WO2022110543A1 - 一种超深立井多绳提升系统及其导向方法 - Google Patents

一种超深立井多绳提升系统及其导向方法 Download PDF

Info

Publication number
WO2022110543A1
WO2022110543A1 PCT/CN2021/074305 CN2021074305W WO2022110543A1 WO 2022110543 A1 WO2022110543 A1 WO 2022110543A1 CN 2021074305 W CN2021074305 W CN 2021074305W WO 2022110543 A1 WO2022110543 A1 WO 2022110543A1
Authority
WO
WIPO (PCT)
Prior art keywords
rope
hoisting
guide wheel
container
drum
Prior art date
Application number
PCT/CN2021/074305
Other languages
English (en)
French (fr)
Inventor
曹国华
张圆哲
朱真才
刘善增
彭玉兴
李佩瑶
刘志凯
罗刚
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to ZA2022/05449A priority Critical patent/ZA202205449B/en
Publication of WO2022110543A1 publication Critical patent/WO2022110543A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/10Arrangements of ropes or cables for equalising rope or cable tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B15/00Main component parts of mining-hoist winding devices
    • B66B15/02Rope or cable carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B15/00Main component parts of mining-hoist winding devices
    • B66B15/08Driving gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/023Mounting means therefor

Definitions

  • the invention belongs to the technical field of mine hoisting, and more particularly relates to an ultra-deep vertical shaft multi-rope hoisting system and a guiding method thereof.
  • single-rope winding hoisting system is used to be affected by the self-weight of the wire rope and the size of the hoisting drum, and the effective load is small, while the double-rope Blair type hoisting overcomes the small payload of single-rope winding hoisting.
  • the large load lifting capacity that can be achieved by 4 or 6 steel wire ropes by multi-rope friction, it is especially insufficient, and the arrangement of the drum will be difficult due to the increase of the number of wound wire ropes.
  • the existing multi-rope friction hoisting system cannot carry out large-load hoisting in ultra-deep wells due to the large fluctuation stress of the wire rope due to the self-weight of the wire rope and the container load. damage, there is a safety hazard.
  • the gear transmission tension balance device of the main shaft device is used to balance the tension of the hoisting wire rope, including the shell, the support frame fixed to the main shaft,
  • the gears are meshed with the left output bevel gear and the right output bevel gear;
  • the casing is respectively slidingly connected with the support frame, the left output bevel gear and the right output bevel gear.
  • the wire rope group of each set of main shaft devices pulls the same hoisting container, which causes a large torque difference between the main shaft devices for pulling the empty container and the heavy-load container, and the gear transmission system between the two sets of main shaft devices needs to withstand
  • an ultra-deep shaft multi-rope hoisting system comprising:
  • the upper guide wheel train is provided with several guide wheels;
  • the lower guide wheel train is arranged under the side of the upper guide wheel train, and a number of guide wheels are arranged on the lower guide wheel train;
  • the front lifting container which is located just below the upper guide wheel train;
  • the rear lifting container which is located just below the lower guide wheel train;
  • a driving unit which drives the lifting and lowering of the front lifting container and the rear lifting container;
  • the front hoisting rope which has several pieces, rides on the upper guide wheel system, one end of the front hoisting rope is connected with the top of the front hoisting container, and the other end is connected with the driving unit;
  • the rear hoisting rope which has several roots, is placed on the lower guide wheel system, one end of the rear hoisting rope is connected with the top of the rear hoisting container, and the other end is connected with the driving unit;
  • tail rope One end of the tail rope is connected with the bottom of the front lifting container, and the other end is connected with the bottom of the rear lifting container;
  • the balance head rope which has several roots, is placed on the upper guide wheel system, one end of the balance head rope is connected with the top of the front lifting container, and the other end is connected with the top of the rear lifting container.
  • the driving unit includes a front driving part and a rear driving part arranged in parallel to each other;
  • the front drive includes,
  • Drive motor one, which provides driving force
  • a main shaft which rotates under the drive of a driving motor one;
  • Roller 1 there are several, installed on the main shaft 1, and the front hoisting rope or the rear hoisting rope is wound on the 1st roller;
  • the rear drive includes,
  • the second driving motor which provides driving force
  • the second main shaft which rotates under the driving of the second driving motor
  • the second roller there are several, installed on the second main shaft, and the roller two is wound with a front hoisting rope or a rear hoisting rope;
  • the front hoisting rope wound on drum 1 or drum 2 is pulled out from the top of drum 1 or drum 2;
  • the rear hoisting rope wound on the first drum or the second drum is drawn out from the lower part of the first drum or the second drum.
  • At least one front hoisting rope and at least one rear hoisting rope are wound around the front driving part, and,
  • At least one front hoisting rope and at least one rear hoisting rope are wound on the rear driving part;
  • each guide wheel of the upper guide wheel train is installed on two parallel shafts separated from the middle;
  • Each guide wheel of the lower guide wheel train is mounted on two parallel shafts separated from the middle.
  • each front hoisting rope is symmetrically distributed on the guide wheels on the inner side of the two sub-shafts of the upper guide wheel train, and each rear hoisting rope is symmetrically distributed on the lower guide wheel On the guide wheel on the inner side of the two-section shaft of the gear train; or,
  • Each front hoisting rope is placed on the inner side of a sub-shaft of the upper guide wheel train, the front hoisting rope farthest from the central axis of the drive unit is wound on the rear drive part, and each rear hoisting rope is placed on the inner side of a sub-shaft of the lower guide wheel train, which is farthest from the drive unit.
  • the rear lift cord with the farthest central axis is wound around the rear drive part.
  • the drive unit further includes a synchronous transmission mechanism, which is a bevel gear set, one end of which is drive-connected to the first main shaft, and the other end is drive-connected to the second main shaft.
  • a synchronous transmission mechanism which is a bevel gear set, one end of which is drive-connected to the first main shaft, and the other end is drive-connected to the second main shaft.
  • the multi-rope hoisting system for an ultra-deep shaft optionally further includes a tension equalization unit, and several tension equalization units are provided on the tops of the front hoisting container and the rear hoisting container, and the front hoisting rope and the rear hoisting rope pass through the
  • the tension equalization unit is connected with the corresponding lifting container; the tension equalization unit includes:
  • the rope adjusting drum is arranged on the top of the front lifting container or the rear lifting container, and the front lifting rope or the rear lifting rope is wound on the rope adjusting drum;
  • a speed-increasing module which is coaxially connected to the rope-adjusting drum;
  • the rope adjustment wheel which is connected with the speed increasing module
  • Hydraulic cylinder the piston rod of which is connected to the pulley for transmission;
  • the hydraulic cylinders of the tension equalization units on the top of the rear lift container communicate with each other.
  • the speed increasing module is a planetary gear train, which includes a sun gear, a planetary gear, a planet carrier, and a ring gear, wherein,
  • the inner gear is drivingly connected with the rope adjusting wheel, and the sun gear is drivingly connected with the rope adjusting drum; or,
  • the ring gear is drivingly connected with the rope adjusting wheel, and the planet carrier is drivingly connected with the rope adjusting drum; or,
  • the planet carrier is drivingly connected with the rope adjusting wheel, and the sun gear is drivingly connected with the rope adjusting drum.
  • the first drum and the second drum are both axially movable drums.
  • a guiding method for a multi-rope hoisting system for an ultra-deep shaft is provided.
  • the two front hoisting ropes are symmetrically placed on the left third and left four guide wheels on the inner side of the two sections of the upper guide wheel train.
  • the two rear hoisting ropes are symmetrically placed on the left third and left four guide wheels on the inner side of the two-section sub-shaft of the lower guide wheel train, and the front hoisting rope and the rear hoisting rope are respectively wound on the drums on the left and right sides of the central axis of the drive unit.
  • the front hoisting rope and the rear hoisting rope spanning the central axis of the drive unit are respectively wound on the rear drive part; if the deflection angle of the hoisting rope is too large, the two front hoisting ropes can be placed on the left side of the inner side of a section of the upper guide wheel train. 4.
  • the ultra-deep shaft multi-rope hoisting system of the present invention is provided with a balance head rope, which greatly reduces the traction load on the drive unit, greatly prolongs the effective service life of the drive unit, and makes the ultra-deep shaft multi-rope hoisting.
