WO2022028382A1 - 电机和车辆 - Google Patents
电机和车辆 Download PDFInfo
- Publication number
- WO2022028382A1 WO2022028382A1 PCT/CN2021/110151 CN2021110151W WO2022028382A1 WO 2022028382 A1 WO2022028382 A1 WO 2022028382A1 CN 2021110151 W CN2021110151 W CN 2021110151W WO 2022028382 A1 WO2022028382 A1 WO 2022028382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- stator
- groove
- end plate
- casing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/20—Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/32—Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/15—Mounting arrangements for bearing-shields or end plates
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
- H02K5/203—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2209/00—Specific aspects not provided for in the other groups of this subclass relating to systems for cooling or ventilating
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- the present application relates to the technical field of electric motors, and in particular, to a motor and a vehicle.
- the drive motor of new energy vehicles is gradually trending towards high power density and high speed, which also puts forward higher requirements for the heat dissipation capacity of the motor.
- the high heat of the motor directly affects the life of the motor insulation material and the reliability of the motor operation, especially for the motor, the high temperature will increase the risk of permanent magnet demagnetization, and will reduce the performance of the permanent magnet, due to the location of the motor stator winding ends Heat cannot be directly transferred with the outside world, and the temperature at the end of the stator winding is the highest temperature point of the entire motor.
- the oil cooling method of the motor in the related art is mainly for cooling the stator, including designing an oil circuit inside the casing and adding a drainage structure above the winding; or using an oil bath to add cooling oil inside the motor to make the rotor. It is immersed in cooling oil, and the oil is thrown to the motor by the rotation of the rotor for cooling; or the stator oil circuit and the rotor oil circuit are connected in series for cooling.
- the above methods have defects, such as increased motor volume, complex structure, uneven motor air gap and easy to cause oil backlog.
- the present application aims to solve one of the technical problems in the related art at least to a certain extent.
- the embodiments of the present application propose a motor with improved cooling effect.
- Embodiments of the present application also provide a vehicle having the above-mentioned motor.
- the motor according to the embodiment of the first aspect of the present application includes a casing, the casing has an inner cavity, and an oil inlet of the casing is provided on the casing; and a stator includes a stator iron core and a stator winding, The stator is arranged in the inner cavity of the casing, a cooling oil passage is formed between the outer peripheral wall of the stator iron core and the inner peripheral wall of the casing, and the cooling oil passage and the casing feed oil
- a first end cover and a second end cover, the second end cover is provided with an end cover oil inlet hole, the first end cover is installed on the first end of the casing, the second end cover a cover is installed on the second end of the casing; a first fuel injection ring, the first fuel injection ring is arranged on the inner side of the first end cover, and the outer peripheral wall of the first fuel injection ring is connected to the
- An oil injection space communicated with the cooling oil passage is formed between the inner peripheral walls of the casing, and the first oil injection ring
- the oil outlet is communicated with the rotor oil circuit, and the outer surface of the first end plate is provided with a first end plate oil outlet that communicates the first oil groove with the inner cavity of the casing; the second end plate , the second end plate is arranged at the second end of the rotor iron core and is matched with the rotating shaft, the inner surface of the second end plate opposite to the rotor iron core is provided with a second oil groove, the The second oil groove communicates with the rotor oil passage, and the outer side surface of the second end plate is provided with a second end plate oil outlet hole for connecting the second oil groove with the inner cavity of the casing.
- the cooling liquid has a long flow path, and has a good heat dissipation effect on the casing, the stator and the rotor.
- the oil outlet hole of the plate and the oil outlet hole of the second end plate carry out multiple cooling and cooling, the heat dissipation performance of the motor is higher, and at the same time, the rotor magnetic steel can be effectively cooled, the temperature rise of the magnetic steel can be reduced, and the performance of the motor under high-speed conditions can be improved. output performance.
- the motor according to the embodiment of the present application can exert greater torque and power.
- the motor further includes a second fuel injection ring, the second fuel injection ring is provided on the inner side of the second end cover, and the outer peripheral wall of the second fuel injection ring is connected to the casing
- An oil injection space communicated with the cooling oil passage is formed between the inner peripheral walls of the second oil injection ring, and a plurality of second oil injection holes arranged at intervals along the circumferential direction of the second oil injection ring are provided on the second oil injection ring , the second oil injection hole communicates with the oil injection space, and is used for injecting cooling oil from the outer circumference of the stator toward the second end of the stator winding.
- the first fuel injection ring is detachably mounted on or integrally formed with the first end cover, and/or the second fuel injection ring is detachably mounted On or integrally formed with the second end cap.
- the cross-section of the first fuel injection hole is circular, and among two adjacent first fuel injection holes, the cross-sectional area of the first fuel injection hole with a higher position is larger than that of the first fuel injection hole with a lower position.
- the cross-sectional area of the oil hole; and/or the cross-section of the second oil injection hole is circular, and among the two adjacent second oil injection holes, the cross-sectional area of the second oil injection hole set high is larger than the cross-sectional area of the second oil injection hole located lower The cross-sectional area of the second injection hole.
- the first fuel injection ring is divided into a first upper ring segment located above the center of the first fuel injection ring and a first lower ring segment located below the center of the first fuel injection ring, so
- the cross-sectional area of the first fuel injection hole on the first upper ring segment increases gradually along the radial direction of the first fuel injection ring from the outside to the inside, and the first fuel injection on the first lower ring segment
- the cross-sectional area of the hole gradually decreases in the radial direction of the first fuel injection ring from the outside to the inside;
- the second fuel injection ring is divided into a second fuel injection ring located above the center of the second fuel injection ring
- the upper ring segment and the second lower ring segment located below the center of the second fuel injection ring, the cross-sectional area of the second fuel injection hole on the second upper ring segment is along the radial direction of the second fuel injection ring.
- the direction gradually increases from the outside to the inside, and the cross-sectional area of the second oil injection hole on the
- the first oil groove includes a first communication groove, a first guide groove and a first oil outlet groove, a first end of the first communication groove is communicated with the shaft oil outlet hole, the first oil outlet
- the second end of a communication groove is communicated with the first guide groove, the first end of the first oil outlet groove is communicated with the first guide groove, and the second end of the first oil outlet groove is communicated with the first oil outlet groove
- the first end plate oil outlet hole is communicated;
- the second oil groove includes a second annular groove and a second oil outlet groove, the second annular groove is communicated with the rotor oil circuit, and the first end of the second oil outlet groove is connected to The second annular groove is communicated, and the second end of the second oil outlet groove is communicated with the oil outlet hole of the second end plate.
- the first communication groove and the first oil outlet groove are staggered in the radial direction of the first end plate.
- the first communication grooves are plural and are arranged at intervals along the circumference of the first end plate, the first communication grooves extend along the radial direction of the first end plate, and the first communication grooves
- a plurality of oil outlet grooves are arranged at intervals along the circumference of the first end plate, and the first oil outlet grooves extend along the radial direction of the first end plate;
- the second oil outlet grooves are plural and are arranged at intervals along the circumferential direction of the second end plate, and the second oil outlet grooves extend along the radial direction of the second end plate.
- the lead wires of the stator windings extend from one side of the second end cover, the number of oil outlet holes of the first end plate is N1, and the oil outlet holes of the first end plate are along all the The circumferential direction of the first end plate is evenly arranged, the number of oil outlet holes of the second end plate is N2, and the oil outlet holes of the second end plate are evenly arranged along the circumferential direction of the second end plate, where N1 ⁇ N2.
- the number of oil outlet holes of the first end plate is smaller than the number of oil outlet holes of the second end plate.
- the diameter of the oil outlet hole of the first end plate is smaller than the diameter of the oil outlet hole of the second end plate.
- the opening direction of the outlet end of the oil outlet hole of the first end plate and the opening direction of the outlet end of the oil outlet hole of the second end plate are both toward the stator.
- the outer peripheral wall of the stator core is provided with a stator groove and/or a cut edge extending along the axial direction of the stator core, and the cooling oil passage is formed by the stator groove and/or The trimming is formed.
- the outer peripheral wall of the stator core is provided with at least one stator circumferential groove, and the at least one stator circumferential groove extends along the circumference of the stator core, so that the stator core is axially It is divided into a plurality of non-groove iron core segments and at least one grooved iron core segment. Circumferentially spaced stator grooves and/or cut edges.
- the number of the grooved iron core segments is one, and the number of the non-slotted iron core segments is two, and the stator grooves and /or said trimming.
- one of the grooved core segments is located at an axially intermediate position of the stator core.
- the central axis of the casing oil inlet is located within the central cross-section of the one grooved core segment.
- the stator groove is rectangular, and the depth of the stator groove satisfies the relationship: Where a is the depth of the stator groove, R out is the outer diameter of the stator, R in is the inner diameter of the stator, L is the yoke thickness of the stator, h is the stack thickness of the stator, and k 1 is the coefficient and is 0.05-0.1.
- the depth of the cut edge satisfies the relation
- b is the depth of the trimming
- R out is the outer diameter of the stator
- R in is the inner diameter of the stator
- L is the yoke thickness of the stator
- h is the stack thickness of the stator
- k 1 is the coefficient and is 0.05-0.1.
- stator grooves are divided into multiple groups, and the multiple groups of stator grooves are evenly spaced along the circumferential direction of the stator core, and the central angle ⁇ 1 corresponding to the interval between adjacent groups is 1- 5 degrees.
- the plurality of sets of stator grooves are divided into first-type slot groups and second-type slot groups, and the first-type slot groups and the second-type slot groups alternate along the circumferential direction of the stator core Arrangement wherein the cut edges are located within the second type of groove group, each second type of groove group is divided into two first segments adjacent to the first type of groove group and adjacent to the cut edge two second sections, the number of stator grooves in the first section is greater than the number of stator grooves in the second section, and the interval between the adjacent first and second sections corresponds to the central angle ⁇ 32 is 1-5 degrees, the central angle ⁇ 42 corresponding to the interval between the stator grooves in each section is 0.5-2 degrees, and the central angle ⁇ 52 corresponding to each stator groove is 0.5-2 degrees, each The first type of slot group is divided into multiple teams, each team includes multiple sections, the central angle ⁇ 21 corresponding to the interval slot between adjacent teams is 1-5 degrees, and the interval between adjacent sections in each team corresponds to The central angle ⁇ 31 is
- the depth of the stator grooves is 1.5-2.5 mm.
- an inner peripheral wall of the casing is provided with a casing groove, the casing groove extends along the circumference of the casing, and the casing oil inlet is recessed from the casing. Slots are connected.
- a vehicle according to an embodiment of the second aspect of the present application includes a motor according to an embodiment of the first aspect of the present application.
- FIG. 1 is a schematic diagram of a motor according to an embodiment of the present application.
- FIG. 2 is a schematic diagram of a rotor and a rotating shaft according to an embodiment of the present application
- FIG. 3 is a schematic diagram of a rotating shaft according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of a casing according to the first embodiment of the present application.
- FIG. 5 is a schematic diagram of a first end cap according to an embodiment of the present application.
- 5a is a cross-sectional view of a first end cap according to an embodiment of the present application.
- 5b is a partial view A of a cross-sectional view of a first end cap according to an embodiment of the present application
- 5c is a partial view B of a cross-sectional view of a first end cap according to an embodiment of the present application
- FIG. 6 is a schematic diagram of a second end cap according to an embodiment of the present application.
- 6a is a cross-sectional view of a second end cap according to an embodiment of the present application.
- 6b is a partial view C of a cross-sectional view of a second end cap according to an embodiment of the present application
- 6c is a partial view D of a cross-sectional view of a second end cap according to an embodiment of the present application.
- FIG. 7 is a schematic diagram of a first end plate according to an embodiment of the present application.
- FIG 8 is another schematic diagram of the first end plate according to an embodiment of the present application.
- FIG. 9 is a schematic diagram of a second end plate according to an embodiment of the present application.
- FIG. 10 is another schematic diagram of the second end plate according to an embodiment of the present application.
- FIG. 11 is a schematic diagram of a stator core according to the first embodiment of the present application.
- FIG. 12 is a schematic diagram of a stator core according to a second embodiment of the present application.
- FIG. 13 is a partial schematic diagram of a stator punch of a stator core according to a second embodiment of the present application.
- FIG. 14 is a schematic diagram of a stator punch of a stator core according to a fourth embodiment of the present application.
- FIG. 15 is a schematic diagram of a casing according to a second embodiment of the embodiments of the present application.
