WO2024051182A1 - 定子组件、驱动电机及电驱系统 - Google Patents

定子组件、驱动电机及电驱系统 Download PDF

Info

Publication number
WO2024051182A1
WO2024051182A1 PCT/CN2023/091890 CN2023091890W WO2024051182A1 WO 2024051182 A1 WO2024051182 A1 WO 2024051182A1 CN 2023091890 W CN2023091890 W CN 2023091890W WO 2024051182 A1 WO2024051182 A1 WO 2024051182A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
stator
stator core
oil passage
copper bar
Prior art date
Application number
PCT/CN2023/091890
Other languages
English (en)
French (fr)
Inventor
刘文昌
俞东
姚伟科
周恩成
宋建军
Original Assignee
浙江凌昇动力科技有限公司
浙江零跑科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222345569.4U external-priority patent/CN218850473U/zh
Priority claimed from CN202320287275.2U external-priority patent/CN219618899U/zh
Priority claimed from CN202310351922.6A external-priority patent/CN116470668A/zh
Priority claimed from CN202320786058.8U external-priority patent/CN220440436U/zh
Application filed by 浙江凌昇动力科技有限公司, 浙江零跑科技股份有限公司 filed Critical 浙江凌昇动力科技有限公司
Publication of WO2024051182A1 publication Critical patent/WO2024051182A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the present application relates to the field of vehicle cooling and driving, and in particular to a stator assembly, a driving motor and an electric drive system.
  • the present invention provides a stator assembly, a motor and an electric drive system.
  • the present invention provides a stator assembly, which is installed inside a motor housing.
  • the motor housing is provided with an oil inlet channel.
  • the stator assembly includes a stator core, and the stator core is provided with an oil inlet channel.
  • Direct cooling oil passage the direct cooling oil passage is connected to the oil inlet passage.
  • the direct cooling oil passage extends along the axial direction of the stator core and penetrates the opposite ends of the stator core.
  • direct cooling oil passage is provided on the outer peripheral wall of the stator core facing the motor housing.
  • stator core is also provided with a branch oil groove, the branch oil groove surrounds the outer peripheral wall of the stator core facing the motor housing, and the branch oil groove is connected with the straight line.
  • the cold oil channels intersect.
  • branch oil groove is in a spiral shape and is spirally wrapped around the outer peripheral wall of the stator core.
  • the branch oil groove is annular and is arranged around the outer peripheral wall of the stator core.
  • an oil guide groove is provided on the outer peripheral wall of the stator core between every two adjacent direct cooling oil passages. Each oil guide groove is connected with the branch oil groove.
  • stator core includes a plurality of stator tooth slots.
  • the opposite ends of the stator core are divided into Separate the terminals and the non-terminals, and the direct cooling oil passage runs through the terminals and the non-terminals.
  • the stator tooth slots pass through the opposite ends of the stator core.
  • the direct cooling oil passage is arranged in the corresponding stator tooth slot.
  • a splicing body is fixed on at least one of the terminal and the non-terminal.
  • the spliced body is provided with a transfer liquid path inside, the transfer liquid path is connected to the oil inlet channel, and extends to the connection end or the non-connection end of the stator core to connect the direct cooling oil road.
  • the spliced body includes a conduction unit and a liquid separation unit.
  • the conduction unit has a hollow inner cavity connected to the oil inlet channel.
  • a liquid separation flow channel is provided inside the liquid separation unit.
  • the liquid separation flow channel One end is connected to the hollow inner cavity and forms the transfer liquid path with the hollow inner cavity, and the other end is connected to the direct cooling oil channel.
  • the stator core further includes a cylinder for forming a yoke, the stator tooth grooves are provided on the inner wall of the cylinder, and the liquid dispensing unit includes.
  • the liquid separation ring plate covers the end surface of the cylinder and is connected to the conduction unit; and the tooth plate protrudes from the inner edge of the liquid separation ring plate and covers the end surface of the tooth portion.
  • the liquid separation flow channel extends along the radial direction of the liquid separation ring plate, one end of which penetrates the liquid separation ring plate and is connected to the hollow inner cavity, and the other end penetrates the tooth plate and is connected to the direct cooling oil passage .
  • the width of the liquid distribution flow channel tends to decrease in the direction close to the axis of the stator core; and/or in a plane perpendicular to the axis of the stator core, the projection of the direct cooling oil channel
  • the width of the shape shows a decreasing trend in the direction approaching the axis of the stator core.
  • the liquid separation unit includes a first cover plate and a second cover plate that are stacked along the axial direction of the stator core, and the first cover plate is attached to the terminal or the non-terminal. , and is provided with the liquid separation flow channel.
  • the second cover plate is provided with a liquid separation port and is fixedly connected to the conduction unit.
  • the liquid separation port is connected to the hollow inner cavity and is connected to the liquid separation flow channel relatively away from the axis of the stator core. one end.
  • the stator assembly further includes a winding, the winding is wound around the outside of the tooth portion and the liquid dispensing unit, and the step is used to avoid the winding.
  • the conduction unit and the liquid dispensing unit are formed separately and fixedly connected, and the spliced body further includes a leak-proof seal.
  • the conduction unit and the liquid dispensing unit, and the conduction unit and the motor housing are sealedly connected through the leakage-proof seal to seal the hollow inner cavity.
  • the direct cooling oil passage includes a first direct cooling oil passage and a second direct cooling oil passage, and any of the direct cooling oil passages penetrates the terminal and the non-terminal and forms a first opening respectively. with the second opening
  • the splicing body includes a first splicing body and a second splicing body respectively fixed on the connection terminal and the non-connection terminal.
  • the first direct cooling oil passage the first opening is connected to the transfer liquid passage of the first joint body, and the second opening is exposed; in the second direct cooling oil passage, the first opening is connected to the transfer liquid passage of the first joint body, and the second opening of the direct cooling oil passage is exposed.
  • One opening is exposed, and the second opening is connected to the transfer fluid path of the second splice body.
  • first direct cooling oil passages and the second direct cooling oil passages are alternately arranged in a preset number along the circumferential direction of the stator core.
  • first spliced body has a plurality of first liquid storage chambers arranged at intervals along the circumferential direction of the stator core and connected with each other
  • second spliced body has a plurality of first liquid reservoirs arranged along the circumferential direction of the stator core.
  • second liquid storage silos arranged at circumferential intervals and connected with each other.
  • the first liquid storage silo is connected to the first opening of the first direct cooling oil passage
  • the second liquid storage silo is connected to the second direct cooling oil channel. The second opening of the oil passage.
  • the first liquid reservoir and the second liquid reservoir are offset from each other one by one; or in the circumferential direction of the stator core, the first liquid reservoir is and the second liquid storage bins are mutually offset in groups respectively; or at least one of the first splicing body and the second splicing body is formed separately from the stator core.
  • stator assembly further includes a potting glue layer filled in the stator tooth slots, and the direct cooling oil passage is provided in the potting glue layer in the stator tooth slots.
  • cross-sectional area of the direct cooling oil passage gradually decreases along the non-connection end toward the connection end.
  • the stator assembly includes a stator core, a terminal block assembly, a coil and a non-terminal frame potted into one body.
  • the terminals and the non-terminals are respectively opposite ends of the stator core, and the terminal assembly and the non-terminal frame are respectively installed on the terminals and the non-terminals; wherein,
  • the stator tooth slots are arranged on the stator core, and the terminal block assembly and the non-terminal frame are both provided with winding brackets corresponding to the stator tooth slots; each of the coils is wound around the stator core. on the stator tooth slot and corresponding winding bracket.
  • the wiring board assembly includes a three-phase copper bar assembly, and the starting end and end end of each coil are fixedly connected to the three-phase copper bar assembly.
  • the three-phase copper bar assembly includes a U-phase connecting copper bar, a V-phase connecting copper bar and a W-phase connecting copper bar.
  • the U-phase connecting copper bar, the V-phase connecting copper bar and the W-phase connecting copper bar The copper bars include integrated ring-shaped copper bars and connecting terminals. The starting end and the ending end of each coil are welded to the connecting terminal.
  • an insulating glue layer is provided between the neutral point copper bar and the U-phase connecting copper bar, the V-phase connecting copper bar and the W-phase connecting copper bar.
  • the insulating glue layer is integrated with the potting glue layer forming.
  • the terminal block assembly further includes a terminal block, which is fixed to the terminal; wherein, the terminal block includes an accommodation slot and a connecting slot, and the accommodation slot is concentrically arranged with the connecting slot.
  • the accommodating groove includes three concentric and spaced-apart sub-channels; the connecting groove is located on a side of the sub-channel away from the center of the circle, and the depth of the connecting groove is smaller than that of the sub-channel.
  • the U-phase connecting copper bar, the V-phase connecting copper bar, and the W-phase connecting copper bar are respectively arranged in the corresponding sub-channels, and the neutral point copper bar is accommodated in the connecting slot.
  • An insulating glue layer is provided between the accommodating groove and the connecting groove.
  • the sealing strip also includes a sealing strip arranged on the non-connection end, wherein the sealing strip is integrally formed with the potting glue layer or the sealing strip is provided separately; wherein the sealing strip includes at least two oppositely arranged There are two oil passages formed between the two sealing strips, and the direct cooling oil passage is located at one end of the non-connection end and is accommodated in the oil passage.
  • the oil passage and the motor housing form an annular oil passage, and the annular oil passage is connected with the oil inlet passage.
  • the sealed end cover also includes a sealing end cover provided on the terminal, wherein the sealing end cover is integrally potted with the stator core, or the sealing end cover and the stator core are provided separately.
  • the sealed end cover includes an annular groove, and the direct cooling oil passage is located at one end of the terminal and communicates with the annular groove.
  • the sealing end cover is also provided with an oil outlet hole, and the oil outlet hole is connected with the annular groove.
  • the sealed end cover includes an annular cover body and a baffle plate extending from opposite sides of the annular cover body.
  • the annular groove is formed between the two baffle plates.
  • the annular cover body and the wiring connection The two ends are arranged oppositely, and the oil outlet hole is arranged on the annular cover body.
  • the present invention provides a motor, which includes a motor housing provided with an oil inlet passage.
  • the motor further includes a stator assembly as described in any one of the above, wherein the motor housing is provided with an oil inlet channel.
  • the direct cooling oil passage is connected to the oil inlet passage.
  • a circumferential fluid path and an axial fluid path are provided on the inner wall of the motor housing facing the stator core.
  • oil inlet passages include at least two, and are arranged at intervals along the circumference of the motor housing.
  • each of the oil inlet passages includes a first oil passage and a second oil passage.
  • the first oil passage extends along the axial direction of the stator core; the second oil passage extends along the same direction as the stator core.
  • the first oil passage extends in an intersecting direction, and the second oil passage is used to communicate with the direct cooling oil passage and the first oil passage.
  • the motor housing is provided with a circumferential oil passage arranged along its circumferential direction, and the circumferential oil passage is connected to the at least two oil inlets at different positions in the circumferential direction of the motor housing. passage; said week The outward oil passage is used to receive cooling oil from outside the stator assembly, so that the cooling oil enters the at least two oil inlet passages through the circumferential oil passage.
  • the present invention provides an electric drive system, which includes the above-mentioned motor and a reducer connected to the motor.
  • the reducer includes a reducer housing, and the reducer housing is provided with an oil inlet passage.
  • the oil inlet oil passage is connected to the oil inlet passage.
  • the reducer housing is also provided with a first sub-oil outlet, and the first sub-oil outlet is connected with the oil inlet passage.
  • the oil inlet passage extends along the axial direction of the reducer, and the first sub-oil outlet extends along the axial direction perpendicular to the reducer.
  • One end of the motor housing connected to the reducer housing is also provided with a first sub-oil inlet passage, and the first sub-oil outlet passage is connected with the first sub-oil inlet passage.
  • an oil collecting ring is also included.
  • the oil collecting ring is located between the motor housing and the stator core, and is sleeved on an end of the stator core away from the reducer.
  • the oil collecting ring is provided with an oil collecting ring groove on the outer wall of the motor housing facing the motor housing.
  • the motor housing is provided with a second sub-oil outlet channel connected with the oil inlet channel.
  • the second sub-oil outlet channel is connected to the oil inlet channel.
  • the oil passage is connected with both the oil collecting ring groove and the first oil passage.
  • the oil collecting ring groove is also provided with a plurality of oil injection holes penetrating in the radial direction.
  • this application provides a motor stator assembly installed inside a motor housing, and the motor housing is provided with an oil inlet channel.
  • the stator assembly includes a stator core.
  • the stator core is equipped with a direct cooling oil channel.
  • the direct cooling oil channel is connected to the oil inlet channel.
  • the cooling oil enters the interior of the stator assembly through the direct cooling oil channel to achieve axial cooling of the stator assembly. , and speed up the cooling efficiency of the motor.
  • the direct cooling oil passage extends along the axial direction of the stator core and runs through the opposite ends of the stator core, thereby speeding up the cooling speed of the entire electric drive system, effectively reducing the number of parts of the electric drive system and speeding up the cooling process. Cooling of the entire electric drive system.
  • Figure 1 is a schematic structural diagram of an embodiment of an electric drive system provided by this application.
  • FIG 2 is a schematic cross-sectional structural view of an embodiment of the electric drive system in Figure 1.
  • the electric drive system includes a motor, a stator assembly and an oil collection ring;
  • Figure 3 is a schematic cross-sectional structural view of the housing of the motor in Figure 1;
  • FIG 4 is a schematic cross-sectional structural view of the stator assembly in Figure 1, where the stator assembly includes a stator core;
  • FIG. 5 is a schematic structural diagram of an embodiment of the stator core shown in Figure 4.
  • Figure 6 is a schematic structural diagram of the oil collecting ring shown in Figure 2;
  • FIG 7 is a schematic structural diagram of the stator assembly in Figure 2.
  • the stator assembly includes a sealed end cover, a non-connection terminal and a direct cooling oil passage;
  • Figure 8 is a schematic structural diagram of the stator assembly in Figure 7 from another angle
  • Figure 9 is a schematic structural diagram of the direct cooling oil passage shown in Figure 7;
  • Figure 10 is a schematic diagram of the motor in Figure 2 cut along the axial direction of the core;
  • Figure 11 is a partial structural schematic diagram of the motor shown in Figure 10;
  • FIG 12 is a schematic structural diagram of another embodiment of a stator assembly provided by this application.
  • the stator assembly includes a liquid separation unit and a conduction unit;
  • Figure 13 is a schematic view of the end structure of the second cover plate of the liquid dispensing unit in Figure 12;
  • Figure 14 is a schematic view of the end structure of the first cover plate of the liquid dispensing unit in Figure 12;
  • Figure 15 is a schematic view of the end face structure of the core of the liquid dispensing unit in Figure 12;
  • Figure 16 is a partial structural schematic diagram of the motor housing of the motor in Figure 1;
  • Figure 17 is a schematic structural diagram of the motor housing of the motor in Figure 16 from another angle;
  • Figure 18 is a partial structural schematic diagram of the stator assembly described in Figure 2;
  • Figure 19 is a schematic structural diagram of the conduction unit described in Figure 12;
  • Figure 20 is a partial structural schematic diagram of another embodiment of the conduction unit described in Figure 12;
  • Figure 21 is a schematic structural diagram of another embodiment of an electric drive system provided by this application.
  • Figure 22 is a schematic structural diagram of the wiring board assembly in Figure 7.
  • the wiring board assembly includes a three-phase copper bar assembly and a neutral point copper bar;
  • Figure 23 is a partial structural schematic diagram of the three-phase copper bar assembly and the neutral point copper bar in Figure 22;
  • Figure 24 is a schematic structural diagram of the sealing end cap described in Figure 7;
  • Figure 25 is a schematic structural view of the sealing end cap in Figure 24 from another angle;
  • Figure 26 is a schematic structural diagram of a potting mold for a stator assembly provided by this application.
  • the potting mold includes a base;
  • Figure 27 is a schematic structural diagram of the base in Figure 26;
  • Figure 28 is a schematic structural diagram of another embodiment of a motor housing provided in this application.
  • Fig. 29 is a schematic cross-sectional structural view of the motor housing shown in Fig. 28.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. Or integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection should be understood in specific situations.
  • FIG. 1 is a schematic cross-sectional structural view of an embodiment of the electric drive system shown in Figure 1;
  • Figure 3 is a schematic diagram of the electric drive system shown in Figure 1.
  • Figure 4 is a schematic cross-sectional structural diagram of the stator assembly shown in Figure 1;
  • Figure 5 is a schematic structural diagram of an embodiment of the stator core shown in Figure 4.
  • the drive motor 1 includes a motor housing 11 and a stator assembly disposed in the motor housing 11 . Among them, the motor housing 11 is provided with an oil inlet passage 110 .
  • the stator core 12 is provided with a direct cooling oil passage 122 extending along the axial direction of the stator core 12 and penetrating the opposite ends of the stator core 12 .
  • the direct cooling oil passage 122 is connected to the oil inlet passage 110 .
  • the cooling oil passes through the oil inlet channel 110 and the direct cooling oil channel 122 in sequence, so that when the cooling oil enters the stator core 12, it can directly cool the stator core 12 through the direct cooling oil channel 122, speeding up the stator core 12 The cooling efficiency is improved, thereby speeding up the cooling efficiency of the entire drive motor.
  • the driving motor 1 of the present application also provides different structures to cooperate with the direct cooling oil passage 122 . Different specific examples will be given below for explanation:
  • the direct cooling oil passage 122 is provided on the outer peripheral wall of the stator core 12 facing the motor housing 11 .
  • the direct cooling oil passage 122 is an oil passage groove on the outer peripheral surface of the stator core 12 .
  • the inner peripheral surface of the motor housing 11 and the outer peripheral surface of the stator core 12 are in contact with each other, and the inner peripheral surface of the motor housing 11 and the oil passage groove form a relatively closed cooling oil passage, so that The cooling oil is caused to flow along the axial direction of the stator core 12 .
  • a branch oil groove 121 is also provided around the outer peripheral surface of the stator core 12 , and the branch oil groove 121 is connected with the direct cooling oil passage 122 .
  • the extension direction of the branch oil groove 121 intersects with the direct cooling oil passage 122 and surrounds the outer peripheral surface of the stator core 12 . In this way, by being surrounded by the branch oil groove 121, the cooling liquid further flows throughout the stator core 12, thereby improving the cooling area and efficiency.
  • the branch oil tank 121 may be in a spiral shape, with a spiral ring. Wound around the outer peripheral wall of the stator core 12.
  • the branch oil tank 121 may also be in a closed ring shape, and there may be multiple branch oil tanks 121 .
  • These branch oil grooves 121 are arranged on the outer peripheral surface of the stator core 12 at intervals along the axial direction of the stator core 12 . More preferably, the branch oil groove 121 is annular and is coaxially arranged on the stator core 12 .
  • stator core 12 also has a stator wire package (not shown), in order to further improve the cooling efficiency of the stator core 12, please continue to refer to Figure 5.
  • the outer peripheral wall of the stator core 12 is An oil guide groove 1220 is provided between every two adjacent direct cooling oil passages 122 .
  • Each oil guide groove 1220 is connected with the branch oil groove 121 . Therefore, the cooling oil in the branch oil tank 121 can also flow into the oil guide tank 1220 to cool the stator wire package to avoid overheating inside the stator wire package and affecting the cooling of the stator core 12 when the entire stator winding is working. .
  • Figure 28 is a schematic structural diagram of another embodiment of a motor housing provided in this application.
  • Figure 29 is a schematic cross-sectional structural diagram of the motor housing in Figure 28.
  • the motor housing 11 may be provided with at least two oil inlet passages 110 .
  • At least two oil inlet channels 110 are spaced apart and communicate with the direct cooling oil channel 122 and the branch oil tank 121 from different positions, so that the cooling oil can flow into the direct cooling oil channel 122 and the branch oil tank through the at least two oil inlet channels 110 121, and then cool the stator core 12.
  • the number of oil inlet channels 110 is at least two, and the cooling oil can enter different positions of the direct cooling oil channel 122 (that is, different areas on the outer surface of the stator core 12) through at least two oil inlet channels 110, so as to Comprehensive and balanced cooling of the stator core 12 is achieved.
  • the cooling oil may stick to the inside of the oil inlet channel 110, causing the oil inlet channel 110 to be blocked. This ensures that the cooling oil can enter the stator core 12 in time, and in this case Under this condition, the flow distance of the cooling oil entering from any oil inlet channel 110 on the surface of the stator core 12 is greatly reduced, thereby improving the cooling efficiency and failure to fully balance due to excessive temperature changes of the cooling oil during the flow process.
  • the problem of cooling each stator core 12 is reduced.
  • At least two oil inlet passages 110 are provided at intervals along the circumference of the motor housing 11 . That is to say, the number of oil inlet channels 110 may be 2, 3, 4, 5, ..., or 1,000. 2, 3, 4, 5, ..., or 1000 oil inlet passages 110 may be provided at intervals along the circumferential direction of the motor housing 11 .
  • Each oil inlet channel 110 includes a first oil inlet channel 1121 and a second oil inlet channel 1122 .
  • the extension direction of the first oil inlet passage 1121 is parallel to the axial direction of the stator core 12 .
  • One end of the first oil inlet passage 1121 is used for oil inlet, and the second oil inlet passage 1122 is used to connect the direct cooling oil passage 122 and the other end of the first oil inlet passage 1121 .
  • the second oil inlet passage 1122 The direction may be the direction in which the first oil inlet passage 1121 points to the direct cooling oil passage 122 (from the outside to the inside). In this case, the second oil inlet passages 1122 of each oil inlet passage 110 are independent of each other.
  • the motor housing 11 can be arranged in a cylindrical shape.
  • the inner peripheral surface of the motor housing 11 and the outer peripheral surface of the stator core 12 are in contact fit.
  • the first oil inlet passage 1121 is opened inside the side wall of the motor housing 11, and the second oil inlet passage 1122 is opened on the inner peripheral surface of the motor housing 11, so that the cooling oil entering the first oil inlet passage 1121 can pass through
  • the second oil inlet passage 1122 flows to the stator core 12 located inside the motor housing 11 .
  • an annular oil passage 118 is provided on the end surface of the side wall of the motor housing 11 .
  • the annular oil passage 118 may be located at an end of the first oil inlet passage 1121 away from the second oil inlet passage 1122 so as to be able to communicate with the first oil inlet passage 1121 .
  • the annular oil passage 118 may be in the shape of a groove, with the groove facing away from the side wall of the motor housing 11 .
  • the side wall of the motor housing 11 may also be provided with an oil inlet hole (not shown) connected to the annular oil channel 118, so that the cooling oil can enter the annular oil channel 118 laterally through the oil inlet hole, and then pass through the annular oil channel 118.
  • the first oil inlet passage 1121 and the second oil inlet passage 1122 enter the direct cooling oil passage 122.
  • each oil inlet passage 110 includes a first oil passage 111 and a second oil passage 112 that communicate with each other.