  • the system can carry out higher-load lifting operations;
  • the same driving part is connected to the front hoisting rope and the rear hoisting rope. Therefore, through the driving of the two driving parts, it is finally provided to the front hoisting container and the rear hoisting container
  • the traction force can be guaranteed to be roughly the same, so that during the lifting action, the self-weight load of the front lifting container and the rear lifting container can be stably borne by the upper guide wheel train, and it reduces the traditional multi-drive drive.
  • each guide wheel of the upper guide wheel train and the lower guide wheel train is installed on two parallel shafts separated from the middle, which can improve the bearing capacity of the guide wheel train axles , and reduce the axial spacing between the guide wheels;
  • the multi-rope hoisting system of the ultra-deep shaft of the present invention provides two different hoisting rope arrangement schemes.
  • the symmetrical arrangement scheme makes the traction force provided by the drive unit to the front hoisting container and the rear hoisting container more evenly distributed, and the hoisting container is more evenly distributed.
  • the lifting process is more stable;
  • the single-sided arrangement scheme the hoisting rope is wound on the drum on the same side, can reduce the deflection angle of the hoisting rope during the working process, and greatly improve the service life of the hoisting rope;
  • the multi-rope hoisting system of the ultra-deep shaft of the present invention through the setting of the synchronous transmission mechanism, can ensure that the rotation speed of the front drive part and the rear drive part are synchronized, balance the torque output by the two, and cooperate with the hoisting rope arrangement scheme of the application, During the working process, it can ensure that the traction force provided by the multi-drive parts to the front lifting container and the rear lifting container is the same;
  • the multi-rope hoisting system of the ultra-deep shaft of the present invention is provided with a tension equalization unit on the top of the hoisting container, which can automatically adjust the tension of the multi-rope ropes on the hoisting container;
  • the torque change in the process of balancing the hydraulic pressure is converted into the rotation of the rope adjusting drum, and then the tension balance adjustment such as loosening or tensioning of the wound hoisting wire rope is performed.
  • the adjustment stroke is large and the tension balance adjustment process is timely and effective;
  • the axially movable drum 1 and drum 2 can move axially during the retracting and unwinding process of the hoisting rope, so as to obtain a smaller rope deflection angle and reduce the wear of the hoisting rope.
  • the ultra-deep shaft multi-rope hoisting system of the present invention during operation, the load of each hoisting is shared by the two driving parts, which can provide the same traction force to the two hoisting containers, and the driving unit does not bear two hoisting parts.
  • the self-weight load of the container so the service life and the maximum load that can be lifted are greatly improved; for the lifting container pulled by multiple hoisting ropes, a tension balance unit is also provided, so that the uneven tension of the multiple hoisting ropes due to various reasons is automatically generated.
  • the guide wheel train adopts a two-section sub-shaft staggered up and down layout, and the intermediate bearing overlaps up and down, which reduces the axial distance of the guide wheel and solves the arrangement caused by the large number of multi-rope winding hoisting ropes. difficult question.
  • Fig. 1 shows the schematic diagram of the multi-rope hoisting system of the ultra-deep shaft of the present invention
  • Figure 2 shows a side view of the multi-rope hoisting system for ultra-deep shafts of the present invention
  • FIG. 3 shows a top view of a hoisting rope arrangement according to Embodiment 5;
  • FIG. 4 shows a top view of another arrangement of hoisting ropes according to Embodiment 5;
  • Fig. 5 shows the top view of the multi-rope hoisting system of the ultra-deep shaft of Example 6;
  • Figure 6 shows a side view of the ultra-deep shaft multi-rope hoisting system of Embodiment 7;
  • Figure 7 shows a side view of the ultra-deep shaft multi-rope hoisting system of Embodiment 9;
  • Fig. 8 shows the top view of the multi-rope hoisting system of the ultra-deep shaft of Embodiment 9;
  • Fig. 9 shows the schematic diagram of the tension equalization unit of the present invention.
  • Figure 10 shows a schematic diagram of another structural form of the tension equalization unit of the present invention.
  • Fig. 11 shows a schematic diagram of the structure of the hydraulic cylinder and the rope adjusting pulley of the present invention
  • Figure 12 shows a schematic diagram of another structural form of the hydraulic cylinder and the rope regulating pulley of the present invention.
  • Drive unit 50, Front drive part; 500, Drive motor one; 501, Spindle one; 502, Roller one; 51, Rear drive part; 510, Drive motor two; 511, Spindle two; 512, Roller two; 52 , Synchronous transmission mechanism;
  • Tension equalizing unit 300, Rope adjustment drum; 301, Sun gear; 302, Planetary gear; 303, Planet carrier; 304, Ring gear; 305, Rope adjustment wheel; 306, Hydraulic cylinder.
  • the upper guide wheel train 1 is provided with several guide wheels;
  • the lower guide wheel train 2 is arranged under the side of the upper guide wheel train 1, and the lower guide wheel train 2 is provided with several guide wheels;
  • the front lifting container 3 is located directly below the upper guide wheel train 1;
  • the rear lift container 4 is located directly below the lower guide wheel train 2;
  • a drive unit 5 which drives the lifting and lowering of the front lifting container 3 and the rear lifting container 4;
  • the rear hoisting rope 7 which has several roots, rides on the lower guide wheel train 2, one end of the rear hoisting rope 7 is connected with the top of the rear hoisting container 4, and the other end is connected with the driving unit 5;
  • tail rope 8 One end of the tail rope 8 is connected with the bottom of the front lifting container 3, and the other end is connected with the bottom of the rear lifting container 4;
  • the balance head rope 9 which has several pieces, rides on the upper guide wheel train 1, one end of the balance head rope 9 is connected with the top of the front lifting container 3, and the other end is connected with the top of the rear lifting container 4.
  • the upper guide gear train 1 is arranged on the top of the well tower
  • the lower guide gear train 2 is arranged on the top of the well tower under the side of the upper guide gear train 1
  • the upper guide gear train 1 and the lower guide wheel are arranged on the top of the well tower.
  • the system 2 is provided with a plurality of guide wheels to guide the corresponding hoisting ropes.
  • the front hoisting rope 6 and the rear hoisting rope 7 are respectively placed on the upper guide wheel train 1 and the lower guide wheel train 2.
  • the drive unit 5 passes through the The front hoisting rope 6 or the rear hoisting rope 7 is wound or released to lift and lower the front hoisting container 3 or the rear hoisting container 4 .
  • the structural characteristics of the existing multi-rope hoisting system for ultra-deep shafts make the drive unit 5 bear the traction load of the front hoisting container 3, the rear hoisting container 4 and the hoisting rope while providing driving force, which leads to the super-deep shaft.
  • the multi-rope hoisting system is not capable of hoisting large loads, and the drive unit 5 is easily damaged. In view of this, this embodiment is improved.
  • the present embodiment is provided with a balance head rope 9, the balance head rope 9 rides on the guide wheel of the upper guide wheel train 1, connects the front lifting container 3 and the rear lifting container 4, and the balance head rope 9
  • the rope 9 bypasses the lower guide gear train 2 from between the upper guide gear train 1 and the lower guide gear train 2, so that most of the self-weight loads of the front lifting container 3 and the rear lifting container 4 are borne by the upper guide gear train 1 , so that the traction load on the drive unit 5 is greatly reduced, the effective service life of the drive unit 5 is greatly prolonged, and the ultra-deep shaft multi-rope hoisting system can carry out higher-load lifting operations.
  • the multi-rope hoisting system for ultra-deep shafts in this embodiment is further improved on the basis of Embodiment 1.
  • the drive unit 5 includes a front drive part 50 and a rear drive part 51 arranged in parallel to each other;
  • the front drive part 50 includes,
  • Drive motor one 500 which provides driving force
  • the main shaft one 501 is rotated under the driving of the driving motor one 500;
  • rollers 502 which are installed on the main shaft one 501, and the roller one 502 is wound with a front lifting rope 6 or a rear lifting rope 7;
  • the rear drive part 51 includes,
  • Driving motor two 510 which provides driving force
  • the second main shaft 511 which rotates under the driving of the second driving motor 510;
  • the second roller 512 which has several, is installed on the second main shaft 511, and the second roller 512 is wound with the front lifting rope 6 or the rear lifting rope 7;
