than that of destination using image analysis, e.g. detection of road signs, lanes, buildings, real preceding vehicles using a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3664Details of the user input interface, e.g. buttons, knobs or sliders, including those provided on a touch screen; remote controllers; input using gestures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/367Details, e.g. road map scale, orientation, zooming, illumination, level of detail, scrolling of road map or positioning of current position marker
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors

Definitions

  • the present disclosure relates to, but is not limited to, the field of computer technology, and in particular, relates to a positioning method and apparatus, electronic equipment, storage medium, computer program product, and computer program.
  • terminal positioning is realized by means of visual positioning, which may cause jitter, drift, etc. in some scenarios, resulting in poor positioning effect.
  • the embodiment of the present disclosure proposes a positioning technical solution, which can be implemented as follows:
  • An embodiment of the present disclosure provides a positioning method, which is applied to a first electronic device, and the method includes:
  • the kth first positioning request includes the kth frame of the environment image of the environment where the first electronic device is located, where k is an integer greater than 1;
  • the kth second positioning result is modified according to the kth first positioning result, and the kth second positioning result of the first electronic device is determined.
  • k third positioning results wherein the kth second positioning result is obtained by the first electronic device performing local positioning on the kth frame of the environment image; according to the kth third positioning result, The display interface of the first electronic device is displayed.
  • An embodiment of the present disclosure provides a positioning method, which is applied to a second electronic device, and the method includes:
  • the electronic device performs visual positioning to obtain the kth first positioning result of the first electronic device; and sends the kth first positioning result to the first electronic device, so that the first electronic device
  • the kth first positioning result is corrected for the positioning result, wherein the kth first positioning result includes the kth first pose information and/or the feature point matching information of the kth frame, and the kth frame
  • the feature point matching information includes matching information between the two-dimensional feature points in the k-th frame of the environment image and the three-dimensional feature points in the point cloud map.
  • An embodiment of the present disclosure provides a positioning apparatus, including: applied to a first electronic device, and the apparatus includes:
  • the first request sending part is configured to send the kth first positioning request to the second electronic device, where the kth first positioning request includes the kth frame of the environment image of the environment where the first electronic device is located, and k is an integer greater than 1;
  • the result correction part is configured to correct the kth second positioning result according to the kth first positioning result in the case of receiving the kth first positioning result sent by the second electronic device, determining the kth third positioning result of the first electronic device, wherein the kth second positioning result is obtained by the first electronic device performing local positioning on the kth frame of the environment image;
  • the first display part is configured to display the display interface of the first electronic device according to the kth third positioning result.
  • An embodiment of the present disclosure provides a positioning apparatus, which is applied to a second electronic device, and the apparatus includes:
  • the first positioning part is configured to, in the case of receiving the kth first positioning request from the first electronic device, according to the preset point cloud map and the kth frame environment in the kth first positioning request image, perform visual positioning on the first electronic device, and obtain the kth first positioning result of the first electronic device;
  • a result sending part configured to send the kth first positioning result to the first electronic device, so that the first electronic device performs a positioning result correction according to the kth first positioning result, wherein the The kth first positioning result includes the kth first pose information and/or the feature point matching information of the kth frame, and the feature point matching information of the kth frame includes the second frame in the kth frame environment image. Matching information between the three-dimensional feature points and the three-dimensional feature points in the point cloud map.
  • An embodiment of the present disclosure provides an electronic device, including: a processor; a memory configured to store instructions executable by the processor; wherein the processor is configured to invoke the instructions stored in the memory to execute the above method.
  • Embodiments of the present disclosure provide a computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the foregoing method is implemented.
  • Embodiments of the present disclosure provide a computer program, including computer-readable codes, and when the computer-readable codes are run on a device, a processor in the device executes instructions for implementing the above method.
  • Embodiments of the present disclosure also provide a computer program product for storing computer-readable instructions, which, when executed, cause a computer to execute the above method.
  • a positioning request including an environment image can be sent to the second electronic device; the local positioning result can be corrected according to the cloud positioning result returned by the second electronic device; and the corrected positioning result can be displayed, thereby Improve positioning accuracy and stability.
  • FIG. 1 is a schematic diagram of an implementation flowchart of a positioning method provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an implementation flow of a positioning method provided by an embodiment of the present disclosure.
  • FIG. 3 is an interactive schematic diagram of a positioning method provided by an embodiment of the present disclosure.
  • FIG. 4A is a schematic diagram of a processing procedure of a positioning method provided by an embodiment of the present disclosure.
  • FIG. 4B is a schematic diagram of a processing procedure of a positioning method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a positioning device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a positioning device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • SLAM simultaneous Localization And Mapping
  • the embodiments of the present disclosure provide a positioning method, which can be applied to indoor and outdoor scenarios such as large shopping malls, transportation hubs, hospitals, large exhibition halls, etc., to improve positioning accuracy and stability.
  • the positioning method can be implemented by the first electronic device and the second electronic device.
  • the first electronic device may include, for example, a terminal device
  • the second electronic device may include, for example, a cloud server.
  • FIG. 1 is a schematic diagram of an implementation flowchart of a positioning method according to an embodiment of the present disclosure. As shown in FIG. 1 , the positioning method includes:
  • step S11 send the kth first positioning request to the second electronic device, where the kth first positioning request includes the kth frame of the environment image of the environment where the first electronic device is located, where k is greater than 1 integer;
  • step S12 in the case of receiving the kth first positioning result sent by the second electronic device, modify the kth second positioning result according to the kth first positioning result, and determine the kth third positioning result of the first electronic device, wherein the kth second positioning result is obtained by the first electronic device performing local positioning on the kth frame of the environment image;
  • step S13 the display interface of the first electronic device is displayed according to the kth third positioning result.
  • the positioning method may be applied to a first electronic device, and the first electronic device may be a terminal device, such as user equipment (User Equipment, UE), mobile device, user terminal, terminal, cellular phone, cordless phone , Personal Digital Assistant (PDA) devices, handheld devices, computing devices, vehicle-mounted devices, wearable devices, etc., the method can be implemented by the processor calling the computer-readable instructions stored in the memory.
  • UE user equipment
  • PDA Personal Digital Assistant
  • relative errors may occur during the operation of the local SLAM system of the first electronic device, such as cumulative errors generated by the operation of the SLAM itself, jitter and drift in a weak texture scene.
  • the local SLAM system can be constrained by the positioning information in the cloud, so as to suppress the accumulated error at the back end of the SLAM system.
  • an environmental image of the environment in which he is located may be collected by a collection component (such as a camera) of the first electronic device, such as photographing the first electronic device.
  • a collection component such as a camera
  • the environment image may be one or more images, or may be a short video including multiple frames of images, which is not limited in this embodiment of the present disclosure.
  • the first electronic device may send the kth first positioning request to the second electronic device, in order to determine its position.
  • the kth first positioning request includes the kth frame of the environment image collected by the first electronic device.
  • the second electronic device may be, for example, a cloud server, which stores a point cloud map of the overall geographic area where the first electronic device is located (eg, an inner area of a shopping mall, a city area, etc.).
  • the second electronic device may extract feature information of the kth frame of the environment image in the kth first positioning request. For example, feature extraction may be performed on the kth frame of environment image through a pre-trained neural network to obtain feature information of the kth frame of the environment image.
  • the embodiments of the present disclosure do not limit the specific manner of feature extraction.
  • the second electronic device may match the feature information with the point cloud map, and determine a matching visual positioning result (which may be referred to as the kth first positioning results).
  • a matching visual positioning result which may be referred to as the kth first positioning results.
  • the embodiment of the present disclosure does not limit the specific manner of matching the feature information with the point cloud map.
  • the kth first positioning result includes pose information (which may be referred to as pose for short) and/or feature point matching information (which may be referred to as match for short) of the first electronic device.
  • the position and attitude information includes position information and attitude information, and the position information may include position coordinates of the first electronic device; and the attitude information may include the orientation, pitch angle, and the like of the first electronic device.
  • the feature point matching information may include matching information between the two-dimensional feature points in the kth frame of the environment image and the three-dimensional feature points in the point cloud map. For example, the N+1 2D feature points (x 0 , x 1 , x 2 , . . .
  • the feature point matching information includes the coordinates of 2D feature points (x 0 , x 1 , x 2 , ..., x N ), 3D feature points (X 0 , X 1 , X 2 , ..., X N ) coordinates and their matching relationship, where N is an integer greater than 0.
  • the second electronic device may send the k first positioning results to the first electronic device, so as to constrain the positioning results of the first electronic device.
  • the first electronic device in the case of receiving the kth first positioning result sent by the second electronic device, the first electronic device may, according to the kth first positioning result, determine the kth second positioning result.
  • the positioning result is corrected to determine the kth third positioning result of the first electronic device. That is, through the pose information and/or the feature point matching information in the kth first positioning result, the kth second positioning result local to the first electronic device is constrained to realize the kth second positioning result correction. , and the corrected positioning result (which may be called the kth third positioning result) is obtained.
  • the kth second positioning result is obtained by the first electronic device performing local positioning on the kth frame of the environment image, that is, performing visual positioning according to the kth frame of the environment image and the local map to obtain the local positioning result, that is, the kth frame a second positioning result, where the positioning result may include pose information.
  • the embodiment of the present disclosure does not limit the specific positioning manner.
  • the pose information in the k-th first positioning result, the pose information in the k-th local second positioning result, and the previous k-1 second positioning results and the The pose information of the three positioning results is established to establish a pose graph (Pose Graph) to constrain the local positioning results; the local positioning results can also be re-projected error constraints through the feature point matching information in the kth first positioning result. ; The local positioning results can also be constrained respectively through the pose information and feature point matching information in the kth first positioning result.
  • the embodiments of the present disclosure do not limit the specific constraint manner.
  • step S13 according to the kth third positioning result, the display interface of the screen of the first electronic device may be displayed. That is to say, the output result of the VIO (visual-inertial odometry, visual inertial odometry) module of the local SLAM system can be constrained by the kth third positioning result. According to the current application scenario of the first electronic device, the corresponding content to be displayed is rendered through the output result of the VIO module, and displayed on the display interface.
  • VIO visual-inertial odometry, visual inertial odometry
  • the navigation path can be determined according to the first positioning result and the destination position and displayed on the display interface, so as to realize the navigation function; Based on the positioning result, the position and posture of the virtual object to be displayed are determined, and displayed on the display interface, thereby realizing accurate and stable virtual object display.
  • the embodiments of the present disclosure do not limit the specific content displayed in the display interface.
  • a positioning request including an environmental image can be sent to the second electronic device; the local positioning result can be corrected according to the cloud positioning result returned by the second electronic device; and the corrected positioning result can be displayed, thereby Improve positioning accuracy and stability.
  • the kth first positioning result includes the kth first pose information
  • the kth second positioning result includes the kth second pose information
  • the kth second positioning result includes the kth second pose information.
  • the three positioning results include the kth third pose information
  • step S12 may include:
  • the kth first pose information and the kth second pose information determine the current pose deviation of the kth positioning
  • the overall pose deviation of the k positioning is determined
  • the k-th second positioning result is subjected to pose correction to determine the k-th third pose information.
  • a pose map can be established according to the pose information of the current positioning and the pose information of the historical positioning, and the local map (Map) can be constrained to realize the local pose. correction.
  • the pose graph (Pose Graph) is usually used to correct the accumulated error in the case of loop (Loop), so it can also be applied to correct the accumulated error when the positioning is successful.
  • the current pose deviation of the k-th positioning can be determined, that is, the deviation between the cloud pose and the local pose of this positioning, which can be expressed as
  • the overall pose deviation of k times of positioning is determined, that is, the overall deviation between the poses of multiple positioning;
  • the pose deviation and the overall pose deviation are established, and the pose graph is established, and the pose correction is realized through constraints.
  • the cloud pose is the pose information in the cloud positioning result returned by the second electronic device.
  • the step of determining the overall pose deviation of k times of positioning according to k pieces of second pose information and k pieces of third pose information of k times of positioning may include:
  • the first pose change information and the second pose change information determine the pose deviation from the ith frame of the environment image to the jth frame of the environment image;
  • the overall pose deviation of the k positioning is determined.
  • the i-th second pose can be determined
  • the first pose change information T ij between the information T i and the j th second pose information T j is used to represent the pose change of the local positioning result from the ith frame to the j th frame, wherein,
  • the second pose change information T′ ij between the i-th third pose information T′ i and the j-th third pose information T′ j can also be determined, which is used to indicate the difference between the i-th frame and the j-th frame.
  • the pose deviation of the frame environment image expressed as By summing up multiple pose deviations, the overall pose deviation of k times of positioning can be obtained, which is expressed as
  • the pose graph E 1 can be represented by the following formula (1):
  • the globally optimized T′ k can be obtained, that is, the kth third pose information can be obtained after the pose correction.
  • the current local pose can be corrected according to the current cloud pose and the previous historical pose, thereby reducing the cumulative error of the SLAM system and improving the accuracy and stability of the positioning.
  • the kth first positioning result includes feature point matching information of the kth frame
  • the feature point matching information of the kth frame includes the two-dimensional feature points in the kth frame of the environment image and the matching information between the three-dimensional feature points in the point cloud map of the second electronic device
  • the kth second positioning result is modified according to the kth first positioning result, and the kth third positioning result of the first electronic device is determined, including:
  • the kth second positioning result is modified to determine the kth third positioning result after modification.
  • reprojection error constraints can be performed in Local Bundle Adjustment (LBA) according to the feature point matching information to correct the current local pose, and also That is, the k-th second pose information T k .
  • LBA Local Bundle Adjustment
  • the reprojection error E 2 can be represented by the following formula (2):
  • represents the projection of the camera coordinate system to the image coordinate system
  • n is an integer and 0 ⁇ n ⁇ N.
  • the re-projection error can be constrained according to the feature point matching information, and the local pose can be corrected, thereby improving the accuracy and stability of the positioning.
  • the kth first positioning result further includes feature point matching information of the kth frame
  • the feature point matching information of the kth frame includes the two-dimensional feature points in the kth frame of the environment image and the matching information between the three-dimensional feature points in the point cloud map of the second electronic device
  • the kth second positioning result is corrected according to the kth first positioning result, and the kth third positioning result of the first electronic device is determined, further comprising:
  • the kth third pose information is modified, and the corrected kth third positioning result is determined.
  • a pose map can be established based on the pose information of the current positioning and the pose information of historical positioning to constrain the local map. ); and then according to the feature point matching information, the re-projection error constraint is carried out to further correct the pose.
  • the reprojection error constraint may be performed on the kth third pose information T′ k by the following formula (3):
  • represents the projection of the camera coordinate system to the image coordinate system
  • n is an integer and 0 ⁇ n ⁇ N.
  • the positioning results can be constrained respectively to correct the local pose, thereby further improving the accuracy and stability of the positioning.
  • the method further includes:
  • the a-th first positioning request includes the a-th frame environment image of the environment where the first electronic device is located, where a is an integer and a ⁇ 1;
  • the a-th first positioning result In the case of receiving the a-th first positioning result sent by the second electronic device, according to the a-th first positioning result, perform the simultaneous positioning and map construction SLAM system in the first electronic device. Initialize, determine an initial positioning result of the first electronic device, where the a-th first positioning result includes the a-th first pose information and/or the feature point matching information of the a-th frame.
  • a SLAM system when initialized, it usually requires the first electronic device to move multiple times and collect multiple frames of environmental images to generate enough observations on points in the environmental images, so that the positioning results converge and the first electronic device is determined.
  • the initial positioning result of the SLAM system realizes the initialization of the SLAM system.
  • the first electronic device may use the first positioning result returned by the second electronic device to implement initialization.
  • the first electronic device may send the a-th first positioning request to the second electronic device, so as to determine its own position, where the a-th first positioning request includes the a-th frame environment collected by the first electronic device image, a is an integer greater than or equal to 1.
  • the second electronic device can extract the feature information of the a-th frame environment image in the a-th first positioning request, match it with the point cloud map, and determine the matching visual positioning result ( It can be referred to as the a-th first positioning result) and sent to the first electronic device.
  • the first positioning result includes pose information (pose) and/or feature point matching information (match) of the first electronic device.
  • the SLAM system for simultaneous positioning and map construction in the first electronic device may be performed according to the a-th first positioning result.
  • Initialize determine the initial positioning result of the first electronic device.
  • the first positioning result can be directly used as the initial positioning result of the first electronic device; in the case of a>1, the first electronic device can be determined according to the a-th first positioning result.
  • the local positioning result is corrected to determine the initial positioning result of the first electronic device.
  • the embodiments of the present disclosure do not limit the specific manner of correction.
  • the initialization speed of the SLAM system of the first electronic device can be improved, and the initialization can be completed even in a stationary state.
  • the positioning method according to the embodiment of the present disclosure can reduce the accumulated error of the SLAM system through the above-mentioned processing methods; and can also realize the tight coupling strategy between the high-precision map and the local SLAM system by requesting the high-precision map in the cloud, reducing the local The mapping requirements of SLAM further improve the accuracy of positioning.
