WO2022110455A1 - 一种石墨烯添加剂及制备方法 - Google Patents

一种石墨烯添加剂及制备方法 Download PDF

Info

Publication number
WO2022110455A1
WO2022110455A1 PCT/CN2020/139974 CN2020139974W WO2022110455A1 WO 2022110455 A1 WO2022110455 A1 WO 2022110455A1 CN 2020139974 W CN2020139974 W CN 2020139974W WO 2022110455 A1 WO2022110455 A1 WO 2022110455A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
powder
additive
preparation
mixed solution
Prior art date
Application number
PCT/CN2020/139974
Other languages
English (en)
French (fr)
Inventor
梁海
梁拓
胡艳梅
Original Assignee
梁海
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梁海 filed Critical 梁海
Publication of WO2022110455A1 publication Critical patent/WO2022110455A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt

Definitions

  • the invention belongs to the technical field of additives and conductive materials, and in particular relates to a graphene additive and a preparation method.
  • the present invention provides a kind of metal that can successfully add graphene to the molten state in the smelting furnace, and form multilayer graphene in the metal matrix of the prepared conductor material. , thereby greatly improving the graphene additive of the conductivity of the conductor material, and the preparation method of the graphene additive.
  • the present invention adopts the following technical solutions:
  • a graphene additive is made of graphene, a metal with conductivity and an organic solvent, and the volume ratios of the graphene, the metal and the organic solvent are preferably 0.28%, 14.24% and 85.48% respectively.
  • the particle size of the graphene is 1-10 nm.
  • the organic solvent is one of absolute ethanol, 1-3 butanediol and water, preferably absolute ethanol.
  • the metal is Al or Cu.
  • the present invention also provides a preparation method of the above-mentioned graphene additive, comprising the following steps:
  • step a2 the mixing time in step a2 is more than 3h, and the rotating speed of the mixer is more than 2000rpm.
  • step a3 the rotation speed of the centrifuge is 5000rpm, and the centrifugation time is 1h.
  • the drying temperature in step a4 is 120°C
  • the drying time is 24h
  • the reduction temperature is 200°C
  • the reduction time is 30 minutes.
  • the present invention can successfully add graphene to the metal in the molten state in the smelting furnace when it is used to make the conductor material, and form multilayer graphene in the metal matrix of the prepared conductor material, thereby greatly improving the Conductivity of the conductor material.
  • Fig. 1 is the schematic flow sheet of the preparation method of a kind of graphene additive of the present invention.
  • the graphene additive of the present invention is made of graphene, conductive metal and organic solvent, and the volume ratio of the graphene, metal and organic solvent is preferably 0.28%, 14.24% and 85.48% respectively .
  • the particle size of the graphene is 1-10 nm
  • the metal can be Al or Cu
  • the organic solvent is one of absolute ethanol, 1-3 butanediol, and water (preferably absolute ethanol).
  • the preparation method of the graphene additive of the present invention comprises the following steps:
  • Step S100 Disperse the graphene in an organic solvent to obtain a mixed solution A.
  • Step S200 Add the metal into the mixed solution A, and mix to obtain the mixed solution B; specifically, use a mixer to mix the mixed solution A after adding the metal to obtain the mixed solution B, and the mixing time is preferably more than 3h, and the rotating speed of the mixer is preferably above 2000rpm.
  • Step S300 Centrifuge the mixed solution B, and take off the lower layer of powder A; specifically: use a centrifuge to centrifuge the mixed solution B, and take off the lower layer of powder A, and the rotating speed of the centrifuge is preferably 5000rpm, and the centrifugation time is preferably 5000 rpm. 1h.
  • Step S400 After vacuum drying the obtained lower layer powder A (for example: placing the lower layer powder A in a vacuum drying furnace for drying), charging with hydrogen at a high temperature for reduction to obtain powder B; wherein the drying temperature is preferably 120°C, The drying time is preferably 24h, the reduction temperature is preferably 200°C, and the reduction time is preferably 30 minutes.
  • the drying temperature is preferably 120°C
  • the drying time is preferably 24h
  • the reduction temperature is preferably 200°C
  • the reduction time is preferably 30 minutes.
  • Step S500 Add a smelting additive (such as a refiner, the smelting additive is completely volatilized during the grinding process) into the powder B, and grind to obtain the powder C;
  • a smelting additive such as a refiner, the smelting additive is completely volatilized during the grinding process
  • Step S600 Press the powder C to obtain a graphene additive.
  • the graphene additive of the present invention When the graphene additive of the present invention is used to make the conductor material, the graphene can be successfully added to the metal in the molten state in the smelting furnace, and the multi-layer graphene is formed in the metal matrix of the prepared conductor material, Thereby, the conductivity of the conductor material is greatly improved.
  • the present embodiment 1 is made of graphene, Cu powder and dehydrated alcohol as a graphene additive, and the specific steps are:
  • the graphene additive obtained in Example 1 and Al are made into conductor materials, and the specific preparation process is as follows: at first, Al is put into a smelting furnace and melted; then the graphene additive is added into the smelting furnace, mixed with molten Al, and finally stirred. , and heat preservation for 1 h to obtain a conductive material.
  • the present embodiment 2 is made of graphene, Cu powder and dehydrated alcohol to make graphene additive, and the concrete steps are:
  • the graphene additive obtained in Example 2 and Cu are made into conductor materials, and the specific preparation process is as follows: at first Cu is put into a smelting furnace and melted; then the graphene additive is added into the smelting furnace, mixed with molten Cu, and finally stirred. , and heat preservation for 1 h to obtain a conductive material.
  • test Examples 1-2 and conventional aluminum sheets were entrusted to test Examples 1-2 and conventional aluminum sheets as a comparative example, specifically: by using American Quantum PPMS-9 testing equipment to test, test items and conditions: resistivity (300K), test results Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及一种石墨烯添加剂及制备方法,该石墨烯添加剂,由石墨烯、具有导电性的金属和有机溶剂制成,且所述石墨烯、金属和有机溶剂的体积比分别优选为0.28%、14.24%和85.48%。将该石墨烯添加剂用于制作导体材料,即可成功将石墨烯加入到熔炼炉内的熔化状态的金属中,并在制成的导体材料的金属基体内形成多层石墨烯,从而大大提升导体材料的导电率。