  • the front hoisting rope 6 wound on the first drum 502 or the second drum 512 is pulled out from the top of the first drum 502 or the second drum 512;
  • the rear hoisting rope 7 wound on the first drum 502 or the second drum 512 is pulled out from the lower part of the first drum 502 or the second drum 512 .
  • two sets of driving parts are provided. As shown in Figures 3 and 4 , the front driving part 50 and the rear driving part 51 are parallel to each other and are arranged on one side of the top of the well tower. The central axes of the wheel train 1 and the lower guide wheel train 2 are all on the same straight line, and through the two sets of driving parts, a larger driving force can be provided to facilitate lifting operations with large loads.
  • the height of the upper guide gear train 1 is higher than that of the lower guide gear train 2, the front hoisting rope 6 wound on the first drum 502 or the second drum 512 is drawn out from the upper part of the corresponding drum, and the first drum 502 or the second drum 512
  • the rear hoisting rope 7 wound on the upper part is drawn out from the bottom of the corresponding drum, thereby ensuring that the part of the front hoisting rope 6 from the upper guide wheel train 1 to the driving unit 5 is always located above the rear hoisting rope 7, and the front hoisting rope 6 and the The rear hoisting rope 7 will not interfere during the working process, thereby avoiding a series of problems such as failure and fluctuating stress.
  • the outer sides of the first drum 502 and the second drum 512 are equipped with disc brakes, and the rotation of the first drum 502 and the second drum 512 can be stopped in time in response to an emergency through the disc brakes.
  • the multi-rope hoisting system for ultra-deep shafts of this embodiment is further improved on the basis of Embodiments 1 and 2.
  • the front driving part 50 is wound with at least one front hoisting rope 6 and at least one rear hoisting rope 7, and,
  • At least one front hoisting rope 6 and at least one rear hoisting rope 7 are wound around the rear driving part 51;
  • the front hoisting container 3 is pulled by two front hoisting ropes 6, the rear hoisting container 4 is pulled by two rear hoisting ropes 7, the upper guide wheel train 1 is provided with six guide wheels, and the lower guide wheel train is provided with six guide wheels. 2 is also provided with six guide wheels, two of which are used to guide the hoisting rope, and the remaining four guide wheels are used to place the balance head rope 9;
  • There are two rollers 2 512 a front lifting rope 6 connected to the front lifting container 3 is wound on a roller one 502, the other front lifting rope 6 is wound on a roller two 512, and a rear lifting rope connected to the rear lifting container 4 is wound.
  • the rope 7 is wound on the other drum one 502 , and the other rear hoisting rope 7 is wound on the other drum two 512 .
  • the front hoisting container 3 or the rear hoisting container 4 When there are more hoisting ropes on the front hoisting container 3 or the rear hoisting container 4, it can also be set according to the method of this embodiment to ensure that the same driving part is connected to both the front hoisting rope 6 and the rear hoisting rope 7, thereby , through the driving of the two driving parts, the traction force finally provided to the front lifting container 3 and the rear lifting container 4 can be guaranteed to be approximately the same, so that the self-weight load of the front lifting container 3 and the rear lifting container 4 can be stable during the lifting action. It is borne by the upper guide wheel train 1 and reduces the phenomenon that the traditional multi-drive parts provide different tractive forces for different lifting containers.
  • the multi-rope hoisting system for ultra-deep shafts in this embodiment is further improved on the basis of Embodiments 1 to 3.
  • Each guide wheel of the upper guide wheel train 1 is installed on two parallel shafts separated from the middle;
  • Each guide wheel of the lower guide wheel train 2 is installed on two parallel shafts separated from the middle.
  • both the upper guide gear train 1 and the lower guide gear train 2 are composed of two parallel sub-shafts, the guide wheels are evenly distributed on different sub-shafts, and the middle of the sub-shafts share a combined bearing seat,
  • the bearing capacity of the wheel shaft of the guide wheel train can be improved, and the axial distance between the guide wheels can be reduced.
  • the multi-rope hoisting system for ultra-deep shafts in this embodiment is further improved on the basis of Embodiments 1 to 4.
  • the front hoisting ropes 6 are symmetrically distributed on the guide wheels on the inner sides of the two sections of the upper guide wheel train 1.
  • the rear hoisting rope 7 is symmetrically distributed on the guide wheels on the inner side of the two sub-axles of the lower guide wheel train 2; or,
  • Each front hoisting rope 6 is placed on the inner side of a segment of the upper guide wheel train 1 , the front hoisting rope 6 farthest from the central axis of the drive unit 5 is wound on the rear drive part 51 , and each rear hoisting rope 7 is placed on a section of the lower guide wheel train 2 .
  • the rear hoisting rope 7 which is farthest from the central axis of the driving unit 5 is wound on the rear driving part 51 .
  • the upper guide wheel train 1 is provided with six guide wheels
  • the lower guide wheel train 2 is also provided with six guide wheels, of which two guide wheels are used to guide the hoisting rope, and the remaining four guide
  • the wheel is used to place the balance head rope 9
  • the front driving part 50 is provided with two rollers 1 502
  • the rear driving part 51 is provided with two rollers 2 512; among them, the inner side of the upper guide wheel train 1 is the inner side of the axis of the third, that is, the third guide wheel on the left.
  • another rear hoisting rope 7 is placed on the inner side of the other sub-axle, that is, the left fourth guide wheel, the rear hoisting rope 7 of the left third guide wheel is wound on the drum 1 502 on the left side of the front drive part 50, and the left fourth guide wheel
  • the rear hoisting rope 7 is wound on the roller 2 512 on the left side of the rear driving part 51; through the symmetrical arrangement of this solution, the traction force provided by the driving unit 5 to the front hoisting container 3 and the rear hoisting container 4 is more evenly distributed, and the lifting containers The lifting process is more stable.
  • the upper guide wheel train 1 is provided with six guide wheels
  • the lower guide wheel train 2 is also provided with six guide wheels, two of which are used to guide the hoisting rope, and the remaining four guide
  • the wheel is used to place the balance head rope 9
  • the front driving part 50 is provided with two rollers 1 502
  • the rear driving part 51 is provided with two rollers 2 512; among them, the inner side of the first axis of the upper guide wheel train 1 is the fourth guide wheel on the left
  • the front hoisting rope 6 of the wheel is wound on the roller 2 512 on the right side of the rear drive part 51; similarly, a rear hoisting rope 7 is placed on the inner side of the second shaft of the lower guide wheel 2, that is, the second guide wheel on the left, while the third on the left There is another rear hoisting rope 7 on the guide wheel, the rear hoisting rope 7 of the second left guide wheel is wound on the drum 2 512 on the left side of the rear driving part 51, and the rear hoisting rope 7 of the third left guide wheel is wound on the front driving part 50
  • the hoisting rope of this scheme is wound on the drum on the same side as it; the central axis of the driving unit 5 refers to the central axis of the main shaft 1 501 or the central axis of the main shaft 2 511, which is far from the central axis of the driving unit 5.
  • the hoisting rope is prone to have a large rope declination angle during the working process, which increases the stress load of the hoisting rope.
  • the declination angle of the hoisting rope during the working process can be reduced, and the service life of the hoisting rope can be greatly improved.
  • the two arrangements have their own advantages and disadvantages, and are suitable for different working conditions and environmental requirements.
  • the multi-rope hoisting system for ultra-deep shafts in this embodiment is further improved on the basis of Embodiments 1 to 5.
  • the drive unit 5 further includes a synchronous transmission mechanism 52, which is a bevel gear set, one end of which is driven by the main shaft 1 501 connected, and the other end is connected with the main shaft two 511 transmission.
  • the synchronous transmission mechanism 52 of this embodiment is a bevel gear set, which includes a large hammer gear 1 that is connected to the main shaft 1 501 and is perpendicular to the main shaft 1 501, meshes with the large bevel gear 1 and is parallel to the main shaft
  • a small bevel gear 1 of 501, a large bevel gear 2 that is connected to the main shaft 2 511 and perpendicular to the main shaft 2 511, a small bevel gear 2 that meshes with the large bevel gear 2 and is parallel to the main shaft 2 511, and the two ends are respectively connected with Small bevel gear 1 and small bevel gear 2 are fixedly connected connecting shafts, wherein the large bevel gear 1 and the large bevel gear 2 have the same shape, size and number of teeth, and the small bevel gear 1 and the small bevel gear 2 have the same shape, size and number of teeth.
  • the setting of the bevel gear set can further ensure the synchronous rotation of the main shaft 1 501 and the main shaft 2 511.