- FIG. 16 is a schematic diagram of a casing according to a third embodiment of the embodiments of the present application.
- FIG. 17 is a schematic diagram of the curve relationship between the coefficient k 1 of the motor and the voltage drop and the maximum temperature rise rate of the motor according to an embodiment of the present application;
- FIG. 18 is a schematic diagram of the curve relationship between the coefficient k 2 of the motor and the voltage drop and the maximum temperature rise rate of the motor according to an embodiment of the present application;
- 19 is a schematic diagram of the curve relationship between the center angle ⁇ projected by the center of the oil inlet of the casing and the center of the cut edge and the pressure drop and the maximum temperature rise rate of the motor according to an embodiment of the present application;
- FIG. 20 is a schematic diagram of a first end cap according to another embodiment of the present application.
- 21 is a schematic diagram of a second end cap according to another embodiment of the present application.
- FIG. 22 is a schematic diagram of a casing according to a fourth embodiment of the present application.
- FIG. 23 is a schematic diagram of a stator core according to a third embodiment of the present application.
- FIG. 24 is a schematic diagram of a stator punch of a stator core according to an embodiment of the present application.
- FIG 25 is another partial enlarged schematic view of the stator punch shown in Figure 24;
- Fig. 26 is another partial enlarged schematic diagram of the stator punching piece shown in Fig. 24;
- FIG. 27 is a schematic diagram of a stator core according to a fourth embodiment of the present application.
- Rotary shaft 21. Rotary shaft oil circuit; 22. Rotary shaft oil inlet; 23. Rotary shaft oil outlet;
- Stator iron core 51. Cooling oil passage; 52. Stator groove; 521. The first type of slot group; 522, The second type of slot group; 5221, The first section; 5222, The second section; ; 54. Stator circumferential groove;
- the first end cover 61.
- the first fuel injection ring 611, The first fuel injection hole;
- the motor includes a casing 8 , a first end cover 6 , a second end cover 7 , a stator and a rotor.
- the casing 8 has an inner cavity for accommodating components such as the stator and the rotor.
- the first end cover 6 is provided on the first end (the left end in FIG. 1 ) of the casing 8 , and the first fuel injection ring 61 is provided on the inner side of the first end cover 6 .
- the second end cover 7 is provided at the second end 9 (the right end in FIG. 1 ) of the casing 8 , and the second end cover 7 is provided with an end cover oil inlet 72 .
- the stator is composed of a stator core 5 and a stator winding. The stator winding is wound on the stator core 5. Between the outer peripheral wall of the stator core 5 and the inner peripheral wall of the casing 8 is a cooling oil passage 51.
- the casing 8 is provided with a cooling oil passage 51.
- the cooling oil passage 51 communicates with the casing oil inlet 81 .
- the rotor consists of a rotor iron core 1, a rotor magnetic steel and a rotating shaft 2.
- the rotor is arranged in the casing and is spaced apart from the stator.
- the rotor is arranged inside the stator.
- the rotor iron core 1 is provided with a rotor oil circuit 11.
- an oil injection space communicated with the cooling oil passage 51 is formed between the outer peripheral wall of the first oil injection ring 61 and the inner peripheral wall of the casing 8 .
- a plurality of first oil injection holes 611 are arranged at intervals in the circumferential direction of the oil ring 61.
- the first oil injection holes 611 communicate with the oil injection space and are used to spray cooling oil from the outer circumference of the stator toward the first end of the stator winding.
- the rotating shaft 2 penetrates the rotor iron core 1 and cooperates with the rotor iron core 1.
- the rotating shaft 2 is provided with a rotating shaft oil passage 21.
- the rotating shaft 2 is provided with a rotating shaft oil inlet 22 and a rotating shaft oil outlet hole 23.
- the oil port 22 and the shaft oil outlet 23 are both communicated with the shaft oil passage 21 for oil outlet and oil inlet.
- the first end of the shaft 2 extends out of the casing 8 through the first end cover 6 and serves as the output shaft of the motor.
- the oil inlet 22 is in communication with the end cover oil inlet 72 opened on the second end cover 7.
- the motor also includes a first end plate 3 and a second end plate 4.
- the first end plate 3 is arranged on the first end of the rotor core 1 and is sleeved on the rotating shaft 2.
- the inner surface of the first end plate 3 is provided with a first end plate 3.
- An oil groove here, the inner surface refers to the surface opposite to the rotor core 1 , the first oil groove communicates with the shaft oil outlet 23 and the rotor oil passage 11 respectively, and the outer surface of the first end plate 3 is provided with a
- the first end plate oil outlet hole 34 that communicates with the inner cavity of the casing 8 is the first end plate oil outlet hole 34.
- first end plate oil outlet hole 34 is a through hole, and the first end plate oil outlet hole 34 is along the first end plate.
- the thickness direction of the first end plate 3 runs through the first end plate 3, and one end of the oil outlet hole 34 of the first end plate is communicated with the first oil groove.
- the second end plate 4 is arranged on the second end of the rotor core 1 and is sleeved on the rotating shaft 2 , the inner side of the second end plate 4 is provided with a second oil groove, and the second oil groove communicates with the rotor oil passage 11 .
- the second end plate 4 is provided with a second end plate oil outlet hole 44, and the second end plate oil outlet hole 44 communicates with the second oil groove.
- the motor according to the embodiment of the present application includes three cooling oil passages: a cooling oil passage, a rotor oil passage, and a rotating shaft oil passage, wherein the cooling oil passage mainly cools the casing, the stator core and the stator winding, and the rotor oil passage and the rotating shaft oil The way is to cool and dissipate the rotor iron core, rotor magnetic steel and stator winding.
- the cooling oil enters the cooling oil flow channel through the casing oil inlet 81, firstly cools the stator iron core 5 and the casing 8, and then flows to the first end of the stator iron core 5, enters the oil injection space, and passes through the injection
- the oil space enters the first oil injection hole 611, and the cooling oil can be sprayed out through the first oil injection hole 611 under the action of external pressure and gravity, and the cooling oil is sprayed to the first end of the stator winding to cool the first end of the stator winding .
- the shaft oil passage 21 communicates with the rotor oil passage 11 through the shaft oil outlet 23, and the connection here is indirect communication. After the cooling oil enters the shaft oil passage 21, it first cools and dissipates heat from the shaft 2, and then the cooling oil flows into the shaft oil outlet.
- part of the cooling oil is thrown into the inner cavity of the first end of the casing 8 through the oil outlet hole 34 of the first end plate under the action of centrifugal force, so as to cool down the stator winding in the inner cavity, and the rest of the cooling oil It enters the rotor oil passage 11 through the first oil groove, thereby cooling the rotor iron core 1 and the rotor magnetic steel, and flows into the second oil groove of the second end plate through the rotor oil passage 11, and finally the oil is discharged through the second end plate
- the hole 44 is thrown into the inner cavity of the second end of the casing 8, and the stator winding is cooled and cooled, and finally the cooling oil in the inner cavity of the casing 8 enters the oil return pipeline through the oil outlet (not shown) of the end cover, After cooling, re-enter each oil circuit.
- the motor according to the embodiment of the present application is provided with a cooling liquid oil passage, a rotating shaft oil passage and a rotor oil passage.
- the cooling liquid flows through a long path, and has a good heat dissipation effect on the casing, the stator and the rotor, especially for The stator windings with serious heat are subjected to multiple cooling and cooling through the first oil injection hole, the oil outlet hole of the first end plate and the oil outlet hole 44 of the second end plate, and the heat dissipation performance of the motor is better. Effective cooling, reducing the temperature rise of the magnetic steel, and improving the output performance of the motor under high-speed conditions. For a motor of the same volume, the motor according to the embodiment of the present application can have greater torque and power.
- a second fuel injection ring 71 is provided on the inner side of the second end cover 7 .
- An oil injection space communicated with the cooling oil passage 51 is formed.
- the second oil injection ring 71 is provided with a plurality of second oil injection holes 711 arranged at intervals along the circumferential direction of the second oil injection ring 71.
- the second oil injection holes 711 It communicates with the oil injection space and is used for injecting cooling oil from the outer circumference of the stator toward the second end of the stator winding.
- the liquid outlet end of the cooling oil passage 51 is located at the end of the stator core 5 and communicates with the oil injection spaces at both ends.
- the cooling oil enters the first oil injection ring 61 and the second oil injection ring 71 respectively.
- the fuel injection hole 611 and the second fuel injection hole 711 are sprayed from the first fuel injection hole 611 and the second fuel injection hole 711 . Therefore, the first oil injection ring 61 cools the first end of the stator winding, and the second oil injection ring 71 cools the second end of the stator winding, and the overall cooling effect is better.
- the flow rate can be adjusted, which avoids the problem of low cooling efficiency caused by oil rejection by controlling the motor speed, and has high controllability.
- the cooling oil passage 51 directly transports the cooling oil to the ends of the stator windings, and the cooling is highly targeted, which further improves the cooling effect and the performance of the motor.
- the first fuel injection ring 61 is detachably connected to the first end cover 6 , and the first fuel injection ring 61 is detachably mounted on the inner side of the first end cover 6 .
- the second fuel injection ring 71 is detachably mounted on the inner side of the second end cover 7 .
- the first fuel injection ring 61 can also be non-removably installed on the inner side of the first end cover 6 after being processed separately, and the second fuel injection ring 71 can be non-removably installed on the second end cover 7 after being processed separately. on the inside.
- the first fuel injection ring 61 is integrally formed with the first end cover 6 .
- the second fuel injection ring 71 is integrally formed with the second end cover 7 , so that the structure is stable and the strength is high, and the fuel injection ring can withstand greater pressure and has high reliability.
- the cross section of the first fuel injection hole 611 is circular, and among two adjacent first fuel injection holes 611 , the first fuel injection hole 611 with a higher position has a circular cross section.
- the cross-sectional area is larger than the cross-sectional area of the first fuel injection hole 611 located low.
- the cross-section of the second fuel injection hole 711 is circular, and among two adjacent second fuel injection holes 711 , the cross-sectional area of the second fuel injection hole 711 at the higher position is larger than that of the second fuel injection hole at the lower position.
- Cross-sectional area of 711 is circular, and among two adjacent first fuel injection holes 611 , the cross-sectional area of the second fuel injection hole 711 at the higher position is larger than that of the second fuel injection hole at the lower position.
- the casing oil inlet 81 is located at the top of the casing 8, the pressure of the first oil injection hole 611 and the second oil injection hole 711 near the upper part is relatively large, while the pressure in the lower part is relatively small.
- the cross-sectional area of the first oil injection hole 611 and the second oil injection hole 711 can ensure the balanced spraying of cooling oil and improve the cooling effect.
- the first fuel injection ring 61 is divided into a first upper ring segment located above the center of the first fuel injection ring and a first upper ring segment located at the center of the first fuel injection ring The first lower ring segment below.
- the cross-sectional area of the first fuel injection hole 611 on the first upper ring segment increases gradually along the radial direction of the first fuel injection ring from the outside to the inside, that is, the first fuel injection hole 611 on the first upper ring segment It is a cone that gradually expands from outside to inside, and the cross-sectional area of the first fuel injection hole on the first lower ring segment gradually decreases in the radial direction of the first fuel injection ring from the outside to the inside
- the first fuel injection hole 611 on the ring segment is tapered gradually from the outside to the inside.
- the second fuel injection ring 71 is divided into a second upper ring segment located above the center of the second fuel injection ring and a second upper ring segment located below the center of the second fuel injection ring Second Ring Section.
- the cross-sectional area of the second fuel injection hole on the second upper ring segment increases gradually along the radial direction of the second fuel injection ring from the outside to the inside, that is, the second fuel injection hole 711 on the second upper ring segment
- the cross-sectional area of the second fuel injection hole on the second lower ring segment gradually decreases from the outside to the inside in the radial direction of the second fuel injection ring, that is, the second lower ring
- the second fuel injection hole 711 on the segment is tapered gradually from the outside to the inside.
- the shapes of the first and second fuel injection holes located in the first upper ring segment and the second upper ring segment are small on the outside and large on the inside.
- the shaped hole flows to the end of the stator winding, and the spray range becomes larger, so that the coolant can fully contact the end of the stator winding.
- the shapes of the first and second fuel injection holes located in the first and second upper ring segments are large on the outside and small on the inside. Holes, the flow velocity increases and can be sprayed to the outside of the end of the stator winding for cooling, which further improves the cooling effect.