Description

一种石墨烯添加剂及制备方法 技术领域
本发明属于添加剂和导电材料技术领域,具体涉及一种石墨烯添加剂及制备方法。
背景技术
目前,常用的导电材料有银、铜、金、铝、钨、镍、铁、铅等。但是,申请人发现:现有的这些导电材料的电阻率较高,从而使导电率偏低,自身耗能较高,发热量大,使用寿命大大缩短。
发明内容
为解决现有技术中存在的上述问题,本发明提供了一种能够成功将石墨烯加入到熔炼炉内的熔化状态的金属中,并在制成的导体材料的金属基体内形成多层石墨烯,从而大大提升导体材料导电率的石墨烯添加剂,以及该石墨烯添加剂的制备方法。
为解决上述技术问题,本发明采用如下技术方案:
一种石墨烯添加剂,由石墨烯、具有导电性的金属和有机溶剂制成,且所述石墨烯、金属和有机溶剂的体积比分别优选为0.28%、14.24%和85.48%。
进一步地,所述石墨烯的粒径为1~10nm。
进一步地,所述有机溶剂是无水乙醇、1-3丁二醇、水中的一种,优选无水乙醇。
进一步地,所述金属是Al或Cu。
本发明还提供了一种上述石墨烯添加剂的制备方法,包括以下步骤:
a1.将石墨烯分散于有机溶剂,得到混合溶液A;
a2.将金属加入混合溶液A中,混合得到混合溶液B;
a3.对混合溶液B进行离心处理,并取下层粉末A;
a4.对取得的下层粉末A进行真空干燥后,在高温下充入氢气还原,得到粉末B;
a5.在粉末B中加入熔炼添加剂进行研磨,得到粉末C;
a6.将粉末C压制成型,得到石墨烯添加剂。
进一步地,步骤a2中的混合时间在3h以上,混合器的转速在2000rpm以上。
进一步地,步骤a3中离心机的转速为5000rpm,离心时间为1h。
进一步地,步骤a4中的干燥温度为120℃,干燥时间为24h,还原温度为200℃,还原时间为30分钟。
本发明主要具有以下有益效果:
本发明通过上述技术方案,即可用于制作导体材料时成功将石墨烯加入到熔炼炉内的熔化状态的金属中,并在制成的导体材料的金属基体内形成多层石墨烯,从而大大提升导体材料的导电率。
附图说明
图1是本发明所述的一种石墨烯添加剂的制备方法的流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明所述的一种石墨烯添加剂,由石墨烯、具有导电性的金属 和有机溶剂制成,且所述石墨烯、金属和有机溶剂的体积比分别优选为0.28%、14.24%和85.48%。所述石墨烯的粒径为1~10nm,所述金属可以是Al或Cu,所述有机溶剂是无水乙醇、1-3丁二醇、水中的一种(优选无水乙醇)。
如图1所示,本发明所述石墨烯添加剂的制备方法,包括以下步骤:
步骤S100.将石墨烯分散于有机溶剂,得到混合溶液A。
步骤S200.将金属加入混合溶液A中,混合得到混合溶液B;具体为采用混合器对加入金属后混合溶液A进行混合,得到混合溶液B,而且混合时间优选在3h以上,混合器的转速优选在2000rpm以上。
步骤S300.对混合溶液B进行离心处理,并取下层粉末A;具体为:利用离心机对混合溶液B进行离心处理,并取下层粉末A,而且离心机的转速优选为5000rpm,离心时间优选为1h。