  • the bevel gear set is transmitted to the main shaft of the drive part on the low speed side to speed up its rotation speed.
  • the rotation speed of the front drive part 50 and the rear drive part 51 can be ensured to be synchronized, and the torque output by the two can be balanced.
  • it in conjunction with the hoisting rope arrangement scheme of the present application, it can be ensured that the traction force provided by the multiple driving parts to the front hoisting container 3 and the rear hoisting container 4 is the same in the working process.
  • the multi-rope hoisting system for ultra-deep shafts in this embodiment is further improved on the basis of Embodiments 1 to 6, and further includes a tension equalization unit 30, and several tension equalization units are provided on the tops of the front hoisting container 3 and the rear hoisting container 4 30, the front hoisting rope 6 and the rear hoisting rope 7 are connected to the corresponding hoisting container through the tension equalization unit 30;
  • the tension equalization unit 30 includes:
  • the rope adjusting drum 300 is arranged on the top of the front lifting container 3 or the rear lifting container 4, and the front lifting rope 6 or the rear lifting rope 7 is wound on the rope adjusting drum 300;
  • a speed-increasing module which is coaxially connected to the rope adjusting drum 300;
  • Rope adjustment wheel 305 which is connected to the speed increasing module in a drive
  • the hydraulic cylinders 306 of the tension equalization units 30 on the top of the rear lift container 4 communicate with each other.
  • a tension equalization unit 30 is provided on the tops of the front lifting container 3 and the rear lifting container 4.
  • this embodiment is provided with a tension equalizing unit 30 .
  • the tension equalization unit 30 of this embodiment is shown in FIG. 9 , the rope adjustment pulley 305 is connected to the rope adjustment drum 300 through a speed increasing module.
  • the large rotational speed of the rope adjusting drum 300 transmits the large rotational speed of the rope adjusting drum 300 to the large torque of the rope adjusting wheel 305; in this embodiment, the hydraulic cylinder 306 is fixed on the top of the lifting container.
  • connection between the rope regulating wheel 305 and the hydraulic cylinder 306 in this embodiment has two different structures.
  • each tension equalization unit 30 is provided with two hydraulic cylinders 306, both of which are piston rod type hydraulic cylinders 306, and the two hydraulic cylinders 306 are respectively arranged above and below the rope adjusting wheel 305, And the piston rods of the two are parallel to each other and face oppositely.
  • the rope adjustment wheel 305 is a gear, and each piston rod is horizontally connected with a rack, and the racks of both are meshed with the rope adjustment wheel 305. When rotating, the two racks move in opposite directions, and the piston rods at the two positions extend or contract at the same time.
  • each tension equalization unit 30 is provided with two hydraulic cylinders 306, both of which are piston rod type hydraulic cylinders 306.
  • the two hydraulic cylinders 306 are respectively arranged above and below the rope adjusting wheel 305, And the piston rods of the two are parallel to each other and face oppositely.
  • the rope adjusting wheel 305 is a rope groove wheel, on which a tensioning rope is wound. , the other end of the rope is horizontally drawn out from the bottom of the rope adjustment wheel 305 and connected to another piston rod.
  • the hydraulic cylinders 306 are connected to each other through connecting pipelines, so the pressures of all the hydraulic cylinders 306 tend to balance by themselves.
  • the rotation of the rope pulley 305 causes a large angular displacement on the rope adjusting drum 300 through the acceleration of the speed-increasing module, so as to quickly realize the rotation of the rope winding or unwinding, and finally the tension of each rope is balanced.
  • the multi-rope hoisting system for ultra-deep shafts in this embodiment is further improved on the basis of Embodiment 7.
  • the speed-increasing module is a planetary gear train, which includes a sun gear 301 , a planetary gear 302 , a planet carrier 303 and an inner gear 304, of which,
  • the inner gear 304 is in driving connection with the rope adjustment wheel 305, and the sun gear 301 is in transmission connection with the rope adjustment drum 300; or,
  • the ring gear 304 is drivingly connected with the rope adjusting wheel 305, and the planet carrier 303 is drivingly connected with the rope adjusting drum 300; or,
  • the planet carrier 303 is in driving connection with the rope adjustment wheel 305
  • the sun gear 301 is in transmission connection with the rope adjustment drum 300 .
  • This embodiment adopts the structure of the planetary gear train to realize the function of the speed-increasing module.
  • the components of the planetary gear train in this embodiment have three connection forms:
  • the inner gear 304 meshes with the planetary gear 302 internally, the planetary gear 302 meshes with the sun gear 301 externally, the planetary gear 302 is connected with the planet carrier 303 through the bearing, the planet carrier 303 is fixedly connected with the rope adjusting drum 300, and the sun gear 301 is locked If the sun gear 301 is locked, the power is input from the ring gear 304, and the planet carrier 303 will output power, otherwise, the power will be output from the planet When the frame 303 is input, the ring gear 304 will output power;
  • the inner gear 304 meshes with the planetary gear 302 internally, the planetary gear 302 meshes with the sun gear 301 externally, the planetary gear 302 is connected with the planet carrier 303 through the bearing, the planet carrier 303 is fixedly connected with the rope adjusting wheel 305, and the inner gear 304 Locked, the sun gear 301 is fixedly connected with the rope adjusting drum 300; according to the transmission characteristics of the planetary gear train, when the inner gear 304 is locked, when the power is input from the inner planet carrier 303, the sun gear 301 will output power, otherwise, the power will be output from When the sun gear 301 is input, the planet carrier 303 will output power;
  • the inner gear 304 meshes with the planetary gear 302 internally, the planetary gear 302 meshes with the sun gear 301 externally, the planetary gear 302 is connected with the planet carrier 303 through the bearing, the inner gear 304 is fixedly connected with the rope adjusting wheel 305, and the planet carrier 303 Locked, the sun gear 301 is fixedly connected with the rope adjusting drum 300; according to the transmission characteristics of the planetary gear train, when the planet carrier 303 is locked, when the power is input from the ring gear 304, the sun gear 301 will output power, otherwise, the power will be output from the sun When the wheel 301 is input, the ring gear 304 outputs power.
  • the planetary gear train speed increasing module of this embodiment can be placed outside the rope adjusting drum 300, as shown in FIG. 9, or can be placed inside the rope adjusting drum 300, as shown in FIG. 10 shown.
  • each hoisting container has four hoisting ropes for traction
  • the upper guide gear train 1 and the lower guide gear train 2 are provided with eight guide wheels
  • the front driving part 50 and the rear driving part 51 are each provided with four rollers.
  • the front lifting rope 6 is wound on the roller two 512 of the rear driving
  • the hoisting ropes 7 are all wound on the drum 1 502 of the front driving part 50, and cooperate with the four balancing head ropes 9, the synchronous transmission mechanism 52 and the tension equalizing unit 30, which can also realize the hoisting of large loads, and is stable and safe.
  • the ultra-deep shaft multi-rope hoisting system of this embodiment is further improved on the basis of Embodiments 1 to 9.
  • the first roller 502 and the second roller 512 are both axially movable rollers.
  • the drums of this embodiment are all connected with the corresponding main shaft through the sliding spline, and can move axially during the retraction and release process of the hoisting rope, so as to obtain a smaller rope deflection angle and reduce the wear of the hoisting rope.
  • Each section of the sub-shaft of the lower guide wheel train 2 is provided with three guide wheels, and the two front hoisting ropes 6 are symmetrically placed on the left third and left four guide wheels on the inner side of the two sections of the sub-shaft of the upper guide wheel train 1,
  • the two rear hoisting ropes 7 are symmetrically placed on the left third and left four guide wheels on the inner side of the two sections of the lower guide wheel train 2, and the front hoisting rope 6 and the rear hoisting rope 7 are wound on the left and right sides of the central axis of the drive unit 5 respectively.
  • the front hoisting rope 6 and the rear hoisting rope 7 spanning the central axis of the driving unit 5 are wound on the rear driving part 51 respectively, as shown in FIG. 3 ;
  • the two front hoisting ropes 6 can be placed on the fourth and left guide wheels on the inner side of a segment of the upper guide wheel train 1, and the two rear hoisting ropes 7 can be placed on the guide wheels symmetrically.
  • the front lifting rope 6 and the rear lifting rope 7 are respectively wound on the drums on the left and right sides of the central axis of the driving unit 5, and the one farthest from the central axis of the driving unit 5.
  • the front hoisting rope 6 and the rear hoisting rope 7 are respectively wound on the rear driving part 51, as shown in Figure 4; to move.