  • the branch oil tank 121 is connected with the second oil passage 112 .
  • a plurality of second oil passages 112 and branch oil grooves 121 are provided at intervals, and each second oil passage 112 is connected with the corresponding branch oil groove 121.
  • the second oil passages 112 are provided on the motor housing 11, corresponding to the direction of the branch oil groove 121.
  • Each branch oil groove 121 on the stator core 12 is filled with oil, so that the cooling oil can cool the middle part of the stator core 12 from multiple oil channels, thereby speeding up the cooling efficiency of the entire electric drive system.
  • each oil inlet channel 110 is parallel to the axial direction of the stator core 12 .
  • the motor housing 11 is provided with a communicating oil passage (not shown).
  • the communication oil passage extends in an annular or spiral shape along the circumferential direction of the motor housing 11 .
  • One end of the oil inlet channel 110 is used for oil inlet.
  • the connecting oil passage communicates with the direct cooling oil passage 122 and the other end of the oil inlet passage 110 . In this case, the cooling oil passing through the at least two oil inlet passages 110 will first flow into multiple areas of the connecting oil passages and the direct cooling oil passages 122 .
  • the motor housing 11 also includes an oil return channel 119.
  • the oil return channel 119 is provided at the bottom of the motor housing 11 along the direction of gravity, and the oil return channel 119 is The oil passage 119 extends through the inner wall of the motor housing 11 facing the stator core 12 .
  • the oil return channel 119 is connected with the branch oil tank 121 and the second oil channel 112 and is used to recover the cooling oil after cooling the stator core 12 .
  • Figure 1 is a schematic structural diagram of an embodiment of an electric drive system provided by the present application
  • Figure 2 is an embodiment of the electric drive system described in Figure 1
  • Figure 4 is a schematic cross-sectional structural view of the stator assembly in Figure 1
  • Figure 21 is a schematic structural view of another embodiment of an electric drive system provided by the present application.
  • the drive motor 1 described in the first embodiment When used in an electric drive system, the reducer 2 in the electric drive system can also be connected to the drive motor 1 described in the first embodiment.
  • an oil cooler 7 is provided outside the drive motor 1
  • an oil pump assembly 8 is provided inside the drive motor 1
  • the stator assembly is provided in the motor housing 11
  • the motor housing 11 is provided with an oil inlet passage 110 .
  • the oil inlet passage 110 is connected with the direct cooling oil passage 122 .
  • the cooling oil enters the inside of the drive motor 1 from the oil cooler 7 along the oil inlet channel 110, and is connected to the direct cooling oil channel 122, so that the cooling oil can directly enter the stator assembly.
  • the cooling oil with lower temperature directly cools the stator assembly, and the cooling oil flows back into the oil chamber, forming a cold oil circulation, which further improves the cooling efficiency of the drive motor 1.
  • the electric drive system having the drive motor 1 described in the first embodiment may be referred to as the electric drive system described in the first embodiment.
  • the reducer 2 includes a reducer housing 20.
  • the reducer housing 20 is provided with an oil inlet passage 211.
  • the oil inlet passage 211 extends along the axial direction of the reducer 2.
  • the oil inlet passage 211 is connected with the first oil passage 111.
  • the cooling oil passage of the reducer 2 is connected with the cooling oil passage of the drive motor 1, which speeds up the speed of the cooling oil reaching the drive motor 1.
  • the reducer housing 20 is also provided with a first sub-oil outlet 212, and the first sub-oil outlet 212 is connected with the oil inlet passage 211.
  • the oil inlet passage 211 extends along the axial direction of the reducer 2, and the first sub-oil outlet 212 extends along the axial direction perpendicular to the reducer 2.
  • the end of the motor housing 11 connected to the reducer housing 20 is also provided with a first sub-oil inlet passage 113.
  • the first sub-oil outlet passage 212 is connected with the first sub-oil inlet passage 113 and forms a closed oil passage.
  • the reducer 2 also includes a discharge oil passage (not shown), and the oil return passage 119 is connected with the discharge oil passage.
  • the cooling oil is transported back to the reducer 2 through the oil return channel 119 through the discharge oil channel, completing the cooling of the electric drive system by the cooling oil in the entire cooling channel.
  • the first sub-oil inlet passage 113 is connected to the oil return passage 119, which more reasonably plans the direction of the cooling oil inside the electric drive system and speeds up the cooling rate of the front end of the stator core 12. This prevents the cooling oil from entering the interior of the drive motor 1 due to the oil passage not being closed, which in turn affects the operation of the entire electric drive system to a certain extent and increases the loss of the cooling oil.
  • the stator core 12 of the drive motor described in the first embodiment is also equipped with an oil collecting ring 3 .
  • Figure 6, is a schematic structural diagram of the oil collecting ring shown in Figure 2.
  • the oil collecting ring 3 is located between the motor housing 11 and the stator core 12 and is sleeved on the end of the stator core 12 away from the reducer 2 for cooling the rear end of the stator core 12 .
  • the oil collecting ring 3 is provided with an oil collecting ring groove 31 on the outer wall facing the motor housing 11.
  • the cooling oil flows in the oil collecting ring groove 31.
  • the motor housing 11 is provided with a second sub-oil outlet 114.
  • the oil passage 114 is connected with both the oil collecting ring groove 31 and the first oil passage 111 .
  • the oil collecting ring groove 31 is also provided with a plurality of radial through-holes
  • the cooling oil is sprayed on the rear end of the stator core 12 through the oil injection hole 310 to achieve cooling of the rear end of the stator core 12 .
  • the oil collecting ring groove 31 can be set as a rectangular groove or an arc groove, ensuring that the oil collecting ring groove 31 has a good impact on the motor housing.
  • the inclusiveness of the internal structure of the body 11 also ensures the versatility of the oil collecting ring 3, allowing it to be installed in different areas inside the motor housing 11 as needed.
  • the second sub-oil outlet passage 114 is connected with the oil return passage 119 and is used to recover the cooling oil that is transported to the oil collecting ring groove 31 and sprayed through the oil injection hole 310 so that the cooling oil can be transmitted back through the oil return passage 119 Inside the reducer 2.
  • the oil injection holes 310 are evenly arranged along the oil collector ring groove 31 , and the oil injection holes 310 are evenly arranged along the oil collector ring groove 31 . runs through the oil collecting ring groove 31 in the radial direction. It can be understood that the fuel injection hole 310 can be arranged relatively freely without affecting the fuel injection efficiency.
  • the shape of the fuel injection hole 310 can be circular, rectangular, rhombus, etc.
  • annular groove (not shown) may also be provided inside the motor housing 11.
  • the annular groove and the oil collecting ring groove 31 form a closed oil passage, and the closed oil passage is sleeved on the stator core.
  • the end of 12 away from the reducer 2 is used to cool the rear end of the stator core 12.
  • This closed oil passage is connected with the oil return passage 119. After the cooling oil cools the stator core 12, it enters the oil return passage 119 and is sent back to the deceleration In device 2, the cooling cycle is completed.
  • the relevant oil passages formed inside the motor housing 11 can also be applied to other embodiments described below in this application.
  • Figure 10 is a schematic diagram of the motor in Figure 2 cut along the core axis
  • Figure 11 is a schematic view of the motor in Figure 10 Partial structural schematic diagram
  • the stator core 12 includes a hollow cylinder 123 and a stator tooth slot 13 provided on the inner wall of the cylinder 123.
  • the stator tooth slot 13 is surrounded by a stator winding 15.
  • the two opposite ends of the stator core 12 have connection terminals 130 and non-connection terminals 131 respectively, and the stator tooth slots 13 penetrate the two opposite ends of the stator core 12 .
  • the direct cooling oil passage 122 can also be provided inside the stator core 12 , that is, inside the cylinder 123 .
  • the direct cooling oil passage 122 is arranged in the stator tooth slot 13 . No matter how the direct cooling oil passage 122 is arranged, the direct cooling oil passage 122 runs through the terminal 130 and the non-terminal 131 along the axis of the stator core 12 . In the second embodiment provided by this application, direct cooling oil passages 122 are provided in the stator tooth slots 13 .
  • the stator tooth slots 13 include a root connected to the yoke and a top relatively far away from the yoke.
  • the width of the root of each stator tooth slot 13 is greater than the width of the top of the stator tooth slot 13, so Then it can be ensured that there is a sufficient distance between two adjacent stator tooth slots 13 to allow the stator to Winding 15 is entered.
  • the width of the projected shape of the direct cooling oil passage 122 tends to decrease in the direction closer to the axis of the stator core 12 , thereby better adapting to the stator tooth slot 13 along the direction close to the stator core.
  • the width of the stator core 12 along the axis of the core 12 changes in the radial direction to avoid a greater impact on the electromagnetic performance of the drive motor due to the opening of the direct cooling oil passage 122 .
  • a splicing body 14 is fixed on at least one of the terminal 130 and the non-terminal 131 .
  • the splicing body 14 can be formed separately from the stator core 12 , and is specifically fixed to the end of the stator core 12 .
  • a transfer fluid path 203 is provided inside the splicing body 14. The transfer fluid path 203 penetrates the side of the splicing body 14 relatively close to the end of the stator core 12 and directly connects to the direct cooling oil channel 122. At the same time, the transfer liquid path 203 is also connected to the oil inlet channel. 110 is connected.
  • the cooling fluid passage also includes a transfer fluid passage 203 opened in the splicing body 14 .
  • the spliced body 14 includes a spliced and fixed conduction unit 141 and a liquid dispensing unit 142.
  • the conduction unit 141 is generally in the form of a closed ring structure, which extends along the circumferential direction of the stator core 12.
  • the conduction unit 141 is substantially coaxially arranged with the cylinder 123, and is opposite to the end of the cylinder 123.
  • the conduction unit 141 141 has a hollow inner cavity 1421 connected in a closed loop along the circumferential direction of the cylinder 123.
  • the liquid separation unit 142 is fixedly connected to the end of the stator core 12 and has a plurality of liquid separation channels 1420 inside.
  • each liquid separation channel 1420 is connected to the hollow inner cavity 1421, thereby forming a transfer liquid together with the hollow inner cavity 1421.
  • the other end of the path 203 passes through the side of the liquid separation unit 142 close to the stator core 12 to communicate with the direct cooling oil passage 122 .
  • the conduction unit 141 may be formed separately from the liquid dispensing unit 142 .
  • Figure 12 is a schematic structural diagram of another embodiment of a stator assembly provided by the present application.
  • the stator assembly includes a liquid separation unit and a conduction unit;
  • Figure 13 is a schematic diagram of the separation unit in Figure 12.
  • FIG. 14 is a schematic view of the end surface structure of the first covering plate of the liquid dispensing unit in Figure 12
  • Figure 15 is an end surface structure of the core of the liquid dispensing unit in Figure 12 Schematic diagram.
  • the liquid dispensing unit 142 is directly attached to the end of the stator core 12 , and the conduction unit 141 is fixed on the side of the liquid dispensing unit 142 facing away from the end of the stator core 12 .
  • the number of liquid distribution channels 1420 is equal to the number of stator slots 13 , and each liquid distribution channel 1420 is connected to a direct cooling oil channel 122 .
  • the liquid separation unit 142 includes a liquid separation ring plate 221 and a plurality of tooth plates 222 .
  • the liquid separation ring plate 221 is observed along the axial direction of the stator core 12.
  • the shape of the liquid separation ring plate 221 is basically the same as the end face shape of the cylinder 123. It is also an annular structure with a through hole, and the through hole communicates with the stator core 12. hole.
  • the liquid separation ring plate 221 is coaxially arranged with the cylinder 123 and covers the end surface of the cylinder 123; the tooth plate 222 is protruding from the inner edge of the liquid separation ring plate 221, that is, from the through hole of the liquid separation ring plate 221.
  • a plurality of tooth plates 222 are arranged at intervals along the circumferential direction of the liquid separation ring plate 221/cylinder 123. Their number is the same as the number of stator tooth slots 13 of the stator core 12.
  • the plurality of tooth plates 222 cover each other one by one. Located in multiple stator tooth slots 13 end.
  • the transfer fluid path 203 penetrates the side of the tooth plate 222 relatively close to the stator tooth groove 13 of the stator core 12 .
  • the liquid separation channel 1420 extends along the radial direction of the cylinder 123, with one end extending to the liquid separation ring plate 221 and penetrating the side of the liquid separation unit 142 close to the conduction unit 141, thereby forming a connected hollow inner cavity 1421.
  • a plurality of liquid separation ports 2213 are arranged at intervals along the circumferential direction of the stator core 12 .
  • the other end of the liquid distribution channel 1420 extends to the tooth plate 222 and penetrates the side of the liquid distribution unit 142 close to the end of the stator core 12 to communicate with the direct cooling oil channel 122 .
  • the shape of the tooth plate 222 is consistent with the shape of the end of the stator tooth slot 13
  • the shape of the liquid distribution channel 1420 is consistent with the shape of the direct cooling oil channel 122.
  • the projected shape of the direct cooling oil passage 122 is consistent with and overlaps with the shape of the liquid distribution flow passage 1420 .
  • the tooth plate 222 includes a root connected to the liquid separation ring plate 221 and a top relatively far away from the liquid separation ring plate 221.
  • the root width of each tooth plate 222 is greater than
  • the width of the top of the stator tooth slot 13 can ensure a sufficient gap between two adjacent tooth plates 222 to allow the stator winding 15 to be wound around.
  • the width of the liquid separation flow channel 1420 shows a decreasing trend in the direction close to the axis of the liquid separation ring plate 221/the axis of the stator core 12.
  • the shape of the liquid distribution channel 1420 does not necessarily have to be the same as the shape of the first opening 1211 or the second opening 1212 formed by the direct cooling oil channel 122 at the end of the stator core 12.
  • the projected shape of the liquid distribution channel 1420 can also be larger than the first opening 1211 or the second opening 1212, as long as it can ensure that the oil can flow into the direct cooling oil channel 122 smoothly.
  • the liquid dispensing unit 142 includes a first cover plate 2211 and a second cover plate 2212 that are stacked and assembled along the axial direction of the stator core 12 .
  • the outer shape of the two plates is the same as the shape of the end surface of the stator core 12 .
  • Both the first cover plate 2211 and the second cover plate 2212 include a liquid separation ring plate 221 and a tooth plate 222 protruding from the inner edge of the liquid separation ring plate 221 .
  • the first covering plate 2211 is directly attached to the end of the stator core 12 and has a plurality of liquid distribution channels 1420.
  • the second covering plate 2212 is located on the side of the first covering plate 2211 relatively away from the stator core 12. And multiple dispensing ports 2213 are provided.
  • the first cover plate 2211 and the second cover plate 2212 are fixedly connected, the projected outer contours of the two on the radial plane of the stator core 12 completely overlap, and at this time, the liquid distribution port 2213 and the liquid distribution channel 1420 are relatively far away from the stator core.
  • One end of the 12-axis is connected, and the remaining part of the liquid separation flow channel 1420 is covered by the second cover plate 2212.
  • the conduction unit 141 is fixed on the side of the second covering plate 2212 relatively away from the first covering plate 2211, and finally covers the liquid separation ring plate 221.
  • the first cover plate 2211 and the second cover plate 2212 can be stacked in the axial direction and then fixedly connected by welding, bonding, etc. It can be understood that in other embodiments, the liquid dispensing unit 142 can also be an independent component that cannot be detached, that is, the liquid dispensing unit 142 does not need to be coaxially arranged by the separately formed first cover plate 2211 and the second cover plate 2212 Post-fixed connection.
  • the conduction unit 141 is arranged opposite to the end surface of the yoke of the stator core 12, and the tooth plate 222 of the liquid dispensing unit 142, that is, the tooth plate 222 of the first cover plate 2211 and the tooth plate 222 of the second cover plate 2212 are at
  • the stator core 12 protrudes radially relative to the conduction unit 141 and forms a step with the conduction unit 141 .
  • the stator winding 15 is wound around the tooth plate 222 of the liquid dispensing unit 142 and is in contact with the tooth plate 222 of the second cover plate 2212 .
  • the step formed between the tooth plate 222 of the liquid dispensing unit 142 and the conduction unit 141 can prevent the stator winding 15 from passing through, thereby shortening the size of the stator winding 15 along the axial direction of the stator core 12 .
  • the spliced body 14 also includes a leak-proof seal 23, which is used to seal the opening of the hollow inner cavity 1421 of the conduction unit 141, thereby ensuring that the oil entering the interior of the conduction unit 141 can maintain a certain pressure.
  • the pressure can increase the flow rate of the oil into the liquid distribution port 2213, the liquid distribution channel 1420 and the direct cooling oil channel 122, thereby improving the heat dissipation effect of the oil's convection heat exchange in the motor stator assembly.
  • the leakage-proof seal 23 includes a first sealing ring sealingly connected between the conduction unit 141 and the liquid dispensing unit 142, and also includes a second sealing ring sealingly connected between the conduction unit 141 and the inner wall of the motor housing 11. Seal ring.
  • the transfer inlet 2111 may face the inner peripheral surface of the motor housing 11 or the inner end surface of the motor housing 11 .
  • the transfer inlet 2111 is preferably opened on the outer periphery of the conduction unit 141 and faces the inner peripheral surface of the motor housing 11.
  • the transfer inlet 2111 can be opened on the side of the conduction unit 141 away from the liquid separation unit 142 and facing the inner end surface of the motor housing 11 .
  • the splicing body 14 includes a first splicing body 143 and a second splicing body 144 respectively fixed at both ends of the stator core 12
  • the direct cooling oil passage 122 includes a first direct cooling oil passage and a second direct cooling oil passage.
  • the cooling oil passages 122 all pass through both ends of the stator core 12 , specifically, they pass through both ends of the stator tooth slots 13 to form first openings 1211 and second openings 1212 respectively.
  • the openings of the direct cooling oil passages 122 located at one end of the stator core 12 are both open. is the first opening 1211 , and the openings of the direct cooling oil passage 122 located at the other end of the stator core 12 are all second openings 1212 .
  • the reason why the first direct cooling oil passage and the second direct cooling oil passage are distinguished here is because the flow directions of the oil in the first direct cooling oil passage and the second direct cooling oil passage are different.
  • At least one of the first splicing body 143 and the second splicing body 144 is formed separately from the stator core 12 .
  • the inner peripheral wall of the motor housing 11 is also provided with a circumferential oil passage 116 and an axial oil passage 117.
  • Figure 16 shows the motor of the motor in Figure 1.
  • Figure 17 is a schematic structural diagram of the motor housing of the motor in Figure 16 from another angle.
  • the axial oil passage 117 is directly connected to the oil inlet passage 110 .
  • the circumferential oil passage 116 is connected to the oil inlet passage 110 at different positions in the circumferential direction of the motor housing 11 .
  • the circumferential oil passage 116 is used to receive cooling oil from outside the stator assembly, so that the cooling oil enters the oil inlet passage 110 through the circumferential oil passage 116 . And after completing the cooling cycle inside the stator core 12, it enters the oil return passage 119 and is returned to the reducer 2.
  • the hollow inner cavity 1421 penetrates the outer peripheral wall of the transmission unit 141 to form a transfer inlet 2111 connected with the axial oil passage 117.
  • the second sealing ring is surrounding the outer peripheral wall of the transmission unit 141, and the guided unit 141 and the motor housing The bodies 11 are pressed together.
  • the first splicing body 143 and the second splicing body 144 respectively have their own transfer inlets 2111 to communicate with the axial oil passage 117.
  • the first opening 1211 of the first direct cooling oil passage is connected to the transfer fluid passage 203 of the first splicing body 143, and The second opening 1212 is exposed, and the oil can be discharged from the second opening 1212 and flow to the inside of the motor housing 11 and protrude from the stator winding 15 located at the same end of the stator core 12 as the second opening 1212 .
  • the second opening 1212 of the second direct cooling oil passage is connected to the transfer fluid passage 203 of the second joint body 144, and its first opening 1211 is exposed. The oil can be discharged from the first opening 1211 and flow to the inside of the motor housing 11 and protruding from the stator winding 15 located at the same end of the stator core 12 as the first opening 1211 .
  • the oil flowing out of the axial oil passage 117 will be divided into two parts, flowing into the transfer fluid passage 203 of the first splicing body 143 and the transfer fluid passage 203 of the second splicing body 144 respectively, and then flowing out from the first opening 1211 and the second splicing body 144 respectively.
  • the two openings 1212 flow in, and then the two parts of oil flow in opposite directions in the stator tooth slot 13, and finally flow out from the second opening 1212 and the first opening 1211 respectively.
  • the number and spacing of the liquid distribution channels 1420 of the first splicing body 143 arranged along the circumferential direction of the stator core 12 are different from those of the first openings 1211 arranged along the circumferential direction of the stator core 12 .
  • the number and spacing of the cloths are the same.
  • the number and spacing of the liquid separation channels 1420 of the second spliced body 144 along the circumferential direction of the stator core 12 are the same as the number and spacing of the second openings 1212 arranged along the circumferential direction of the stator core 12 . same.
  • the circumferential oil passage 116 can also be in the shape of a spiral groove or an annular groove, with the groove facing away from the side wall of the motor housing 11 .
  • the motor housing 11 can be assembled and matched with the housing of the reducer 2, so that the notch of the circumferential oil passage 116 can be sealed by the reducer housing 20, thereby making the motor housing 11 fit the reducer housing. 20 form a circumferential oil passage 116.
  • the side wall of the motor housing 11 may also be provided with an oil inlet hole that communicates with the circumferential oil passage 116, so that the oil in the reducer 2 can laterally enter the circumferential oil passage 116 through the oil inlet hole. further through to The two missing first oil inlet passages 1121 and second oil inlet passages 1122 enter the direct cooling oil passage 122 .
  • the transmission unit 141 of the first spliced body 143 has a plurality of first liquid storage chambers 2113 arranged at intervals along the circumferential direction of the stator core 12 and connected with each other. These first liquid storage chambers 2113 together constitute the transmission unit 141 .
  • the plurality of first liquid storage chambers 2113 are connected with the plurality of liquid distribution flow channels 1420 connected to the first direct cooling oil channels, thereby connecting the plurality of first openings 1211 in one-to-one correspondence;
  • the conduction unit 141 of the spliced body 144 has a plurality of second liquid storage chambers 2113 arranged at intervals along the circumferential direction of the stator core 12 and connected with each other.
  • second liquid storage chambers 2113 together constitute the hollow interior of the conduction unit 141.
  • a plurality of second liquid storage chambers 2113 are connected with a plurality of liquid distribution flow channels 1420 connected to the second direct cooling oil channels, thereby connecting the plurality of second openings 1212 in a one-to-one correspondence.
  • the direct cooling oil passage 122 also extends linearly along the axial direction of the stator core 12.
  • first direct cooling oil passage and the second direct cooling oil passage extend along the axial direction of the stator core 12
  • stator cores 12 are alternately arranged one by one in the circumferential direction
  • the first liquid reservoir 2113 and the second liquid reservoir 2113 are displaced from each other one by one in the circumferential direction of the stator core 12.
  • the projection of the first liquid reservoir 2113 and the projection of the second liquid reservoir 2113 are alternately arranged one by one along the circumferential direction of the stator core 12, and when the first direct cooling oil passage and the second direct cooling oil passage are arranged in groups respectively,
  • the first liquid reservoir 2113 and the second liquid reservoir 2113 are also displaced from each other in groups in the circumferential direction of the stator core 12. At this time, they are perpendicular to the stator iron.