  • the kth first positioning result sent by the second electronic device further includes a first area map, where the first area map includes a point cloud submap of a geographic area corresponding to the first electronic device.
  • the method further includes:
  • the display interface of the first electronic device is displayed.
  • the kth first positioning request sent by the first electronic device may also request a submap of the cloud.
  • the second electronic device can perform visual positioning to determine the kth first positioning result; according to the kth first positioning result, the second The electronic device may determine, from the point cloud map, a point cloud submap of a geographic area corresponding to the first electronic device.
  • the geographic area may be an area within a certain range near the location of the first electronic device, for example, a circular area with a distance from the location of the first electronic device within a preset distance (for example, 10 meters). The specific scope of this geographic area is not limited.
  • the second electronic device may package the point cloud submap of the geographic area into a SLAM map format, generate a first area map, and send it to the first electronic device.
  • the local matching through the sub-map in the cloud can improve the positioning accuracy and stability.
  • the kth first positioning result received by the first electronic device includes the first area map.
  • the first electronic device may perform projection matching on the kth third positioning result (Pose) with the point cloud submap in the first area map, that is, the three-dimensional point The Yunzi map is projected into a two-dimensional image, which is then matched with the kth third positioning result, thereby determining the positioning result of the first electronic device (which may be referred to as the fourth positioning result).
  • the fourth positioning result includes pose information of the first electronic device.
  • descriptors such as Oriented Fast and Rotated Brief (ORB) (a fast feature point extraction and description algorithm) are used in the SLAM system.
  • ORB Oriented Fast and Rotated Brief
  • the method of projection matching can reduce the search radius and reduce the probability of false matching.
  • the display interface of the first electronic device may be displayed according to the fourth positioning result. That is, the output result of the VIO module of the local SLAM system can be constrained by the fourth positioning result. According to the current application scenario of the first electronic device, the corresponding content to be displayed is rendered through the output result of the VIO module, and displayed on the display interface.
  • the accumulated error can be eliminated to a small range through the cloud pose Pose and feature point matching information Match, and then the positioning result Pose can be projected and matched with the point cloud sub-map, which can improve the matching success rate. And the accuracy rate to further improve the positioning accuracy.
  • the above processing method can improve the positioning accuracy, but requesting the high-precision sub-map of the cloud may consume more network resources. Therefore, according to whether the current frame has sufficient observations of the loaded high-precision submap (that is, whether the current frame is within the area of the loaded high-precision submap), or whether the network status meets the requirements, etc. to choose whether to request submaps.
  • the method before sending the kth first positioning request to the second electronic device in step S11, the method further includes:
  • the kth second positioning result of the first electronic device and the local second area map of the first electronic device it is determined whether the first electronic device is in the second area map, and the second The area map is the area map sent by the second electronic device;
  • the sending the kth first positioning request to the second electronic device includes:
  • the kth first positioning request is sent to the second electronic device.
  • a high-precision sub-map in the cloud may be directly requested to achieve precise positioning.
  • a high-precision sub-map in the cloud may have been received and stored locally. In this case, it can be first determined whether the first electronic device is within the range of a sub-map existing locally.
  • the k-th second localization result of the first electronic device and the area map (which may be referred to as a second area map) sent by the second electronic device it may be determined whether the location coordinates of the first electronic device are not It is within the coordinate range of the geographic area corresponding to the second area map. If the first electronic device is within the range of the second area map, it can be considered that the loaded high-precision submap has sufficient observations, and precise positioning can be performed directly through the point cloud submap in the local second area map.
  • the kth first positioning request may be sent in step S11 to request to obtain the pose information Pose and the feature point matching information Match of the cloud, In order to correct the pose and reduce the accumulated error.
  • the number of requests for high-precision sub-maps on the cloud can be reduced, the amount of transmitted data can be reduced, and positioning efficiency and positioning speed can be improved.
  • the method may further include:
  • the first electronic device In the case that the first electronic device is not located in the second area map, send a second positioning request to the second electronic device, where the second positioning request includes the location of the environment where the first electronic device is located The kth frame environment image;
  • the third area map includes a point cloud submap of the geographic area corresponding to the first electronic device
  • the display interface of the first electronic device is displayed.
  • the current second positioning result can be compared with the second Projection matching is performed on the point cloud submap in the area map to determine the positioning result of the first electronic device (which may be referred to as the fifth positioning result).
  • the fifth positioning result includes pose information of the first electronic device.
  • the display interface of the first electronic device may be displayed according to the fifth positioning result. That is, the output result of the VIO module of the local SLAM system can be constrained by the fifth positioning result. According to the current application scenario of the first electronic device, the corresponding content to be displayed is rendered through the output result of the VIO module, and displayed on the display interface.
  • the accuracy and stability of positioning can be improved through the loaded high-precision submap, and the search radius can be reduced through projection matching, thereby reducing the probability of false matching.
  • the method before sending the first positioning request to the second electronic device in step S11, the method further includes:
  • the network status includes network signal strength and/or information transmission speed
  • the sending the kth first positioning request to the second electronic device includes:
  • the network state does not meet the preset area map acquisition condition, send the kth first positioning request to the second electronic device, where the area map acquisition condition includes: the network signal strength is greater than or equal to signal strength threshold; and/or, the information transmission speed is greater than or equal to the speed threshold.
  • the network status of the first electronic device may be acquired, including network signal strength and/or information transmission speed, and the like. If the network signal strength is greater than or equal to the signal strength threshold, and/or the information transmission speed is greater than or equal to the speed threshold, it can be considered that the network status is good, and the delay in requesting the high-precision sub-map of the cloud is small, which satisfies the preset regional map. Conversely, if the network signal strength is less than the signal strength threshold, and/or the information transmission speed is less than the speed threshold, it can be considered that the network status is poor, and the delay in requesting the high-precision submap of the cloud is large, which does not meet the preset requirements. Area map acquisition conditions.
  • the kth first positioning request may be sent in step S11 to request to acquire the pose information Pose and feature points of the cloud Matching information Match in order to correct the pose and reduce the accumulated error.
  • step S13 may include:
  • the augmented reality AR navigation path is displayed in the display interface.
  • the navigation path of the first electronic device can be determined according to the pose information in the kth third positioning result and the geographic location of the destination set by the user.
  • the first electronic device can be determined according to the pose information in the fourth or fifth positioning result and the geographic location of the destination set by the user navigation path.
  • the embodiment of the present disclosure does not limit the specific manner of determining the navigation path.
  • the AR navigation path may be displayed in a live image or a panoramic image of the display interface of the first electronic device, so as to instruct the user to follow the AR navigation path.
  • the AR navigation path includes, for example, AR arrows along the navigation path. The embodiment of the present disclosure does not limit the specific form of the AR navigation path.
  • AR navigation in the real image can be realized, the intuitiveness of the navigation route can be improved, and the accuracy and stability of the AR navigation route display can be improved.
  • step S13 may include:
  • the kth third positioning result and the first object pose information of the AR object determine the second object pose information of the AR object in the display interface
  • the AR object is displayed in the display interface according to the pose information of the second object.
  • the AR object is displayed in the display according to the pose information in the kth third positioning result and the first object pose information of the AR object to be displayed.
  • the pose information of the second object in the interface do not limit the specific determination manner.
  • the AR can be determined according to the pose information in the fourth or fifth positioning result and the first object pose information of the AR object to be displayed Second object pose information of the object in the display interface.
  • the AR object may be displayed in the real-life image of the display interface.
  • the AR objects to be displayed may include AR markers, virtual objects, and the like, such as virtual landscapes, virtual animals, and the like.
  • the embodiments of the present disclosure do not limit the specific categories of AR objects.
  • the AR object display in the real image can be realized, and the accuracy and stability of the AR object display can be improved.
  • FIG. 2 is a schematic diagram of an implementation flow of a positioning method provided by an embodiment of the present disclosure. The method is applied to the second electronic device, as shown in FIG. 2 , the positioning method includes:
  • step S21 in the case of receiving the kth first positioning request from the first electronic device, according to the preset point cloud map and the kth frame of the environment image in the kth first positioning request, Perform visual positioning on the first electronic device to obtain the kth first positioning result of the first electronic device;
  • step S22 the kth first positioning result is sent to the first electronic device, so that the first electronic device corrects the positioning result according to the kth first positioning result,
  • the kth first positioning result includes the kth first pose information and/or the feature point matching information of the kth frame
  • the feature point matching information of the kth frame includes the kth frame environment image Matching information between the two-dimensional feature points in the point cloud map and the three-dimensional feature points in the point cloud map.
  • the first electronic device may send the k-th first positioning request to the second electronic device in order to determine own position.
  • the kth first positioning request includes the kth frame of the environment image collected by the first electronic device.
  • the second electronic device may extract feature information of the kth frame of the environment image in the kth first positioning request. For example, feature extraction may be performed on the kth frame of environment image through a pre-trained neural network to obtain feature information of the kth frame of the environment image.
  • the embodiments of the present disclosure do not limit the specific manner of feature extraction.
  • the second electronic device may match the feature information with the point cloud map, and determine a matching visual positioning result (which may be referred to as the kth first positioning results).
  • a matching visual positioning result which may be referred to as the kth first positioning results.
  • the embodiment of the present disclosure does not limit the specific manner of matching the feature information with the point cloud map.
  • the kth first positioning result includes pose information (which may be referred to as pose for short) and/or feature point matching information (which may be referred to as match for short) of the first electronic device.
  • the position and attitude information includes position information and attitude information, and the position information may include position coordinates of the first electronic device; and the attitude information may include the orientation, pitch angle, and the like of the first electronic device.
  • the feature point matching information may include matching information between the two-dimensional feature points in the kth frame of the environment image and the three-dimensional feature points in the point cloud map. For example, the N+1 2D feature points (x 0 , x 1 , x 2 , . . .
  • the feature point matching information includes the coordinates of 2D feature points (x 0 , x 1 , x 2 , ..., x N ), the coordinates of 3D feature points (X 0 , X 1 , X 2 , ..., X N ) coordinates and their matching relationship, where N is an integer greater than 0.
  • the second electronic device may send the k first positioning results to the first electronic device, so that the first electronic device performs a positioning result correction according to the kth first positioning result.
  • visual positioning can be performed according to the environment image in the positioning request, and the cloud positioning result can be obtained and sent to the first electronic device, so that the first electronic device can correct the positioning result, thereby improving the accuracy and stability of positioning.
  • the method further includes:
  • a point cloud submap of the geographic area corresponding to the first electronic device is determined from the point cloud map
  • the first electronic device Sending an area map to the first electronic device, so that the first electronic device can locate and display according to the area map, the area map including a point cloud submap of the geographic area corresponding to the first electronic device .
  • the first electronic device may send a second positioning request to request a high-precision sub-map in the cloud.
  • the second electronic device can extract the feature information of the environment image in the second positioning request, match the feature information with the point cloud map, and determine the matching visual positioning result (which may be referred to as sixth positioning result), where the sixth positioning result includes pose information and/or feature point matching information of the first electronic device.
  • the second electronic device may determine, from the point cloud map, a point cloud submap of a geographic area corresponding to the first electronic device according to the sixth positioning result.
  • the geographic area may be an area within a certain range near the location of the first electronic device, for example, a circular area within a preset distance (for example, 5 meters) from the location of the first electronic device. This is not limited.
  • the second electronic device may package the point cloud submap of the geographic area into a SLAM map format, generate an area map and send it to the first electronic device, so that the first electronic device can map the area according to the area Map for positioning and display.
  • the positioning result can be obtained by visual positioning according to the point cloud map and the environmental image in the second positioning request; the point cloud sub-map corresponding to the geographical area is determined according to the positioning result; the area map is generated and sent, so that the first electronic device It can be matched locally through the high-precision sub-map in the cloud, thereby improving the positioning accuracy and stability.
  • the step of determining a point cloud submap of a geographic area corresponding to the first electronic device from the point cloud map includes:
  • a point cloud submap of a geographic area corresponding to the first electronic device is determined from the point cloud map, where the geographic area includes a first geographic area where the sixth positioning result is located and a location where the predicted location is located Second Geographical Region.
  • the user may be in a state of continuous movement.
  • the second electronic device returns the map information of the first area within a certain range near the location of the first electronic device, The user may have stepped out of the range, so that the first electronic device cannot match the corresponding position and posture, resulting in the failure of positioning.
  • the second electronic device can predict the movement speed of the first electronic device and the response time required to return the map information of the first area.
  • the predicted moving speed of the first electronic device can be determined according to the time when the first electronic device sent the positioning request last time and the previous positioning result, and the time when the first electronic device sent the positioning request this time and the positioning result;
  • the predicted moving speed of the first electronic device may be determined according to multiple times and multiple positioning results when the first electronic device sends the positioning request within a period of time.
  • the embodiment of the present disclosure does not limit the specific determination manner of the predicted moving speed.
  • the second electronic device can determine the response time according to the time difference between the time when the first electronic device sent the request last time and the time when the second electronic device sent the area map last time; The multiple times when the first electronic device sends the request and the multiple times when the second electronic device sends the area map determine multiple time differences, and then determine the response time.
  • the embodiment of the present disclosure does not limit the specific manner of determining the response time.
  • t may be set to, for example, 5-10s, which is not limited in this embodiment of the present disclosure.
  • the geographic area corresponding to the first electronic device may be set to include a first geographic area within a certain range near the location in the sixth positioning result, and a second geographic area within a certain range near the predicted location.
  • the second electronic device can determine the point cloud sub-map of the geographic area from the point cloud map of the overall area, package it into a SLAM map format, generate an area map and send it to the first electronic device.
  • the second electronic device may also determine a panoramic submap of the geographic area from the panoramic map of the overall area, package it into a SLAM map format, and add it to the area map. This embodiment of the present disclosure does not limit this.
  • FIG. 3 is an interactive schematic diagram of a positioning method provided by an embodiment of the present disclosure.
  • the user can hold or wear the first electronic device 31 , and in the case of needing to determine the position of the user, an environmental image of the environment where he is located can be collected by the collecting component (not shown) of the first electronic device 31 , and send a positioning request to the second electronic device 32 through the wireless network.
  • the second electronic device 32 stores a point cloud map of the geographic area where the first electronic device is located (eg, the inner area of a shopping mall, a city area, etc.).
  • the second electronic device 32 may perform visual positioning according to the environment image and the point cloud map, and return the positioning result, including the pose information pose and/or the feature point matching information match.
  • the first electronic device 31 corrects the local positioning result according to the returned positioning result.
  • FIG. 4A is a schematic diagram of a processing procedure of a positioning method provided by an embodiment of the present disclosure.
  • a positioning request can be sent to the second electronic device to achieve positioning; when the positioning result returned by the second electronic device is received, the positioning result can be used (including pose information pose and/or feature point matching information match) to correct accumulated errors.
  • the positioning request may be sent again to obtain a new positioning result for correction, or the correction is directly performed again; if the correction is successful, it may be considered that the accumulated error has been eliminated to a smaller range.
  • the positioning result can be matched with the point cloud submap by projection.
  • a new positioning result or a new high-precision sub-map can be requested from the second electronic device to perform matching, or directly matched again; if the matching is successful, it can be considered that an accurate result has been obtained
  • the local SLAM system of the first electronic device can automatically realize location tracking, and perform corresponding processing according to the actual application scenario, such as AR navigation. In this way, the success rate and the correct rate of matching can be improved, and the positioning accuracy can be further improved.
  • FIG. 4B is a schematic diagram of a processing procedure of a positioning method provided by an embodiment of the present disclosure.
  • a high-precision point cloud sub-map can be requested from the second electronic device, and the positioning result or local positioning result returned by the second electronic device and the point cloud sub-map can be obtained from the second electronic device.
  • Map projection matching if the matching is successful, it can be considered that accurate positioning has been obtained, and the local SLAM system of the first electronic device can automatically realize position tracking, and perform corresponding processing according to the actual application scenario, such as AR navigation; if the matching fails , a new point cloud submap can be requested from the second electronic device for matching, or directly matched again. In this way, the success rate and the correct rate of matching can be improved, and the positioning accuracy can be further improved.
  • a positioning request including an environmental image can be sent to the second electronic device; the local positioning result is corrected according to the cloud positioning result returned by the second electronic device and the previous historical positioning result; The corrected positioning results are displayed, thereby reducing the cumulative error of the SLAM system and improving the accuracy and stability of the positioning.
  • a pose map can be established through the cloud pose of the current positioning and the pose of the historical positioning, and the local map Map can be constrained to realize the correction of the local pose; it can also be returned through the second electronic device.
  • Feature point matching information, re-projection error constraints are carried out in the local constraint adjustment LBA to achieve the correction of the local position; the combination of the two can also be used to achieve the correction of the local position.