Landscapes

  • Carriers, Traveling Bodies, And Overhead Traveling Cranes (AREA)

Abstract

一种超深立井多绳提升系统及其导向方法,属于矿井提升技术领域。包括上导向轮系(1);下导向轮系(2);前提升容器(3);后提升容器(4);驱动单元(5);前提升绳(6),搭在上导向轮系(1)上,一端与前提升容器(3)顶部连接,另一端与驱动单元(5)连接;后提升绳(7),搭在下导向轮系(2)上,一端与后提升容器(4)顶部连接,另一端与驱动单元(5)连接;尾绳(8),一端与前提升容器(3)底部连接,另一端与后提升容器(4)底部连接;还包括平衡首绳(9),有若干根,搭在上导向轮系(1)上,平衡首绳(9)一端与前提升容器(3)顶部连接,另一端与后提升容器(4)顶部连接。该提升系统设置有平衡首绳(9),使得驱动单元(5)受到的牵引负荷大大减少,极大的延长了驱动单元(5)的有效使用寿命,且使超深立井多绳提升系统能进行更大载重的升降作业。

Description

一种超深立井多绳提升系统及其导向方法 技术领域
本发明属于矿井提升技术领域,更具体地说,涉及一种超深立井多绳提升系统及其导向方法。
背景技术
目前,对于超过1800m的深井提升,单绳缠绕式提升系统用于受到钢丝绳自重和提升滚筒尺寸的影响,有效载荷较小,而双绳布莱尔式提升虽然克服了单绳缠绕提升时有效载荷小的缺点,但相比于多绳摩擦可以通过4或6根钢丝绳实现的大载荷提升能力,还尤为不足,且由于缠绕钢丝绳根数增多会使滚筒的布置困难。
现有的多绳摩擦提升由于钢丝绳的自重、容器载重导致钢丝绳波动应力大,无法在超深井中进行大载重的提升,且现有的多绳提升系统通常提升滚筒受到的牵引负荷较大,易损坏,存在安全隐患。
经检索,中国专利公开号:CN 106829690 A;公开日:2017年6月13日;公开了一种新型齿轮张力平衡多绳缠绕式矿井提升机,包括,两个主轴装置将该两个主轴装置连接起来的齿轮传动系统,一号主轴装置通过齿轮传动系统与二号主轴装置连接;采用主轴装置齿轮传动式张力平衡装置使提升钢丝绳张力达到平衡,包括壳体、与主轴固接的支撑架、与主轴滑动连接的左输出锥齿轮、与主轴滑动连接的右输出锥齿轮、与支撑架滑动连接的上平衡锥齿轮、与支撑架滑动连接的下平衡锥齿轮;上平衡锥齿轮及下平衡锥齿轮均与所述左输出锥齿轮和右输出锥齿轮啮合;壳体分别与支撑架、左输出锥齿轮及右输出锥齿轮滑动连接。该申请案中,其每套主轴装置的钢丝绳组牵引同一提升容器,这使得牵引空载容器与重载容器的主轴装置存在较大转矩差,其两套主轴装置间的齿轮传动系统需要承受较大载荷,且所需齿轮尺寸较大,产生较大惯性力矩。
发明内容
为了解决上述技术问题至少之一,根据本发明的一方面,提供了一种超深立井多绳提升系统,该装置包括:
上导向轮系,其上设有若干导向轮;
下导向轮系,其设于上导向轮系侧下方,下导向轮系上设有若干导向轮;
前提升容器,其设于上导向轮系正下方;
后提升容器,其设于下导向轮系正下方;
驱动单元,其驱动前提升容器及后提升容器的升降;
前提升绳,其有若干根,搭在上导向轮系上,前提升绳一端与前提升容器顶部连接,另一端与驱动单元连接;
后提升绳,其有若干根,搭在下导向轮系上,后提升绳一端与后提升容器顶部连接,另一端与驱动单元连接;
尾绳,其一端与前提升容器底部连接,另一端与后提升容器底部连接;
还包括:
平衡首绳,其有若干根,搭在上导向轮系上,平衡首绳一端与前提升容器顶部连接,另一端与后提升容器顶部连接。
根据本发明实施例的超深立井多绳提升系统,可选地,所述驱动单元包括相互平行设置的前驱动部和后驱动部;
所述前驱动部包括,
驱动电机一,其提供驱动力;
主轴一,其在驱动电机一的驱动下转动;
滚筒一,其有若干个,安装在主轴一上,滚筒一上缠绕有前提升绳或后提升绳;
所述后驱动部包括,
驱动电机二,其提供驱动力;
主轴二,其在驱动电机二的驱动下转动;
滚筒二,其有若干个,安装在主轴二上,滚筒二上缠绕有前提升绳或后提升绳;
缠绕于滚筒一或滚筒二上的前提升绳从滚筒一或滚筒二的上方出绳;
缠绕于滚筒一或滚筒二上的后提升绳从滚筒一或滚筒二的下方出绳。
根据本发明实施例的超深立井多绳提升系统,可选地,所述前驱动部上缠绕有至少一根前提升绳与至少一根后提升绳,且,
所述后驱动部上缠绕有至少一根前提升绳与至少一根后提升绳;
缠绕于相同驱动部的前提升绳与后提升绳的绕向相反。
根据本发明实施例的超深立井多绳提升系统,可选地,所述上导向轮系的各导向轮安装在从中间分开的两段平行分轴上;
所述下导向轮系的各导向轮安装在从中间分开的两段平行分轴上。
根据本发明实施例的超深立井多绳提升系统,可选地,各前提升绳对称式分布在上导向轮系两段分轴内侧的导向轮上,各后提升绳对称式分布在在下导向轮系两段分轴内侧的 导向轮上;或,
各前提升绳搭在上导向轮系一段分轴内侧,距离驱动单元中轴线最远的前提升绳缠绕于后驱动部上,各后提升绳搭在下导向轮系一段分轴内侧,距离驱动单元中轴线最远的后提升绳缠绕于后驱动部上。
根据本发明实施例的超深立井多绳提升系统,可选地,所述驱动单元还包括同步传动机构,其为锥齿轮组,其一端与主轴一传动连接,另一端与主轴二传动连接。
根据本发明实施例的超深立井多绳提升系统,可选地,还包括张力均衡单元,前提升容器和后提升容器的顶部均设有若干张力均衡单元,前提升绳和后提升绳均通过张力均衡单元和对应的提升容器连接;张力均衡单元包括:
调绳滚筒,其设于前提升容器或后提升容器顶部,前提升绳或后提升绳缠绕于调绳滚筒上;
增速模块,其与调绳滚筒同轴传动连接;
调绳轮,其与增速模块传动连接;
液压缸,其活塞杆与调绳轮传动连接;
前提升容器顶部的各张力均衡单元的液压缸相互连通;
后提升容器顶部的各张力均衡单元的液压缸相互连通。
根据本发明实施例的超深立井多绳提升系统,可选地,所述增速模块为行星轮系,其包括太阳轮、行星齿轮、行星架和内齿圈,其中,
内齿圈与调绳轮传动连接,且太阳轮与调绳滚筒传动连接;或,
内齿圈与调绳轮传动连接,且行星架与调绳滚筒传动连接;或,
行星架与调绳轮传动连接,且太阳轮与调绳滚筒传动连接。
根据本发明实施例的超深立井多绳提升系统,可选地,滚筒一和滚筒二均为轴向移动式滚筒。
根据本发明另一方面,提供了一种超深立井多绳提升系统的导向方法,前提升绳有两根,上导向轮系的每段分轴上均设有三个导向轮,后提升提绳有两根,下导向轮系的每段分轴上均设有三个导向轮,将两根前提升绳对称地搭在上导向轮系的两段分轴内侧的左三、左四导向轮上,两根后提升绳对称地搭在下导向轮系的两段分轴内侧的左三、左四导向轮上,前提升绳和后提升绳分别缠绕在驱动单元中轴线左右两侧的滚筒上,且跨越驱动单元中轴线的前提升绳和后提升绳分别缠绕于后驱动部上;若提升绳偏角过大,可将两根前提升绳搭在上导向轮系的一段分轴内侧的左四、左五导向轮上,两根后提升绳对称地搭下导向轮系的一段分轴内侧的左二、左三导向轮上,前提升绳和后提升绳分别缠绕在驱动单元中轴线左右两 侧的滚筒上,距离驱动单元中轴线最远的前提升绳和后提升绳分别缠绕于后驱动部上;或者,将滚筒一和滚筒二通过滑移花键与对应的主轴传动连接,使之能轴向移动。
有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的超深立井多绳提升系统,设置有平衡首绳,使得驱动单元受到的牵引负荷大大减少,极大的延长了驱动单元的有效使用寿命,且使超深立井多绳提升系统能进行更大载重的升降作业;
(2)本发明的超深立井多绳提升系统,前提升绳与后提升绳在工作过程中不会产生干涉,由此可避免引起故障、波动应力等一系列问题;
(3)本发明的超深立井多绳提升系统,同一驱动部与前提升绳及后提升绳均有连接,由此,通过两个驱动部的驱动,最终提供到前提升容器与后提升容器的牵引力能保证大致相同,由此在进行升降动作时,前提升容器及后提升容器的自重载荷能稳定由上导向轮系所承受,且,减少了传统的多驱动部驱动时对不同提升容器提供牵引力大小不同的现象发生;
(4)本发明的超深立井多绳提升系统,上导向轮系和下导向轮系的各导向轮均安装在从中间分开的两段平行分轴上,可以提高导向轮系轮轴的承载能力,且减小导向轮间的轴向间距;
(5)本发明的超深立井多绳提升系统,提供了两种不同的提升绳布置方案,对称式的布置方案,驱动单元对前提升容器及后提升容器提供的牵引力分布更均匀,提升容器升降过程更稳定;单侧式的布置方案,提升绳缠绕于与其同侧的滚筒上,可以减小提升绳工作过程中的偏角,大大提高提升绳的使用寿命;
(6)本发明的超深立井多绳提升系统,通过同步传动机构的设置,可以确保前驱动部与后驱动部转速同步,平衡二者输出的转矩,配合本申请的提升绳布置方案,在工作过程中能确保多驱动部对前提升容器及后提升容器提供的牵引力大小相同;
(7)本发明的超深立井多绳提升系统,在提升容器顶部设置了张力均衡单元,能对提升容器上多提升绳进行张力自动均衡调节;利用连通液压缸会自动平衡液压的机理,将其在平衡液压过程中的扭矩变化转化为调绳滚筒的转动,进而对缠绕的提升钢丝绳进行放松或张紧等张力平衡调节,调节行程量大且张力均衡调节过程及时有效;
(8)本发明的超深立井多绳提升系统,轴向移动式的滚筒一和滚筒二,在提升绳收放过程中能轴向移动,获得较小的绳偏角,减少提升绳的磨损;