- the first oil groove includes a first communication groove 31 , a first guide groove 32 and a first oil outlet groove 33 , and the first end of the first communication groove 31 is connected to the shaft outlet.
- the oil hole 23 communicates with each other, and the second end of the first communication groove 31 communicates with the first guide groove 32 .
- the first guide groove 32 is preferably annular.
- the cooling oil in the shaft oil passage 21 enters the first communication groove 31 through the shaft oil outlet hole 23, then flows from the first end of the first communication groove 31 to the second end, and flows from the second end of the first communication groove 31 into the first communication groove 31.
- the second oil groove includes a second guide groove 42 and a second oil outlet groove 43 .
- the second guide groove 42 communicates with the rotor oil passage 11 , and the second guide groove 42 is preferably annular.
- the second end of the second oil outlet groove 43 communicates with the oil outlet hole 44 of the second end plate.
- the cooling oil in the rotor oil circuit 11 first flows into the second guide groove 42 , and then flows into the first end of the second oil outlet groove 43 through the second guide groove 42 , and finally all of it is thrown through the oil outlet hole 44 of the second end plate 4 . out.
- the difference between the first end plate 3 and the second end plate 4 is that the first end plate 3 has a first communication groove 31 that communicates with the oil outlet hole 23 of the rotating shaft, and the second end plate 4 does not have a communication groove.
- the same mold can be used to manufacture the second end plate 4.
- the coolant cannot enter the second communication groove 41 from the shaft oil outlet hole, thereby not affecting the second end plate 4 normal use.
- the first communication groove 31 and the first oil outlet groove 33 are staggered in the radial direction of the first end plate 3 , in other words, the first communication groove 31 and the first oil outlet groove 33 cannot be aligned with each other.
- the number of the first communication grooves 31 and the first oil outlet grooves 33 are both four, and the included angle between the two adjacent communication grooves is 90 degrees, and the included angle between the two adjacent first oil outlet grooves 33 is 90 degrees.
- each of the first communication grooves 31 and the first oil outlet grooves 33 are staggered in the radial direction of the first end plate 3, this is to ensure that the number of the shaft oil outlet holes 23 is different from the number of the first communication grooves 31.
- the cooling oil entering the first communication groove 31 through the shaft oil outlet hole 23 can flow in the first guide groove 32, so that cooling oil can flow into each first oil outlet groove 33 instead of the cooling oil directly from the first oil outlet groove 33.
- a communication groove 31 enters into the first oil outlet groove 33 .
- the first communication grooves 31 are multiple and are arranged at intervals along the circumferential direction of the first end plate 3 , the first communication grooves 31 extend along the radial direction of the first end plate 3 , and the first oil outlet grooves 33 are multiple
- the first oil outlet grooves 33 extend along the radial direction of the first end plate 3
- the second oil outlet grooves 43 extend along the radial direction of the second end plate 4 . It should be noted that the number of the first communication grooves 31 and the number of the first oil outlet grooves 33 may be different, and the number of the first oil outlet grooves 33 and the number of the second oil outlet grooves 43 may be different.
- the number of the first end plate oil outlet holes 34 is N1
- the first end plate oil outlet holes 34 are evenly arranged along the circumferential direction of the first end plate 3
- the second end plate oil outlet holes 44 are in number N2
- the oil outlet holes 44 of the second end plate are evenly arranged along the circumferential direction of the second end plate 4, wherein N1 ⁇ N2.
- the second end plate corresponds to the outgoing end of the stator winding, that is, the outgoing wire of the stator winding extends out of the motor from the side of the second end plate.
- the outlet end of the stator winding has a lead wire and the height is higher than the non-outlet end of the stator winding, the heat generation is large.
- the non-outlet end of the stator winding has no lead wire and is higher than the outlet wire of the stator winding Therefore, by setting the number of oil outlet holes of the second end plate to be larger than the number of oil outlet holes of the first end plate, the cooling effect can be further improved.
- the number of oil outlet holes in the first end plate is set to be greater than the number of oil outlet holes in the second end plate accordingly.
- the number of the oil outlet holes 34 of the first end plate and the number of the oil outlet holes 43 of the second end plate may be different.
- the number of the oil outlet holes 34 of the first end plate is smaller than the number of the oil outlet holes 43 of the second end plate.
- the diameter of the oil outlet hole 34 of the first end plate is smaller than the diameter of the oil outlet hole 43 of the second end plate.
- the number of the oil outlet holes 34 of the first end plate 3 is two, the number of the oil outlet holes 44 of the second end plate is four, and the oil outlet holes 34 of the first end plate are along the first end plate 3 .
- the oil outlet holes 44 of the second end plate are evenly arranged along the circumferential direction of the second end plate 4 .
- the number of the first oil outlet grooves 33 and the second oil outlet grooves 43 are both four, and the two first end plate oil outlet holes 34 are provided in the two opposite first oil outlet grooves 33 .
- the four second end plate oil outlet holes 44 are respectively arranged in the four second oil outlet grooves 43. This arrangement can also better ensure that part of the cooling oil can enter the rotor oil circuit 11 through the first oil groove, and then pass through the first oil groove.
- the oil outlet holes 44 of the two end plates are ejected.
- the opening direction of the outlet end of the first end plate oil outlet hole 34 and the opening direction of the outlet end of the second end plate oil outlet hole 44 are both toward the stator winding.
- the opening direction of the outlet end of the first end plate oil outlet hole 34 faces outward in the radial direction of the first end plate.
- the opening direction of the outlet end of the oil outlet hole 44 of the second end plate faces outward along the radial direction of the second end plate.
- the outer peripheral wall of the stator core 5 is provided with a stator groove 52 and/or a cut edge 53 extending axially to the stator core 5 , and the stator groove 52 and The cut edges 53 are distributed at intervals along the circumference of the stator core 5 , and the space between the stator grooves 52 and/or the cut edges 53 and the inner peripheral wall of the casing 8 is the cooling oil passage 51 .
- the outer peripheral wall of the stator core 5 may be provided with only the stator groove 52, only the cut edge 53, or both the stator groove 52 and the cut edge 53.
- Opening the stator groove 52 can effectively increase the contact area between the cooling oil and the stator iron core 5, so that the cooling oil can more fully contact the stator iron core 5, thereby reducing the contact thermal resistance between the cooling liquid and the stator iron core 5, and improving the The heat dissipation efficiency of the stator iron core 5 also saves the raw material of the stator iron core 5 .
- Setting the trimming 53 can increase the volume of the cooling fluid flow channel, improve the flow state of the cooling oil, make it flow more fully and evenly, and reduce the flow energy loss. Cooling efficiency, in addition, the trimmed edge 53 further reduces the structural volume of the stator core 5, saves raw materials, and reduces production costs.
- stator circumferential grooves 54 are provided on the outer peripheral wall of the stator iron core 5, the number of stator circumferential grooves 54 is at least one, and the stator iron core 5 is divided into groove irons in its axial direction. Core segments and non-grooved core segments, the number of non-grooved core segments is at least two. It can be understood that the core segment where the stator circumferential groove 54 is located is the groove core segment, the other core segments are non-groove core segments, and each groove core segment is provided between the two non-groove core segments. between.
- stator circumferential groove 54 can also save materials and effectively reduce the cost of raw materials, and the stator circumferential groove 54 can also increase the contact area between the coolant and the stator core 5 and improve the heat dissipation efficiency of the stator core 5 .
- FIG. 27 there are one grooved iron core segment and two non-slotted iron core segments, and the outer peripheral walls of the two non-slotted iron cores are provided with grooves 54 in the circumferential direction of the stator. Connected stator grooves 52 .
- FIG. 23 in some other specific embodiments, there are one grooved iron core segment and two non-grooved iron core segments, and the outer peripheral walls of the two non-grooved iron cores are provided with cut edges 53 .
- FIG. 12 in other specific embodiments, there are one grooved iron core segment and two non-groove iron core segments, and stator grooves 52 are provided on the outer peripheral walls of the two non-groove iron cores. and trimming 53
- grooved core segments is not limited to one, but can also be multiple.
- a grooved iron core segment is communicated with the casing oil inlet 81 , that is, a stator circumferential groove is communicated with the casing oil inlet 81 , and the grooved iron core segment is located in the axial middle position of the stator iron core 5 . , specifically, the central axis of the casing oil inlet 81 is located in the central cross section of the grooved core segment.
- the grooved core segment is communicated with the oil inlet 81 of the casing.
- the coolant enters the motor casing, it first fills the stator circumferential groove 54 at the grooved core segment, and then passes through the stator groove 52 and the cut edge 53.
- the outer peripheral wall of the stator iron core 5 is in full contact, and the overall flow process of the cooling liquid is from the middle to the two ends.
- the cooling liquid can quickly and completely contact the stator iron core 5 for heat dissipation, which improves the heat dissipation efficiency.
- stator groove 52 and/or a cut edge 53 are provided on the outer peripheral wall of the non-groove core segment, and the stator groove 52 and the cut edge 53 are combined with the stator circumferential groove 54, so that the volume of the stator core 5 is It is greatly reduced, the cost is reduced, and the contact area between the cooling oil and the stator core 5 is larger, and the heat dissipation effect is better.
- the stator groove 52 is rectangular, and the depth of the stator groove 52 satisfies the relationship: where a is the depth of the stator groove 52 , R out is the outer diameter of the stator core 5 , R in is the inner diameter of the stator core 5 , L is the yoke thickness of the stator core 5 , and h is the stack thickness of the stator core 5 , k 1 is the coefficient and is 0.05-0.1.
- stator groove 52 is set in a rectangular shape, so that both sides and a bottom surface of the stator groove 52 can be in contact with the cooling liquid, which effectively improves the cooling effect on the stator core 52 cooling effect.
- the inventor found through research that with the gradual increase of the coefficient k 1 , the pressure drop of the motor (that is, the flow resistance of the cooling liquid) also increases, and the maximum temperature rise rate of the motor decreases.
- the greater the pressure drop the higher the lift of the oil pump required to supply coolant to the motor.
- the temperature rise of the motor corresponds to the thermal performance of the motor. The smaller the temperature rise, the better the life and performance of the motor. , within this value range, the voltage drop of the motor is small, the maximum temperature rise rate of the motor is small, the thermal performance of the motor is good, and the heat dissipation effect of the stator groove 52 is better.
- the depth of the cut edge 53 satisfies the relationship: 13 and 14, where b is the depth of the cut edge 53, R out is the outer diameter of the stator core 5, R in is the inner diameter of the stator core 5, L is the yoke thickness of the stator core 5, h is the stack thickness of the stator core 5, k 2 is a coefficient and is 0.05-0.1.
- the inventor found through research that as the coefficient k 2 increases, the pressure drop of the motor (flow resistance of the cooling liquid) increases, and the maximum temperature rise rate of the motor gradually decreases.
- the coefficient is 0.05-0.1. Within this value range, the voltage drop of the motor is small, the maximum temperature rise of the motor is small, the thermal performance of the motor is good, and the heat dissipation effect of the stator core 5 is better, and it can save raw materials and reduce Raw material cost 5.3%.
- the depth a of the stator groove 52 is greater than or equal to 1.5 mm and less than or equal to 2.5 mm.
- the inventors found that when the depth a of the stator groove is 1mm, the electromagnetic performance of the motor is reduced by 0.67%, and when the depth a of the stator groove is 2mm, the electromagnetic performance of the motor is reduced by 1.5%, when the depth a of the stator groove is At 3 mm, the electromagnetic performance is reduced by 4.83%, so it is advantageous to set the depth a of the stator groove to be between 1.5 mm and 2.5 mm.
- the depth a of the stator groove 52 is preferably 2 mm, and the width a of the stator groove 52 is preferably 1 mm.
- the electromagnetic The performance is reduced by 1.5%. Although it has a certain impact on the electromagnetic performance, the impact is small. At the same time, the contact area between the coolant and the stator core is also large, which can effectively improve the cooling efficiency of the motor.
- stator grooves 52 are divided into multiple groups, and the multiple groups of stator grooves 52 are evenly spaced along the circumferential direction of the stator core 5 , and the intervals between adjacent groups correspond to The central angle ⁇ 1 is 1-5 degrees.