  • the projections of the first liquid reservoir 2113 and the projection of the second liquid reservoir 2113 are arranged alternately in groups along the circumferential direction of the stator core 12 .
  • FIG. 19 is a schematic structural diagram of the conduction unit shown in FIG. 12 .
  • the liquid storage tanks 2113 in the transmission unit 141 are spaced apart from each other. For example, there is an interval between the two first liquid storage tanks 2113 that connect the two first direct cooling oil channels. This interval can avoid the second direct cooling oil channel.
  • the first opening 1211 of the cooling oil passage and the liquid distribution flow passage 1420 connecting the second direct cooling oil passage; there is also an interval between the two second liquid reservoirs 2113 connecting the two second direct cooling oil passages, and the interval can Avoid the second opening 1212 of the first direct cooling oil passage and the liquid separation flow passage 1420 connected to the first direct cooling oil passage.
  • FIG. 20 is a partial structural diagram of another embodiment of the conduction unit shown in FIG. 12 .
  • the conduction unit 141 not only includes liquid storage chambers 2113 spaced apart from each other, but also includes liquid spray chambers (not shown) that are also spaced apart from each other.
  • the liquid storage chambers 2113 and the liquid spray chamber are arranged along the stator core 12 The circumferential directions are alternately set one by one, or alternately set in groups.
  • the liquid spray chamber penetrates the guide unit 141 to form a liquid spray hole 2114.
  • the aperture or orifice size of the liquid spray hole 2114 is smaller than the first opening 1211 or the second opening 1212.
  • a plurality of liquid spray chambers are connected to the first openings 1211 of a plurality of second direct cooling oil channels.
  • the plurality of liquid injection chambers are connected to the second openings 1212 of the plurality of first direct cooling oil channels.
  • FIG. 18 is a partial structural diagram of the stator assembly shown in FIG. 2 .
  • the outer peripheral wall of the stator core 12 can also be provided with multiple axial grooves, and the multiple axial grooves are along the circumferential direction of the stator core 12 Interval settings.
  • another direct cooling oil passage 122 is formed between the inner peripheral wall of the motor housing 11 and the bottom wall of the axial groove.
  • the stator iron The core 12 includes both a direct cooling oil passage 122 inside the stator core 12 and a direct cooling oil passage 122 provided on the outer peripheral wall of the stator core 12 .
  • the inner peripheral wall of the motor housing 11 is also provided with a limiting step portion 43.
  • the limiting step portion 43 abuts the splicing body 14 to limit the movement of the motor stator assembly along the stator iron.
  • the core 12 has the freedom to move axially relative to the motor housing 11 .
  • the limiting step portion 43 can be in contact with an end surface of the conduction unit 141 facing away from the stator core 12 and the liquid dispensing unit 142 .
  • the drive motor 1 described in the second embodiment can also be applied in an electric drive system.
  • the electric drive system having the drive motor described in the second embodiment is the same as the electric drive system described in the first embodiment except for the structure of the drive motor. It should be noted that in this application, the electric drive system having the drive motor 1 described in the second embodiment may be referred to as the electric drive system described in the second embodiment.
  • the direct cooling oil passage 122 is disposed between corresponding stator tooth slots 13 , the same as the above-mentioned second embodiment.
  • Figures 7-9 Figure 7 is a schematic structural view of the stator assembly in Figure 2;
  • Figure 8 is a schematic structural view of the stator assembly in Figure 7 from another angle;
  • Figure 9 is a schematic structural view of the stator assembly in Figure 7.
  • the structural diagram of the direct cooling oil passage is shown.
  • the direct cooling oil passages 122 are all formed inside the stator tooth slots 13 , rather than being surrounded by the stator tooth slots 13 and other components or structures in the drive motor 1 .
  • the cooling oil flows into the direct cooling oil passage 122, it can directly cool the stator tooth slots 13, and at the same time, it can also carry part of the heat of the stator winding 15 wound outside the stator tooth slots 13. Since the stator winding 15 surrounds the stator tooth slot 13, not only the stator winding 15 passes through the gap between the stator tooth slot 13 and the stator tooth slot 13, but also the stator winding 15 passes through the end of each stator tooth slot 13. The stator winding 15 After the winding is completed, the ends of the stator tooth slots 13 will be blocked, which makes the arrangement of the direct cooling oil passage 122 more difficult.
  • stator winding 15 of the stator core 12 has many lead wires.
  • the end wires Ring welding is relatively complex and prone to problems such as wiring errors and weak welding, which in turn affects the performance of the drive motor 1 .
  • the process is very complicated, the work efficiency is very low, and the quality of high current welding cannot be met. Therefore, in some application scenarios of the third embodiment of the present application, the stator assembly may also adopt a centralized winding structure.
  • Figure 4 is a schematic cross-sectional structural diagram of the stator assembly shown in Figure 1.
  • the stator assembly includes a stator core 12 and a terminal assembly 100.
  • the terminals 130 and the non-terminals 131 are respectively the opposite ends of the stator core 12.
  • the terminal assembly 100 is installed on the terminal 130, where the terminal assembly 130 is installed on the terminal 130.
  • 100 and the non-terminal frame are both provided with winding brackets corresponding to the stator tooth slots 13. Each coil is wound around the stator tooth slot 13 and the corresponding winding bracket.
  • the stator assembly also includes a number of stator tooth slots 13 and a potting glue layer 16 filled in the stator tooth slots 13.
  • the potting glue layer 16 seals the various structures of the stator assembly, avoiding the need for other external components to be used for sealing. There are still gaps inside the stator assembly, resulting in incomplete internal sealing of the stator assembly, preventing cooling oil from flowing into the interior of the stator assembly and being unable to flow out, resulting in a waste of cooling oil.
  • Each stator tooth slot 13 passes through the terminal 130 and the non-terminal 131 .
  • the direct cooling oil passage 122 is specifically arranged in the potting glue layer 16 in each stator tooth slot 13 .
  • Each direct cooling oil channel 122 runs through the terminal 130 and the non-connection terminal 131.
  • the cooling oil can directly contact the inside of the stator assembly without contaminating the inside of the stator assembly. This ensures the utilization efficiency of the cooling oil and also speeds up the heat dissipation efficiency inside the stator assembly.
  • the cross-sectional area of the direct cooling oil passage 122 gradually decreases from the non-terminal end 131 toward the terminal 130 .
  • the non-connection terminal 131 is connected with the oil inlet channel 110 of the cooling oil
  • the direct cooling oil channel 122 has a larger cross-sectional area at the end facing the oil inlet channel 110, which ensures the oil flow of the cooling oil and reduces the cooling time. The loss of oil along the way further ensures the cooling effect of the direct cooling oil passage 122 on the interior of the stator assembly.
  • the stator assembly also includes a potting sealing strip 6, which is integrally formed with the potting glue layer 16. Among them, the potting sealing strips 6 are arranged at the non-connection terminal 131. The potting sealing strips 6 include at least two oppositely arranged ones. An oil passage 21 is formed between the two potting sealing strips 6.
  • the oil channel 21 also has certain sealing properties, which prevents the cooling oil from leaking from between the potting sealing strip 6 and the potting glue layer 16, resulting in a waste of cooling oil.
  • the direct cooling oil channel 122 is located at the non-connection end 131. One end is accommodated in the oil passage 21, The cooling oil enters the interior of the stator assembly through different direct cooling oil passages 122 on the non-terminal 131 side, further speeding up the cooling efficiency of the stator assembly.
  • Figure 22 is a schematic structural diagram of the wiring board assembly in Figure 7;
  • Figure 23 is a three-phase copper bar assembly and the neutral point copper in Figure 22 Partial structural diagram of the platoon.
  • the terminal block assembly 100 includes a three-phase copper bar assembly 102 and a neutral point copper bar 103.
  • the three-phase copper bar assembly 102 includes a U-phase connecting copper bar 1021, a V-phase connecting copper bar 1022 and a W-phase connecting copper bar 1023.
  • the phase-connecting copper bars 1021, V-phase connecting copper bars 1022, and W-phase connecting copper bars 1023 all include an integrally formed annular copper bar 105 and a connecting terminal 104, further ensuring the connection between the annular copper bar 105 and the connecting terminal 104 to avoid It is found that due to poor contact between the annular copper bar 105 and the connecting terminal 104, problems such as failure of the stator assembly occur during operation.
  • the starting end and ending end of each coil are welded to the connecting terminal 104. When the coils are wound together, the starting end and ending end of each group of coils are stripped of paint, and the metal connections inside the coil are connected to the connecting terminal 104. Or the terminal 1030 is welded to further avoid the separation of each coil from the three-phase copper bar assembly 102 or the neutral point copper bar 103 due to poor contact when winding, ensuring the normal operation of the stator assembly.
  • the three-phase copper bar assembly 102 also includes a neutral point copper bar 103 for grounding.
  • the neutral point copper bar 103 includes an integrally formed connecting copper bar 1031 and terminals 1030.
  • the U-phase connecting copper bar 1021, V-phase connecting copper bar 1022 and W-phase connecting copper bar 1023 are arranged in a concentric ring shape, and the connecting terminals 104 are spaced apart. Setting, the neutral point copper bar 103 and the three-phase copper bar assembly 102 are coaxially arranged.
  • multiple terminals 1030 are respectively set at Between the connecting terminals 104, the starting end and the ending end of each coil are also welded to the terminals 1030 to further protect the stator assembly from functioning normally.
  • connection terminals 104 and 1030 since the three-phase copper bar assembly 102 and the neutral point copper bar 103 are respectively provided with connection terminals 104 and 1030, the number of stator stages is fixed in one drive motor 1. By increasing the number of stator slots, the number of stator slots is reduced. harmonic order, thereby avoiding NVH risks and improving the driving experience and driving quality.
  • the copper bar 1021, the V-phase connecting copper bar 1022, and the W-phase connecting copper bar 1023 are in contact with each other, causing the stator assembly to malfunction.
  • the insulating glue layer and the potting glue layer 16 are integrally formed, which further ensures the sealing effect inside the stator assembly and saves the need to install separate insulation between the three-phase copper bar assemblies 102 and the neutral point copper bar 103
  • the labor of filling the glue layer avoids the installation errors and errors caused by additional installation of the insulation glue layer, further ensuring the normal operation of the stator assembly.
  • the terminal block assembly 100 also includes a terminal block 101, which is fixed to the terminal 130.
  • the terminal block 101 includes a receiving slot (not shown) and a connecting slot (not shown), and the receiving slot is concentric with the connecting slot. set up.
  • the accommodating groove includes three concentric and spaced sub-channels (not shown in the figure).
  • the connecting groove is located on the side of the sub-channel away from the center of the circle, which is more conducive to the convenience of external grounding of the neutral point copper bar 103.
  • the depth of the connecting groove is smaller than that of the sub-channel, so that the neutral point copper bar 103 is arranged above the three-phase copper bar assembly 102 to prevent the neutral point wiring from affecting the operation of the three-phase copper bar assembly 102 when the stator assembly is operating normally.
  • the three-phase copper bar assembly 102 includes a U-phase connecting copper bar, a V-phase connecting copper bar and a W-phase connecting copper bar, and the U-phase connecting copper bar, V-phase connecting copper bar and W-phase connecting copper bar are respectively arranged in corresponding sub-sections.
  • the neutral point copper bar 103 is accommodated in the connecting channel.
  • An insulation layer is provided between the accommodation slot and the connecting slot, which further isolates the unnecessary structural contact between the neutral point copper bar 103 and the three-phase copper bar assembly 102, on the premise that the normal operation of the stator assembly is not affected. , reducing the axial size of the stator assembly and further reducing the axial size of the drive motor.
  • FIG. 24 is a schematic structural view of the sealing end cap in FIG. 7 .
  • FIG. 25 is a schematic structural view of the sealing end cap in FIG. 24 from another angle.
  • the stator potting assembly also includes a sealing end cover 4.
  • the sealing end cover 4 is potted integrally with the stator core 12, and the sealing end cover 4 is disposed on the terminal 130.
  • the sealing end cover 4 includes an annular groove. 430.
  • the direct cooling oil passage 122 is located at one end of the terminal 130 and is connected to the annular groove 430.
  • the cooling oil enters the annular groove 430 after passing through the direct cooling oil passage 122 and gathers on the side of the terminal 130. There is also a seal on the end cover 4.
  • An oil outlet 44 is provided, and the oil outlet 44 is connected with the annular groove 430 , wherein the oil outlet 44 is arranged at the highest point of the terminal 130 .
  • the cooling oil content collected on one side of the terminal 130 reaches a certain range, the cooling oil will flow out from the oil outlet 44 and remain in the motor housing 11 or be transported out of the drive motor 1 along other oil passages.
  • the sealed end cover 4 includes an annular cover 41 and a resisting plate 42 extending from the opposite side of the annular cover 41.
  • An annular groove 430 is formed between the two resisting plates 42.
  • the annular cover 41 is opposite to the terminal 130.
  • a temporary oil passage (not shown) is formed between the two. After the cooling oil flows out from the direct cooling oil passage 122, it is accommodated in the temporary oil passage.
  • the oil outlet 44 is provided on the annular cover 41 for Drain the cooling oil from the temporary oil passage to prevent oil from accumulating in the cavity of the stator assembly when the drive motor 1 is stationary.
  • the resisting plate 42 of the annular groove 430 is also provided with a pressure relief hole 431, and the pressure relief hole 431 passes through it. It resists the plate 42 and communicates with the annular groove 430 .
  • the formation of the annular groove 430 will not be affected, and the adhesion of the potting adhesive layer 16 is achieved.
  • FIG. 26 is a schematic structural diagram of a potting mold for a stator assembly provided by the present application
  • FIG. 27 is a schematic structural diagram of the base in FIG. 26 .
  • the potting method of the stator assembly in the third embodiment of the present application specifically includes the following steps:
  • Step S1 Provide a potting mold 5 and fix the stator assembly in the potting mold 5. Since the potting glue layer 16 is formed in various gaps of the stator assembly, and the formed potting glue layer 16 and the stator assembly form an integrated structure after potting, the stator assembly needs to be correctly fixed in the potting mold 5 , to ensure that the potting of the stator assembly can be successfully completed.
  • Step S2 Insert a latch 530 into each stator slot 13 of the stator core 12 .
  • the latch 530 should be a wedge-like structure or a waist-shaped block with gradually decreasing size, to prevent the molten sealant from completely filling the stator tooth slots 13 .
  • Step S3 Inject molten sealant into the potting mold 5 to form a potting glue layer 16 in the stator tooth slots 13 .
  • the molten sealant has a certain fluidity and can fill the gaps in the stator assembly and form a potting glue layer 16 at the stator tooth slots 13 .
  • the molten sealant is a sealant with good thermal conductivity, generally epoxy resin, which has excellent temperature resistance and thermal conductivity, and has high strength at high temperatures. Therefore, the formed potting glue layer can be Quickly conducts heat away from the stator assembly.
  • Step S4 In response to reaching the preset condition, the stator assembly is demoulded from the potting mold 5. After the molten sealant has completely cooled the potting glue layer 16, the stator assembly is demoulded from the potting mold 5 to form an integral stator potting assembly.
  • Step S5 Pull out the pin 530 to form the direct cooling oil passage 122 in the potting glue layer 16 of the stator tooth groove 13.
  • the latch 530 is pulled out to form a direct cooling oil passage 122 whose cross-sectional area gradually decreases from the non-connection end 131 to the connection end 130 for internal direct cooling of the stator assembly.
  • step S1 specifically includes:
  • Step S11 Provide a base 51, and set a fixing ring 52 on the base 51 and a groove 510 surrounding the fixing ring 52.
  • a potting mold 5 including a base 51 and a retaining ring 52.
  • the space between the base 51 and the retaining ring 52 is used to accommodate the stator assembly.
  • the size of the retaining ring 52 can be adjusted. It is used to accommodate stator components of different sizes of structures, enhancing its applicability.
  • the grooves 510 are provided on the base 51 outside the fixed ring 52 , including at least two concentric and spaced apart grooves, for potting to form the potting sealing strip 6 .
  • Step S12 Fix the stator assembly in the base 51.
  • the inner ring of the stator assembly is placed on the fixed ring 52, and the non-connection end 131 is pressed against the base 51.
  • the stator core 12 is completely accommodated in the space between the base 51 and the fixed ring 52.
  • the potting mold 5 is filled, It is necessary to ensure that there is no gap at the connection between the base 51 and the fixing ring 52 to avoid leakage of molten sealant from the gap, resulting in sealant waste or glue filling failure.
  • step S3 also includes:
  • Step S31 The molten sealant is injected into the base 51 and the fixing ring 52, the molten sealant flows into the groove 510, and the non-terminal end 131 is integrally formed into a potting sealing strip 6.
  • Two side-by-side potting sealing strips 6 form an oil passage 21.
  • the potting sealing strip 6 and the potting adhesive layer 16 are integrally formed, so the oil passage 21 also has a certain sealing performance to prevent cooling oil from flowing from the potting sealing strip 6 to the potting rubber layer 16. Leakage between the potting glue layers 16 results in a waste of cooling oil.
  • step S30 is also included before step S3.
  • Step S30 includes: providing a sealing end cover 4, and the sealing end cover 4 is arranged on the terminal 130, wherein the sealing end cover 4 includes There is a fixed block 530.
  • the sealing end cover 4 when potting the stator assembly, the sealing end cover 4 is first installed above the stator assembly, and the sealing end cover 4 and the stator assembly are potted as a whole to ensure that the potting adhesive layer 16 is formed can completely fit with the sealing end cover 4.
  • step S3 also includes:
  • Step S32 Inject the molten sealant into the base 51 and the fixed ring 52, and the injection liquid level of the molten sealant is higher than the fixed block 530.
  • the fixed block is in contact with the potting glue layer 16, which can effectively prevent the annular cover 41 and the potting glue layer 16 from falling off under the alternation of hot and cold temperatures of the molten sealing glue or the impact of oil pressure, further achieving The fit of the potting adhesive layer 16.
  • step S10 specifically includes:
  • Step S101 Provide U-phase connecting copper bars 1021 and V-phase connecting copper bars formed by integral stamping respectively. 1022.
  • the W phase connects the copper bar 1023 and the three-phase copper bar assembly 102.
  • the U-phase connecting copper bar 1021, V-phase connecting copper bar 1022 and W-phase connecting copper bar 1023 are integrally stamped, and the connecting terminals 104 and the annular copper bar 105 are integrally stamped, and the three-phase copper bar assembly
  • the terminals 1030 and the connecting copper bar 1031 of the 102 are also integrally stamped to prevent the connection terminal 104 and the annular copper bar 105 and the terminal 1030 and the connecting copper bar 1031 from detaching from each other when the stator assembly is working normally, causing the stator assembly to malfunction. error occured.
  • Step S102 Pre-fix the U-phase connecting copper bar 1021, V-phase connecting copper bar 1022, W-phase connecting copper bar 1023 and the three-phase copper bar assembly 102 according to the preset positions to form an initial three-phase copper bar assembly.
  • Step S103 Provide a terminal block, fix the terminal block on the terminal 130, and fix the initial three-phase copper bar assembly at the preset position of the terminal block.
  • the integrally stamped U-phase connecting copper bar 1021, V-phase connecting copper bar 1022, W-phase connecting copper bar 1023 and neutral point copper bar are 103 is first fixed as an independent whole, that is, the initial three-phase copper bar assembly, through the equipment.
  • the initial three-phase copper bar assembly is fixed in the wiring board as a whole, speeding up the assembly of the split stator assembly in the potting mold 5 efficiency in.
  • the above step S31 also includes Step S311.
  • the above step S31 specifically includes:
  • Step S311 The molten sealant is injected into the base 51 and the fixing ring 52, and flows into the space between the initial three-phase copper bar assembly and the neutral point copper bar 103 to form an insulating potting layer.
  • the molten sealant follows the gap between the initial three-phase copper bar assembly and the three-phase copper bar assembly 102.
  • Form an insulating glue layer Moreover, the insulating glue layer and the potting glue layer 16 are integrally formed, which further ensures the sealing effect inside the stator assembly and saves the need to install separate insulating potting between the three-phase copper bar components 102 and the neutral point copper bar 103.
  • the manpower of the glue layer avoids the installation errors and mistakes caused by additional installation of the insulation glue layer, further ensuring the normal operation of the stator assembly.
  • step S10 specifically includes:
  • Step S101 Provide the U-phase connecting copper bar 1021, the V-phase connecting copper bar 1022, the W-phase connecting copper bar 1023 and the neutral point copper bar 103 that are integrally stamped and formed respectively. This step is the same as in the above application scenario and will not be described again.
  • Step S104 Provide a wiring board and fix the wiring board to the terminal 130.
  • the wiring board includes a receiving slot and a connecting slot.
  • the wiring board is installed in the base 51, and the receiving slot and the connecting slot are used to accommodate the three-phase copper bar assembly 102 and the neutral point copper bar 103.
  • Step S105 Place the U-phase connecting copper bar 1021, the V-phase connecting copper bar 1022, and the W-phase connecting copper bar 1023 in the accommodating groove respectively, and accommodate the neutral point copper bar 103 in the connecting groove.
  • the pre-preparation of the split stator assembly is simplified.
  • the fixed tooling, and the specific accommodation slots and connection slots provided on the wiring board, are more conducive to mass production, further speeding up the potting efficiency and improving the yield of the stator assembly.
  • step S31 also includes step S311
  • the above step S31 specifically includes:
  • Step S312 The molten sealant is injected into the base 51 and the fixed ring 52, and flows into the U-phase connecting copper bar 1021, the V-phase connecting copper bar 1022, the W-phase connecting copper bar 1023 and the neutral point copper bar 103 to form insulation. Glue layer.
  • the insulating glue layer is provided between the accommodation slot and the connection slot, further isolating the unnecessary structural contact between the three-phase copper bar assembly 102 and the neutral point copper bar 103, so that the normal operation of the stator assembly is not affected. Under the premise, the axial size of the stator assembly is reduced, and the axial size of the drive motor 1 is further reduced.
  • step S30' includes:
  • Step S301' Provide a winding bracket, and the coils of the stator assembly are wound around each winding bracket and the stator tooth slot 13 in turn.
  • Step S302’ The starting end and the ending end of each coil are welded to the connecting terminal 104 or the terminal 1030. This prevents the coils from being misaligned during the centralized winding process, causing the wiring board assembly 100 to malfunction, thereby affecting the yield of the stator assembly.
  • the surface of the coil can also be covered with a layer of sealant, which can also fix and protect the coil and increase the insulation effect between the copper bars.
  • the drive motor 1 described in the third embodiment can also be applied in an electric drive system.
  • the electric drive system having the drive motor 1 described in the third embodiment is the same as the electric drive system described in the first embodiment except for the structure of the drive motor 1 .
  • the electric drive system having the drive motor 1 described in the third embodiment can be referred to as the third embodiment.
  • the direct cooling oil passage 122 can also be directly provided between any two stator tooth slots 13 without being formed by potting.
  • the corresponding stator core 12 and stator tooth slots 13 are also integrally formed and do not need to be formed by potting.
  • the drive motor 1 described in this application is applied to vehicles, including gasoline vehicles or new energy vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本申请提供一种电机定子组件、驱动电机及电驱系统。其中,定子组件安装于电机壳体内部,电机壳体设有进油通道。定子组件包括有定子铁芯,定子铁芯设有直冷油道,直冷油道连通于进油通道,冷却油通过直冷油道进入到定子组件的内部,实现对定子组件轴向的冷却,并加快了驱动电机的冷却效率。直冷油道沿着定子铁芯的轴向延伸设置,且贯穿定子铁芯的相对两端,进而加快整个电驱系统的冷却速度,且有效减少了电驱系统的零部件数量的同时加快了对整个电驱系统的冷却。