(9)本发明的超深立井多绳提升系统,在工作时,每次提升的载荷由两个驱动部共同分摊,能对两个提升容器提供相同的牵引力,且驱动单元不承受两个提升容器的自重载荷,因此使 用寿命、可提升的最大载荷均大大提升;对于多根提升绳牵引的提升容器,还设置有张力平衡单元,使多根提升绳因各种原因产生的张力不均自动平衡,延长提升绳的寿命;导向轮系采用两段分轴上下交错布局,中间轴承上下交叠,减小了导向轮的轴向距离,解决了多绳缠绕式提升绳数目较多造成的布置困难问题。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1示出了本发明的超深立井多绳提升系统示意图;
图2示出了本发明的超深立井多绳提升系统侧视图;
图3示出了实施例5的一种提升绳布置方式俯视图;
图4示出了实施例5的另一种提升绳布置方式俯视图;
图5示出了实施例6的超深立井多绳提升系统俯视图;
图6示出了实施例7的超深立井多绳提升系统侧视图;
图7示出了实施例9的超深立井多绳提升系统侧视图;
图8示出了实施例9的超深立井多绳提升系统俯视图;
图9示出了本发明的张力均衡单元示意图;
图10示出了本发明的张力均衡单元另一结构形式示意图;
图11示出了本发明的液压缸与调绳轮结构形式示意图;
图12示出了本发明的液压缸与调绳轮另一种结构形式示意图;
附图标记:
1、上导向轮系;
2、下导向轮系;
3、前提升容器;
4、后提升容器;
5、驱动单元;50、前驱动部;500、驱动电机一;501、主轴一;502、滚筒一;51、后驱动部;510、驱动电机二;511、主轴二;512、滚筒二;52、同步传动机构;
6、前提升绳;
7、后提升绳;
8、尾绳;
9、平衡首绳;
30、张力均衡单元;300、调绳滚筒;301、太阳轮;302、行星齿轮;303、行星架;304、内齿圈;305、调绳轮;306、液压缸。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“一”、“二”、“一端”、“另一端”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。
实施例1
本实施例的超深立井多绳提升系统,包括,
上导向轮系1,其上设有若干导向轮;
下导向轮系2,其设于上导向轮系1侧下方,下导向轮系2上设有若干导向轮;
前提升容器3,其设于上导向轮系1正下方;
后提升容器4,其设于下导向轮系2正下方;
驱动单元5,其驱动前提升容器3及后提升容器4的升降;
前提升绳6,其有若干根,搭在上导向轮系1上,前提升绳6一端与前提升容器3顶部连接,另一端与驱动单元5连接;
后提升绳7,其有若干根,搭在下导向轮系2上,后提升绳7一端与后提升容器4顶部连接,另一端与驱动单元5连接;
尾绳8,其一端与前提升容器3底部连接,另一端与后提升容器4底部连接;
还包括:
平衡首绳9,其有若干根,搭在上导向轮系1上,平衡首绳9一端与前提升容器3顶部连接,另一端与后提升容器4顶部连接。
现有的超深立井多绳提升系统,上导向轮系1设置在井塔顶部,下导向轮系2设置在上导向轮系1侧下方的井塔顶部,上导向轮系1和下导向轮系2上均设有多个导向轮,用以对对应的提升绳进行导向,前提升绳6和后提升绳7分别搭在上导向轮系1和下导向轮系2上,驱动单元5通过卷绕或释放前提升绳6或后提升绳7来对前提升容器3或后提升容器 4进行升降。
现有的超深立井多绳提升系统的结构特点,使得驱动单元5在提供驱动力的同时,还要承受前提升容器3、后提升容器4、提升绳的牵引负荷,这就导致超深立井多绳提升系统无法胜任大载重的提升,且驱动单元5易损坏,针对此,本实施例进行改进。
如图1和图2所示,本实施例设置有平衡首绳9,平衡首绳9搭在上导向轮系1的导向轮上,将前提升容器3和后提升容器4连接,且平衡首绳9从上导向轮系1和下导向轮系2之间绕过下导向轮系2,由此,使得前提升容器3和后提升容器4自重的载荷大多数被上导向轮系1所承受,使得驱动单元5受到的牵引负荷大大减少,极大的延长了驱动单元5的有效使用寿命,且使得超深立井多绳提升系统能进行更大载重的升降作业。
实施例2
本实施例的超深立井多绳提升系统,在实施例1的基础上做进一步改进,所述驱动单元5包括相互平行设置的前驱动部50和后驱动部51;
所述前驱动部50包括,
驱动电机一500,其提供驱动力;
主轴一501,其在驱动电机一500的驱动下转动;
滚筒一502,其有若干个,安装在主轴一501上,滚筒一502上缠绕有前提升绳6或后提升绳7;
所述后驱动部51包括,
驱动电机二510,其提供驱动力;
主轴二511,其在驱动电机二510的驱动下转动;
滚筒二512,其有若干个,安装在主轴二511上,滚筒二512上缠绕有前提升绳6或后提升绳7;
缠绕于滚筒一502或滚筒二512上的前提升绳6从滚筒一502或滚筒二512的上方出绳;
缠绕于滚筒一502或滚筒二512上的后提升绳7从滚筒一502或滚筒二512的下方出绳。
本实施例设置了两组驱动部,如图3和图4所示,前驱动部50和后驱动部51相互平行,设置在井塔顶部一侧,且主轴一501、主轴二511、上导向轮系1、下导向轮系2的中轴线均在同一直线上,通过两组驱动部,可以提供更大的驱动力,以便于进行大载重的升降操作。
进一步地,上导向轮系1布置的高度要高于下导向轮系2,滚筒一502或滚筒二512上缠绕的前提升绳6从对应滚筒的上方出绳,且滚筒一502或滚筒二512上缠绕的后提升绳 7从对应滚筒的下方出绳,由此可保证上导向轮系1到驱动单元5件的这部分前提升绳6始终位于后提升绳7的上方,前提升绳6与后提升绳7在工作过程中不会产生干涉,由此可避免引起故障、波动应力等一系列问题。
滚筒一502及滚筒二512的外侧均安装有盘式制动器,通过盘式制动器,应对紧急情况及时停止滚筒一502及滚筒二512的转动。
实施例3
本实施例的超深立井多绳提升系统,在实施例1和2的基础上做进一步改进,所述前驱动部50上缠绕有至少一根前提升绳6与至少一根后提升绳7,且,
所述后驱动部51上缠绕有至少一根前提升绳6与至少一根后提升绳7;
缠绕于相同驱动部的前提升绳6与后提升绳7的绕向相反。
本实施例的前提升绳6与后提升绳7的缠绕方式如图3、图4和图6所示,在同一驱动部的不同滚筒上,缠绕有不同的提升绳。
具体地说,本实施例前提升容器3由两根前提升绳6牵引,后提升容器4由两根后提升绳7牵引,上导向轮系1上设置有六个导向轮,下导向轮系2上也设置六个导向轮,其中两个导向轮用于导向提升绳,剩余四个导向轮用于放置平衡首绳9;前驱动部50设有两个滚筒一502,后驱动部51也设有两个滚筒二512,连接前提升容器3的一个前提升绳6缠绕在一个滚筒一502上,另一个前提升绳6缠绕在一个滚筒二512上,连接后提升容器4的一个后提升绳7缠绕在另一个滚筒一502上,另一个后提升绳7缠绕在另一个滚筒二512上。
当前提升容器3或后提升容器4上存在更多数目的提升绳时,也可按照本实施例的方式设定,保证同一驱动部与前提升绳6及后提升绳7均有连接,由此,通过两个驱动部的驱动,最终提供到前提升容器3与后提升容器4的牵引力能保证大致相同,由此在进行升降动作时,前提升容器3及后提升容器4的自重载荷能稳定由上导向轮系1所承受,且,减少了传统的多驱动部驱动时对不同提升容器提供牵引力大小不同的现象发生。
实施例4
本实施例的超深立井多绳提升系统,在实施例1~3的基础上做进一步改进,所述上导向轮系1的各导向轮安装在从中间分开的两段平行分轴上;
所述下导向轮系2的各导向轮安装在从中间分开的两段平行分轴上。
如图3和图4所示,上导向轮系1和下导向轮系2均由两段平行分轴组成,导向轮均匀分布在不同的分轴上,分轴的中间共用一组合轴承座,通过本实施例的设置,可以提高导向轮系轮轴的承载能力,且减小导向轮间的轴向间距。
实施例5
本实施例的超深立井多绳提升系统,在实施例1~4的基础上做进一步改进,各前提升绳6对称式分布在上导向轮系1两段分轴内侧的导向轮上,各后提升绳7对称式分布在在下导向轮系2两段分轴内侧的导向轮上;或,
各前提升绳6搭在上导向轮系1一段分轴内侧,距离驱动单元5中轴线最远的前提升绳6缠绕于后驱动部51上,各后提升绳7搭在下导向轮系2一段分轴内侧,距离驱动单元5中轴线最远的后提升绳7缠绕于后驱动部51上。
如图3和图4所示,对应了本实施例的两种不同的提升绳布置方案。
方案一、如图3所示,上导向轮系1上设置有六个导向轮,下导向轮系2上也设置六个导向轮,其中两个导向轮用于导向提升绳,剩余四个导向轮用于放置平衡首绳9,前驱动部50设有两个滚筒一502,后驱动部51设有两个滚筒二512;其中,上导向轮系1一分轴内侧即左三的导向轮上搭有一前提升绳6,另一分轴内侧即左四的导向轮上搭有另一前提升绳6,左三导向轮的前提升绳6缠绕于后驱动部51右侧的滚筒二512上,左四导向轮的前提升绳6缠绕于前驱动部50右侧的滚筒一502上;同理,下导向轮系2一分轴内侧即左三的导向轮上搭有一后提升绳7,另一分轴内侧即左四的导向轮上搭有另一后提升绳7,左三导向轮的后提升绳7缠绕于前驱动部50左侧的滚筒一502上,左四导向轮的后提升绳7缠绕于后驱动部51左侧的滚筒二512上;通过本方案的对称式的布置方式,驱动单元5对前提升容器3及后提升容器4提供的牵引力分布更均匀,提升容器升降过程更稳定。
方案二、如图4所示,上导向轮系1上设置有六个导向轮,下导向轮系2上也设置六个导向轮,其中两个导向轮用于导向提升绳,剩余四个导向轮用于放置平衡首绳9,前驱动部50设有两个滚筒一502,后驱动部51设有两个滚筒二512;其中,上导向轮系1一分轴内侧即左四的导向轮上搭有一前提升绳6,同时左五的导向轮上搭有另一前提升绳6,左四导向轮的前提升绳6缠绕于前驱动部50右侧的滚筒一502上,左五导向轮的前提升绳6缠绕于后驱动部51右侧的滚筒二512上;同理,下导向轮系2一分轴内侧即左二的导向轮上搭有一后提升绳7,同时左三的导向轮上搭有另一后提升绳7,左二导向轮的后提升绳7缠绕于后驱动部51左侧的滚筒二512上,左三导向轮的后提升绳7缠绕于前驱动部50左侧的滚筒一502上;本方案的提升绳缠绕于与其同侧的滚筒上;驱动单元5的中轴线指主轴一501的中轴线或主轴二511的中轴线,距离驱动单元5中轴线远的提升绳在工作过程中易产生较大绳偏角,加重提升绳应力负荷,通过本方案的布置方式,可以减小提升绳工作过程中的偏角,大大提高提升绳的使用寿命。
两种布置方式各有利弊,适用于不同的工况环境需求。
实施例6
本实施例的超深立井多绳提升系统,在实施例1~5的基础上做进一步改进,所述驱动单元5还包括同步传动机构52,其为锥齿轮组,其一端与主轴一501传动连接,另一端与主轴二511传动连接。
如图5所示,本实施例的同步传动机构52为锥齿轮组,其包括传动连接在主轴一501上并与主轴一501垂直的大锤齿轮一,与大锥齿轮一啮合并平行于主轴一501的小锥齿轮一,传动连接在主轴二511上并与主轴二511垂直的大锥齿轮二,与大锥齿轮二啮合并平行于主轴二511的小锥齿轮二,以及两端分别与小锥齿轮一和小锥齿轮二固定连接的连接轴,其中大锥齿轮一与大锥齿轮二形状、大小、齿数相同,小锥齿轮一和小锥齿轮二形状、大小、齿数相同。
通过锥齿轮组的设置,能进一步保证主轴一501和主轴二511同步转动,当前驱动部50或后驱动部51的转速出现偏差时,由转速快一侧的大锥齿轮输出部分转矩,通过锥齿轮组,传递到低速侧的驱动部的主轴,使其转速加快,通过本实施例的同步传动机构52,可以确保前驱动部50与后驱动部51转速同步,平衡二者输出的转矩,配合本申请的提升绳布置方案,在工作过程中能确保多驱动部对前提升容器3及后提升容器4提供的牵引力大小相同。
实施例7
本实施例的超深立井多绳提升系统,在实施例1~6的基础上做进一步改进,还包括张力均衡单元30,前提升容器3和后提升容器4的顶部均设有若干张力均衡单元30,前提升绳6和后提升绳7均通过张力均衡单元30和对应的提升容器连接;张力均衡单元30包括:
调绳滚筒300,其设于前提升容器3或后提升容器4顶部,前提升绳6或后提升绳7缠绕于调绳滚筒300上;
增速模块,其与调绳滚筒300同轴传动连接;
调绳轮305,其与增速模块传动连接;
液压缸306,其活塞杆与调绳轮305传动连接;
前提升容器3顶部的各张力均衡单元30的液压缸306相互连通;
后提升容器4顶部的各张力均衡单元30的液压缸306相互连通。
如图6所示,本实施例在前提升容器3及后提升容器4的顶部均设置有张力均衡单元30,对于多绳提升的结构,为避免各提升绳的张力不均衡出现断绳等现象,本实施例设 置有括张力均衡单元30。
本实施例的张力均衡单元30如图9所示,调绳轮305与调绳滚筒300通过增速模块传动连接,增速模块的作用是将调绳轮305输出的大转矩小转速传动为调绳滚筒300的大转速,将调绳滚筒300的大转速传递为调绳轮305的大转矩;本实施例中,液压缸306固定在提升容器顶部。
本实施例的调绳轮305与液压缸306的连接有两种不同的结构。
结构一、如图11所示,每个张力均衡单元30设有两处液压缸306,且均为活塞杆式液压缸306,两处液压缸306分别布置在调绳轮305的上方和下方,且两者活塞杆相互平行且朝向相反,进一步地,调绳轮305为齿轮,每个活塞杆上均水平连接有齿条,两者的齿条均与调绳轮305啮合,调绳轮305转动时,两处齿条反向运动,两处的活塞杆同时实现伸长或收缩。
结构二、如图12所示,每个张力均衡单元30设有两处液压缸306,且均为活塞杆式液压缸306,两处液压缸306分别布置在调绳轮305的上方和下方,且两者活塞杆相互平行且朝向相反,进一步地,调绳轮305为绳槽轮,其上缠绕有张紧绳,张紧绳的一端从调绳轮305上方水平出绳并连接一活塞杆,另一端从调绳轮305下方水平出绳并连接另一活塞杆,调绳轮305转动时,调绳轮305转动时,张紧绳的两端反向运动,两处的活塞杆同时实现伸长或收缩。
进一步地,本实施例中各液压缸306之间均通过连接管路相互连通,因此,所有的液压缸306的压强均会自行趋于平衡。
在提升绳对提升容器进行牵引时,若出现有提升绳间张力不平衡的情况时,提升绳通过调绳滚筒300通过增速模块传递给调绳轮305的转矩也不同,在调绳轮305上形成了不平衡力矩,因此对应各液压缸306中液压压强变化不同,在连通状态下,各液压缸306中的液压压强会趋于平衡,因此在液压相互平衡时,活塞杆移动带动调绳轮305转动,通过增速模块的加速作用,使调绳滚筒300上产生较大的角位移,从而快速实现缠绕或放绳转动,最终各绳张力平衡。
实施例8
本实施例的超深立井多绳提升系统,在实施例7的基础上做进一步改进,所述增速模块为行星轮系,其包括太阳轮301、行星齿轮302、行星架303和内齿圈304,其中,
内齿圈304与调绳轮305传动连接,且太阳轮301与调绳滚筒300传动连接;或,
内齿圈304与调绳轮305传动连接,且行星架303与调绳滚筒300传动连接;或,
行星架303与调绳轮305传动连接,且太阳轮301与调绳滚筒300传动连接。
本实施例采用行星轮系的结构实现增速模块的功能,如图9和图10所示,利用行星轮系传动原理,本实施例的行星轮系的各构件有三种连接形式:
一、内齿圈304与行星齿轮302内啮合,行星齿轮302与太阳轮301外啮合,行星齿轮302通过轴承与行星架303进行连接,行星架303与调绳滚筒300固定连接,太阳轮301锁死,内齿圈304与调绳轮305固定连接;根据行星轮系的传动特点,太阳轮301锁死时,动力从内齿圈304输入时,行星架303会输出动力,反之,动力从行星架303输入时,内齿圈304会输出动力;
二、内齿圈304与行星齿轮302内啮合,行星齿轮302与太阳轮301外啮合,行星齿轮302通过轴承与行星架303进行连接,行星架303与调绳轮305固定连接,内齿圈304锁死,太阳轮301与调绳滚筒300固定连接;根据行星轮系的传动特点,内齿圈304锁死时,动力从内行星架303输入时,太阳轮301会输出动力,反之,动力从太阳轮301输入时,行星架303会输出动力;
三、内齿圈304与行星齿轮302内啮合,行星齿轮302与太阳轮301外啮合,行星齿轮302通过轴承与行星架303进行连接,内齿圈304与调绳轮305固定连接,行星架303锁死,太阳轮301与调绳滚筒300固定连接;根据行星轮系的传动特点,行星架303锁死时,动力从内齿圈304输入时,太阳轮301会输出动力,反之,动力从太阳轮301输入时,内齿圈304会输出动力。
进一步地,根据提升容器顶部安装空间的不同,本实施例的行星轮系增速模块可以置于调绳滚筒300外侧,如图9所示,也可置于调绳滚筒300内侧,如图10所示。
实施例9
本实施例提供了一种不同于实施例3的提升绳的连接方式,如图7和图8所示,每个提升容器均有四根提升绳牵引,上导向轮系1和下导向轮系2上均设有八个导向轮,前驱动部50和后驱动部51上各设有四个滚筒,本实施例中,前提升绳6均缠绕于后驱动部51的滚筒二512上,后提升绳7均缠绕于前驱动部50的滚筒一502上,配合四根平衡首绳9、同步传动机构52及张力均衡单元30,同样能实现大载重的提升,且稳定安全。
实施例10
本实施例的超深立井多绳提升系统,在实施例1~9的基础上做进一步改进,滚筒一502和滚筒二512均为轴向移动式滚筒。
本实施例的滚筒均通过滑移花键与对应的主轴传动连接,在提升绳收放过程中能轴 向移动,获得较小的绳偏角,减少提升绳的磨损。
实施例11
本实施例的超深立井多绳提升系统的导向方法,前提升绳6有两根,上导向轮系1的每段分轴上均设有三个导向轮,后提升提绳7有两根,下导向轮系2的每段分轴上均设有三个导向轮,将两根前提升绳6对称地搭在上导向轮系1的两段分轴内侧的左三、左四导向轮上,两根后提升绳7对称地搭在下导向轮系2的两段分轴内侧的左三、左四导向轮上,前提升绳6和后提升绳7分别缠绕在驱动单元5中轴线左右两侧的滚筒上,且跨越驱动单元5中轴线的前提升绳6和后提升绳7分别缠绕于后驱动部51上,如图3所示;
若提升绳偏角过大,可将两根前提升绳6搭在上导向轮系1的一段分轴内侧的左四、左五导向轮上,两根后提升绳7对称地搭下导向轮系2的一段分轴内侧的左二、左三导向轮上,前提升绳6和后提升绳7分别缠绕在驱动单元5中轴线左右两侧的滚筒上,距离驱动单元5中轴线最远的前提升绳6和后提升绳7分别缠绕于后驱动部51上,如图4所示;或者,将滚筒一502和滚筒二512通过滑移花键与对应的主轴传动连接,使之能轴向移动。
本发明所述实例仅仅是对本发明的优选实施方式进行描述,并非对本发明构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域工程技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的保护范围。

Claims (10)

  1. 一种超深立井多绳提升系统,包括,
    上导向轮系,其上设有若干导向轮;
    下导向轮系,其设于上导向轮系侧下方,下导向轮系上设有若干导向轮;
    前提升容器,其设于上导向轮系正下方;
    后提升容器,其设于下导向轮系正下方;
    驱动单元,其驱动前提升容器及后提升容器的升降;
    前提升绳,其有若干根,搭在上导向轮系上,前提升绳一端与前提升容器顶部连接,另一端与驱动单元连接;
    后提升绳,其有若干根,搭在下导向轮系上,后提升绳一端与后提升容器顶部连接,另一端与驱动单元连接;
    尾绳,其一端与前提升容器底部连接,另一端与后提升容器底部连接;
    其特征在于,还包括:
    平衡首绳,其有若干根,搭在上导向轮系上,平衡首绳一端与前提升容器顶部连接,另一端与后提升容器顶部连接。
  2. 根据权利要求1所述的一种超深立井多绳提升系统,其特征在于,所述驱动单元包括相互平行设置的前驱动部和后驱动部;
    所述前驱动部包括,
    驱动电机一,其提供驱动力;
    主轴一,其在驱动电机一的驱动下转动;
    滚筒一,其有若干个,安装在主轴一上,滚筒一上缠绕有前提升绳或后提升绳;
    所述后驱动部包括,
    驱动电机二,其提供驱动力;
    主轴二,其在驱动电机二的驱动下转动;
    滚筒二,其有若干个,安装在主轴二上,滚筒二上缠绕有前提升绳或后提升绳;
    缠绕于滚筒一或滚筒二上的前提升绳从滚筒一或滚筒二的上方出绳;
    缠绕于滚筒一或滚筒二上的后提升绳从滚筒一或滚筒二的下方出绳。
  3. 根据权利要求2所述的一种超深立井多绳提升系统,其特征在于:
    所述前驱动部上缠绕有至少一根前提升绳与至少一根后提升绳,且,
    所述后驱动部上缠绕有至少一根前提升绳与至少一根后提升绳;
    缠绕于相同驱动部的前提升绳与后提升绳的绕向相反。
  4. 根据权利要求3所述的一种超深立井多绳提升系统,其特征在于:
    所述上导向轮系的各导向轮安装在从中间分开的两段平行分轴上;
    所述下导向轮系的各导向轮安装在从中间分开的两段平行分轴上。
  5. 根据权利要求4所述的一种超深立井多绳提升系统,其特征在于:
    各前提升绳对称式分布在上导向轮系两段分轴内侧的导向轮上,各后提升绳对称式分布在在下导向轮系两段分轴内侧的导向轮上;或,
    各前提升绳搭在上导向轮系一段分轴内侧,距离驱动单元中轴线最远的前提升绳缠绕于后驱动部上,各后提升绳搭在下导向轮系一段分轴内侧,距离驱动单元中轴线最远的后提升绳缠绕于后驱动部上。
  6. 根据权利要求2~5任意一条所述的一种超深立井多绳提升系统,其特征在于:所述驱动单元还包括同步传动机构,其为锥齿轮组,其一端与主轴一传动连接,另一端与主轴二传动连接。
  7. 根据权利要求1所述的一种超深立井多绳提升系统,其特征在于,还包括张力均衡单元,前提升容器和后提升容器的顶部均设有若干张力均衡单元,前提升绳和后提升绳均通过张力均衡单元和对应的提升容器连接;张力均衡单元包括:
    调绳滚筒,其设于前提升容器或后提升容器顶部,前提升绳或后提升绳缠绕于调绳滚筒上;增速模块,其与调绳滚筒同轴传动连接;
    调绳轮,其与增速模块传动连接;
    液压缸,其活塞杆与调绳轮传动连接;
    前提升容器顶部的各张力均衡单元的液压缸相互连通;
    后提升容器顶部的各张力均衡单元的液压缸相互连通。
  8. 根据权利要求7所述的一种超深立井多绳提升系统,其特征在于:所述增速模块为行星轮系,其包括太阳轮、行星齿轮、行星架和内齿圈,其中,
    内齿圈与调绳轮传动连接,且太阳轮与调绳滚筒传动连接;或,
    内齿圈与调绳轮传动连接,且行星架与调绳滚筒传动连接;或,
    行星架与调绳轮传动连接,且太阳轮与调绳滚筒传动连接。
  9. 根据权利要求5所述的一种超深立井多绳提升系统,其特征在于:滚筒一和滚筒二均为轴向移动式滚筒。
  10. 一种超深立井多绳提升系统的导向方法,其特征在于:前提升绳有两根,上导向轮系的每段分轴上均设有三个导向轮,后提升提绳有两根,下导向轮系的每段分轴上均设有三个导 向轮,将两根前提升绳对称地搭在上导向轮系的两段分轴内侧的左三、左四导向轮上,两根后提升绳对称地搭在下导向轮系的两段分轴内侧的左三、左四导向轮上,前提升绳和后提升绳分别缠绕在驱动单元中轴线左右两侧的滚筒上,且跨越驱动单元中轴线的前提升绳和后提升绳分别缠绕于后驱动部上;
    若提升绳偏角过大,可将两根前提升绳搭在上导向轮系的一段分轴内侧的左四、左五导向轮上,两根后提升绳对称地搭下导向轮系的一段分轴内侧的左二、左三导向轮上,前提升绳和后提升绳分别缠绕在驱动单元中轴线左右两侧的滚筒上,距离驱动单元中轴线最远的前提升绳和后提升绳分别缠绕于后驱动部上;或者,将滚筒一和滚筒二通过滑移花键与对应的主轴传动连接,使之能轴向移动。
PCT/CN2021/074305 2020-11-26 2021-01-29 一种超深立井多绳提升系统及其导向方法 WO2022110543A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/05449A ZA202205449B (en) 2020-11-26 2022-05-17 Multi-rope hoisting system for ultra-deep vertical shafts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011345265.7 2020-11-26
CN202011345265.7A CN112357724B (zh) 2020-11-26 2020-11-26 一种超深立井多绳提升系统及其导向方法

Publications (1)

Publication Number Publication Date
WO2022110543A1 true WO2022110543A1 (zh) 2022-06-02

Family

ID=74532867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074305 WO2022110543A1 (zh) 2020-11-26 2021-01-29 一种超深立井多绳提升系统及其导向方法

Country Status (3)

Country Link
CN (1) CN112357724B (zh)
WO (1) WO2022110543A1 (zh)
ZA (1) ZA202205449B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112960511B (zh) * 2021-03-25 2022-03-15 中国矿业大学 一种张力自均衡的多绳缠绕提升系统及方法
CN112960509B (zh) * 2021-03-25 2022-04-15 中国矿业大学 一种大距离多绳牵引提升系统及提升方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB664686A (en) * 1947-11-29 1952-01-09 Houilleres Bassin Du Nord Improvements in or relating to hoists
JPH11139719A (ja) * 1997-11-07 1999-05-25 Mitsubishi Heavy Ind Ltd 昇降装置
JP2002234680A (ja) * 2001-02-07 2002-08-23 Sugawa Actuator Kk 省エネルギー電動エレベータ
CN1397482A (zh) * 2001-07-16 2003-02-19 杨光良 多绳悬挂尾绳平衡式提升机
CN104590974A (zh) * 2014-11-28 2015-05-06 中信重工机械股份有限公司 一种多绳复合型矿井提升机
CN106829690A (zh) * 2017-01-25 2017-06-13 太原科技大学 一种新型齿轮传动张力平衡多绳缠绕式矿井提升机
CN106865384A (zh) * 2017-05-02 2017-06-20 中国矿业大学 超深立井双绳提升钢丝绳张力自动平衡系统及方法
CN108383020A (zh) * 2018-03-07 2018-08-10 中国矿业大学 一种超深井大载重高速复绕式摩擦提升装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2907965C2 (de) * 1979-03-01 1982-10-21 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Einstreben-Fördergerüst für einen Bergbau-Förderschacht
FI92043C (fi) * 1992-09-18 1994-09-26 Kone Oy Hissin köysijärjestely
JP2000247559A (ja) * 1999-02-24 2000-09-12 Hitachi Ltd エレベータ装置
CN201089685Y (zh) * 2007-09-06 2008-07-23 江西铜业集团公司 一种机械式多绳摩擦式提升机首绳自动调节装置
EP2361213B1 (de) * 2008-12-15 2013-04-10 Inventio AG Tragmittelbefestigungsvorrichtung
CN105600643A (zh) * 2014-11-21 2016-05-25 刘应国 多功能首绳调节装置
CN104944267B (zh) * 2015-05-11 2016-11-09 重庆大学 一种双钢丝绳提升装置张力调节系统
CN109019251A (zh) * 2018-07-06 2018-12-18 中国矿业大学 一种超深提升系统多根钢丝绳的张力平衡装置
CN108946415A (zh) * 2018-08-06 2018-12-07 中国恩菲工程技术有限公司 矿井提升装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB664686A (en) * 1947-11-29 1952-01-09 Houilleres Bassin Du Nord Improvements in or relating to hoists
JPH11139719A (ja) * 1997-11-07 1999-05-25 Mitsubishi Heavy Ind Ltd 昇降装置
JP2002234680A (ja) * 2001-02-07 2002-08-23 Sugawa Actuator Kk 省エネルギー電動エレベータ
CN1397482A (zh) * 2001-07-16 2003-02-19 杨光良 多绳悬挂尾绳平衡式提升机
CN104590974A (zh) * 2014-11-28 2015-05-06 中信重工机械股份有限公司 一种多绳复合型矿井提升机
CN106829690A (zh) * 2017-01-25 2017-06-13 太原科技大学 一种新型齿轮传动张力平衡多绳缠绕式矿井提升机
CN106865384A (zh) * 2017-05-02 2017-06-20 中国矿业大学 超深立井双绳提升钢丝绳张力自动平衡系统及方法
CN108383020A (zh) * 2018-03-07 2018-08-10 中国矿业大学 一种超深井大载重高速复绕式摩擦提升装置

Also Published As

Publication number Publication date
CN112357724B (zh) 2021-09-03
ZA202205449B (en) 2022-08-31
CN112357724A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2022110543A1 (zh) 一种超深立井多绳提升系统及其导向方法
CN101359815B (zh) 张力放线用滑车
CN106829690B (zh) 一种新型齿轮传动张力平衡多绳缠绕式矿井提升机
WO2017032222A1 (zh) 一种起重机用差动行星减速机
CN106865436B (zh) 起重机用穿绳卷扬机构
CN109019251A (zh) 一种超深提升系统多根钢丝绳的张力平衡装置
CN102139837A (zh) 用于海上风电安装工程起重机的紧凑型变幅绞车
CN203319601U (zh) 一种张紧驱动的卷扬提升机构
WO2022110544A1 (zh) 一种多绳张力均衡调节装置及调节方法
WO2020006888A1 (zh) 一种大距离调绳的钢丝绳张力自动均衡装置
CN108373117B (zh) 集装箱起重机的节能起升机构
CN201323408Y (zh) 张力放线用滑车
CN102561277A (zh) 中大型表孔弧门固定卷扬启闭机
CN206606957U (zh) 起重机用穿绳卷扬机构
CN108996366A (zh) 一种多点作用力系统均衡调节装置
CN112960509B (zh) 一种大距离多绳牵引提升系统及提升方法
CN107200278A (zh) 差动补偿的单臂架起重机变幅水平位移系统
CN208544981U (zh) 一种平面内任意位置多点作用力系统自适应张力平衡装置
CN112960511B (zh) 一种张力自均衡的多绳缠绕提升系统及方法
CN202466537U (zh) 中大型表孔弧门固定卷扬启闭机
CN109019252A (zh) 一种并行承载钢丝绳张力的自动平衡装置
CN201999670U (zh) 用于海上风电安装工程起重机的紧凑型变幅绞车
CN220906938U (zh) 一种防摇吊钩
CN208544982U (zh) 一种大距离调绳的钢丝绳张力自动均衡装置
CN202766147U (zh) 用于绕桩式起重机的新型大吨位双联起升机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896063

Country of ref document: EP

Kind code of ref document: A1