- the stator grooves 52 are divided into a first type of slot group 521 and a second type of slot group 522, the cut edges 53 are located in the second type of slot group 522, the first type of slot group 521 and the second type of slot group 522 Alternately arranged along the circumferential direction of the stator core 5, the first-type slot group 521 and the second-type slot group 522 are spaced apart, wherein the second-type slot group 522 includes a first section 5221 and a second section 5222, and the first section 5221 is Close to the slots of the first type of slot group 521 , the second segment 5222 is a slot close to the cut edge 53 , and the number of stator grooves 52 in the first segment 5221 is greater than the number of stator grooves 52 in the second segment 5222 .
- both sides of the cut edge 53 each have a first section 5221 and a second section 5222, that is to say, each second type groove group 522 has two The first section 5221 and the two second sections 5222, the central angle ⁇ 32 corresponding to the interval between the adjacent first section 5221 and the second section 5222 is 1-5 degrees.
- the central angle ⁇ 42 corresponding to the interval between them is 0.5-2 degrees, and the central angle ⁇ 52 corresponding to each stator groove 52 is 0.5-2 degrees.
- each first-type slot group 221 is divided into multiple teams, two teams in FIG. 26 , each team includes multiple sections, and three sections in FIG. 26 , the center of the circle corresponding to the interval slot between adjacent teams
- the angle ⁇ 21 is 1-5 degrees
- the central angle ⁇ 31 corresponding to the interval between adjacent sections in each team is 1-5 degrees
- the interval between the stator grooves 52 in each section in each team is
- the corresponding central angle ⁇ 41 is 0.5-2 degrees
- the corresponding central angle ⁇ 51 of each stator groove 52 is 0.5-2 degrees.
- the central angle corresponding to the cut edge 53 is 23 degrees.
- the plurality of casing oil inlets 81 are arranged at intervals along the axial direction of the casing 8 , in other words, the plurality of casing oil inlets 81 are arranged at intervals along the circumference of the casing 8 and also along the casing 8 . Axially spaced arrangement of 8, for example, helical distribution on housing 8.
- the inner peripheral wall of the casing 8 is provided with a casing groove 82 , the casing groove 82 extends along the circumferential direction of the motor casing, and the casing oil inlet 81 is connected to the motor casing.
- the casing grooves 82 communicate with each other, and the casing grooves 82 form a part of cooling liquid flow channels, thereby further improving the cooling effect.
- the casing oil inlets 81 are multiple and distributed along the circumferential direction of the casing 8 , and the included angle between the central axes of adjacent casing oil inlets 81 ⁇ is less than or equal to 180 degrees, and the central angle ⁇ between the center of the casing oil inlet 81 and the projection of the center of the nearest cut edge 53 on the cross section of the stator core 5 is 0-5 degrees.
- the above-mentioned central angle ⁇ refers to the line connecting the center of the liquid inlet and the center of the stator core 5, and the line connecting the midpoint of the cut edge 53 closest to the liquid inlet and the center of the stator core 5.
- the included angle between the projections of the two straight lines on the cross section of the stator core 5 is 0-5 degrees.
- the horizontal axis of the graph is the angle of the above-mentioned central angle ⁇
- the vertical axis is the pressure drop and the maximum temperature rise of the motor.
- the pressure drop and the maximum temperature rise of the motor increase slowly (the slopes of the two curves are small).
- the angle of the central angle ⁇ increases gradually at 5-10 degrees
- the pressure drop of the cooling system and the maximum temperature rise of the motor increase.
- the maximum speed is significantly accelerated (the slope of the two curves increases), and the requirements for the lift of the oil pump increase, resulting in an increase in the cost of the motor and poor thermal performance of the motor. Therefore, the center of the liquid inlet and the center of the nearest cut edge 53 are at
- the central angle between the projections on the cross section of the stator core 5 is set to be 0-5 degrees.
- the number of the cut edges 53 is four, the number of the casing oil inlet 81 is two, and the center of the casing oil inlet 81 and the nearest cut edge 53 are The central angle between the projections of the center of the stator core 5 on the cross section of the stator core 5 is ⁇ , preferably, ⁇ is 0 degrees.
- the number of the cut edges 53 is four, the number of the casing oil inlets 81 is four, and the center of the casing oil inlet 81 and the nearest oil inlet port 81 are The central angle ⁇ between the projections of the center of the cut edge 53 on the cross section of the stator core 5 is 0 degrees.
- the number of liquid inlets is less than the number of cut edges, and each liquid inlet corresponds to one cut edge.
- a vehicle according to an embodiment of the present application includes an electric motor, and the electric motor can be the electric motor of the above-mentioned embodiments. By improving the heat dissipation efficiency of the electric motor, the performance of the vehicle is improved.
- the vehicle may be a pure electric vehicle or other forms of new energy vehicles. Of course, in the embodiment of the present application, the vehicle is not limited to this.
- first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
- plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
- the terms “installation”, “connection”, “connection”, “fixation” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