步骤S400.对取得的下层粉末A进行真空干燥后(比如:将下层粉末A放入真空干燥炉中进行干燥),在高温下充入氢气还原,得到粉末B;其中干燥温度优选为120℃,干燥时间优选为24h,还原温度优选为200℃,还原时间优选为30分钟。
步骤S500.在粉末B中加入熔炼添加剂(如:细化剂,该熔炼添加剂在研磨过程全部挥发。)进行研磨,得到粉末C;
步骤S600.将粉末C压制成型,得到石墨烯添加剂。
将本发明所述石墨烯添加剂用于制作导体材料时,即可成功将石墨烯加入到熔炼炉内的熔化状态的金属中,并在制成的导体材料的金属基体内形成多层石墨烯,从而大大提升了导体材料的导电率。
下面通过具体实施例进一步对本发明所述石墨烯添加剂及制备 方法做进一步说明。
实施例1
本实施例1由石墨烯、Cu粉末和无水乙醇制成石墨烯添加剂,具体步骤为:
1)将适量的石墨烯添加剂分散于无水乙醇,得到混合溶液A;
2)将50g的Cu粉末加入混合溶液A中,并采用混合器以2000rpm以上的转速混合3h以上,得到混合溶液B;
3)利用离心机在5000rpm的转速下对混合溶液B进行离心处理1h,并取下层粉末A;
4)对取得的下层粉末A放入真空干燥炉内,并在120℃下进行真空干燥24h,然后在200℃的高温下充入氢气还原30分钟,得到粉末B;
5)在粉末B中加入熔炼添加剂进行研磨,得到粉末C;
6)将粉末C压制成型,得到石墨烯添加剂。
将实施例1制得的石墨烯添加剂与Al制成导体材料,具体制备过程为:首先将Al放入熔炼炉进行熔化;接着将石墨烯添加剂加入熔炼炉中,与熔化的Al混合,最后搅拌、保温1h,制得导电材料。
实施例2
本实施例2由石墨烯、Cu粉末和无水乙醇制成石墨烯添加剂,具体步骤为:
1)将适量的石墨烯添加剂分散于无水乙醇,得到混合溶液A;
2)将50g的Cu粉末加入混合溶液A中,并采用混合器以2000rpm以上的转速混合3h以上,得到混合溶液B;
3)利用离心机在5000rpm的转速下对混合溶液B进行离心处理 1h,并取下层粉末A;
4)对取得的下层粉末A放入真空干燥炉内,并在120℃下进行真空干燥24h,然后在200℃的高温下充入氢气还原30分钟,得到粉末B;
5)在粉末B中加入熔炼添加剂进行研磨,得到粉末C;
6)将粉末C压制成型,得到石墨烯添加剂。
将实施例2制得的石墨烯添加剂与Cu制成导体材料,具体制备过程为:首先将Cu放入熔炼炉进行熔化;接着将石墨烯添加剂加入熔炼炉中,与熔化的Cu混合,最后搅拌、保温1h,制得导电材料。
经委托华南理工大学材料学院对实施例1-2以及常规铝片作为对比例进行检测,具体为:通过采用美国量子PPMS-9检测设备检测,检测项目和条件:电阻率(300K),检测结果如下表1。
表1
Figure PCTCN2020139974-appb-000001
从上表可以看出,将本发明的石墨烯添加剂用于制做实施例1-2的导体材料,即可在Al基体和Cu基体内形成多层石墨烯,从而使导体材料与常规的铝片相比,电阻率明显减小,导电率大大提升。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (8)

  1. 一种石墨烯添加剂,其特征在于,由石墨烯、具有导电性的金属和有机溶剂制成,且所述石墨烯、金属和有机溶剂的体积比分别优选为0.28%、14.24%和85.48%。
  2. 根据权利要求1所述的石墨烯添加剂,其特征在于,所述石墨烯的粒径为1~10nm。
  3. 根据权利要求1所述的石墨烯添加剂,其特征在于,所述有机溶剂是无水乙醇、1-3丁二醇、水中的一种,优选无水乙醇。
  4. 根据权利要求1所述的石墨烯添加剂,其特征在于,所述金属是Al或Cu。
  5. 一种权利要求1-4中任一所述的石墨烯添加剂的制备方法,其特征在于,包括以下步骤:
    a1.将石墨烯分散于有机溶剂,得到混合溶液A;
    a2.将金属加入混合溶液A中,混合得到混合溶液B;
    a3.对混合溶液B进行离心处理,并取下层粉末A;
    a4.对取得的下层粉末A进行真空干燥后,在高温下充入氢气还原,得到粉末B;
    a5.在粉末B中加入熔炼添加剂进行研磨,得到粉末C;
    a6.将粉末C压制成型,得到石墨烯添加剂。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤a2中的混合时间在3h以上,混合器的转速在2000rpm以上。
  7. 根据权利要求5所述的制备方法,其特征在于,步骤a3中离心机的转速为5000rpm,离心时间为1h。
  8. 根据权利要求5所述的制备方法,其特征在于,步骤a4中的干燥温度为120℃,干燥时间为24h,还原温度为200℃,还原时间为30分钟。
PCT/CN2020/139974 2020-11-30 2020-12-28 一种石墨烯添加剂及制备方法 WO2022110455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011375356.5 2020-11-30
CN202011375356.5A CN112593109A (zh) 2020-11-30 2020-11-30 一种石墨烯添加剂及制备方法

Publications (1)

Publication Number Publication Date
WO2022110455A1 true WO2022110455A1 (zh) 2022-06-02

Family

ID=75189050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139974 WO2022110455A1 (zh) 2020-11-30 2020-12-28 一种石墨烯添加剂及制备方法

Country Status (2)

Country Link
CN (1) CN112593109A (zh)
WO (1) WO2022110455A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117144081A (zh) * 2023-10-30 2023-12-01 金鼎重工有限公司 一种含Nb耐低温结构用热轧H型钢的轧制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575216A (zh) * 2020-12-07 2021-03-30 深圳量子态材料有限公司 一种将石墨烯添加到熔炼态金属溶液中的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952588A (zh) * 2014-05-08 2014-07-30 江西理工大学 高强高导石墨烯铜基复合材料及其制备方法
CN105624457A (zh) * 2016-03-22 2016-06-01 北京工业大学 石墨烯增强镁基复合材料及其制备方法
CN107012355A (zh) * 2017-05-05 2017-08-04 哈尔滨工业大学 一种单层石墨烯增强铝基复合材料的制备方法
CN107058786A (zh) * 2017-04-19 2017-08-18 哈尔滨理工大学 一种镁基石墨烯复合材料的制备方法
CN107164647A (zh) * 2017-04-28 2017-09-15 哈尔滨赫兹新材料科技有限公司 高导热刚性石墨烯/铜纳米复合材料散热片及其制备方法
CN108145169A (zh) * 2017-11-27 2018-06-12 中国船舶重工集团公司第七二五研究所 一种高强高导石墨烯增强铜基复合材料及制备方法与应用
CN109371276A (zh) * 2018-12-18 2019-02-22 苏州大学 批量熔铸制备石墨烯增强铝合金基纳米复合材料的方法
CN110055444A (zh) * 2019-06-13 2019-07-26 中国矿业大学 一种高导电石墨烯/铝基复合材料的制备方法
CN112575216A (zh) * 2020-12-07 2021-03-30 深圳量子态材料有限公司 一种将石墨烯添加到熔炼态金属溶液中的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952588A (zh) * 2014-05-08 2014-07-30 江西理工大学 高强高导石墨烯铜基复合材料及其制备方法
CN105624457A (zh) * 2016-03-22 2016-06-01 北京工业大学 石墨烯增强镁基复合材料及其制备方法
CN107058786A (zh) * 2017-04-19 2017-08-18 哈尔滨理工大学 一种镁基石墨烯复合材料的制备方法
CN107164647A (zh) * 2017-04-28 2017-09-15 哈尔滨赫兹新材料科技有限公司 高导热刚性石墨烯/铜纳米复合材料散热片及其制备方法
CN107012355A (zh) * 2017-05-05 2017-08-04 哈尔滨工业大学 一种单层石墨烯增强铝基复合材料的制备方法
CN108145169A (zh) * 2017-11-27 2018-06-12 中国船舶重工集团公司第七二五研究所 一种高强高导石墨烯增强铜基复合材料及制备方法与应用
CN109371276A (zh) * 2018-12-18 2019-02-22 苏州大学 批量熔铸制备石墨烯增强铝合金基纳米复合材料的方法
CN110055444A (zh) * 2019-06-13 2019-07-26 中国矿业大学 一种高导电石墨烯/铝基复合材料的制备方法
CN112575216A (zh) * 2020-12-07 2021-03-30 深圳量子态材料有限公司 一种将石墨烯添加到熔炼态金属溶液中的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117144081A (zh) * 2023-10-30 2023-12-01 金鼎重工有限公司 一种含Nb耐低温结构用热轧H型钢的轧制方法
CN117144081B (zh) * 2023-10-30 2024-01-16 金鼎重工有限公司 一种含Nb耐低温结构用热轧H型钢的轧制方法

Also Published As

Publication number Publication date
CN112593109A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2022110455A1 (zh) 一种石墨烯添加剂及制备方法
CN108396168B (zh) 一种高强高导抗蠕变石墨烯增强铝合金材料的制备方法
WO2019034100A1 (zh) 低成本可回收的导电浆料及其制备方法和电子器件
WO2019033834A1 (zh) 一种电磁屏蔽涂层材料及其制备方法
Wen et al. Synthesis of polypyrrole nanoparticles and their applications in electrically conductive adhesives for improving conductivity
CN101077529B (zh) 一种纳米铜粉及铜浆料的制备方法
WO2023045348A1 (zh) 抗氧化导电铜浆料及其制备方法和应用
TWI619294B (zh) 粉末、包含此種粉末之電極及電池組
JP2003203522A (ja) 銀化合物ペースト
CN109852835B (zh) 一种石墨烯/铜纳米复合材料的制备方法
CN108793133A (zh) 高导热石墨烯散热膜的制备方法
WO2021232597A1 (zh) 一种近红外热修复柔性导电膜及其制备方法
CN112011705A (zh) 纳米碳增强铜基复合材料批量制备方法
WO2022121004A1 (zh) 一种将石墨烯添加到熔炼态金属溶液中的方法
WO2015124094A1 (zh) 高可靠高比容电解电容器用钽粉的制备方法
CN114054762A (zh) 基于石墨烯缺陷调控的石墨烯/金属基复合材料制备方法
CN114171255A (zh) 一种复合导电功能性银浆及其制备方法
WO2022088463A1 (zh) 一种亚超导体材料及制备方法
Liu et al. Colloidal synthesis and characterization of single-crystalline Sb 2 Se 3 nanowires
CN112410597A (zh) 一种纳米wc弥散强化铜的制备方法
TWI528385B (zh) 銀導電膠及其製造方法
CN102543257B (zh) 改性晶体硅太阳能电池用银厚膜浆料及其制备方法
CN112071507A (zh) 一种铜包覆多层石墨烯复合材料及其制备方法
CN108976914B (zh) 一种高分散的铜纳米线导电墨水、导电薄膜及其制备方法
CN106830691A (zh) 一种石墨烯掺杂型电子浆料用玻璃粉及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963343

Country of ref document: EP

Kind code of ref document: A1