  • the accumulated error of the SLAM back-end map Map can be suppressed, and the offset (Drift) from the VIO to the Map can be modified, so that the trajectory of the VIO is consistent with the Map.
  • the accumulated error can be eliminated to a small range through the pose and feature point matching information Match in the cloud, and then the positioning result Pose can be projected and matched with the point cloud submap, thereby improving the The matching success rate and correct rate further improve the positioning accuracy.
  • the positioning method of the embodiment of the present disclosure it is also possible to select whether to request a submap according to whether the current frame has sufficient observations of the loaded high-precision submap, or whether the network state meets the requirements, etc., thereby improving the requesting submap.
  • the efficiency of the system reduces the dependence of the system on sub-maps in application scenarios such as navigation.
  • Combining the strategy of eliminating accumulated errors through the cloud's pose pose and feature point matching information Match with the strategy of requesting high-precision sub-maps in the cloud a robust high-precision map tightly coupled SLAM system is constructed to improve positioning accuracy and performance.
  • the stability enables the SLAM system to maintain robust AR effects in various scenarios.
  • the positioning method according to the embodiment of the present disclosure can be applied to various application scenarios of augmented reality AR, such as AR cloud, AR navigation and other scenarios; and various application scenarios of Location Based Services (LBS).
  • augmented reality AR such as AR cloud, AR navigation and other scenarios
  • LBS Location Based Services
  • the effect of positioning, display and interaction In application scenarios such as AR navigation and AR display, it can reduce the relative error caused by the AR effect displayed in a local area, and reduce the jitter and drift of the AR effect in weak texture scenes.
  • embodiments of the present disclosure also provide positioning apparatuses, electronic devices, computer-readable storage media, computer programs, and computer program products, all of which can be used to implement any positioning method provided by the embodiments of the present disclosure, and corresponding technical solutions and descriptions and see the corresponding description in the Methods section.
  • FIG. 5 is a schematic structural diagram of a positioning device provided by an embodiment of the present disclosure. As shown in FIG. 5 , the device is applied to a first electronic device, including:
  • the first request sending part 51 is configured to send the kth first positioning request to the second electronic device, where the kth first positioning request includes the kth frame of the environment image of the environment where the first electronic device is located, k is an integer greater than 1;
  • the result correction part 52 is configured to correct the kth second positioning result according to the kth first positioning result in the case of receiving the kth first positioning result sent by the second electronic device , determining the kth third positioning result of the first electronic device, wherein the kth second positioning result is obtained by the first electronic device performing local positioning on the kth frame of the environment image;
  • the first display part 53 is configured to display the display interface of the first electronic device according to the kth third positioning result.
  • the kth first positioning result includes the kth first pose information
  • the kth second positioning result includes the kth second pose information
  • the kth second positioning result includes the kth second pose information.
  • the three positioning results include the kth third pose information
  • the result correction part includes: a current deviation determination sub-part, configured to be based on the kth first pose information and the kth second pose information , determine the current pose deviation of the k-th positioning
  • the overall deviation determination subsection is configured to determine the overall pose deviation of the k-th positioning according to the k second pose information and k third pose information of the k-th positioning
  • the first correction subsection is configured to perform pose correction on the kth second positioning result according to the current pose deviation of the kth positioning and the overall pose deviation of the kth positioning, and determine the kth second positioning result.
  • k third pose information configured to be performed by the kth third pose information.
  • the overall deviation determination subsection is configured to: determine the first pose change information between the i-th second pose information and the j-th second pose information, where i, j are integers and 1 ⁇ i ⁇ j ⁇ k; determine the second pose change information between the i-th third pose information and the j-th third pose information; according to the first pose change information and the The second pose change information is used to determine the pose deviation from the ith frame of the environment image to the jth frame of the environment image; according to the plurality of pose deviations, the overall pose deviation of the k times of positioning is determined.
  • the kth first positioning result further includes feature point matching information of the kth frame
  • the feature point matching information of the kth frame includes the two-dimensional feature points in the kth frame of the environment image and the The matching information between the three-dimensional feature points in the point cloud map of the second electronic device
  • the result correction part further includes: a second correction sub-section, configured to The k third pose information is corrected, and the corrected kth third positioning result is determined.
  • the kth first positioning result includes feature point matching information of the kth frame
  • the feature point matching information of the kth frame includes the two-dimensional feature points in the kth frame of the environment image and the Matching information between the three-dimensional feature points in the point cloud map of the second electronic device
  • the result correction part includes: a third correction sub-section, configured to The second positioning result is corrected, and the corrected kth third positioning result is determined.
  • the apparatus further includes: a second request sending part configured to send an a-th first positioning request to a second electronic device, where the a-th first positioning request includes the first electronic device
  • the initialization part is configured to, in the case of receiving the a-th first positioning result sent by the second electronic device, according to the a-th a first positioning result, initialize the synchronous positioning and map construction SLAM system in the first electronic device, determine the initial positioning result of the first electronic device, and the a-th first positioning result includes the a-th first positioning result
  • the first pose information and/or the feature point matching information of the a-th frame configured to send an a-th first positioning request to a second electronic device, where the a-th first positioning request includes the first electronic device
  • the kth first positioning result sent by the second electronic device further includes a first area map, where the first area map includes a point cloud of a geographic area corresponding to the first electronic device
  • the apparatus further includes: a first matching and positioning part, configured to perform projection matching between the kth third positioning result and the point cloud submap in the first area map, and determine the first electronic device the fourth positioning result; the second display part is configured to display the display interface of the first electronic device according to the fourth positioning result.
  • the apparatus further includes: an area determination part, configured to determine the area according to the kth second positioning result of the first electronic device and a second area map local to the first electronic device Whether the first electronic device is in the second area map, the second area map is the area map sent by the second electronic device; wherein, the first request sending part includes: a first sending sub-part, It is configured to send the kth first positioning request to the second electronic device when the first electronic device is within the second area map.
  • the apparatus further includes: a third request sending part configured to send a second request to the second electronic device if the first electronic device is not within the second area map A positioning request, the second positioning request includes the kth frame of the environment image of the environment where the first electronic device is located; the second matching positioning part is configured to receive the third area map sent by the second electronic device.
  • the current second positioning result is projected and matched with the point cloud submap in the third area map, and the fifth positioning result of the first electronic device is determined, and the third area map includes a point cloud submap of the geographic area corresponding to the first electronic device; and a third display part configured to display the display interface of the first electronic device according to the fifth positioning result.
  • the apparatus further includes: a network status acquisition part, configured to acquire the network status of the first electronic device, the network status includes network signal strength and/or information transmission speed; wherein, the first electronic device A request sending part includes: a second sending sub-part, configured to send the kth first positioning request to the second electronic device when the network state does not meet the preset area map acquisition condition, wherein the The conditions for obtaining the area map include: the network signal strength is greater than or equal to a signal strength threshold; and/or the information transmission speed is greater than or equal to a speed threshold.
  • FIG. 6 is a schematic structural diagram of a positioning device provided by an embodiment of the present disclosure. As shown in FIG. 6 , the device is applied to a second electronic device, including:
  • the first positioning part 61 is configured to, in the case of receiving the kth first positioning request from the first electronic device, according to the preset point cloud map and the kth frame in the kth first positioning request an environment image, performing visual positioning on the first electronic device to obtain the kth first positioning result of the first electronic device;
  • the result sending part 62 is configured to send the kth first positioning result to the first electronic device, so that the first electronic device performs a positioning result correction according to the kth first positioning result,
  • the kth first positioning result includes the kth first pose information and/or the feature point matching information of the kth frame
  • the feature point matching information of the kth frame includes the kth frame environment image Matching information between the two-dimensional feature points in the point cloud map and the three-dimensional feature points in the point cloud map.
  • the apparatus further includes: a second positioning part, configured to, in the case of receiving a second positioning request from the first electronic device, according to the point cloud map and the second positioning request
  • the environment image of the first electronic device is visually positioned to obtain the sixth positioning result of the first electronic device
  • the sub-map determination part is configured to, according to the sixth positioning result, obtain the sixth positioning result from the point cloud map.
  • the area map sending part is configured to send the area map to the first electronic device, so that the first electronic device can send the area map to the first electronic device according to the area map
  • the area map includes a point cloud submap of the geographic area corresponding to the first electronic device.
  • the functions or included parts of the apparatus provided in the embodiments of the present disclosure may be configured to execute the methods described in the above method embodiments, and for specific implementation, reference may be made to the above method embodiments.
  • a "part" may be a part of a circuit, a part of a processor, a part of a program or software, etc., of course, a unit, a module or a non-modularity.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the foregoing method is implemented.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium or a volatile computer-readable storage medium.
  • Embodiments of the present disclosure further provide an electronic device, including: a processor; a memory configured to store instructions executable by the processor; wherein the processor is configured to invoke the instructions stored in the memory to execute the above method.
  • Embodiments of the present disclosure also provide a computer program, including computer-readable codes.
  • a processor in the device executes the method for implementing the positioning method provided by any of the above embodiments. instruction.
  • Embodiments of the present disclosure further provide a computer program product for storing computer-readable instructions, which, when executed, cause the computer to perform the operations of the positioning method provided by any of the foregoing embodiments.
  • Electronic devices may be implemented as terminals, servers, or other forms of devices.
  • FIG. 7 is a schematic structural diagram of an electronic device 800 according to an embodiment of the present disclosure.
  • electronic device 800 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc. terminal.
  • an electronic device 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an Input/Output (I/O) interface 812, Sensor assembly 814 , and communication assembly 816 .
  • the processing component 802 generally controls the overall operation of the electronic device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at electronic device 800 . Examples of such data include instructions for any application or method operating on electronic device 800, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 804 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as Static Random-Access Memory (SRAM), Electrically Erasable Programmable Read-Only Memory (Electrically Erasable) Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (Read-Only Memory) , ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM Static Random-Access Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • Read-Only Memory Read-Only Memory
  • Power supply assembly 806 provides power to various components of electronic device 800 .
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to electronic device 800 .
  • Multimedia component 808 includes a screen that provides an output interface between the electronic device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the electronic device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when electronic device 800 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing status assessment of various aspects of electronic device 800 .
  • the sensor assembly 814 can detect the on/off state of the electronic device 800, the relative positioning of the components, such as the display and the keypad of the electronic device 800, the sensor assembly 814 can also detect the electronic device 800 or one of the electronic device 800 Changes in the position of components, presence or absence of user contact with the electronic device 800 , orientation or acceleration/deceleration of the electronic device 800 and changes in the temperature of the electronic device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a Complementary Metal-Oxide-Semiconductor (CMOS) or Charge Coupled Device (CCD) image sensor, for use in imaging applications.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • CCD Charge Coupled Device
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between electronic device 800 and other devices.
  • the electronic device 800 can access a wireless network based on a communication standard, such as a wireless network (WiFi), a second generation mobile communication technology (The 2nd Generation, 2G) or a third generation mobile communication technology (The 3rd Generation, 3G), or their The combination.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a Near Field Communication (NFC) module to facilitate short-range communication.
  • the NFC module may be based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (Bluetooth, BT) technology and other technology to achieve.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • the electronic device 800 may be implemented by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (Digital Signal Processing Devices) , DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation, used to perform the above method.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DPD Digital Signal Processing Devices
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor, or other electronic component implementation, used to perform the above method.
  • a non-volatile computer-readable storage medium such as a memory 804 comprising computer program instructions executable by the processor 820 of the electronic device 800 to perform the above method.
  • FIG. 8 is a schematic structural diagram of an electronic device 1900 according to an embodiment of the present disclosure.
  • the electronic device 1900 may be implemented as a server.
  • an electronic device 1900 includes a processing component 1922, which in some embodiments may include one or more processors, and a memory resource, represented by memory 1932, for storing instructions executable by the processing component 1922, such as applications program.
  • An application program stored in memory 1932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 1922 is configured to execute instructions to perform the above-described methods.
  • the electronic device 1900 may also include a power supply assembly 1926 configured to perform power management of the electronic device 1900, a wired or wireless network interface 1950 configured to connect the electronic device 1900 to a network, and an input output (I/O) interface 1958 .
  • the electronic device 1900 can operate based on an operating system stored in the memory 1932, such as a Microsoft server operating system (Windows Server TM ), a graphical user interface based operating system (Mac OS X TM ) introduced by Apple, a multi-user multi-process computer operating system (Unix TM ), Free and Open Source Unix-like Operating System (Linux TM ), Open Source Unix-like Operating System (FreeBSD TM ) or the like.
  • Microsoft server operating system Windows Server TM
  • Mac OS X TM graphical user interface based operating system
  • Uniix TM multi-user multi-process computer operating system
  • Free and Open Source Unix-like Operating System Linux TM
  • FreeBSD TM Open Source Unix-like Operating System
  • a non-volatile computer-readable storage medium such as memory 1932 comprising computer program instructions executable by the processing component 1922 of the electronic device 1900 to perform the above method.
  • An embodiment of the present disclosure may be at least one of a system, a method, a computer-readable storage medium, a computer program product, and a computer program.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for enabling the processor to implement the positioning method provided by any of the foregoing embodiments of the present disclosure.
  • a computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable Read Memory (EPROM or Flash), Static Random Access Memory (SRAM), Portable Compact Disc Read-Only Memory (CD-ROM), Digital Video Disc (DVD), Memory Stick , a floppy disk, a mechanically encoded device, such as a punched card or a raised structure in a groove with instructions stored thereon, and any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or Flash erasable programmable Read Memory
  • SRAM Static Random Access Memory
  • CD-ROM Portable Compact Disc Read-Only Memory
  • DVD Digital Video Disc
  • Memory Stick a floppy disk
  • mechanically encoded device such as a punched card or a raised structure in a groove with instructions stored thereon, and any suitable combination of the foregoing.
  • Computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (eg, light pulses through fiber optic cables), or through electrical wires transmitted electrical signals.
  • the computer readable program instructions described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
  • the computer program instructions for carrying out the operations of the present disclosure may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or in one or more source or object code written in any combination of programming languages, including object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as the "C" language or similar programming languages.
  • the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement.
  • the remote computer may be connected to the user's computer through any kind of network—including a Local Area Network (LAN) or a Wide Area Network (WAN)—or, may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • custom electronic circuits such as programmable logic circuits, Field Programmable Gate Arrays (FPGAs), or Programmable Logic Arrays (PLAs), are personalized by utilizing state information of computer readable program instructions, The electronic circuit may execute computer-readable program instructions to implement embodiments of the present disclosure.
  • Embodiments of the present disclosure are described herein with reference to flowchart illustrations and/or structural diagrams of methods, apparatus (systems) and computer program products according to embodiments of the present disclosure. It will be understood that each block of the flowcharts and/or structural diagrams, and combinations of blocks in the flowcharts and/or structural diagrams, can be implemented by computer readable program instructions.
  • These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processor of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more of the blocks in the flowcharts and/or constituent block diagrams.
  • These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium on which the instructions are stored includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks in the flowchart and/or constituent block diagrams.
  • Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowchart and/or constituent block diagrams.
  • each block in the flowchart or block diagram may represent a module, segment, or portion of an instruction that contains one or more logic for implementing the specified Executable instructions for the function.
  • the functions noted in the blocks may also occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the constituent block diagrams and/or flowchart illustrations, and combinations of blocks in the constituent block diagrams and/or flowchart illustrations can be implemented using dedicated hardware-based hardware that performs the specified function or action. system, or can be implemented using a combination of dedicated hardware and computer instructions.
  • the computer program product can be specifically implemented by hardware, software or a combination thereof.
  • the computer program product is embodied as a computer storage medium, and in other embodiments, the computer program product is embodied as a software product, such as a software development kit (Software Development Kit, SDK) and the like.
  • Embodiments of the present disclosure provide a positioning method and apparatus, electronic device, storage medium, computer program product, and computer program, wherein, when the method is applied to a second electronic device, the method includes: after receiving a positioning request from the first electronic device In the case where the first electronic device is located, the current geographic area where the first electronic device is located is determined according to the first positioning result in the positioning request, and the positioning request includes an environmental image of the environment where the first electronic device is located and the first electronic device. A first localization result of an electronic device; determine a point cloud submap corresponding to the current geographical area from a preset point cloud map; An electronic device performs visual positioning to obtain a second positioning result of the first electronic device; and sends the second positioning result to the first electronic device.
  • the positioning can be realized by the first electronic device and the second electronic device, and the accuracy and stability of the positioning can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Navigation (AREA)
  • Image Analysis (AREA)

Abstract

一种定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序,定位方法应用于第一电子设备(31),包括:向第二电子设备(32)发送第k个第一定位请求,第k个第一定位请求中包括第一电子设备(31)所在环境的第k帧环境图像(S11);在接收到第二电子设备(32)发送的第k个第一定位结果的情况下,根据第k个第一定位结果,对第k个第二定位结果进行修正,确定第一电子设备(31)的第k个第三定位结果,其中,第k个第二定位结果是第一电子设备(31)对第k帧环境图像进行本地定位得到的(S12);根据第k个第三定位结果,对第一电子设备(31)的显示界面进行展示(S13)。

Description

定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序
相关申请的交叉引用
本公开基于申请号为202011379583.5、申请日为2020年11月30日、申请名称为“定位方法及装置、电子设备和存储介质”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及但不限于计算机技术领域,尤其涉及一种定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序。
背景技术
人们在室内外(例如大型商场内部、城市道路上等)行动时,经常需要通过定位确定自己的位置,通过导航前往目的地等。相关技术中,通过视觉定位的方式实现终端定位,在一些场景下可能产生抖动、漂移等,导致定位效果变差。
发明内容
本公开实施例提出了一种定位技术方案,可以如下实现:
本公开实施例提供了一种定位方法,应用于第一电子设备,该方法包括:
向第二电子设备发送第k个第一定位请求,所述第k个第一定位请求中包括所述第一电子设备所在环境的第k帧环境图像,k为大于1的整数;在接收到所述第二电子设备发送的第k个第一定位结果的情况下,根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,其中,所述第k个第二定位结果是所述第一电子设备对所述第k帧环境图像进行本地定位得到的;根据所述第k个第三定位结果,对所述第一电子设备的显示界面进行展示。
本公开实施例提供了一种定位方法,应用于第二电子设备,该方法包括:
在接收到来自第一电子设备的第k个第一定位请求的情况下,根据预设的点云地图及所述第k个第一定位请求中的第k帧环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第k个第一定位结果;向所述第一电子设备发送所述第k个第一定位结果,以使所述第一电子设备根据所述第k个第一定位结果进行定位结果修正,其中,所述第k个第一定位结果包括第k个第一位姿信息和/或第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括所述第k帧环境图像中的二维特征点与所述点云地图中的三维特征点之间的匹配信息。
本公开实施例提供了一种定位装置,包括:应用于第一电子设备,所述装置包括:
第一请求发送部分,配置为向第二电子设备发送第k个第一定位请求,所述第k个第一定位请求中包括所述第一电子设备所在环境的第k帧环境图像,k为大于1的整数;
结果修正部分,配置为在接收到所述第二电子设备发送的第k个第一定位结果的情况下,根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,其中,所述第k个第二定位结果是所述第一电子设备对所述第k帧环境图像进行本地定位得到的;
第一展示部分,配置为根据所述第k个第三定位结果,对所述第一电子设备的显示界面进行展示。
本公开实施例提供了一种定位装置,应用于第二电子设备,所述装置包括:
第一定位部分,配置为在接收到来自第一电子设备的第k个第一定位请求的情况下,根据预设的点云地图及所述第k个第一定位请求中的第k帧环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第k个第一定位结果;
结果发送部分,配置为向所述第一电子设备发送所述第k个第一定位结果,以使所述第一电子设备根据所述第k个第一定位结果进行定位结果修正,其中,所述第k个第一定位结果包括第k个第一位姿信息和/或第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括所述第k帧环境图像中的二维特征点与所述点云地图中的三维特征点之间的匹配信息。
本公开实施例提供了一种电子设备,包括:处理器;配置为存储处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器存储的指令,以执行上述方法。
本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。
本公开实施例提供了一种计算机程序,包括计算机可读代码,在计算机可读代码在设备上运行的情况下,设备中的处理器执行用于实现上述方法的指令。
本公开实施例还提供了一种计算机程序产品,用于存储计算机可读指令,所述计算机可读指令被执行时使得计算机执行上述方法。
在本公开实施例中,能够向第二电子设备发送包括环境图像的定位请求;根据第二电子设备返回的云端定位结果对本地的定位结果进行修正;并根据修正后的定位结果进行展示,从而提高定位的精度和稳定性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1为本公开实施例提供的一种定位方法的实现流程示意图。
图2为本公开实施例提供的一种定位方法的实现流程示意图。
图3为本公开实施例提供的一种定位方法的交互示意图。
图4A为本公开实施例提供的一种定位方法的处理过程的示意图。
图4B为本公开实施例提供的一种定位方法的处理过程的示意图。
图5为本公开实施例提供的一种定位装置的组成结构示意图。
图6为本公开实施例提供的一种定位装置的组成结构示意图。
图7为本公开实施例提供的一种电子设备的组成结构示意图。
图8为本公开实施例提供的一种电子设备的组成结构示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任 意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
为了更好地理解本公开实施例提供的定位方法,先对相关技术中采用的定位方法进行说明。相关技术中,在通过视觉定位的方式实现终端定位的情况下,可在终端本地运行一套同步定位与地图构建(Simultaneous Localization And Mapping,SLAM)系统,通过云端的定位结果,直接修正本地SLAM的位置和姿态信息。该方法能够确定终端的绝对位置,但无法避免系统运行过程中产生的相对误差,在一些场景下可能产生抖动、漂移等,导致定位效果变差。
本公开实施例提供一种定位方法,可例如应用于大型商场、交通枢纽、医院、大型展馆等室内外场景中,提高定位精度和稳定性。该定位方法可通过第一电子设备和第二电子设备实现。第一电子设备可例如包括终端设备,第二电子设备可例如包括云端服务器。
图1为本公开实施例提供的一种定位方法的实现流程示意图,如图1所示,所述定位方法包括:
在步骤S11中,向第二电子设备发送第k个第一定位请求,所述第k个第一定位请求中包括所述第一电子设备所在环境的第k帧环境图像,k为大于1的整数;
在步骤S12中,在接收到所述第二电子设备发送的第k个第一定位结果的情况下,根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,其中,所述第k个第二定位结果是所述第一电子设备对所述第k帧环境图像进行本地定位得到的;
在步骤S13中,根据所述第k个第三定位结果,对所述第一电子设备的显示界面进行展示。
在一些实施例中,所述定位方法可应用于第一电子设备,第一电子设备可以为终端设备,例如用户设备(User Equipment,UE)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字处理(Personal Digital Assistant,PDA)设备、手持设备、计算设备、车载设备、可穿戴设备等,所述方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。
举例来说,在第一电子设备本地的SLAM系统运行过程中可能产生相对误差,例如SLAM本身运行产生的累积误差,在弱纹理场景下的抖动、漂移等。在该情况下,可通过云端的定位信息,对本地的SLAM系统进行约束,从而抑制住SLAM系统后端的累积误差。
在一些实施例中,在持有或穿戴有第一电子设备的用户需要确定自身的位置的情况下,可通过第一电子设备的采集部件(例如摄像头)采集所在环境的环境图像,例如拍摄第一电子设备所面对的景物的图像。该环境图像可以为一个或多个图像,也可以为包括多帧图像的短视频,本公开实施例对此不作限制。
在一些实施例中,针对某一次定位(设为第k次定位,k为大于1的整数),在步骤S11中,第一电子设备可向第二电子设备发送第k个第一定位请求,以便确定自身的位置。第k个第一定位请求中包括第一电子设备采集的第k帧环境图像。其中,第二电子设备可例如为云端服务器,存储有第一电子设备所在的整体地理区域(例如商场内部区域、城市区域等)的点云地图。
在一些实施例中,第二电子设备在接收到第k个第一定位请求后,可提取第k个第一定位请求中的第k帧环境图像的特征信息。可例如通过预训练的神经网络对第k帧环境图像进行特征提取,得到第k帧环境图像的特征信息。本公开实施例对特征提取的具体方式不作限制。
在一些实施例中,在得到第k帧环境图像的特征信息后,第二电子设备可将该特征信息与点云地图进行匹配,确定相匹配的视觉定位结果(可称为第k个第一定位结果)。本公开实施例对特征信息与点云地图匹配的具体方式不作限制。
在一些实施例中,该第k个第一定位结果包括第一电子设备的位姿信息(可简称为pose)和/或特征点匹配信息(可简称为match)。其中,位姿信息包括位置信息和姿态信息,位置信息可包括第一电子设备的位置坐标;姿态信息可包括第一电子设备的朝向、俯仰角度等。
在一些实施例中,特征点匹配信息可包括第k帧环境图像中的二维特征点与点云地图中的三维特征点之间的匹配信息。例如,第k帧环境图像的N+1个2D特征点(x 0,x 1,x 2,…,x N)与点云地图的N+1个3D特征点(X 0,X 1,X 2,…,X N)分别匹配,则特征点匹配信息包括2D特征点(x 0,x 1,x 2,…,x N)的坐标、3D特征点(X 0,X 1,X 2,…,X N)的坐标以及它们之间的匹配关系,N为大于0的整数。
在一些实施例中,第二电子设备可将该k个第一定位结果发送给第一电子设备,以便对第一电子设备的定位结果进行约束。
在一些实施例中,步骤S12中,第一电子设备在接收到第二电子设备发送的第k个第一定位结果的情况下,可根据第k个第一定位结果,对第k个第二定位结果进行修正,确定第一电子设备的第k个第三定位结果。也即,通过第k个第一定位结果中的位姿信息和/或特征点匹配信息,对第一电子设备本地的第k个第二定位结果进行约束,实现第k个第二定位结果修正,得到修正后的定位结果(可称为第k个第三定位结果)。
其中,第k个第二定位结果是第一电子设备对第k帧环境图像进行本地定位得到的,也即,根据第k帧环境图像与本地地图进行视觉定位,得到本地定位结果,即第k个第二定位结果,该定位结果可包括位姿信息。本公开实施例对具体的定位方式不作限制。
在一些实施例中,可例如通过第k个第一定位结果中的位姿信息,本地的第k个第二定位结果中的位姿信息,以及之前的k-1个第二定位结果和第三定位结果的位姿信息,建立位姿图(Pose Graph),对本地定位结果进行约束;还可通过第k个第一定位结果中的特征点匹配信息,对本地定位结果进行重投影误差约束;还可通过第k个第一定位结果中的位姿信息和特征点匹配信息,分别对本地定位结果进行约束。本公开实施例对具体的约束方式不作限制。
在一些实施例中,在步骤S13中,根据第k个第三定位结果,可对第一电子设备屏幕的显示界面进行展示。也就是说,可通过第k个第三定位结果约束住本地SLAM系统的VIO(visual-inertial odometry,视觉惯性里程计)模块的输出结果。根据第一电子设备当前的应用场景,通过VIO模块的输出结果来渲染待展示的相应内容,并在显示界面中进行展示。
例如,在视觉导航的应用场景下,可根据第一定位结果及目的地位置,确定出导航路径并在显示界面中展示,从而实现导航功能;在虚拟物体展示的应用场景下,可根据第一定位结果,确定出待展示的虚拟物体的位置及姿态,并在显示界面中展示,从而实现精确、稳定的虚拟物体展示。本公开实施例对显示界面中展示的具体内容不作限制。
根据本公开的实施例,能够向第二电子设备发送包括环境图像的定位请求;根据第二电子设备返回的云端定位结果对本地的定位结果进行修正;并根据修正后的定位结果进行展示,从而提高定位的精度和稳定性。
在一些实施例中,所述第k个第一定位结果包括第k个第一位姿信息,所述第k个第二定位结果包括第k个第二位姿信息,所述第k个第三定位结果包括第k个第三位姿信息,步骤S12可包括:
根据所述第k个第一位姿信息和所述第k个第二位姿信息,确定第k次定位的当前位姿偏差;
根据k次定位的k个第二位姿信息以及k个第三位姿信息,确定k次定位的总体位姿偏差;
根据所述第k次定位的当前位姿偏差以及所述k次定位的总体位姿偏差,对所述第k个第二定位结果进行位姿修正,确定第k个第三位姿信息。
举例来说,在云端定位结果包括位姿信息的情况下,可根据本次定位的位姿信息以及历史定位的位姿信息,建立位姿图,约束住本地地图(Map),实现本地位姿的修正。其中,位姿图(Pose Graph)通常用于在发生循环(Loop)的情况下,纠正累积误差,因此也可以适用于在定位成功时纠正累积误差。
在一些实施例中,根据第k个第一位姿信息
Figure PCTCN2021101021-appb-000001
和第k个第二位姿信息T k,可确定第k次定位的当前位姿偏差,也即本次定位的云端位姿与本地位姿之间的偏差,可表示为
Figure PCTCN2021101021-appb-000002
根据k次定位的k个第二位姿信息以及k个第三位姿信息,确定k次定位的总体位姿偏差,也即多次定位的位姿之间的总体偏差;进而,可根据当前位姿偏差与总体位姿偏差,建立位姿图,通过约束实现位姿修正。这里,云端位姿为第二电子设备返回的云端定位结果中的位姿信息。
在一些实施例中,根据k次定位的k个第二位姿信息以及k个第三位姿信息,确定k次定位的总体位姿偏差的步骤,可包括:
确定第i个第二位姿信息与第j个第二位姿信息之间的第一位姿变化信息,i,j为整数且1≤i<j≤k;
确定第i个第三位姿信息与第j个第三位姿信息之间的第二位姿变化信息;
根据所述第一位姿变化信息与所述第二位姿变化信息,确定第i帧环境图像至第j帧环境图像的位姿偏差;
根据多个位姿偏差,确定所述k次定位的总体位姿偏差。
举例来说,针对k次定位中的任意两次定位(设为第i次、第j次定位,i,j为整数且1≤i<j≤k),可确定第i个第二位姿信息T i与第j个第二位姿信息T j之间的第一位姿变化信息T ij,用于表示第i帧到第j帧的本地定位结果的位姿变化,其中,
Figure PCTCN2021101021-appb-000003
还可确定第i个第三位姿信息T′ i与第j个第三位姿信息T′ j之间的第二位姿变化信息T′ ij,用于表示第i帧到第j帧的第三定位结果的位姿变化,其中,T′ ij=T′ j*T′ i -1;根据第一位姿变化信息与第二位姿变化信息,可确定第i帧环境图像至第j帧环境图像的位姿偏差,表示为
Figure PCTCN2021101021-appb-000004
对多个位姿偏差求和,即可得到k次定位的总体位姿偏差,表示为
Figure PCTCN2021101021-appb-000005
在一些实施例中,可通过如下公式(1)来表示位姿图E 1
Figure PCTCN2021101021-appb-000006
对公式(1)进行优化求解,即可得到全局优化后的T′ k,也即位姿修正后得到第k个第三位姿信息。
通过这种方式,可以根据当前的云端位姿以及之前的历史位姿,修正当前的本地位姿,从而减小SLAM系统的累积误差,提高定位的精度和稳定性。
在一些实施例中,所述第k个第一定位结果包括第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括第k帧环境图像中的二维特征点与所述第二电子设备的点云地图中的三维特征点之间的匹配信息,
所述根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,包括:
根据第k帧的特征点匹配信息,对所述第k个第二定位结果进行修正,确定修正后的第k个第三定位结果。
举例来说,在云端定位结果包括特征点匹配信息的情况下,可根据特征点匹配信息,在局部约束调整(Local Bundle Ajustment,LBA)中进行重投影误差约束,修正当前的本地位姿,也即第k个第二位姿信息T k
如上所述,设特征点匹配信息包括第k帧环境图像的2D特征点(x 0,x 1,x 2,…,x N)的坐标、点云地图的3D特征点(X 0,X 1,X 2,…,X N)的坐标以及该2D特征点与该3D特征点之间的匹配关系,则可通过如下公式(2)来表示重投影误差E 2
Figure PCTCN2021101021-appb-000007
公式(2)中,π表示相机坐标系到图像坐标系的投影,n为整数且0≤n≤N。对公式(2)进行优化求解,即可得到优化后的位姿信息,也即位姿修正后得到第k个第三位姿信息。
通过这种方式,可以根据特征点匹配信息进行重投影误差约束,修正本地位姿,从而提高定位的精度和稳定性。
在一些实施例中,所述第k个第一定位结果还包括第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括第k帧环境图像中的二维特征点与所述第二电子设备的点云地图中的三维特征点之间的匹配信息,
所述根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,还包括:
根据所述第k帧的特征点匹配信息,对第k个第三位姿信息进行修正,确定修正后的第k个第三定位结果。
举例来说,在云端定位结果包括位姿信息和特征点匹配信息的情况下,可先根据本次定位的位姿信息以及历史定位的位姿信息,建立位姿图,约束住本地地图(map);再根据特征点匹配信息,进行重投影误差约束,进一步修正位姿。
在一些实施例中,在通过公式(1)优化得到第k个第三位姿信息后,可通过如下公式(3)对第k个第三位姿信息T′ k进行重投影误差约束:
Figure PCTCN2021101021-appb-000008
公式(3)中,π表示相机坐标系到图像坐标系的投影,n为整数且0≤n≤N。对公式(3)进行优化求解,即可得到优化后的位姿信息,也即再次位姿修正后得到第k个第三定位结果。
通过这种方式,可以根据第k个第一定位结果中的位姿信息和特征点匹配信息,分别对定位结果进行约束,修正本地位姿,从而进一步提高定位的精度和稳定性。
在一些实施例中,所述方法还包括:
向第二电子设备发送第a个第一定位请求,所述第a个第一定位请求中包括所述第一电子设备所在环境的第a帧环境图像,a为整数且a≥1;
在接收到所述第二电子设备发送的第a个第一定位结果的情况下,根据所述第a个第一定位结果,对所述第一电子设备中的同步定位与地图构建SLAM系统进行初始化,确定所述第一电子设备的初始定位结果,所述第a个第一定位结果包括第a个第一位姿信息和/或第a帧的特征点匹配信息。
举例来说,通常SLAM系统在初始化时,需要第一电子设备进行多次移动,采集多帧环境图像,以对环境图像中的点产生足够的观测,从而使得定位结果收敛,确定第一电子设备的初始定位结果,实现SLAM系统的初始化。在该情况下,第一电子设备可利用第二电子设备返回的第一定位结果实现初始化。
在一些实施例中,第一电子设备可向第二电子设备发送第a个第一定位请求,以便确定自身的位置,第a个第一定位请求中包括第一电子设备采集的第a帧环境图像,a为大于或等于1的整数。第二电子设备在接收到第a个第一定位请求后,可提取第a个第一定位请求中的第a帧环境图像的特征信息,与点云地图匹配,确定相匹配的视觉定位结果(可称为第a个第一定位结果),并发送给第一电子设备。该第一定位结果包括第一电子设备的位姿信息(pose)和/或特征点匹配信息(match)。
在一些实施例中,第一电子设备接收到第a个第一定位结果的情况下,可根据第a个第一定位结果,对所述第一电子设备中的同步定位与地图构建SLAM系统进行初始化,确定所述第一电子设备的初始定位结果。
其中,在a=1的情况下,可将该第一定位结果直接作为第一电子设备的初始定位结果;在a>1的情况下,可根据第a个第一定位结果对第一电子设备本地的定位结果进行修正,确定第一电子设备的初始定位结果。本公开实施例对修正的具体方式不作限制。
通过这种方式,可以提高第一电子设备的SLAM系统的初始化速度,甚至能够在静止的情况下完成初始化。
根据本公开实施例的定位方法可通过上述处理方式减小SLAM系统的累积误差;还可通过请求云端的高精度地图的方式,实现高精度地图与本地SLAM系统之间的紧耦合策略,减少本地SLAM的建图需求,进一步提高定位的精度。
在一些实施例中,第二电子设备发送的第k个第一定位结果还包括第一区域地图,所述第一区域地图包括与所述第一电子设备对应的地理区域的点云子地图。
在一些实施例中,在步骤S12中确定所述第k个第三定位结果后,所述方法还包括:
对所述第k个第三定位结果与所述第一区域地图中的点云子地图进行投影匹配,确定所述第一电子设备的第四定位结果;
根据所述第四定位结果,对所述第一电子设备的显示界面进行展示。
也就是说,第一电子设备发送的第k个第一定位请求还可以请求云端的子地图。第二电子设备在接收到第一电子设备发送的第k个第一定位请求的情况下,可进行视觉定位,确定第k个第一定位结果;根据该第k个第一定位结果,第二电子设备可从点云地图中确定出与第一电子设备对应的地理区域的点云子地图。该地理区域可以为第一电子设备的位置附近一定范围内的区域,例如与第一电子设备的位置之间的距离在预设距离(例如10米)内的圆形区域,本公开实施例对该地理区域的具体范围不作限制。
在一些实施例中,第二电子设备可将该地理区域的点云子地图打包成SLAM的地图格式,生成第一区域地图并发送给第一电子设备。
由于云端的高精度地图已经对真实场景进行了充分优化的建图,因此,通过云端的子地图在本地进行匹配,能够提高定位精度及稳定性。
在一些实施例中,第一电子设备接收到的第k个第一定位结果中包括第一区域地图。在步骤S12中确定第k个第三定位结果后,第一电子设备可将第k个第三定位结果(Pose)与第一区域地图中的点云子地图进行投影匹配,也即将三维的点云子地图投影为二维的 图像,再与第k个第三定位结果进行匹配,从而确定出第一电子设备的定位结果(可称为第四定位结果)。该第四定位结果包括第一电子设备的位姿信息。
由于云端地图中的图像与本地的环境图像存在不一致的情况,因此在SLAM系统中使用例如定向快速及旋转描述(Oriented Fast and Rotated Brief,ORB)(一种快速特征点提取和描述算法)描述子进行图像匹配的情况下,采用投影匹配的方式,能够减小搜索半径,降低误匹配的概率。
在一些实施例中,可根据第四定位结果,对所述第一电子设备的显示界面进行展示。也即,可通过第四定位结果约束住本地SLAM系统的VIO模块的输出结果。根据第一电子设备当前的应用场景,通过VIO模块的输出结果来渲染待展示的相应内容,并在显示界面中进行展示。
通过这种方式,可以先通过云端的位姿Pose及特征点匹配信息Match将累积误差消除到较小的范围内,再通过定位结果Pose与点云子地图进行投影匹配,能够提高匹配的成功率及正确率,进一步提高定位的精度。
上述的处理方式能够提高定位精度,但请求云端的高精度子地图可能需要消耗较多的网络资源。因此,可根据当前帧是否对已载入的高精度子地图有充分的观测(也即,当前帧是否处于已载入的高精度子地图的区域内),或者网络状态是否满足需求等情况,来选择是否请求子地图。
在一些实施例中,在步骤S11中向第二电子设备发送第k个第一定位请求之前,所述方法还包括:
根据所述第一电子设备的第k个第二定位结果及所述第一电子设备本地的第二区域地图,判断所述第一电子设备是否处于所述第二区域地图内,所述第二区域地图为所述第二电子设备已发送的区域地图;
其中,所述向第二电子设备发送第k个第一定位请求,包括:
在所述第一电子设备处于所述第二区域地图内的情况下,向第二电子设备发送第k个第一定位请求。
举例来说,在第一电子设备初次进行定位的情况下,可直接请求云端的高精度子地图,实现精确定位。而在第一电子设备多次定位的过程中(例如在通过AR导航前往目的地的过程中),可能已经接收到过云端的高精度子地图并存储在本地。在该情况下,可先判断第一电子设备是否处于本地已有的子地图范围内。
在一些实施例中,根据第一电子设备本地的第k个第二定位结果以及第二电子设备已发送的区域地图(可称为第二区域地图),可判断第一电子设备的位置坐标是否处于第二区域地图所对应的地理区域的坐标范围内。如果第一电子设备处于第二区域地图的范围内,则可认为对已载入的高精度子地图有充分的观测,可直接通过本地的第二区域地图中的点云子地图进行精确定位。
在一些实施例中,在第一电子设备处于第二区域地图内的情况下,可在步骤S11中发送第k个第一定位请求,请求获取云端的位姿信息Pose及特征点匹配信息Match,以便进行位姿修正,减小累积误差。
通过这种方式,可以减少请求云端高精度子地图的次数,减少传输的数据量,提高定位效率和定位速度。
在一些实施例中,所述方法还可包括:
在所述第一电子设备未处于所述第二区域地图内的情况下,向所述第二电子设备发送第二定位请求,所述第二定位请求中包括所述第一电子设备所在环境的第k帧环境图像;
在接收到所述第二电子设备发送的第三区域地图的情况下,对当前的第二定位结果 与所述第三区域地图中的点云子地图进行投影匹配,确定所述第一电子设备的第五定位结果,所述第三区域地图包括与所述第一电子设备对应的地理区域的点云子地图;
根据所述第五定位结果,对所述第一电子设备的显示界面进行展示。
如前所述,如果第一电子设备处于第二区域地图的范围内,即第一电子设备的位置在所述第二区域地图信息的区域内,则可对当前的第二定位结果与第二区域地图中的点云子地图进行投影匹配,确定出第一电子设备的定位结果(可称为第五定位结果)。该第五定位结果包括第一电子设备的位姿信息。
在一些实施例中,可根据第五定位结果,对所述第一电子设备的显示界面进行展示。也即,可通过第五定位结果约束住本地SLAM系统的VIO模块的输出结果。根据第一电子设备当前的应用场景,通过VIO模块的输出结果来渲染待展示的相应内容,并在显示界面中进行展示。
通过这种方式,能够通过载入的高精度子地图提高定位的精度和稳定性,并通过投影匹配减小搜索半径,降低误匹配的概率。
在一些实施例中,在步骤S11中向第二电子设备发送第一定位请求之前,所述方法还包括:
获取所述第一电子设备的网络状态,所述网络状态包括网络信号强度和/或信息传输速度;
其中,所述向第二电子设备发送第k个第一定位请求,包括:
在所述网络状态不满足预设的区域地图获取条件的情况下,向第二电子设备发送第k个第一定位请求,其中,所述区域地图获取条件包括:所述网络信号强度大于或等于信号强度阈值;和/或,所述信息传输速度大于或等于速度阈值。
举例来说,可获取第一电子设备的网络状态,包括网络信号强度和/或信息传输速度等。如果网络信号强度大于或等于信号强度阈值,和/或信息传输速度大于或等于速度阈值,则可认为网络状态较好,请求云端的高精度子地图的延时较小,满足预设的区域地图获取条件;反之,如果网络信号强度小于信号强度阈值,和/或信息传输速度小于速度阈值,则可认为网络状态较差,请求云端的高精度子地图的延时较大,不满足预设的区域地图获取条件。
在一些实施例中,如果第一电子设备的网络状态不满足预设的区域地图获取条件,则可在步骤S11中发送第k个第一定位请求,请求获取云端的位姿信息Pose及特征点匹配信息Match,以便进行位姿修正,减小累积误差。
通过这种方式,可以根据网络状态确定是否请求云端的高精度子地图,减少传输的数据量,提高定位效率和定位速度。
在一些实施例中,步骤S13可包括:
根据所述第k个第三定位结果及目的地的地理位置,确定所述第一电子设备的导航路径;
根据所述导航路径,在所述显示界面中展示增强现实AR导航路径。
举例来说,在进行AR导航的应用场景下,可根据第k个第三定位结果中的位姿信息,以及用户设定的目的地的地理位置,确定出第一电子设备的导航路径。类似地,在得到第四定位结果或第五定位结果的情况下,可根据第四或第五定位结果中的位姿信息,以及用户设定的目的地的地理位置,确定出第一电子设备的导航路径。本公开实施例对导航路径的具体确定方式不作限制。
在一些实施例中,根据导航路径,可在第一电子设备的显示界面的实景图像或全景图像中展示AR导航路径,以便指示用户按照AR导航路径行进。该AR导航路径例如包括沿着导航路径的AR箭头。本公开实施例对AR导航路径的具体形式不作限制。
通过这种方式,可以实现实景图像中的AR导航,提高导航路线的直观性,提高AR导航路径展示的精度和稳定性。
在一些实施例中,步骤S13可包括:
根据所述第k个第三定位结果及AR对象的第一对象位姿信息,确定所述AR对象在所述显示界面中的第二对象位姿信息;
根据所述第二对象位姿信息,在所述显示界面中展示所述AR对象。
举例来说,在展示AR对象的应用场景下,可根据第k个第三定位结果中的位姿信息,以及待展示的AR对象的第一对象位姿信息,确定出AR对象在所述显示界面中的第二对象位姿信息。本公开实施例对具体的确定方式不作限制。
类似地,在得到第四定位结果或第五定位结果的情况下,可根据第四或第五定位结果中的位姿信息,以及待展示的AR对象的第一对象位姿信息,确定出AR对象在所述显示界面中的第二对象位姿信息。
在一些实施例中,根据第二对象位姿信息,可在显示界面的实景图像中展示该AR对象。其中,待展示的AR对象可包括AR标记、虚拟物体等,例如虚拟的景观、虚拟的动物等。本公开实施例对AR对象的具体类别不作限制。
通过这种方式,可以实现实景图像中的AR对象展示,提高AR对象展示的精度和稳定性。
图2为本公开实施例提供的一种定位方法的实现流程示意图。该方法应用于第二电子设备,如图2所示,该定位方法包括:
在步骤S21中,在接收到来自第一电子设备的第k个第一定位请求的情况下,根据预设的点云地图及所述第k个第一定位请求中的第k帧环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第k个第一定位结果;
在步骤S22中,向所述第一电子设备发送所述第k个第一定位结果,以使所述第一电子设备根据所述第k个第一定位结果进行定位结果修正,
其中,所述第k个第一定位结果包括第k个第一位姿信息和/或第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括所述第k帧环境图像中的二维特征点与所述点云地图中的三维特征点之间的匹配信息。
举例来说,针对某一次定位(设为第k次定位,k为大于1的整数),在步骤S11中,第一电子设备可向第二电子设备发送第k个第一定位请求,以便确定自身的位置。第k个第一定位请求中包括第一电子设备采集的第k帧环境图像。
在一些实施例中,第二电子设备在接收到第k个第一定位请求后,可提取第k个第一定位请求中的第k帧环境图像的特征信息。可例如通过预训练的神经网络对第k帧环境图像进行特征提取,得到第k帧环境图像的特征信息。本公开实施例对特征提取的具体方式不作限制。
在一些实施例中,在得到第k帧环境图像的特征信息后,第二电子设备可将该特征信息与点云地图进行匹配,确定相匹配的视觉定位结果(可称为第k个第一定位结果)。本公开实施例对特征信息与点云地图匹配的具体方式不作限制。
在一些实施例中,该第k个第一定位结果包括第一电子设备的位姿信息(可简称为pose)和/或特征点匹配信息(可简称为match)。其中,位姿信息包括位置信息和姿态信息,位置信息可包括第一电子设备的位置坐标;姿态信息可包括第一电子设备的朝向、俯仰角度等。
在一些实施例中,特征点匹配信息可包括第k帧环境图像中的二维特征点与点云地图中的三维特征点之间的匹配信息。例如,第k帧环境图像的N+1个2D特征点(x 0,x 1,x 2,…,x N)与点云地图的N+1个3D特征点(X 0,X 1,X 2,…,X N)分别匹配, 则特征点匹配信息包括2D特征点(x 0,x 1,x 2,…,x N)的坐标、3D特征点(X 0,X 1,X 2,…,X N)的坐标以及它们之间的匹配关系,N为大于0的整数。
在一些实施例中,第二电子设备可将该k个第一定位结果发送给第一电子设备,以使第一电子设备根据所述第k个第一定位结果进行定位结果修正。
根据本公开的实施例,能够根据定位请求中的环境图像进行视觉定位,得到云端定位结果并发送给第一电子设备,以便第一电子设备进行定位结果修正,从而提高定位的精度和稳定性。
在一些实施例中,所述方法还包括:
在接收到来自第一电子设备的第二定位请求的情况下,根据所述点云地图及所述第二定位请求中的环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第六定位结果;
根据所述第六定位结果,从所述点云地图中确定出与所述第一电子设备对应的地理区域的点云子地图;
向所述第一电子设备发送区域地图,以使所述第一电子设备根据所述区域地图进行定位及展示,所述区域地图包括与所述第一电子设备对应的地理区域的点云子地图。
举例来说,第一电子设备可发送第二定位请求,请求云端的高精度子地图。第二电子设备在接收到第二定位请求后,可提取第二定位请求中的环境图像的特征信息,并将该特征信息与点云地图进行匹配,确定相匹配的视觉定位结果(可称为第六定位结果),该第六定位结果包括第一电子设备的位姿信息和/或特征点匹配信息。
在一些实施例中,第二电子设备可根据第六定位结果,从点云地图中确定出与第一电子设备对应的地理区域的点云子地图。该地理区域可以为第一电子设备的位置附近一定范围内的区域,例如与第一电子设备的位置之间的距离在预设距离(例如5米)内的圆形区域,本公开实施例对此不作限制。
在一些实施例中,第二电子设备可将该地理区域的点云子地图打包成SLAM的地图格式,生成区域地图并发送给第一电子设备,以使所述第一电子设备根据所述区域地图进行定位及展示。
通过这种方式,能够根据点云地图及第二定位请求中的环境图像,视觉定位得到定位结果;根据定位结果确定对应地理区域的点云子地图;生成并发送区域地图,使得第一电子设备能够通过云端的高精度子地图在本地进行匹配,从而提高定位精度及稳定性。
在一些实施例中,根据所述第六定位结果,从所述点云地图中确定出与所述第一电子设备对应的地理区域的点云子地图的步骤,包括:
根据所述第六定位结果中的位姿信息、所述第一电子设备的预测移动速度以及预设的响应时间,确定所述第一电子设备的预测位置;
从所述点云地图中确定出与所述第一电子设备对应的地理区域的点云子地图,所述地理区域包括所述第六定位结果所在的第一地理区域及所述预测位置所在的第二地理区域。
举例来说,在一些应用场景(例如AR导航场景)下,用户可能处于持续移动的状态,在第二电子设备返回第一电子设备的位置附近一定范围内的第一区域地图信息的情况下,用户可能已经走出该范围,导致第一电子设备无法匹配到相应的位置和姿态,导致定位失败。
在一些实施例中,第二电子设备可预测第一电子设备的移动速度以及返回第一区域地图信息所需的响应时间。例如,可根据第一电子设备前次发送定位请求的时刻及前次的定位结果,以及第一电子设备本次发送定位请求的时刻及定位结果,确定出第一电子设备的预测移动速度;也可根据一段时间内第一电子设备发送定位请求的多个时刻及多 个定位结果,确定出第一电子设备的预测移动速度。本公开实施例对预测移动速度的具体确定方式不作限制。
在一些实施例中,第二电子设备可根据第一电子设备前次发送请求的时刻以及第二电子设备前次发送区域地图的时刻之间的时间差,确定出响应时间;也可根据一段时间内第一电子设备发送请求的多个时刻及第二电子设备发送区域地图的多个时刻,确定多个时间差,进而确定出响应时间。本公开实施例对响应时间的具体确定方式不作限制。
在一些实施例中,根据第六定位结果中的位置x、第一电子设备的预测移动速度v以及预设的响应时间t,可确定第一电子设备的预测位置x'=vt+x。其中,t可例如设为5-10s,本公开实施例对此不作限制。
在一些实施例中,可设定与第一电子设备对应的地理区域包括第六定位结果中的位置附近一定范围内的第一地理区域,以及预测位置附近一定范围内的第二地理区域。第二电子设备可从整体区域的点云地图中确定出该地理区域的点云子地图,打包成SLAM的地图格式,生成区域地图并发送给第一电子设备。
在一些实施例中,第二电子设备还可从整体区域的全景地图中确定出该地理区域的全景子地图,同样打包成SLAM的地图格式,并加入区域地图中。本公开实施例对此不作限制。
通过这种方式,可以提高第一电子设备精确定位的效率和成功率,进一步提高定位效果。
图3为本公开实施例提供的一种定位方法的交互示意图。如图3所示,用户可持有或穿戴有第一电子设备31,在需要确定自身的位置的情况下,可通过第一电子设备31的采集部件(未示出)采集所在环境的环境图像,并通过无线网络向第二电子设备32发送定位请求。
其中,第二电子设备32中存储有第一电子设备所在的地理区域(例如商场内部区域、城市区域等)的点云地图。第二电子设备32在接收到视觉定位请求的情况下,可根据环境图像及点云地图进行视觉定位,并返回定位结果,包括位姿信息pose和/或特征点匹配信息match。第一电子设备31根据返回的定位结果,对本地的定位结果进行修正。
图4A为本公开实施例提供的一种定位方法的处理过程的示意图。如图4A所示,在第一电子设备需要定位的情况下,可向第二电子设备发送定位请求,以便实现定位;在接收到第二电子设备返回的定位结果的情况下,可利用定位结果(包括位姿信息pose和/或特征点匹配信息match)修正累积误差。
在一些实施例中,如果修正失败,则可再次发送定位请求以获取新的定位结果进行修正,或者直接再次修正;如果修正成功,则可认为累积误差已被消除到较小的范围内。在该情况下,可通过定位结果与点云子地图进行投影匹配。
在一些实施例中,如果匹配失败,则可向第二电子设备请求新的定位结果或请求新的高精度子地图,进行匹配,或者直接再次匹配;如果匹配成功,则可认为已经得到了准确的定位,第一电子设备本地的SLAM系统可自动实现位置跟踪,根据实际应用场景进行相应的处理,例如进行AR导航。通过这种方式,能够提高匹配的成功率及正确率,进一步提高定位的精度。
图4B为本公开实施例提供的一种定位方法的处理过程的示意图。如图4B所示,在第一电子设备需要定位的情况下,可向第二电子设备请求高精度的点云子地图,并通过第二电子设备返回的定位结果或本地定位结果与点云子地图进行投影匹配;如果匹配成功,则可认为已经得到了准确的定位,第一电子设备本地的SLAM系统可自动实现位置跟踪,根据实际应用场景进行相应的处理,例如进行AR导航;如果匹配失败,则可 向第二电子设备请求新的点云子地图,进行匹配,或者直接再次匹配。通过这种方式,能够提高匹配的成功率及正确率,进一步提高定位的精度。
根据本公开实施例的定位方法,能够向第二电子设备发送包括环境图像的定位请求;根据第二电子设备返回的云端定位结果以及之前的历史定位结果,对本地的定位结果进行修正;并根据修正后的定位结果进行展示,从而减小SLAM系统的累积误差,提高定位的精度和稳定性。
在修正过程中,可通过本次定位的云端位姿及历史定位的位姿,建立位姿图,约束住本地地图Map,实现本地位姿的修正;还可通过第二电子设备返回的云端的特征点匹配信息,在局部约束调整LBA中进行重投影误差约束,实现本地位姿的修正;也可采用二者结合的方式,实现本地位姿的修正。这样,能够抑制住SLAM后端地图Map的累积误差,修改VIO到Map的偏移(Drift),进而使得VIO的轨迹与Map一致。
根据本公开实施例的定位方法,能够先通过云端的位姿Pose及特征点匹配信息Match将累积误差消除到较小的范围内,再通过定位结果Pose与点云子地图进行投影匹配,从而提高匹配的成功率及正确率,进一步提高定位的精度。
根据本公开实施例的定位方法,还能够根据当前帧是否对已载入的高精度子地图有充分的观测,或者网络状态是否满足需求等情况,来选择是否请求子地图,从而提高请求子地图的效率,减少在导航等应用场景下系统对子地图的依赖。将通过云端的位姿Pose及特征点匹配信息Match消除累积误差的策略,与请求云端高精度子地图的策略相结合,构建起鲁棒的高精度地图紧耦合的SLAM系统,提高定位的精度和稳定性,使得SLAM系统在各种场景下均能够保持鲁棒的AR效果。
根据本公开实施例的定位方法,能够应用于增强现实AR的各种应用场景,例如AR云、AR导航等场景;以及基于位置的服务(Location Based Services,LBS)的各种应用场景中,提高定位、展示及交互的效果。在AR导航、AR展示等应用场景下,能够减少AR效果在局部范围内显示时产生的相对误差,减少AR效果在弱纹理场景下的抖动、漂移等现象。
可以理解,本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例。本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
此外,本公开实施例还提供了定位装置、电子设备、计算机可读存储介质、计算机程序、计算机程序产品,上述均可用来实现本公开实施例提供的任一种定位方法,相应技术方案和描述和参见方法部分的相应记载。
图5为本公开实施例提供的一种定位装置的组成结构示意图,如图5所示,所述装置应用于第一电子设备,包括:
第一请求发送部分51,配置为向第二电子设备发送第k个第一定位请求,所述第k个第一定位请求中包括所述第一电子设备所在环境的第k帧环境图像,k为大于1的整数;
结果修正部分52,配置为在接收到所述第二电子设备发送的第k个第一定位结果的情况下,根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,其中,所述第k个第二定位结果是所述第一电子设备对所述第k帧环境图像进行本地定位得到的;
第一展示部分53,配置为根据所述第k个第三定位结果,对所述第一电子设备的显示界面进行展示。
在一些实施例中,所述第k个第一定位结果包括第k个第一位姿信息,所述第k个第二定位结果包括第k个第二位姿信息,所述第k个第三定位结果包括第k个第三位姿 信息,所述结果修正部分包括:当前偏差确定子部分,配置为根据所述第k个第一位姿信息和所述第k个第二位姿信息,确定第k次定位的当前位姿偏差;总体偏差确定子部分,配置为根据k次定位的k个第二位姿信息以及k个第三位姿信息,确定k次定位的总体位姿偏差;第一修正子部分,配置为根据所述第k次定位的当前位姿偏差以及所述k次定位的总体位姿偏差,对所述第k个第二定位结果进行位姿修正,确定第k个第三位姿信息。
在一些实施例中,所述总体偏差确定子部分,配置为:确定第i个第二位姿信息与第j个第二位姿信息之间的第一位姿变化信息,i,j为整数且1≤i<j≤k;确定第i个第三位姿信息与第j个第三位姿信息之间的第二位姿变化信息;根据所述第一位姿变化信息与所述第二位姿变化信息,确定第i帧环境图像至第j帧环境图像的位姿偏差;根据多个位姿偏差,确定所述k次定位的总体位姿偏差。
在一些实施例中,所述第k个第一定位结果还包括第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括第k帧环境图像中的二维特征点与所述第二电子设备的点云地图中的三维特征点之间的匹配信息,所述结果修正部分还包括:第二修正子部分,配置为根据所述第k帧的特征点匹配信息,对第k个第三位姿信息进行修正,确定修正后的第k个第三定位结果。
在一些实施例中,所述第k个第一定位结果包括第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括第k帧环境图像中的二维特征点与所述第二电子设备的点云地图中的三维特征点之间的匹配信息,所述结果修正部分包括:第三修正子部分,配置为根据第k帧的特征点匹配信息,对所述第k个第二定位结果进行修正,确定修正后的第k个第三定位结果。
在一些实施例中,所述装置还包括:第二请求发送部分,配置为向第二电子设备发送第a个第一定位请求,所述第a个第一定位请求中包括所述第一电子设备所在环境的第a帧环境图像,a为整数且a≥1;初始化部分,配置为在接收到所述第二电子设备发送的第a个第一定位结果的情况下,根据所述第a个第一定位结果,对所述第一电子设备中的同步定位与地图构建SLAM系统进行初始化,确定所述第一电子设备的初始定位结果,所述第a个第一定位结果包括第a个第一位姿信息和/或第a帧的特征点匹配信息。
在一些实施例中,所述第二电子设备发送的第k个第一定位结果还包括第一区域地图,所述第一区域地图包括与所述第一电子设备对应的地理区域的点云子地图,所述装置还包括:第一匹配定位部分,配置为对所述第k个第三定位结果与所述第一区域地图中的点云子地图进行投影匹配,确定所述第一电子设备的第四定位结果;第二展示部分,配置为根据所述第四定位结果,对所述第一电子设备的显示界面进行展示。
在一些实施例中,所述装置还包括:区域判断部分,配置为根据所述第一电子设备的第k个第二定位结果及所述第一电子设备本地的第二区域地图,判断所述第一电子设备是否处于所述第二区域地图内,所述第二区域地图为所述第二电子设备已发送的区域地图;其中,所述第一请求发送部分包括:第一发送子部分,配置为在所述第一电子设备处于所述第二区域地图内的情况下,向第二电子设备发送第k个第一定位请求。
在一些实施例中,所述装置还包括:第三请求发送部分,配置为在所述第一电子设备未处于所述第二区域地图内的情况下,向所述第二电子设备发送第二定位请求,所述第二定位请求中包括所述第一电子设备所在环境的第k帧环境图像;第二匹配定位部分,配置为在接收到所述第二电子设备发送的第三区域地图的情况下,对当前的第二定位结果与所述第三区域地图中的点云子地图进行投影匹配,确定所述第一电子设备的第五定位结果,所述第三区域地图包括与所述第一电子设备对应的地理区域的点云子地图;第三展示部分,配置为根据所述第五定位结果,对所述第一电子设备的显示界面进行展示。
在一些实施例中,所述装置还包括:网络状态获取部分,配置为获取所述第一电子设备的网络状态,所述网络状态包括网络信号强度和/或信息传输速度;其中,所述第一请求发送部分包括:第二发送子部分,配置为在所述网络状态不满足预设的区域地图获取条件的情况下,向第二电子设备发送第k个第一定位请求,其中,所述区域地图获取条件包括:所述网络信号强度大于或等于信号强度阈值;和/或,所述信息传输速度大于或等于速度阈值。
图6为本公开实施例提供的一种定位装置的组成结构示意图,如图6所示,所述装置应用于第二电子设备,包括:
第一定位部分61,配置为在接收到来自第一电子设备的第k个第一定位请求的情况下,根据预设的点云地图及所述第k个第一定位请求中的第k帧环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第k个第一定位结果;
结果发送部分62,配置为向所述第一电子设备发送所述第k个第一定位结果,以使所述第一电子设备根据所述第k个第一定位结果进行定位结果修正,
其中,所述第k个第一定位结果包括第k个第一位姿信息和/或第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括所述第k帧环境图像中的二维特征点与所述点云地图中的三维特征点之间的匹配信息。
在一些实施例中,所述装置还包括:第二定位部分,配置为在接收到来自第一电子设备的第二定位请求的情况下,根据所述点云地图及所述第二定位请求中的环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第六定位结果;子地图确定部分,配置为根据所述第六定位结果,从所述点云地图中确定出与所述第一电子设备对应的地理区域的点云子地图;区域地图发送部分,配置为向所述第一电子设备发送区域地图,以使所述第一电子设备根据所述区域地图进行定位及展示,所述区域地图包括与所述第一电子设备对应的地理区域的点云子地图。
在一些实施例中,本公开实施例提供的装置具有的功能或包含的部分可以配置为执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述。
在本公开实施例以及其他的实施例中,“部分”可以是部分电路、部分处理器、部分程序或软件等等,当然也可以是单元,还可以是模块也可以是非模块化的。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。计算机可读存储介质可以是非易失性计算机可读存储介质,也可以是易失性计算机可读存储介质。
本公开实施例还提供一种电子设备,包括:处理器;配置为存储处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器存储的指令,以执行上述方法。
本公开实施例还提供了一种计算机程序,包括计算机可读代码,在计算机可读代码在设备上运行的情况下,设备中的处理器执行用于实现如上任一实施例提供的定位方法的指令。
本公开实施例还提供了一种计算机程序产品,用于存储计算机可读指令,指令被执行时使得计算机执行上述任一实施例提供的定位方法的操作。
电子设备可以被实施为终端、服务器或其它形态的设备。
图7为本公开实施例提供的一种电子设备800的组成结构示意图。例如,电子设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图7,电子设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(Input/Output,I/O)接口812,传感器组件814,以及通信组件816。
处理组件802通常控制电子设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在电子设备800的操作。这些数据的示例包括用于在电子设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random-Access Memory,SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Electrical Programmable Read Only Memory,EPROM),可编程只读存储器(Programmable read-only memory,PROM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为电子设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为电子设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述电子设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(Liquid Crystal Display,LCD)和触摸面板(Touch panel,TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。在电子设备800处于操作模式,如拍摄模式或视频模式的情况下,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),在电子设备800处于操作模式,如呼叫模式、记录模式和语音识别模式的情况下,麦克风被配置为接收外部音频信号。在一些实施例中,所接收的音频信号可以被存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为电子设备800提供各个方面的状态评估。例如,传感器组件814可以检测到电子设备800的打开/关闭状态,组件的相对定位,例如所述组件为电子设备800的显示器和小键盘,传感器组件814还可以检测电子设备800或电子设备800一个组件的位置改变,用户与电子设备800接触的存在或不存在,电子设备800方位或加速/减速和电子设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor,CMOS)或电荷耦合装置(Charge Coupled Device,CCD)图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于电子设备800和其他设备之间有线或无线方式的通信。 电子设备800可以接入基于通信标准的无线网络,如无线网络(WiFi),第二代移动通信技术(The 2nd Generation,2G)或第三代移动通信技术(The 3rd Generation,3G),或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(Near Field Communication,NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(Radio Frequency Identification,RFID)技术,红外数据协会(Infrared Data Association,IrDA)技术,超宽带(Ultra Wide Band,UWB)技术,蓝牙(Bluetooth,BT)技术和其他技术来实现。
在示例性实施例中,电子设备800可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(Digital Signal Processing Device,DSPD)、可编程逻辑器件(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在一些实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由电子设备800的处理器820执行以完成上述方法。
图8为本公开实施例提供的一种电子设备1900的组成结构示意图。例如,电子设备1900可以被实施为一服务器。参照图8,电子设备1900包括处理组件1922,在一些实施例中可以包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。
电子设备1900还可以包括一个电源组件1926被配置为执行电子设备1900的电源管理,一个有线或无线网络接口1950被配置为将电子设备1900连接到网络,和一个输入输出(I/O)接口1958。电子设备1900可以操作基于存储在存储器1932的操作系统,例如微软服务器操作系统(Windows Server TM),苹果公司推出的基于图形用户界面操作系统(Mac OS X TM),多用户多进程的计算机操作系统(Unix TM),自由和开放原代码的类Unix操作系统(Linux TM),开放原代码的类Unix操作系统(FreeBSD TM)或类似。
在一些实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由电子设备1900的处理组件1922执行以完成上述方法。
本公开实施例可以是系统、方法、计算机可读存储介质、计算机程序产品、计算机程序中的至少一种。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开上述任一实施例提供的定位方法的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是(但不限于)电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过 光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(Programmable Logic Arrays,PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开实施例。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或组成结构图描述了本公开实施例。应当理解,流程图和/或组成结构图的每个方框以及流程图和/或组成结构图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或组成结构图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或组成结构图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或组成结构图中的一个或多个方框中规定的功能/动作。
附图中的流程图和组成结构图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或组成结构图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在一些实施例中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,组成结构图和/或流程图中的每个方框、以及组成结构图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一些实施例中, 所述计算机程序产品具体体现为计算机存储介质,在另一些实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
工业实用性
本公开实施例提供了一种定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序,其中,该方法应用于第二电子设备,包括:在接收到来自第一电子设备的定位请求的情况下,根据所述定位请求中的第一定位结果,确定所述第一电子设备所在的当前地理区域,所述定位请求中包括所述第一电子设备所在环境的环境图像以及所述第一电子设备本地的第一定位结果;从预设的点云地图中确定出与所述当前地理区域对应的点云子地图;根据所述环境图像以及所述点云子地图,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第二定位结果;向所述第一电子设备发送所述第二定位结果。根据本公开实施例,可以通过第一电子设备和第二电子设备实现定位,能够提高定位的精度和稳定性。

Claims (28)

  1. 一种定位方法,应用于第一电子设备,包括:
    向第二电子设备发送第k个第一定位请求,所述第k个第一定位请求中包括所述第一电子设备所在环境的第k帧环境图像,k为大于1的整数;
    在接收到所述第二电子设备发送的第k个第一定位结果的情况下,根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,其中,所述第k个第二定位结果是所述第一电子设备对所述第k帧环境图像进行本地定位得到的;
    根据所述第k个第三定位结果,对所述第一电子设备的显示界面进行展示。
  2. 根据权利要求1所述的方法,其中,所述第k个第一定位结果包括第k个第一位姿信息,所述第k个第二定位结果包括第k个第二位姿信息,所述第k个第三定位结果包括第k个第三位姿信息,所述根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,包括:根据所述第k个第一位姿信息和所述第k个第二位姿信息,确定第k次定位的当前位姿偏差;根据k次定位的k个第二位姿信息以及k个第三位姿信息,确定k次定位的总体位姿偏差;根据所述第k次定位的当前位姿偏差以及所述k次定位的总体位姿偏差,对所述第k个第二定位结果进行位姿修正,确定第k个第三位姿信息。
  3. 根据权利要求2所述的方法,其中,所述根据k次定位的k个第二位姿信息以及k个第三位姿信息,确定k次定位的总体位姿偏差,包括:确定第i个第二位姿信息与第j个第二位姿信息之间的第一位姿变化信息,i,j为整数且1≤i<j≤k;确定第i个第三位姿信息与第j个第三位姿信息之间的第二位姿变化信息;根据所述第一位姿变化信息与所述第二位姿变化信息,确定第i帧环境图像至第j帧环境图像的位姿偏差;根据多个位姿偏差,确定所述k次定位的总体位姿偏差。
  4. 根据权利要求2或3所述的方法,其中,所述第k个第一定位结果还包括第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括第k帧环境图像中的二维特征点与所述第二电子设备的点云地图中的三维特征点之间的匹配信息,所述根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,还包括:根据所述第k帧的特征点匹配信息,对第k个第三位姿信息进行修正,确定修正后的第k个第三定位结果。
  5. 根据权利要求1所述的方法,其中,所述第k个第一定位结果包括第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括第k帧环境图像中的二维特征点与所述第二电子设备的点云地图中的三维特征点之间的匹配信息,所述根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,包括:根据第k帧的特征点匹配信息,对所述第k个第二定位结果进行修正,确定修正后的第k个第三定位结果。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:向第二电子设备发送第a个第一定位请求,所述第a个第一定位请求中包括所述第一电子设备所在环境的第a帧环境图像,a为整数且a≥1;在接收到所述第二电子设备发送的第a个第一定位结果的情况下,根据所述第a个第一定位结果,对所述第一电子设备中的同步定位与地图构建SLAM系统进行初始化,确定所述第一电子设备的初始定位结果,所述第a个第一定位结果包括第a个第一位姿信息和/或第a帧的特征点匹配信息。
  7. 根据权利要求1-6中任意一项所述的方法,其中,所述第二电子设备发送的第k个第一定位结果还包括第一区域地图,所述第一区域地图包括与所述第一电子设备对 应的地理区域的点云子地图,在确定所述第k个第三定位结果后,所述方法还包括:对所述第k个第三定位结果与所述第一区域地图中的点云子地图进行投影匹配,确定所述第一电子设备的第四定位结果;根据所述第四定位结果,对所述第一电子设备的显示界面进行展示。
  8. 根据权利要求1-6中任意一项所述的方法,其中,在向第二电子设备发送第k个第一定位请求之前,所述方法还包括:根据所述第一电子设备的第k个第二定位结果及所述第一电子设备本地的第二区域地图,判断所述第一电子设备是否处于所述第二区域地图内,所述第二区域地图为所述第二电子设备已发送的区域地图;所述向第二电子设备发送第k个第一定位请求,包括:在所述第一电子设备处于所述第二区域地图内的情况下,向第二电子设备发送第k个第一定位请求。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:在所述第一电子设备未处于所述第二区域地图内的情况下,向所述第二电子设备发送第二定位请求,所述第二定位请求中包括所述第一电子设备所在环境的第k帧环境图像;在接收到所述第二电子设备发送的第三区域地图的情况下,对当前的第二定位结果与所述第三区域地图中的点云子地图进行投影匹配,确定所述第一电子设备的第五定位结果,所述第三区域地图包括与所述第一电子设备对应的地理区域的点云子地图;根据所述第五定位结果,对所述第一电子设备的显示界面进行展示。
  10. 根据权利要求1-9中任意一项所述的方法,其中,在向第二电子设备发送第一定位请求之前,所述方法还包括:获取所述第一电子设备的网络状态,所述网络状态包括网络信号强度和/或信息传输速度;所述向第二电子设备发送第k个第一定位请求,包括:在所述网络状态不满足预设的区域地图获取条件的情况下,向第二电子设备发送第k个第一定位请求,其中,所述区域地图获取条件包括:所述网络信号强度大于或等于信号强度阈值;和/或,所述信息传输速度大于或等于速度阈值。
  11. 一种定位方法,应用于第二电子设备,包括:
    在接收到来自第一电子设备的第k个第一定位请求的情况下,根据预设的点云地图及所述第k个第一定位请求中的第k帧环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第k个第一定位结果;
    向所述第一电子设备发送所述第k个第一定位结果,以使所述第一电子设备根据所述第k个第一定位结果进行定位结果修正,其中,所述第k个第一定位结果包括第k个第一位姿信息和/或第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括所述第k帧环境图像中的二维特征点与所述点云地图中的三维特征点之间的匹配信息。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:在接收到来自第一电子设备的第二定位请求的情况下,根据所述点云地图及所述第二定位请求中的环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第六定位结果;根据所述第六定位结果,从所述点云地图中确定出与所述第一电子设备对应的地理区域的点云子地图;向所述第一电子设备发送区域地图,以使所述第一电子设备根据所述区域地图进行定位及展示,所述区域地图包括与所述第一电子设备对应的地理区域的点云子地图。
  13. 一种定位装置,应用于第一电子设备,包括:
    第一请求发送部分,配置为向第二电子设备发送第k个第一定位请求,所述第k个第一定位请求中包括所述第一电子设备所在环境的第k帧环境图像,k为大于1的整数;
    结果修正部分,配置为在接收到所述第二电子设备发送的第k个第一定位结果的情况下,根据所述第k个第一定位结果,对第k个第二定位结果进行修正,确定所述第一电子设备的第k个第三定位结果,其中,所述第k个第二定位结果是所述第一电子设 备对所述第k帧环境图像进行本地定位得到的;
    第一展示部分,配置为根据所述第k个第三定位结果,对所述第一电子设备的显示界面进行展示。
  14. 根据权利要求13所述的装置,其中,所述第k个第一定位结果包括第k个第一位姿信息,所述第k个第二定位结果包括第k个第二位姿信息,所述第k个第三定位结果包括第k个第三位姿信息,所述结果修正部分包括:当前偏差确定子部分,配置为根据所述第k个第一位姿信息和所述第k个第二位姿信息,确定第k次定位的当前位姿偏差;总体偏差确定子部分,配置为根据k次定位的k个第二位姿信息以及k个第三位姿信息,确定k次定位的总体位姿偏差;第一修正子部分,配置为根据所述第k次定位的当前位姿偏差以及所述k次定位的总体位姿偏差,对所述第k个第二定位结果进行位姿修正,确定第k个第三位姿信息。
  15. 根据权利要求14所述的装置,其中,所述总体偏差确定子部分还配置为:确定第i个第二位姿信息与第j个第二位姿信息之间的第一位姿变化信息,i,j为整数且1≤i<j≤k;确定第i个第三位姿信息与第j个第三位姿信息之间的第二位姿变化信息;根据所述第一位姿变化信息与所述第二位姿变化信息,确定第i帧环境图像至第j帧环境图像的位姿偏差;根据多个位姿偏差,确定所述k次定位的总体位姿偏差。
  16. 根据权利要求14或15所述的装置,其中,所述第k个第一定位结果还包括第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括第k帧环境图像中的二维特征点与所述第二电子设备的点云地图中的三维特征点之间的匹配信息,所述结果修正部分还包括:第二修正子部分,配置为根据所述第k帧的特征点匹配信息,对第k个第三位姿信息进行修正,确定修正后的第k个第三定位结果。
  17. 根据权利要求13所述的装置,其中,所述第k个第一定位结果包括第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括第k帧环境图像中的二维特征点与所述第二电子设备的点云地图中的三维特征点之间的匹配信息,所述结果修正部分包括:第三修正子部分,配置为根据第k帧的特征点匹配信息,对所述第k个第二定位结果进行修正,确定修正后的第k个第三定位结果。
  18. 根据权利要求13所述的装置,其中,所述装置还包括:第二请求发送部分,配置为向第二电子设备发送第a个第一定位请求,所述第a个第一定位请求中包括所述第一电子设备所在环境的第a帧环境图像,a为整数且a≥1;初始化部分,配置为在接收到所述第二电子设备发送的第a个第一定位结果的情况下,根据所述第a个第一定位结果,对所述第一电子设备中的SLAM系统进行初始化,确定所述第一电子设备的初始定位结果,所述第a个第一定位结果包括第a个第一位姿信息和/或第a帧的特征点匹配信息。
  19. 根据权利要求13-18中任意一项所述的装置,其中,所述第二电子设备发送的第k个第一定位结果还包括第一区域地图,所述第一区域地图包括与所述第一电子设备对应的地理区域的点云子地图,所述装置还包括:第一匹配定位部分,配置为对所述第k个第三定位结果与所述第一区域地图中的点云子地图进行投影匹配,确定所述第一电子设备的第四定位结果;第二展示部分,配置为根据所述第四定位结果,对所述第一电子设备的显示界面进行展示。
  20. 根据权利要求13-18中任意一项所述的装置,其中,所述装置还包括:区域判断部分,配置为根据所述第一电子设备的第k个第二定位结果及所述第一电子设备本地的第二区域地图,判断所述第一电子设备是否处于所述第二区域地图内,所述第二区域地图为所述第二电子设备已发送的区域地图;所述第一请求发送部分包括:第一发送子部分,配置为在所述第一电子设备处于所述第二区域地图内的情况下,向第二电子设备 发送第k个第一定位请求。
  21. 根据权利要求20所述的装置,其中,所述装置还包括:第三请求发送部分,配置为在所述第一电子设备未处于所述第二区域地图内的情况下,向所述第二电子设备发送第二定位请求,所述第二定位请求中包括所述第一电子设备所在环境的第k帧环境图像;第二匹配定位部分,配置为在接收到所述第二电子设备发送的第三区域地图的情况下,对当前的第二定位结果与所述第三区域地图中的点云子地图进行投影匹配,确定所述第一电子设备的第五定位结果,所述第三区域地图包括与所述第一电子设备对应的地理区域的点云子地图;第三展示部分,配置为根据所述第五定位结果,对所述第一电子设备的显示界面进行展示。
  22. 根据权利要求13-21中任意一项所述的装置,其中,所述装置还包括:网络状态获取部分,配置为获取所述第一电子设备的网络状态,所述网络状态包括网络信号强度和/或信息传输速度;其中,所述第一请求发送部分包括:第二发送子部分,配置为在所述网络状态不满足预设的区域地图获取条件的情况下,向第二电子设备发送第k个第一定位请求,其中,所述区域地图获取条件包括:所述网络信号强度大于或等于信号强度阈值;和/或,所述信息传输速度大于或等于速度阈值。
  23. 一种定位装置,应用于第二电子设备,包括:
    第一定位部分,配置为在接收到来自第一电子设备的第k个第一定位请求的情况下,根据预设的点云地图及所述第k个第一定位请求中的第k帧环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第k个第一定位结果;
    结果发送部分,配置为向所述第一电子设备发送所述第k个第一定位结果,以使所述第一电子设备根据所述第k个第一定位结果进行定位结果修正,其中,所述第k个第一定位结果包括第k个第一位姿信息和/或第k帧的特征点匹配信息,所述第k帧的特征点匹配信息包括所述第k帧环境图像中的二维特征点与所述点云地图中的三维特征点之间的匹配信息。
  24. 根据权利要求23所述的装置,其中,所述装置还包括:第二定位部分,配置为在接收到来自第一电子设备的第二定位请求的情况下,根据所述点云地图及所述第二定位请求中的环境图像,对所述第一电子设备进行视觉定位,得到所述第一电子设备的第六定位结果;子地图确定部分,配置为根据所述第六定位结果,从所述点云地图中确定出与所述第一电子设备对应的地理区域的点云子地图;区域地图发送部分,配置为向所述第一电子设备发送区域地图,以使所述第一电子设备根据所述区域地图进行定位及展示,所述区域地图包括与所述第一电子设备对应的地理区域的点云子地图。
  25. 一种电子设备,包括:处理器;配置为存储处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器存储的指令,以执行权利要求1至12中任意一项所述的方法。
  26. 一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现权利要求1至12中任意一项所述的方法。
  27. 一种计算机程序,包括计算机可读代码,在计算机可读代码在设备上运行的情况下,设备中的处理器执行用于实现权利要求1至12中任意一项所述的方法。
  28. 一种计算机程序产品,用于存储计算机可读指令,所述计算机可读指令被执行时使得计算机执行权利要求1至12中任意一项所述的方法。
PCT/CN2021/101021 2020-11-30 2021-06-18 定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序 WO2022110776A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022550162A JP7487321B2 (ja) 2020-11-30 2021-06-18 測位方法及びその装置、電子機器、記憶媒体、コンピュータプログラム製品、コンピュータプログラム
KR1020237016682A KR20230086782A (ko) 2020-11-30 2021-06-18 포지셔닝 방법 및 장치, 전자 기기, 저장 매체, 컴퓨터 프로그램 제품, 컴퓨터 프로그램

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011379583.5A CN112432637B (zh) 2020-11-30 2020-11-30 定位方法及装置、电子设备和存储介质
CN202011379583.5 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110776A1 true WO2022110776A1 (zh) 2022-06-02

Family

ID=74699140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101021 WO2022110776A1 (zh) 2020-11-30 2021-06-18 定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序

Country Status (4)

Country Link
JP (1) JP7487321B2 (zh)
KR (1) KR20230086782A (zh)
CN (1) CN112432637B (zh)
WO (1) WO2022110776A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576866A (zh) * 2023-07-13 2023-08-11 荣耀终端有限公司 导航方法和设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432637B (zh) * 2020-11-30 2023-04-07 浙江商汤科技开发有限公司 定位方法及装置、电子设备和存储介质
CN113932793B (zh) * 2021-09-24 2024-03-22 江门职业技术学院 三维坐标定位方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143821A (zh) * 2013-04-30 2015-12-09 高通股份有限公司 依据slam地图的广域定位
CN107818592A (zh) * 2017-11-24 2018-03-20 北京华捷艾米科技有限公司 协作式同步定位与地图构建的方法、系统及交互系统
CN110310326A (zh) * 2019-06-28 2019-10-08 北京百度网讯科技有限公司 一种位姿数据处理方法、装置、终端及计算机可读存储介质
CN110462420A (zh) * 2017-04-10 2019-11-15 蓝色视觉实验室英国有限公司 联合定位
US20200004266A1 (en) * 2019-08-01 2020-01-02 Lg Electronics Inc. Method of performing cloud slam in real time, and robot and cloud server for implementing the same
CN112432637A (zh) * 2020-11-30 2021-03-02 浙江商汤科技开发有限公司 定位方法及装置、电子设备和存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194183A (ja) * 1992-12-22 1994-07-15 Japan Radio Co Ltd 移動体の現在位置表示装置
JP2002277253A (ja) * 2001-03-19 2002-09-25 Sanyo Electric Co Ltd ナビゲーション装置及びサーバー装置
KR101786583B1 (ko) * 2011-02-14 2017-10-19 주식회사 케이티 교통 영상을 제공하는 장치
US10735902B1 (en) * 2014-04-09 2020-08-04 Accuware, Inc. Method and computer program for taking action based on determined movement path of mobile devices
JP6440539B2 (ja) * 2015-03-13 2018-12-19 三菱電機株式会社 設備情報表示システム、モバイル端末、サーバおよび設備情報表示方法
CN107907124B (zh) * 2017-09-30 2020-05-15 杭州迦智科技有限公司 基于场景重识的定位方法、电子设备、存储介质、系统
JP7259454B2 (ja) * 2019-03-22 2023-04-18 富士通株式会社 移動体位置推定システムおよび移動体位置推定方法
CN110298269B (zh) * 2019-06-13 2021-11-02 北京百度网讯科技有限公司 场景图像定位方法、装置、设备及可读存储介质
CN111462226A (zh) * 2020-01-19 2020-07-28 杭州海康威视系统技术有限公司 一种定位方法、系统、装置、电子设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143821A (zh) * 2013-04-30 2015-12-09 高通股份有限公司 依据slam地图的广域定位
CN110462420A (zh) * 2017-04-10 2019-11-15 蓝色视觉实验室英国有限公司 联合定位
CN107818592A (zh) * 2017-11-24 2018-03-20 北京华捷艾米科技有限公司 协作式同步定位与地图构建的方法、系统及交互系统
CN110310326A (zh) * 2019-06-28 2019-10-08 北京百度网讯科技有限公司 一种位姿数据处理方法、装置、终端及计算机可读存储介质
US20200004266A1 (en) * 2019-08-01 2020-01-02 Lg Electronics Inc. Method of performing cloud slam in real time, and robot and cloud server for implementing the same
CN112432637A (zh) * 2020-11-30 2021-03-02 浙江商汤科技开发有限公司 定位方法及装置、电子设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576866A (zh) * 2023-07-13 2023-08-11 荣耀终端有限公司 导航方法和设备
CN116576866B (zh) * 2023-07-13 2023-10-27 荣耀终端有限公司 导航方法和设备

Also Published As

Publication number Publication date
KR20230086782A (ko) 2023-06-15
CN112432637A (zh) 2021-03-02
CN112432637B (zh) 2023-04-07
JP7487321B2 (ja) 2024-05-20
JP2023514724A (ja) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2022110776A1 (zh) 定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序
KR20190077014A (ko) 증강 현실에 기초한 사용자 위치 결정
CN111983635B (zh) 位姿确定方法及装置、电子设备和存储介质
TWI767217B (zh) 坐標系對齊的方法及裝置、電子設備和計算機可讀存儲介質
TWI758205B (zh) 目標檢測方法、電子設備和電腦可讀儲存介質
CN111664866A (zh) 定位展示方法及装置、定位方法及装置和电子设备
WO2021088498A1 (zh) 虚拟物体显示方法以及电子设备
WO2022134475A1 (zh) 点云地图构建方法及装置、电子设备、存储介质和程序
WO2022110785A1 (zh) 定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序
CN112433211B (zh) 一种位姿确定方法及装置、电子设备和存储介质
WO2022179080A1 (zh) 定位方法、装置、电子设备、存储介质、程序及产品
TW202301275A (zh) 深度檢測方法及裝置、電子設備、儲存媒體和程式產品
US20220228869A1 (en) Method and apparatus for generating semantic map, and readable storage medium
CN112837372A (zh) 数据生成方法及装置、电子设备和存储介质
WO2022110777A1 (zh) 定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序
CN112767541A (zh) 三维重建方法及装置、电子设备和存储介质
WO2022237071A1 (zh) 定位方法及装置、电子设备、存储介质和计算机程序
WO2022110801A1 (zh) 数据处理方法及装置、电子设备和存储介质
CN112700468A (zh) 位姿确定方法及装置、电子设备和存储介质
CN112308878A (zh) 一种信息处理方法、装置、电子设备和存储介质
CN117115244A (zh) 云端重定位方法、装置及存储介质
CN112950713A (zh) 定位方法及装置、电子设备和存储介质
CN113160424A (zh) 基于增强现实的虚拟对象的摆放方法及装置、设备和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550162

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237016682

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896284

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21896284

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/11/2023)