- installation e.g., connection, “connection”, “fixation” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
- the specific meanings of the above terms in this application can be understood according to specific situations.
- a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or indirectly through an intermediary between the first and second features get in touch with.
- the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
- the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
- the terms “one embodiment,” “some embodiments,” “example,” “specific example,” or “some examples,” etc. mean a specific feature, structure, material, or Features are included in at least one embodiment or example of the present application.
- schematic representations of the above terms are not necessarily directed to the same embodiment or example.
- the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
- those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
本申请公开了一种电机和车辆,所述电机包括机壳、定子、第一端盖、第二端盖、第一喷油环、转子、第一端板和第二端板,定子设在机壳的内腔中,第一喷油环设在第一端盖的内侧面上,第一喷油环上设有第一喷油孔;转子包括转子铁芯、转子磁钢和转轴,转子铁芯内设有转子油路,转轴内设有转轴油路,第一端板设在转子铁芯的第一端,第一端板与转子铁芯相对的内侧面上设有第一油槽,第一油槽分别与转轴油路和转子油路连通,第一端板的外侧面上设有将第一油槽与机壳内腔连通的第一端板出油孔。根据本申请实施例的电机,散热效果好,特别是针对发热严重的定子绕组,进行了多重冷却降温,可有效提高电机的性能。
Description
相关申请的交叉引用
本申请要求申请号为202010768985.8、申请号为202021586556.0、申请号为202021586521.7、申请号为202021586504.3、申请号为202010771190.2、申请号为202021586557.5、申请号为202010768996.6和申请号为202021586558.X的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
本申请涉及电机技术领域,具体地,涉及一种电机和车辆。
目前新能源汽车驱动电机逐步趋向高功率密度、高速化,这也对电机的散热能力提出了更高的要求。电机的高热量直接影响电机绝缘材料的寿命以及电机运行的可靠性,特别是对于电机,高温将增大永磁体退磁风险,且会降低永磁体的性能,由于电机定子绕组端部所处的位置不能与外界直接传递热量,定子绕组端部的温度是整个电机的最高温度点。
相关技术中的电机油冷的方式主要是针对定子进行冷却,包括在机壳内部设计有油路,并在绕组上方增设引流结构;或采用油浴的方式,在电机内部添加冷却油,使转子浸到冷却油中,通过转子的转动将油甩到电机上进行冷却;或采用定子油路与转子油路串联方式进行冷却。但是上述几种方式均有缺陷,如电机体积增大、结构复杂、电机气隙不均匀和容易造成油积压等。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的实施例提出一种冷却效果提高的电机。
本申请的实施例还提出一种具有上述电机的车辆。
根据本申请的第一方面的实施例的电机包括机壳,所述机壳具有内腔,所述机壳上设有机壳进油口;定子,所述定子包括定子铁芯和定子绕组,所述定子设在所述机壳的内腔中,所述定子铁芯的外周壁与所述机壳的内周壁之间形成有冷却油道,所述冷却油道与所述机壳进油口连通;第一端盖和第二端盖,所述第二端盖上设有端盖进油孔,所述第一端盖安装在所述机壳的第一端,所述第二端盖安装在所述机壳的第二端;第一喷油环,所述第一喷油环设在所述第一端盖的内侧,所述第一喷油环的外周壁与所述机壳的内周壁之间形成有与所述冷却油道连通的喷油空间,所述第一喷油环上设有沿所述第一喷油环的周向间隔布置的多个第一喷油孔,所述第一喷油孔与所述喷油空间连通,用于从所述定子的外周朝向所述定子绕组的第一端喷射冷却油;转子,所述转子包括转子铁芯、转子磁钢和转 轴,所述转子铁芯内设有转子油路,所述转轴内设有转轴油路,所述转轴上设有与所述转轴油路连通的转轴进油口和转轴出油孔,所述转轴的第一端穿过所述第一端盖延伸出所述机壳,所述转轴进油口与所述端盖进油孔连通;第一端板,所述第一端板设在所述转子铁芯的第一端且与所述转轴配合,所述第一端板与所述转子铁芯相对的内侧面上设有第一油槽,所述第一油槽分别与所述转轴出油孔和所述转子油路连通,所述第一端板的外侧面上设有将所述第一油槽与所述机壳内腔连通的第一端板出油孔;第二端板,所述第二端板设在所述转子铁芯的第二端且与所述转轴配合,所述第二端板与所述转子铁芯相对的内侧面上设有第二油槽,所述第二油槽与所述转子油路连通,所述第二端板的外侧面设有用于将所述第二油槽与所述机壳的内腔连通的第二端板出油孔。
根据本申请实施例的电机,冷却液的流经路径长,对机壳、定子和转子均有很好的散热效果,特别是针对发热严重的定子绕组,通过第一喷油孔、第一端板出油孔和第二端板出油孔对其进行多重冷却降温,电机的散热性能更高,同时可以对转子磁钢进行有效冷却,降低磁钢温升,提升电机在高速工况下的输出性能。对于同样体积的电机,根据本申请实施例的电机可以发挥更大的扭矩和功率。
在一些实施例中,所述电机还包括第二喷油环,所述第二喷油环设在所述第二端盖的内侧,所述第二喷油环的外周壁与所述机壳的内周壁之间形成有与所述冷却油道连通的喷油空间,所述第二喷油环上设有沿所述第二喷油环的周向间隔布置的多个第二喷油孔,所述第二喷油孔与所述喷油空间连通,用于从所述定子的外周朝向所述定子绕组的第二端喷射冷却油。
在一些实施例中,所述第一喷油环可拆卸地安装在所述第一端盖上或与所述第一端盖一体形成,和/或所述第二喷油环可拆卸地安装在所述第二端盖上或与所述第二端盖一体形成。
在一些实施例中,所述第一喷油孔的横截面为圆形,相邻两个第一喷油孔中,位置高的第一喷油孔的横截面积大于位置低的第一喷油孔的横截面积;和/或所述第二喷油孔的横截面为圆形,相邻两个第二喷油孔中,置高的第二喷油孔的横截面积大于位置低的第二喷油孔的横截面积。
在一些实施例中,所述第一喷油环分为位于该第一喷油环的中心以上的第一上环段和位于该第一喷油环的中心以下的第一下环段,所述第一上环段上的第一喷油孔的横截面积在该第一喷油环的径向上沿由外向内的方向逐渐增大,所述第一下环段上的第一喷油孔的横截面积在该第一喷油环的径向上沿由外向内的方向逐渐减小;和/或所述第二喷油环分为位于该第二喷油环的中心以上的第二上环段和位于该第二喷油环的中心以下的第二下环段,所述第二上环段上的第二喷油孔的横截面积在该第二喷油环的径向上沿由外向内的方 向逐渐增大,所述第二下环段上的第二喷油孔的横截面积在该第二喷油环的径向上沿由外向内的方向逐渐减小。
在一些实施例中,所述第一油槽包括第一连通槽、第一导引槽和第一出油槽,所述第一连通槽的第一端与所述转轴出油孔连通,所述第一连通槽的第二端与所述第一导引槽连通,所述第一出油槽的第一端与所述第一导引槽连通,所述第一出油槽的第二端与所述第一端板出油孔连通;所述第二油槽包括第二环形槽和第二出油槽,所述第二环形槽与所述转子油路连通,所述第二出油槽的第一端与所述第二环形槽连通,所述第二出油槽的第二端与所述第二端板出油孔连通。
在一些实施例中,所述第一连通槽与所述第一出油槽在所述第一端板的径向上错开。
在一些实施例中,所述第一连通槽为多个且沿所述第一端板的周向间隔布置,所述第一连通槽沿所述第一端板的径向延伸,所述第一出油槽为多个且沿所述第一端板的周向间隔布置,所述第一出油槽沿所述第一端板的径向延伸;
所述第二出油槽为多个且沿所述第二端板的周向间隔布置,所述第二出油槽沿所述第二端板的径向延伸。
在一些实施例中,所述定子绕组的引出线从所述第二端盖一侧延伸出,所述第一端板出油孔的数量为N1且所述第一端板出油孔沿所述第一端板的周向均匀布置,所述第二端板出油孔的数量为N2且所述第二端板出油孔沿所述第二端板的周向均匀布置,其中N1<N2。
在一些实施例中,所述第一端板出油孔的数量小于所述第二端板出油孔的数量。
在一些实施例中,所述第一端板出油孔的孔径小于所述第二端板出油孔的孔径。
在一些实施例中,所述第一端板出油孔的出口端的开口方向和所述第二端板出油孔的出口端的开口方向均朝向所述定子。
在一些实施例中,所述定子铁芯的外周壁设有沿所述定子铁芯的轴向延伸的定子凹槽和/或切边,所述冷却油道由所述定子凹槽和/或所述切边形成。
在一些实施例中,所述定子铁芯的外周壁设有至少一个定子周向凹槽,所述至少一个定子周向凹槽沿所述定子铁芯的周向延伸,以便所述定子铁芯沿其轴向分为多个非凹槽铁芯段和至少一个凹槽铁芯段,所述非凹槽铁芯段的外周壁上设有沿所述定子铁芯的轴向延伸且沿所述定子铁芯的周向间隔分布的定子凹槽和/或切边。
在一些实施例中,所述凹槽铁芯段为一个,所述非凹槽铁芯段为两个,两个所述非凹槽铁芯的外周壁上均设有所述定子凹槽和/或所述切边。
在一些实施例中,一个所述凹槽铁芯段位于所述定子铁芯的轴向中间位置。
在一些实施例中,所述机壳进油口的中心轴线位于所述一个凹槽铁芯段的中心横截面 内。
在一些实施例中,所述定子凹槽为矩形,所述定子凹槽的深度满足关系式:
其中a为定子凹槽的深度,R
out为定子的外径,R
in为定子的内径,L为定子的轭厚,h为定子的叠厚,k
1为系数且为0.05-0.1。
在一些实施例中,所述定子凹槽分为多组,多组定子凹槽沿所述定子铁芯的周向均匀间隔分布,相邻组之间的间隔对应的圆心角θ
1为1-5度。
在一些实施例中,多组定子凹槽分为第一类槽组和第二类槽组,所述第一类槽组和所述第二类槽组沿所述定子铁芯的周向交替布置,其中所述切边位于所述第二类槽组内,每个第二类槽组分为与所述第一类槽组相邻的两个第一节和与所述切边相邻的两个第二节,所述第一节内的定子凹槽数量大于所述第二节内的定子凹槽数量,相邻的第一节和第二节之间的间隔对应的圆心角θ
32为1-5度,每一节内的定子凹槽之间的间隔对应的圆心角θ
42为0.5-2度,每个定子凹槽对应的圆心角θ
52为0.5-2度,每个第一类槽组分为多队,每一队包括多节,相邻队之间的间隔槽对应的圆心角θ
21为1-5度,每一队内相邻节之间的间隔对应的圆心角θ
31为1-5度,每一队内的每一节内的定子凹槽之间的间隔对应的圆心角θ
41为0.5-2度,每个定子凹槽对应的圆心角θ
51为0.5-2度。
在一些实施例中,所述定子凹槽的深度为1.5-2.5毫米。
在一些实施例中,所述机壳的内周壁上设有机壳凹槽,所述机壳凹槽沿所述机壳的周向延伸,所述机壳进油口与所述机壳凹槽连通。
根据本申请第二方面实施例的车辆,包括根据本申请第一方面实施例的电机。
图1是根据本申请实施例的电机的示意图;
图2是根据本申请实施例的转子和转轴的示意图;
图3是根据本申请实施例的转轴的示意图;
图4是根据本申请第一实施例的机壳的示意图;
图5是根据本申请实施例的第一端盖的示意图;
图5a是根据本申请实施例的第一端盖的剖面图;
图5b是根据本申请实施例的第一端盖的剖面图的局部图A;
图5c是根据本申请实施例的第一端盖的剖面图的局部图B;
图6是根据本申请实施例的第二端盖的示意图;
图6a是根据本申请实施例的第二端盖的剖面图;
图6b是根据本申请实施例的第二端盖的剖面图的局部图C;
图6c是根据本申请实施例的第二端盖的剖面图的局部图D;
图7是根据本申请实施例的第一端板的示意图;
图8是根据本申请实施例的第一端板的另一示意图;
图9是根据本申请实施例的第二端板的示意图;
图10是根据本申请实施例的第二端板的另一示意图;
图11是根据本申请第一实施例的定子铁芯的示意图;
图12是根据本申请第二实施例的定子铁芯的示意图;
图13是根据本申请第二实施例的定子铁芯的定子冲片的局部示意图;
图14是根据本申请第四实施例的定子铁芯的定子冲片的示意图;
图15是根据本申请实施例的第二实施例的机壳的示意图;
图16是根据本申请实施例的第三实施例的机壳的示意图;
图17是根据本申请实施例的电机的系数k
1与压降和电机最大温升率的曲线关系示意图;
图18是根据本申请实施例的电机的系数k
2与压降和电机最大温升率的曲线关系示意图;
图19是根据本申请实施例的机壳进油口的中心和切边中心投影的圆心角β与压降和电机最大温升率之间的曲线关系示意图;
图20是根据本申请另一实施例的第一端盖的示意图;
图21是根据本申请另一实施例的第二端盖的示意图;
图22是根据本申请第四实施例的机壳的示意图;
图23是根据本申请第三实施例的定子铁芯的示意图;
图24是根据本申请实施例的定子铁芯的定子冲片的示意图;
图25是图24所示定子冲片的另一局部放大示意图;
图26是图24所示定子冲片的又一局部放大示意图;