Description

定子组件、驱动电机及电驱系统 【技术领域】
本申请涉及车辆冷却驱动领域,特别涉及一种定子组件、驱动电机及电驱系统。
【背景技术】
近年来,新能源汽车有了飞速的发展,其加速性能也在迅猛提升,对电机性能的需求越来越高。目前电机功率和扭矩继续提升的瓶颈则在于电机的散热冷却能力,当冷却系统能力不足时,电机定子绕组温升升高,引起绝缘层破损,同时辐射转子,引发永磁体退磁等问题,导致电机失效。
目前电机的冷却方式包括风冷、水冷、油冷等方式。其中,风冷方式和水冷方式的散热速率不高。常规油冷方式将定转子都浸入冷却油中,虽然散热能力变强,但油耗也随之增加,冷却效率也会降低。
【发明内容】
基于此,本发明提供一种定子组件、电机及电驱系统。
第一方面,本发明提供了一种定子组件,安装于电机壳体内部,所述电机壳体设有进油通道,所述定子组件包括有定子铁芯,所述定子铁芯设有直冷油道,所述直冷油道连通于所述进油通道。所述直冷油道沿着所述定子铁芯的轴向延伸设置,且贯穿所述定子铁芯的相对两端。
进一步地,所述直冷油道设置在所述定子铁芯面向所述电机壳体的外周壁上。
进一步地,所述定子铁芯上还设有支路油槽,所述支路油槽环绕在所述定子铁芯面向所述电机壳体的外周壁上,且所述支路油槽与所述直冷油道相交。
进一步地,所述支路油槽呈螺旋状,螺旋环绕在所述定子铁芯的外周壁上。或者,所述支路油槽呈环形,环绕设置在所述定子铁芯的外周壁上。
进一步地,所述定子铁芯的外周壁上在每两个相邻的所述直冷油道之间还设置有导油槽。每一所述导油槽均与所述支路油槽连通。
进一步地,所述定子铁芯包括若干定子齿槽。所述定子铁芯的相对两端分 别接线端及非接线端,所述直冷油道贯穿所述接线端和所述非接线端。所述定子齿槽贯穿所述定子铁芯的相对两端。所述直冷油道设置在对应所述定子齿槽内。
进一步地,所述接线端和所述非接线端的至少一个上固定设有拼接体。所述拼接体在内部开设有中转液路,所述中转液路连通所述进油通道,并向所述定子铁芯的所述接线端或所述非接线端延伸以连通所述直冷油道。
进一步地,所述拼接体包括输导单元以及分液单元,所述输导单元具有连通进油通道的中空内腔,所述分液单元内部开设有分液流道,所述分液流道的一端连通所述中空内腔,并与所述中空内腔形成所述中转液路,另一端连通所述直冷油道。
进一步地,所述定子铁芯还包括用于形成轭部的筒体,所述定子齿槽设置在所述筒体内壁,所述分液单元包括。分液环板,盖设于所述筒体端面,并连接所述输导单元;以及,齿板,凸设于所述分液环板内缘,并盖设于所述齿部的端面。所述分液流道沿所述分液环板的径向延伸,其中一端贯通所述分液环板并连通所述中空内腔,另一端贯通所述齿板并连通所述直冷油道。
进一步地,所述分液流道的宽度沿靠近所述定子铁芯轴线的方向呈减小趋势;及/或在垂直于所述定子铁芯轴线的平面内,所述直冷油道的投影形状的宽度沿靠近所述定子铁芯轴线的方向上呈减小趋势。
进一步地,所述分液单元包括沿所述定子铁芯的轴向层叠设置的第一覆板与第二覆板,所述第一覆板贴合于所述接线端或所述非接线端,并开设有所述分液流道。所述第二覆板开设有分液口,并与所述输导单元固定连接,所述分液口连通所述中空内腔,并且连通所述分液流道相对远离所述定子铁芯轴线的一端。
进一步地,所述分液单元至少有一部分与所述输导单元形成台阶。所述定子组件还包括绕组,所述绕组绕设于所述齿部以及所述分液单元的外侧,所述台阶用于避让所述绕组。
进一步地,所述输导单元与所述分液单元分体成形且固定连接,所述拼接体还包括防泄密封件。所述输导单元与所述分液单元之间,以及所述输导单元与电机壳体之间通过所述防泄密封件密封连接,以密封所述中空内腔。
进一步地,所述直冷油道包括第一直冷油道与第二直冷油道,任意所述直冷油道均贯通所述接线端和所述非接线端,并分别形成第一开口与第二开口, 所述拼接体包括分别固设于所述接线端和所述非接线端的第一拼接体和第二拼接体。所述第一直冷油道中,其所述第一开口连通所述第一拼接体的所述中转液路,其所述第二开口外露;所述第二直冷油道中,其所述第一开口外露,其所述第二开口连通所述第二拼接体的所述中转液路。
进一步地,所述第一直冷油道与所述第二直冷油道沿所述定子铁芯的周向按照预设的个数逐个交替设置。
进一步地,所述第一拼接体具有多个沿所述定子铁芯的周向间隔排布且彼此连通的第一蓄液仓,所述第二拼接体具有多个沿所述定子铁芯的周向间隔排布且彼此连通的第二蓄液仓,所述第一蓄液仓连通所述第一直冷油道的第一开口,所述第二蓄液仓连通所述第二直冷油道的第二开口。
进一步地,在所述定子铁芯的周向上,所述第一蓄液仓与所述第二蓄液仓逐个相互错位;或者在所述定子铁芯的周向上,所述第一蓄液仓与所述第二蓄液仓分别以组为单位相互错位;或者所述第一拼接体与所述第二拼接体中至少有一者与所述定子铁芯分体成形。
进一步地,所述定子组件还包括填充在所述定子齿槽内的灌封胶层,所述直冷油道设置在所述定子齿槽内的所述灌封胶层内。
进一步地,所述直冷油道的截面面积沿所述非接线端向所述接线端逐渐减小。
进一步地,所述定子组件包括灌封成一体的定子铁芯、接线盘组件、线圈及非接线端骨架。所述接线端和所述非接线端分别为所述定子铁芯的相对两端,所述接线盘组件和所述非接线端骨架分别安装于所述接线端和所述非接线端;其中,所述定子齿槽设置在所述定子铁芯上,所述接线盘组件和所述非接线端骨架均设有与所述定子齿槽对应的绕线支架;每一个所述线圈集中缠绕在所述定子齿槽和对应的绕线支架上。所述接线盘组件包括三相铜排组件,每一所述线圈的起始端和结束端均与所述三相铜排组件固定连接。
进一步地,所述三相铜排组件包括U相连接铜排、V相连接铜排及W相连接铜排,所述U相连接铜排、所述V相连接铜排及所述W相连接铜排均包括一体成型的环状铜排和连接端子。每一所述线圈的起始端和结束端均与所述连接端子焊接。
进一步地,所述中性点铜排与所述U相连接铜排、所述V相连接铜排及所述W相连接铜排之间还设有绝缘灌胶层。所述绝缘灌胶层与所述灌封胶层一体 成型。
进一步地,所述接线盘组件还包括接线盘,所述接线盘固定于所述接线端;其中,所述接线盘包括容置槽和连接槽,所述容置槽与所述连接槽同心设置。所述容置槽包括同心、间隔设置的三个子槽道;所述连接槽位于所述子槽道远离圆心的一侧,所述连接槽的深度小于所述子槽道。所述U相连接铜排、所述V相连接铜排、所述W相连接铜排分别设置在对应的所述子槽道内,所述中性点铜排容置在所述连接槽内。所述容置槽和所述连接槽之间设置有绝缘灌胶层。
进一步地,还包括设置在所述非接线端的密封条,其中,所述密封条与所述灌封胶层一体成型或者所述密封条为单独设置;其中,所述密封条包括至少相对设置的两个,两个所述密封条之间形成油道,所述直冷油道位于所述非接线端的一端容置在所述油道内。所述油道与所述电机壳体形成环油道,所述环油道与所述进油通道连通。
进一步地,还包括设置在所述接线端上密封端盖,其中,所述密封端盖与所述定子铁芯灌封成一体,或所述密封端盖与所述定子铁芯单独分体设置。所述密封端盖包括环形槽,所述直冷油道位于所述接线端的一端与所述环形槽连通。所述密封端盖上还设有出油孔,所述出油孔与所述环形槽连通。
进一步地,所述密封端盖包括环形盖体及由所述环形盖体的相对侧边延伸的抵挡板,两所述抵挡板之间形成所述环形槽,所述环形盖体与所述接线端相对设置,所述出油孔设置在所述环形盖体上。
第二方面,本发明提供了一种电机,包括电机壳体,所述电机壳体上设有进油通道,所述电机还包括如上述任一项所述的定子组件,其中,所述直冷油道连通于所述进油通道。
进一步地,所述电机壳体面向所述定子铁芯的内壁设置有周向液路和轴向液路。
进一步地,所述进油通道包括至少两个,且沿所述电机壳体的周向间隔设置。
进一步地,每个所述进油通道包括第一油道和第二油道,所述第一油道沿着所述定子铁芯的轴向延伸;所述第二油道沿着与所述第一油道相交的方向延伸,所述第二油道用于连通所述直冷油道和所述第一油道。
进一步地,所述电机壳体开设有沿其周向设置的周向油路,所述周向油路在所述电机壳体的周向上的不同位置分别连通所述至少两个进油通道;所述周 向油路用于从所述定子组件外接收冷却油,使得所述冷却油经所述周向油路进入到所述至少两个进油通道。
第三方面,本发明提供了一种电驱系统,所述电驱系统包括如上述电机以及连接于所述电机的减速器。所述减速器包括减速器壳体,所述减速器壳体设有进油油道。所述进油油道连通所述进油通道。
进一步地,所述减速器壳体还设有第一子出油道,所述第一子出油道与所述进油油道连通。所述进油油道沿所述减速器轴向方向延伸,所述第一子出油道沿垂直于所述减速器轴向方向延伸。所述电机壳体与所述减速器壳体连接的一端还设有第一子进油道,所述第一子出油道与所述第一子进油道连通。
进一步地,还包括集油环。所述集油环位于所述电机壳体和所述定子铁芯之间,且套装在所述定子铁芯远离所述减速器的一端。所述集油环面向所述电机壳体的外壁设有聚油环槽,所述电机壳体设有与所述进油通道连通的第二子出油道,所述第二子出油道与所述聚油环槽和所述第一油道均连通。所述聚油环槽内还设有多个沿径向贯穿的喷油孔。
本申请的有益效果是:较于现有的电机定子组件,本申请提供一种电机定子组件安装于电机壳体内部,电机壳体设有进油通道。定子组件包括有定子铁芯,定子铁芯设有直冷油道,直冷油道连通于进油通道,冷却油通过直冷油道进入到定子组件的内部,实现对定子组件轴向的冷却,并加快了电机的冷却效率。直冷油道沿着定子铁芯的轴向延伸设置,且贯穿定子铁芯的相对两端,进而加快整个电驱系统的冷却速度,且有效减少了电驱系统的零部件数量的同时加快了对整个电驱系统的冷却。
【附图说明】
图1为本申请提供的一种电驱系统的一个实施例的结构示意图;
图2为图1中所述电驱系统的一个实施例的剖面结构示意图,所述电驱系统包括电机、定子组件和集油环;
图3是图1中所述电机的壳体剖面结构示意图;
图4为图1中所述定子组件的剖面结构示意图,所述定子组件包括定子铁芯;
图5为图4中所述定子铁芯的一个实施例的结构示意图;
图6为图2中所述集油环的结构示意图;
图7为图2中所述定子组件的结构示意图,所述定子组件包括密封端盖、非接线端及直冷油道;
图8为图7中所述定子组件的另一个角度的结构示意图;
图9为图7中所述直冷油道的结构示意图;
图10为图2中所述电机沿芯体轴向剖切后的示意图;
图11为图10中所述电机的部分结构示意图;
图12为本申请提供的一种定子组件的另一个实施例的结构示意图,所述定子组件包括分液单元和输导单元;
图13为图12中所述分液单元的第二覆板的端面结构示意图;
图14为图12中所述分液单元的第一覆板的端面结构示意图;
图15为图12中所述分液单元的芯体的端面结构示意图;
图16为图1中所述电机的电机壳体的部分结构示意图;
图17为图16中所述电机的电机壳体的另一个角度的结构示意图;
图18为图2中所述的定子组件的部分结构示意图;
图19为图12中所述输导单元的结构示意图;
图20为图12中所述输导单元的另一个实施例的部分结构示意图;
图21为本申请提供的一种电驱系统的另一个实施例的结构示意图;
图22为图7中所述接线盘组件的结构示意图,所述接线盘组件包括三相铜排组件和中性点铜排;
图23为图22中所述三相铜排组件和所述中性点铜排的部分结构示意图;
图24为图7中所述密封端盖的结构示意图;
图25为图24中所述密封端盖的另一个角度的结构示意图;
图26为本申请提供的一种定子组件的灌封模具的结构示意图,所述灌封模具包括有底座;
图27为图26中所述底座的结构示意图;
图28为本申请提供的一种电机的壳体的另一个实施例的结构示意图;
图29为图28中所述电机壳体的剖面结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是 全部的实施例。根据本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
本申请的一个方面,提供了一种驱动电机1,请结合参照图2至图5,图2为图1中所述电驱系统的一个实施例的剖面结构示意图;图3是图1所述电机的剖面结构示意图;图4为图1中所述定子组件的剖面结构示意图;图5为图4中所述定子铁芯的一个实施例的结构示意图。该驱动电机1包括电机壳体11和设置在电机壳体11内的定子组件。其中,电机壳体11上设置有进油通道110。定子铁芯12上设置有直冷油道122沿着定子铁芯12的轴向延伸设置,且贯穿定子铁芯12的相对两端。直冷油道122连通进油通道110。冷却油依次经过进油通道110、直冷油道122,使得冷却油在进入到定子铁芯12中时,能够直接通过直冷油道122对定子铁芯12进行冷却,加快了定子铁芯12的冷却效率,进而加快了整个驱动电机的冷却效率。
根据直冷油道122设置位置的不同,在不同的实施例中,本申请的驱动电机1还对应的提供了不同的结构,以与直冷油道122配合。下文将举不同的具体实施例进行说明:
在本申请提供的第一实施例中,请参照图5,直冷油道122设置在定子铁芯12面向电机壳体11的外周壁上。
更为具体的,直冷油道122为定子铁芯12外周面的开油道槽。此时,电机壳体11的内周面和定子铁芯12的外周面之间彼此抵接,电机壳体11的内周面和油道槽围成一个相对封闭的冷却油道,从而使得冷却油沿着定子铁芯12的轴向流动。
在该第一实施例中,定子铁芯12的外周面还环绕设有支路油槽121,且支路油槽121与直冷油道122连通。支路油槽121的延伸方向与直冷油道122相交,且环绕在定子铁芯12的外周面。这样,通过支路油槽121的环绕,进一步将冷却液流遍定子铁芯12,提高了冷却面积和效率。
具体地,在一些具体的应用场景中,支路油槽121可以呈螺旋状,螺旋环 绕在定子铁芯12的外周壁上。在另外一些具体的应用场景中,支路油槽121也可以呈封闭环形,且支路油槽121为多个。这些支路油槽121沿着定子铁芯12的轴向间隔设置在定子铁芯12的外周面。更为优选的,支路油槽121为圆环形,同轴设置在定子铁芯12上。
由于定子铁芯12外还具有定子线包(图未示),为了进一步提高对定子铁芯12的冷却效率,请继续参照图5,在一些应用场景中,定子铁芯12的外周壁上在每两个相邻的直冷油道122之间设置有导油槽1220。每一导油槽1220均与支路油槽121连通。因此,支路油槽121中的冷却油还可以流向导油槽1220,用于对定子线包进行冷却,避免定子绕组整体在进行工作时,定子线包内部由于过热进而影响到定子铁芯12的冷却。
在该第一实施例中,为了能够进一步保证冷却油对定子组件的冷却效果,请参照图28和图29,图28为本申请提供的一种电机的壳体的另一个实施例的结构示意图;图29为图28中所述电机壳体的剖面结构示意图。电机壳体11可以开设有至少两个进油通道110。至少两个进油通道110间隔设置并且分别从不同位置连通直冷油道122和支路油槽121,以使得冷却油能够经至少两个进油通道110而流入直冷油道122和支路油槽121,进而对定子铁芯12进行冷却。
其中,进油通道110的数量为至少两个,冷却油可以经至少两个进油通道110分别进入到直冷油道122的不同位置(也即定子铁芯12外表面的不同区域),以实现对定子铁芯12进行全面均衡的冷却。避免在对驱动电机1内部进行冷却时,冷却油可能会粘黏在进油通道110内部,导致进油通道110堵塞,保证了冷却油能够及时进入到定子铁芯12中,且在这种情况下,从任一进油通道110进入的冷却油的需要在定子铁芯12表面的流动距离都大大减小,进而能够改善冷却油在流动过程中温度变化过高导致冷却效率下降、不能全面均衡地对各个定子铁芯12进行冷却的问题。
可选地,至少两个进油通道110沿电机壳体11的周向间隔设置。也就是说,进油通道110的数量可以为2、3、4、5、…、或1000个。2、3、4、5、…、或1000个进油通道110可以沿着电机壳体11的周向间隔设置。
在一个具体的应用场景下,请继续参照图29,每个进油通道110包括第一进油道1121和第二进油道1122。第一进油道1121的延伸方向平行于定子铁芯12的轴向。第一进油道1121的一端用于进油,第二进油道1122用于连通直冷油道122和第一进油道1121的另一端。在一些实施例中,第二进油道1122的 方向可以是第一进油道1121指向直冷油道122的方向(由外侧指向内侧)。在这种情况下,各个进油通道110的第二进油道1122是相互独立的。
在上述应用场景下,电机壳体11可以呈筒状设置。电机壳体11的内周面和定子铁芯12的外周面接触配合。第一进油道1121开设于电机壳体11的侧壁内部,第二进油道1122开设于电机壳体11的内周面,以使得进入第一进油道1121的冷却油能够经第二进油道1122流向位于电机壳体11内部的定子铁芯12。可选地,电机壳体11的侧壁的端面开设有环状油道118。环状油道118可以位于第一进油道1121远离第二进油道1122的一端,以能够连通第一进油道1121。可选地,环状油道118可以呈槽状,槽口的朝向背向电机壳体11的侧壁。电机壳体11的侧壁还可以开设有连通环状油道118的进油孔(图未示),以使得冷却油能够经进油孔侧向进入环状油道118中,在进一步通过第一进油道1121、第二进油道1122进入到直冷油道122中。
为了能够对电驱系统进行更好的冷却,每一进油通道110包括相互连通的第一油道111及第二油道112。支路油槽121与第二油道112连通。第二油道112和支路油槽121均间隔设置有多个,且每一第二油道112与对应的支路油槽121连通,第二油道112设置在电机壳体11上,对应向定子铁芯12上的各条支路油槽121注油,使得冷却油能够从多条油道对定子铁芯12的中部进行冷却,加快整个电驱系统的冷却效率。
可选地,每个进油通道110的延伸方向平行于定子铁芯12的轴向。可选地,电机壳体11开设有连通油道(图未示)。连通油道沿着电机壳体11的周向呈环状或者螺旋状延伸设置。进油通道110的一端用于进油。连通油道连通直冷油道122和进油通道110的另一端。在这种情况下,通过至少两个进油通道110的冷却油会先流入到连通油道以及直冷油道122的多个区域。
为了能够回收并统一处理冷却油,在第一实施例中,电机壳体11内还包括有回油通道119,回油通道119设置在电机壳体11沿着重力方向的底部,且回油通道119延伸至贯穿电机壳体11面向定子铁芯12的内壁。回油通道119与支路油槽121与第二油道112连通,用于回收对定子铁芯12进行冷却后的冷却油。
