WO2022110748A1 - 电机、动力总成和设备 - Google Patents

电机、动力总成和设备 Download PDF

Info

Publication number
WO2022110748A1
WO2022110748A1 PCT/CN2021/098023 CN2021098023W WO2022110748A1 WO 2022110748 A1 WO2022110748 A1 WO 2022110748A1 CN 2021098023 W CN2021098023 W CN 2021098023W WO 2022110748 A1 WO2022110748 A1 WO 2022110748A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil passage
groove
fuel injection
motor
Prior art date
Application number
PCT/CN2021/098023
Other languages
English (en)
French (fr)
Inventor
刘红兵
徐海淞
额尔和木·巴亚尔
杨少波
陈君
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21896257.9A priority Critical patent/EP4236036A4/en
Publication of WO2022110748A1 publication Critical patent/WO2022110748A1/zh
Priority to US18/321,102 priority patent/US20230318370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the embodiments of the present application relate to the technical field of electric motors, and in particular, to an electric motor, a powertrain, and a device.
  • the motor is an electromagnetic device that realizes the conversion or transmission of electrical energy according to the law of electromagnetic induction.
  • the power density of motors has gradually increased.
  • improving the heat dissipation efficiency and heat dissipation capacity of motors has become an urgent technical problem to be solved.
  • the motor mainly includes a casing, a stator core, a rotor, and a coil winding.
  • a stator core there are structural components at both ends of the stator core.
  • the structural components and the casing form a sealed cavity.
  • the stator core, rotor and coil windings are located in the sealed cavity. in vivo. Among them, when the motor is running, it will generate a lot of heat, and cold water or oil cooling is often used to dissipate the heat of the motor.
  • the embodiments of the present application provide a motor, a powertrain, and a device, which achieve the purpose of double-layer oil supply on the outer surface of the stator iron core and the root of the coil slot of the stator iron core, and ensure effective cooling of the stator iron core and coil windings , so as to ensure the heat dissipation requirements of the motor under low-speed, high-torque and high-speed conditions, and solve the problem of poor heat dissipation of the stator core and coil windings in the existing motor. There is an overheating problem.
  • a first aspect of the embodiments of the present application provides a motor, including a casing, at least a stator is arranged in the casing, the stator includes: a stator iron core and a coil winding, and the inner surface of the stator iron core has a plurality of intervals A coil slot is provided, and the part of the coil winding is located in the coil slot;
  • a plurality of first oil passages are formed between the inner surface of the casing and the outer surface of the stator iron core, and the plurality of first oil passages are arranged at intervals along the outer circumference of the stator iron core, and there are many Each of the first oil passages is in communication with the oil filling port opened on the housing;
  • One end of the plurality of first oil passages is communicated with one end of part of the second oil passage, and the other end of the part of the second oil passage is communicated with the nozzle at one end of the motor, and the plurality of first oil passages
  • the other end of the second oil passage is communicated with one end of the remaining second oil passages, and the other end of the remaining second oil passages is communicated with the nozzle at the other end of the motor.
  • first oil passages By forming a plurality of first oil passages between the inner surface of the housing and the outer surface of the stator iron core, second oil passages are formed at the slot roots of the coil slots of the stator iron core, and the first oil passages are
  • the oil channel can cool the outer surface of the stator iron core, and the second oil channel can dissipate heat around the coil slot of the stator iron core and the coil winding, thus realizing the double layer on the outer surface of the stator iron core and the root of the coil slot of the stator iron core.
  • the two-layer oil channel design increases the contact area between the cooling oil and the stator, which can significantly improve the heat dissipation capacity of the stator and coil.
  • one end of the plurality of first oil passages is communicated with part of the second oil passages, the other end of the plurality of first oil passages is communicated with the remaining part of the second oil passages, and each second oil passage is communicated with the nozzle at the end of the motor, so that After the cooling oil is injected from the oil injection port, part of the second oil passages and the cooling oil in the remaining part of the second oil passages flow in the opposite direction, thus realizing the staggered reverse flow and making the axial temperature of the stator core and the coil winding more uniform.
  • the motor provided by the embodiment ensures the effective cooling of the stator iron core and the coil winding, ensures the heat dissipation requirement of the motor under the conditions of low speed, high torque and high speed, and solves the problem of insufficient heat dissipation of the stator iron core and the coil winding in the existing motor. Therefore, the motor is prone to overheating of the coil windings under the conditions of low speed, high torque and high speed.
  • it further includes: a first end cap and a second end cap;
  • the first end cover and the second end cover are respectively located at two ends of the stator iron core
  • the first end cover is provided with a plurality of first nozzles arranged at intervals, and the second end cover is provided with a plurality of second nozzles arranged at intervals;
  • One end of the plurality of first oil passages is communicated with one end of the part of the second oil passage through the first end cap, and the other end of the part of the second oil passage is communicated with the plurality of the second nozzles;
  • the other ends of the plurality of first oil passages are communicated with one end of the remaining second oil passages through the second end cap, and the other ends of the remaining second oil passages are communicated with the plurality of first nozzles.
  • a third oil passage is formed between the first end cover and one end face of the stator iron core
  • a fourth oil passage is formed between the second end cover and the other end face of the stator core
  • One end of the plurality of first oil passages communicates with one end of part of the second oil passages through the third oil passage, and the other ends of the plurality of first oil passages communicate with the rest of the oil passages through the fourth oil passage.
  • One end of the second oil passage is in communication, the first nozzle is separated from the third oil passage and communicated with the fourth oil passage, and the second nozzle is separated from the fourth oil passage and communicated with the fourth oil passage.
  • the third oil passage is communicated.
  • the cooling oil realizes the mixed flow effect at the third oil passage and the fourth oil passage, so that the cooling oil is distributed more evenly in the circumferential direction, thereby reducing the variation of the circumferential temperature of the stator. Uniformity, so that the stator can achieve uniform heat dissipation in the circumferential direction.
  • the first end cover at least includes: a first annular end plate, and the third oil passage is formed between the first annular end plate and one end face of the stator core ;
  • the second end cover at least includes a second annular end plate, and the fourth oil passage is formed between the second annular end plate and the other end surface of the stator iron core.
  • a plurality of the first nozzles are arranged at intervals along the circumference of the first annular end plate;
  • a plurality of the second nozzles are spaced along the circumference of the second annular end plate.
  • the cooling oil sprayed from the plurality of first nozzles can uniformly dissipate heat in the circumferential direction of the first end of the coil winding
  • the cooling oil sprayed from the plurality of second nozzles can uniformly dissipate heat in the circumferential direction of the second end of the coil winding. heat dissipation.
  • the orthographic projections of the plurality of second nozzles toward the first annular end plate and the plurality of first nozzles are alternately arranged on the circumference of the first annular end plate.
  • a plurality of first blocking blocks arranged at intervals are disposed on the inner edge of the first annular end plate, and one end of the first blocking blocks abuts against one end face of the stator iron core
  • the first nozzle is opened on the first blocking block, and the first nozzle is separated from the third oil passage by the first blocking block;
  • the inner edge of the second annular end plate is provided with a plurality of second blocking blocks arranged at intervals, one end of the second blocking blocks abuts on the other end surface of the stator core, and the second blocking blocks
  • the second nozzle is opened on the top, and the second nozzle is separated from the fourth oil passage by the second blocking block.
  • the first blocking block has a first concave portion, and the first spout is located at the first concave portion;
  • the second blocking block has a second concave portion, and the second spout is located at the second concave portion.
  • the first end cover further includes: a first extension plate that is axially protruded and connected to the outer edge of the first annular end plate, and the second end cover further includes: a second extension plate axially protruding and connected to the outer edge of the second annular end plate;
  • a first fuel injection chamber is formed between the outer surface of the first extension plate and the housing, and a third injection port communicated with the first fuel injection chamber is formed on the first extension plate;
  • a second fuel injection chamber is formed between the outer surface of the second extension plate and the casing, and a fourth injection port communicated with the second fuel injection chamber is provided on the second extension plate;
  • both the first fuel injection chamber and the second fuel injection chamber communicate with the fuel injection port.
  • first extension plate and the second extension plate are both annular structures, and the first fuel injection chamber and the second fuel injection chamber are both annular chambers.
  • both the first extension plate and the second extension plate are arc segments, and the first extension plate and the second extension plate are respectively located on the first annular end plate and the top outer edge of the second annular end plate.
  • a plurality of first through grooves and a plurality of second through grooves are respectively defined on the outer surfaces of the first extension plate and the second extension plate;
  • Two ends of the plurality of first through grooves are respectively communicated with the first fuel injection chamber and one end of the plurality of first oil passages;
  • Two ends of the plurality of second through grooves are respectively communicated with the second fuel injection chamber and the other ends of the plurality of first oil passages.
  • a fifth oil passage is provided in the housing, and the fifth oil passage is respectively connected with the oil injection port, the first oil injection chamber and the second oil injection chamber Connected.
  • the first fuel injection chamber and the second fuel injection chamber are communicated with the fuel injection port through the fifth oil passage inside the casing, and the cooling oil enters the first fuel injection chamber and the second fuel injection chamber from the inside of the casing through the fifth oil passage
  • the oil chamber is cooled to the first end and the second end of the coil winding, shortening the flow path of the cooling oil when cooling the first end and the second end of the coil winding, thereby cooling the first and second ends of the coil winding.
  • the one end and the second end achieve better heat dissipation.
  • the first end cover further includes: a first extension plate that is axially protruded and connected to the outer edge of the first annular end plate, and the second end cover further includes: a second extension plate axially protruding and connected to the outer edge of the second annular end plate;
  • a first fuel injection chamber is formed between the outer surface of the first extension plate and the casing, and a plurality of the first injection ports communicated with the first fuel injection chamber are provided on the first extension plate ;
  • a second fuel injection chamber is formed between the outer surface of the second extension plate and the casing, and a plurality of the second injection ports communicated with the second fuel injection chamber are provided on the second extension plate .
  • a plurality of sixth oil passages are opened in the first annular end plate, and two ends of the plurality of sixth oil passages are respectively connected with the first fuel injection chamber and part of the the second oil passage is connected;
  • a plurality of seventh oil passages are opened in the second annular end plate, and two ends of the plurality of seventh oil passages are respectively communicated with the second fuel injection chamber and the rest of the second oil passages.
  • a plurality of first grooves are provided on the outer surface of the first extension plate, and two ends of the first grooves are respectively connected with the sixth oil passage and the first groove.
  • the fuel injection chamber is connected;
  • a plurality of second grooves are provided on the outer surface of the second extension plate, and two ends of the second grooves are respectively communicated with the seventh oil passage and the second oil injection chamber.
  • oil outlet ports are respectively provided on the groove walls of the first groove and the second groove close to the stator iron core, and the outlet ports on the first groove The oil port is communicated with the sixth oil passage, and the oil outlet on the second groove is communicated with the seventh oil passage;
  • a plurality of spaced first blocking blocks and a plurality of spaced second blocking blocks are respectively provided on the side of the first annular end plate and the second annular end plate facing the stator core, the A first oil inlet communicated with the sixth oil passage is set on a blocking block, and a second oil inlet communicated with the seventh oil passage is set on the second blocking block.
  • a plurality of the seventh oil passages communicate with the remaining second oil passages through the second oil inlets.
  • a third groove is formed on the outer surface of the first extension plate, and the first fuel injection is enclosed between the third groove and the inner surface of the casing Chamber;
  • a fourth groove is formed on the outer surface of the second extension plate, and the second fuel injection chamber is enclosed between the fourth groove and the inner surface of the casing.
  • a plurality of oil grooves are provided on the outer surface of the stator iron core, the plurality of oil grooves are arranged at intervals along the outer circumference of the stator iron core, and both ends of each oil groove extend to the two end faces of the stator core;
  • the oil groove and the inner surface of the housing enclose the first oil passage.
  • At least part of the groove bottom of the oil groove is an uneven arc groove bottom.
  • the groove widths of the plurality of oil grooves are equal, or the groove widths of the plurality of oil grooves are different, or the groove widths of some of the oil grooves in the plurality of oil grooves are larger than that of some of the oil grooves. Slot width.
  • a plurality of first protrusions arranged at intervals are provided at the outer edge of the side of the first end cover facing the stator iron core, and the plurality of first protrusions are along the circumferentially arranged along the outer edge of the first end cover, and one end of the first bump abuts one end face of the stator iron core;
  • the outer edge of the side facing the stator iron core of the second end cover is provided with second bumps, and a plurality of the second bumps are circumferentially arranged along the outer edge of the second end cover, so One end of the second bump is pressed against the other end face of the stator core;
  • first bump and the second bump are respectively staggered from both ends of the first oil passage in the circumferential direction.
  • the shape of the spout is a flat structure, or the shape of the spout is a circular structure.
  • the spout is an inclined spout inclined toward the direction of the coil winding.
  • a fifth groove is formed at the bottom of at least part of the coil slots, and an insulating layer is provided in the coil slot, and the insulating layer is used to separate the stator core and the The coil windings are spaced apart, and the fifth groove and a portion of the insulating layer enclose a second oil passage.
  • the width of the slot of the fifth groove is a
  • the width of the bottom of the coil slot is b
  • the a is smaller than the b.
  • the groove bottom width of the fifth groove is c, and the c is greater than the a.
  • a second aspect of the embodiments of the present application provides a power assembly including at least a speed reducer and any one of the above-mentioned motors, wherein the motor is connected to the speed reducer through a rotating shaft.
  • stator core's coil slots and coil windings dissipate heat, and after the cooling oil is injected from the oil injection port, part of the second oil passage and the cooling oil in the rest of the second oil passages flow in the opposite direction, thus realizing the staggered reverse flow and making the stator core
  • the axial temperature of the coil winding and the coil winding are more uniform, which ensures the effective cooling of the stator core and the coil winding, and ensures the heat dissipation demand of the motor under the condition of low speed, high torque and high speed, so that the powertrain can realize the development of miniaturization. , to ensure that the powertrain has a good heat dissipation capacity, so that the performance of the powertrain can be further improved.
  • a third aspect of the embodiments of the present application provides a device, comprising at least a wheel, a transmission component, and any one of the above-mentioned motors, and the motor is connected to the wheel through the transmission component.
  • stator core's coil slots and coil windings dissipate heat, and after the cooling oil is injected from the oil injection port, part of the second oil passage and the cooling oil in the rest of the second oil passages flow in the opposite direction, thus realizing the staggered reverse flow and making the stator core
  • the axial temperature of the coil winding and the coil winding are more uniform, which ensures the effective cooling of the stator core and the coil winding, ensures the heat dissipation demand of the motor under the conditions of low speed, high torque and high speed, and ensures the good performance of the equipment under different working conditions. work performance.
  • FIG. 1 is a schematic diagram of a motor provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a partially disassembled structure of a motor provided by an embodiment of the present application
  • 3A is a schematic cross-sectional view along the B-B direction in FIG. 2;
  • 3B is a schematic cross-sectional view along the A-A direction in FIG. 2;
  • FIG. 4A is a cross-sectional view of a motor provided by an embodiment of the present application.
  • FIG. 4B is a schematic cross-sectional view of a motor provided in an embodiment of the present application along the C-C direction in FIG. 4A;
  • FIG. 5 is a schematic diagram of a flow direction of cooling oil on a motor provided by an embodiment of the present application.
  • Fig. 6 is the flow direction schematic diagram of cooling oil in the structure shown in Fig. 4;
  • FIG. 7 is a cross-sectional view of a motor provided in an embodiment of the present application in another direction;
  • 8A is a partial schematic view of a heat transfer path when oil passages are provided in the coil windings of the motor
  • 8B is a partial schematic diagram of a heat transfer path when oil passages are provided at the slot roots of the coil slots of the motor;
  • 8C is a partial schematic diagram of a heat transfer path when a motor dissipates heat according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a stator core in a motor provided by an embodiment of the present application.
  • Fig. 10 is a partial enlarged schematic view of the stator core shown in Fig. 9;
  • FIG. 11 is a partial structural schematic diagram of a stator core of a motor provided by an embodiment of the present application.
  • FIG. 12 is a front view of a motor provided by an embodiment of the present application.
  • Figure 13 is a schematic cross-sectional view along the E-E direction in Figure 12;
  • Fig. 14 is the enlarged schematic diagram of the dashed-line frame portion of Fig. 13;
  • Figure 15 is a schematic cross-sectional view along the D-D direction in Figure 12;
  • Fig. 16 is the enlarged schematic diagram of the dashed-line frame portion of Fig. 15;
  • 17 is a schematic structural diagram of a first end cover in a motor provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of the first end cover in the motor provided by an embodiment of the present application in another direction;
  • FIG. 19 is a schematic view of the back of a first end cover in a motor provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a partial end face of a stator iron core of a motor and a first blocking block on a first end cover provided by an embodiment of the present application;
  • 21 is a schematic structural diagram of a first end cover and a second end cover in a motor provided by an embodiment of the present application;
  • FIG. 22 is a schematic diagram after assembly of a first end cover, a second end cover, a coil winding, and a stator core of a motor provided by an embodiment of the present application;
  • Fig. 23 is the enlarged schematic diagram of the dashed-line frame portion in Fig. 22;
  • 24 is a schematic diagram of the first end cover when the second nozzle on the second end cover in the motor provided by an embodiment of the present application is projected toward the first end cover;
  • 25 is a schematic cross-sectional view of a motor provided by an embodiment of the present application.
  • 26 is a schematic cross-sectional view of a motor provided in an embodiment of the present application in another direction;
  • FIG. 27 is a schematic diagram of a motor provided by an embodiment of the present application when no casing is provided;
  • 28A is a schematic diagram of a first end cover in a motor provided by an embodiment of the present application.
  • 28B is a schematic diagram of a second end cover in a motor provided by an embodiment of the present application.
  • 29 is a schematic front view of a first end cover in a motor provided by an embodiment of the present application.
  • FIG. 30 is a schematic rear view of a first end cover in a motor provided by an embodiment of the present application.
  • 31 is a schematic cross-sectional view of a motor provided by an embodiment of the present application.
  • Figure 32 is an enlarged schematic view of the dashed-line frame portion in the upper right corner of Figure 31;
  • Figure 33 is an enlarged schematic view of the dashed frame portion in the lower left corner of Figure 31;
  • 34 is a schematic three-dimensional structure diagram of a motor provided by an embodiment of the present application.
  • 35 is a schematic three-dimensional structural diagram of a motor provided by an embodiment of the present application after the casing is removed;
  • 36 is a schematic cross-sectional view of a motor provided by an embodiment of the present application.
  • Fig. 37 is the enlarged schematic diagram of the dashed-line frame portion in the upper left corner in Fig. 36;
  • Figure 38 is an enlarged schematic view of the dashed frame portion in the lower right corner of Figure 36;
  • 39 is a schematic structural diagram of a first end cover in a motor provided by an embodiment of the present application.
  • FIG. 40 is a schematic structural diagram of the first end cover in another direction of the motor provided by an embodiment of the present application.
  • 41 is a schematic structural diagram of a first end cover and a second end cover in a motor provided by an embodiment of the present application;
  • 43 is a schematic three-dimensional structural diagram of the motor provided by an embodiment of the present application after removing the casing;
  • 44 is a schematic structural diagram of a first end cover in a motor provided by an embodiment of the present application.
  • 46 is a schematic diagram of a rear structure of a first end cover in a motor provided by an embodiment of the present application.
  • 47 is a schematic structural diagram of a first end cover and a second end cover in a motor provided by an embodiment of the present application;
  • FIG. 48 is a schematic cross-sectional view of a motor provided by an embodiment of the present application.
  • Figure 49 is an enlarged schematic view of the dashed-line frame portion in the upper left corner of Figure 48;
  • Figure 50 is an enlarged schematic view of the dashed frame portion in the lower right corner of Figure 48;
  • 51 is a schematic three-dimensional structural diagram of a motor provided by an embodiment of the present application.
  • FIG. 52 is a schematic three-dimensional structural diagram of a motor provided by an embodiment of the present application after the casing is removed;
  • 53 is a schematic structural diagram of a first end cover in a motor provided by an embodiment of the present application.
  • FIG. 54 is a schematic structural diagram of the first end cover in the motor provided in an embodiment of the present application in another direction;
  • 55 is a schematic front view of the structure of the first end cover in the motor provided by an embodiment of the present application.
  • 56 is a schematic side view of a first end cover in a motor provided by an embodiment of the present application.
  • 57 is a schematic structural diagram of a first end cover and a second end cover in a motor provided by an embodiment of the present application;
  • 58 is a schematic cross-sectional view of a motor provided by an embodiment of the present application.
  • Figure 59 is an enlarged schematic view of the dashed-line frame portion in the upper left corner of Figure 58;
  • FIG. 60 is an enlarged schematic view of the portion of the dashed box in the upper right corner of FIG. 58 .
  • 100-motor 101, 101a, 101b, 101c-first oil passage; 102, 102a, 102b-second oil passage, 102c-oil passage; 103-third oil passage; 104-fourth oil passage; 105-first oil passage Five oil channels; 106 - sixth oil channel; 107 - seventh oil channel.
  • the motor often generates a lot of heat during operation.
  • oil passages are often provided on the outer surface of the stator iron core of the motor.
  • the coil windings of the motor are provided with oil passages, and the cooling of the coil windings is realized through the oil passages in the coil windings.
  • the powertrain is developing towards miniaturization.
  • the maximum speed and current density of the motor in the miniaturized powertrain need to be further increased.
  • the increase of the maximum speed causes the increase of the motor core loss, and the increase of the current density will greatly increase the coil loss.
  • the coil winding is at risk of over-temperature due to the increase of current density, while at high speed, the increase of stator core loss will cause the middle of the coil (that is, located in the stator core) That part of the coil winding in the coil slot) is at risk of overtemperature. Therefore, the existing motor cooling method greatly restricts the miniaturized design of the powertrain.
  • an embodiment of the present application provides a motor, in which a plurality of first oil passages 101 are formed between the inner surface 12 of the housing 10 of the motor 100 and the outer surface of the stator iron core 20, A second oil passage 102 is formed at the slot root of the coil slot 23 of the core 20 .
  • the first oil passage 101 can cool the outer surface of the stator iron core 20
  • the second oil passage 102 can directly cool the coil slot 23 of the stator iron core 20 .
  • the surrounding and coil windings 30 are dissipated for heat dissipation, so that the purpose of double-layer oil passage on the outer surface of the stator iron core 20 and the root of the coil slot 23 of the stator iron core 20 is realized.
  • the two-layer oil channel design increases the contact area between the cooling oil and the stator. , which can significantly improve the heat dissipation capacity of the stator and coil.
  • One end of the plurality of first oil passages 101 is communicated with part of the second oil passages 102
  • the other ends of the plurality of first oil passages 101 are communicated with the remaining part of the second oil passages 102
  • each second oil passage 102 is connected with the end of the motor 100 .
  • the motor 100 ensures the effective cooling of the stator iron core 20 and the coil winding 30, and ensures the heat dissipation requirement of the motor 100 under the conditions of low speed, high torque and high speed.
  • the motor 100 provided in this embodiment of the present application can be applied to electric vehicles/equipment (Electric Vehicle, EV for short), pure equipment (Pure Electric Vehicle/Battery Electric Vehicle, PEV/BEV for short), hybrid electric vehicle (Hybrid Electric Vehicle (HEV), Range Extended Electric Vehicle (REEV), Plug-in Hybrid Electric Vehicle (PHEV), New Energy Vehicle, battery Management (Battery Management), motor 100 & drive (Motor & Driver), power conversion (Power Converter), reducer (Reducer) and so on.
  • Electric Vehicle Electric Vehicle
  • PEV/BEV pure equipment
  • hybrid electric vehicle Hybrid Electric Vehicle
  • REEV Range Extended Electric Vehicle
  • PHEV Plug-in Hybrid Electric Vehicle
  • New Energy Vehicle Battery Management
  • Battery Management Battery Management
  • Motor 100 & drive Motor & Driver
  • Power Converter Power Converter
  • reducer reducer
  • the motor 100 includes a casing 10 , a rotor (not shown) and a stator 50 are arranged in the casing 10 , the stator 50 is sleeved on the outer circumference of the rotor, and the stator 50 includes: a stator core 20 and a coil winding 30 , and the coil winding 30 is wound on the stator core 20 .
  • a plurality of coil slots 23 are evenly distributed along the circumferential direction on the inner surface of the stator iron core 20 , and the plurality of coil slots 23 are spaced apart from each other.
  • the coil windings 30 are wound on the stator core 20 through the coil slots 23 .
  • both ends of the coil winding 30 extend outward from both ends of the stator core 20 (see FIG. 2 ), that is, the coil winding 30
  • the axial length of the coil winding 30 is often greater than the axial length of the stator core 20 .
  • the ends of the coil winding 30 are the ends of the coil winding 30 extending from both ends of the stator core 20 .
  • the coil winding 30 includes a middle coil 33 located in the coil slot 23 and a first end portion 31 and a second end portion 32 extending from the coil slot 23 . Therefore, as shown in FIG. 3A , the middle coil 33 of the coil winding 30 is located in the coil slot 23 .
  • the structure of the oil filling port 11 includes but is not limited to the structure shown in FIG. 2 .
  • the oil filling port 11 is flush with the outer surface of the housing 10 . That is, the hole depth of the oil filling port 11 is consistent with the wall thickness of the casing 10 .
  • the inner surface 12 of the casing 10 is provided with a communication groove 13 along the circumferential direction of the casing 10, and the communication groove 13 is connected with the oil filling.
  • the port 11 is circulated, so that the coolant injected from the oil injection port 11 can communicate in the inner circumferential direction of the housing 10 through the communication groove 13, so that after the cooling oil is injected from the oil injection port 11, the cooling oil can diffuse to the stator through the flow groove Each circumferential position of the outer surface of the iron core 20 .
  • a plurality of first oil passages 101 are arranged at intervals along the outer circumference of the stator iron core 20 , for example, the plurality of first oil passages 101 can be arranged at a circumferential interval around the outer surface of the stator iron core 20 , the plurality of first oil passages 101 communicate with the oil filling ports 11 opened on the housing 10 through the communication grooves 13, so that after the cooling oil enters from the oil filling ports 11, the cooling oil can diffuse into each first oil passage 101 through the communication grooves 13 .
  • the cooling oil in the first oil passage 101 can achieve cooling of the outer surface of the stator core 20 .
  • a second oil passage 102 is formed at the bottom of the coil slot 23 of the stator core 20, since the plurality of coil slots 23 are arranged at intervals along the inner surface of the stator core 20, the second oil passage 102 may be formed at the bottom of each coil slot 23, or may be partially The groove bottoms of the coil slots 23 form the second oil passages 102 , and some of the coil grooves 23 may not form the second oil passages 102 .
  • a second oil passage 102 in order to dissipate heat from the coil windings 30 in each coil slot 23 , a second oil passage 102 (see FIG.
  • each coil slot 23 is formed at the bottom of each coil slot 23 , and a plurality of second oil passages 102 They are circumferentially spaced along the inner surface of the stator core 20 .
  • the cooling oil entering the second oil passage 102 in this way can dissipate heat to the middle coil 33 of the coil winding 30 and the area of the stator core 20 close to the second oil passage 102 .
  • the first oil passage 101 and the second oil passage 102 need to be communicated.
  • the core 20 uniformly dissipates heat in the axial direction, so one end of the plurality of first oil passages 101 is communicated with one end of part of the second oil passage 102, and the other end of part of the second oil passage 102 is communicated with the nozzle at one end of the motor 100, For example, as shown in FIG.
  • the cooling oil can enter a part of the second oil passage 102 (eg, the second oil passage 102 a ) from the left end of the first oil passage 101 , and pass through the second oil passage 102 from the nozzle ( For example, the second nozzle 421) ejects.
  • the other ends of the plurality of first oil passages 101 are communicated with one end of the remaining second oil passages 102 , and the other ends of the remaining second oil passages 102 are communicated with the nozzles at the other end of the motor 100 .
  • the right end of the 101 enters the remaining second oil passage 102 (eg, the second oil passage 102 b ), and after passing through the remaining second oil passage 102 , it is ejected from the nozzle (eg, the first nozzle 411 ) on the other side of the motor 100 .
  • the cooling oil when the cooling oil is injected from the oil injection port 11, the cooling oil often has a certain pressure. Therefore, the cooling oil is sprayed from the first nozzle 411 and the second nozzle 421 to the coil winding 30 with a certain pressure. The first end 31 and the second end 32 of the .
  • FIG. 4B the distribution of the second oil passages 102 a and the second oil passages 102 b is shown in FIG. 4B , and the plurality of second oil passages 102 a and the plurality of second oil passages 102 b alternate along the axial direction of the stator core 20 .
  • FIG. 5 after the cooling oil enters the first oil passage 101 , the cooling oil flows to both ends of the first oil passage 101 along the solid line arrow and the dotted line arrow respectively.
  • FIG. 6 is a schematic view cut along one of the second oil passages 102a at the top of the stator. Referring to FIG.
  • the cooling oil enters the plurality of second oil passages 102a from one end of the plurality of first oil passages 101 (see FIG. 6 ).
  • the solid line arrow in FIG. 6 the cooling oil enters the plurality of second oil passages 102b from the other ends of the plurality of first oil passages 101 (see the dashed line arrow in FIG. 6 ), so that the cooling oil in the plurality of second oil passages
  • the flow direction in 102a is opposite to the flow direction of the cooling oil in the plurality of second oil passages 102b (see the solid line arrows and the dashed line arrows in FIG. 6 ), so as to realize the staggered reverse flow, so that the cooling oil can flow to two of the coil windings 30 respectively. Therefore, the two ends of the coil winding 30 can be uniformly dissipated.
  • the cooling oil in the second oil passage 102a and the second oil passage 102b is sprayed from the nozzles on different sides, as shown in FIG. 6 , the cooling oil in the second oil passage 102a is sprayed from the second nozzle 421 , and sprayed to the second end 32 of the coil winding 30, the number of the second nozzles 421 can be multiple, so referring to the solid line arrow on the right side in FIG. 5, the cooling oil is sprayed from each second nozzle 421 and Spray toward the second end 32 of the coil winding 30 .
  • the cooling oil in the plurality of second oil passages 102 b is ejected from the first jetting port 411 and jetted toward the first end portion 31 of the coil winding 30 .
  • the number of the first nozzles 411 is plural, so as shown by the dotted arrow on the left in FIG. 5 , the cooling oil is sprayed from the plurality of first nozzles 411 to the first end of the coil winding 30 Section 31.
  • the staggered and reverse flow of the cooling oil in the plurality of second oil passages 102 ensures that the cooling oil sprayed from the first nozzle 411 and the second nozzle 421 can affect the first end 31 and the first end of the coil winding 30 .
  • the second ends 32 are respectively cooled, so that the cooling oil in the first oil passage 101 can effectively dissipate heat to the outer surface of the electronic iron core, and the cooling oil in the second oil passage 102 can cool the inner side of the stator iron core 20 and the coil winding 30 effectively.
  • the middle coil 33 of the coil winding 33 realizes effective heat dissipation, and the cooling oil in the second oil passage 102 alternately and countercurrently realizes the heat dissipation of the two ends of the coil winding 30, and finally, not only realizes the effective heat dissipation of the stator, but also ensures the stator
  • the uniform heat dissipation in the axial direction avoids the risk of overheating due to poor local heat dissipation of the coil winding 30 and the stator core 20 .
  • the distribution of the plurality of second oil passages 102a and the plurality of second oil passages 102b includes, but is not limited to, the structure shown in FIG. 4B .
  • Two or more second oil passages 102 are distributed between the oil passages 102a, which may be the second oil passage 102a, the second oil passage 102b, the second oil passage 102b, the second oil passage 102a, the second oil passage 102b , the arrangement of the second oil passage 102b.
  • FIG. 7 is a schematic diagram when cut along the second oil passage 102b at the top of the stator, and the flow direction of the cooling oil in the first oil passage 101 and the second oil passage 102 refers to the solid arrows and dashed arrows in FIG. 7 As shown, the cooling oil is ejected from the first nozzle 411 along the dashed arrow, and the cooling oil is ejected from the second nozzle 421 along the solid arrow.
  • one end of the plurality of first oil passages 101 when one end of the plurality of first oil passages 101 is communicated with the plurality of second oil passages 102a, one end of each first oil passage 101 may be communicated with each second oil passage 102a respectively, or it may be Therefore, one end of the plurality of first oil passages 101 is in communication with each of the second oil passages 102a. For example, the cooling oil flowing out from one end of the plurality of first oil passages 101 merges and then enters each of the second oil passages 102a respectively.
  • the cooling oil at one end of the plurality of first oil passages 101 enters into the second oil passage 102b, so the second oil passage 102a and the two ends of the second oil passage 102b are blocked to ensure that one end of the plurality of first oil passages 101 is connected to the plurality of second oil passages 102b.
  • the one second oil passage 102a communicates with the plurality of second oil passages 102b.
  • first end cover 41 and a second end cover The cover 42, the first end cover 41 and the second end cover 42 are respectively located at both ends of the stator core 20; the first end cover 41 is provided with a plurality of first nozzles 411 arranged at intervals, and the second end cover 42 is provided with A plurality of second nozzles 421 arranged at intervals; one end of the plurality of first oil passages 101 communicates with one end of a part of the second oil passage 102 (eg, the second oil passage 102 a ) through the first end cover 41 , and part of the second oil passage 102 The other end is communicated with a plurality of second nozzles 421 .
  • the other ends of the plurality of first oil passages 101 are communicated with one end of the remaining second oil passages 102 (eg, the second oil passages 102 b ) through the second end cap 42 , and the other ends of the remaining second oil passages 102 are connected with the plurality of first nozzles 411 Connected.
  • a third oil passage 103 is formed between the first end cover 41 and one end surface of the stator core 20 ; a third oil passage 103 is formed between the second end cover 42 and the other end surface of the stator core 20 .
  • Four oil passages 104 It should be noted that the third oil passage 103 is distributed in the entire circumferential direction between the first end cover 41 and the end face of the stator core 20.
  • the fourth oil passage 104 is distributed in the second end cover 42.
  • the third oil passage 103 and the fourth oil passage 104 are annular oil passages in the entire circumferential direction with the other end surface of the stator core 20 .
  • One end of the plurality of first oil passages 101 communicates with one end of part of the second oil passages 102 through the third oil passage 103 , and the other ends of the plurality of first oil passages 101 communicate with the rest of the second oil passages 102 through the fourth oil passage 104 . connected at one end.
  • one end of the plurality of first oil passages 101 is connected at the third oil passage 103 , that is, the cooling oil flows from one end of the plurality of first oil passages 101 into the third oil passage 103 for confluence, and then enters the respective parts after mixing.
  • the other ends of the plurality of first oil passages 101 are all connected at the fourth oil passage 104, that is, the cooling oil flows into the fourth oil passage 104 from the other ends of the plurality of first oil passages 101 After confluence, they enter part of the second oil passages 102b respectively after mixing.
  • the cooling oil achieves a mixed flow effect at the third oil passage 103 and the fourth oil passage 104, so that the cooling oil is distributed more uniformly in the circumferential direction , thereby reducing the unevenness of the stator circumferential temperature, so that the stator can achieve uniform heat dissipation in the circumferential direction.
  • first nozzle 411 on the first end cover 41 is separated from the third oil passage 103 (ie, not in communication) and communicates with the fourth oil passage 104
  • second nozzle 421 on the second end cover 42 is connected to the fourth oil passage 104
  • the fourth oil passage 104 is separated (ie, not connected) and communicated with the third oil passage 103, so as to ensure that the cooling oil entering the third oil passage 103 will not be directly ejected from the first nozzle 411, and correspondingly, enter the fourth oil passage 103.
  • the cooling oil of the channel 104 is not directly sprayed from the second nozzle 421 .
  • FIG. 8A shows that oil passages are provided in the coil winding 30 of the motor 100
  • FIG. 8A shows that oil passages are provided in the coil winding 30 of the motor 100
  • the oil passage 102c is only provided in the coil winding 30 (specifically, the middle coil 33 of the coil winding 30 ), the heat of the outer surface of the stator core 20 and the heat of the stator core 20
  • the heat near the coil slot 23 diffuses to the oil passage 102c in the direction of the solid arrow for heat dissipation, and the heat of the coil winding 30 diffuses to the oil passage 102c in the direction of the two dashed arrows.
  • FIG. 8B is a partial schematic diagram of the heat transfer path when oil passages are provided at the groove roots of the coil slots 23 of the motor 100.
  • oil passages 102c are formed at the groove roots of the coil slots 23.
  • the heat of the outer surface and the heat of the stator core 20 close to the coil slot 23 diffuses to the oil passage 102c in the direction of the solid arrow for heat dissipation, and the heat of the coil winding 30 diffuses to the oil passage 102c in the direction of the dashed arrow.
  • FIG. 8A the heat transfer paths of the outer surface of the stator core 20 in FIG. 8B are reduced.
  • FIG. 8C is a partial schematic diagram of the heat transfer path when the motor 100 dissipates heat according to an embodiment of the present application.
  • a first oil passage 101 is formed between the outer surface of the stator core 20 and the casing 10 , and the coil
  • the second oil passage 102 is formed at the slot root of the slot 23, so that part of the heat in the middle of the stator core 20 and the heat close to the coil slot 23 are transferred to the second oil passage 102 along the solid arrow for heat dissipation, and the heat of the coil winding 30 is dissipated along the
  • the outer surface of the stator iron core 20 and the middle part of the stator iron core 20 are transmitted to the first oil passage 101 along another solid arrow for heat dissipation.
  • the motor 100 provided in this embodiment improves the cooling effect of the stator and achieves effective heat dissipation for the stator core 20 and the coil winding 30 .
  • the motor 100 by forming a plurality of first oil passages 101 between the inner surface 12 of the housing 10 of the motor 100 and the outer surface of the stator core 20 , the coil slots 23 of the stator core 20 A second oil passage 102 is formed at the slot root of the stator core 20.
  • the first oil passage 101 can cool the outer surface of the stator core 20.
  • the second oil passage 102 can directly cool the coil slots 23 of the stator core 20 and the coil windings 30. In this way, the purpose of double-layer oil passage on the outer surface of the stator iron core 20 and the root of the coil slot 23 of the stator iron core 20 is realized.
  • the two-layer oil channel design increases the contact area between the cooling oil and the stator, which can significantly improve the stator and the stator. Coil heat dissipation capacity.
  • One end of the plurality of first oil passages 101 is communicated with part of the second oil passages 102 , the other ends of the plurality of first oil passages 101 are communicated with the remaining part of the second oil passages 102 , and each second oil passage 102 is connected with the end of the motor 100 .
  • the motor 100 ensures effective cooling of the stator core 20 and the coil winding 30, and ensures the heat dissipation of the motor 100 under low-speed, high-torque and high-speed conditions. According to the requirements, the problem that the coil winding 30 of the motor 100 is prone to overtemperature due to poor heat dissipation of the stator core 20 and the coil winding 30 in the existing motor 100 is solved.
  • one possible implementation is: as shown in FIG. 9 , in the stator core 20 There are a plurality of oil grooves 22 on the outer surface of the stator core 20, and the plurality of oil grooves 22 are arranged at intervals along the outer circumference of the stator iron core 20. The two ends of each oil groove 22 extend to the two end faces of the stator iron core 20. The oil grooves 22 and The inner surface 12 of the housing 10 encloses a first oil passage 101 .
  • a plurality of oil grooves 22 are provided on the inner surface 12 of the casing 10 , and the plurality of oil grooves 22 are arranged at intervals along the inner circumference of the casing 10 , and the oil grooves 22 are connected to the stator iron core.
  • the outer surface of 20 forms a first oil passage 101 .
  • a plurality of oil grooves 22 are provided on the outer surface of the stator iron core 20 , and the plurality of oil grooves 22 are arranged at intervals along the outer circumference of the stator iron core 20 . Both ends extend to the two end faces of the stator core 20 , a plurality of oil grooves 22 are provided on the inner surface 12 of the casing 10 , and the plurality of oil grooves 22 are arranged at intervals along the inner circumference of the casing 10 .
  • the oil grooves 22 on the surface and the oil grooves 22 on the outer surface of the stator core 20 together form the first oil passage 101 .
  • the following description specifically takes an example of enclosing the first oil passage 101 between the oil groove 22 on the outer surface of the stator core 20 and the inner surface of the housing 10 .
  • the groove widths or cross-sectional shapes of the plurality of oil grooves 22 may be the same, or as shown in FIG. 10, the groove widths or cross-sectional shapes of the plurality of oil grooves 22 may be different.
  • the groove bottom of at least part of the oil grooves 22 is an uneven arc groove bottom.
  • the groove widths of the plurality of oil grooves 22 are equal, or the groove widths of the plurality of oil grooves 22 are different, or, as shown in FIG.
  • the groove width of the oil groove 22b is smaller than the groove width of the oil groove 22a, so that under the same area, the number of the oil grooves 22b can be increased, thereby increasing the contact area between the cooling oil and the stator core 20, which is beneficial to the stator core.
  • the outer surface of the 20 achieves good cooling.
  • a possible implementation is that a fifth groove is formed at the groove bottom of at least part of the coil slot 23 . 21.
  • a fifth groove 21 is provided at the bottom of each coil slot 23.
  • an insulating layer 24 is provided in the coil slot 23. The insulating layer 24 is provided on the slot wall, and the coil winding 30 is insulated between the insulating layer 24 and the stator core 20 , that is, the insulating layer 24 is used to prevent the coil winding 30 from making electrical contact with the slot wall of the coil slot 23 on the stator core 20 .
  • the fifth groove 21 and part of the insulating layer 24 enclose the second oil passage 102.
  • the part of the insulating layer 24 located at the notch of the fifth groove 21 closes the notch of the fifth groove 21, so that the fifth groove 21 is closed.
  • the insulating layer 24 at the notch of the groove 21 and the groove wall of the fifth groove 21 enclose the second oil passage 102 .
  • the second oil passage 102 may also be formed by opening a hole at the slot bottom of the stator core 20 close to the coil slot 23 .
  • the second oil passage 102 is specifically formed in the manner shown in FIG. 11 .
  • the slot width of the fifth slot 21 is a, and the slot bottom width of the coil slot 23 is b, a is less than b, so that a step 211 is formed at the junction of the fifth groove 21 and the coil slot 23, and the insulating layer 24 can abut on the step to block the notch of the fifth groove 21, so, by a less than b, it is convenient to arrange the insulating layer 24 at the notch of the fifth groove 21 .
  • the width of the groove bottom of the fifth groove 21 is c, and c is greater than a, so the first oil passage 101 formed in this way can accommodate more cooling oil, so as to achieve good performance for the coil winding 30 and the stator core 20 . cooling purpose.
  • the cross-sectional outline of the fifth groove 21 is T-shaped.
  • the cross-sectional outline of the fifth groove 21 may also be umbrella-shaped or fan-shaped. shape.
  • the width c of the groove bottom of the fifth groove 21 may be greater than or equal to the width b of the groove bottom of the coil groove 23 .
  • FIG. 13 is a cross-sectional view along the E-E direction in FIG. 12 .
  • the oil groove 22 a (see FIG. 10 ) and the inner surface of the housing 10 form a first oil passage 101 a and an oil groove 22 b (see FIG. 10 ) a first oil passage 101 b is formed with the inner surface of the casing 10
  • the oil groove 22 c (see FIG. 10 ) is formed with the inner surface of the casing 10 to form a first oil passage 101 c .
  • FIG. 16 is an enlarged schematic view of the dotted frame in FIG. 15 .
  • the cooling oil injected from the oil injection port 11 enters the communication groove 13 , and the cooling oil enters each first oil passage through the communication groove 13 . 101.
  • the first end cover 41 and the second end cover 42 realize that one end of the plurality of first oil passages 101 communicates with part of the second oil passage 102a, and the other end of the plurality of first oil passages 101 communicates with part of the second oil passage 102a.
  • the manner in which the oil passages 102b communicate will be described in detail.
  • the first end cover 41 at least includes: a first annular end plate 401 , and a third oil passage 103 is formed between the first annular end plate 401 and one end face of the stator core 20 (See Figure 25 below).
  • the second end cover 42 includes at least: a second annular end plate 402 , and a fourth oil passage 104 is formed between the second annular end plate 402 and the other end face of the stator core 20 (see FIG. 25 below) .
  • a plurality of first nozzles 411 are arranged at intervals along the circumference of the first annular end plate 401 , and as shown in FIG. 20 , a plurality of second nozzles 421 are spaced along the circumference of the second annular end plate 402 set up.
  • the cooling oil sprayed from the plurality of first nozzles 411 can uniformly dissipate heat in the circumferential direction of the first end portion 31 of the coil winding 30
  • the cooling oil sprayed from the plurality of second nozzles 421 can dissipate heat to the second end of the coil winding 30 .
  • the circumferential direction of the portion 32 uniformly dissipates heat.
  • the inner edge 413 (see FIG. 17 ) of the first annular end plate 401 is provided with a plurality of first blocking blocks 416 arranged at intervals, and one end of the first blocking blocks 416 abuts against the stator core 20 19, the first blocking block 416 is provided with a first nozzle 411, and the first nozzle 411 is separated from the third oil passage 103 by the first blocking block 416, so, see FIG. 20.
  • the first blocking block 416 blocks the end of the plurality of second oil passages 102b facing the first end cover 41, so that the third oil passage 103 is not communicated with the plurality of second oil passages 102b.
  • the first nozzle 411 is provided on the first blocking block 416 to ensure that the second oil passage 102b is communicated with the first nozzle 411, so this
  • the third oil passage 103 is separated from part of the second oil passage 102b, and on the other hand, part of the second oil passage 1025b is communicated with the first nozzle 411.
  • the first blocking block 416 has a first concave portion 417 , and the first spout 411 is located at the first concave portion 417 , wherein, as shown in FIG. 19 , the opening area of the first concave portion 417 is larger than that of the first concave portion 417 .
  • the opening area of the spout 411 is such that the other end of part of the second oil passage 102b communicates with the first concave portion 417 to realize the communication with the first spout 411, which reduces the one-to-one correspondence between the first spout 411 and the second oil passage 102b. time difficulty.
  • the position of the first nozzle 411 is not limited to the position of one end of the second oil passage 102b.
  • the cooling oil sprayed from the first nozzle 411 tends to contact the area of the first end 31 close to the stator iron core 20 to achieve cooling, while the area of the first end 31 far from the stator iron core 20 is often unable to
  • the first nozzle 411 when the first nozzle 411 is disposed on the first recess 417, it can be vertically away from the first end 31, so that the first nozzle 411 sprays out
  • the cooling oil can also cool the outer end of the first end portion 31 .
  • the inner edge 423 of the second annular end plate 402 is provided with a plurality of second blocking blocks 426 arranged at intervals, and one end of the second blocking blocks 426 abuts against the other end face of the stator core 20
  • the second blocking block 426 is provided with a second nozzle 421 , and the second nozzle 421 is separated from the fourth oil passage 104 by the second blocking block 426 .
  • the second blocking block 426 separates the fourth oil passage 104 from part of the second oil passage 102a, and connects part of the second oil passage 102a with the second nozzle 421.
  • the second blocking block 426 has a second concave portion 427 , and the second spout 421 is located at the second concave portion 427 .
  • the role of the second recessed portion 427 may refer to the role of the first recessed portion 417 described above.
  • the outer edge 412 of the first end cover 41 on the side facing the stator core 20 is provided with a plurality of first bumps 414 arranged at intervals, and there are a plurality of first bumps 414 between two adjacent first bumps 414 .
  • a first space 415 is formed, and a plurality of first bumps 414 are circumferentially disposed along the outer edge of the first end cap 41 .
  • the outer edge 422 of the second end cover 42 facing the stator core 20 is provided with a second bump 424 , a second space 425 is formed between two adjacent second bumps 424 , and a plurality of second bumps 424 is disposed circumferentially along the outer edge of the second end cap 42 .
  • FIG. 23 is an enlarged schematic view of the dotted frame in FIG. 22 .
  • one end of the first bump 414 abuts one end face of the stator core 20
  • one end of the second bump 424 abuts against the stator core 20 on the other end.
  • each of the first bumps 414 is staggered from one end of the first oil passage 101 in the circumferential direction, so that the cooling oil in the first oil passage 101 can enter the third oil passage 103 through the first interval 105 (see FIG. 25).
  • each second bump 424 is staggered from one end of the first oil passage 101 in the circumferential direction, so that the cooling oil can enter the fourth oil passage 104 through the second interval 425 (see FIG. 25 ).
  • the orthographic projection of the plurality of second nozzles 421 toward the first annular end plate 401 and the plurality of first nozzles 411 are alternately arranged on the circumference of the first annular end plate 401 , so that the The uniform heat dissipation in the axial direction of the two ends of the coil winding 30 is achieved.
  • the first nozzle 411 and the second nozzle 421 are flat nozzles.
  • the shape of the first nozzle 411 and the second nozzle 421 can be a rectangle or a strip, so that the first nozzle 411
  • the radiation area of the cooling oil sprayed from the second nozzle 421 is wider, so that the two ends of the coil winding 30 have a larger contact area with the cooling oil, and the heat dissipation effect is better.
  • FIGS. 25 and 26 are schematic cross-sectional views of the motor 100 provided in this embodiment at two different positions.
  • the first blocking block 416 and the second blocking block 426 abut against two end faces of the stator core 20 respectively.
  • FIG. 26 when the cooling oil in the first oil passage 101 flows along the solid arrow, after entering the third oil passage 103 , it cannot enter each second oil passage 102 b under the blocking of each first blocking block 416 . Instead, it enters into each of the second oil passages 102 a through the third oil passages 103 , and finally ejects from the second nozzle 421 .
  • the first nozzle 411 is a circular nozzle
  • the second nozzle 421 is a circular nozzle
  • the plurality of first nozzles 411 are evenly spaced in the circumferential direction.
  • the first spout 411 is opened on the first concave portion 417 of the first blocking block 416 , and the first spout 411 is close to the outer ring of the first end cover 41 .
  • the circular nozzle when the first nozzle 411 and the second nozzle 421 are set as circular nozzles, under the same oil pressure, the circular nozzle can make the cooling oil spray to the two sides of the coil winding 30 at a faster speed. on the end.
  • the spout is an inclined spout inclined toward the direction of the coil winding 30.
  • the cooling oil can be sprayed toward the second end portion 32 along the inclined solid arrow in FIG. 32 , and as shown in FIG. In this way, the cooling oil can be sprayed concentratedly toward the second end portion 32 along the slanted broken line arrow in FIG. 33 .
  • first nozzle 411 and the second nozzle 421 are inclined nozzles
  • the shapes of the first nozzle 411 and the second nozzle 421 include but are not limited to being circular, that is, the shape of the first nozzle 411 and the second nozzle 421 is circular.
  • the shape is a flat structure
  • the first spout 411 and the second spout 421 can also be arranged in an inclined shape.
  • the cooling oil is sprayed to the two ends of the coil winding 30 in a concentrated manner, so that two ends of the coil winding 30 are realized. Good heat dissipation at the end.
  • the first spout 411 and the second spout 421 may be arranged face to face with the first end portion 31 and the second end portion 32
  • FIG. 35 is FIG. 34 35
  • the first end cover 41 further includes: a first extension plate 403 which is axially protruded and connected with the outer edge of the first annular end plate 401, that is, the first One end of an extension plate 403 is connected to the outer edge of the first annular end plate 401 , and the other end of the first extension plate 403 protrudes outward along the axial direction of the stator core 20 .
  • the second end cover 42 further includes: a second extension plate 404 that is axially protruded and connected to the outer edge of the second annular end plate 402 , that is, one end of the second extension plate 404 is connected to the outer edge of the second annular end plate 402 Connected, the other end of the second extension plate 404 protrudes outward along the axial direction of the stator core 20 .
  • the first extension plate 403 is arranged opposite to the first end portion 31
  • the second extension plate 404 is arranged opposite to the second end portion 32 .
  • a first fuel injection chamber 405 is formed between the outer surface of the first extension plate 403 and the casing 10 , and a plurality of first fuel injection chambers 405 are opened on the first extension plate 403 .
  • the first spout 411 that is, in the embodiment of the present application, the first spout 411 is opened on the first extension plate 403 .
  • a second fuel injection chamber 406 is formed between the outer surface of the second extension plate 404 and the housing 10 , and a plurality of second injection ports 421 communicated with the second fuel injection chamber 406 are defined on the second extension plate 404 , namely the second fuel injection chamber 406 .
  • the spout 421 is opened on the second extension plate 404 .
  • the first fuel injection chamber 405 and the second fuel injection chamber 406 are both connected to The oil injection ports 11 are connected, so that the cooling oil flows from one end of the first oil passages 101 to the third oil passages 103 along the solid arrows, and enters part of the second oil passages 102b after mixing through the third oil passages 103, and passes through the second oil passages 102b.
  • the oil passage 102b After the oil passage 102b enters the second fuel injection chamber 406, finally, it is sprayed from the second nozzle 421 to the second end 32; while the other ends of the plurality of first oil passages 101 flow to the fourth oil passage 104 along the dotted arrow, After passing through the fourth oil passage 104 , the mixed flow enters part of the second oil passage 102 a , passes through the second oil passage 102 a and enters the first fuel injection chamber 405 , and finally sprays out from the first nozzle 411 on the first extension plate 403 .
  • the first annular end plate 401 is provided with multiple Six sixth oil passages 106, a plurality of sixth oil passages 106 are arranged at intervals in the first annular end plate 401, and two ends of the plurality of sixth oil passages 106 are respectively connected to the first fuel injection chamber 405 and part of the second oil passages 102a is connected, so that one end of the sixth oil passage 106 communicates with the oil filling port 11 through the second oil passage 102a, the fourth oil passage 104, and the first oil passage 101.
  • the cooling oil enters the first oil injection chamber 405 through the sixth oil passage 106 along the dotted arrow in FIG. 37 , and injects oil from the first nozzle 411 to the first end 31 .
  • a plurality of seventh oil passages 107 are opened in the second annular end plate 402, and two ends of the plurality of seventh oil passages 107 are respectively connected with the second fuel injection chamber 406 and the rest of the second oil passage 107.
  • the oil passage 102b is connected, so that one end of the seventh oil passage 107 is communicated with the oil filling port 11 through the second oil passage 102b, the third oil passage 103 and the first oil passage 101, and the cooling oil enters along the solid arrow in FIG. 38 .
  • the seventh oil passage 107 enters the second fuel injection chamber 406 through the seventh oil passage 107 , and injects fuel from the second nozzle 421 to the second end portion 32 .
  • the outer surface of the first extension plate 403 is A third groove 4031 is formed on the surface, and a first fuel injection chamber 405 is enclosed between the third groove 4031 and the inner surface 12 of the housing 10 .
  • a fourth groove 4041 is defined on the outer surface of the second extension plate 404 , and a second fuel injection chamber 406 is enclosed between the fourth groove 4041 and the inner surface 12 of the housing 10 .
  • the first extension plate 403 and the second extension plate 404 are both annular structures, so the first fuel injection chamber 405 and the second fuel injection chamber 406 are both annular chamber.
  • a plurality of first grooves 4032 are provided on the outer surface of the first extension plate 403 , both ends of the first groove 4032 are respectively communicated with the sixth oil passage 106 and the first fuel injection chamber 405 (see FIG. 37 ).
  • the cooling oil passes through the sixth oil passage 106 , it enters the annular first fuel injection chamber 405 through the drainage of the first groove 4032 to realize mixing.
  • the drainage of the first groove 4032 ensures that the In order to maintain a high oil pressure after the cooling oil is mixed in the second oil injection chamber 406 , the cooling oil is sprayed toward the second end portion 32 at a relatively high speed at the first injection port 411 .
  • a plurality of second grooves 4042 are provided on the outer surface of the second extension plate 404, and two ends of the second grooves 4042 are respectively communicated with the seventh oil passage 107 and the second fuel injection chamber 406 ( See Figure 38).
  • the fuel injection chamber 405 maintains a relatively high oil pressure after mixing, so that it is sprayed toward the second end portion 32 at a relatively high speed at the second injection port 421 .
  • the sixth oil passage 106 may directly communicate with the first fuel injection chamber 405, that is, the first groove 4032 is not provided on the first extension plate 403, and correspondingly, the seventh oil passage 107 may also be It is directly communicated with the second fuel injection chamber 406 , that is, the second groove 4042 is not provided on the second extension plate 404 .
  • first oil outlets 4033 are respectively provided on the groove wall (eg, the groove bottom) of the first groove 4032 close to the stator core 20 , and the first oil outlet 4033 communicates with the sixth oil passage 106 (see Figure 37).
  • the side of the first annular end plate 401 facing the stator core 20 is provided with a plurality of first blocking blocks 416 arranged at intervals.
  • An oil inlet 418 (refer to FIG. 37 ), the plurality of sixth oil passages 106 communicate with part of the second oil passages 102b through the first oil inlet 418 .
  • second oil outlets 4043 are respectively provided on the groove walls of the second grooves 4042 close to the stator core 20 , and the second oil outlets 4043 communicate with the seventh oil passage 107 (see FIG. 38 ) .
  • the side of the second annular end plate 402 facing the stator core 20 is provided with a plurality of second blocking blocks 426 arranged at intervals, and the second blocking blocks 426 are provided with a second oil inlet 428 communicating with the seventh oil passage 107 ( See Figure 38).
  • the plurality of seventh oil passages 107 communicate with the remaining second oil passages 102b through the second oil inlet ports 428 .
  • first blocking block 416 and the second blocking block 426 may refer to the above-mentioned embodiments, which will not be repeated in the embodiments of the present application.
  • the first annular end plate 401 and the first extension plate 403 in the first end cover 41 are both provided with spouts, and the second end cover 42 is provided with a nozzle. Both the second annular end plate 402 and the second extension plate 404 have spouts. Referring to FIGS. 42 , 43 and 44 , the first annular end plate 401 has a first spout 411 , and the first extension plate 403 has a third opening. For the nozzle 411a, see FIG.
  • the second annular end plate 402 is provided with a second nozzle 421, and the second extension plate 404 is provided with a fourth nozzle 421a, so as shown in FIG. 48 and FIG. 49, the cooling oil follows the dotted arrow Entering part of the second oil passage 102a, passing through the first recess 417, and spraying horizontally outward from the first nozzle 411 on the first annular end plate 401, the cooling oil enters the first fuel injection chamber 405 along the solid arrow , and sprays out from the third nozzle 411 a on the first extension plate 403 facing the first end 31 .
  • the cooling oil enters the second fuel injection chamber 406 along the dashed arrow, and is sprayed toward the second end 32 through the fourth nozzle 421a on the second extension, while the cooling oil enters along the solid arrow
  • the second concave portion 427 is horizontally sprayed out from the second nozzle 421 .
  • the cooling oil can be sprayed to the first end from two different directions. 31.
  • the cooling effect of the first end 31 is better.
  • the cooling oil can be cooled from two different directions. Spraying to the second end 32 has a better cooling effect on the second end 32 .
  • the first extension plate The outer surface of the 403 is respectively provided with a plurality of first through grooves 4032a, that is, both ends of the first through grooves 4032a are open, and the two ends of the first through grooves 4032a are respectively connected with the first fuel injection chamber 405 and the plurality of first through grooves 4032a.
  • One end of the first oil passage 101 is connected (see FIG. 49 ), so that the cooling oil enters the first fuel injection chamber 405 through the first through groove 4032 a along the solid arrow in FIG. 49 .
  • a plurality of second through grooves 4042a are defined on the outer surface of the second extension plate 404, and both ends of the second through grooves 4042a are open. Referring to FIG. 48 and FIG. Both ends of the 4042a are communicated with the second fuel injection chamber 406 and the other ends of the plurality of first oil passages 101, respectively. In this way, the cooling oil enters the second fuel injection chamber 406 through the second through groove 4042a along the dashed arrow in FIG. 50 .
  • the two ends of the plurality of first oil passages 101 are respectively connected with the third oil passage 103 and the fourth oil passage 104, and the two ends of the plurality of first oil passages 101 are respectively connected to It communicates with the first through groove 4032a and the second through groove 4042a.
  • part of the cooling oil in the plurality of first oil passages 101 enters the first fuel injection chamber 405 and the second fuel injection chamber 406 through the first through grooves 4032a and the second through grooves 4042a, respectively, and passes through the third nozzles 411a and 411a.
  • the fourth nozzle 421a is sprayed outward, so that the cooling oil sprayed from the third nozzle 411a and the fourth nozzle 421a does not pass through the plurality of second oil passages 102 to absorb heat, so it is sprayed outward through the third nozzle 411a and the fourth nozzle 421a
  • the temperature of the cooling oil sprayed out is lower than the temperature of the cooling oil sprayed from the first nozzle 411 and the second nozzle 421, so that the cooling oil sprayed from the third nozzle 411a and the fourth nozzle 421a can affect the first end 31 and the second nozzle 421a.
  • the cooling effect of the end 32 is better.
  • FIG. 52 shows the structure of the stator after the casing 10 is removed in FIG. 51
  • FIG. 53 shows the structure of the first end cover 41
  • the first extension plate 403 and Both the second extension plates 404 are arc-shaped sections, that is, the first extension plates 403 and the second extension plates 404 are non-annular structures, and the first extension plates 403 and the second extension plates 404 are located at the first annular end plate 401 and the second annular end plate 401 respectively.
  • the top outer edge of the annular end plate 402 Referring to FIG. 54 and FIG.
  • a section of the first extension plate 403 is provided along the outer edge of the first annular end plate 401 , and the first extension plate 403 may be located directly above the first end portion 31 and the second end portion 32 .
  • a section of the second extension plate 404 is provided along the outer edge of the second annular end plate 402 , and the second extension plate 404 may be located just above the second end portion 32 .
  • the first fuel injection chamber 405 formed between the third groove 4031 formed on the first extension plate 403 and the casing 10 is a non-annular cavity
  • the fourth groove 4041 formed on the second extension plate 404 is connected to the casing 10
  • the second fuel injection chamber 406 formed between the inner surfaces of the body 10 is also a non-annular chamber.
  • the first annular end plate 401 and the second annular end plate 402 are respectively provided with a plurality of first nozzles 411 and a plurality of second nozzles 421 , and reference may be made to the above-mentioned embodiments for the setting methods, which will not be repeated in the embodiments of the present application.
  • a third groove 4031 is formed on the first extension plate 403 , and a plurality of partitions 4031 a are provided at intervals in the third groove 4031 , as shown in FIG. 57 , on the second extension plate 404
  • a fourth groove 4041 is opened, and a plurality of separators 4041a are arranged in the fourth groove 4041 at intervals. so that the cooling oil entering the first fuel injection chamber 405 and the second fuel injection chamber 406 can enter the first fuel injection chamber 405 and the second fuel injection chamber under the partition of the partition plate 4031a and the partition plate 4041a 406 in each groove.
  • multiple rows of third nozzles 411 a are provided on the first extension plate 403
  • multiple rows of fourth nozzles 421 a are provided on the second extension plate 404 .
  • Each of the separated grooves is connected to each other, and the plurality of rows of fourth nozzles 421a can be communicated with each of the separated grooves in the second oil injection chamber 406, so that the cooling oil can flow from the third nozzles 411a and the fourth nozzles 421a at different positions.
  • the cooling oil is sprayed to the first end portion 31 and the second end portion 32.
  • the cooling oil After the cooling oil is sprayed to the top ends of the first end portion 31 and the second end portion 32, the cooling oil flows downward under the action of gravity (see the coil winding in Fig. 58). 30 on the first end portion 31 and the second end portion 32 of the solid line arrow and the dotted line arrow), so as to dissipate heat to the rest of the first end portion 31 and the second end portion 32, so in this embodiment of the present application, the first The cooling oil sprayed from the third nozzle 411a and the fourth nozzle 421a is cooled to the first end portion 31 and the second end portion 32 of the coil winding 30 by the oil spray method.
  • the housing 10 is provided with The fifth oil passage 105 is in communication with the oil injection port 11 , the first fuel injection chamber 405 and the second fuel injection chamber 406 respectively. That is, the first fuel injection chamber 405 and the second fuel injection chamber 406 communicate with the fuel injection port 11 through the fifth oil passage 105 inside the housing 10, so that as shown in FIG. 58, after the cooling oil is injected from the fuel injection port 11, Part of the cooling oil enters the fifth oil passage 105, and part of the cooling oil enters the plurality of first oil passages 101. Referring to FIG.
  • part of the cooling oil passes through the fifth oil passage 105 along the solid arrow and enters the first fuel injection chamber 405.
  • the third nozzle 411a sprays cooling oil to the first end 31, and at the same time, part of the cooling oil passes through the first oil passage 101 along the solid arrow and enters the third oil passage 103, communicates with part of the second oil passage 102a, and finally flows from the second oil passage 102a.
  • the nozzle 421 is sprayed toward the second end portion 32 (see FIG. 58 ), and the cooling oil flows to the bottom end of the second end portion 32 along the arrow in FIG. 58 under the action of gravity on the second end portion 32 .
  • part of the cooling oil passes through the fifth oil passage 105 along the dotted arrow and enters the second oil injection chamber 406 , and sprays the cooling oil to the second end 32 through the fourth nozzle 421 a , and at the same time, part of the cooling oil It passes through the second oil passage 102a along the solid line arrow, and sprays cooling oil from the second nozzle 421 to the second end 32.
  • the first nozzle 411 communicating with part of the second oil passage 102b can be directed The first end 31 is sprayed with cooling oil (see Figure 58).
  • the first fuel injection chamber 405 and the second fuel injection chamber 406 may not be provided, for example, the first end cover 41 only includes the first annular end plate 104, The two-end cover 42 only includes the second annular end plate 402, and the first extension plate 403 and the second extension plate 404 are not provided, so that the openings at both ends of the fifth oil passage 105 face the first ends 31 and 30 of the coil winding 30, respectively.
  • the second end portion 32 sprays oil to the first end portion 31 and the second end portion 32 of the coil winding 30 through the two openings of the fifth oil passage 105 .
  • the top end of the end portion 32 flows downward by gravity, and dissipates heat to the rest of the first end portion 31 and the second end portion 32 of the coil winding 30 by means of oil spray.
  • Embodiments of the present application further provide a powertrain, which can be applied to electric vehicles/electric vehicles (EV), pure electric vehicles (PEV/BEV), hybrid electric vehicles (HEV), and extended-range electric vehicles (REEVs). ), plug-in hybrid electric vehicle (PHEV), new energy vehicle (New Energy Vehicle), etc., or can be applied to battery management (Battery Management), motor 100& driver (Motor&Driver), power conversion (Power Converter) and other equipment .
  • EV electric vehicles/electric vehicles
  • PEV/BEV pure electric vehicles
  • HEV hybrid electric vehicles
  • REEVs extended-range electric vehicles
  • PHEV plug-in hybrid electric vehicle
  • PHEV new energy vehicle
  • New Energy Vehicle New Energy Vehicle
  • Battery Management Battery Management
  • Motor 100& driver Motor&Driver
  • Power Converter Power Converter
  • the power assembly includes at least a speed reducer and a motor 100 according to any of the above embodiments.
  • the motor 100 is connected to the speed reducer (not shown) through a rotating shaft.
  • the output shaft of the motor 100 is connected to the speed reducer.
  • the reducer can also be used with the motor 100 integrated with the reduction motor 100 .
  • the purpose of double-layer oil passage between the outer surface of the stator iron core 20 and the root of the coil slot 23 of the stator iron core 20 is realized, so that the first oil passage 101
  • the outer surface of the stator iron core 20 can be cooled, and the second oil passage 102 can dissipate heat around the coil slot 23 of the stator iron core 20 and the coil winding 30, and after the cooling oil is injected from the oil injection port 11, part of the second oil passage 102 and the cooling oil in the rest of the second oil passages 102 flow in the opposite direction, thereby realizing staggered reverse flow, making the axial temperature of the stator iron core 20 and the coil winding 30 more uniform, and ensuring the stability of the stator iron core 20 and the coil winding 30.
  • Effective cooling ensures the heat dissipation requirements of the motor 100 under low-speed, high-torque and high-speed conditions, enabling the powertrain to achieve miniaturization development, ensuring that the powertrain has good heat dissipation capacity and heat dissipation effect, making the powertrain performance is further improved.
  • a third aspect of the embodiments of the present application further provides a device, which can be an electric vehicle/electric vehicle (EV), a pure electric vehicle (PEV/BEV), a hybrid electric vehicle (HEV), an extended-range electric vehicle (REEV), a plug-in Electric hybrid electric vehicle (PHEV), new energy vehicle (New Energy Vehicle), etc.
  • a device which can be an electric vehicle/electric vehicle (EV), a pure electric vehicle (PEV/BEV), a hybrid electric vehicle (HEV), an extended-range electric vehicle (REEV), a plug-in Electric hybrid electric vehicle (PHEV), new energy vehicle (New Energy Vehicle), etc.
  • EV electric vehicle/electric vehicle
  • PEV/BEV pure electric vehicle
  • HEV hybrid electric vehicle
  • REEV extended-range electric vehicle
  • PHEV plug-in Electric hybrid electric vehicle
  • New Energy Vehicle new energy vehicle
  • the device includes at least a wheel, a transmission component and the motor 100 of any of the above embodiments.
  • the motor 100 is connected to the wheel through the transmission component. Specifically, the shaft of the motor 100 rotates to output power, and the transmission component transmits the power to the wheel to rotate the wheel. .
  • the output shaft of the motor 100 can be connected with a reducer, and the reducer can be connected with a transmission component.
  • the device provided in the embodiment of the present application by including the above-mentioned motor 100, achieves the purpose of double-layer oil passage on the outer surface of the stator iron core 20 and the root of the coil slot 23 of the stator iron core 20, so that the first oil passage 101 can provide oil to the stator iron core 20.
  • the outer surface of the core 20 is cooled, and the second oil passage 102 can dissipate heat around the coil slot 23 of the stator core 20 and the coil winding 30.
  • the cooling oil in the second oil passage 102 flows in the opposite direction, thereby realizing the staggered reverse flow, making the axial temperature of the stator iron core 20 and the coil winding 30 more uniform, ensuring the effective cooling of the stator iron core 20 and the coil winding 30, ensuring the The heat dissipation requirements of the motor 100 under low-speed, high-torque and high-speed conditions are met, the equipment has a good heat dissipation effect and heat dissipation capacity under different operating conditions, and the working performance of the equipment is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本申请实施例提供一种电机、动力总成和设备,通过在所述壳体的内表面与所述定子铁芯的外表面之间形成多个第一油道,在定子铁芯的所述线圈槽的槽根处形成第二油道,这样实现了在定子铁芯外表面和定子铁芯的线圈槽根部双层通油的目的,确保了对定子铁芯和线圈绕组的有效冷却,这样冷却油从注油口注入后,部分第二油道与其余部分第二油道中的冷却油流向相反,实现了交错逆流,使定子铁芯和线圈绕组的轴向温度更均匀,保证了电机在低速大扭矩和高转速工况下的散热需求,解决了现有电机中定子铁芯和线圈绕组散热不佳而造成电机在低速大扭矩和高转速工况下线圈绕组易出现超温的问题。

Description

电机、动力总成和设备
本申请要求于2020年11月25日提交中国专利局、申请号为202011340779.3、申请名称为“电机、动力总成和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电机技术领域,并且尤其涉及一种电机、动力总成和设备。
背景技术
电机是一种依据电磁感应定律实现电能转换或传递的电磁装置,主要作用是产生驱动转矩,作为用电器或各种机械的动力源。随着动力总成中电机的小型化发展,电机的功率密度逐渐提升,而随着电机功率密度的提升,提升电机的散热效率和散热能力成为了亟待解决的技术问题。
目前,电机主要包括壳体、定子铁芯、转子、线圈绕组,通常定子铁芯的两端设有结构件,结构件与壳体形成密封腔体,定子铁芯、转子和线圈绕组位于密封腔体内。其中电机在运转时,会产生大量的热量,常常采用冷水或油冷方式对电机进行散热。
然而,在上述电机的油冷方式中,无法实现对电机定子的铁芯以及线圈绕组的有效散热,导致定子和线圈绕组的散热效果不佳,使得电机在低速大扭矩和高转速工况下线圈绕组易出现超温的风险。
发明内容
本申请实施例提供一种电机、动力总成和设备,实现了在定子铁芯外表面和定子铁芯的线圈槽根部双层通油的目的,确保了对定子铁芯和线圈绕组的有效冷却,从而保证了电机在低速大扭矩和高转速工况下的散热需求,解决了现有电机中定子铁芯和线圈绕组散热不佳而造成电机在低速大扭矩和高转速工况下线圈绕组易出现超温的问题。
本申请实施例的第一方面提供一种电机,包括壳体,所述壳体内至少设置定子,所述定子包括:定子铁芯和线圈绕组,所述定子铁芯的内表面上具有多个间隔设置的线圈槽,所述线圈绕组的部分位于所述线圈槽内;
所述壳体的内表面与所述定子铁芯的外表面之间形成多个第一油道,所述多个第一油道沿着所述定子铁芯的外周周向间隔设置,且多个所述第一油道均与所述壳体上开设的注油口连通;
至少部分所述线圈槽的槽底形成第二油道;
多个所述第一油道的其中一端与部分所述第二油道的一端连通,所述部分第二油道的另一端与所述电机一端的喷口连通,多个所述第一油道的另一端与其余所述第二油道的一端连通,所述其余第二油道的另一端与所述电机另一端的喷口连通。
通过在所述壳体的内表面与所述定子铁芯的外表面之间形成多个第一油道,在定子铁芯的所述线圈槽的槽根处形成第二油道,第一油道可以对定子铁芯的外表面进行冷却,第二油道可以对定子铁芯的线圈槽周围以及线圈绕组进行散热,这样实现了在定子铁芯外表面和定子铁芯的线圈槽根部双层通油的目的,两层油道设计增大了冷却油与定子的接触面积,可显著提升定子和线圈散热能力。且多个第一油道的一端与部分第二油道连通,多个第一油道的另一端与剩余的部分第二油道连通,各个第二油道与电机端部的喷口连通,这样冷却油从注油口注入后,部分第二油道与其余部分第二油道中的冷却油流向相反,从而实现了交错逆流,使定子铁芯和线圈绕组的轴向温度更均匀,因此,本申请实施例提供的电机,确保了对定子铁芯和线圈绕组的有效冷却,保证了电机在低速大扭矩和高转速工况下的散热需求,解决了现有电机中定子铁芯和线圈绕组散热不佳而造成电机在低速大扭矩和高转速工况下线圈绕组易出现超温的问题。
在一种可能的实现方式中,还包括:第一端盖和第二端盖;
所述第一端盖和所述第二端盖分别位于所述定子铁芯的两端;
所述第一端盖上开设有多个间隔设置的第一喷口,所述第二端盖上开设有多个间隔设置的第二喷口;
多个所述第一油道的一端通过所述第一端盖与所述部分第二油道的一端连通,所述部分第二油道的另一端与多个所述第二喷口连通;
多个所述第一油道的另一端通过所述第二端盖与所述其余第二油道的一端连通,所述其余第二油道的另一端与多个所述第一喷口连通。
在一种可能的实现方式中,所述第一端盖与所述定子铁芯的其中一端面之间形成第三油道;
所述第二端盖与所述定子铁芯的另一端面之间形成第四油道;
多个所述第一油道的一端通过所述第三油道与部分所述第二油道的一端连通,多个所述第一油道的另一端通过所述第四油道与其余所述第二油道的一端连通,所述第一喷口与所述第三油道隔开且与所述第四油道连通,所述第二喷口与所述第四油道隔开且与所述第三油道连通。通过第三油道和第四油道,这样冷却油在第三油道和第四油道处实现混流作用,使得的冷却油在周向流量分配更均匀,从而降低了定子周向温度的不均匀性,使得定子在周向上实现均匀散热。
在一种可能的实现方式中,所述第一端盖至少包括:第一环形端板,所述第一环形端板与所述定子铁芯的其中一端面之间形成所述第三油道;
所述第二端盖至少包括:第二环形端板,所述第二环形端板与所述定子铁芯的另一端面之间形成所述第四油道。
在一种可能的实现方式中,多个所述第一喷口沿着所述第一环形端板的周向间隔设置;
多个所述第二喷口沿着所述第二环形端板的周向间隔设置。这样从多个第一喷口喷出的冷却油可以对线圈绕组的第一端部的周向均匀散热,多个第二喷口喷出的冷却油可以对线圈绕组的第二端部的周向均匀散热。
在一种可能的实现方式中,多个所述第二喷口朝向所述第一环形端板的正投影与多个所述第一喷口在所述第一环形端板上周向交替排布。
在一种可能的实现方式中,所述第一环形端板的内边缘处设有多个间隔设置的第一阻隔块,所述第一阻隔块的一端抵在所述定子铁芯的一端面上,所述第一阻隔块上开设有所述第一喷口,所述第一喷口通过所述第一阻隔块与所述第三油道隔开;
所述第二环形端板的内边缘处设有多个间隔设置的第二阻隔块,所述第二阻隔块的一端抵在所述定子铁芯的另一端面上,所述第二阻隔块上开设有所述第二喷口,所述第二喷口通过所述第二阻隔块与所述第四油道隔开。
在一种可能的实现方式中,所述第一阻隔块上具有第一凹陷部,所述第一喷口位于所述第一凹陷部处;
所述第二阻隔块上具有第二凹陷部,所述第二喷口位于所述第二凹陷部处。
在一种可能的实现方式中,所述第一端盖还包括:轴向凸起且与所述第一环形端板的外边缘相连的第一延伸板,所述第二端盖还包括:轴向凸起且与所述第二环形端板的外边缘相连的第二延伸板;
所述第一延伸板的外表面与所述壳体之间形成第一喷油腔室,所述第一延伸板上开设与所述第一喷油腔室连通的第三喷口;
所述第二延伸板的外表面与所述壳体之间形成第二喷油腔室,所述第二延伸板上开设与所述第二喷油腔室连通的第四喷口;
且所述第一喷油腔室和所述第二喷油腔室均与所述注油口连通。
在一种可能的实现方式中,所述第一延伸板和所述第二延伸板均为环形结构,所述第一喷油腔室和第二喷油腔室均为环形腔室。
在一种可能的实现方式中,所述第一延伸板和所述第二延伸板均为弧形段,所述第一延伸板和所述第二延伸板分别位于所述第一环形端板和所述第二环形端板的顶端外边缘。
在一种可能的实现方式中,所述第一延伸板和所述第二延伸板的外表面上分别开设多个第一通槽和多个第二通槽;
多个所述第一通槽的两端分别与所述第一喷油腔室和多个所述第一油道的一端连通;
多个所述第二通槽的两端分别与所述第二喷油腔室和多个所述第一油道的另一端连通。
在一种可能的实现方式中,所述壳体内设有第五油道,所述第五油道分别与所述注油口、所述第一喷油腔室和所述第二喷油腔室连通。这样第一喷油腔室和第二喷油腔室通过壳体内部的第五油道与注油口连通,冷却油从壳体内部经过第五油道进入第一喷油腔室和第二喷油腔室,并向线圈绕组的第一端部和第二端部进行冷却,缩短了冷却油对线圈绕组的第一端部和第二端部冷却时流动的路径,从而对线圈绕组的第一端部和第二端部实现较好的散热。
在一种可能的实现方式中,所述第一端盖还包括:轴向凸起且与所述第一环形端板的外边缘相连的第一延伸板,所述第二端盖还包括:轴向凸起且与所述第二环形端板的外边缘相连的第二延伸板;
所述第一延伸板的外表面与所述壳体之间形成第一喷油腔室,所述第一延伸板上开设多个与所述第一喷油腔室相通的所述第一喷口;
所述第二延伸板的外表面与所述壳体之间形成第二喷油腔室,所述第二延伸板上开设 多个与所述第二喷油腔室相通的所述第二喷口。
在一种可能的实现方式中,所述第一环形端板内开设有多个第六油道,多个所述第六油道的两端分别与所述第一喷油腔室和部分所述第二油道连通;
所述第二环形端板内开设有多个第七油道,多个所述第七油道的两端分别与所述第二喷油腔室和其余部分所述第二油道连通。
在一种可能的实现方式中,所述第一延伸板的外表面上设有多个第一凹槽,所述第一凹槽的两端分别与所述第六油道和所述第一喷油腔室连通;
所述第二延伸板的外表面上设有多个第二凹槽,所述第二凹槽的两端分别与所述第七油道和所述第二喷油腔室连通。
在一种可能的实现方式中,所述第一凹槽和所述第二凹槽的靠近所述定子铁芯的槽壁上分别开设出油口,所述第一凹槽上的所述出油口与所述第六油道连通,所述第二凹槽上的所述出油口与所述第七油道连通;
所述第一环形端板和所述第二环形端板朝向所述定子铁芯的一面上分别设有多个间隔设置的第一阻隔块和多个间隔设置的第二阻隔块,所述第一阻隔块上开设与所述第六油道连通的第一进油口,所述第二阻隔块上开设与所述第七油道连通的第二进油口。
多个所述第六油道通过所述第一进油口与部分所述第二油道连通;
多个所述第七油道通过所述第二进油口与其余所述第二油道连通。
在一种可能的实现方式中,所述第一延伸板的外表面上开设有第三凹槽,所述第三凹槽与所述壳体的内表面之间围成所述第一喷油腔室;
所述第二延伸板的外表面上开设有第四凹槽,所述第四凹槽与所述壳体的内表面之间围成所述第二喷油腔室。
在一种可能的实现方式中,所述定子铁芯的外表面上设有多个油槽,多个所述油槽沿着所述定子铁芯的外周周向间隔设置,每个油槽的两端延伸到所述定子铁芯的两个端面处;
所述油槽与所述壳体的内表面围成所述第一油道。
在一种可能的实现方式中,至少部分所述油槽的槽底为凹凸不平的弧形槽底。
在一种可能的实现方式中,所述多个油槽的槽宽相等,或者所述多个油槽的槽宽不同,或者,多个所述油槽中的部分油槽的槽宽大于部分所述油槽的槽宽。
在一种可能的实现方式中,所述第一端盖的朝向所述定子铁芯的一面的外边缘处设有多个间隔设置的第一凸块,且多个所述第一凸块沿着所述第一端盖的外边缘周向设置,所述第一凸块的一端抵在所述定子铁芯的一端面上;
所述第二端盖的朝向所述定子铁芯的一面的外边缘处设有第二凸块,多个所述第二凸块沿着所述第二端盖的外边缘周向设置,所述第二凸块的一端抵在所述定子铁芯的另一端面上;
且所述第一凸块和所述的第二凸块分别与所述第一油道的两端在周向上错开。
在一种可能的实现方式中,所述喷口的形状为扁形结构,或者所述喷口的形状为圆形结构。
在一种可能的实现方式中,所述喷口为朝向所述线圈绕组的方向倾斜的倾斜喷口。
在一种可能的实现方式中,至少部分所述线圈槽的槽底开设有第五凹槽,所述线圈 槽中设置有绝缘层,所述绝缘层用于将所述定子铁芯和所述线圈绕组隔开,且所述第五凹槽与部分所述绝缘层围成第二油道。
在一种可能的实现方式中,所述第五凹槽的槽口宽度为a,所述线圈槽的槽底宽度为b,所述a小于所述b。
在一种可能的实现方式中,所述第五凹槽的槽底宽度为c,且所述c大于所述a。
本申请实施例的第二方面提供一种动力总成,至少包括减速器以及上述任一所述的电机,所述电机通过转轴与所述减速器相连。通过包括上述电机,实现了在定子铁芯外表面和定子铁芯的线圈槽根部双层通油的目的,这样第一油道可以对定子铁芯的外表面进行冷却,第二油道可以对定子铁芯的线圈槽周围以及线圈绕组进行散热,且冷却油从注油口注入后,部分第二油道与其余部分第二油道中的冷却油流向相反,从而实现了交错逆流,使定子铁芯和线圈绕组的轴向温度更均匀,确保了对定子铁芯和线圈绕组的有效冷却,保证了电机在低速大扭矩和高转速工况下的散热需求,使得动力总成可以实现小型化的发展,确保了动力总成具有良好的散热能力,使得动力总成的性能进一步得以提升。
本申请实施例的第三方面提供一种设备,至少包括车轮、传动部件和上述任一所述的电机,所述电机通过所述传动部件与所述车轮相连。通过包括上述电机,实现了在定子铁芯外表面和定子铁芯的线圈槽根部双层通油的目的,这样第一油道可以对定子铁芯的外表面进行冷却,第二油道可以对定子铁芯的线圈槽周围以及线圈绕组进行散热,且冷却油从注油口注入后,部分第二油道与其余部分第二油道中的冷却油流向相反,从而实现了交错逆流,使定子铁芯和线圈绕组的轴向温度更均匀,确保了对定子铁芯和线圈绕组的有效冷却,保证了电机在低速大扭矩和高转速工况下的散热需求,确保了设备在不同工况下良好的工作性能。
附图说明
图1是本申请一实施例提供的电机的示意图;
图2是本申请一实施例提供的电机的部分拆分结构示意图;
图3A是图2中沿着B-B方向的剖面示意图;
图3B是图2中沿着A-A方向的剖面示意图;
图4A是本申请一实施例提供的电机的剖视图;
图4B是本申请一实施例提供的电机沿图4A中的C-C方向的剖面示意图;
图5是本申请一实施例提供的电机上冷却油的流向示意图;
图6是图4所示的结构中冷却油的流向示意图;
图7是本申请一实施例提供的电机的另一方向的剖视图;
图8A是在电机的线圈绕组中设置油道时的热量传递路径的部分示意图;
图8B是在电机的线圈槽的槽根处设置油道时的热量传递路径的部分示意图;
图8C是本申请一实施例提供的电机散热时热量传递路径的部分示意图;
图9是本申请一实施例提供的电机中的定子铁芯的示意图;
图10是图9所示的定子铁芯的部分放大示意图;
图11是本申请一实施例提供的电机的定子铁芯的部分结构示意图;
图12是本申请一实施例提供的电机的主视图;
图13是图12中沿E-E方向的剖面示意图;
图14是图13虚线框部分的放大示意图;
图15是图12中沿D-D方向的剖面示意图;
图16是图15虚线框部分的放大示意图;
图17是本申请一实施例提供的电机中的第一端盖的结构示意图;
图18是本申请一实施例提供的电机中的第一端盖的另一方向的结构示意图;
图19是本申请一实施例提供的电机中的第一端盖的背面示意图;
图20是本申请一实施例提供的电机的定子铁芯的部分端面与第一端盖上的第一阻隔块的示意图;
图21是本申请一实施例提供的电机中的第一端盖和第二端盖的结构示意图;
图22是本申请一实施例提供的电机的第一端盖、第二端盖、线圈绕组以及定子铁芯的组装后的示意图;
图23是图22中虚线框部分的放大示意图;
图24是本申请一实施例提供的电机中的第二端盖上的第二喷口朝向第一端盖投影时的第一端盖的示意图;
图25是本申请一实施例提供的电机的剖面示意图;
图26是本申请一实施例提供的电机的另一方向的剖面示意图;
图27是本申请一实施例提供的电机中未设置壳体时的示意图;
图28A是本申请一实施例提供的电机中第一端盖的示意图;
图28B是本申请一实施例提供的电机中第二端盖的示意图;
图29是本申请一实施例提供的电机中第一端盖的主视示意图;
图30是本申请一实施例提供的电机中第一端盖的后视示意图;
图31是本申请一实施例提供的电机的剖面示意图;
图32是图31中右上角的虚线框部分的放大示意图;
图33是图31中左下角的虚线框部分的放大示意图;
图34是本申请一实施例提供的电机的立体结构示意图;
图35是本申请一实施例提供的电机去掉壳体后的立体结构示意图;
图36是本申请一实施例提供的电机的剖面示意图;
图37是图36中左上角的虚线框部分的放大示意图;
图38是图36中右下角的虚线框部分的放大示意图;
图39是本申请一实施例提供的电机中的第一端盖的结构示意图;
图40是本申请一实施例提供的电机中的第一端盖的另一方向的结构示意图;
图41是本申请一实施例提供的电机中的第一端盖和第二端盖的结构示意图;
图42是本申请一实施例提供的电机的立体结构示意图;
图43是本申请一实施例提供的电机去掉壳体后的立体结构示意图;
图44是本申请一实施例提供的电机中的第一端盖的结构示意图;
图45是本申请一实施例提供的电机中的第一端盖的另一方向的结构示意图;
图46是本申请一实施例提供的电机中的第一端盖的背面结构示意图;
图47是本申请一实施例提供的电机中的第一端盖和第二端盖的结构示意图;
图48是本申请一实施例提供的电机的剖面示意图;
图49是图48中左上角的虚线框部分的放大示意图;
图50是图48中右下角的虚线框部分的放大示意图;
图51是本申请一实施例提供的电机的立体结构示意图;
图52是本申请一实施例提供的电机去掉壳体后的立体结构示意图;
图53是本申请一实施例提供的电机中的第一端盖的结构示意图;
图54是本申请一实施例提供的电机中的第一端盖的另一方向的结构示意图;
图55是本申请一实施例提供的电机中的第一端盖的正面结构示意图;
图56是本申请一实施例提供的电机中的第一端盖的侧视示意图;
图57是本申请一实施例提供的电机中的第一端盖和第二端盖的结构示意图;
图58是本申请一实施例提供的电机的剖面示意图;
图59是图58中左上角的虚线框部分的放大示意图;
图60是图58中右上角的虚线框部分的放大示意图。
附图标记说明:
10-壳体;11-注油口;12-内表面;13-注油口;
20-定子铁芯;21-第五凹槽;211-台阶;22-油槽;23-线圈槽;24-绝缘层;
30-线圈绕组;31-第一端部;32-第二端部;33-中部线圈;
41-第一端盖;411-第一喷口;411a-第三喷口;412、422-外边缘;413、423-内边缘;414-第一凸块;415-第一间隔;416-第一阻隔块;417-第一凹陷部;418-第一进油口;401-第一环形端板;403-第一延伸板;4031-第三凹槽;4032-第一凹槽;4032a-第一通槽;4033-第一出油口;4031a、4041a-隔板;
42-第二端盖;421-第二喷口;421a-第四喷口;424-第二凸块;425-第二间隔;426-第二阻隔块;427-第二凹陷部;428-第二进油口;421a-第四喷口;402-第二环形端板;404-第二延伸板;4041-第四凹槽;4042-第二凹槽;4042a-第二通槽;4043-第二出油口405-第一喷油腔室;406-第二喷油腔室;
50-定子;
100-电机;101、101a、101b、101c-第一油道;102、102a、102b-第二油道,102c-油道;103-第三油道;104-第四油道;105-第五油道;106-第六油道;107-第七油道。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
电机在运行中往往会产生大量的热量,为了对电机进行冷却,一些研究中,往往在电机的定子铁芯的外表面上设有油道,通过该油道对定子铁芯实现冷却,或者在电机的线圈绕组中设有油道,通过线圈绕组中的油道实现对线圈绕组的冷却。
然而,在市场的推动下,动力总成往小型化方向发展,为保持与原动力总成相同的功率,那么小型化动力总成中的电机的最高转速与电流密度需进一步提升。但是,最高转速的提升引起电机铁芯损耗的增大,而电流密度的提升则会大幅增加线圈损耗。这样在现有 的散热能力下,在低速大扭矩工况下,由于电流密度的提升使得线圈绕组存在超温风险,而在高速下,定子铁芯损耗增大会导致线圈中部(即位于定子铁芯线圈槽中的那部分线圈绕组)存在超温风险。所以,现有的电机冷却方式对动力总成的小型化设计造成极大制约。
为解决上述的技术问题,本申请实施例的提供一种电机,在电机100的壳体10的内表面12与定子铁芯20的外表面之间形成多个第一油道101,在定子铁芯20的线圈槽23的槽根处形成第二油道102,第一油道101可以对定子铁芯20的外表面进行冷却,第二油道102可以直接对定子铁芯20的线圈槽23周围以及线圈绕组30进行散热,这样实现了在定子铁芯20外表面和定子铁芯20的线圈槽23根部双层通油的目的,两层油道设计增大了冷却油与定子的接触面积,可显著提升定子和线圈散热能力。且多个第一油道101的一端与部分第二油道102连通,多个第一油道101的另一端与剩余的部分第二油道102连通,各个第二油道102与电机100端部的喷口连通,这样冷却油从注油口注入后,部分第二油道102与其余部分第二油道102中的冷却油流向相反,从而实现了交错逆流,使定子铁芯20和线圈绕组30的轴向温度更均匀,因此,本申请实施例提供的电机100,确保了对定子铁芯20和线圈绕组30的有效冷却,保证了电机100在低速大扭矩和高转速工况下的散热需求,解决了现有电机100中定子铁芯20和线圈绕组30散热不佳而造成电机100在低速大扭矩和高转速工况下线圈绕组30易出现超温的问题。
本申请实施例提供的电机100,该电机100可以应用于电动车/设备(Electric Vehicle,简称EV)、纯设备(Pure Electric Vehicle/Battery Electric Vehicle,简称:PEV/BEV)、混合动力汽车(Hybrid Electric Vehicle,简称:HEV)、增程式设备(Range Extended Electric Vehicle,简称REEV)、插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,简称:PHEV)、新能源汽车(New Energy Vehicle)、电池管理(Battery Management)、电机100&驱动(Motor&Driver)、功率变换(Power Converter)、减速器(Reducer)等。
在本申请实施例中,参见图1和图2所示,电机100包括壳体10,壳体10内设置有转子(未示出)和定子50,定子50套设在转子的外周上,定子50包括:定子铁芯20和线圈绕组30,线圈绕组30绕设在定子铁芯20上。
线圈绕组30在定子铁芯20上绕设时,具体为,参见图3A所示,在定子铁芯20的内表面上沿圆周方向均匀分布有若干个线圈槽23,若干个线圈槽23相互间隔设置,线圈绕组30通过线圈槽23绕设在定子铁芯20上。
其中,线圈绕组30在定子铁芯20的线圈槽23内绕设时,线圈绕组30的两端部从定子铁芯20的两端向外延伸出去(参见图2所示),即线圈绕组30的轴向长度往往大于定子铁芯20的轴向长度,在本申请实施例中,线圈绕组30的端部为线圈绕组30从定子铁芯20的两端延伸出去的两端。例如,图2中,线圈绕组30包括位于线圈槽23中的中部线圈33以及从线圈槽23中延伸出去的第一端部31和第二端部32。所以,参见图3A所示,线圈绕组30的中部线圈33位于线圈槽23内。
本申请实施例中,为了将冷却油输入电机100内部对定子铁芯20和线圈绕组30进行散热,参见图2所示,在壳体10上开设有注油口11,冷却油从该注油口11注入到电机100内部的油道中。需要说明的是,注油口11的结构包括但不限于与图2所示结构,在实 际应用中,在壳体10上开设注油口11时,注油口11与壳体10的外表面平齐,即注油口11的孔深与壳体10的壁厚保持一致。
其中为了使得从注油口11注入的冷却液流入电机100内部的各个油道,参见图3B所示,壳体10的内表面12沿着壳体10的周向设有连通槽13,连通槽13与注油口11流通,这样从注油口11注入的冷却液通过该连通槽13可以在壳体10的内部周向上实现连通,这样冷却油从注油口11注入后,通过该流通槽冷却油可以扩散到定子铁芯20的外表面的各个周向位置。
其中,本申请实施例中,为了实现冷却油对定子铁芯20外表面的冷却,参见图4A所示,在壳体10的内表面12与定子铁芯20的外表面之间形成多个第一油道101,多个第一油道101沿着定子铁芯20的外周周向间隔设置,例如,多个第一油道101可以在定子铁芯20的外表面上周向间隔设置一圈,多个第一油道101通过连通槽13与壳体10上开设的注油口11连通,这样冷却油从注油口11进入后,冷却油通过连通槽13可以扩散到各个第一油道101中。第一油道101中的冷却油可以对定子铁芯20的外表面的实现冷却。
其中,为了对线圈绕组30和定子铁芯20的内表面也实现冷却,所以,参见图2、图4A所示,在定子铁芯20的线圈槽23的槽底处形成第二油道102,需要说明的是,由于多个线圈槽23沿着定子铁芯20的内表面周向间隔设置一圈,可以在每个线圈槽23的槽底都形成第二油道102,或者也可以在部分线圈槽23的槽底形成第二油道102,部分线圈槽23的槽底可以不形成第二油道102,所以,可以在至少部分线圈槽23的槽底形成第二油道102。本申请实施例中,为了对各个线圈槽23中的线圈绕组30进行散热,所以在每个线圈槽23的槽底都形成第二油道102(参见图2),多个第二油道102沿着定子铁芯20的内表面周向间隔设置。这样进入第二油道102中的冷却油可以对线圈绕组30的中部线圈33以及定子铁芯20的靠近第二油道102的区域进行散热。
其中,为了将第一油道101中的冷却油进入第二油道102,所以第一油道101与第二油道102需实现连通,本申请实施例中,为了实现线圈绕组30和定子铁芯20轴向上的均匀散热,所以,将多个第一油道101的其中一端与部分第二油道102的一端连通,部分第二油道102的另一端与电机100一端的喷口连通,例如,参见图4A所示,冷却油可以从第一油道101的左端进入部分第二油道102(例如第二油道102a),经过第二油道102后从电机100一侧的喷口(例如第二喷口421)喷出。而多个第一油道101的另一端与其余第二油道102的一端连通,其余第二油道102的另一端与电机100另一端的喷口连通,例如,冷却油可以从第一油道101的右端进入剩余的第二油道102(例如第二油道102b),经过该剩余的第二油道102后,从电机100另一侧的喷口(例如第一喷口411)喷出。
其中,需要说明的是,冷却油从注油口11注入时,冷却油往往是带有一定的压力的,所以,冷却油从第一喷口411和第二喷口421以一定的压力喷向线圈绕组30的第一端部31和第二端部32。
本申请实施例中,第二油道102a和第二油道102b的分布参见图4B所示,多个第二油道102a和多个第二油道102b沿着定子铁芯20的轴向交替间隔设置,这样参见图5所示,冷却油进入第一油道101后,分别沿着实线箭头和虚线箭头流向第一油道101的两端。图6为沿着定子顶端处的其中一个第二油道102a剖开的示意图,参见图6所示,冷却油从多个第一油道101的一端进入多个第二油道102a中(参见图6中实线箭头),冷却油从多个 第一油道101的另一端进入多个第二油道102b中(参见图6中的虚线箭头),这样冷却油在多个第二油道102a中的流向与冷却油在多个第二油道102b中的流向相反(参见图6中的实线箭头和虚线箭头),从而实现交错逆流,这样冷却油可以分别流向线圈绕组30的两个端部,从而可以对线圈绕组30的两个端部实现均匀散热。
其中,第二油道102a和第二油道102b中的冷却油分别从不同侧的喷口喷出时,具体参见图6所示,第二油道102a中的冷却油从第二喷口421喷出,并喷向线圈绕组30的第二端部32,第二喷口421的数量可以为多个,所以参见图5中右侧的实线箭头所示,冷却油从各个第二喷口421喷出并喷向线圈绕组30的第二端部32。多个第二油道102b中的冷却油从第一喷口411喷出并喷向线圈绕组30的第一端部31。参见图5所示,第一喷口411的数量为多个,所以如图5中左侧的虚线箭头所示,冷却油从多个第一喷口411喷出并喷向线圈绕组30的第一端部31。
所以,本申请实施例中,冷却油在多个第二油道102中的交错逆流确保了第一喷口411和第二喷口421喷出的冷却油可以对线圈绕组30的第一端部31和第二端部32分别实现冷却,这样第一油道101中的冷却油对电子铁芯的外表面实现有效散热,第二油道102中的冷却油对定子铁芯20的内侧和线圈绕组30的中部线圈33实现有效散热,且第二油道102中的冷却油交错逆流,实现了对线圈绕组30的两个端部的散热,最终,不仅实现了对定子的有效散热,同时确保了定子在轴向上的均匀散热,避免出现线圈绕组30和定子铁芯20局部散热不佳而出现超温的风险。
需要说明的是,在一些示例中,多个第二油道102a和多个第二油道102b分布包括但不限于为图4B所示的结构,例如,也可以在两个相邻的第二油道102a之间分布两个或两个以上的第二油道102,可以为第二油道102a、第二油道102b、第二油道102b、第二油道102a、第二油道102b、第二油道102b这样的排布方式。
其中,图7为沿着定子顶端处的第二油道102b剖开时的示意图,冷却油在第一油道101和第二油道102中的流向参见图7中的实线箭头和虚线箭头所示,冷却油沿着虚线箭头从第一喷口411喷出,冷却油沿着实线箭头从第二喷口421喷出。
需要说明的是,多个第一油道101的一端与多个第二油道102a连通时,可以为每个第一油道101的一端分别与每个第二油道102a连通,或者也可以为,多个第一油道101的一端均与各个第二油道102a连通,例如,多个第一油道101的一端流出的冷却油汇流后再分别进入各个第二油道102a,为了避免多个第一油道101一端的冷却油进入第二油道102b中,所以,第二油道102a与第二油道102b的两端进行阻隔,确保多个第一油道101的一端与多个第二油道102a连通而与多个第二油道102b不连通。
其中,为了实现第一油道101和第二油道102的连通且多个第二油道102中的冷却油交错逆流,参见图7所示,还包括:第一端盖41和第二端盖42,第一端盖41和第二端盖42分别位于定子铁芯20的两端;第一端盖41上开设有多个间隔设置的第一喷口411,第二端盖42上开设有多个间隔设置的第二喷口421;多个第一油道101的一端通过第一端盖41与部分第二油道102(例如第二油道102a)的一端连通,部分第二油道102的另一端与多个第二喷口421连通。多个第一油道101的另一端通过第二端盖42与其余第二油道102(例如第二油道102b)的一端连通,其余第二油道102的另一端与多个第一喷口411连通。
具体的,参见图7所示,第一端盖41与定子铁芯20的其中一端面之间形成第三油道 103;第二端盖42与定子铁芯20的另一端面之间形成第四油道104,需要说明的是,第三油道103分布在第一端盖41与定子铁芯20端面之间的整个周向,相应的,第四油道104分布在第二端盖42与定子铁芯20另一端面之间的整个周向,第三油道103和第四油道104为环形的油道。
多个第一油道101的一端通过第三油道103与部分第二油道102的一端连通,多个第一油道101的另一端通过第四油道104与其余第二油道102的一端连通。具体的,多个第一油道101的一端在第三油道103处均实现连通,即冷却油从多个第一油道101的一端流入第三油道103进行汇流,混合后分别进入部分第二油道102a,相应的,多个第一油道101的另一端在第四油道104处均实现连通,即冷却油从多个第一油道101的另一端流入第四油道104进行汇流,混合后分别进入部分第二油道102b。
本申请实施例中,通过第三油道103和第四油道104,这样冷却油在第三油道103和第四油道104处实现混流作用,使得的冷却油在周向流量分配更均匀,从而降低了定子周向温度的不均匀性,使得定子在周向上实现均匀散热。
需要说明的是,第一端盖41上的第一喷口411与第三油道103隔开(即不连通)且与第四油道104连通,第二端盖42上的第二喷口421与第四油道104隔开(即不连通)且与第三油道103连通,这样确保进入第三油道103的冷却油不会直接从第一喷口411喷出,相应的,进入第四油道104的冷却油不会直接从第二喷口421喷出。
其中,对本实施例提供的电机100的散热效果进行仿真,本实施例中选用了两种不同结构的电机100作为参考进行仿真,具体的,图8A是在电机100的线圈绕组30中设置油道时的热量传递路径的部分示意图,参见图8A所示,只在线圈绕组30中(具体为线圈绕组30的中部线圈33)设置油道102c,定子铁芯20的外表面热量以及定子铁芯20靠近线圈槽23的热量沿着实线箭头方向扩散到油道102c处进行散热,线圈绕组30的热量沿着两个虚线箭头方向扩散到油道102c处。
图8B是在电机100的线圈槽23的槽根处设置油道时的热量传递路径的部分示意图,如图8B所示,在线圈槽23的槽根处形成油道102c,定子铁芯20的外表面热量以及定子铁芯20靠近线圈槽23的热量沿着实线箭头方向扩散到油道102c处进行散热,线圈绕组30的热量沿着虚线箭头方向扩散到油道102c处。与图8A相比,图8B中的定子铁芯20外表面的热量传递路径减少。
图8C是本申请一实施例提供的电机100散热时热量传递路径的部分示意图,如图8C所示,在定子铁芯20的外表面与壳体10之间形成第一油道101,在线圈槽23的槽根处形成第二油道102,这样定子铁芯20中间的部分热量和靠近线圈槽23的热量沿着实线箭头传递到第二油道102处进行散热,线圈绕组30的热量沿着虚线箭头方向传递到第二油道102处进行散热,定子铁芯20的外表面和定子铁芯20的中间部分沿着另一实线箭头传递到第一油道101处进行散热。
与图8A和图8B相比,本实施例提供的电机100中,第一油道101和第二油道102两层油道的设置,缩短了热量传递路径,且两层油道使得定子铁芯20与油道的接触面积增大。经过仿真发现,本申请实施例提供的电机100,与只在线圈槽23的槽根处设置油道相比,实现了将定子的最高温度降低15℃左右,与在线圈绕组30中设置油道相比,实现了将定子的最高温度降低30℃左右,所以,本实施例提供的电机100,提 高了对定子的冷却效果,实现了对定子铁芯20和线圈绕组30的有效散热。
因此,本实施例提供的电机100,通过在电机100的壳体10的内表面12与定子铁芯20的外表面之间形成多个第一油道101,在定子铁芯20的线圈槽23的槽根处形成第二油道102,第一油道101可以对定子铁芯20的外表面进行冷却,第二油道102可以直接对定子铁芯20的线圈槽23周围以及线圈绕组30进行散热,这样实现了在定子铁芯20外表面和定子铁芯20的线圈槽23根部双层通油的目的,两层油道设计增大了冷却油与定子的接触面积,可显著提升定子和线圈散热能力。且多个第一油道101的一端与部分第二油道102连通,多个第一油道101的另一端与剩余的部分第二油道102连通,各个第二油道102与电机100端部的喷口连通,这样冷却油从注油口11注入后,部分第二油道102与其余部分第二油道102中的冷却油流向相反,从而实现了交错逆流,使定子铁芯20和线圈绕组30的轴向温度更均匀,因此,本申请实施例提供的电机100,确保了对定子铁芯20和线圈绕组30的有效冷却,保证了电机100在低速大扭矩和高转速工况下的散热需求,解决了现有电机100中定子铁芯20和线圈绕组30散热不佳而造成电机100在低速大扭矩和高转速工况下线圈绕组30易出现超温的问题。
本实施例中,定子铁芯20的外表面与壳体10内表面之间形成多个第一油道101时,其中一种可能的实现方式为:如图9所示,在定子铁芯20的外表面上设有多个油槽22,多个油槽22沿着定子铁芯20的外周周向间隔设置,每个油槽22的两端延伸到定子铁芯20的两个端面处,油槽22与壳体10的内表面12围成第一油道101。
或者,在另一种可能的实现方式中,在壳体10的内表面12上设置多个油槽22,多个油槽22沿着壳体10的内周周向间隔设置,油槽22与定子铁芯20的外表面围成第一油道101。
或者,在另一种可能的实现方式中,在定子铁芯20的外表面上设有多个油槽22,多个油槽22沿着定子铁芯20的外周周向间隔设置,每个油槽22的两端延伸到定子铁芯20的两个端面处,在壳体10的内表面12上设置多个油槽22,多个油槽22沿着壳体10的内周周向间隔设置,壳体10内表面上的油槽22与定子铁芯20的外表面上的油槽22共同围成第一油道101。
本申请实施例中,下述描述中具体以在定子铁芯20外表面上的油槽22与壳体10内表面之间围成第一油道101为例进行说明。
本申请实施例中,定子铁芯20外表面上开设油槽22时,多个油槽22的槽宽或截面形状可以相同,或者如图10所示,多个油槽22的槽宽或截面形状不同。
其中,本申请实施例中,至少部分油槽22的槽底为凹凸不平的弧形槽底,例如,参见图10所示,多个油槽22中,油槽22c的槽底为凹凸不平的弧形状,这样冷却油经过第一油道101时,定子铁芯20与冷却油之间的接触面积增大,从而对定子铁芯20的外表面实现有效散热。或者,多个油槽22的槽宽相等,或者,多个油槽22的槽宽不同,或者,参见图10所示,多个油槽22中的部分油槽22的槽宽大于部分油槽22的槽宽,例如,油槽22b的槽宽小于油槽22a的槽宽,这样在相同面积下,开设的油槽22b的数量可以增大,从而增大冷却油与定子铁芯20的接触面积,有利于对定子铁芯20的外表面实现良好冷却。
本申请实施例中,在至少部分线圈槽23的槽底(即槽根)形成第一油道101时,一 种可能的实现方式,在至少部分线圈槽23的槽底开设有第五凹槽21,例如,参见图10所示,在每个线圈槽23的槽底开设第五凹槽21,参见图11所示,在线圈槽23中设置有绝缘层24,例如,在线圈槽23的槽壁上设置绝缘层24,线圈绕组30通过绝缘层24与定子铁芯20之间绝缘设置,即绝缘层24用于防止线圈绕组30与定子铁芯20上线圈槽23的槽壁实现电接触,第五凹槽21与部分绝缘层24围成第二油道102,例如,绝缘层24中位于第五凹槽21槽口处的部分将第五凹槽21槽口进行封闭,使得第五凹槽21槽口处的绝缘层24与第五凹槽21的槽壁围成第二油道102。
当然,在一些其他示例中,也可以在定子铁芯20靠近线圈槽23的槽底处开孔形成第二油道102。本实施例中,具体以图11所示的方式形成第二油道102。
其中,本实施例中,为了便于绝缘层24在第五凹槽21的槽口处设置,参见图11所示,第五凹槽21的槽口宽度为a,线圈槽23的槽底宽度为b,a小于b,这样在第五凹槽21与线圈槽23的交界处形成台阶211,绝缘层24可以抵在台阶上对第五凹槽21的槽口进行封堵,所以,通过a小于b,方便绝缘层24在第五凹槽21的槽口处进行设置。
本申请实施例中,当a小于b时,这样冷却油与线圈绕组30以及定子铁芯20之间的重叠面积较小,为了实现对线圈绕组30以及定子铁芯20的良好散热,所以,本实施例中,第五凹槽21的槽底宽度为c,且c大于a,这样形成的第一油道101可容纳的冷却油较多,从而对线圈绕组30和定子铁芯20达到良好的冷却目的。
本申请实施例中,参见图11所示,第五凹槽21的截面外轮廓呈T型状,当然,在一些其他示例中,第五凹槽21的截面外轮廓也可以为伞状或者扇形状。
需要说明的是,本申请实施例中,第五凹槽21的槽底宽度c可以大于或等于线圈槽23的槽底宽度b。
本申请实施例中,图13为图12中沿E-E方向的剖面图,参见图13和图14所示,油槽22a(参见图10)与壳体10内表面形成第一油道101a,油槽22b(参见图10)与壳体10内表面形成第一油道101b,油槽22c(参见图10)与壳体10内表面形成第一油道101c。
本申请实施例中,图16为图15中的虚线框的放大示意图,参见图16所示,从注油口11注入的冷却油进入连通槽13,通过连通槽13冷却油进入各个第一油道101中。
下面五个实施例对第一端盖41和第二端盖42实现多个第一油道101的一端与部分第二油道102a连通、多个第一油道101的另一端与部分第二油道102b连通的方式进行详细描述。
实施例一
本申请实施例中,参见图17所示,第一端盖41至少包括:第一环形端板401,第一环形端板401与定子铁芯20的其中一端面之间形成第三油道103(参见下述图25)。参见图21所示第二端盖42至少包括:第二环形端板402,第二环形端板402与定子铁芯20的另一端面之间形成第四油道104(参见下述图25)。
参见图17所示,多个第一喷口411沿着第一环形端板401的周向间隔设置,参见图20所示,多个第二喷口421沿着第二环形端板402的周向间隔设置。这样从多个第一喷口411喷出的冷却油可以对线圈绕组30的第一端部31的周向均匀散热,多个第二喷口421喷出的冷却油可以对线圈绕组30的第二端部32的周向均匀散热。
参见图18所示,第一环形端板401的内边缘413(参见图17所示)处设有多个间隔设置的第一阻隔块416,第一阻隔块416的一端抵在定子铁芯20的一端面上,参见图19所示,第一阻隔块416上开设有第一喷口411,第一喷口411通过第一阻隔块416与第三油道103隔开,这样,参见图20所示,第一端盖41安装后,第一阻隔块416将多个第二油道102b朝向第一端盖41的一端封堵,这样第三油道103与多个第二油道102b不连通而与多个第二油道102a连通(参见图20中的实线箭头),而第一喷口411设在第一阻隔块416上,这样确保第二油道102b与第一喷口411连通,所以本实施例中,设置第一阻隔块416时,一方面实现了将第三油道103与部分第二油道102b隔开,另一方面实现了将部分第二油道1025b与第一喷口411连通。
参见图18所示,第一阻隔块416上具有第一凹陷部417,第一喷口411位于第一凹陷部417处,其中,参见图19所示,第一凹陷部417的开口面积大于第一喷口411的开口面积,这样部分第二油道102b的另一端与第一凹陷部417连通即可实现与第一喷口411的连通,降低了第一喷口411与第二油道102b一一对应安装时的难度。另外,当第一凹陷部417与第二油道102b连通后,这样第一喷口411的位置不受限于第二油道102b一端的位置,例如,当第一喷口411靠近线圈绕组30的第一端部31时,第一喷口411喷出的冷却油往往对第一端部31靠近定子铁芯20的区域接触并实现冷却,而第一端部31远离定子铁芯20的区域往往由于无法接触到冷却油而出现散热不佳的情况,所以本实施例中,第一喷口411在第一凹陷部417上设置时,在竖向上可以远离第一端部31,这样第一喷口411喷出的冷却油可以对第一端部31朝外的一端也实现冷却。
相应的,参见图21所示,第二环形端板402的内边缘423处设有多个间隔设置的第二阻隔块426,第二阻隔块426的一端抵在定子铁芯20的另一端面上,第二阻隔块426上开设有第二喷口421,第二喷口421通过第二阻隔块426与第四油道104隔开。这样第二阻隔块426将第四油道104与部分第二油道102a隔开,而将部分第二油道102a与第二喷口421连通。
参见图21所示,第二阻隔块426上具有第二凹陷部427,第二喷口421位于第二凹陷部427处。第二凹陷部427的作用可以参考上述第一凹陷部417的作用。
参见图21所示,第一端盖41的朝向定子铁芯20的一面的外边缘412处设有多个间隔设置的第一凸块414,两个相邻的第一凸块414之间具有第一间隔415,且多个第一凸块414沿着第一端盖41的外边缘周向设置。第二端盖42的朝向定子铁芯20的一面的外边缘422处设有第二凸块424,两个相邻的第二凸块424之间具有第二间隔425,多个第二凸块424沿着第二端盖42的外边缘周向设置。
图23为图22的虚线框的放大示意图,如图23所示,第一凸块414的一端抵在定子铁芯20的一端面上,第二凸块424的一端抵在定子铁芯20的另一端面上。参见23所示,各个第一凸块414与第一油道101的一端端在周向上错开,这样第一油道101中的冷却油可以通过第一间隔105进入第三油道103(参见图25)。相应的,各个第二凸块424与第一油道101的一端在周向上错开,便于冷却油通过第二间隔425进入第四油道104(参见图25)。
本实施例中,参见图24所示,多个第二喷口421朝向第一环形端板401的正投影与多个第一喷口411在第一环形端板401上周向交替排布,这样可以实现线圈绕组30两个 端部轴向上的均匀散热。
本申请实施例中,如图24所示,第一喷口411和第二喷口421为扁形喷口,例如第一喷口411和第二喷口421的形状可以为长方形或者长条状,这样第一喷口411和第二喷口421的喷出的冷却油辐射的区域更宽,使得线圈绕组30的两个端部与冷却油接触的面积更大,散热效果更好。
图25和图26是本实施例提供的电机100在两个不同位置的剖面示意图,参见图25所示,第一阻隔块416和第二阻隔块426分别抵在定子铁芯20的两个端面上实现油道的隔离。参见图26所示,第一油道101中的冷却油沿着实线箭头流动时,进入第三油道103后,在各个第一阻隔块416的阻隔下无法进入各个第二油道102b中,而是通过第三油道103进入各个第二油道102a中,最终从第二喷口421喷出。而第一油道101中的冷却油沿着虚线箭头流动时,进入第四油道104后,通过第四油道104进入各个第二油道102b,而在各个第一阻隔块416的阻隔下无法进入各个第二油道102a中,最终从第一喷口411喷出。
实施例二
本申请实施例与上述实施例一的区别为:本申请实施例中,参见图27和图28A所示,第一喷口411为圆形喷口,参见图28B所示,第二喷口421为圆形喷口,参见图29所示,多个第一喷口411周向均匀间隔设置。参见图30所示,第一喷口411开设在第一阻隔块416的第一凹陷部417上,且第一喷口411靠近第一端盖41的外圈。
本申请实施例中,通过将第一喷口411和第二喷口421设置为圆形喷口时,这样在相同油压下,圆形喷口可以使得冷却油以更快的速度喷射至线圈绕组30的两个端部上。
本申请实施例中,喷口为朝向线圈绕组30的方向倾斜的倾斜喷口,例如,参见图31和图32所示,第二喷口421朝向线圈绕组30的第二端部32的方向倾斜设置,这样冷却油可以沿着图32中倾斜的实线箭头集中喷向第二端部32,参见图33所示,第一喷口411朝向线圈绕组30的第一端部31的方向倾斜设置。这样冷却油可以沿着图33中倾斜的虚线箭头集中喷向第二端部32。
需要说明的是,当第一喷口411和第二喷口421为倾斜喷口时,第一喷口411和第二喷口421的形状包括但不限于为圆形,即第一喷口411和第二喷口421的形状为扁形结构时,也可以将第一喷口411和第二喷口421设置为倾斜状。
通过将第一喷口411和第二喷口421分别朝向第一端部31和第二端部32倾斜设置,这样冷却油集中喷向线圈绕组30的两个端部,从而实现线圈绕组30的两个端部良好的散热。
实施例三
本申请实施例与上述两个实施例的区别为:本申请实施例中,第一喷口411和第二喷口421可以与第一端部31和第二端部32面对面设置,图35为图34中壳体10去除后定子的立体图,参见图35所示,第一端盖41还包括:轴向凸起且与第一环形端板401的外边缘相连的第一延伸板403,即,第一延伸板403的一端与第一环形端板401的外边缘相连,第一延伸板403的另一端沿着定子铁芯20的轴向向外突出。第二端盖42还包括:轴 向凸起且与第二环形端板402的外边缘相连的第二延伸板404,即,第二延伸板404的一端与第二环形端板402的外边缘相连,第二延伸板404的另一端沿着定子铁芯20的轴向向外突出。第一延伸板403与第一端部31面对面设置,第二延伸板404与第二端部32面对面设置。
参见图36和图37所示,第一延伸板403的外表面与壳体10之间形成第一喷油腔室405,第一延伸板403上开设多个与第一喷油腔室405相通的第一喷口411,即本申请实施例中,第一喷口411开设在第一延伸板403上。第二延伸板404的外表面与壳体10之间形成第二喷油腔室406,第二延伸板404上开设多个与第二喷油腔室406相通的第二喷口421,即第二喷口421开设在第二延伸板404上。
为了实现第二喷口421与第二油道102a连通,以及第一喷口411与第二油道102b连通,本申请实施例中,第一喷油腔室405和第二喷油腔室406均与注油口11连通,这样冷却油沿着实线箭头,从多个第一油道101的一端流向第三油道103,经过第三油道103混合后进入部分第二油道102b中,经过第二油道102b后进入第二喷油腔室406,最终,从第二喷口421喷向第二端部32;而多个第一油道101的另一端沿着虚线箭头流向第四油道104,经过第四油道104混流后进入部分第二油道102a,经过第二油道102a后进入第一喷油腔室405中,最终从第一延伸板403上的第一喷口411喷出。
其中,第一喷油腔室405和第二喷油腔室406与注油口11连通时,其中一种实现方式为:参见图36和图37所示,第一环形端板401内开设有多个第六油道106,多个第六油道106在第一环形端板401内间隔设置,多个第六油道106的两端分别与第一喷油腔室405和部分第二油道102a连通,这样,第六油道106的一端通过第二油道102a、第四油道104、第一油道101与注油口11实现连通。冷却油沿着图37中的虚线箭头经过第六油道106进入第一喷油腔室405中,并从第一喷口411向第一端部31喷油。
参见图36和图38所示,第二环形端板402内开设有多个第七油道107,多个第七油道107的两端分别与第二喷油腔室406和其余部分第二油道102b连通,这样,第七油道107的一端通过第二油道102b、第三油道103、第一油道101与注油口11连通,冷却油沿着图38中的实线箭头进入第七油道107,经过第七油道107进入第二喷油腔室406,并从第二喷口421向第二端部32喷油。
本申请实施例中,第一延伸板403与壳体10内壁之间形成第一喷油腔室405时,其中一种可能的实现方式为:参见图39所示,第一延伸板403的外表面上开设有第三凹槽4031,第三凹槽4031与壳体10的内表面12之间围成第一喷油腔室405。第二延伸板404的外表面上开设有第四凹槽4041,第四凹槽4041与壳体10的内表面12之间围成第二喷油腔室406。
本申请实施例中,参见图35和图39所示,第一延伸板403和第二延伸板404均为环形结构,所以,第一喷油腔室405和第二喷油腔室406均为环形腔室。
本申请实施例中,为了使得第一端部31和第二端部32周向上的散热更良好,参见图39所示,第一延伸板403的外表面上设有多个第一凹槽4032,第一凹槽4032的两端分别与第六油道106和第一喷油腔室405连通(参见图37所示)。这样参见图37所示,冷却油经过第六油道106后,再经过第一凹槽4032的引流进入环形的第一喷油腔室405实现混合,通过第一凹槽4032的引流作用,确保了冷却油在第二喷油腔室406内混合后保持 较高的油压,从而在第一喷口411处以较快速度喷向第二端部32。
参见图41所示,第二延伸板404的外表面上设有多个第二凹槽4042,第二凹槽4042的两端分别与第七油道107和第二喷油腔室406连通(参见图38)。这样冷却油经过第七油道107后,再经过第二凹槽4042的引流进入环形的第二喷油腔室406实现混合,通过第二凹槽4042的引流作用,确保了冷却油在第一喷油腔室405内混合后保持较高的油压,从而在第二喷口421处以较快速度喷向第二端部32。
当然,在一些实例中,第六油道106可以直接与第一喷油腔室405连通,即在第一延伸板403上不设置第一凹槽4032,相应的,第七油道107也可以直接与第二喷油腔室406连通,即在第二延伸板404上不设置第二凹槽4042。
参见图39所示,第一凹槽4032的靠近定子铁芯20的槽壁(例如槽底)上分别开设第一出油口4033,第一出油口4033与第六油道106连通(参见图37)。
参见图40所示,第一环形端板401的朝向定子铁芯20的一面上设有多个间隔设置的第一阻隔块416,第一阻隔块416上开设与第六油道106连通的第一进油口418(参见图37所示),多个第六油道106通过第一进油口418与部分第二油道102b连通。
参见图41所示,第二凹槽4042的靠近定子铁芯20的槽壁上分别开设第二出油口4043,第二出油口4043与第七油道107连通(参见图38所示)。第二环形端板402朝向定子铁芯20的一面上设有多个间隔设置的第二阻隔块426,第二阻隔块426上开设与第七油道107连通的第二进油口428连通(参见图38所示)。多个第七油道107通过第二进油口428与其余第二油道102b连通。
其中,第一阻隔块416和第二阻隔块426的设置方式可以参考上述实施例,本申请实施例中不再赘述。
实施例四
本申请实施例与上述实施例的区别为:本实施例中,在第一端盖41中的第一环形端板401和第一延伸板403上均开设喷口,在第二端盖42中的第二环形端板402和第二延伸板404均开设喷口,参见图42、图43和图44所示,第一环形端板401设开设第一喷口411,第一延伸板403上开设第三喷口411a,参见图47所示,第二环形端板402设开设第二喷口421,第二延伸板404上开设第四喷口421a,这样如图48和图49所示,冷却油沿着虚线箭头进入部分第二油道102a中,经过第一凹陷部417,并从第一环形端板401上的第一喷口411水平向外喷出,冷却油沿着实线箭头进入第一喷油腔室405,并从第一延伸板403上的第三喷口411a面向第一端部31喷出。参见图50所示,冷却油沿着虚线箭头进入第二喷油腔室406中,并通过第二延伸上的第四喷口421a面向第二端部32喷出,同时冷却油沿着实线箭头进入第二凹陷部427并从第二喷口421水平向外喷出。
所以,本申请实施例中,通过第一环形端板401上设置第一喷口411,在第一延伸板403上设置第三喷口411a,实现了冷却油从两个不同方向喷向第一端部31,对第一端部31的冷却效果更佳,通过第二环形端板402上设置第二喷口421,在第二延伸板404上设置第四喷口421a,实现了冷却油从两个不同方向喷向第二端部32,对第二端部32的冷却效果更佳。
本申请实施例中,第一喷油腔室405和第二喷油腔室406与注油口11连通时,另一 种可能的实现方式为:参见图44和图45所示,第一延伸板403的外表面上分别开设多个第一通槽4032a,即第一通槽4032a的两端为敞口,多个第一通槽4032a的两端分别与第一喷油腔室405和多个第一油道101的一端连通(参见图49所示),这样冷却油沿着图49中的实线箭头,经过第一通槽4032a进入第一喷油腔室405。
参见图46所示,第一凹陷部417、第一阻隔块416以及第一凸块414的设置方式可以参考上述实施例中的描述。
参见图47所示,第二延伸板404的外表面上开设多个第二通槽4042a,第二通槽4042a的两端为敞口,参见48和图50所示,多个第二通槽4042a的两端分别与第二喷油腔室406和多个第一油道101的另一端连通。这样冷却油沿着图50中的虚线箭头,经过第二通槽4042a进入第二喷油腔室406。
所以,本申请实施例中,参见48所示,多个第一油道101的两端分别与第三油道103和第四油道104,同时多个第一油道101的两端分别还与第一通槽4032a和第二通槽4042a连通。这样多个第一油道101中的部分冷却油经过第一通槽4032a和第二通槽4042a分别进入第一喷油腔室405和第二喷油腔室406,并经过第三喷口411a和第四喷口421a向外喷出,这样第三喷口411a和第四喷口421a喷出的冷却油未经过多个第二油道102吸收热量,所以经过第三喷口411a和第四喷口421a向外喷出的冷却油温度低于第一喷口411和第二喷口421喷出的冷却油温度,这样第三喷口411a和第四喷口421a向外喷出的冷却油可以对第一端部31和第二端部32的冷却效果更好。
实施例五
本申请实施例中,图52为图51中壳体10去除后定子的结构,图53为第一端盖41的结构,参见图51、图52以及图53所示,第一延伸板403和第二延伸板404均为弧形段,即第一延伸板403和第二延伸板404为非环形结构,第一延伸板403和第二延伸板404分别位于第一环形端板401和第二环形端板402的顶端外边缘。参见图54和图55所示,第一延伸板403沿着第一环形端板401外边缘设置一段,第一延伸板403可以位于第一端部31和第二端部32的正上方。相应的,第二延伸板404沿着第二环形端板402的外边缘设置一段,第二延伸板404可以位于第二端部32的正上方。
其中,第一延伸板403上开设的第三凹槽4031与壳体10之间形成的第一喷油腔室405为非环形腔,第二延伸板404上开设的第四凹槽4041与壳体10内表面之间形成的第二喷油腔室406也为非环形腔。其中,第一环形端板401和第二环形端板402上分别设有多个第一喷口411和多个第二喷口421,设置方式可以参考上述实施例,本申请实施例不再赘述。
其中,参见图56所示,第一延伸板403上开设第三凹槽4031,在第三凹槽4031中间隔设有多个隔板4031a,参见图57所示,在第二延伸板404上开设第四凹槽4041,在第四凹槽4041中间隔设有多个隔板4041a,隔板4031a和隔板4041a分别将第三凹槽4031和第四凹槽4041的内部分割为多个凹槽,这样进入第一喷油腔室405和第二喷油腔室406中的冷却油可以在隔板4031a和隔板4041a的分隔下进入第一喷油腔室405和第二喷油腔室406中的各个凹槽中。
参见图58所示,在第一延伸板403上开设多排第三喷口411a,在第二延伸板404开 设多排第四喷口421a,多排第三喷口411a可以第一喷油腔室405内的分隔出的各个凹槽连通,多排第四喷口421a可以第二喷油腔室406内的分隔出的各个凹槽连通,这样冷却油可以从不同位置的第三喷口411a和第四喷口421a向第一端部31和第二端部32喷冷却油,冷却油喷向第一端部31和第二端部32的顶端后,在重力作用冷却油向下流(参见图58中的线圈绕组30的第一端部31和第二端部32上的实线箭头和虚线箭头),从而对第一端部31和第二端部32的其余部分进行散热,所以本申请实施例中,第三喷口411a和第四喷口421a喷出的冷却油,通过淋油方式向线圈绕组30的第一端部31和第二端部32进行冷却。
本申请实施例中,第一喷油腔室405和第二喷油腔室406与注油口11连通时,第三种可能的实现方式为:参见图58所示,在壳体10内设有第五油道105,第五油道105分别与注油口11、第一喷油腔室405和第二喷油腔室406连通。即,第一喷油腔室405和第二喷油腔室406通过壳体10内部的第五油道105与注油口11连通,这样如图58所示,冷却油从注油口11注入后,部分冷却油进入第五油道105,部分冷却油进入多个第一油道101,参见图59所示,部分冷却油沿着实线箭头经过第五油道105进入第一喷油腔室405,第三喷口411a向第一端部31喷冷却油,同时,部分冷却油沿着实线箭头经过第一油道101并进入第三油道103,与部分第二油道102a连通,最终从第二喷口421喷向(参见图58所示)第二端部32,冷却油在第二端部32上在重力作用下沿着图58中的箭头流向第二端部32底端。
参见图60所示,部分冷却油沿着虚线箭头经过第五油道105并进入第二喷油腔室406中,通过第四喷口421a向第二端部32喷冷却油,同时,部分冷却油沿着实线箭头经过第二油道102a,并从第二喷口421向外喷向第二端部32喷冷却油,需要说明的是,与部分第二油道102b连通的第一喷口411可以向第一端部31喷冷却油(参见图58)。
需要说明的是,本申请实施例中,也可以将第一喷油腔室405和第二喷油腔室406不进行设置,例如,第一端盖41只包括第一环形端板104,第二端盖42只包括第二环形端板402,第一延伸板403和第二延伸板404不进行设置,这样第五油道105的两端开口分别朝向线圈绕组30的第一端部31和第二端部32,通过第五油道105的两个开口向线圈绕组30的第一端部31和第二端部32喷油,冷却液在线圈绕组30的第一端部31和第二端部32的顶端通过重力向下流动,通过淋油方式向线圈绕组30的第一端部31和第二端部32的其余部分进行散热。
本申请实施例的还提供一种动力总成,动力总成可以应用于电动车/电动汽车(EV)、纯电动汽车(PEV/BEV)、混合动力汽车(HEV)、增程式电动汽车(REEV)、插电式混合动力汽车(PHEV)、新能源汽车(New Energy Vehicle)等,或者,可以应用于电池管理(Battery Management)、电机100&驱动(Motor&Driver)、功率变换(Power Converter)等设备中。
参见图17所示,该动力总成至少包括减速器以及上述任一实施例的电机100,电机100通过转轴与减速器(未示出)相连,具体的,电机100的输出轴与减速器相连,减速器也可以和电机100集成减速电机100使用。
本申请实施例提供的一种动力总成,通过包括上述电机100,实现了在定子铁芯20外表面和定子铁芯20的线圈槽23根部双层通油的目的,这样第一油道101可以对定 子铁芯20的外表面进行冷却,第二油道102可以对定子铁芯20的线圈槽23周围以及线圈绕组30进行散热,且冷却油从注油口11注入后,部分第二油道102与其余部分第二油道102中的冷却油流向相反,从而实现了交错逆流,使定子铁芯20和线圈绕组30的轴向温度更均匀,确保了对定子铁芯20和线圈绕组30的有效冷却,保证了电机100在低速大扭矩和高转速工况下的散热需求,使得动力总成可以实现小型化的发展,确保了动力总成具有良好的散热能力和散热效果,使得动力总成的性能进一步得以提升。
本申请实施例的第三方面还提供一种设备,可以为电动车/电动汽车(EV)、纯电动汽车(PEV/BEV)、混合动力汽车(HEV)、增程式电动汽车(REEV)、插电式混合动力汽车(PHEV)、新能源汽车(New Energy Vehicle)等。
该设备至少包括车轮、传动部件和上述任一实施例的电机100,电机100通过传动部件与车轮相连,具体的,电机100的转轴转动以输出动力,传动部件将动力传递给车轮,使车轮转动。其中,电机100的输出轴可与减速器相连,减速器可与传动部件相连。
本申请实施例提供的设备,通过包括上述电机100,实现了在定子铁芯20外表面和定子铁芯20的线圈槽23根部双层通油的目的,这样第一油道101可以对定子铁芯20的外表面进行冷却,第二油道102可以对定子铁芯20的线圈槽23周围以及线圈绕组30进行散热,且冷却油从注油口11注入后,部分第二油道102与其余部分第二油道102中的冷却油流向相反,从而实现了交错逆流,使定子铁芯20和线圈绕组30的轴向温度更均匀,确保了对定子铁芯20和线圈绕组30的有效冷却,保证了电机100在低速大扭矩和高转速工况下的散热需求,确保了设备在不同工况下良好的散热效果和散热能力,提升了设备的工作性能。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (30)

  1. 一种电机,其特征在于,包括壳体,所述壳体内至少设置定子,所述定子包括:定子铁芯和线圈绕组,所述定子铁芯的内表面上具有多个间隔设置的线圈槽,所述线圈绕组的部分位于所述线圈槽内;
    所述壳体的内表面与所述定子铁芯的外表面之间形成多个第一油道,所述多个第一油道沿着所述定子铁芯的外周周向间隔设置,且多个所述第一油道均与所述壳体上开设的注油口连通;
    至少部分所述线圈槽的槽底形成第二油道;
    多个所述第一油道的其中一端与部分所述第二油道的一端连通,所述部分第二油道的另一端与所述电机一端的喷口连通,多个所述第一油道的另一端与其余所述第二油道的一端连通,所述其余第二油道的另一端与所述电机另一端的喷口连通。
  2. 根据权利要求1所述的电机,其特征在于,还包括:第一端盖和第二端盖;
    所述第一端盖和所述第二端盖分别位于所述定子铁芯的两端;
    所述第一端盖上开设有多个间隔设置的第一喷口,所述第二端盖上开设有多个间隔设置的第二喷口;
    多个所述第一油道的一端通过所述第一端盖与所述部分第二油道的一端连通,所述部分第二油道的另一端与多个所述第二喷口连通;
    多个所述第一油道的另一端通过所述第二端盖与所述其余第二油道的一端连通,所述其余第二油道的另一端与多个所述第一喷口连通。
  3. 根据权利要求2所述的电机,其特征在于,所述第一端盖与所述定子铁芯的其中一端面之间形成第三油道;
    所述第二端盖与所述定子铁芯的另一端面之间形成第四油道;
    多个所述第一油道的一端通过所述第三油道与部分所述第二油道的一端连通,多个所述第一油道的另一端通过所述第四油道与其余所述第二油道的一端连通;
    且所述第一喷口与所述第三油道隔开且与所述第四油道连通,所述第二喷口与所述第四油道隔开且与所述第三油道连通。
  4. 根据权利要求3所述的电机,其特征在于,所述第一端盖至少包括:第一环形端板,所述第一环形端板与所述定子铁芯的其中一端面之间形成所述第三油道;
    所述第二端盖至少包括:第二环形端板,所述第二环形端板与所述定子铁芯的另一端面之间形成所述第四油道。
  5. 根据权利要求4所述的电机,其特征在于,多个所述第一喷口沿着所述第一环形端板的周向间隔设置;
    多个所述第二喷口沿着所述第二环形端板的周向间隔设置。
  6. 根据权利要求5所述的电机,其特征在于,
    多个所述第二喷口朝向所述第一环形端板的正投影与多个所述第一喷口在所述第一环形端板上周向交替排布。
  7. 根据权利要求4-6任一所述的电机,其特征在于,所述第一环形端板的内边缘处设有多个间隔设置的第一阻隔块,所述第一阻隔块的一端抵在所述定子铁芯的一端面上,所 述第一阻隔块上开设有所述第一喷口,所述第一喷口通过所述第一阻隔块与所述第三油道隔开;
    所述第二环形端板的内边缘处设有多个间隔设置的第二阻隔块,所述第二阻隔块的一端抵在所述定子铁芯的另一端面上,所述第二阻隔块上开设有所述第二喷口,所述第二喷口通过所述第二阻隔块与所述第四油道隔开。
  8. 根据权利要求7所述的电机,其特征在于,所述第一阻隔块上具有第一凹陷部,所述第一喷口位于所述第一凹陷部处;
    所述第二阻隔块上具有第二凹陷部,所述第二喷口位于所述第二凹陷部处。
  9. 根据权利要求4-8任一所述的电机,其特征在于,所述第一端盖还包括:轴向凸起且与所述第一环形端板的外边缘相连的第一延伸板,所述第二端盖还包括:轴向凸起且与所述第二环形端板的外边缘相连的第二延伸板;
    所述第一延伸板的外表面与所述壳体之间形成第一喷油腔室,所述第一延伸板上开设与所述第一喷油腔室连通的第三喷口;
    所述第二延伸板的外表面与所述壳体之间形成第二喷油腔室,所述第二延伸板上开设与所述第二喷油腔室连通的第四喷口;
    且所述第一喷油腔室和所述第二喷油腔室均与所述注油口连通。
  10. 根据权利要求9所述的电机,其特征在于,所述第一延伸板和所述第二延伸板均为环形结构,所述第一喷油腔室和第二喷油腔室均为环形腔室。
  11. 根据权利要求9所述的电机,其特征在于,所述第一延伸板和所述第二延伸板均为弧形段,所述第一延伸板和所述第二延伸板分别位于所述第一环形端板和所述第二环形端板的顶端外边缘。
  12. 根据权利要求9-11任一所述的电机,其特征在于,所述第一延伸板和所述第二延伸板的外表面上分别开设多个第一通槽和多个第二通槽;
    多个所述第一通槽的两端分别与所述第一喷油腔室和多个所述第一油道的一端连通;
    多个所述第二通槽的两端分别与所述第二喷油腔室和多个所述第一油道的另一端连通。
  13. 根据权利要求9-11任一所述的电机,其特征在于,所述壳体内设有第五油道,所述第五油道分别与所述注油口、所述第一喷油腔室和所述第二喷油腔室连通。
  14. 根据权利要求4所述的电机,其特征在于,所述第一端盖还包括:轴向凸起且与所述第一环形端板的外边缘相连的第一延伸板,所述第二端盖还包括:轴向凸起且与所述第二环形端板的外边缘相连的第二延伸板;
    所述第一延伸板的外表面与所述壳体之间形成第一喷油腔室,所述第一延伸板上开设多个与所述第一喷油腔室相通的所述第一喷口;
    所述第二延伸板的外表面与所述壳体之间形成第二喷油腔室,所述第二延伸板上开设多个与所述第二喷油腔室相通的所述第二喷口。
  15. 根据权利要求14所述的电机,其特征在于,所述第一环形端板内开设有多个第六油道,多个所述第六油道的两端分别与所述第一喷油腔室和部分所述第二油道连通;
    所述第二环形端板内开设有多个第七油道,多个所述第七油道的两端分别与所述第二喷油腔室和其余部分所述第二油道连通。
  16. 根据权利要求15所述的电机,其特征在于,所述第一延伸板的外表面上设有多个第一凹槽,所述第一凹槽的两端分别与所述第六油道和所述第一喷油腔室连通;
    所述第二延伸板的外表面上设有多个第二凹槽,所述第二凹槽的两端分别与所述第七油道和所述第二喷油腔室连通。
  17. 根据权利要求16所述的电机,其特征在于,所述第一凹槽和所述第二凹槽的靠近所述定子铁芯的槽壁上分别开设出油口,所述第一凹槽上的所述出油口与所述第六油道连通,所述第二凹槽上的所述出油口与所述第七油道连通;
    所述第一环形端板和所述第二环形端板朝向所述定子铁芯的一面上分别设有多个间隔设置的第一阻隔块和多个间隔设置的第二阻隔块,所述第一阻隔块上开设与所述第六油道连通的第一进油口,所述第二阻隔块上开设与所述第七油道连通的第二进油口;
    多个所述第六油道通过所述第一进油口与部分所述第二油道连通;
    多个所述第七油道通过所述第二进油口与其余所述第二油道连通。
  18. 根据权利要求9或14所述的电机,其特征在于,所述第一延伸板的外表面上开设有第三凹槽,所述第三凹槽与所述壳体的内表面之间围成所述第一喷油腔室;
    所述第二延伸板的外表面上开设有第四凹槽,所述第四凹槽与所述壳体的内表面之间围成所述第二喷油腔室。
  19. 根据权利要求1-18任一所述的电机,其特征在于,所述定子铁芯的外表面上设有多个油槽,多个所述油槽沿着所述定子铁芯的外周周向间隔设置,每个油槽的两端延伸到所述定子铁芯的两个端面处;
    所述油槽与所述壳体的内表面围成所述第一油道。
  20. 根据权利要求19所述的电机,其特征在于,至少部分所述油槽的槽底为凹凸不平的弧形槽底。
  21. 根据权利要求19或20所述的电机,其特征在于,所述多个油槽的槽宽相等,或者所述多个油槽的槽宽不同,或者,多个所述油槽中的部分油槽的槽宽大于其余部分所述油槽的槽宽。
  22. 根据权利要求2-18任一所述的电机,其特征在于,所述第一端盖的朝向所述定子铁芯的一面的外边缘处设有多个间隔设置的第一凸块,且多个所述第一凸块沿着所述第一端盖的外边缘周向设置,所述第一凸块的一端抵在所述定子铁芯的一端面上;
    所述第二端盖的朝向所述定子铁芯的一面的外边缘处设有第二凸块,多个所述第二凸块沿着所述第二端盖的外边缘周向设置,所述第二凸块的一端抵在所述定子铁芯的另一端面上;
    且所述第一凸块和所述的第二凸块分别与所述第一油道的两端在周向上错开。
  23. 根据权利要求1-22任一所述的电机,其特征在于,所述喷口的形状为扁形结构,或者所述喷口的形状为圆形结构。
  24. 根据权利要求1-23任一所述的电机,其特征在于,所述喷口为朝向所述线圈绕组的方向倾斜的倾斜喷口。
  25. 根据权利要求1-24任一所述的电机,其特征在于,至少部分所述线圈槽的槽底开设有第五凹槽,所述线圈槽中设置有绝缘层,所述线圈绕组通过所述绝缘层与所述定子铁芯之间绝缘设置;
    且所述第五凹槽与部分所述绝缘层围成所述第二油道。
  26. 根据权利要求25所述的电机,其特征在于,所述第五凹槽的槽口宽度为a,所述线圈槽的槽底宽度为b,所述a小于所述b。
  27. 根据权利要求26所述的电机,其特征在于,所述第五凹槽的槽底宽度为c,且所述c大于所述a。
  28. 根据权利要求1-27任一所述的电机,其特征在于,所述壳体的内表面沿着所述壳体的周向设有连通槽,所述连通槽与所述注油口以及多个所述第一油道均连通。
  29. 一种动力总成,其特征在于,至少包括减速器以及上述权利要求1-28任一所述的电机,所述电机通过转轴与所述减速器相连。
  30. 一种设备,其特征在于,至少包括车轮、传动部件和上述权利要求1-28任一所述的电机,所述电机通过所述传动部件与所述车轮相连。
PCT/CN2021/098023 2020-11-25 2021-06-02 电机、动力总成和设备 WO2022110748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21896257.9A EP4236036A4 (en) 2020-11-25 2021-06-02 ENGINE, POWER ASSEMBLY AND APPARATUS
US18/321,102 US20230318370A1 (en) 2020-11-25 2023-05-22 Motor, powertrain, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011340779.3 2020-11-25
CN202011340779.3A CN112615445B (zh) 2020-11-25 2020-11-25 电机、动力总成和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/321,102 Continuation US20230318370A1 (en) 2020-11-25 2023-05-22 Motor, powertrain, and device

Publications (1)

Publication Number Publication Date
WO2022110748A1 true WO2022110748A1 (zh) 2022-06-02

Family

ID=75225241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098023 WO2022110748A1 (zh) 2020-11-25 2021-06-02 电机、动力总成和设备

Country Status (4)

Country Link
US (1) US20230318370A1 (zh)
EP (1) EP4236036A4 (zh)
CN (1) CN112615445B (zh)
WO (1) WO2022110748A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207924A (zh) * 2023-02-13 2023-06-02 苏州朗高电机有限公司 一种应用于重型卡车的油冷驱动电机
CN116566123A (zh) * 2023-07-10 2023-08-08 福建华大电机有限公司 一种油冷永磁变频电机
WO2024047013A1 (de) * 2022-08-31 2024-03-07 Bayerische Motoren Werke Aktiengesellschaft Blechpaket für eine elektrische maschine, insbesondere eines kraftfahrzeugs, elektrische maschine und kraftfahrzeug
WO2024046562A1 (en) * 2022-08-31 2024-03-07 Gkn Automotive Limited Electric machine stator with inner cooling channels

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615445B (zh) * 2020-11-25 2022-05-13 华为数字能源技术有限公司 电机、动力总成和设备
CN112737154A (zh) * 2020-12-25 2021-04-30 浙江零跑科技有限公司 一种新型电动汽车油冷电机用的定子铁芯
CN113114005B (zh) * 2021-04-08 2023-10-27 苏州索尔达动力科技有限公司 一种电机定子及端部油路系统
DE102021111700A1 (de) * 2021-05-05 2022-11-10 Schaeffler Technologies AG & Co. KG Wickelkopfkühlung
CN114337012B (zh) * 2021-05-21 2023-07-18 华为数字能源技术有限公司 一种定子、电机及电动汽车
CN114257021B (zh) * 2021-12-24 2023-02-24 臻驱科技(上海)有限公司 一种驱动电机的冷却油环及驱动电机
CN114285213A (zh) * 2021-12-29 2022-04-05 苏州汇川联合动力系统有限公司 电机以及汽车
CN114598051B (zh) * 2022-03-02 2024-02-27 蔚来动力科技(合肥)有限公司 用于车辆的电机及车辆
CN114598052B (zh) * 2022-03-02 2024-02-02 蔚来动力科技(合肥)有限公司 用于车辆的电机及车辆
CN114744788B (zh) * 2022-03-28 2022-12-27 小米汽车科技有限公司 油冷电机
CN217769761U (zh) * 2022-04-12 2022-11-08 宁德时代(上海)智能科技有限公司 喷环、定子组件、电机和电动车辆
CN115037070A (zh) * 2022-05-10 2022-09-09 小米汽车科技有限公司 电机定子及油冷电机
CN114915056A (zh) * 2022-05-19 2022-08-16 中国第一汽车股份有限公司 一种定子的冷却结构以及车用永磁同步电机
CN115333265A (zh) * 2022-07-20 2022-11-11 华为数字能源技术有限公司 一种定子、电机、动力总成及机械设备
CN115242004A (zh) * 2022-08-05 2022-10-25 小米汽车科技有限公司 定子、电机和车辆
CN115912700A (zh) * 2022-10-31 2023-04-04 东风汽车集团股份有限公司 一种电机定子组件及电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025638A1 (en) * 2010-07-30 2012-02-02 General Electric Company Apparatus for cooling an electric machine
EP3054565A1 (en) * 2015-02-06 2016-08-10 Siemens Aktiengesellschaft Cooling arrangement
CN108649749A (zh) * 2018-06-13 2018-10-12 哈尔滨理工大学 一种具有注水型绕组和轴-径-周多向自循环通风系统的开关磁阻电机
CN109617319A (zh) * 2019-02-01 2019-04-12 清华大学 一种扁线电机槽内油冷结构
CN109698574A (zh) * 2017-10-23 2019-04-30 奥迪股份公司 电机
CN112615445A (zh) * 2020-11-25 2021-04-06 华为技术有限公司 电机、动力总成和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3806303B2 (ja) * 2000-12-11 2006-08-09 三菱重工業株式会社 発電機における冷却構造
JP3891083B2 (ja) * 2002-09-20 2007-03-07 日産自動車株式会社 回転電機の冷却構造
JP4026496B2 (ja) * 2002-12-26 2007-12-26 日産自動車株式会社 回転電機の冷却構造
CN201230257Y (zh) * 2008-07-17 2009-04-29 宝元数控精密股份有限公司 马达散热结构
JP2010104130A (ja) * 2008-10-22 2010-05-06 Sumitomo Heavy Ind Ltd ハイブリッド建設機械の駆動装置の冷却システム
CN103069696B (zh) * 2010-07-01 2016-09-21 艾里逊变速箱公司 用于冷却混合动力电机的方法
JP2012165620A (ja) * 2011-02-09 2012-08-30 Ihi Corp 回転機
US11056952B2 (en) * 2019-02-28 2021-07-06 Schaeffler Technologies AG & Co. KG Electric machine with internal cooling passageways
CN210724476U (zh) * 2019-04-20 2020-06-09 付多智 一种双重冷却的电机结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025638A1 (en) * 2010-07-30 2012-02-02 General Electric Company Apparatus for cooling an electric machine
EP3054565A1 (en) * 2015-02-06 2016-08-10 Siemens Aktiengesellschaft Cooling arrangement
CN109698574A (zh) * 2017-10-23 2019-04-30 奥迪股份公司 电机
CN108649749A (zh) * 2018-06-13 2018-10-12 哈尔滨理工大学 一种具有注水型绕组和轴-径-周多向自循环通风系统的开关磁阻电机
CN109617319A (zh) * 2019-02-01 2019-04-12 清华大学 一种扁线电机槽内油冷结构
CN112615445A (zh) * 2020-11-25 2021-04-06 华为技术有限公司 电机、动力总成和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236036A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047013A1 (de) * 2022-08-31 2024-03-07 Bayerische Motoren Werke Aktiengesellschaft Blechpaket für eine elektrische maschine, insbesondere eines kraftfahrzeugs, elektrische maschine und kraftfahrzeug
WO2024046562A1 (en) * 2022-08-31 2024-03-07 Gkn Automotive Limited Electric machine stator with inner cooling channels
CN116207924A (zh) * 2023-02-13 2023-06-02 苏州朗高电机有限公司 一种应用于重型卡车的油冷驱动电机
CN116207924B (zh) * 2023-02-13 2023-12-19 苏州朗高电机有限公司 一种应用于重型卡车的油冷驱动电机
CN116566123A (zh) * 2023-07-10 2023-08-08 福建华大电机有限公司 一种油冷永磁变频电机
CN116566123B (zh) * 2023-07-10 2023-09-19 福建华大电机有限公司 一种油冷永磁变频电机

Also Published As

Publication number Publication date
EP4236036A1 (en) 2023-08-30
CN112615445A (zh) 2021-04-06
CN112615445B (zh) 2022-05-13
US20230318370A1 (en) 2023-10-05
EP4236036A4 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2022110748A1 (zh) 电机、动力总成和设备
CN108336865B (zh) 一种液冷驱动电机
CN111769674B (zh) 一种转子、电机、动力总成及车辆
US20230077647A1 (en) Motor Rotor, Motor, and Vehicle
US11942833B2 (en) Intelligent power generation module
WO2020244284A1 (zh) 电机、电机冷却系统和电动车
WO2019184580A1 (zh) 一种车用液冷驱动电机
CN107234958A (zh) 电机热管理
US20170250591A1 (en) Electric motor cooling system
CN114421661A (zh) 定子铁芯、定子总成、电机、动力总成以及车辆
US20230307968A1 (en) Oil-cooled motor
WO2022110895A1 (zh) 定子、电机、动力总成及电动车
WO2024131581A1 (zh) 油冷电机、动力总成和车辆
WO2024016777A1 (zh) 一种定子、电机、动力总成及机械设备
CN111342586B (zh) 电机、动力总成和汽车
US20220415556A1 (en) Liquid cooled inductor
CN114421694A (zh) 电机、动力总成以及车辆
KR20220167272A (ko) 스테이터 코어, 모터, 파워 트레인, 자동차 및 차량
CN220545347U (zh) 散热装置、控制器、电机驱动系统及电动设备
CN217159441U (zh) 一种油水混合冷却的电机机壳
WO2022028382A1 (zh) 电机和车辆
WO2024051182A1 (zh) 定子组件、驱动电机及电驱系统
CN220985387U (zh) 定子及电机
CN219999117U (zh) 驱动电机及车辆
WO2023178927A1 (zh) 一种电机油冷系统及电机油冷方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021896257

Country of ref document: EP

Effective date: 20230526

NENP Non-entry into the national phase

Ref country code: DE