图27是根据本申请第四实施例的定子铁芯的示意图。
附图标记:
1、转子铁芯;11、转子油路;
2、转轴;21、转轴油路;22、转轴进油口;23、转轴出油孔;
3、第一端板;31、第一连通槽;32、第一导引槽;33、第一出油槽;34、第一端板出 油孔;
4、第二端板;41、第二连通槽,42、第二环形槽;43、第二出油槽;44、第二端板出油孔;
5、定子铁芯;51、冷却油道;52、定子凹槽;521、第一类槽组;522、第二类槽组;5221、第一节;5222、第二节;53、切边;54、定子周向凹槽;
6、第一端盖;61、第一喷油环;611、第一喷油孔;
7、第二端盖;71、第二喷油环;711、第二喷油孔;72、端盖进油口;
8、机壳;81、机壳进油口;机壳凹槽82;
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面结合附图1-27描述根据实用新型实施例的电机。
如图1-图2和图4所示,根据本申请实施例的电机包括机壳8、第一端盖6、第二端盖7、定子和转子。其中,机壳8具有内腔,用于容纳定子和转子等组件。
第一端盖6设在机壳8的第一端(图1中的左端),第一喷油环61设在第一端盖6的内侧。第二端盖7设在机壳8的第二端9(图1中的右端),且第二端盖7开设有端盖进油口72。定子由定子铁芯5和定子绕组构成,定子绕组绕设在定子铁芯5上,定子铁芯5的外周壁与机壳8的内周壁之间为冷却油道51,机壳8设有与冷却油道51与连通的机壳进油口81。
转子由转子铁芯1、转子磁钢和转轴2组成,转子设在机壳内且与定子间隔开,转子设在定子的内侧,转子铁芯1内设有转子油路11。
如图5所示,第一喷油环61的外周壁与机壳8的内周壁之间形成有与冷却油道51连通的喷油空间,第一喷油环61上设有沿第一喷油环61的周向间隔布置的多个第一喷油孔611,第一喷油孔611与喷油空间连通,用以从定子的外周朝向定子绕组的第一端喷射冷却油。
如图3所示,转轴2贯穿转子铁芯1且与转子铁芯1配合,转轴2内设有转轴油路21,转轴2上设有转轴进油口22和转轴出油孔23,转轴进油口22和转轴出油孔23均与转轴油路21连通用于出油和进油,转轴2的第一端穿过第一端盖6延伸出机壳8,作为电机的输出轴,转轴进油口22与开设在第二端盖7上的端盖进油口72连通,需要说明的是,转轴进油口22与端盖进油口72之间并未直接连通,而是存在一定间隙,这是为了避免转轴2与第二端盖7发生接触,从而产生摩擦力,影响转轴的正常转动,冷却油经端盖进油口72喷射进入到转轴进油口22中,并进入到转轴油路。
电机还包括第一端板3和第二端板4,第一端板3设在转子铁芯1的第一端且套设在转轴2上,第一端板3的内侧面上设有第一油槽,这里,所述内侧面指的是与转子铁芯1相对的面,第一油槽分别与转轴出油孔23和转子油路11连通,第一端板3的外侧面上设有将第一油槽与机壳8内腔连通的第一端板出油孔34,可以理解的是,第一端板出油孔34为通孔,第一端板出油孔34沿第一端板的厚度方向贯穿第一端板3,且第一端板出油孔34的一端与第一油槽连通。
同样地,第二端板4设在转子铁芯1的第二端且套设在转轴2上,第二端板4的内侧面设有第二油槽,第二油槽与转子油路11连通,第二端板4上设有第二端板出油孔44,第二端板出油孔44与第二油槽连通。
根据本申请实施例的电机,包括冷却油道、转子油路、转轴油路三条冷却油路,其中冷却油流道主要对机壳、定子铁芯和定子绕组进行冷却,转子油路和转轴油路是对转子铁芯、转子磁钢和定子绕组进行冷却散热。
具体地,冷却油经机壳进油口81进入冷却油流道内,首先对定子铁芯5和机壳8进行冷却,之后流向定子铁芯5的第一端,进入喷油空间,并通过喷油空间进入第一喷油孔611,冷却油可在外部压力及重力作用下通过第一喷油孔611喷出,对定子绕组的第一端喷射冷却油,以定子绕组的第一端进行冷却。
转轴油路21与通过转轴出油孔23与转子油路11连通,这里的连通为间接连通,冷却油进入转轴油路21后首先对转轴2进行冷却散热,之后冷却油由转轴出油口流入第一油槽内,部分冷却油在离心力的作用下通过第一端板出油孔34甩入机壳8第一端的内腔内,从而对内腔内的定子绕组进行冷却降温,其余冷却油通过第一油槽进入到转子油路11内,从而对转子铁芯1和转子磁钢进行冷却,并通过转子油路11流入第二端板的第二油槽内,最终经第二端板出油孔44甩入到机壳8第二端的内腔内,并对定子绕组进行冷却降温,最终机壳8内腔内的冷却油通过端盖出油口(未示出)进入回油管路内,冷却后重新进入各个油路。需要说明的是,由于转轴和转子铁芯1旋转转动,经第一端板出油孔34和第二端板出油孔44进入到机壳8内腔的冷却油是被甩入机壳的内腔中,因此可以更好地冷却位于转子铁芯1外周侧的定子绕组,提高冷却效果。
根据本申请实施例的电机,设置有冷却液油道、转轴油路和转子油路,冷却液的流经路径长,且对机壳、定子和转子均有很好的散热效果,特别是针对发热严重的定子绕组,通过第一喷油孔、第一端板出油孔和第二端板出油孔44对其进行多重冷却降温,电机的散热性能更好,同时可以对转子磁钢进行有效冷却,降低磁钢温升,提升电机在高速工况下的输出性能。对于同样体积的电机,根据本申请实施例的电机可以具有更大的扭矩和功率。
如图6所示,在一些实施例中,在第二端盖7的内侧设有第二喷油环71,同样地,第 二喷油环71的外周壁与机壳8的内周壁之间形成有与冷却油道51连通的喷油空间,第二喷油环71上设有沿第二喷油环71的周向间隔布置的多个第二喷油孔711,第二喷油孔711与喷油空间连通,用于从定子的外周朝向定子绕组的第二端喷射冷却油。
冷却油道51的出液端位于定子铁芯5的端部,并与两端的喷油空间连通,冷却油通过第一喷油环61喷油环和第二喷油环71分别进入到第一喷油孔611和第二喷油孔711,并从第一喷油孔611和第二喷油孔711喷出。由此,第一喷油环61对定子绕组的第一端进行冷却,第二喷油环71对定子绕组的第二端进行冷却,整体冷却效果更好,冷却效率通过外部冷却油的压力和流量可以调整,避免了通过电机转速控制甩油导致的冷却效率低的问题,可控性高。另外,冷却油道51将冷却油直接输送至定子绕组的端部,冷却针对性强,进一步提高了冷却效果及电机性能。
在一些实施例中,第一喷油环61与第一端盖6为可拆卸连接,第一喷油环61可拆卸地安装在第一端盖6的内侧面上。第二喷油环71可拆卸地安装在第二端盖7的内侧面上。可选地,第一喷油环61单独加工后也可以不可拆卸地安装在第一端盖6的内侧面上,第二喷油环71单独加工后不可拆卸地安装在第二端盖7的内侧面上。
在一些实施例中,第一喷油环61与第一端盖6一体形成。第二喷油环71与第二端盖7一体形成,由此,结构稳定,强度高,并且喷油环可以承受更大的压力,可靠性强。
如图20和图21所示,在一些实施例中,第一喷油孔611的横截面为圆形,相邻两个第一喷油孔611中,位置高的第一喷油孔611的横截面积大于位置低的第一喷油孔611的横截面积。类似地,第二喷油孔711的横截面为圆形,相邻两个第二喷油孔711中,位置高的第二喷油孔711的横截面积大于位置低的第二喷油孔711的横截面积。
由于机壳进油口81位于机壳8的顶部,因此,靠近上部的第一喷油孔611和第二喷油孔711的压力较大,而下部的压力较小,通过如上所述设置第一喷油孔611和第二喷油孔711的横截面积,可以保证冷却油喷出的均衡性,提高冷却效果。
如图5a、图5b和图5c所示,在一些实施例中,第一喷油环61分为位于第一喷油环的中心以上的第一上环段和位于第一喷油环的中心以下的第一下环段。第一上环段上的第一喷油孔611的横截面积在第一喷油环的径向上沿由外向内的方向逐渐增大,即第一上环段上的第一喷油孔611为由外向内逐渐扩大的锥形,第一下环段上的第一喷油孔的横截面积在该第一喷油环的径向上沿由外向内的方向逐渐减小,即第一下环段上的第一喷油孔611为由外向内逐渐缩小的锥形。类似地,如图6a、图6b和图6c所示,第二喷油环71分为位于第二喷油环的中心以上的第二上环段和位于第二喷油环的中心以下的第二下环段。第二上环段上的第二喷油孔的横截面积在该第二喷油环的径向上沿由外向内的方向逐渐增大,即第二上环段上的第二喷油孔711为由外向内逐渐扩大的锥形,第二下环段上的第二喷油 孔的横截面积在第二喷油环的径向上沿由外向内的方向逐渐减小,即第二下环段上的第二喷油孔711为由外向内逐渐缩小的锥形。
由此,位于第一上环段和第二上环段的第一喷油孔和第二喷油孔的形状为外小内大,上侧的冷却液在重力为主导作用力下,经锥形孔流向定子绕组的端部,喷射的范围变大,能使冷却液充分接触定子绕组端部。位于第一上环段和第二上环段的第一喷油孔和第二喷油孔的形状为外大内小,下侧的冷却液在外部压力为主导作用力下,经倒锥形孔,流速变大进而能喷射到定子绕组的端部外侧进行冷却,进一步提高冷却效果。
如图7和图8所示,在一些实施例中,第一油槽包括第一连通槽31、第一导引槽32和第一出油槽33,第一连通槽31的第一端与转轴出油孔23连通,第一连通槽31的第二端与第一导引槽32连通。第一导引槽32优选为环形。转轴油路21内的冷却油经转轴出油孔23入第一连通槽31内,再从第一连通槽31的第一端流向第二端,从第一连通槽31的第二端流入第一导引槽32内,再通过第一导引槽32进入第一出油槽33的第一端,部分冷却油通过第一出油槽33的第二端与第一端板出油孔34喷出,其余的冷却油经过第一导引槽32进入转子油路11内,并流向第二油槽。
如图9和图10所示,第二油槽包括第二导引槽42和第二出油槽43,第二导引槽42与转子油路11连通,第二导引槽42优选为环形。第二出油槽43的第二端与第二端板出油孔44连通。转子油路11内的冷却油首先流入第二导引槽42内,并通过第二导引槽42流入第二出油槽43的第一端,最终全部经由第二端板4出油孔44甩出。
需要说明的是,在上面的描述中,第一端板3与第二端板4的区别在于第一端板3具有与转轴出油孔23连通的第一连通槽31,而第二端板4不具有连通槽。但是,为了便于加工和降低成本,例如,在加工第一端板3与第二端板4时,可以使用同一模具制造,第二端板4也加工出与类似于第一连通槽31的第二连通槽41,由于转轴上没有设置与第二连通槽41连通的转轴出油孔,因此,冷却液无法从转轴出油孔进入第二连通槽41,由此不会影响第二端板4的正常使用。
在一些实施例中,第一连通槽31与第一出油槽33在第一端板3的径向上错开,换言之,第一连通槽31与第一出油槽33不能相互对齐。
第一连通槽31和第一出油槽33的个数均为四个,且相邻的两个连通槽的夹角为90度,相邻的两个第一出油槽33的夹角为90度,每个第一连通槽31均与第一出油槽33在第一端板3的径向上错开,这是为了保证在转轴出油孔23的数量与第一连通槽31的数量不相同的情况下,经转轴出油孔23进入第一连通槽31的冷却油可以在第一导引槽32内流动,使得每个第一出油槽33均可以有冷却油流入,而不是冷却油直接从第一连通槽31进入到第一出油槽33内。
在一些实施例中,第一连通槽31为多个且沿第一端板3的周向间隔布置,第一连通槽31沿第一端板3的径向延伸,第一出油槽33为多个且沿第一端板3的周向间隔布置,第一出油槽33沿第一端板3的径向延伸,同样地,第二出油槽43为多个且沿第二端板4的周向间隔布置,第二出油槽43沿第二端板4的径向延伸。需要说明的是,第一连通槽31的数量与第一出油槽33的数量可以不同,第一出油槽33的数量与第二出油槽43的数量可以不同。
在一些实施例中,第一端板出油孔34的数量为N1,第一端板出油孔34沿第一端板3的周向均匀布置,第二端板出油孔44的数量为N2,第二端板出油孔44沿第二端板4的周向均匀布置,其中N1<N2。
需要说明的是,在将本实用新型实施例的转子组件安装到定子内时,第二端板与定子绕组的出线端对应,即定子绕组的引出线从第二端板一侧延伸出电机的机壳,由于定子绕组的出线端具有引出线且高度高于定子绕组的非出线端,因此发热量大,相比而言,定子绕组的非出线端没有引出线且高度高于定子绕组的出线端,因此发热量相对小,由此,通过将第二端板出油孔的数量设置为大于第一端板出油孔的数量,能够进一步提高冷却效果。当然,如果定子绕组的引出线从第一端板一侧延伸出电机的机壳,则相应地将第一端板出油孔的数量设置为大于第二端板出油孔的数量。
另外,第一端板出油孔34的数量与第二端板出油孔43的数量可以不同。优选地,第一端板出油孔34的数量小于第二端板出油孔43的数量。由此,能够更好地实现定子绕组两端的均衡冷却。
可选地,第一端板出油孔34的孔径小于第二端板出油孔43的孔径。由此,能够更好地实现定子绕组两端的均衡冷却。
在一些具体实施例中,第一端板3出油孔34的数量为两个,第二端板出油孔44的数量为四个,第一端板出油孔34沿第一端板3的径向相对布置,第二端板出油孔44沿第二端板4的周向均匀布置。
如图7和图9所示,第一出油槽33和第二出油槽43的数量均为四个,两个第一端板出油孔34设在两个相对的第一出油槽33内,四个第二端板出油孔44分别设在四个第二出油槽43内,如此设置,也可以更好地保证部分冷却油可以通过第一油槽进入到转子油路11内,进而经由第二端板出油孔44喷出。
在一些实施例中,第一端板出油孔34的出口端的开口方向和第二端板出油孔44的出口端的开口方向均朝向定子绕组。换言之,第一端板出油孔34的出口端的开口方向沿第一端板的径向朝向外。在另一些实施例中,第二端板出油孔44的出口端的开口方向沿第二端板的径向朝向外。由此可以更好地将冷却油直接喷射到转子铁芯1外周的定子绕组的端部, 提高冷却效率。
如图11所示,在一些实施例中,定子铁芯5的外周壁设有至所述定子铁芯5的轴向延伸的定子凹槽52和/或切边53,且定子凹槽52和切边53均沿定子铁芯5的周向间隔分布,定子凹槽52和/或切边53与机壳8的内周壁之间的空间为冷却油道51。换言之,定子铁芯5的外周壁上可仅设有定子凹槽52,也可以仅设有切边53,也可以同时设有定子凹槽52和切边53.