请结合参照图1、图2、图4和图21,图1为本申请提供的一种电驱系统的一个实施例的结构示意图;图2为图1中所述电驱系统的一个实施例的剖面结构示意图;图4为图1中所述定子组件的剖面结构示意图;图21为本申请提供的一种电驱系统的另一个实施例的结构示意图。第一实施例所述的驱动电机1 应用在电驱系统中时,还可以将电驱系统中的减速器2与第一实施例所述的驱动电机1连接。并且,驱动电机1外设置有油冷器7,驱动电机1内设置有油泵组件8,定子组件设置在电机壳体11内,电机壳体11上设置有进油通道110。其中,进油通道110与直冷油道122连通。在驱动电机1内部的油泵组件8的作用下,冷却油从油冷器7沿着进油通道110进入驱动电机1内部,并连通至直冷油道122,使得冷却油能够直接进入到定子组件内部,温度较低的冷却油直接对定子组件进行冷却,冷却油回流到油腔内,形成了冷油循环,进一步提高了对驱动电机1的冷却效率。其中,需要说明的是,在本申请的下文中,可以将具有第一实施例所述的驱动电机1的电驱系统称为第一实施例所述的电驱系统。
其中,减速器2包括减速器壳体20,减速器壳体20设有进油油道211,进油油道211沿减速器2轴向方向延伸,进油油道211与第一油道111连通,将减速器2的冷却油道与驱动电机1的冷却油道连通,加快了冷却油到达驱动电机1的速度。减速器壳体20还设有第一子出油道212,第一子出油道212与进油油道211连通。进油油道211沿减速器2轴向方向延伸,第一子出油道212沿垂直于减速器2轴向方向延伸,冷却油从进油油道211进入到第一子出油道212时,沿减速器2的内壳体周围进行冷却。电机壳体11与减速器壳体20连接的一端还设有第一子进油道113,第一子出油道212与第一子进油道113连通,且形成了闭合油道。
具体地,减速器2还包括有排出油通道(图未示),回油通道119与排出油通道连通。冷却油由回油通道119通过排出油通道运回减速器2,完成冷却油在整个冷却通道中对电驱系统的冷却。且第一子进油道113与回油通道119连通,更合理地规划了电驱系统内部冷却油的走向,加快了对定子铁芯12的前端的冷却速率。避免由于油道不闭合导致冷却油进入到驱动电机1内部,进而在一定程度上影响整个电驱系统的运行并加大了冷却油的损耗。
具体地,第一实施例所述的驱动电机的定子铁芯12上还套装有的集油环3。请参照图6,图6为图2中所述集油环的结构示意图。其中,集油环3位于电机壳体11和定子铁芯12之间,且套装在定子铁芯12远离减速器2的一端,用于冷却定子铁芯12后端。集油环3面向电机壳体11的外壁设有聚油环槽31,冷却油在聚油环槽31内流动,电机壳体11设有第二子出油道114,第二子出油道114与聚油环槽31和第一油道111均连通。聚油环槽31内还设有多个沿径向贯 穿的喷油孔310,冷却油通过喷油孔310喷洒在定子铁芯12的后端,实现对定子铁芯12后端的冷却。可以理解的,在不影响冷却油的传输及喷油孔310的正常工作的条件下,聚油环槽31可以设置为矩形槽或是圆弧槽,保证了聚油环槽31对电机壳体11内部结构的包容度,也保证了集油环3的多用性,使其能够根据需要套装在电机壳体11内部的不同区域。
进一步地,第二子出油道114与回油通道119连通,用于回收向聚油环槽31输送并经过喷油孔310喷洒后的冷却油,使得冷却油能够通过回油通道119传输回减速器2内部。
为了能够保证聚油环槽31内部的冷却油能够对定子铁芯12均匀冷却,在一些实施例中,喷油孔310沿着聚油环槽31均匀排布,且沿着聚油环槽31的径向方向贯穿聚油环槽31。可以理解的,在不影响喷油效率的前提下,喷油孔310的设置较为自由,喷油孔310的形状可以是圆形,也可以是矩形或是菱形等等。
可选地,电机壳体11的内部也可对应设置有环形凹槽(图未示),该环形凹槽与聚油环槽31形成闭合油道,且该闭合油道套装在定子铁芯12远离减速器2的一端,用于冷却定子铁芯12后端,该闭合油道与回油通道119连通,在冷却油对定子铁芯12冷却后进入到回油通道119,送回至减速器2中,完成冷却循环。需要说明的是,该电机壳体11内部形成的相关油道也可应用到本申请下述的其他实施例中。
在本申请提供的第二实施例中,请结合参照图10和图11,图10为图2中所述电机沿芯体轴向剖切后的示意图;图11为图10中所述电机的部分结构示意图;定子铁芯12包括中空的筒体123以及设置筒体123内壁的定子齿槽13,定子齿槽13上环绕有定子绕组15。定子铁芯12的相对两端分别接线端130及非接线端131,定子齿槽13贯穿定子铁芯12的相对两端。直冷油道122还可以设置在定子铁芯12的内部,也就是筒体123内。或者直冷油道122设置定子齿槽13内。不管直冷油道122如何设置,直冷油道122沿着定子铁芯12的轴线贯穿接线端130及非接线端131。本申请提供的第二实施例,以直冷油道122设置在定子齿槽13内。
具体的,定子齿槽13包括连接轭部的根部以及相对远离轭部的顶部,在定子铁芯12的周向上,每个定子齿槽13的根部宽度大于该定子齿槽13顶部的宽度,如此则可以确保相邻两个定子齿槽13之间有足够距离的间隙以便允许定子 绕组15绕设进入。在垂直于定子铁芯12轴线的平面内,直冷油道122的投影形状的宽度沿靠近定子铁芯12轴线的方向呈减小趋势,从而能更好地适应定子齿槽13沿靠近定子铁芯12轴线的定子铁芯12径向上的宽度变化,避免因开设直冷油道122而对驱动电机的电磁性能造成较大影响。
具体的,接线端130和非接线端131的至少一个上固定设有拼接体14,拼接体14可以与定子铁芯12分体成形,具体固定在定子铁芯12的端部。拼接体14内部开设有中转液路203,中转液路203将拼接体14相对靠近定子铁芯12端部的一侧贯通从而直接连通直冷油道122,同时中转液路203还与进油通道110相连通。换言之,除了直冷油道122,散热液路还包括开设在拼接体14内的中转液路203。
在本申请的第二实施例中,拼接体14包括拼接固定的输导单元141以及分液单元142。输导单元141大致呈封闭环状结构,其沿着定子铁芯12的周向延伸,且输导单元141与筒体123基本同轴设置,并且与筒体123的端部相对,输导单元141内部开设有沿筒体123周向闭环连通的中空内腔1421。分液单元142与定子铁芯12端部固定连接,内部开设有多个分液流道1420,每个分液流道1420的一端连通中空内腔1421,从而与中空内腔1421共同形成中转液路203,另一端贯通分液单元142靠近定子铁芯12的一侧以连通直冷油道122。输导单元141可以与分液单元142分体成形。请参照图11-图15,图12为本申请提供的一种定子组件的另一个实施例的结构示意图,所述定子组件包括分液单元和输导单元;图13为图12中所述分液单元的第二覆板的端面结构示意图;图14为图12中所述分液单元的第一覆板的端面结构示意图;图15为图12中所述分液单元的芯体的端面结构示意图。分液单元142直接贴合在定子铁芯12端部,输导单元141固设于分液单元142背离定子铁芯12端部的一侧。分液流道1420的数量与定子齿槽13数量相等,每个分液流道1420对应连通一个直冷油道122。
请继续请参照图11-图15。具体地,分液单元142包括分液环板221以及多个齿板222。沿定子铁芯12轴向观察分液环板221,分液环板221的形状与筒体123的端面形状基本相同,同样为具有通孔的环形结构,所述通孔连通定子铁芯12通孔。分液环板221与筒体123同轴设置,并盖设在筒体123的端面;齿板222凸设于分液环板221的内缘,也即凸设于分液环板221通孔内壁,多个齿板222沿分液环板221/筒体123的周向间隔排布,其数量与定子铁芯12的定子齿槽13数量相同,多个齿板222分别一一对应地盖设在多个定子齿槽13 的端部。中转液路203将齿板222相对靠近定子铁芯12定子齿槽13的一侧贯通。在齿板222与定子齿槽13端部贴合固定的状态下,定子绕组15不仅绕设在定子齿槽13外,同时也绕设在齿板222背离定子齿槽13的一侧。
可选的,分液流道1420沿筒体123的径向延伸,其中一端延伸至分液环板221处并贯通分液单元142靠近输导单元141的一侧,从而形成连通中空内腔1421的分液口2213,多个分液口2213沿定子铁芯12的周向间隔排布。分液流道1420的另一端延伸至齿板222并且贯通分液单元142靠近定子铁芯12端部的一侧从而连通直冷油道122。沿定子铁芯12的轴向观察电机定子组件,齿板222的形状与定子齿槽13端部的形状保持一致,分液流道1420的形状与直冷油道122的形状保持一致,在垂直于定子铁芯12轴线的平面内,直冷油道122的投影形状与分液流道1420的形状一致且重合。
类似地,齿板222包括连接分液环板221的根部以及相对远离分液环板221的顶部,在分液环板221/定子铁芯12的周向上,每个齿板222的根部宽度大于该定子齿槽13顶部的宽度,如此则可以确保相邻两个齿板222之间有足够距离的间隙以便允许定子绕组15绕设进入。分液流道1420的宽度沿靠近分液环板221轴线/定子铁芯12轴线的方向呈减小趋势。当然,分液流道1420的形状也并不一定要和直冷油道122在定子铁芯12端部上形成的第一开口1211或第二开口1212的形状相同,在垂直于定子铁芯12轴线的平面内,分液流道1420的投影形状也可以大于第一开口1211或第二开口1212,只要能确保油液可以顺畅地流入直冷油道122内即可。
进一步地,请继续参照图12-图15,分液单元142包括沿定子铁芯12轴向层叠拼合设置的第一覆板2211与第二覆板2212。沿定子铁芯12轴向观察第一覆板2211与第二覆板2212,二者的外廓形状与定子铁芯12端面的形状相同。无论第一覆板2211还是第二覆板2212,都包括分液环板221以及凸设于分液环板221内缘的齿板222。其中第一覆板2211直接贴合于定子铁芯12的端部,并且开设有多个分液流道1420,第二覆板2212位于第一覆板2211相对远离定子铁芯12的一侧,且开设有多个分液口2213。当第一覆板2211与第二覆板2212固定连接,二者在定子铁芯12径向平面上的投影外轮廓完全重合,且此时分液口2213与分液流道1420相对远离定子铁芯12轴线的一端连通,而分液流道1420的其余部分则被第二覆板2212所覆盖。输导单元141固设在第二覆板2212相对远离第一覆板2211的一侧,并最终将分液环板221覆盖。
第一覆板2211与第二覆板2212可以沿轴向堆叠后通过焊接、粘接等方式固定连接。可以理解,在其他实施方式中,分液单元142还可以是一个不可拆分的独立元件,也即分液单元142不必由分体成形的第一覆板2211和第二覆板2212同轴设置后固定连接。
如前述,输导单元141与定子铁芯12轭部的端面相对设置,分液单元142的齿板222,也即第一覆板2211的齿板222以及第二覆板2212的齿板222在定子铁芯12径向上相对输导单元141凸出,并与输导单元141形成台阶。定子绕组15绕设在分液单元142的齿板222外,并与第二覆板2212的齿板222相贴合。因此分液单元142的齿板222与输导单元141之间形成的台阶能够避让定子绕组15绕设经过,缩短了定子绕组15沿定子铁芯12轴向的尺寸。
进一步地,拼接体14还包括防泄密封件23,防泄密封件23用于密封输导单元141的中空内腔1421开口,从而确保进入输导单元141内部的油液可以维持一定的压力,压力可以提高油液进入分液口2213、分液流道1420以及直冷油道122内的流速,因而可以提高油液在电机定子组件内对流换热的散热效果。具体地,防泄密封件23包括密封连接于输导单元141与分液单元142之间的第一密封环,还包括密封连接于输导单元141与电机壳体11内壁之间的第二密封环。
中转入口2111既可以朝向电机壳体11的内周面,也可以朝向电机壳体11的内端面。当进油通道110开设于电机壳体11周壁时,中转入口2111优选开设在输导单元141外周,且朝向电机壳体11的内周面,当进油通道110开设于电机壳体11端部时,中转入口2111可以开设在输导单元141背离分液单元142的一侧,且朝向电机壳体11的内端面。
其中,拼接体14包括分别固设于定子铁芯12两端的第一拼接体143以及第二拼接体144,直冷油道122包括第一直冷油道以及第二直冷油道,任意直冷油道122均贯通定子铁芯12两端,具体说是贯通定子齿槽13两端从而分别形成第一开口1211与第二开口1212,位于定子铁芯12一端的直冷油道122开口均为第一开口1211,位于定子铁芯12另一端的直冷油道122开口均为第二开口1212。需要说明的是,这里之所以对第一直冷油道和第二直冷油道区别划分,是因为油液在第一直冷油道与第二直冷油道内的流向不同。
可以理解的,第一拼接体143与第二拼接体144两者中至少有一者与定子铁芯12分体成形。
在上述实施例中,电机壳体11的内周壁上还设置有周向油路116和轴向油路117,请参照图16和图17,图16为图1中所述电机的电机壳体的部分结构示意图;图17为图16中所述电机的电机壳体的另一个角度的结构示意图。其中,轴向油路117直接连通进油通道110,轴向油路117的数量为多个且沿电机壳体11周向间隔设置。周向油路116在电机壳体11的周向上的不同位置分别连通进油通道110。周向油路116用于从定子组件外接收冷却油,使得冷却油经周向油路116进入到进油通道110。并在完成定子铁芯12内部的冷却循环后,进入到回油通道119,送回至减速器2中。
中空内腔1421将输导单元141的外周壁贯通形成与轴向油路117连通的中转入口2111,第二密封环环绕设置在输导单元141的外周壁,被输导单元141与电机壳体11共同压紧。第一拼接体143与第二拼接体144分别具有各自的中转入口2111以连通轴向油路117,第一直冷油道的第一开口1211连通第一拼接体143的中转液路203,而其第二开口1212外露,油液能够从其第二开口1212排出,并流向电机壳体11内部以及突出于和第二开口1212均位于定子铁芯12同一端的定子绕组15。第二直冷油道的第二开口1212连通第二拼接体144的中转液路203,而其第一开口1211外露,油液能够从其第一开口1211排出,并流向电机壳体11内部以及突出于和第一开口1211均位于定子铁芯12同一端的定子绕组15。因此,流出轴向油路117的油液会分为两部分,分别流入第一拼接体143的中转液路203和第二拼接体144的中转液路203,接着分别从第一开口1211和第二开口1212流入,此后两部分油液在定子齿槽13内的流向相反,最终分别从第二开口1212和第一开口1211流出。
由于直冷油道122往往设置有多条,第一拼接体143的分液流道1420沿定子铁芯12周向排布的数量和间距,与第一开口1211沿定子铁芯12周向排布的数量和间距相同,第二拼接体144的分液流道1420沿定子铁芯12周向排布的数量和间距,与第二开口1212沿定子铁芯12周向排布的数量和间距相同。
可选地,与支路油槽121相似,周向油路116也可以呈螺旋槽状或是环形槽状,槽口的朝向背向电机壳体11的侧壁。进一步地,电机壳体11可以和减速器2的壳体装配配合,以使得周向油路116的槽口能够被减速器壳体20所密封,进而使得电机壳体11减速器壳体20之间形成周向油路116。
可选地,电机壳体11的侧壁还可以开设有连通周向油路116的进油孔,以使得减速器2中的油能够经进油孔侧向进入周向油路116中,在进一步通过至 少两个第一进油道1121、第二进油道1122进入到直冷油道122中。
可选的,第一拼接体143的输导单元141内具有多个沿定子铁芯12周向间隔排布且彼此连通的第一蓄液仓2113,这些第一蓄液仓2113共同构成该输导单元141的中空内腔1421,多个第一蓄液仓2113与多个连通第一直冷油道的分液流道1420相连通,从而一一对应连通多个第一开口1211;第二拼接体144的输导单元141内具有多个沿定子铁芯12周向间隔排布且彼此连通的第二蓄液仓2113,这些第二蓄液仓2113共同构成该输导单元141的中空内腔1421,多个第二蓄液仓2113与多个连通第二直冷油道的分液流道1420相连通,从而一一对应连通多个第二开口1212。
为了更好地适应定子齿槽13沿定子铁芯12轴向延伸、直冷油道122同样沿定子铁芯12的轴向直线延伸,当第一直冷油道与第二直冷油道沿定子铁芯12周向逐个交替排布时,第一蓄液仓2113与第二蓄液仓2113在定子铁芯12的周向上逐个相互错位,此时在垂直于定子铁芯12轴向的平面上,第一蓄液仓2113的投影和第二蓄液仓2113的投影沿定子铁芯12周向逐个交替排布,而当第一直冷油道与第二直冷油道分别以组为单位沿定子铁芯12周向交替排布时,第一蓄液仓2113与第二蓄液仓2113在定子铁芯12的周向上也同样以组为单位相互错位,此时在垂直于定子铁芯12轴向的平面上,第一蓄液仓2113的投影和第二蓄液仓2113的投影分别以组为单位,沿定子铁芯12周向交替排布。
请参照图19,图19为图12中所述输导单元的结构示意图。在一些应用场景中,输导单元141中的蓄液仓2113相互间隔,例如连通两个第一直冷油道的两个第一蓄液仓2113之间具有间隔,该间隔能够避让第二直冷油道的第一开口1211以及连通第二直冷油道的分液流道1420;连通两个第二直冷油道的两个第二蓄液仓2113之间也具有间隔,该间隔能够避让第一直冷油道的第二开口1212以及连通第一直冷油道的分液流道1420。
请参照图20,图20为图12中所述输导单元的另一个实施例的部分结构示意图。在另一些应用场景中,输导单元141不仅包括相互间隔的蓄液仓2113,还包括同样相互间隔设置的喷液仓(图未示),蓄液仓2113与喷液仓沿定子铁芯12的周向逐个交替设置,或者分别以组为单位交替设置。同时喷液仓将输导单元141贯通形成喷液孔2114,喷液孔2114的孔径或孔口尺寸小于第一开口1211或第二开口1212。例如,第一拼接体143的输导单元141中,多个喷液仓连通多个第二直冷油道的第一开口1211,第二拼接体144的输导单元141中, 多个喷液仓连通多个第一直冷油道的第二开口1212。当直冷油道122内的油液流出第一开口1211或第二开口1212后,会首先聚集在喷液仓内,喷液仓内的压力逐渐增大,最终油液能够以高速射流的形式从喷液孔2114喷出,从而产生一定程度的雾化效果,油液能够在电机壳体11内进一步扩散,且可以覆盖更多的定子绕组15。
请参照图18,图18为图2中所述的定子组件的部分结构示意图。可以理解的,在本申请的第二实施例中,为了提高冷却效果,定子铁芯12外周壁也可以开设有多个轴向凹槽,多个轴向凹槽沿定子铁芯12的周向间隔设置。当电机定子组件固定安装于电机壳体11内以后,电机壳体11内周壁与轴向凹槽槽底壁之间形成另一种直冷油道122,在此实施例下,定子铁芯12上既包括有定子铁芯12内部的直冷油道122,又包括有设置在定子铁芯外周壁上的直冷油道122。
为了实现电机定子组件在电机壳体11内的轴向定位,电机壳体11内周壁还设有限位台阶部43,限位台阶部43抵接拼接体14从而限制电机定子组件沿定子铁芯12轴向相对电机壳体11活动的自由度。具体地,限位台阶部43可以抵接在输导单元141背离定子铁芯12以及分液单元142的一侧端面。
可以理解的,第二实施例所述的驱动电机1也可以应用在电驱系统中。并且,具有第二实施例所述的驱动电机的电驱系统,与第一实施例所述的电驱系统除了驱动电机的结构不同之外,其它的均相同。其中,需要说明的是,在本申请中,可以将具有第二实施例所述的驱动电机1的电驱系统称为第二实施例所述的电驱系统。
在本申请提供的第三实施例中,直冷油道122与上述第二实施例一样,设置在对应定子齿槽13之间。具体地,请参照图7-图9,图7为图2中所述定子组件的结构示意图;图8为图7中所述定子组件的另一个角度的结构示意图;图9为图7中所述直冷油道的结构示意图。直冷油道122全部形成于定子齿槽13内部,而并非由定子齿槽13与驱动电机1当中的其他器件或结构所共同围设形成。因此,当冷却油流入直冷油道122以后,可以直接冷却定子齿槽13,同时也可以携带一部分绕设在定子齿槽13外的定子绕组15的热量。由于定子绕组15包围定子齿槽13,因此不光定子齿槽13与定子齿槽13之间的空隙内有定子绕组15通过,每个定子齿槽13的端部也有定子绕组15通过,定子绕组15缠绕完成后会遮挡定子齿槽13的端部,这给直冷油道122的布置增加了难度。
并且定子铁芯12的定子绕组15引出线比较多,采用直接连接时,端部线 圈焊接比较复杂,而且容易产生接线错误和焊接不牢固等问题,进而影响到驱动电机1的性能。在电机槽数比较多引出线比较多的情况下,工艺非常复杂,工作效率很低,同时无法满足大电流焊接时的质量。因此,在本申请第三实施例的在一些应用场景中,定子组件还可以采用集中式绕组式结构。
请结合参照图4、图7、图8、图9,图4为图1中所述定子组件的剖面结构示意图。具体地,定子组件包括定子铁芯12及接线盘组件100,接线端130和非接线端131分别为定子铁芯12的相对两端,接线盘组件100安装于接线端130,其中,接线盘组件100和非接线端骨架均设有与定子齿槽13对应的绕线支架。每一个线圈集中缠绕在定子齿槽13和对应的绕线支架上。定子组件还包括若干定子齿槽13和填充在定子齿槽13内的灌封胶层16,通过灌封胶层16对定子组件各个结构之间进行密封,避免了采取其他外部元件进行密封时,定子组件内部仍具有缝隙,导致定子组件内部密封不彻底,避免冷却油流入到定子组件内部且无法流出导致冷却油浪费。每一定子齿槽13贯穿接线端130及非接线端131。直冷油道122具体设置在每一定子齿槽13内的灌封胶层16内。每一直冷油道122贯穿接线端130和非接线端131,通过在定子齿槽13中设置直冷油道122,使得冷却油能够直接与定子组件内部进行接触且不会污染定子组件内部,在保证了冷却油的利用效率的同时也加快了定子组件内部的散热效率。
为了能够提高冷却油在定子组件中的冷却效率,具体地,在一些具体的应用场景中,直冷油道122的截面面积沿非接线端131向接线端130逐渐减小。其中,非接线端131与冷却油的进油通道110连通,直冷油道122在面向进油通道110的一端截面面积更大,在保证了冷却油的通油量的同时,减小了冷却油的沿程损耗,进一步保证了该直冷油道122对定子组件内部的冷却效果。
为了能够保证定子组件在驱动电机1内部工作时,能够保证每条直冷油道122内都能进入温度较低的冷却油,请结合图4、图8和图9,在一些具体的应用场景中,定子组件还包括灌封密封条6,灌封密封条6与灌封胶层16一体成型。其中,灌封密封条6设置在非接线端131,灌封密封条6包括至少相对设置的两个,两个灌封密封条6之间形成油道21,由于灌封密封条6与灌封胶层16一体成型,则该油道21也具有一定的密封性,避免冷却油从灌封密封条6与灌封胶层16之间泄漏,造成冷却油的浪费。由驱动电机1外的冷却油通过进油通道110进入驱动电机1内部时,一部分冷却油会沿油道21流向整个定子组件的非接线端131一侧,直冷油道122位于非接线端131的一端容置在油道21内, 冷却油在非接线端131一侧经由不同的直冷油道122进入定子组件的内部,进一步加快了定子组件的冷却效率。
具体地,请结合参照图21、图22及图23,图22为图7中所述接线盘组件的结构示意图;图23为图22中所述三相铜排组件和所述中性点铜排的部分结构示意图。其中,接线盘组件100包括三相铜排组件102和中性点铜排103,三相铜排组件102包括U相连接铜排1021、V相连接铜排1022及W相连接铜排1023,U相连接铜排1021、V相连接铜排1022及W相连接铜排1023均包括一体成型的环状铜排105和连接端子104,进一步保证了环状铜排105和连接端子104的连接,避免了环状铜排105和连接端子104由于接触不良,导致定子组件在工作时出现故障失效等问题。每一线圈的起始端和结束端均与连接端子104焊接,在线圈集中绕线时,将每一组线圈的起始端和结束端进行剥漆处理,将线圈内部的金属连线与连接端子104或端子1030焊接,进一步避免了每一线圈进行绕组时,由于接触不良,导致与三相铜排组件102或是中性点铜排103脱离的现象发生,保证了定子组件的正常工作。
进一步地,三相铜排组件102还包括中性点铜排103,用于接地。中性点铜排103包括一体成型的连接铜排1031和端子1030,U相连接铜排1021、V相连接铜排1022及W相连接铜排1023成同心环状排布,且连接端子104间隔设置,中性点铜排103与三相铜排组件102同轴排布,由于驱动电机1中的中性线需要重复接地或是为了降低驱动电机的启动电压,因此多个端子1030分别设置在连接端子104之间,每一线圈的起始端和结束端也均与端子1030焊接,进一步保护定子组件可正常工作。
进一步地,由于三相铜排组件102与中性点铜排103各自设置有连接端子104和端子1030,定子的级数在一个驱动电机1中时固定的,通过增大定子槽数,减小谐波阶次,进而规避NVH风险,提升驾乘人员的感受及驾驶品质。
可以理解的,在一些实施例中,中性点铜排103与U相连接铜排1021、V相连接铜排1022及W相连接铜排1023之间还设有绝缘灌胶层(图未示),用于隔离中性点铜排103与三相铜排组件102,并在U相连接铜排1021、V相连接铜排1022及W相连接铜排1023之间形成隔离,避免U相连接铜排1021、V相连接铜排1022及W相连接铜排1023之间相互接触导致定子组件发生故障。绝缘灌胶层与灌封胶层16一体成型,进一步保证了定子组件内部的密封效果的同时,节省了对三相铜排组件102之间以及中性点铜排103之间单独安装绝缘 灌胶层的人力,避免了对绝缘灌胶层进行额外安装会产生的安装误差以及错误,进一步保证了定子组件的正常工作。
其中,接线盘组件100还包括接线盘101,接线盘101固定于接线端130,其中接线盘101包括容置槽(图未示)和连接槽(图未示),容置槽与连接槽同心设置。容置槽包括同心、间隔设置的三个子槽道(图未示),连接槽位于子槽道远离圆心的一侧,更有利于中性点铜排103外接地的便利性。连接槽的深度小于子槽道,使得中性点铜排103设置在三相铜排组件102的上方,避免中性点接线在定子组件正常工作时对三相铜排组件102的工作产生影响。三相铜排组件102包括有U相连接铜排、V相连接铜排及W相连接铜排,且U相连接铜排、V相连接铜排及W相连接铜排分别设置在对应的子槽道内,中性点铜排103容置在连接槽内。容置槽和连接槽之间设置有绝缘层,进一步隔离了中性点铜排103与三相铜排组件102之间多余的结构上的接触,在定子组件的正常工作不受到影响的前提下,减小了定子组件的轴向大小,进一步降低驱动电机的轴向尺寸。
请结合参照图24和图25,图24为图7中所述密封端盖的结构示意图;图25为图24中所述密封端盖的另一个角度的结构示意图。在一些应用场景中,定子灌封组件还包括密封端盖4,密封端盖4与定子铁芯12灌封成一体,且密封端盖4设置在接线端130上,密封端盖4包括环形槽430,直冷油道122位于接线端130的一端与环形槽430连通,冷却油通过直冷油道122后进入到环形槽430内,并汇聚在接线端130一侧,密封端盖4上还设有出油孔44,出油孔44与环形槽430连通,其中出油孔44设置在接线端130的最高处。当汇聚在接线端130一侧的冷却油含量达到一定范围时,冷却油会从出油孔44流出并留存在电机壳体11内或是沿其他油道运送出驱动电机1。
进一步地,密封端盖4包括环形盖体41及由环形盖体41的相对侧边延伸的抵挡板42,两抵挡板42之间形成环形槽430,环形盖体41与接线端130相对设置,二者之间形成有暂存油道(图未示),冷却油从直冷油道122中流出后,容置在暂存油道中,出油孔44设置在环形盖体41上,用于排出暂存油道中的冷却油,避免驱动电机1静止时定子组件的腔内存油。
为了确保灌封胶层16在形成时能够与密封端盖4完全贴合并形成环形槽430,在一些实施例中,环形槽430的抵挡板42还设有泄压孔431,泄压孔431贯穿抵挡板42并与环形槽430连通。将密封端盖4固定在定子组件后,并对定 子组件进行灌封,熔融封胶淹没定子组件,多余的熔融封胶会从泄压孔431中流出,使得熔融封胶能够贴合密封端盖4的底部,且不会浸没密封端盖4,进而不会影响环形槽430的形成,实现了灌封胶层16的贴合性。
由于上述定子组件内部设置有灌封胶层16,其中,灌封胶层16为在制造定子组件时,通过灌封手段将其直接与接线端130及非接线端131固定在一起,具体的,请结合参照图26和图27,图26为本申请提供的一种定子组件的灌封模具的结构示意图;图27为图26中所述底座的结构示意图。本申请的第三实施例中的定子组件的灌封方法具体包括如下步骤:
步骤S1:提供灌封模具5,将定子组件固定在灌封模具5中。由于灌封胶层16是形成在定子组件的各类缝隙中,并且形成的灌封胶层16与定子组件在灌封后形成一体式结构,因此需要将定子组件正确固定在灌封模具5中,保证对定子组件的灌封能够成功完成。
步骤S2:在定子铁芯12的每个定子齿槽13内插入一个插销530。该插销530应为类楔形结构或尺寸逐渐减小的腰型块,用于避免熔融封胶将定子齿槽13全部填满。
步骤S3:向灌封模具5中注射熔融封胶,以在定子齿槽13内形成灌封胶层16。熔融封胶具有一定的流动性,可以填满定子组件内的缝隙,并在定子齿槽13处形成灌封胶层16。其中,熔融封胶为导热性较好的封胶,一般为环氧树脂,其具有优秀的耐温性能和导热性,且在高温下的强度较高,因此形成的灌封胶层16后能更快导走定子组件内的热量。
步骤S4:响应于达到预设条件,将定子组件从灌封模具5中脱模。待熔融封胶完全冷却灌封胶层16后,形成将定子组件从灌封模具5中脱模以形成整体定子灌封组件。
步骤S5:拔出插销530以在定子齿槽13的灌封胶层16内形成直冷油道122。将插销530拔出形成沿非接线端131向接线端130截面面积逐渐减小的直冷油道122,用于对定子组件进行内部直冷。
为了能够更好地将定子组件固定在灌封模具5中,上述步骤S1具体包括有:
步骤S11:提供一个底座51,并在底座51上设置一个固定圈52及环绕固定圈52外的凹槽510。
在一些应用场景中,需要提供一个灌封模具5包括有底座51和固定圈52,底座51和固定圈52之间用于容置定子组件,其中,固定圈52的尺寸可以调节, 用于容置不同尺寸结构的定子组件,增强了其适用性。凹槽510设置在固定圈52外的底座51上,包括同心且间隔设置的至少两个,用于灌封形成灌封密封条6。
步骤S12:将定子组件固定在底座51中,定子组件内圈套装在固定圈52上,并使非接线端131抵顶底座51。
在一些应用场景中,定子组件内圈套装在固定圈52上时,定子铁芯12完全容置在底座51和固定圈52之间的空间内,在对灌封模具5之间进行灌注时,需要确保底座51和固定圈52之间的连接处无缝隙,避免熔融封胶从缝隙中漏出导致封胶浪费或是灌胶失败。
进一步地,由于在底座51上设置有至少两个凹槽510,上述步骤S3还包括:
步骤S31:熔融封胶注射至底座51和固定圈52内,熔融封胶流入至凹槽510中,在非接线端131一体成型为灌封密封条6。两个并列的灌封密封条6形成油道21,灌封密封条6与灌封胶层16一体成型,则该油道21也具有一定的密封性,避免冷却油从灌封密封条6与灌封胶层16之间泄漏,造成冷却油的浪费。
为了保证整个定子灌封组件的密封性,在步骤S3之前还包括有步骤S30,步骤S30包括:提供一个密封端盖4,密封端盖4设置在接线端130上,其中,密封端盖4包括有固定块530。
在一些应用场景中,在对定子组件进行灌封时,先将密封端盖4安装在定子组件上方,并对密封端盖4和定子组件的整体进行灌封,保证灌封胶层16在形成时能够与密封端盖4完全贴合。
上述步骤S3还包括有:
步骤S32:熔融封胶注射至底座51和固定圈52内,熔融封胶的注塑液面高于固定块530。
在一些应用场景中,固定块抵接于灌封胶层16,能够有效防止熔融封胶的温度冷热交替或油压冲击下的环形盖体41与灌封胶层16发生脱落,进一步实现了灌封胶层16的贴合性。
由于需要将定子组件进行灌封,并使得其形成一体结构,因此需要将定子组件拆分开来放入灌封模具5中,为了实现三相铜排组件102与三相铜排组件102之间的装配,其中,步骤S10具体包括有:
步骤S101:提供分别一体冲压形成的U相连接铜排1021、V相连接铜排 1022、W相连接铜排1023及三相铜排组件102。
在一些应用场景中,采用一体冲压成型的U相连接铜排1021、V相连接铜排1022及W相连接铜排1023,其连接端子104与环状铜排105一体冲压,三相铜排组件102的端子1030及连接铜排1031也为一体冲压成型,避免连接端子104和环状铜排105及端子1030和连接铜排1031在定子组件正常工作时,结构之间发生脱离导致定子组件的工作出现故障。
步骤S102:将U相连接铜排1021、V相连接铜排1022、W相连接铜排1023及三相铜排组件102按照预设的位置预固定,形成初始三相铜排组件。
步骤S103:提供一个接线盘,将接线盘固定在接线端130,将初始三相铜排组件固定在接线盘的预设位置。
在一些应用场景中,在对拆分后的定子组件进行灌封前,将一体冲压成型的U相连接铜排1021、V相连接铜排1022、W相连接铜排1023及中性点铜排103通过装具优先固定为一个独立的整体,即初始三相铜排组件,将初始三相铜排组件作为一个整体固定在接线盘中,加快了将拆分后的定子组件装配在灌封模具5中的效率。
进一步地,在定子组件的U相连接铜排1021、V相连接铜排1022、W相连接铜排1023及中性点铜排103以一体的形式安装在接线盘中时,上述步骤S31还包括步骤S311,上述步骤S31具体包括有:
步骤S311:熔融封胶注射至底座51和固定圈52内,并流入至初始三相铜排组件与中性点铜排103之间形成绝缘灌胶层。在将初始三相铜排组件固定在接线盘的预设位置后,像灌封模具5内进行灌注,熔融封胶沿着初始三相铜排组件与三相铜排组件102之间的缝隙,形成绝缘灌胶层。且绝缘灌胶层与灌封胶层16一体成型,进一步保证了定子组件内部的密封效果的同时,节省了对三相铜排组件102之间以及中性点铜排103之间单独安装绝缘灌胶层的人力,避免了对绝缘灌胶层进行额外安装会产生的安装误差以及错误,进一步保证了定子组件的正常工作。
在另一些应用场景下,三相铜排组件102与中性点铜排103可以通过不同的方法进行装配。上述步骤S10具体包括有:
步骤S101:提供分别一体冲压形成的U相连接铜排1021、V相连接铜排1022、W相连接铜排1023及中性点铜排103。该步骤与上述应用场景下相同,不再多余赘述。
步骤S104:提供一个接线盘,将接线盘固定在接线端130。其中,接线盘包括容置槽和连接槽。接线盘安装在底座51内,容置槽和连接槽用于容置三相铜排组件102及中性点铜排103。
步骤S105:分别将U相连接铜排1021、V相连接铜排1022、W相连接铜排1023依次容置在容置槽内,将中性点铜排103容置在连接槽内。通过分别直接将U相连接铜排1021、V相连接铜排1022、W相连接铜排1023和中性点铜排103放置在接线盘的特定位置,简化了对拆分后的定子组件的预固定工装,且由于接线盘上设置了特定的容置槽和连接槽,更有利于批量生产,进一步加快了灌封的效率,提高了定子组件的成品率。
进一步地,在定子组件的U相连接铜排1021、V相连接铜排1022、W相连接铜排1023及中性点铜排103分别安装在接线盘中时,上述步骤S31还包括步骤S311,上述步骤S31具体包括有:
步骤S312:熔融封胶注射至底座51和固定圈52内,并流入至U相连接铜排1021、V相连接铜排1022、W相连接铜排1023及中性点铜排103之间形成绝缘灌胶层。绝缘灌胶层设置在容置槽和连接槽之间,进一步隔离了三相铜排组件102与中性点铜排103之间多余的结构上的接触,在定子组件的正常工作不受到影响的前提下,减小了定子组件的轴向大小,进一步降低驱动电机1的轴向尺寸。
为了进一步使得灌封胶层16能够充满定子组件的内部,可对定子组件进行进一步拆分,并在封胶前对定子组件进行绕线,具体地,该步骤S30’具体包括有:
步骤S301’:提供绕线支架,定子组件的线圈依次集中缠绕于每一绕线支架及定子齿槽13。
步骤S302’:每一线圈的起始端和结束端均焊接于连接端子104或端子1030。避免线圈在集中绕线的过程中发生错位导致该接线盘组件100出现故障,进而影响定子组件的成品率。在对其进行灌封后,线圈表面也可覆盖的一层封胶,其该封胶也能起到固定与保护线圈、增大铜排之间的绝缘效果的作用。
可以理解的,第三实施例所述的驱动电机1也可以应用在电驱系统中。并且,具有第三实施例所述的驱动电机1的电驱系统,与第一实施例所述的电驱系统除了驱动电机1的结构不同之外,其它的均相同。其中,需要说明的是,在本申请中,可以将具有第三实施例所述的驱动电机1的电驱系统称为第三实 施例所述的电驱系统。
可以理解的,本申请第三实施例提供的驱动电机1中,直冷油道122也可以是直接设置在任意两个定子齿槽13之间的,而无需通过灌封形成。对应的定子铁芯12以及定子齿槽13也都是一体成型的,而无需通过灌封形成。
本申请的所述的驱动电机1均应用于车辆,包括汽油车或是新能源汽车。
在本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、机构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、机构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (35)

  1. 一种电机定子组件,安装于电机壳体内部,所述电机壳体设有进油通道,其中,所述定子组件包括有定子铁芯,所述定子铁芯设有直冷油道,所述直冷油道连通于所述进油通道;
    所述直冷油道沿着所述定子铁芯的轴向延伸设置,且贯穿所述定子铁芯的相对两端。
  2. 根据权利要求1所述的定子组件,其中,所述直冷油道设置在所述定子铁芯面向所述电机壳体的外周壁上。
  3. 根据权利要求2所述的定子组件,其中,所述定子铁芯上还设有支路油槽,所述支路油槽环绕在所述定子铁芯面向所述电机壳体的外周壁上,且所述支路油槽与所述直冷油道相交。
  4. 根据权利要求3所述的定子组件,其中,所述支路油槽呈螺旋状,螺旋环绕在所述定子铁芯的外周壁上;
    或者,所述支路油槽呈环形,环绕设置在所述定子铁芯的外周壁上。
  5. 根据权利要求3所述的定子组件,其中,所述定子铁芯的外周壁上在每两个相邻的所述直冷油道之间还设置有导油槽;
    每一所述导油槽均与所述支路油槽连通。
  6. 根据权利要求1所述的定子组件,其中,所述定子铁芯包括若干定子齿槽;
    所述定子铁芯的相对两端分别接线端及非接线端,所述直冷油道贯穿所述接线端和所述非接线端;
    所述定子齿槽贯穿所述定子铁芯的相对两端;
    所述直冷油道设置在对应所述定子齿槽内。
  7. 根据权利要求6所述的定子组件,其中,所述接线端和所述非接线端的至少一个上固定设有拼接体;
    所述拼接体在内部开设有中转液路,所述中转液路连通所述进油通道,并向所述定子铁芯的所述接线端或所述非接线端延伸以连通所述直冷油道。
  8. 根据权利要求7所述的定子组件,其中,所述拼接体包括输导单元以及分液单元,所述输导单元具有连通进油通道的中空内腔,所述分液单元内部开设有分液流道,所述分液流道的一端连通所述中空内腔,并与所述中空内腔形成所述中转液路,另一端连通所述直冷油道。
  9. 根据权利要求8所述的定子组件,其中,所述定子铁芯还包括用于形成轭部的筒体,所述定子齿槽设置在所述筒体内壁,所述分液单元包括:
    分液环板,盖设于所述筒体端面,并连接所述输导单元;以及,
    齿板,凸设于所述分液环板内缘,并盖设于所述齿部的端面;
    所述分液流道沿所述分液环板的径向延伸,其中一端贯通所述分液环板并连通所述中空内腔,另一端贯通所述齿板并连通所述直冷油道。
  10. 根据权利要求8所述的定子组件,其中,所述分液流道的宽度沿靠近所述定子铁芯轴线的方向呈减小趋势;及/或
    在垂直于所述定子铁芯轴线的平面内,所述直冷油道的投影形状的宽度沿靠近所述定子铁芯轴线的方向上呈减小趋势。
  11. 根据权利要求8所述的定子组件,其特征在于,所述分液单元包括沿所述定子铁芯的轴向层叠设置的第一覆板与第二覆板,所述第一覆板贴合于所述接线端或所述非接线端,并开设有所述分液流道;
    所述第二覆板开设有分液口,并与所述输导单元固定连接,所述分液口连通所述中空内腔,并且连通所述分液流道相对远离所述定子铁芯轴线的一端。
  12. 根据权利要求8所述的定子组件,其特征在于,所述分液单元至少有一部分与所述输导单元形成台阶;
    所述定子组件还包括绕组,所述绕组绕设于所述齿部以及所述分液单元的外侧,所述台阶用于避让所述绕组。
  13. 根据权利要求8所述的定子组件,其特征在于,所述输导单元与所述分液单元分体成形且固定连接,所述拼接体还包括防泄密封件;
    所述输导单元与所述分液单元之间,以及所述输导单元与电机壳体之间通过所述防泄密封件密封连接,以密封所述中空内腔。
  14. 根据权利要求8所述的定子组件,其特征在于,所述直冷油道包括第一直冷油道与第二直冷油道,任意所述直冷油道均贯通所述接线端和所述非接线端,并分别形成第一开口与第二开口,所述拼接体包括分别固设于所述接线端和所述非接线端的第一拼接体和第二拼接体;
    所述第一直冷油道中,其所述第一开口连通所述第一拼接体的所述中转液路,其所述第二开口外露;所述第二直冷油道中,其所述第一开口外露,其所述第二开口连通所述第二拼接体的所述中转液路。
  15. 根据权利要求14所述的定子组件,其特征在于,所述第一直冷油道与所 述第二直冷油道沿所述定子铁芯的周向按照预设的个数逐个交替设置。
  16. 根据权利要求14所述的定子组件,其特征在于,所述第一拼接体具有多个沿所述定子铁芯的周向间隔排布且彼此连通的第一蓄液仓,所述第二拼接体具有多个沿所述定子铁芯的周向间隔排布且彼此连通的第二蓄液仓,所述第一蓄液仓连通所述第一直冷油道的第一开口,所述第二蓄液仓连通所述第二直冷油道的第二开口。
  17. 根据权利要求16所述的定子组件,其特征在于,在所述定子铁芯的周向上,所述第一蓄液仓与所述第二蓄液仓逐个相互错位;或者
    在所述定子铁芯的周向上,所述第一蓄液仓与所述第二蓄液仓分别以组为单位相互错位;或者
    所述第一拼接体与所述第二拼接体中至少有一者与所述定子铁芯分体成形。
  18. 根据权利要求6所述的定子组件,其特征在于,所述定子组件还包括填充在所述定子齿槽内的灌封胶层,所述直冷油道设置在所述定子齿槽内的所述灌封胶层内。
  19. 根据权利要求18所述的定子组件,其特征在于,所述直冷油道的截面面积沿所述非接线端向所述接线端逐渐减小。
  20. 根据权利要求18所述的定子组件,其特征在于,所述定子组件包括灌封成一体的定子铁芯、接线盘组件、线圈及非接线端骨架;
    所述接线端和所述非接线端分别为所述定子铁芯的相对两端,所述接线盘组件和所述非接线端骨架分别安装于所述接线端和所述非接线端;其中,
    所述定子齿槽设置在所述定子铁芯上,所述接线盘组件和所述非接线端骨架均设有与所述定子齿槽对应的绕线支架;每一个所述线圈集中缠绕在所述定子齿槽和对应的绕线支架上;
    所述接线盘组件包括三相铜排组件,每一所述线圈的起始端和结束端均与所述三相铜排组件固定连接。
  21. 根据权利要求20所述的定子组件,其特征在于,所述三相铜排组件包括U相连接铜排、V相连接铜排及W相连接铜排,所述U相连接铜排、所述V相连接铜排及所述W相连接铜排均包括一体成型的环状铜排和连接端子;
    每一所述线圈的起始端和结束端均与所述连接端子焊接。
  22. 根据权利要求21所述的定子组件,其特征在于,所述三相铜排组件还包括中性点铜排,所述中性点铜排包括一体成型的连接铜排和端子;
    所述U相连接铜排、所述V相连接铜排及所述W相连接铜排成同心环状排布,且所述连接端子间隔设置;
    所述中性点铜排与所述三相铜排组件同轴排布,所述端子分别设置在所述连接端子之间;
    每一所述线圈的起始端和结束端也均与所述端子焊接。
  23. 根据权利要求21所述的定子组件,其特征在于,所述中性点铜排与所述U相连接铜排、所述V相连接铜排及所述W相连接铜排之间还设有绝缘灌胶层;
    所述绝缘灌胶层与所述灌封胶层一体成型。
  24. 根据权利要求21所述的定子组件,其特征在于,所述接线盘组件还包括接线盘,所述接线盘固定于所述接线端;其中,
    所述接线盘包括容置槽和连接槽,所述容置槽与所述连接槽同心设置;
    所述容置槽包括同心、间隔设置的三个子槽道;所述连接槽位于所述子槽道远离圆心的一侧,所述连接槽的深度小于所述子槽道;
    所述U相连接铜排、所述V相连接铜排、所述W相连接铜排分别设置在对应的所述子槽道内,所述中性点铜排容置在所述连接槽内;
    所述容置槽和所述连接槽之间设置有绝缘灌胶层。
  25. 根据权利要求6或18所述的定子组件,其特征在于,还包括设置在所述非接线端的密封条,其中,所述密封条与所述灌封胶层一体成型或者所述密封条为单独设置;其中,
    所述密封条包括至少相对设置的两个,两个所述密封条之间形成油道,所述直冷油道位于所述非接线端的一端容置在所述油道内;
    所述油道与所述电机壳体形成环油道,所述环油道与所述进油通道连通。
  26. 根据权利要求6或18所述的定子组件,其特征在于,包括设置在所述接线端上密封端盖,其中,
    所述密封端盖与所述定子铁芯灌封成一体,或所述密封端盖与所述定子铁芯单独分体设置;
    所述密封端盖包括环形槽,所述直冷油道位于所述接线端的一端与所述环形槽连通;
    所述密封端盖上还设有出油孔,所述出油孔与所述环形槽连通。
  27. 根据权利要求26所述的定子组件,其特征在于,所述密封端盖包括环形盖体及由所述环形盖体的相对侧边延伸的抵挡板,两所述抵挡板之间形成所述 环形槽,所述环形盖体与所述接线端相对设置,所述出油孔设置在所述环形盖体上。
  28. 一种驱动电机,包括电机壳体,所述电机壳体上设有进油通道,其特征在于,所述驱动电机还包括如权利要求1-27任一项所述的定子组件,其中,所述直冷油道连通于所述进油通道。
  29. 根据权利要求28所述的驱动电机,其特征在于,所述电机壳体面向所述定子铁芯的内壁设置有周向油路和轴向油路。
  30. 根据权利要求28所述的驱动电机,其特征在于,所述进油通道包括至少两个,且沿所述电机壳体的周向间隔设置。
  31. 根据权利要求30所述的驱动电机,其特征在于,每个所述进油通道包括第一油道和第二油道,所述第一油道沿着所述定子铁芯的轴向延伸;所述第二油道沿着与所述第一油道相交的方向延伸,所述第二油道用于连通所述直冷油道和所述第一油道。
  32. 根据权利要求30所述的驱动电机,其特征在于,
    所述电机壳体开设有沿其周向设置的周向油路,所述周向油路在所述电机壳体的周向上的不同位置分别连通所述至少两个进油通道;所述周向油路用于从所述定子组件外接收冷却油,使得所述冷却油经所述周向油路进入到所述至少两个进油通道。
  33. 一种电驱系统,包括如权利要求28-32任一项所述的驱动电机以及连接于所述电机的减速器,其特征在于,
    所述减速器包括减速器壳体,所述减速器壳体设有进油油道;
    所述进油油道连通所述进油通道。
  34. 根据权利要求33所述的电驱系统,其特征在于,所述减速器壳体还设有第一子出油道,所述第一子出油道与所述进油油道连通;
    所述进油油道沿所述减速器轴向方向延伸,所述第一子出油道沿垂直于所述减速器轴向方向延伸;
    所述电机壳体与所述减速器壳体连接的一端还设有第一子进油道,所述第一子出油道与所述第一子进油道连通。
  35. 根据权利要求33所述的电驱系统,其特征在于,还包括集油环;
    所述集油环位于所述电机壳体和所述定子铁芯之间,且套装在所述定子铁芯远离所述减速器的一端;
    所述集油环面向所述电机壳体的外壁设有聚油环槽,所述电机壳体设有与所述进油通道连通的第二子出油道,所述第二子出油道与所述聚油环槽和所述第一油道均连通;
    所述聚油环槽内还设有多个沿径向贯穿的喷油孔。
PCT/CN2023/091890 2022-09-05 2023-04-28 定子组件、驱动电机及电驱系统 WO2024051182A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202222345569.4 2022-09-05
CN202222345569.4U CN218850473U (zh) 2022-09-05 2022-09-05 电机定子组件、驱动电机及车辆
CN202320287275.2 2023-02-13
CN202320287275.2U CN219618899U (zh) 2023-02-13 2023-02-13 电驱系统及车辆
CN202310351922.6 2023-03-29
CN202310351922.6A CN116470668A (zh) 2023-03-29 2023-03-29 定子灌封组件、驱动电机及定子灌封组件的成型方法
CN202320786058.8 2023-04-06
CN202320786058.8U CN220440436U (zh) 2023-04-06 2023-04-06 电机的定子组件、电机及电驱传动系统

Publications (1)

Publication Number Publication Date
WO2024051182A1 true WO2024051182A1 (zh) 2024-03-14

Family

ID=90192734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091890 WO2024051182A1 (zh) 2022-09-05 2023-04-28 定子组件、驱动电机及电驱系统

Country Status (1)

Country Link
WO (1) WO2024051182A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052441A1 (en) * 2008-08-28 2010-03-04 Aisin Seiki Kabushiki Kaisha Oil Cooling System for Motor
CN109450128A (zh) * 2018-10-29 2019-03-08 华中科技大学 一种电机定子和具有该电机定子的油冷电机
CN110365138A (zh) * 2019-06-18 2019-10-22 华为技术有限公司 定子铁芯、壳体、电动车的电机冷却系统及电动车
CN111509876A (zh) * 2020-05-27 2020-08-07 精进电动科技股份有限公司 一种定子铁芯冷却结构及电机冷却系统
CN111532118A (zh) * 2020-04-14 2020-08-14 铜车马动力科技(宁波)有限公司 新能源汽车动力总成
CN213341863U (zh) * 2020-10-26 2021-06-01 中国第一汽车股份有限公司 一种冷却系统及电机
CN114421661A (zh) * 2022-01-17 2022-04-29 宁波吉利罗佑发动机零部件有限公司 定子铁芯、定子总成、电机、动力总成以及车辆
CN218850473U (zh) * 2022-09-05 2023-04-11 浙江凌昇动力科技有限公司 电机定子组件、驱动电机及车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052441A1 (en) * 2008-08-28 2010-03-04 Aisin Seiki Kabushiki Kaisha Oil Cooling System for Motor
CN109450128A (zh) * 2018-10-29 2019-03-08 华中科技大学 一种电机定子和具有该电机定子的油冷电机
CN110365138A (zh) * 2019-06-18 2019-10-22 华为技术有限公司 定子铁芯、壳体、电动车的电机冷却系统及电动车
CN111532118A (zh) * 2020-04-14 2020-08-14 铜车马动力科技(宁波)有限公司 新能源汽车动力总成
CN111509876A (zh) * 2020-05-27 2020-08-07 精进电动科技股份有限公司 一种定子铁芯冷却结构及电机冷却系统
CN213341863U (zh) * 2020-10-26 2021-06-01 中国第一汽车股份有限公司 一种冷却系统及电机
CN114421661A (zh) * 2022-01-17 2022-04-29 宁波吉利罗佑发动机零部件有限公司 定子铁芯、定子总成、电机、动力总成以及车辆
CN218850473U (zh) * 2022-09-05 2023-04-11 浙江凌昇动力科技有限公司 电机定子组件、驱动电机及车辆

Similar Documents

Publication Publication Date Title
US20230318370A1 (en) Motor, powertrain, and device
EP3944463A1 (en) Stator core cooling structure and motor cooling system
WO2021232833A1 (zh) 一种转子、电机、动力总成及车辆
KR101858441B1 (ko) 하이브리드 전기 장치를 냉각하는 모드
US11725652B2 (en) Electric oil pump
CN211456879U (zh) 电机冷却系统
WO2022121487A1 (zh) 一种电池模组、电池包及车辆
CN115275428A (zh) 电池模组及电池包
CN112217300A (zh) 电机及其绕组冷却结构
WO2024051182A1 (zh) 定子组件、驱动电机及电驱系统
WO2022110895A1 (zh) 定子、电机、动力总成及电动车
WO2024016777A1 (zh) 一种定子、电机、动力总成及机械设备
WO2024045795A1 (zh) 一种电机、动力总成及车辆
CN116032039B (zh) 定子组件和扁线电机
TWM647346U (zh) 電動總成和具有其的車輛
CN217406262U (zh) 带油冷结构的电机定子和电机
CN112440705A (zh) 动力总成
CN216530871U (zh) 一种用于叉车集成动力总成的油泵电机
CN216489939U (zh) 一种定子总成、电机定子及轴向磁通电机
CN113708550B (zh) 一种电机
CN114421694A (zh) 电机、动力总成以及车辆
KR20220167272A (ko) 스테이터 코어, 모터, 파워 트레인, 자동차 및 차량
CN110942888B (zh) 充放电模块及其电感元件
CN210006791U (zh) 壳体以及动力电池包
CN114825774A (zh) 一种电机定子冷却结构及电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861888

Country of ref document: EP

Kind code of ref document: A1