开设定子凹槽52可以有效增加冷却油与定子铁芯5的接触面积,使冷却油可以更充分地接触定子铁芯5,从而降低冷却液与定子铁芯5的接触热阻,提高了定子铁芯5的散热效率,还节省了定子铁芯5的原材料。设置切边53一方面可以增加冷却液流道体积,改善冷却油流动状态,使其流动更充分均匀,流动能量损失减少,另一方面使得冷却流液道表面积减少,降低流道流阻,提高冷却效率,此外,切边53还进一步使得定子铁芯5的结构体积减小,节约原材料,降低生产成本。
如图12所示,在一些实施例中,定子铁芯5的外周壁上设有定子周向凹槽54,定子周向凹槽54的数量至少为一个,定子铁芯5在其轴向分为凹槽铁芯段和非凹槽铁芯段,非凹槽铁芯段的数量至少为两个。可以理解的是,定子周向凹槽54所在的铁芯段位凹槽铁芯段,其他的铁芯段位非凹槽铁芯段,每个凹槽铁芯段设在两个非凹槽铁芯段之间。设置定子周向凹槽54同样可以节省材料,有效降低原料成本,并且定子周向凹槽54同样可增加冷却液与定子铁芯5的接触面积,提高定子铁芯5的散热效率。
如图27所示,在一些具体实施例中,凹槽铁芯段为一个,非凹槽铁芯段为两个,两个非凹槽铁芯的外周壁上均设有与定子周向凹槽54连通的定子凹槽52。如图23所示,在另一些具体实施例中,凹槽铁芯段为一个,非凹槽铁芯段为两个,两个非凹槽铁芯的外周壁上均设有切边53。如图12所示,在另一些具体实施例中,凹槽铁芯段为一个,非凹槽铁芯段为两个,两个非凹槽铁芯的外周壁上均设有定子凹槽52和切边53
当然,凹槽铁芯段的数量并不仅局限于一个,也可以为多个。
在一些实施例中,一个凹槽铁芯段与机壳进油口81连通,即一个定子周向凹槽与机壳进油口81连通,凹槽铁芯段位于定子铁芯5的轴向中间位置,具体地,机壳进油口81的中心轴线位于凹槽铁芯段的中心横截面内。
凹槽铁芯段与机壳进油口81连通,例如,冷却液进入电机壳体后,首先充满凹槽铁芯段处的定子周向凹槽54,之后经由定子凹槽52以及切边53与定子铁芯5的外周壁充分接触,冷却液的整体流动过程为由中间向两端流动,冷却液可快速与定子铁芯5完全接触进行散热,提高了散热效率。
进一步地,非凹槽铁芯段的外周壁上设有定子凹槽52和/或切边53,将定子凹槽52、 切边53与定子周向凹槽54相结合,使得定子铁芯5的体积大大减小,成本降低,并且冷却油与定子铁芯5的接触面积更大,散热效果更好。
具体地,定子凹槽52为矩形,定子凹槽52的深度满足关系式:
其中a为定子凹槽52的深度,R
out为定子铁芯5的外径,R
in为定子铁芯5的内径,L为定子铁芯5的轭厚,h为定子铁芯5的叠厚,k
1为系数且为0.05-0.1。
为了进一步增加定子铁芯5与冷却液的接触面积,定子凹槽52设置为矩形,使得定子凹槽52的两侧面以及一个底面均可与冷却液接触,有效提高了冷却液对定子铁芯52的冷却效果。
如图17所示,发明人通过研究发现,随着系数k
1的逐渐增加,电机的压降(即冷却液的流阻)也随之增加,电机的最大温升率减小。压降越大,要求给电机供给冷却液的油泵的扬程越高,电机温升对应电机的热性能,温升越小,电机寿命、性能越好,经过综合考虑后系数k
1取0.05-0.1,在该取值范围内电机的压降较小,电机的最大温升率较小,电机热性能好,定子凹槽52的散热效果更佳。
在一些实施例中,切边53的深度满足关系式:
如图13和图14所示,其中b为切边53的深度,R
out为定子铁芯5的外径,R
in为定子铁芯5的内径,L为定子铁芯5的轭厚,h为定子铁芯5的叠厚,k
2为系数且为0.05-0.1。
如图18所示,发明人经过研究发现,随着系数k
2的增加,电机的压降(冷却液的流阻)随之增大,电机的最大温升率逐渐减小,经综合考虑选择该系数为0.05-0.1,该取值范围内电机的压降较小,电机的最大温升的较小,电机热性能好,并且定子铁芯5的散热效果更佳,且能节省原料,降低原料成本5.3%。
在一些实施例中,定子凹槽52的深度a大于等于1.5毫米且小于等于2.5毫米。发明人发现,当定子凹槽的深度a为1mm时,电机的电磁性能降低0.67%,当定子凹槽的深度a为2mm时,电机的电磁性能降低1.5%,当定子凹槽的深度a为3mm时,电磁性能降低4.83%,因此将定子凹槽的深度a设为1.5毫米到2.5毫米之间是有利的。
在一些具体实施例中,定子凹槽52的深度a优选选为2毫米,定子凹槽52的宽度a优选为1毫米,如上所述,当定子凹槽的深度a为2mm时,电机的电磁性能降低1.5%,虽然对电磁性能具有一定的影响,但影响较小,同时冷却液与定子铁芯的接触面积也较大,可有效提高电机的冷却效率。
如图24-图26所示,在一些实施例中,定子凹槽52分为多组,多组定子凹槽52沿定子铁芯5的周向均匀间隔分布,相邻组之间的间隔对应的圆心角θ
1为1-5度。
在一些实施例中,定子凹槽52分成第一类槽组521和第二类槽组522,切边53位于第二类槽组522内,第一类槽组521和第二类槽组522沿定子铁芯5的周向交替布置,第一类槽组521与第二类槽组522间隔分布,其中第二类槽组522包括第一节5221和第二节5222,第一节5221为靠近第一类槽组521的槽,第二节5222为靠近切边53的槽,且第一节5221内的定子凹槽52数量大于第二节5222内的定子凹槽52数量。由于切边53设置在第二类槽组522内,因此,切边53的两侧各具有一个第一节5221和第二节5222,也就是说,每个第二类槽组522具有两个第一节5221和两个第二节5222,相邻的第一节5221和第二节5222之间的间隔对应的圆心角θ
32为1-5度,每一节内的定子凹槽52之间的间隔对应的圆心角θ
42为0.5-2度,每个定子凹槽52对应的圆心角θ
52为0.5-2度。
如图26所示,每个第一类型槽组221分为多队,图26中为两队,每一队包括多节,图26中为三节,相邻队之间的间隔槽对应的圆心角θ
21为1-5度,每一队内相邻节之间的间隔对应的圆心角θ
31为1-5度,每一队内的每一节内的定子凹槽52之间的间隔对应的圆心角θ
41为0.5-2度,每个定子凹槽52对应的圆心角θ
51为0.5-2度。优选地,切边53所对应的圆心角为23度。
通过如上所述对定子凹槽52进行划分,可以有效地提高冷却效果。
在一些实施例中,进液口为多个且沿电机壳体螺旋分布,发明人经研究发现,越靠近机壳进油口81,冷却效果越好。因此,通过设置多个机壳进油口81,加强了冷却液的冷却能力,提高了电机的散热效果。在另一些实施例中,多个机壳进油口81沿机壳8的轴向间隔布置,换言之,多个机壳进油口81既沿机壳8的周向间隔布置,也沿机壳8的轴向间隔布置,例如在机壳8上螺旋分布。
如图4所示,在一些实施例中,机壳8的内周壁上设有机壳凹槽82,机壳凹槽82沿电机壳体的周向延伸,机壳进油口81与机壳凹槽82连通,机壳凹槽82形成一部分冷却液流道,由此进一步提高冷却效果。
如图15和图16所示,在一些实施例中,机壳进油口81为多个且沿机壳8的周向分布,相邻机壳进油口81的中心轴线之间的夹角α小于等于180度,机壳进油口81的中心和距其最近的切边53的中心在定子铁芯5的横截面上的投影之间的圆心角β为0-5度。
可以理解的是,上述圆心角β指的是进液口的中心与定子铁芯5的圆心连线,和与进液口距离最近的切边53的中点与定子铁芯5的圆心连线,两条直线在定子铁芯5的横截面上的投影之间的夹角为0-5度。
如图19所示,曲线图的横轴为上述圆心角β的角度,纵轴为压降和电机最大温升,发明人通过研究发现,当上述圆心角β在0-5度逐渐增加时,压降和电机最大温升增大的速度较慢(两条曲线的斜率较小),当圆心角β的角度在5-10度逐渐增加时,该冷却系统的 压降和电机最大温升增大速度明显加快(两条曲线的斜率增大),对油泵扬程的要求提高,导致电机成本提高,电机热性能表现不佳,因此进液口的中心和距其最近的切边53的中心在定子铁芯5的横截面上的投影之间的圆心角设为为0-5度。
如图22所示,在一些具体实施例中,切边53的数量为四个,机壳进油口81的数量为两个,机壳进油口81的中心和距其最近的切边53的中心在定子铁芯5的横截面上的投影之间的圆心角为β,优选地,β为0度。在另一些具体实施例中,如图15所示,切边53的数量为四个,机壳进油口81的数量为四个,所述机壳进油口81的中心和距其最近的切边53的中心在定子铁芯5的横截面上的投影之间的圆心角β为0度。在一些实施例中,进液口的数量小于切边的数量,且每个进液口与一个切边相对应。
根据本申请实施例的车辆,包括电机,所述电机可以上述实施例的电机,通过提高电机的散热效率,提高了车辆的性能。所述车辆可以为纯电动汽车,也可以为其他形式的新能源汽车,当然,本申请实施例中,车辆并不限于此。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例” 等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (25)
- 一种电机,其特征在于,包括:机壳,所述机壳具有内腔,所述机壳上设有机壳进油口;定子,所述定子包括定子铁芯和定子绕组,所述定子设在所述机壳的内腔中,所述定子铁芯的外周壁与所述机壳的内周壁之间形成有冷却油道,所述冷却油道与所述机壳进油口连通;第一端盖和第二端盖,所述第二端盖上设有端盖进油孔,所述第一端盖安装在所述机壳的第一端,所述第二端盖安装在所述机壳的第二端;第一喷油环,所述第一喷油环设在所述第一端盖的内侧,所述第一喷油环的外周壁与所述机壳的内周壁之间形成有与所述冷却油道连通的喷油空间,所述第一喷油环上设有沿所述第一喷油环的周向间隔布置的多个第一喷油孔,所述第一喷油孔与所述喷油空间连通,用于从所述定子的外周朝向所述定子绕组的第一端喷射冷却油;转子,所述转子包括转子铁芯、转子磁钢和转轴,所述转子铁芯内设有转子油路,所述转轴内设有转轴油路,所述转轴上设有与所述转轴油路连通的转轴进油口和转轴出油孔,所述转轴的第一端穿过所述第一端盖延伸出所述机壳,所述转轴进油口与所述端盖进油孔连通;第一端板,所述第一端板设在所述转子铁芯的第一端且与所述转轴配合,所述第一端板与所述转子铁芯相对的内侧面上设有第一油槽,所述第一油槽分别与所述转轴出油孔和所述转子油路连通,所述第一端板的外侧面上设有将所述第一油槽与所述机壳内腔连通的第一端板出油孔;第二端板,所述第二端板设在所述转子铁芯的第二端且与所述转轴配合,所述第二端板与所述转子铁芯相对的内侧面上设有第二油槽,所述第二油槽与所述转子油路连通,所述第二端板的外侧面设有用于将所述第二油槽与所述机壳的内腔连通的第二端板出油孔。
- 根据权利要求1所述的电机,其特征在于,还包括第二喷油环,所述第二喷油环设在所述第二端盖的内侧,所述第二喷油环的外周壁与所述机壳的内周壁之间形成有与所述冷却油道连通的喷油空间,所述第二喷油环上设有沿所述第二喷油环的周向间隔布置的多个第二喷油孔,所述第二喷油孔与所述喷油空间连通,用于从所述定子的外周朝向所述定子绕组的第二端喷射冷却油。
- 根据权利要求2所述的电机,其特征在于,所述第一喷油环可拆卸地安装在所述第一端盖上或与所述第一端盖一体形成,和/或所述第二喷油环可拆卸地安装在所述第二端盖上或与所述第二端盖一体形成。
- 根据权利要求2或3所述的电机,其特征在于,所述第一喷油孔的横截面为圆形,相邻两个第一喷油孔中,位置高的第一喷油孔的横截面积大于位置低的第一喷油孔的横截面积;和/或所述第二喷油孔的横截面为圆形,相邻两个第二喷油孔中,置高的第二喷油孔的横截面积大于位置低的第二喷油孔的横截面积。
- 根据权利要求2-4中任一项所述的电机,其特征在于,所述第一喷油环分为位于该第一喷油环的中心以上的第一上环段和位于该第一喷油环的中心以下的第一下环段,所述第一上环段上的第一喷油孔的横截面积在该第一喷油环的径向上沿由外向内的方向逐渐增大,所述第一下环段上的第一喷油孔的横截面积在该第一喷油环的径向上沿由外向内的方向逐渐减小;和/或所述第二喷油环分为位于该第二喷油环的中心以上的第二上环段和位于该第二喷油环的中心以下的第二下环段,所述第二上环段上的第二喷油孔的横截面积在该第二喷油环的径向上沿由外向内的方向逐渐增大,所述第二下环段上的第二喷油孔的横截面积在该第二喷油环的径向上沿由外向内的方向逐渐减小。
- 根据权利要求1-5中任一项所述的电机,其特征在于,所述第一油槽包括第一连通槽、第一导引槽和第一出油槽,所述第一连通槽的第一端与所述转轴出油孔连通,所述第一连通槽的第二端与所述第一导引槽连通,所述第一出油槽的第一端与所述第一导引槽连通,所述第一出油槽的第二端与所述第一端板出油孔连通;所述第二油槽包括第二环形槽和第二出油槽,所述第二环形槽与所述转子油路连通,所述第二出油槽的第一端与所述第二环形槽连通,所述第二出油槽的第二端与所述第二端板出油孔连通。
- 根据权利要求6所述的电机,其特征在于,所述第一连通槽与所述第一出油槽在所述第一端板的径向上错开。
- 根据权利要求6或7所述的电机,其特征在于,所述第一连通槽为多个且沿所述第一端板的周向间隔布置,所述第一连通槽沿所述第一端板的径向延伸,所述第一出油槽为多个且沿所述第一端板的周向间隔布置,所述第一出油槽沿所述第一端板的径向延伸;所述第二出油槽为多个且沿所述第二端板的周向间隔布置,所述第二出油槽沿所述第二端板的径向延伸。
- 根据权利要求1-8中任一项所述的电机,其特征在于,所述第一端板出油孔的出口端的开口方向沿所述第一端板的径向朝向外,和/或所述第二端板出油孔的出口端的开口方向沿所述第二端板的径向朝向外。
- 根据权利要求1-9中任一项所述的电机,其特征在于,所述定子绕组的引出线从所述第二端盖一侧延伸出,所述第一端板出油孔的数量为N1且所述第一端板出油孔沿所述第一端板的周向均匀布置,所述第二端板出油孔的数量为N2且所述第二端板出油孔沿 所述第二端板的周向均匀布置,其中N1<N2。
- 根据权利要求1-10中任一项所述的电机,其特征在于,所述第一端板出油孔的数量小于所述第二端板出油孔的数量。
- 根据权利要求1-11中任一项所述的电机,其特征在于,所述第一端板出油孔的孔径小于所述第二端板出油孔的孔径。
- 根据权利要求1-12中任一项所述的电机,其特征在于,所述第一端板出油孔的出口端的开口方向和所述第二端板出油孔的出口端的开口方向均朝向所述定子绕组。
- 根据权利要求1-13中任一项所述的电机,其特征在于,所述定子铁芯的外周壁设有沿所述定子铁芯的轴向延伸的定子凹槽和/或切边,所述冷却油道由所述定子凹槽和/或所述切边形成。
- 根据权利要求14所述的电机,其特征在于,所述定子铁芯的外周壁设有至少一个定子周向凹槽,所述至少一个定子周向凹槽沿所述定子铁芯的周向延伸,以便所述定子铁芯沿其轴向分为多个非凹槽铁芯段和至少一个凹槽铁芯段,所述非凹槽铁芯段的外周壁上设有沿所述定子铁芯的轴向延伸且沿所述定子铁芯的周向间隔分布的定子凹槽和/或切边。
- 根据权利要求15所述的电机,其特征在于,所述凹槽铁芯段为一个,所述非凹槽铁芯段为两个,两个所述非凹槽铁芯的外周壁上均设有所述定子凹槽和/或所述切边。
- 根据权利要求16所述的电机,其特征在于,一个所述凹槽铁芯段位于所述定子铁芯的轴向中间位置。
- 根据权利要求17所述的电机,其特征在于,所述机壳进油口的中心轴线位于所述一个凹槽铁芯段的中心横截面内。
- 根据权利要求14-20中任一项所述的电机,其特征在于,所述定子凹槽分为多组,多组定子凹槽沿所述定子铁芯的周向均匀间隔分布,相邻组之间的间隔对应的圆心角θ 1为1-5度。
- 根据权利要求21所述的电机,其特征在于,多组定子凹槽分为第一类槽组和第二 类槽组,所述第一类槽组和所述第二类槽组沿所述定子铁芯的周向交替布置,其中所述切边位于所述第二类槽组内,每个第二类槽组分为与所述第一类槽组相邻的两个第一节和与所述切边相邻的两个第二节,所述第一节内的定子凹槽数量大于所述第二节内的定子凹槽数量,相邻的第一节和第二节之间的间隔对应的圆心角θ 32为1-5度,每一节内的定子凹槽之间的间隔对应的圆心角θ 42为0.5-2度,每个定子凹槽对应的圆心角θ 52为0.5-2度,每个第一类槽组分为多队,每一队包括多节,相邻队之间的间隔槽对应的圆心角θ 21为1-5度,每一队内相邻节之间的间隔对应的圆心角θ 31为1-5度,每一队内的每一节内的定子凹槽之间的间隔对应的圆心角θ 41为0.5-2度,每个定子凹槽对应的圆心角θ 51为0.5-2度。
- 根据权利要求14-22中任一项所述的电机,其特征在于,所述定子凹槽的深度为1.5-2.5毫米。
- 根据权利要求1-23中任一项所述的电机,其特征在于,所述机壳的内周壁上设有机壳凹槽,所述机壳凹槽沿所述机壳的周向延伸,所述机壳进油口与所述机壳凹槽连通。
- 一种车辆,其特征在于,包括电机,所述电机为根据权利要求1-24中任一项所述电机。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21853052.5A EP4131743A4 (en) | 2020-08-03 | 2021-08-02 | ENGINE AND VEHICLE |
US17/994,909 US20230116766A1 (en) | 2020-08-03 | 2022-11-28 | Motor and vehicle |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021586556.0 | 2020-08-03 | ||
CN202010768985.8A CN114069969B (zh) | 2020-08-03 | 2020-08-03 | 电机和车辆 |
CN202021586521.7U CN213243761U (zh) | 2020-08-03 | 2020-08-03 | 转子组件、电机和具有该电机的车辆 |
CN202021586557.5U CN212695852U (zh) | 2020-08-03 | 2020-08-03 | 驱动电机、具有该驱动电机的驱动系统和车辆 |
CN202021586558.XU CN213185796U (zh) | 2020-08-03 | 2020-08-03 | 用于车辆的驱动电机、驱动系统和车辆 |
CN202010768985.8 | 2020-08-03 | ||
CN202010768996.6 | 2020-08-03 | ||
CN202021586556.0U CN212909262U (zh) | 2020-08-03 | 2020-08-03 | 电机和车辆 |
CN202021586521.7 | 2020-08-03 | ||
CN202021586558.X | 2020-08-03 | ||
CN202021586504.3U CN213243760U (zh) | 2020-08-03 | 2020-08-03 | 油冷电机和车辆 |
CN202010768996.6A CN114069915B (zh) | 2020-08-03 | 2020-08-03 | 车用驱动电机和车辆 |
CN202021586557.5 | 2020-08-03 | ||
CN202010771190.2A CN114069971B (zh) | 2020-08-03 | 2020-08-03 | 驱动电机、具有该驱动电机的驱动系统和车辆 |
CN202010771190.2 | 2020-08-03 | ||
CN202021586504.3 | 2020-08-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/994,909 Continuation US20230116766A1 (en) | 2020-08-03 | 2022-11-28 | Motor and vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022028382A1 true WO2022028382A1 (zh) | 2022-02-10 |
Family
ID=80119999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/110151 WO2022028382A1 (zh) | 2020-08-03 | 2021-08-02 | 电机和车辆 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230116766A1 (zh) |
EP (1) | EP4131743A4 (zh) |
WO (1) | WO2022028382A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116388446A (zh) * | 2023-02-28 | 2023-07-04 | 华为数字能源技术有限公司 | 一种电机及动力总成 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2096409B (en) * | 1981-04-03 | 1985-04-03 | Licentia Gmbh | Oil cooled electric generator |
CN101777816A (zh) * | 2009-12-08 | 2010-07-14 | 精进电动科技(北京)有限公司 | 一种电机以及一种对电机进行油冷却的方法 |
CN204243921U (zh) * | 2014-11-20 | 2015-04-01 | 上海日立电器有限公司 | 一种压缩机用电机定子外形结构 |
CN204906112U (zh) * | 2015-08-25 | 2015-12-23 | 比亚迪股份有限公司 | 油冷电机及车辆 |
CN206878646U (zh) * | 2017-06-14 | 2018-01-12 | 华域汽车电动系统有限公司 | 一种新能源汽车驱动电机的油冷散热结构 |
CN207939351U (zh) * | 2018-03-30 | 2018-10-02 | 北京理工大学 | 一种液冷驱动电机 |
CN109327113A (zh) * | 2018-10-29 | 2019-02-12 | 深圳市泉胜新技术开发有限公司 | 一种油冷电机冷却装置 |
CN109861441A (zh) * | 2019-03-14 | 2019-06-07 | 江苏迈吉易威电动科技有限公司 | 一种具有高效油水换热冷却系统的扁平结构电机 |
CN109936241A (zh) * | 2019-03-27 | 2019-06-25 | 上海蔚来汽车有限公司 | 电机 |
CN110138145A (zh) * | 2019-06-11 | 2019-08-16 | 苏州朗高电机有限公司 | 一种水冷和油冷相结合的永磁同步电机 |
US20200204044A1 (en) * | 2017-06-19 | 2020-06-25 | Lg Electronics Inc. | Electric motor including oil spraying part |
CN210985872U (zh) * | 2019-12-24 | 2020-07-10 | 明程电机技术(深圳)有限公司 | 一种铁芯及由其构成的电机 |
CN111478521A (zh) * | 2020-05-25 | 2020-07-31 | 精进电动科技股份有限公司 | 一种混合冷却电机 |
CN212909262U (zh) * | 2020-08-03 | 2021-04-06 | 安徽威灵汽车部件有限公司 | 电机和车辆 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011188686A (ja) * | 2010-03-10 | 2011-09-22 | Toyota Motor Corp | 電動機の冷却機構 |
JP6221947B2 (ja) * | 2014-06-04 | 2017-11-01 | 株式会社デンソー | 回転電機 |
CN204156623U (zh) * | 2014-11-14 | 2015-02-11 | 广东美芝制冷设备有限公司 | 定子冲片、电机和压缩机 |
CN206211715U (zh) * | 2016-10-31 | 2017-05-31 | 比亚迪股份有限公司 | 电机和具有其的车辆 |
-
2021
- 2021-08-02 EP EP21853052.5A patent/EP4131743A4/en active Pending
- 2021-08-02 WO PCT/CN2021/110151 patent/WO2022028382A1/zh unknown
-
2022
- 2022-11-28 US US17/994,909 patent/US20230116766A1/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2096409B (en) * | 1981-04-03 | 1985-04-03 | Licentia Gmbh | Oil cooled electric generator |
CN101777816A (zh) * | 2009-12-08 | 2010-07-14 | 精进电动科技(北京)有限公司 | 一种电机以及一种对电机进行油冷却的方法 |
CN204243921U (zh) * | 2014-11-20 | 2015-04-01 | 上海日立电器有限公司 | 一种压缩机用电机定子外形结构 |
CN204906112U (zh) * | 2015-08-25 | 2015-12-23 | 比亚迪股份有限公司 | 油冷电机及车辆 |
CN206878646U (zh) * | 2017-06-14 | 2018-01-12 | 华域汽车电动系统有限公司 | 一种新能源汽车驱动电机的油冷散热结构 |
US20200204044A1 (en) * | 2017-06-19 | 2020-06-25 | Lg Electronics Inc. | Electric motor including oil spraying part |
CN207939351U (zh) * | 2018-03-30 | 2018-10-02 | 北京理工大学 | 一种液冷驱动电机 |
CN109327113A (zh) * | 2018-10-29 | 2019-02-12 | 深圳市泉胜新技术开发有限公司 | 一种油冷电机冷却装置 |
CN109861441A (zh) * | 2019-03-14 | 2019-06-07 | 江苏迈吉易威电动科技有限公司 | 一种具有高效油水换热冷却系统的扁平结构电机 |
CN109936241A (zh) * | 2019-03-27 | 2019-06-25 | 上海蔚来汽车有限公司 | 电机 |
CN110138145A (zh) * | 2019-06-11 | 2019-08-16 | 苏州朗高电机有限公司 | 一种水冷和油冷相结合的永磁同步电机 |
CN210985872U (zh) * | 2019-12-24 | 2020-07-10 | 明程电机技术(深圳)有限公司 | 一种铁芯及由其构成的电机 |
CN111478521A (zh) * | 2020-05-25 | 2020-07-31 | 精进电动科技股份有限公司 | 一种混合冷却电机 |
CN212909262U (zh) * | 2020-08-03 | 2021-04-06 | 安徽威灵汽车部件有限公司 | 电机和车辆 |
Also Published As
Publication number | Publication date |
---|---|
EP4131743A4 (en) | 2023-08-23 |
EP4131743A1 (en) | 2023-02-08 |
US20230116766A1 (en) | 2023-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN213243760U (zh) | 油冷电机和车辆 | |
CN212909262U (zh) | 电机和车辆 | |
CN108282056B (zh) | 一种车用液冷驱动电机 | |
CN109450128B (zh) | 一种电机定子和具有该电机定子的油冷电机 | |
US11611253B2 (en) | Rotor of motor and automobile | |
CN103746485A (zh) | 一种永磁同步电机的转子冷却结构 | |
WO2023056674A1 (zh) | 一种油冷电机散热结构及电机 | |
JP2013009597A (ja) | 回転電機のケース | |
CN113708525A (zh) | 电机及车辆 | |
WO2022028382A1 (zh) | 电机和车辆 | |
EP4254737A2 (en) | Oil-cooled motor | |
CN116247847A (zh) | 转子组件及电机 | |
US11973407B2 (en) | Thermal management techniques for electric motors | |
US12107485B2 (en) | Permanent magnet motor with air and water mixed cooling system | |
WO2024087682A1 (zh) | 一种高效油冷电机 | |
CN218276240U (zh) | 一种油冷电机 | |
CN219372120U (zh) | 电机 | |
CN114069915A (zh) | 车用驱动电机和车辆 | |
CN117833507A (zh) | 一种定子周向交错油路冷却电机 | |
CN216162491U (zh) | 一种油冷电机散热结构及电机 | |
CN115741222A (zh) | 一种定子冷却结构和电主轴 | |
CN213185796U (zh) | 用于车辆的驱动电机、驱动系统和车辆 | |
CN116073568A (zh) | 电机和车辆 | |
CN114069969B (zh) | 电机和车辆 | |
CN114400820A (zh) | 一种双介质混合的电机双向冷却结构及冷却方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21853052 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021853052 Country of ref document: EP Effective date: 20221026 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |